ath9k: call hw initializer directly
[pandora-kernel.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "ath9k.h"
21 #include "initvals.h"
22
23 static int btcoex_enable;
24 module_param(btcoex_enable, bool, 0);
25 MODULE_PARM_DESC(btcoex_enable, "Enable Bluetooth coexistence support");
26
27 #define ATH9K_CLOCK_RATE_CCK            22
28 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
29 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
30
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
33                               enum ath9k_ht_macmode macmode);
34 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
35                               struct ar5416_eeprom_def *pEepData,
36                               u32 reg, u32 value);
37 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
38 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
39
40 /********************/
41 /* Helper Functions */
42 /********************/
43
44 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
45 {
46         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
47
48         if (!ah->curchan) /* should really check for CCK instead */
49                 return clks / ATH9K_CLOCK_RATE_CCK;
50         if (conf->channel->band == IEEE80211_BAND_2GHZ)
51                 return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
52
53         return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
54 }
55
56 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
57 {
58         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
59
60         if (conf_is_ht40(conf))
61                 return ath9k_hw_mac_usec(ah, clks) / 2;
62         else
63                 return ath9k_hw_mac_usec(ah, clks);
64 }
65
66 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
67 {
68         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
69
70         if (!ah->curchan) /* should really check for CCK instead */
71                 return usecs *ATH9K_CLOCK_RATE_CCK;
72         if (conf->channel->band == IEEE80211_BAND_2GHZ)
73                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
74         return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
75 }
76
77 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
78 {
79         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
80
81         if (conf_is_ht40(conf))
82                 return ath9k_hw_mac_clks(ah, usecs) * 2;
83         else
84                 return ath9k_hw_mac_clks(ah, usecs);
85 }
86
87 /*
88  * Read and write, they both share the same lock. We do this to serialize
89  * reads and writes on Atheros 802.11n PCI devices only. This is required
90  * as the FIFO on these devices can only accept sanely 2 requests. After
91  * that the device goes bananas. Serializing the reads/writes prevents this
92  * from happening.
93  */
94
95 void ath9k_iowrite32(struct ath_hw *ah, u32 reg_offset, u32 val)
96 {
97         if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
98                 unsigned long flags;
99                 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
100                 iowrite32(val, ah->ah_sc->mem + reg_offset);
101                 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
102         } else
103                 iowrite32(val, ah->ah_sc->mem + reg_offset);
104 }
105
106 unsigned int ath9k_ioread32(struct ath_hw *ah, u32 reg_offset)
107 {
108         u32 val;
109         if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
110                 unsigned long flags;
111                 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
112                 val = ioread32(ah->ah_sc->mem + reg_offset);
113                 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
114         } else
115                 val = ioread32(ah->ah_sc->mem + reg_offset);
116         return val;
117 }
118
119 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
120 {
121         int i;
122
123         BUG_ON(timeout < AH_TIME_QUANTUM);
124
125         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
126                 if ((REG_READ(ah, reg) & mask) == val)
127                         return true;
128
129                 udelay(AH_TIME_QUANTUM);
130         }
131
132         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
133                 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
134                 timeout, reg, REG_READ(ah, reg), mask, val);
135
136         return false;
137 }
138
139 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
140 {
141         u32 retval;
142         int i;
143
144         for (i = 0, retval = 0; i < n; i++) {
145                 retval = (retval << 1) | (val & 1);
146                 val >>= 1;
147         }
148         return retval;
149 }
150
151 bool ath9k_get_channel_edges(struct ath_hw *ah,
152                              u16 flags, u16 *low,
153                              u16 *high)
154 {
155         struct ath9k_hw_capabilities *pCap = &ah->caps;
156
157         if (flags & CHANNEL_5GHZ) {
158                 *low = pCap->low_5ghz_chan;
159                 *high = pCap->high_5ghz_chan;
160                 return true;
161         }
162         if ((flags & CHANNEL_2GHZ)) {
163                 *low = pCap->low_2ghz_chan;
164                 *high = pCap->high_2ghz_chan;
165                 return true;
166         }
167         return false;
168 }
169
170 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
171                            const struct ath_rate_table *rates,
172                            u32 frameLen, u16 rateix,
173                            bool shortPreamble)
174 {
175         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
176         u32 kbps;
177
178         kbps = rates->info[rateix].ratekbps;
179
180         if (kbps == 0)
181                 return 0;
182
183         switch (rates->info[rateix].phy) {
184         case WLAN_RC_PHY_CCK:
185                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
186                 if (shortPreamble && rates->info[rateix].short_preamble)
187                         phyTime >>= 1;
188                 numBits = frameLen << 3;
189                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
190                 break;
191         case WLAN_RC_PHY_OFDM:
192                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
193                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
194                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
195                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
196                         txTime = OFDM_SIFS_TIME_QUARTER
197                                 + OFDM_PREAMBLE_TIME_QUARTER
198                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
199                 } else if (ah->curchan &&
200                            IS_CHAN_HALF_RATE(ah->curchan)) {
201                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
202                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
203                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
204                         txTime = OFDM_SIFS_TIME_HALF +
205                                 OFDM_PREAMBLE_TIME_HALF
206                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
207                 } else {
208                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
209                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
210                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
211                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
212                                 + (numSymbols * OFDM_SYMBOL_TIME);
213                 }
214                 break;
215         default:
216                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
217                         "Unknown phy %u (rate ix %u)\n",
218                         rates->info[rateix].phy, rateix);
219                 txTime = 0;
220                 break;
221         }
222
223         return txTime;
224 }
225
226 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
227                                   struct ath9k_channel *chan,
228                                   struct chan_centers *centers)
229 {
230         int8_t extoff;
231
232         if (!IS_CHAN_HT40(chan)) {
233                 centers->ctl_center = centers->ext_center =
234                         centers->synth_center = chan->channel;
235                 return;
236         }
237
238         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
239             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
240                 centers->synth_center =
241                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
242                 extoff = 1;
243         } else {
244                 centers->synth_center =
245                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
246                 extoff = -1;
247         }
248
249         centers->ctl_center =
250                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
251         centers->ext_center =
252                 centers->synth_center + (extoff *
253                          ((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
254                           HT40_CHANNEL_CENTER_SHIFT : 15));
255 }
256
257 /******************/
258 /* Chip Revisions */
259 /******************/
260
261 static void ath9k_hw_read_revisions(struct ath_hw *ah)
262 {
263         u32 val;
264
265         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
266
267         if (val == 0xFF) {
268                 val = REG_READ(ah, AR_SREV);
269                 ah->hw_version.macVersion =
270                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
271                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
272                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
273         } else {
274                 if (!AR_SREV_9100(ah))
275                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
276
277                 ah->hw_version.macRev = val & AR_SREV_REVISION;
278
279                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
280                         ah->is_pciexpress = true;
281         }
282 }
283
284 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
285 {
286         u32 val;
287         int i;
288
289         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
290
291         for (i = 0; i < 8; i++)
292                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
293         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
294         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
295
296         return ath9k_hw_reverse_bits(val, 8);
297 }
298
299 /************************************/
300 /* HW Attach, Detach, Init Routines */
301 /************************************/
302
303 static void ath9k_hw_disablepcie(struct ath_hw *ah)
304 {
305         if (AR_SREV_9100(ah))
306                 return;
307
308         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
309         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
310         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
311         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
312         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
313         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
314         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
315         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
316         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
317
318         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
319 }
320
321 static bool ath9k_hw_chip_test(struct ath_hw *ah)
322 {
323         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
324         u32 regHold[2];
325         u32 patternData[4] = { 0x55555555,
326                                0xaaaaaaaa,
327                                0x66666666,
328                                0x99999999 };
329         int i, j;
330
331         for (i = 0; i < 2; i++) {
332                 u32 addr = regAddr[i];
333                 u32 wrData, rdData;
334
335                 regHold[i] = REG_READ(ah, addr);
336                 for (j = 0; j < 0x100; j++) {
337                         wrData = (j << 16) | j;
338                         REG_WRITE(ah, addr, wrData);
339                         rdData = REG_READ(ah, addr);
340                         if (rdData != wrData) {
341                                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
342                                         "address test failed "
343                                         "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
344                                         addr, wrData, rdData);
345                                 return false;
346                         }
347                 }
348                 for (j = 0; j < 4; j++) {
349                         wrData = patternData[j];
350                         REG_WRITE(ah, addr, wrData);
351                         rdData = REG_READ(ah, addr);
352                         if (wrData != rdData) {
353                                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
354                                         "address test failed "
355                                         "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
356                                         addr, wrData, rdData);
357                                 return false;
358                         }
359                 }
360                 REG_WRITE(ah, regAddr[i], regHold[i]);
361         }
362         udelay(100);
363
364         return true;
365 }
366
367 static const char *ath9k_hw_devname(u16 devid)
368 {
369         switch (devid) {
370         case AR5416_DEVID_PCI:
371                 return "Atheros 5416";
372         case AR5416_DEVID_PCIE:
373                 return "Atheros 5418";
374         case AR9160_DEVID_PCI:
375                 return "Atheros 9160";
376         case AR5416_AR9100_DEVID:
377                 return "Atheros 9100";
378         case AR9280_DEVID_PCI:
379         case AR9280_DEVID_PCIE:
380                 return "Atheros 9280";
381         case AR9285_DEVID_PCIE:
382                 return "Atheros 9285";
383         case AR5416_DEVID_AR9287_PCI:
384         case AR5416_DEVID_AR9287_PCIE:
385                 return "Atheros 9287";
386         }
387
388         return NULL;
389 }
390
391 static void ath9k_hw_set_defaults(struct ath_hw *ah)
392 {
393         int i;
394
395         ah->config.dma_beacon_response_time = 2;
396         ah->config.sw_beacon_response_time = 10;
397         ah->config.additional_swba_backoff = 0;
398         ah->config.ack_6mb = 0x0;
399         ah->config.cwm_ignore_extcca = 0;
400         ah->config.pcie_powersave_enable = 0;
401         ah->config.pcie_clock_req = 0;
402         ah->config.pcie_waen = 0;
403         ah->config.analog_shiftreg = 1;
404         ah->config.ht_enable = 1;
405         ah->config.ofdm_trig_low = 200;
406         ah->config.ofdm_trig_high = 500;
407         ah->config.cck_trig_high = 200;
408         ah->config.cck_trig_low = 100;
409         ah->config.enable_ani = 1;
410         ah->config.diversity_control = 0;
411         ah->config.antenna_switch_swap = 0;
412
413         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
414                 ah->config.spurchans[i][0] = AR_NO_SPUR;
415                 ah->config.spurchans[i][1] = AR_NO_SPUR;
416         }
417
418         ah->config.intr_mitigation = true;
419
420         /*
421          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
422          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
423          * This means we use it for all AR5416 devices, and the few
424          * minor PCI AR9280 devices out there.
425          *
426          * Serialization is required because these devices do not handle
427          * well the case of two concurrent reads/writes due to the latency
428          * involved. During one read/write another read/write can be issued
429          * on another CPU while the previous read/write may still be working
430          * on our hardware, if we hit this case the hardware poops in a loop.
431          * We prevent this by serializing reads and writes.
432          *
433          * This issue is not present on PCI-Express devices or pre-AR5416
434          * devices (legacy, 802.11abg).
435          */
436         if (num_possible_cpus() > 1)
437                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
438 }
439
440 static void ath9k_hw_newstate(struct ath_hw *ah)
441 {
442         ah->hw_version.magic = AR5416_MAGIC;
443         ah->regulatory.country_code = CTRY_DEFAULT;
444         ah->hw_version.subvendorid = 0;
445
446         ah->ah_flags = 0;
447         if (ah->hw_version.devid == AR5416_AR9100_DEVID)
448                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
449         if (!AR_SREV_9100(ah))
450                 ah->ah_flags = AH_USE_EEPROM;
451
452         ah->regulatory.power_limit = MAX_RATE_POWER;
453         ah->regulatory.tp_scale = ATH9K_TP_SCALE_MAX;
454         ah->atim_window = 0;
455         ah->diversity_control = ah->config.diversity_control;
456         ah->antenna_switch_swap =
457                 ah->config.antenna_switch_swap;
458         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
459         ah->beacon_interval = 100;
460         ah->enable_32kHz_clock = DONT_USE_32KHZ;
461         ah->slottime = (u32) -1;
462         ah->acktimeout = (u32) -1;
463         ah->ctstimeout = (u32) -1;
464         ah->globaltxtimeout = (u32) -1;
465
466         ah->gbeacon_rate = 0;
467
468         ah->power_mode = ATH9K_PM_UNDEFINED;
469 }
470
471 static int ath9k_hw_rfattach(struct ath_hw *ah)
472 {
473         bool rfStatus = false;
474         int ecode = 0;
475
476         rfStatus = ath9k_hw_init_rf(ah, &ecode);
477         if (!rfStatus) {
478                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
479                         "RF setup failed, status: %u\n", ecode);
480                 return ecode;
481         }
482
483         return 0;
484 }
485
486 static int ath9k_hw_rf_claim(struct ath_hw *ah)
487 {
488         u32 val;
489
490         REG_WRITE(ah, AR_PHY(0), 0x00000007);
491
492         val = ath9k_hw_get_radiorev(ah);
493         switch (val & AR_RADIO_SREV_MAJOR) {
494         case 0:
495                 val = AR_RAD5133_SREV_MAJOR;
496                 break;
497         case AR_RAD5133_SREV_MAJOR:
498         case AR_RAD5122_SREV_MAJOR:
499         case AR_RAD2133_SREV_MAJOR:
500         case AR_RAD2122_SREV_MAJOR:
501                 break;
502         default:
503                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
504                         "Radio Chip Rev 0x%02X not supported\n",
505                         val & AR_RADIO_SREV_MAJOR);
506                 return -EOPNOTSUPP;
507         }
508
509         ah->hw_version.analog5GhzRev = val;
510
511         return 0;
512 }
513
514 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
515 {
516         u32 sum;
517         int i;
518         u16 eeval;
519
520         sum = 0;
521         for (i = 0; i < 3; i++) {
522                 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
523                 sum += eeval;
524                 ah->macaddr[2 * i] = eeval >> 8;
525                 ah->macaddr[2 * i + 1] = eeval & 0xff;
526         }
527         if (sum == 0 || sum == 0xffff * 3)
528                 return -EADDRNOTAVAIL;
529
530         return 0;
531 }
532
533 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
534 {
535         u32 rxgain_type;
536
537         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
538                 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
539
540                 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
541                         INIT_INI_ARRAY(&ah->iniModesRxGain,
542                         ar9280Modes_backoff_13db_rxgain_9280_2,
543                         ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
544                 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
545                         INIT_INI_ARRAY(&ah->iniModesRxGain,
546                         ar9280Modes_backoff_23db_rxgain_9280_2,
547                         ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
548                 else
549                         INIT_INI_ARRAY(&ah->iniModesRxGain,
550                         ar9280Modes_original_rxgain_9280_2,
551                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
552         } else {
553                 INIT_INI_ARRAY(&ah->iniModesRxGain,
554                         ar9280Modes_original_rxgain_9280_2,
555                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
556         }
557 }
558
559 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
560 {
561         u32 txgain_type;
562
563         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
564                 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
565
566                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
567                         INIT_INI_ARRAY(&ah->iniModesTxGain,
568                         ar9280Modes_high_power_tx_gain_9280_2,
569                         ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
570                 else
571                         INIT_INI_ARRAY(&ah->iniModesTxGain,
572                         ar9280Modes_original_tx_gain_9280_2,
573                         ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
574         } else {
575                 INIT_INI_ARRAY(&ah->iniModesTxGain,
576                 ar9280Modes_original_tx_gain_9280_2,
577                 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
578         }
579 }
580
581 static int ath9k_hw_post_attach(struct ath_hw *ah)
582 {
583         int ecode;
584
585         if (!ath9k_hw_chip_test(ah))
586                 return -ENODEV;
587
588         ecode = ath9k_hw_rf_claim(ah);
589         if (ecode != 0)
590                 return ecode;
591
592         ecode = ath9k_hw_eeprom_attach(ah);
593         if (ecode != 0)
594                 return ecode;
595
596         DPRINTF(ah->ah_sc, ATH_DBG_CONFIG, "Eeprom VER: %d, REV: %d\n",
597                 ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah));
598
599         ecode = ath9k_hw_rfattach(ah);
600         if (ecode != 0)
601                 return ecode;
602
603         if (!AR_SREV_9100(ah)) {
604                 ath9k_hw_ani_setup(ah);
605                 ath9k_hw_ani_attach(ah);
606         }
607
608         return 0;
609 }
610
611 static bool ath9k_hw_devid_supported(u16 devid)
612 {
613         switch (devid) {
614         case AR5416_DEVID_PCI:
615         case AR5416_DEVID_PCIE:
616         case AR5416_AR9100_DEVID:
617         case AR9160_DEVID_PCI:
618         case AR9280_DEVID_PCI:
619         case AR9280_DEVID_PCIE:
620         case AR9285_DEVID_PCIE:
621         case AR5416_DEVID_AR9287_PCI:
622         case AR5416_DEVID_AR9287_PCIE:
623                 return true;
624         default:
625                 break;
626         }
627         return false;
628 }
629
630 int ath9k_hw_attach(struct ath_hw *ah, struct ath_softc *sc)
631 {
632         int r;
633         u32 i, j;
634
635         if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
636                 r = -EOPNOTSUPP;
637                 goto bad;
638         }
639
640         ath9k_hw_newstate(ah);
641         ath9k_hw_set_defaults(ah);
642
643         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
644                 DPRINTF(sc, ATH_DBG_FATAL, "Couldn't reset chip\n");
645                 r = -EIO;
646                 goto bad;
647         }
648
649         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
650                 DPRINTF(sc, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
651                 r = -EIO;
652                 goto bad;
653         }
654
655         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
656                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
657                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
658                         ah->config.serialize_regmode =
659                                 SER_REG_MODE_ON;
660                 } else {
661                         ah->config.serialize_regmode =
662                                 SER_REG_MODE_OFF;
663                 }
664         }
665
666         DPRINTF(sc, ATH_DBG_RESET, "serialize_regmode is %d\n",
667                 ah->config.serialize_regmode);
668
669         switch (ah->hw_version.macVersion) {
670         case AR_SREV_VERSION_5416_PCI:
671         case AR_SREV_VERSION_5416_PCIE:
672         case AR_SREV_VERSION_9160:
673         case AR_SREV_VERSION_9100:
674         case AR_SREV_VERSION_9280:
675         case AR_SREV_VERSION_9285:
676         case AR_SREV_VERSION_9287:
677                 break;
678         default:
679                 DPRINTF(sc, ATH_DBG_FATAL,
680                         "Mac Chip Rev 0x%02x.%x is not supported by "
681                         "this driver\n", ah->hw_version.macVersion,
682                         ah->hw_version.macRev);
683                 r = -EOPNOTSUPP;
684                 goto bad;
685         }
686
687         if (AR_SREV_9100(ah)) {
688                 ah->iq_caldata.calData = &iq_cal_multi_sample;
689                 ah->supp_cals = IQ_MISMATCH_CAL;
690                 ah->is_pciexpress = false;
691         }
692         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
693
694         if (AR_SREV_9160_10_OR_LATER(ah)) {
695                 if (AR_SREV_9280_10_OR_LATER(ah)) {
696                         ah->iq_caldata.calData = &iq_cal_single_sample;
697                         ah->adcgain_caldata.calData =
698                                 &adc_gain_cal_single_sample;
699                         ah->adcdc_caldata.calData =
700                                 &adc_dc_cal_single_sample;
701                         ah->adcdc_calinitdata.calData =
702                                 &adc_init_dc_cal;
703                 } else {
704                         ah->iq_caldata.calData = &iq_cal_multi_sample;
705                         ah->adcgain_caldata.calData =
706                                 &adc_gain_cal_multi_sample;
707                         ah->adcdc_caldata.calData =
708                                 &adc_dc_cal_multi_sample;
709                         ah->adcdc_calinitdata.calData =
710                                 &adc_init_dc_cal;
711                 }
712                 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
713         }
714
715         ah->ani_function = ATH9K_ANI_ALL;
716         if (AR_SREV_9280_10_OR_LATER(ah))
717                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
718         if (AR_SREV_9287_11_OR_LATER(ah)) {
719                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
720                                 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
721                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
722                                 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
723                 if (ah->config.pcie_clock_req)
724                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
725                         ar9287PciePhy_clkreq_off_L1_9287_1_1,
726                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
727                 else
728                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
729                         ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
730                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
731                                         2);
732         } else if (AR_SREV_9287_10_OR_LATER(ah)) {
733                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
734                                 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
735                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
736                                 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
737
738                 if (ah->config.pcie_clock_req)
739                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
740                         ar9287PciePhy_clkreq_off_L1_9287_1_0,
741                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
742                 else
743                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
744                         ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
745                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
746                                   2);
747         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
748
749
750                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
751                                ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
752                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
753                                ARRAY_SIZE(ar9285Common_9285_1_2), 2);
754
755                 if (ah->config.pcie_clock_req) {
756                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
757                         ar9285PciePhy_clkreq_off_L1_9285_1_2,
758                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
759                 } else {
760                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
761                         ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
762                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
763                                   2);
764                 }
765         } else if (AR_SREV_9285_10_OR_LATER(ah)) {
766                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
767                                ARRAY_SIZE(ar9285Modes_9285), 6);
768                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
769                                ARRAY_SIZE(ar9285Common_9285), 2);
770
771                 if (ah->config.pcie_clock_req) {
772                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
773                         ar9285PciePhy_clkreq_off_L1_9285,
774                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
775                 } else {
776                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
777                         ar9285PciePhy_clkreq_always_on_L1_9285,
778                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
779                 }
780         } else if (AR_SREV_9280_20_OR_LATER(ah)) {
781                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
782                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
783                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
784                                ARRAY_SIZE(ar9280Common_9280_2), 2);
785
786                 if (ah->config.pcie_clock_req) {
787                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
788                                ar9280PciePhy_clkreq_off_L1_9280,
789                                ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
790                 } else {
791                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
792                                ar9280PciePhy_clkreq_always_on_L1_9280,
793                                ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
794                 }
795                 INIT_INI_ARRAY(&ah->iniModesAdditional,
796                                ar9280Modes_fast_clock_9280_2,
797                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
798         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
799                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
800                                ARRAY_SIZE(ar9280Modes_9280), 6);
801                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
802                                ARRAY_SIZE(ar9280Common_9280), 2);
803         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
804                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
805                                ARRAY_SIZE(ar5416Modes_9160), 6);
806                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
807                                ARRAY_SIZE(ar5416Common_9160), 2);
808                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
809                                ARRAY_SIZE(ar5416Bank0_9160), 2);
810                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
811                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
812                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
813                                ARRAY_SIZE(ar5416Bank1_9160), 2);
814                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
815                                ARRAY_SIZE(ar5416Bank2_9160), 2);
816                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
817                                ARRAY_SIZE(ar5416Bank3_9160), 3);
818                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
819                                ARRAY_SIZE(ar5416Bank6_9160), 3);
820                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
821                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
822                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
823                                ARRAY_SIZE(ar5416Bank7_9160), 2);
824                 if (AR_SREV_9160_11(ah)) {
825                         INIT_INI_ARRAY(&ah->iniAddac,
826                                        ar5416Addac_91601_1,
827                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
828                 } else {
829                         INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
830                                        ARRAY_SIZE(ar5416Addac_9160), 2);
831                 }
832         } else if (AR_SREV_9100_OR_LATER(ah)) {
833                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
834                                ARRAY_SIZE(ar5416Modes_9100), 6);
835                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
836                                ARRAY_SIZE(ar5416Common_9100), 2);
837                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
838                                ARRAY_SIZE(ar5416Bank0_9100), 2);
839                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
840                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
841                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
842                                ARRAY_SIZE(ar5416Bank1_9100), 2);
843                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
844                                ARRAY_SIZE(ar5416Bank2_9100), 2);
845                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
846                                ARRAY_SIZE(ar5416Bank3_9100), 3);
847                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
848                                ARRAY_SIZE(ar5416Bank6_9100), 3);
849                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
850                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
851                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
852                                ARRAY_SIZE(ar5416Bank7_9100), 2);
853                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
854                                ARRAY_SIZE(ar5416Addac_9100), 2);
855         } else {
856                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
857                                ARRAY_SIZE(ar5416Modes), 6);
858                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
859                                ARRAY_SIZE(ar5416Common), 2);
860                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
861                                ARRAY_SIZE(ar5416Bank0), 2);
862                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
863                                ARRAY_SIZE(ar5416BB_RfGain), 3);
864                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
865                                ARRAY_SIZE(ar5416Bank1), 2);
866                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
867                                ARRAY_SIZE(ar5416Bank2), 2);
868                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
869                                ARRAY_SIZE(ar5416Bank3), 3);
870                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
871                                ARRAY_SIZE(ar5416Bank6), 3);
872                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
873                                ARRAY_SIZE(ar5416Bank6TPC), 3);
874                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
875                                ARRAY_SIZE(ar5416Bank7), 2);
876                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
877                                ARRAY_SIZE(ar5416Addac), 2);
878         }
879
880         if (ah->is_pciexpress)
881                 ath9k_hw_configpcipowersave(ah, 0);
882         else
883                 ath9k_hw_disablepcie(ah);
884
885         r = ath9k_hw_post_attach(ah);
886         if (r)
887                 goto bad;
888
889         if (AR_SREV_9287_11(ah))
890                 INIT_INI_ARRAY(&ah->iniModesRxGain,
891                 ar9287Modes_rx_gain_9287_1_1,
892                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
893         else if (AR_SREV_9287_10(ah))
894                 INIT_INI_ARRAY(&ah->iniModesRxGain,
895                 ar9287Modes_rx_gain_9287_1_0,
896                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
897         else if (AR_SREV_9280_20(ah))
898                 ath9k_hw_init_rxgain_ini(ah);
899
900         if (AR_SREV_9287_11(ah)) {
901                 INIT_INI_ARRAY(&ah->iniModesTxGain,
902                 ar9287Modes_tx_gain_9287_1_1,
903                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
904         } else if (AR_SREV_9287_10(ah)) {
905                 INIT_INI_ARRAY(&ah->iniModesTxGain,
906                 ar9287Modes_tx_gain_9287_1_0,
907                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
908         } else if (AR_SREV_9280_20(ah)) {
909                 ath9k_hw_init_txgain_ini(ah);
910         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
911                 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
912
913                 /* txgain table */
914                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
915                         INIT_INI_ARRAY(&ah->iniModesTxGain,
916                         ar9285Modes_high_power_tx_gain_9285_1_2,
917                         ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
918                 } else {
919                         INIT_INI_ARRAY(&ah->iniModesTxGain,
920                         ar9285Modes_original_tx_gain_9285_1_2,
921                         ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
922                 }
923
924         }
925
926         ath9k_hw_fill_cap_info(ah);
927
928         if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
929             test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
930
931                 /* EEPROM Fixup */
932                 for (i = 0; i < ah->iniModes.ia_rows; i++) {
933                         u32 reg = INI_RA(&ah->iniModes, i, 0);
934
935                         for (j = 1; j < ah->iniModes.ia_columns; j++) {
936                                 u32 val = INI_RA(&ah->iniModes, i, j);
937
938                                 INI_RA(&ah->iniModes, i, j) =
939                                         ath9k_hw_ini_fixup(ah,
940                                                            &ah->eeprom.def,
941                                                            reg, val);
942                         }
943                 }
944         }
945
946         r = ath9k_hw_init_macaddr(ah);
947         if (r) {
948                 DPRINTF(sc, ATH_DBG_FATAL,
949                         "Failed to initialize MAC address\n");
950                 goto bad;
951         }
952
953         if (AR_SREV_9285(ah))
954                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
955         else
956                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
957
958         ath9k_init_nfcal_hist_buffer(ah);
959
960         return 0;
961 bad:
962         ath9k_hw_detach(ah);
963         return r;
964 }
965
966 static void ath9k_hw_init_bb(struct ath_hw *ah,
967                              struct ath9k_channel *chan)
968 {
969         u32 synthDelay;
970
971         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
972         if (IS_CHAN_B(chan))
973                 synthDelay = (4 * synthDelay) / 22;
974         else
975                 synthDelay /= 10;
976
977         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
978
979         udelay(synthDelay + BASE_ACTIVATE_DELAY);
980 }
981
982 static void ath9k_hw_init_qos(struct ath_hw *ah)
983 {
984         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
985         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
986
987         REG_WRITE(ah, AR_QOS_NO_ACK,
988                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
989                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
990                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
991
992         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
993         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
994         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
995         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
996         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
997 }
998
999 static void ath9k_hw_init_pll(struct ath_hw *ah,
1000                               struct ath9k_channel *chan)
1001 {
1002         u32 pll;
1003
1004         if (AR_SREV_9100(ah)) {
1005                 if (chan && IS_CHAN_5GHZ(chan))
1006                         pll = 0x1450;
1007                 else
1008                         pll = 0x1458;
1009         } else {
1010                 if (AR_SREV_9280_10_OR_LATER(ah)) {
1011                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1012
1013                         if (chan && IS_CHAN_HALF_RATE(chan))
1014                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1015                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1016                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1017
1018                         if (chan && IS_CHAN_5GHZ(chan)) {
1019                                 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1020
1021
1022                                 if (AR_SREV_9280_20(ah)) {
1023                                         if (((chan->channel % 20) == 0)
1024                                             || ((chan->channel % 10) == 0))
1025                                                 pll = 0x2850;
1026                                         else
1027                                                 pll = 0x142c;
1028                                 }
1029                         } else {
1030                                 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1031                         }
1032
1033                 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1034
1035                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1036
1037                         if (chan && IS_CHAN_HALF_RATE(chan))
1038                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1039                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1040                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1041
1042                         if (chan && IS_CHAN_5GHZ(chan))
1043                                 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1044                         else
1045                                 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1046                 } else {
1047                         pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1048
1049                         if (chan && IS_CHAN_HALF_RATE(chan))
1050                                 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1051                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1052                                 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1053
1054                         if (chan && IS_CHAN_5GHZ(chan))
1055                                 pll |= SM(0xa, AR_RTC_PLL_DIV);
1056                         else
1057                                 pll |= SM(0xb, AR_RTC_PLL_DIV);
1058                 }
1059         }
1060         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1061
1062         udelay(RTC_PLL_SETTLE_DELAY);
1063
1064         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1065 }
1066
1067 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1068 {
1069         int rx_chainmask, tx_chainmask;
1070
1071         rx_chainmask = ah->rxchainmask;
1072         tx_chainmask = ah->txchainmask;
1073
1074         switch (rx_chainmask) {
1075         case 0x5:
1076                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1077                             AR_PHY_SWAP_ALT_CHAIN);
1078         case 0x3:
1079                 if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
1080                         REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1081                         REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1082                         break;
1083                 }
1084         case 0x1:
1085         case 0x2:
1086         case 0x7:
1087                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1088                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1089                 break;
1090         default:
1091                 break;
1092         }
1093
1094         REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1095         if (tx_chainmask == 0x5) {
1096                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1097                             AR_PHY_SWAP_ALT_CHAIN);
1098         }
1099         if (AR_SREV_9100(ah))
1100                 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1101                           REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1102 }
1103
1104 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1105                                           enum nl80211_iftype opmode)
1106 {
1107         ah->mask_reg = AR_IMR_TXERR |
1108                 AR_IMR_TXURN |
1109                 AR_IMR_RXERR |
1110                 AR_IMR_RXORN |
1111                 AR_IMR_BCNMISC;
1112
1113         if (ah->config.intr_mitigation)
1114                 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1115         else
1116                 ah->mask_reg |= AR_IMR_RXOK;
1117
1118         ah->mask_reg |= AR_IMR_TXOK;
1119
1120         if (opmode == NL80211_IFTYPE_AP)
1121                 ah->mask_reg |= AR_IMR_MIB;
1122
1123         REG_WRITE(ah, AR_IMR, ah->mask_reg);
1124         REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1125
1126         if (!AR_SREV_9100(ah)) {
1127                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1128                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1129                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1130         }
1131 }
1132
1133 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1134 {
1135         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1136                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
1137                 ah->acktimeout = (u32) -1;
1138                 return false;
1139         } else {
1140                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1141                               AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1142                 ah->acktimeout = us;
1143                 return true;
1144         }
1145 }
1146
1147 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1148 {
1149         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1150                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
1151                 ah->ctstimeout = (u32) -1;
1152                 return false;
1153         } else {
1154                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1155                               AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1156                 ah->ctstimeout = us;
1157                 return true;
1158         }
1159 }
1160
1161 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1162 {
1163         if (tu > 0xFFFF) {
1164                 DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
1165                         "bad global tx timeout %u\n", tu);
1166                 ah->globaltxtimeout = (u32) -1;
1167                 return false;
1168         } else {
1169                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1170                 ah->globaltxtimeout = tu;
1171                 return true;
1172         }
1173 }
1174
1175 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1176 {
1177         DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1178                 ah->misc_mode);
1179
1180         if (ah->misc_mode != 0)
1181                 REG_WRITE(ah, AR_PCU_MISC,
1182                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1183         if (ah->slottime != (u32) -1)
1184                 ath9k_hw_setslottime(ah, ah->slottime);
1185         if (ah->acktimeout != (u32) -1)
1186                 ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1187         if (ah->ctstimeout != (u32) -1)
1188                 ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1189         if (ah->globaltxtimeout != (u32) -1)
1190                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1191 }
1192
1193 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1194 {
1195         return vendorid == ATHEROS_VENDOR_ID ?
1196                 ath9k_hw_devname(devid) : NULL;
1197 }
1198
1199 void ath9k_hw_detach(struct ath_hw *ah)
1200 {
1201         if (!AR_SREV_9100(ah))
1202                 ath9k_hw_ani_detach(ah);
1203
1204         ath9k_hw_rfdetach(ah);
1205         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1206         kfree(ah);
1207 }
1208
1209 /*******/
1210 /* INI */
1211 /*******/
1212
1213 static void ath9k_hw_override_ini(struct ath_hw *ah,
1214                                   struct ath9k_channel *chan)
1215 {
1216         /*
1217          * Set the RX_ABORT and RX_DIS and clear if off only after
1218          * RXE is set for MAC. This prevents frames with corrupted
1219          * descriptor status.
1220          */
1221         REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1222
1223
1224         if (!AR_SREV_5416_20_OR_LATER(ah) ||
1225             AR_SREV_9280_10_OR_LATER(ah))
1226                 return;
1227
1228         REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1229 }
1230
1231 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1232                               struct ar5416_eeprom_def *pEepData,
1233                               u32 reg, u32 value)
1234 {
1235         struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1236
1237         switch (ah->hw_version.devid) {
1238         case AR9280_DEVID_PCI:
1239                 if (reg == 0x7894) {
1240                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1241                                 "ini VAL: %x  EEPROM: %x\n", value,
1242                                 (pBase->version & 0xff));
1243
1244                         if ((pBase->version & 0xff) > 0x0a) {
1245                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1246                                         "PWDCLKIND: %d\n",
1247                                         pBase->pwdclkind);
1248                                 value &= ~AR_AN_TOP2_PWDCLKIND;
1249                                 value |= AR_AN_TOP2_PWDCLKIND &
1250                                         (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1251                         } else {
1252                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1253                                         "PWDCLKIND Earlier Rev\n");
1254                         }
1255
1256                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1257                                 "final ini VAL: %x\n", value);
1258                 }
1259                 break;
1260         }
1261
1262         return value;
1263 }
1264
1265 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1266                               struct ar5416_eeprom_def *pEepData,
1267                               u32 reg, u32 value)
1268 {
1269         if (ah->eep_map == EEP_MAP_4KBITS)
1270                 return value;
1271         else
1272                 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1273 }
1274
1275 static void ath9k_olc_init(struct ath_hw *ah)
1276 {
1277         u32 i;
1278
1279         for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1280                 ah->originalGain[i] =
1281                         MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1282                                         AR_PHY_TX_GAIN);
1283         ah->PDADCdelta = 0;
1284 }
1285
1286 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1287                               struct ath9k_channel *chan)
1288 {
1289         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1290
1291         if (IS_CHAN_B(chan))
1292                 ctl |= CTL_11B;
1293         else if (IS_CHAN_G(chan))
1294                 ctl |= CTL_11G;
1295         else
1296                 ctl |= CTL_11A;
1297
1298         return ctl;
1299 }
1300
1301 static int ath9k_hw_process_ini(struct ath_hw *ah,
1302                                 struct ath9k_channel *chan,
1303                                 enum ath9k_ht_macmode macmode)
1304 {
1305         int i, regWrites = 0;
1306         struct ieee80211_channel *channel = chan->chan;
1307         u32 modesIndex, freqIndex;
1308
1309         switch (chan->chanmode) {
1310         case CHANNEL_A:
1311         case CHANNEL_A_HT20:
1312                 modesIndex = 1;
1313                 freqIndex = 1;
1314                 break;
1315         case CHANNEL_A_HT40PLUS:
1316         case CHANNEL_A_HT40MINUS:
1317                 modesIndex = 2;
1318                 freqIndex = 1;
1319                 break;
1320         case CHANNEL_G:
1321         case CHANNEL_G_HT20:
1322         case CHANNEL_B:
1323                 modesIndex = 4;
1324                 freqIndex = 2;
1325                 break;
1326         case CHANNEL_G_HT40PLUS:
1327         case CHANNEL_G_HT40MINUS:
1328                 modesIndex = 3;
1329                 freqIndex = 2;
1330                 break;
1331
1332         default:
1333                 return -EINVAL;
1334         }
1335
1336         REG_WRITE(ah, AR_PHY(0), 0x00000007);
1337         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1338         ah->eep_ops->set_addac(ah, chan);
1339
1340         if (AR_SREV_5416_22_OR_LATER(ah)) {
1341                 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1342         } else {
1343                 struct ar5416IniArray temp;
1344                 u32 addacSize =
1345                         sizeof(u32) * ah->iniAddac.ia_rows *
1346                         ah->iniAddac.ia_columns;
1347
1348                 memcpy(ah->addac5416_21,
1349                        ah->iniAddac.ia_array, addacSize);
1350
1351                 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1352
1353                 temp.ia_array = ah->addac5416_21;
1354                 temp.ia_columns = ah->iniAddac.ia_columns;
1355                 temp.ia_rows = ah->iniAddac.ia_rows;
1356                 REG_WRITE_ARRAY(&temp, 1, regWrites);
1357         }
1358
1359         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1360
1361         for (i = 0; i < ah->iniModes.ia_rows; i++) {
1362                 u32 reg = INI_RA(&ah->iniModes, i, 0);
1363                 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1364
1365                 REG_WRITE(ah, reg, val);
1366
1367                 if (reg >= 0x7800 && reg < 0x78a0
1368                     && ah->config.analog_shiftreg) {
1369                         udelay(100);
1370                 }
1371
1372                 DO_DELAY(regWrites);
1373         }
1374
1375         if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1376                 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1377
1378         if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1379             AR_SREV_9287_10_OR_LATER(ah))
1380                 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1381
1382         for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1383                 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1384                 u32 val = INI_RA(&ah->iniCommon, i, 1);
1385
1386                 REG_WRITE(ah, reg, val);
1387
1388                 if (reg >= 0x7800 && reg < 0x78a0
1389                     && ah->config.analog_shiftreg) {
1390                         udelay(100);
1391                 }
1392
1393                 DO_DELAY(regWrites);
1394         }
1395
1396         ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
1397
1398         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1399                 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1400                                 regWrites);
1401         }
1402
1403         ath9k_hw_override_ini(ah, chan);
1404         ath9k_hw_set_regs(ah, chan, macmode);
1405         ath9k_hw_init_chain_masks(ah);
1406
1407         if (OLC_FOR_AR9280_20_LATER)
1408                 ath9k_olc_init(ah);
1409
1410         ah->eep_ops->set_txpower(ah, chan,
1411                                  ath9k_regd_get_ctl(&ah->regulatory, chan),
1412                                  channel->max_antenna_gain * 2,
1413                                  channel->max_power * 2,
1414                                  min((u32) MAX_RATE_POWER,
1415                                  (u32) ah->regulatory.power_limit));
1416
1417         if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1418                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1419                         "ar5416SetRfRegs failed\n");
1420                 return -EIO;
1421         }
1422
1423         return 0;
1424 }
1425
1426 /****************************************/
1427 /* Reset and Channel Switching Routines */
1428 /****************************************/
1429
1430 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1431 {
1432         u32 rfMode = 0;
1433
1434         if (chan == NULL)
1435                 return;
1436
1437         rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1438                 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1439
1440         if (!AR_SREV_9280_10_OR_LATER(ah))
1441                 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1442                         AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1443
1444         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1445                 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1446
1447         REG_WRITE(ah, AR_PHY_MODE, rfMode);
1448 }
1449
1450 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1451 {
1452         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1453 }
1454
1455 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1456 {
1457         u32 regval;
1458
1459         regval = REG_READ(ah, AR_AHB_MODE);
1460         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1461
1462         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1463         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1464
1465         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1466
1467         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1468         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1469
1470         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1471
1472         if (AR_SREV_9285(ah)) {
1473                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1474                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1475         } else {
1476                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1477                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1478         }
1479 }
1480
1481 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1482 {
1483         u32 val;
1484
1485         val = REG_READ(ah, AR_STA_ID1);
1486         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1487         switch (opmode) {
1488         case NL80211_IFTYPE_AP:
1489                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1490                           | AR_STA_ID1_KSRCH_MODE);
1491                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1492                 break;
1493         case NL80211_IFTYPE_ADHOC:
1494         case NL80211_IFTYPE_MESH_POINT:
1495                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1496                           | AR_STA_ID1_KSRCH_MODE);
1497                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1498                 break;
1499         case NL80211_IFTYPE_STATION:
1500         case NL80211_IFTYPE_MONITOR:
1501                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1502                 break;
1503         }
1504 }
1505
1506 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1507                                                  u32 coef_scaled,
1508                                                  u32 *coef_mantissa,
1509                                                  u32 *coef_exponent)
1510 {
1511         u32 coef_exp, coef_man;
1512
1513         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1514                 if ((coef_scaled >> coef_exp) & 0x1)
1515                         break;
1516
1517         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1518
1519         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1520
1521         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1522         *coef_exponent = coef_exp - 16;
1523 }
1524
1525 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1526                                      struct ath9k_channel *chan)
1527 {
1528         u32 coef_scaled, ds_coef_exp, ds_coef_man;
1529         u32 clockMhzScaled = 0x64000000;
1530         struct chan_centers centers;
1531
1532         if (IS_CHAN_HALF_RATE(chan))
1533                 clockMhzScaled = clockMhzScaled >> 1;
1534         else if (IS_CHAN_QUARTER_RATE(chan))
1535                 clockMhzScaled = clockMhzScaled >> 2;
1536
1537         ath9k_hw_get_channel_centers(ah, chan, &centers);
1538         coef_scaled = clockMhzScaled / centers.synth_center;
1539
1540         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1541                                       &ds_coef_exp);
1542
1543         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1544                       AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1545         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1546                       AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1547
1548         coef_scaled = (9 * coef_scaled) / 10;
1549
1550         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1551                                       &ds_coef_exp);
1552
1553         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1554                       AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1555         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1556                       AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1557 }
1558
1559 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1560 {
1561         u32 rst_flags;
1562         u32 tmpReg;
1563
1564         if (AR_SREV_9100(ah)) {
1565                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1566                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1567                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1568                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1569                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1570         }
1571
1572         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1573                   AR_RTC_FORCE_WAKE_ON_INT);
1574
1575         if (AR_SREV_9100(ah)) {
1576                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1577                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1578         } else {
1579                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1580                 if (tmpReg &
1581                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1582                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1583                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1584                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1585                 } else {
1586                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1587                 }
1588
1589                 rst_flags = AR_RTC_RC_MAC_WARM;
1590                 if (type == ATH9K_RESET_COLD)
1591                         rst_flags |= AR_RTC_RC_MAC_COLD;
1592         }
1593
1594         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1595         udelay(50);
1596
1597         REG_WRITE(ah, AR_RTC_RC, 0);
1598         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1599                 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
1600                         "RTC stuck in MAC reset\n");
1601                 return false;
1602         }
1603
1604         if (!AR_SREV_9100(ah))
1605                 REG_WRITE(ah, AR_RC, 0);
1606
1607         ath9k_hw_init_pll(ah, NULL);
1608
1609         if (AR_SREV_9100(ah))
1610                 udelay(50);
1611
1612         return true;
1613 }
1614
1615 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1616 {
1617         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1618                   AR_RTC_FORCE_WAKE_ON_INT);
1619
1620         REG_WRITE(ah, AR_RTC_RESET, 0);
1621         udelay(2);
1622         REG_WRITE(ah, AR_RTC_RESET, 1);
1623
1624         if (!ath9k_hw_wait(ah,
1625                            AR_RTC_STATUS,
1626                            AR_RTC_STATUS_M,
1627                            AR_RTC_STATUS_ON,
1628                            AH_WAIT_TIMEOUT)) {
1629                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
1630                 return false;
1631         }
1632
1633         ath9k_hw_read_revisions(ah);
1634
1635         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1636 }
1637
1638 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1639 {
1640         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1641                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1642
1643         switch (type) {
1644         case ATH9K_RESET_POWER_ON:
1645                 return ath9k_hw_set_reset_power_on(ah);
1646         case ATH9K_RESET_WARM:
1647         case ATH9K_RESET_COLD:
1648                 return ath9k_hw_set_reset(ah, type);
1649         default:
1650                 return false;
1651         }
1652 }
1653
1654 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
1655                               enum ath9k_ht_macmode macmode)
1656 {
1657         u32 phymode;
1658         u32 enableDacFifo = 0;
1659
1660         if (AR_SREV_9285_10_OR_LATER(ah))
1661                 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1662                                          AR_PHY_FC_ENABLE_DAC_FIFO);
1663
1664         phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1665                 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1666
1667         if (IS_CHAN_HT40(chan)) {
1668                 phymode |= AR_PHY_FC_DYN2040_EN;
1669
1670                 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1671                     (chan->chanmode == CHANNEL_G_HT40PLUS))
1672                         phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1673
1674                 if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
1675                         phymode |= AR_PHY_FC_DYN2040_EXT_CH;
1676         }
1677         REG_WRITE(ah, AR_PHY_TURBO, phymode);
1678
1679         ath9k_hw_set11nmac2040(ah, macmode);
1680
1681         REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1682         REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1683 }
1684
1685 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1686                                 struct ath9k_channel *chan)
1687 {
1688         if (OLC_FOR_AR9280_20_LATER) {
1689                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1690                         return false;
1691         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1692                 return false;
1693
1694         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1695                 return false;
1696
1697         ah->chip_fullsleep = false;
1698         ath9k_hw_init_pll(ah, chan);
1699         ath9k_hw_set_rfmode(ah, chan);
1700
1701         return true;
1702 }
1703
1704 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1705                                     struct ath9k_channel *chan,
1706                                     enum ath9k_ht_macmode macmode)
1707 {
1708         struct ieee80211_channel *channel = chan->chan;
1709         u32 synthDelay, qnum;
1710
1711         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1712                 if (ath9k_hw_numtxpending(ah, qnum)) {
1713                         DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
1714                                 "Transmit frames pending on queue %d\n", qnum);
1715                         return false;
1716                 }
1717         }
1718
1719         REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1720         if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1721                            AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1722                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1723                         "Could not kill baseband RX\n");
1724                 return false;
1725         }
1726
1727         ath9k_hw_set_regs(ah, chan, macmode);
1728
1729         if (AR_SREV_9280_10_OR_LATER(ah)) {
1730                 ath9k_hw_ar9280_set_channel(ah, chan);
1731         } else {
1732                 if (!(ath9k_hw_set_channel(ah, chan))) {
1733                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1734                                 "Failed to set channel\n");
1735                         return false;
1736                 }
1737         }
1738
1739         ah->eep_ops->set_txpower(ah, chan,
1740                              ath9k_regd_get_ctl(&ah->regulatory, chan),
1741                              channel->max_antenna_gain * 2,
1742                              channel->max_power * 2,
1743                              min((u32) MAX_RATE_POWER,
1744                              (u32) ah->regulatory.power_limit));
1745
1746         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1747         if (IS_CHAN_B(chan))
1748                 synthDelay = (4 * synthDelay) / 22;
1749         else
1750                 synthDelay /= 10;
1751
1752         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1753
1754         REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1755
1756         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1757                 ath9k_hw_set_delta_slope(ah, chan);
1758
1759         if (AR_SREV_9280_10_OR_LATER(ah))
1760                 ath9k_hw_9280_spur_mitigate(ah, chan);
1761         else
1762                 ath9k_hw_spur_mitigate(ah, chan);
1763
1764         if (!chan->oneTimeCalsDone)
1765                 chan->oneTimeCalsDone = true;
1766
1767         return true;
1768 }
1769
1770 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1771 {
1772         int bb_spur = AR_NO_SPUR;
1773         int freq;
1774         int bin, cur_bin;
1775         int bb_spur_off, spur_subchannel_sd;
1776         int spur_freq_sd;
1777         int spur_delta_phase;
1778         int denominator;
1779         int upper, lower, cur_vit_mask;
1780         int tmp, newVal;
1781         int i;
1782         int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1783                           AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1784         };
1785         int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1786                          AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1787         };
1788         int inc[4] = { 0, 100, 0, 0 };
1789         struct chan_centers centers;
1790
1791         int8_t mask_m[123];
1792         int8_t mask_p[123];
1793         int8_t mask_amt;
1794         int tmp_mask;
1795         int cur_bb_spur;
1796         bool is2GHz = IS_CHAN_2GHZ(chan);
1797
1798         memset(&mask_m, 0, sizeof(int8_t) * 123);
1799         memset(&mask_p, 0, sizeof(int8_t) * 123);
1800
1801         ath9k_hw_get_channel_centers(ah, chan, &centers);
1802         freq = centers.synth_center;
1803
1804         ah->config.spurmode = SPUR_ENABLE_EEPROM;
1805         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1806                 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
1807
1808                 if (is2GHz)
1809                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1810                 else
1811                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1812
1813                 if (AR_NO_SPUR == cur_bb_spur)
1814                         break;
1815                 cur_bb_spur = cur_bb_spur - freq;
1816
1817                 if (IS_CHAN_HT40(chan)) {
1818                         if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1819                             (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1820                                 bb_spur = cur_bb_spur;
1821                                 break;
1822                         }
1823                 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1824                            (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1825                         bb_spur = cur_bb_spur;
1826                         break;
1827                 }
1828         }
1829
1830         if (AR_NO_SPUR == bb_spur) {
1831                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1832                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1833                 return;
1834         } else {
1835                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1836                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1837         }
1838
1839         bin = bb_spur * 320;
1840
1841         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
1842
1843         newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1844                         AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1845                         AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1846                         AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1847         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
1848
1849         newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1850                   AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1851                   AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1852                   AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1853                   SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1854         REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1855
1856         if (IS_CHAN_HT40(chan)) {
1857                 if (bb_spur < 0) {
1858                         spur_subchannel_sd = 1;
1859                         bb_spur_off = bb_spur + 10;
1860                 } else {
1861                         spur_subchannel_sd = 0;
1862                         bb_spur_off = bb_spur - 10;
1863                 }
1864         } else {
1865                 spur_subchannel_sd = 0;
1866                 bb_spur_off = bb_spur;
1867         }
1868
1869         if (IS_CHAN_HT40(chan))
1870                 spur_delta_phase =
1871                         ((bb_spur * 262144) /
1872                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1873         else
1874                 spur_delta_phase =
1875                         ((bb_spur * 524288) /
1876                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1877
1878         denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
1879         spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1880
1881         newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1882                   SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1883                   SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1884         REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1885
1886         newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1887         REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1888
1889         cur_bin = -6000;
1890         upper = bin + 100;
1891         lower = bin - 100;
1892
1893         for (i = 0; i < 4; i++) {
1894                 int pilot_mask = 0;
1895                 int chan_mask = 0;
1896                 int bp = 0;
1897                 for (bp = 0; bp < 30; bp++) {
1898                         if ((cur_bin > lower) && (cur_bin < upper)) {
1899                                 pilot_mask = pilot_mask | 0x1 << bp;
1900                                 chan_mask = chan_mask | 0x1 << bp;
1901                         }
1902                         cur_bin += 100;
1903                 }
1904                 cur_bin += inc[i];
1905                 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
1906                 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
1907         }
1908
1909         cur_vit_mask = 6100;
1910         upper = bin + 120;
1911         lower = bin - 120;
1912
1913         for (i = 0; i < 123; i++) {
1914                 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1915
1916                         /* workaround for gcc bug #37014 */
1917                         volatile int tmp_v = abs(cur_vit_mask - bin);
1918
1919                         if (tmp_v < 75)
1920                                 mask_amt = 1;
1921                         else
1922                                 mask_amt = 0;
1923                         if (cur_vit_mask < 0)
1924                                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
1925                         else
1926                                 mask_p[cur_vit_mask / 100] = mask_amt;
1927                 }
1928                 cur_vit_mask -= 100;
1929         }
1930
1931         tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
1932                 | (mask_m[48] << 26) | (mask_m[49] << 24)
1933                 | (mask_m[50] << 22) | (mask_m[51] << 20)
1934                 | (mask_m[52] << 18) | (mask_m[53] << 16)
1935                 | (mask_m[54] << 14) | (mask_m[55] << 12)
1936                 | (mask_m[56] << 10) | (mask_m[57] << 8)
1937                 | (mask_m[58] << 6) | (mask_m[59] << 4)
1938                 | (mask_m[60] << 2) | (mask_m[61] << 0);
1939         REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
1940         REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
1941
1942         tmp_mask = (mask_m[31] << 28)
1943                 | (mask_m[32] << 26) | (mask_m[33] << 24)
1944                 | (mask_m[34] << 22) | (mask_m[35] << 20)
1945                 | (mask_m[36] << 18) | (mask_m[37] << 16)
1946                 | (mask_m[48] << 14) | (mask_m[39] << 12)
1947                 | (mask_m[40] << 10) | (mask_m[41] << 8)
1948                 | (mask_m[42] << 6) | (mask_m[43] << 4)
1949                 | (mask_m[44] << 2) | (mask_m[45] << 0);
1950         REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
1951         REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
1952
1953         tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
1954                 | (mask_m[18] << 26) | (mask_m[18] << 24)
1955                 | (mask_m[20] << 22) | (mask_m[20] << 20)
1956                 | (mask_m[22] << 18) | (mask_m[22] << 16)
1957                 | (mask_m[24] << 14) | (mask_m[24] << 12)
1958                 | (mask_m[25] << 10) | (mask_m[26] << 8)
1959                 | (mask_m[27] << 6) | (mask_m[28] << 4)
1960                 | (mask_m[29] << 2) | (mask_m[30] << 0);
1961         REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
1962         REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
1963
1964         tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
1965                 | (mask_m[2] << 26) | (mask_m[3] << 24)
1966                 | (mask_m[4] << 22) | (mask_m[5] << 20)
1967                 | (mask_m[6] << 18) | (mask_m[7] << 16)
1968                 | (mask_m[8] << 14) | (mask_m[9] << 12)
1969                 | (mask_m[10] << 10) | (mask_m[11] << 8)
1970                 | (mask_m[12] << 6) | (mask_m[13] << 4)
1971                 | (mask_m[14] << 2) | (mask_m[15] << 0);
1972         REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
1973         REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
1974
1975         tmp_mask = (mask_p[15] << 28)
1976                 | (mask_p[14] << 26) | (mask_p[13] << 24)
1977                 | (mask_p[12] << 22) | (mask_p[11] << 20)
1978                 | (mask_p[10] << 18) | (mask_p[9] << 16)
1979                 | (mask_p[8] << 14) | (mask_p[7] << 12)
1980                 | (mask_p[6] << 10) | (mask_p[5] << 8)
1981                 | (mask_p[4] << 6) | (mask_p[3] << 4)
1982                 | (mask_p[2] << 2) | (mask_p[1] << 0);
1983         REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
1984         REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
1985
1986         tmp_mask = (mask_p[30] << 28)
1987                 | (mask_p[29] << 26) | (mask_p[28] << 24)
1988                 | (mask_p[27] << 22) | (mask_p[26] << 20)
1989                 | (mask_p[25] << 18) | (mask_p[24] << 16)
1990                 | (mask_p[23] << 14) | (mask_p[22] << 12)
1991                 | (mask_p[21] << 10) | (mask_p[20] << 8)
1992                 | (mask_p[19] << 6) | (mask_p[18] << 4)
1993                 | (mask_p[17] << 2) | (mask_p[16] << 0);
1994         REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
1995         REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
1996
1997         tmp_mask = (mask_p[45] << 28)
1998                 | (mask_p[44] << 26) | (mask_p[43] << 24)
1999                 | (mask_p[42] << 22) | (mask_p[41] << 20)
2000                 | (mask_p[40] << 18) | (mask_p[39] << 16)
2001                 | (mask_p[38] << 14) | (mask_p[37] << 12)
2002                 | (mask_p[36] << 10) | (mask_p[35] << 8)
2003                 | (mask_p[34] << 6) | (mask_p[33] << 4)
2004                 | (mask_p[32] << 2) | (mask_p[31] << 0);
2005         REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2006         REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2007
2008         tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2009                 | (mask_p[59] << 26) | (mask_p[58] << 24)
2010                 | (mask_p[57] << 22) | (mask_p[56] << 20)
2011                 | (mask_p[55] << 18) | (mask_p[54] << 16)
2012                 | (mask_p[53] << 14) | (mask_p[52] << 12)
2013                 | (mask_p[51] << 10) | (mask_p[50] << 8)
2014                 | (mask_p[49] << 6) | (mask_p[48] << 4)
2015                 | (mask_p[47] << 2) | (mask_p[46] << 0);
2016         REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2017         REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2018 }
2019
2020 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
2021 {
2022         int bb_spur = AR_NO_SPUR;
2023         int bin, cur_bin;
2024         int spur_freq_sd;
2025         int spur_delta_phase;
2026         int denominator;
2027         int upper, lower, cur_vit_mask;
2028         int tmp, new;
2029         int i;
2030         int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
2031                           AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
2032         };
2033         int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
2034                          AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
2035         };
2036         int inc[4] = { 0, 100, 0, 0 };
2037
2038         int8_t mask_m[123];
2039         int8_t mask_p[123];
2040         int8_t mask_amt;
2041         int tmp_mask;
2042         int cur_bb_spur;
2043         bool is2GHz = IS_CHAN_2GHZ(chan);
2044
2045         memset(&mask_m, 0, sizeof(int8_t) * 123);
2046         memset(&mask_p, 0, sizeof(int8_t) * 123);
2047
2048         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
2049                 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
2050                 if (AR_NO_SPUR == cur_bb_spur)
2051                         break;
2052                 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
2053                 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
2054                         bb_spur = cur_bb_spur;
2055                         break;
2056                 }
2057         }
2058
2059         if (AR_NO_SPUR == bb_spur)
2060                 return;
2061
2062         bin = bb_spur * 32;
2063
2064         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
2065         new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
2066                      AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
2067                      AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
2068                      AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2069
2070         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
2071
2072         new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2073                AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2074                AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2075                AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2076                SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2077         REG_WRITE(ah, AR_PHY_SPUR_REG, new);
2078
2079         spur_delta_phase = ((bb_spur * 524288) / 100) &
2080                 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2081
2082         denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
2083         spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
2084
2085         new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2086                SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2087                SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2088         REG_WRITE(ah, AR_PHY_TIMING11, new);
2089
2090         cur_bin = -6000;
2091         upper = bin + 100;
2092         lower = bin - 100;
2093
2094         for (i = 0; i < 4; i++) {
2095                 int pilot_mask = 0;
2096                 int chan_mask = 0;
2097                 int bp = 0;
2098                 for (bp = 0; bp < 30; bp++) {
2099                         if ((cur_bin > lower) && (cur_bin < upper)) {
2100                                 pilot_mask = pilot_mask | 0x1 << bp;
2101                                 chan_mask = chan_mask | 0x1 << bp;
2102                         }
2103                         cur_bin += 100;
2104                 }
2105                 cur_bin += inc[i];
2106                 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2107                 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2108         }
2109
2110         cur_vit_mask = 6100;
2111         upper = bin + 120;
2112         lower = bin - 120;
2113
2114         for (i = 0; i < 123; i++) {
2115                 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2116
2117                         /* workaround for gcc bug #37014 */
2118                         volatile int tmp_v = abs(cur_vit_mask - bin);
2119
2120                         if (tmp_v < 75)
2121                                 mask_amt = 1;
2122                         else
2123                                 mask_amt = 0;
2124                         if (cur_vit_mask < 0)
2125                                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2126                         else
2127                                 mask_p[cur_vit_mask / 100] = mask_amt;
2128                 }
2129                 cur_vit_mask -= 100;
2130         }
2131
2132         tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2133                 | (mask_m[48] << 26) | (mask_m[49] << 24)
2134                 | (mask_m[50] << 22) | (mask_m[51] << 20)
2135                 | (mask_m[52] << 18) | (mask_m[53] << 16)
2136                 | (mask_m[54] << 14) | (mask_m[55] << 12)
2137                 | (mask_m[56] << 10) | (mask_m[57] << 8)
2138                 | (mask_m[58] << 6) | (mask_m[59] << 4)
2139                 | (mask_m[60] << 2) | (mask_m[61] << 0);
2140         REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2141         REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2142
2143         tmp_mask = (mask_m[31] << 28)
2144                 | (mask_m[32] << 26) | (mask_m[33] << 24)
2145                 | (mask_m[34] << 22) | (mask_m[35] << 20)
2146                 | (mask_m[36] << 18) | (mask_m[37] << 16)
2147                 | (mask_m[48] << 14) | (mask_m[39] << 12)
2148                 | (mask_m[40] << 10) | (mask_m[41] << 8)
2149                 | (mask_m[42] << 6) | (mask_m[43] << 4)
2150                 | (mask_m[44] << 2) | (mask_m[45] << 0);
2151         REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2152         REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2153
2154         tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2155                 | (mask_m[18] << 26) | (mask_m[18] << 24)
2156                 | (mask_m[20] << 22) | (mask_m[20] << 20)
2157                 | (mask_m[22] << 18) | (mask_m[22] << 16)
2158                 | (mask_m[24] << 14) | (mask_m[24] << 12)
2159                 | (mask_m[25] << 10) | (mask_m[26] << 8)
2160                 | (mask_m[27] << 6) | (mask_m[28] << 4)
2161                 | (mask_m[29] << 2) | (mask_m[30] << 0);
2162         REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2163         REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2164
2165         tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2166                 | (mask_m[2] << 26) | (mask_m[3] << 24)
2167                 | (mask_m[4] << 22) | (mask_m[5] << 20)
2168                 | (mask_m[6] << 18) | (mask_m[7] << 16)
2169                 | (mask_m[8] << 14) | (mask_m[9] << 12)
2170                 | (mask_m[10] << 10) | (mask_m[11] << 8)
2171                 | (mask_m[12] << 6) | (mask_m[13] << 4)
2172                 | (mask_m[14] << 2) | (mask_m[15] << 0);
2173         REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2174         REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2175
2176         tmp_mask = (mask_p[15] << 28)
2177                 | (mask_p[14] << 26) | (mask_p[13] << 24)
2178                 | (mask_p[12] << 22) | (mask_p[11] << 20)
2179                 | (mask_p[10] << 18) | (mask_p[9] << 16)
2180                 | (mask_p[8] << 14) | (mask_p[7] << 12)
2181                 | (mask_p[6] << 10) | (mask_p[5] << 8)
2182                 | (mask_p[4] << 6) | (mask_p[3] << 4)
2183                 | (mask_p[2] << 2) | (mask_p[1] << 0);
2184         REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2185         REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2186
2187         tmp_mask = (mask_p[30] << 28)
2188                 | (mask_p[29] << 26) | (mask_p[28] << 24)
2189                 | (mask_p[27] << 22) | (mask_p[26] << 20)
2190                 | (mask_p[25] << 18) | (mask_p[24] << 16)
2191                 | (mask_p[23] << 14) | (mask_p[22] << 12)
2192                 | (mask_p[21] << 10) | (mask_p[20] << 8)
2193                 | (mask_p[19] << 6) | (mask_p[18] << 4)
2194                 | (mask_p[17] << 2) | (mask_p[16] << 0);
2195         REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2196         REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2197
2198         tmp_mask = (mask_p[45] << 28)
2199                 | (mask_p[44] << 26) | (mask_p[43] << 24)
2200                 | (mask_p[42] << 22) | (mask_p[41] << 20)
2201                 | (mask_p[40] << 18) | (mask_p[39] << 16)
2202                 | (mask_p[38] << 14) | (mask_p[37] << 12)
2203                 | (mask_p[36] << 10) | (mask_p[35] << 8)
2204                 | (mask_p[34] << 6) | (mask_p[33] << 4)
2205                 | (mask_p[32] << 2) | (mask_p[31] << 0);
2206         REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2207         REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2208
2209         tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2210                 | (mask_p[59] << 26) | (mask_p[58] << 24)
2211                 | (mask_p[57] << 22) | (mask_p[56] << 20)
2212                 | (mask_p[55] << 18) | (mask_p[54] << 16)
2213                 | (mask_p[53] << 14) | (mask_p[52] << 12)
2214                 | (mask_p[51] << 10) | (mask_p[50] << 8)
2215                 | (mask_p[49] << 6) | (mask_p[48] << 4)
2216                 | (mask_p[47] << 2) | (mask_p[46] << 0);
2217         REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2218         REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2219 }
2220
2221 static void ath9k_enable_rfkill(struct ath_hw *ah)
2222 {
2223         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
2224                     AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
2225
2226         REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
2227                     AR_GPIO_INPUT_MUX2_RFSILENT);
2228
2229         ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
2230         REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
2231 }
2232
2233 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
2234                     bool bChannelChange)
2235 {
2236         u32 saveLedState;
2237         struct ath_softc *sc = ah->ah_sc;
2238         struct ath9k_channel *curchan = ah->curchan;
2239         u32 saveDefAntenna;
2240         u32 macStaId1;
2241         int i, rx_chainmask, r;
2242
2243         ah->extprotspacing = sc->ht_extprotspacing;
2244         ah->txchainmask = sc->tx_chainmask;
2245         ah->rxchainmask = sc->rx_chainmask;
2246
2247         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2248                 return -EIO;
2249
2250         if (curchan)
2251                 ath9k_hw_getnf(ah, curchan);
2252
2253         if (bChannelChange &&
2254             (ah->chip_fullsleep != true) &&
2255             (ah->curchan != NULL) &&
2256             (chan->channel != ah->curchan->channel) &&
2257             ((chan->channelFlags & CHANNEL_ALL) ==
2258              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
2259             (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
2260                                    !IS_CHAN_A_5MHZ_SPACED(ah->curchan)))) {
2261
2262                 if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
2263                         ath9k_hw_loadnf(ah, ah->curchan);
2264                         ath9k_hw_start_nfcal(ah);
2265                         return 0;
2266                 }
2267         }
2268
2269         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
2270         if (saveDefAntenna == 0)
2271                 saveDefAntenna = 1;
2272
2273         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2274
2275         saveLedState = REG_READ(ah, AR_CFG_LED) &
2276                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
2277                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
2278
2279         ath9k_hw_mark_phy_inactive(ah);
2280
2281         if (!ath9k_hw_chip_reset(ah, chan)) {
2282                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Chip reset failed\n");
2283                 return -EINVAL;
2284         }
2285
2286         if (AR_SREV_9280_10_OR_LATER(ah))
2287                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2288
2289         if (AR_SREV_9287_10_OR_LATER(ah)) {
2290                 /* Enable ASYNC FIFO */
2291                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2292                                 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2293                 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2294                 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2295                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2296                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2297                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2298         }
2299         r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
2300         if (r)
2301                 return r;
2302
2303         /* Setup MFP options for CCMP */
2304         if (AR_SREV_9280_20_OR_LATER(ah)) {
2305                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2306                  * frames when constructing CCMP AAD. */
2307                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2308                               0xc7ff);
2309                 ah->sw_mgmt_crypto = false;
2310         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2311                 /* Disable hardware crypto for management frames */
2312                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2313                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2314                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2315                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2316                 ah->sw_mgmt_crypto = true;
2317         } else
2318                 ah->sw_mgmt_crypto = true;
2319
2320         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2321                 ath9k_hw_set_delta_slope(ah, chan);
2322
2323         if (AR_SREV_9280_10_OR_LATER(ah))
2324                 ath9k_hw_9280_spur_mitigate(ah, chan);
2325         else
2326                 ath9k_hw_spur_mitigate(ah, chan);
2327
2328         ah->eep_ops->set_board_values(ah, chan);
2329
2330         ath9k_hw_decrease_chain_power(ah, chan);
2331
2332         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ah->macaddr));
2333         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ah->macaddr + 4)
2334                   | macStaId1
2335                   | AR_STA_ID1_RTS_USE_DEF
2336                   | (ah->config.
2337                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2338                   | ah->sta_id1_defaults);
2339         ath9k_hw_set_operating_mode(ah, ah->opmode);
2340
2341         REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
2342         REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
2343
2344         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2345
2346         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
2347         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
2348                   ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2349
2350         REG_WRITE(ah, AR_ISR, ~0);
2351
2352         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2353
2354         if (AR_SREV_9280_10_OR_LATER(ah))
2355                 ath9k_hw_ar9280_set_channel(ah, chan);
2356         else
2357                 if (!(ath9k_hw_set_channel(ah, chan)))
2358                         return -EIO;
2359
2360         for (i = 0; i < AR_NUM_DCU; i++)
2361                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2362
2363         ah->intr_txqs = 0;
2364         for (i = 0; i < ah->caps.total_queues; i++)
2365                 ath9k_hw_resettxqueue(ah, i);
2366
2367         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2368         ath9k_hw_init_qos(ah);
2369
2370         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2371                 ath9k_enable_rfkill(ah);
2372
2373         ath9k_hw_init_user_settings(ah);
2374
2375         if (AR_SREV_9287_10_OR_LATER(ah)) {
2376                 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2377                           AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2378                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2379                           AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2380                 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2381                           AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2382
2383                 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2384                 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2385
2386                 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2387                             AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2388                 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2389                               AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2390         }
2391         if (AR_SREV_9287_10_OR_LATER(ah)) {
2392                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2393                                 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2394         }
2395
2396         REG_WRITE(ah, AR_STA_ID1,
2397                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2398
2399         ath9k_hw_set_dma(ah);
2400
2401         REG_WRITE(ah, AR_OBS, 8);
2402
2403         if (ah->config.intr_mitigation) {
2404                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2405                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2406         }
2407
2408         ath9k_hw_init_bb(ah, chan);
2409
2410         if (!ath9k_hw_init_cal(ah, chan))
2411                 return -EIO;
2412
2413         rx_chainmask = ah->rxchainmask;
2414         if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2415                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2416                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2417         }
2418
2419         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2420
2421         if (AR_SREV_9100(ah)) {
2422                 u32 mask;
2423                 mask = REG_READ(ah, AR_CFG);
2424                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2425                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2426                                 "CFG Byte Swap Set 0x%x\n", mask);
2427                 } else {
2428                         mask =
2429                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2430                         REG_WRITE(ah, AR_CFG, mask);
2431                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2432                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2433                 }
2434         } else {
2435 #ifdef __BIG_ENDIAN
2436                 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2437 #endif
2438         }
2439
2440         return 0;
2441 }
2442
2443 /************************/
2444 /* Key Cache Management */
2445 /************************/
2446
2447 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2448 {
2449         u32 keyType;
2450
2451         if (entry >= ah->caps.keycache_size) {
2452                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2453                         "keychache entry %u out of range\n", entry);
2454                 return false;
2455         }
2456
2457         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2458
2459         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2460         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2461         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2462         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2463         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2464         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2465         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2466         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2467
2468         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2469                 u16 micentry = entry + 64;
2470
2471                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2472                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2473                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2474                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2475
2476         }
2477
2478         if (ah->curchan == NULL)
2479                 return true;
2480
2481         return true;
2482 }
2483
2484 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2485 {
2486         u32 macHi, macLo;
2487
2488         if (entry >= ah->caps.keycache_size) {
2489                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2490                         "keychache entry %u out of range\n", entry);
2491                 return false;
2492         }
2493
2494         if (mac != NULL) {
2495                 macHi = (mac[5] << 8) | mac[4];
2496                 macLo = (mac[3] << 24) |
2497                         (mac[2] << 16) |
2498                         (mac[1] << 8) |
2499                         mac[0];
2500                 macLo >>= 1;
2501                 macLo |= (macHi & 1) << 31;
2502                 macHi >>= 1;
2503         } else {
2504                 macLo = macHi = 0;
2505         }
2506         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2507         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2508
2509         return true;
2510 }
2511
2512 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2513                                  const struct ath9k_keyval *k,
2514                                  const u8 *mac)
2515 {
2516         const struct ath9k_hw_capabilities *pCap = &ah->caps;
2517         u32 key0, key1, key2, key3, key4;
2518         u32 keyType;
2519
2520         if (entry >= pCap->keycache_size) {
2521                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2522                         "keycache entry %u out of range\n", entry);
2523                 return false;
2524         }
2525
2526         switch (k->kv_type) {
2527         case ATH9K_CIPHER_AES_OCB:
2528                 keyType = AR_KEYTABLE_TYPE_AES;
2529                 break;
2530         case ATH9K_CIPHER_AES_CCM:
2531                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2532                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2533                                 "AES-CCM not supported by mac rev 0x%x\n",
2534                                 ah->hw_version.macRev);
2535                         return false;
2536                 }
2537                 keyType = AR_KEYTABLE_TYPE_CCM;
2538                 break;
2539         case ATH9K_CIPHER_TKIP:
2540                 keyType = AR_KEYTABLE_TYPE_TKIP;
2541                 if (ATH9K_IS_MIC_ENABLED(ah)
2542                     && entry + 64 >= pCap->keycache_size) {
2543                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2544                                 "entry %u inappropriate for TKIP\n", entry);
2545                         return false;
2546                 }
2547                 break;
2548         case ATH9K_CIPHER_WEP:
2549                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2550                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2551                                 "WEP key length %u too small\n", k->kv_len);
2552                         return false;
2553                 }
2554                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2555                         keyType = AR_KEYTABLE_TYPE_40;
2556                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2557                         keyType = AR_KEYTABLE_TYPE_104;
2558                 else
2559                         keyType = AR_KEYTABLE_TYPE_128;
2560                 break;
2561         case ATH9K_CIPHER_CLR:
2562                 keyType = AR_KEYTABLE_TYPE_CLR;
2563                 break;
2564         default:
2565                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2566                         "cipher %u not supported\n", k->kv_type);
2567                 return false;
2568         }
2569
2570         key0 = get_unaligned_le32(k->kv_val + 0);
2571         key1 = get_unaligned_le16(k->kv_val + 4);
2572         key2 = get_unaligned_le32(k->kv_val + 6);
2573         key3 = get_unaligned_le16(k->kv_val + 10);
2574         key4 = get_unaligned_le32(k->kv_val + 12);
2575         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2576                 key4 &= 0xff;
2577
2578         /*
2579          * Note: Key cache registers access special memory area that requires
2580          * two 32-bit writes to actually update the values in the internal
2581          * memory. Consequently, the exact order and pairs used here must be
2582          * maintained.
2583          */
2584
2585         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2586                 u16 micentry = entry + 64;
2587
2588                 /*
2589                  * Write inverted key[47:0] first to avoid Michael MIC errors
2590                  * on frames that could be sent or received at the same time.
2591                  * The correct key will be written in the end once everything
2592                  * else is ready.
2593                  */
2594                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2595                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2596
2597                 /* Write key[95:48] */
2598                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2599                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2600
2601                 /* Write key[127:96] and key type */
2602                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2603                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2604
2605                 /* Write MAC address for the entry */
2606                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2607
2608                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2609                         /*
2610                          * TKIP uses two key cache entries:
2611                          * Michael MIC TX/RX keys in the same key cache entry
2612                          * (idx = main index + 64):
2613                          * key0 [31:0] = RX key [31:0]
2614                          * key1 [15:0] = TX key [31:16]
2615                          * key1 [31:16] = reserved
2616                          * key2 [31:0] = RX key [63:32]
2617                          * key3 [15:0] = TX key [15:0]
2618                          * key3 [31:16] = reserved
2619                          * key4 [31:0] = TX key [63:32]
2620                          */
2621                         u32 mic0, mic1, mic2, mic3, mic4;
2622
2623                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2624                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2625                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2626                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2627                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
2628
2629                         /* Write RX[31:0] and TX[31:16] */
2630                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2631                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2632
2633                         /* Write RX[63:32] and TX[15:0] */
2634                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2635                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2636
2637                         /* Write TX[63:32] and keyType(reserved) */
2638                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2639                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2640                                   AR_KEYTABLE_TYPE_CLR);
2641
2642                 } else {
2643                         /*
2644                          * TKIP uses four key cache entries (two for group
2645                          * keys):
2646                          * Michael MIC TX/RX keys are in different key cache
2647                          * entries (idx = main index + 64 for TX and
2648                          * main index + 32 + 96 for RX):
2649                          * key0 [31:0] = TX/RX MIC key [31:0]
2650                          * key1 [31:0] = reserved
2651                          * key2 [31:0] = TX/RX MIC key [63:32]
2652                          * key3 [31:0] = reserved
2653                          * key4 [31:0] = reserved
2654                          *
2655                          * Upper layer code will call this function separately
2656                          * for TX and RX keys when these registers offsets are
2657                          * used.
2658                          */
2659                         u32 mic0, mic2;
2660
2661                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2662                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2663
2664                         /* Write MIC key[31:0] */
2665                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2666                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2667
2668                         /* Write MIC key[63:32] */
2669                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2670                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2671
2672                         /* Write TX[63:32] and keyType(reserved) */
2673                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2674                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2675                                   AR_KEYTABLE_TYPE_CLR);
2676                 }
2677
2678                 /* MAC address registers are reserved for the MIC entry */
2679                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2680                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2681
2682                 /*
2683                  * Write the correct (un-inverted) key[47:0] last to enable
2684                  * TKIP now that all other registers are set with correct
2685                  * values.
2686                  */
2687                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2688                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2689         } else {
2690                 /* Write key[47:0] */
2691                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2692                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2693
2694                 /* Write key[95:48] */
2695                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2696                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2697
2698                 /* Write key[127:96] and key type */
2699                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2700                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2701
2702                 /* Write MAC address for the entry */
2703                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2704         }
2705
2706         return true;
2707 }
2708
2709 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2710 {
2711         if (entry < ah->caps.keycache_size) {
2712                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2713                 if (val & AR_KEYTABLE_VALID)
2714                         return true;
2715         }
2716         return false;
2717 }
2718
2719 /******************************/
2720 /* Power Management (Chipset) */
2721 /******************************/
2722
2723 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2724 {
2725         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2726         if (setChip) {
2727                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2728                             AR_RTC_FORCE_WAKE_EN);
2729                 if (!AR_SREV_9100(ah))
2730                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2731
2732                 REG_CLR_BIT(ah, (AR_RTC_RESET),
2733                             AR_RTC_RESET_EN);
2734         }
2735 }
2736
2737 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2738 {
2739         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2740         if (setChip) {
2741                 struct ath9k_hw_capabilities *pCap = &ah->caps;
2742
2743                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2744                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2745                                   AR_RTC_FORCE_WAKE_ON_INT);
2746                 } else {
2747                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2748                                     AR_RTC_FORCE_WAKE_EN);
2749                 }
2750         }
2751 }
2752
2753 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2754 {
2755         u32 val;
2756         int i;
2757
2758         if (setChip) {
2759                 if ((REG_READ(ah, AR_RTC_STATUS) &
2760                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2761                         if (ath9k_hw_set_reset_reg(ah,
2762                                            ATH9K_RESET_POWER_ON) != true) {
2763                                 return false;
2764                         }
2765                 }
2766                 if (AR_SREV_9100(ah))
2767                         REG_SET_BIT(ah, AR_RTC_RESET,
2768                                     AR_RTC_RESET_EN);
2769
2770                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2771                             AR_RTC_FORCE_WAKE_EN);
2772                 udelay(50);
2773
2774                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2775                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2776                         if (val == AR_RTC_STATUS_ON)
2777                                 break;
2778                         udelay(50);
2779                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2780                                     AR_RTC_FORCE_WAKE_EN);
2781                 }
2782                 if (i == 0) {
2783                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2784                                 "Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
2785                         return false;
2786                 }
2787         }
2788
2789         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2790
2791         return true;
2792 }
2793
2794 static bool ath9k_hw_setpower_nolock(struct ath_hw *ah,
2795                                      enum ath9k_power_mode mode)
2796 {
2797         int status = true, setChip = true;
2798         static const char *modes[] = {
2799                 "AWAKE",
2800                 "FULL-SLEEP",
2801                 "NETWORK SLEEP",
2802                 "UNDEFINED"
2803         };
2804
2805         if (ah->power_mode == mode)
2806                 return status;
2807
2808         DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s -> %s\n",
2809                 modes[ah->power_mode], modes[mode]);
2810
2811         switch (mode) {
2812         case ATH9K_PM_AWAKE:
2813                 status = ath9k_hw_set_power_awake(ah, setChip);
2814                 break;
2815         case ATH9K_PM_FULL_SLEEP:
2816                 ath9k_set_power_sleep(ah, setChip);
2817                 ah->chip_fullsleep = true;
2818                 break;
2819         case ATH9K_PM_NETWORK_SLEEP:
2820                 ath9k_set_power_network_sleep(ah, setChip);
2821                 break;
2822         default:
2823                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2824                         "Unknown power mode %u\n", mode);
2825                 return false;
2826         }
2827         ah->power_mode = mode;
2828
2829         return status;
2830 }
2831
2832 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2833 {
2834         unsigned long flags;
2835         bool ret;
2836
2837         spin_lock_irqsave(&ah->ah_sc->sc_pm_lock, flags);
2838         ret = ath9k_hw_setpower_nolock(ah, mode);
2839         spin_unlock_irqrestore(&ah->ah_sc->sc_pm_lock, flags);
2840
2841         return ret;
2842 }
2843
2844 void ath9k_ps_wakeup(struct ath_softc *sc)
2845 {
2846         unsigned long flags;
2847
2848         spin_lock_irqsave(&sc->sc_pm_lock, flags);
2849         if (++sc->ps_usecount != 1)
2850                 goto unlock;
2851
2852         ath9k_hw_setpower_nolock(sc->sc_ah, ATH9K_PM_AWAKE);
2853
2854  unlock:
2855         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2856 }
2857
2858 void ath9k_ps_restore(struct ath_softc *sc)
2859 {
2860         unsigned long flags;
2861
2862         spin_lock_irqsave(&sc->sc_pm_lock, flags);
2863         if (--sc->ps_usecount != 0)
2864                 goto unlock;
2865
2866         if (sc->ps_enabled &&
2867             !(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
2868                               SC_OP_WAIT_FOR_CAB |
2869                               SC_OP_WAIT_FOR_PSPOLL_DATA |
2870                               SC_OP_WAIT_FOR_TX_ACK)))
2871                 ath9k_hw_setpower_nolock(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2872
2873  unlock:
2874         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2875 }
2876
2877 /*
2878  * Helper for ASPM support.
2879  *
2880  * Disable PLL when in L0s as well as receiver clock when in L1.
2881  * This power saving option must be enabled through the SerDes.
2882  *
2883  * Programming the SerDes must go through the same 288 bit serial shift
2884  * register as the other analog registers.  Hence the 9 writes.
2885  */
2886 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore)
2887 {
2888         u8 i;
2889
2890         if (ah->is_pciexpress != true)
2891                 return;
2892
2893         /* Do not touch SerDes registers */
2894         if (ah->config.pcie_powersave_enable == 2)
2895                 return;
2896
2897         /* Nothing to do on restore for 11N */
2898         if (restore)
2899                 return;
2900
2901         if (AR_SREV_9280_20_OR_LATER(ah)) {
2902                 /*
2903                  * AR9280 2.0 or later chips use SerDes values from the
2904                  * initvals.h initialized depending on chipset during
2905                  * ath9k_hw_attach()
2906                  */
2907                 for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2908                         REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2909                                   INI_RA(&ah->iniPcieSerdes, i, 1));
2910                 }
2911         } else if (AR_SREV_9280(ah) &&
2912                    (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2913                 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2914                 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2915
2916                 /* RX shut off when elecidle is asserted */
2917                 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2918                 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2919                 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2920
2921                 /* Shut off CLKREQ active in L1 */
2922                 if (ah->config.pcie_clock_req)
2923                         REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2924                 else
2925                         REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2926
2927                 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2928                 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2929                 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2930
2931                 /* Load the new settings */
2932                 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2933
2934         } else {
2935                 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2936                 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2937
2938                 /* RX shut off when elecidle is asserted */
2939                 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2940                 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2941                 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2942
2943                 /*
2944                  * Ignore ah->ah_config.pcie_clock_req setting for
2945                  * pre-AR9280 11n
2946                  */
2947                 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2948
2949                 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2950                 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2951                 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2952
2953                 /* Load the new settings */
2954                 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2955         }
2956
2957         udelay(1000);
2958
2959         /* set bit 19 to allow forcing of pcie core into L1 state */
2960         REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2961
2962         /* Several PCIe massages to ensure proper behaviour */
2963         if (ah->config.pcie_waen) {
2964                 REG_WRITE(ah, AR_WA, ah->config.pcie_waen);
2965         } else {
2966                 if (AR_SREV_9285(ah))
2967                         REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);
2968                 /*
2969                  * On AR9280 chips bit 22 of 0x4004 needs to be set to
2970                  * otherwise card may disappear.
2971                  */
2972                 else if (AR_SREV_9280(ah))
2973                         REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT);
2974                 else
2975                         REG_WRITE(ah, AR_WA, AR_WA_DEFAULT);
2976         }
2977 }
2978
2979 /**********************/
2980 /* Interrupt Handling */
2981 /**********************/
2982
2983 bool ath9k_hw_intrpend(struct ath_hw *ah)
2984 {
2985         u32 host_isr;
2986
2987         if (AR_SREV_9100(ah))
2988                 return true;
2989
2990         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2991         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2992                 return true;
2993
2994         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2995         if ((host_isr & AR_INTR_SYNC_DEFAULT)
2996             && (host_isr != AR_INTR_SPURIOUS))
2997                 return true;
2998
2999         return false;
3000 }
3001
3002 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
3003 {
3004         u32 isr = 0;
3005         u32 mask2 = 0;
3006         struct ath9k_hw_capabilities *pCap = &ah->caps;
3007         u32 sync_cause = 0;
3008         bool fatal_int = false;
3009
3010         if (!AR_SREV_9100(ah)) {
3011                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
3012                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
3013                             == AR_RTC_STATUS_ON) {
3014                                 isr = REG_READ(ah, AR_ISR);
3015                         }
3016                 }
3017
3018                 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
3019                         AR_INTR_SYNC_DEFAULT;
3020
3021                 *masked = 0;
3022
3023                 if (!isr && !sync_cause)
3024                         return false;
3025         } else {
3026                 *masked = 0;
3027                 isr = REG_READ(ah, AR_ISR);
3028         }
3029
3030         if (isr) {
3031                 if (isr & AR_ISR_BCNMISC) {
3032                         u32 isr2;
3033                         isr2 = REG_READ(ah, AR_ISR_S2);
3034                         if (isr2 & AR_ISR_S2_TIM)
3035                                 mask2 |= ATH9K_INT_TIM;
3036                         if (isr2 & AR_ISR_S2_DTIM)
3037                                 mask2 |= ATH9K_INT_DTIM;
3038                         if (isr2 & AR_ISR_S2_DTIMSYNC)
3039                                 mask2 |= ATH9K_INT_DTIMSYNC;
3040                         if (isr2 & (AR_ISR_S2_CABEND))
3041                                 mask2 |= ATH9K_INT_CABEND;
3042                         if (isr2 & AR_ISR_S2_GTT)
3043                                 mask2 |= ATH9K_INT_GTT;
3044                         if (isr2 & AR_ISR_S2_CST)
3045                                 mask2 |= ATH9K_INT_CST;
3046                         if (isr2 & AR_ISR_S2_TSFOOR)
3047                                 mask2 |= ATH9K_INT_TSFOOR;
3048                 }
3049
3050                 isr = REG_READ(ah, AR_ISR_RAC);
3051                 if (isr == 0xffffffff) {
3052                         *masked = 0;
3053                         return false;
3054                 }
3055
3056                 *masked = isr & ATH9K_INT_COMMON;
3057
3058                 if (ah->config.intr_mitigation) {
3059                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
3060                                 *masked |= ATH9K_INT_RX;
3061                 }
3062
3063                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
3064                         *masked |= ATH9K_INT_RX;
3065                 if (isr &
3066                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
3067                      AR_ISR_TXEOL)) {
3068                         u32 s0_s, s1_s;
3069
3070                         *masked |= ATH9K_INT_TX;
3071
3072                         s0_s = REG_READ(ah, AR_ISR_S0_S);
3073                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
3074                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
3075
3076                         s1_s = REG_READ(ah, AR_ISR_S1_S);
3077                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
3078                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
3079                 }
3080
3081                 if (isr & AR_ISR_RXORN) {
3082                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3083                                 "receive FIFO overrun interrupt\n");
3084                 }
3085
3086                 if (!AR_SREV_9100(ah)) {
3087                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3088                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
3089                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
3090                                         *masked |= ATH9K_INT_TIM_TIMER;
3091                         }
3092                 }
3093
3094                 *masked |= mask2;
3095         }
3096
3097         if (AR_SREV_9100(ah))
3098                 return true;
3099
3100         if (sync_cause) {
3101                 fatal_int =
3102                         (sync_cause &
3103                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
3104                         ? true : false;
3105
3106                 if (fatal_int) {
3107                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
3108                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3109                                         "received PCI FATAL interrupt\n");
3110                         }
3111                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
3112                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3113                                         "received PCI PERR interrupt\n");
3114                         }
3115                         *masked |= ATH9K_INT_FATAL;
3116                 }
3117                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
3118                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3119                                 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
3120                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
3121                         REG_WRITE(ah, AR_RC, 0);
3122                         *masked |= ATH9K_INT_FATAL;
3123                 }
3124                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
3125                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3126                                 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3127                 }
3128
3129                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
3130                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
3131         }
3132
3133         return true;
3134 }
3135
3136 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
3137 {
3138         u32 omask = ah->mask_reg;
3139         u32 mask, mask2;
3140         struct ath9k_hw_capabilities *pCap = &ah->caps;
3141
3142         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
3143
3144         if (omask & ATH9K_INT_GLOBAL) {
3145                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
3146                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
3147                 (void) REG_READ(ah, AR_IER);
3148                 if (!AR_SREV_9100(ah)) {
3149                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
3150                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
3151
3152                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
3153                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
3154                 }
3155         }
3156
3157         mask = ints & ATH9K_INT_COMMON;
3158         mask2 = 0;
3159
3160         if (ints & ATH9K_INT_TX) {
3161                 if (ah->txok_interrupt_mask)
3162                         mask |= AR_IMR_TXOK;
3163                 if (ah->txdesc_interrupt_mask)
3164                         mask |= AR_IMR_TXDESC;
3165                 if (ah->txerr_interrupt_mask)
3166                         mask |= AR_IMR_TXERR;
3167                 if (ah->txeol_interrupt_mask)
3168                         mask |= AR_IMR_TXEOL;
3169         }
3170         if (ints & ATH9K_INT_RX) {
3171                 mask |= AR_IMR_RXERR;
3172                 if (ah->config.intr_mitigation)
3173                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
3174                 else
3175                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
3176                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
3177                         mask |= AR_IMR_GENTMR;
3178         }
3179
3180         if (ints & (ATH9K_INT_BMISC)) {
3181                 mask |= AR_IMR_BCNMISC;
3182                 if (ints & ATH9K_INT_TIM)
3183                         mask2 |= AR_IMR_S2_TIM;
3184                 if (ints & ATH9K_INT_DTIM)
3185                         mask2 |= AR_IMR_S2_DTIM;
3186                 if (ints & ATH9K_INT_DTIMSYNC)
3187                         mask2 |= AR_IMR_S2_DTIMSYNC;
3188                 if (ints & ATH9K_INT_CABEND)
3189                         mask2 |= AR_IMR_S2_CABEND;
3190                 if (ints & ATH9K_INT_TSFOOR)
3191                         mask2 |= AR_IMR_S2_TSFOOR;
3192         }
3193
3194         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
3195                 mask |= AR_IMR_BCNMISC;
3196                 if (ints & ATH9K_INT_GTT)
3197                         mask2 |= AR_IMR_S2_GTT;
3198                 if (ints & ATH9K_INT_CST)
3199                         mask2 |= AR_IMR_S2_CST;
3200         }
3201
3202         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
3203         REG_WRITE(ah, AR_IMR, mask);
3204         mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
3205                                            AR_IMR_S2_DTIM |
3206                                            AR_IMR_S2_DTIMSYNC |
3207                                            AR_IMR_S2_CABEND |
3208                                            AR_IMR_S2_CABTO |
3209                                            AR_IMR_S2_TSFOOR |
3210                                            AR_IMR_S2_GTT | AR_IMR_S2_CST);
3211         REG_WRITE(ah, AR_IMR_S2, mask | mask2);
3212         ah->mask_reg = ints;
3213
3214         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3215                 if (ints & ATH9K_INT_TIM_TIMER)
3216                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3217                 else
3218                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3219         }
3220
3221         if (ints & ATH9K_INT_GLOBAL) {
3222                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
3223                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
3224                 if (!AR_SREV_9100(ah)) {
3225                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
3226                                   AR_INTR_MAC_IRQ);
3227                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
3228
3229
3230                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
3231                                   AR_INTR_SYNC_DEFAULT);
3232                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
3233                                   AR_INTR_SYNC_DEFAULT);
3234                 }
3235                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
3236                          REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
3237         }
3238
3239         return omask;
3240 }
3241
3242 /*******************/
3243 /* Beacon Handling */
3244 /*******************/
3245
3246 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
3247 {
3248         int flags = 0;
3249
3250         ah->beacon_interval = beacon_period;
3251
3252         switch (ah->opmode) {
3253         case NL80211_IFTYPE_STATION:
3254         case NL80211_IFTYPE_MONITOR:
3255                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3256                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3257                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3258                 flags |= AR_TBTT_TIMER_EN;
3259                 break;
3260         case NL80211_IFTYPE_ADHOC:
3261         case NL80211_IFTYPE_MESH_POINT:
3262                 REG_SET_BIT(ah, AR_TXCFG,
3263                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3264                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3265                           TU_TO_USEC(next_beacon +
3266                                      (ah->atim_window ? ah->
3267                                       atim_window : 1)));
3268                 flags |= AR_NDP_TIMER_EN;
3269         case NL80211_IFTYPE_AP:
3270                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3271                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3272                           TU_TO_USEC(next_beacon -
3273                                      ah->config.
3274                                      dma_beacon_response_time));
3275                 REG_WRITE(ah, AR_NEXT_SWBA,
3276                           TU_TO_USEC(next_beacon -
3277                                      ah->config.
3278                                      sw_beacon_response_time));
3279                 flags |=
3280                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3281                 break;
3282         default:
3283                 DPRINTF(ah->ah_sc, ATH_DBG_BEACON,
3284                         "%s: unsupported opmode: %d\n",
3285                         __func__, ah->opmode);
3286                 return;
3287                 break;
3288         }
3289
3290         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3291         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3292         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3293         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3294
3295         beacon_period &= ~ATH9K_BEACON_ENA;
3296         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3297                 beacon_period &= ~ATH9K_BEACON_RESET_TSF;
3298                 ath9k_hw_reset_tsf(ah);
3299         }
3300
3301         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3302 }
3303
3304 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3305                                     const struct ath9k_beacon_state *bs)
3306 {
3307         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3308         struct ath9k_hw_capabilities *pCap = &ah->caps;
3309
3310         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3311
3312         REG_WRITE(ah, AR_BEACON_PERIOD,
3313                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3314         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3315                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3316
3317         REG_RMW_FIELD(ah, AR_RSSI_THR,
3318                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3319
3320         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3321
3322         if (bs->bs_sleepduration > beaconintval)
3323                 beaconintval = bs->bs_sleepduration;
3324
3325         dtimperiod = bs->bs_dtimperiod;
3326         if (bs->bs_sleepduration > dtimperiod)
3327                 dtimperiod = bs->bs_sleepduration;
3328
3329         if (beaconintval == dtimperiod)
3330                 nextTbtt = bs->bs_nextdtim;
3331         else
3332                 nextTbtt = bs->bs_nexttbtt;
3333
3334         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3335         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3336         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3337         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3338
3339         REG_WRITE(ah, AR_NEXT_DTIM,
3340                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3341         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3342
3343         REG_WRITE(ah, AR_SLEEP1,
3344                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3345                   | AR_SLEEP1_ASSUME_DTIM);
3346
3347         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3348                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3349         else
3350                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3351
3352         REG_WRITE(ah, AR_SLEEP2,
3353                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3354
3355         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3356         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3357
3358         REG_SET_BIT(ah, AR_TIMER_MODE,
3359                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3360                     AR_DTIM_TIMER_EN);
3361
3362         /* TSF Out of Range Threshold */
3363         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3364 }
3365
3366 /*******************/
3367 /* HW Capabilities */
3368 /*******************/
3369
3370 void ath9k_hw_fill_cap_info(struct ath_hw *ah)
3371 {
3372         struct ath9k_hw_capabilities *pCap = &ah->caps;
3373         u16 capField = 0, eeval;
3374
3375         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3376         ah->regulatory.current_rd = eeval;
3377
3378         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3379         if (AR_SREV_9285_10_OR_LATER(ah))
3380                 eeval |= AR9285_RDEXT_DEFAULT;
3381         ah->regulatory.current_rd_ext = eeval;
3382
3383         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3384
3385         if (ah->opmode != NL80211_IFTYPE_AP &&
3386             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3387                 if (ah->regulatory.current_rd == 0x64 ||
3388                     ah->regulatory.current_rd == 0x65)
3389                         ah->regulatory.current_rd += 5;
3390                 else if (ah->regulatory.current_rd == 0x41)
3391                         ah->regulatory.current_rd = 0x43;
3392                 DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
3393                         "regdomain mapped to 0x%x\n", ah->regulatory.current_rd);
3394         }
3395
3396         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3397         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3398
3399         if (eeval & AR5416_OPFLAGS_11A) {
3400                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3401                 if (ah->config.ht_enable) {
3402                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3403                                 set_bit(ATH9K_MODE_11NA_HT20,
3404                                         pCap->wireless_modes);
3405                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3406                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3407                                         pCap->wireless_modes);
3408                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3409                                         pCap->wireless_modes);
3410                         }
3411                 }
3412         }
3413
3414         if (eeval & AR5416_OPFLAGS_11G) {
3415                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3416                 if (ah->config.ht_enable) {
3417                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3418                                 set_bit(ATH9K_MODE_11NG_HT20,
3419                                         pCap->wireless_modes);
3420                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3421                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3422                                         pCap->wireless_modes);
3423                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3424                                         pCap->wireless_modes);
3425                         }
3426                 }
3427         }
3428
3429         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3430         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3431             !(eeval & AR5416_OPFLAGS_11A))
3432                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3433         else
3434                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3435
3436         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3437                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3438
3439         pCap->low_2ghz_chan = 2312;
3440         pCap->high_2ghz_chan = 2732;
3441
3442         pCap->low_5ghz_chan = 4920;
3443         pCap->high_5ghz_chan = 6100;
3444
3445         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3446         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3447         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3448
3449         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3450         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3451         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3452
3453         if (ah->config.ht_enable)
3454                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3455         else
3456                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3457
3458         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3459         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3460         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3461         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3462
3463         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3464                 pCap->total_queues =
3465                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3466         else
3467                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3468
3469         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3470                 pCap->keycache_size =
3471                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3472         else
3473                 pCap->keycache_size = AR_KEYTABLE_SIZE;
3474
3475         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3476         pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3477
3478         if (AR_SREV_9285_10_OR_LATER(ah))
3479                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3480         else if (AR_SREV_9280_10_OR_LATER(ah))
3481                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3482         else
3483                 pCap->num_gpio_pins = AR_NUM_GPIO;
3484
3485         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3486                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3487                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3488         } else {
3489                 pCap->rts_aggr_limit = (8 * 1024);
3490         }
3491
3492         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3493
3494 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3495         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3496         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3497                 ah->rfkill_gpio =
3498                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3499                 ah->rfkill_polarity =
3500                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3501
3502                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3503         }
3504 #endif
3505
3506         if ((ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI) ||
3507             (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) ||
3508             (ah->hw_version.macVersion == AR_SREV_VERSION_9160) ||
3509             (ah->hw_version.macVersion == AR_SREV_VERSION_9100) ||
3510             (ah->hw_version.macVersion == AR_SREV_VERSION_9280) ||
3511             (ah->hw_version.macVersion == AR_SREV_VERSION_9285))
3512                 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3513         else
3514                 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
3515
3516         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3517                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3518         else
3519                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3520
3521         if (ah->regulatory.current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3522                 pCap->reg_cap =
3523                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3524                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3525                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
3526                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3527         } else {
3528                 pCap->reg_cap =
3529                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3530                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3531         }
3532
3533         pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3534
3535         pCap->num_antcfg_5ghz =
3536                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3537         pCap->num_antcfg_2ghz =
3538                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3539
3540         if (AR_SREV_9280_10_OR_LATER(ah) && btcoex_enable) {
3541                 pCap->hw_caps |= ATH9K_HW_CAP_BT_COEX;
3542                 ah->btactive_gpio = 6;
3543                 ah->wlanactive_gpio = 5;
3544         }
3545 }
3546
3547 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3548                             u32 capability, u32 *result)
3549 {
3550         switch (type) {
3551         case ATH9K_CAP_CIPHER:
3552                 switch (capability) {
3553                 case ATH9K_CIPHER_AES_CCM:
3554                 case ATH9K_CIPHER_AES_OCB:
3555                 case ATH9K_CIPHER_TKIP:
3556                 case ATH9K_CIPHER_WEP:
3557                 case ATH9K_CIPHER_MIC:
3558                 case ATH9K_CIPHER_CLR:
3559                         return true;
3560                 default:
3561                         return false;
3562                 }
3563         case ATH9K_CAP_TKIP_MIC:
3564                 switch (capability) {
3565                 case 0:
3566                         return true;
3567                 case 1:
3568                         return (ah->sta_id1_defaults &
3569                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3570                         false;
3571                 }
3572         case ATH9K_CAP_TKIP_SPLIT:
3573                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3574                         false : true;
3575         case ATH9K_CAP_DIVERSITY:
3576                 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3577                         AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3578                         true : false;
3579         case ATH9K_CAP_MCAST_KEYSRCH:
3580                 switch (capability) {
3581                 case 0:
3582                         return true;
3583                 case 1:
3584                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3585                                 return false;
3586                         } else {
3587                                 return (ah->sta_id1_defaults &
3588                                         AR_STA_ID1_MCAST_KSRCH) ? true :
3589                                         false;
3590                         }
3591                 }
3592                 return false;
3593         case ATH9K_CAP_TXPOW:
3594                 switch (capability) {
3595                 case 0:
3596                         return 0;
3597                 case 1:
3598                         *result = ah->regulatory.power_limit;
3599                         return 0;
3600                 case 2:
3601                         *result = ah->regulatory.max_power_level;
3602                         return 0;
3603                 case 3:
3604                         *result = ah->regulatory.tp_scale;
3605                         return 0;
3606                 }
3607                 return false;
3608         case ATH9K_CAP_DS:
3609                 return (AR_SREV_9280_20_OR_LATER(ah) &&
3610                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3611                         ? false : true;
3612         default:
3613                 return false;
3614         }
3615 }
3616
3617 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3618                             u32 capability, u32 setting, int *status)
3619 {
3620         u32 v;
3621
3622         switch (type) {
3623         case ATH9K_CAP_TKIP_MIC:
3624                 if (setting)
3625                         ah->sta_id1_defaults |=
3626                                 AR_STA_ID1_CRPT_MIC_ENABLE;
3627                 else
3628                         ah->sta_id1_defaults &=
3629                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3630                 return true;
3631         case ATH9K_CAP_DIVERSITY:
3632                 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3633                 if (setting)
3634                         v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3635                 else
3636                         v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3637                 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3638                 return true;
3639         case ATH9K_CAP_MCAST_KEYSRCH:
3640                 if (setting)
3641                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3642                 else
3643                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3644                 return true;
3645         default:
3646                 return false;
3647         }
3648 }
3649
3650 /****************************/
3651 /* GPIO / RFKILL / Antennae */
3652 /****************************/
3653
3654 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3655                                          u32 gpio, u32 type)
3656 {
3657         int addr;
3658         u32 gpio_shift, tmp;
3659
3660         if (gpio > 11)
3661                 addr = AR_GPIO_OUTPUT_MUX3;
3662         else if (gpio > 5)
3663                 addr = AR_GPIO_OUTPUT_MUX2;
3664         else
3665                 addr = AR_GPIO_OUTPUT_MUX1;
3666
3667         gpio_shift = (gpio % 6) * 5;
3668
3669         if (AR_SREV_9280_20_OR_LATER(ah)
3670             || (addr != AR_GPIO_OUTPUT_MUX1)) {
3671                 REG_RMW(ah, addr, (type << gpio_shift),
3672                         (0x1f << gpio_shift));
3673         } else {
3674                 tmp = REG_READ(ah, addr);
3675                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3676                 tmp &= ~(0x1f << gpio_shift);
3677                 tmp |= (type << gpio_shift);
3678                 REG_WRITE(ah, addr, tmp);
3679         }
3680 }
3681
3682 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3683 {
3684         u32 gpio_shift;
3685
3686         ASSERT(gpio < ah->caps.num_gpio_pins);
3687
3688         gpio_shift = gpio << 1;
3689
3690         REG_RMW(ah,
3691                 AR_GPIO_OE_OUT,
3692                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3693                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3694 }
3695
3696 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3697 {
3698 #define MS_REG_READ(x, y) \
3699         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3700
3701         if (gpio >= ah->caps.num_gpio_pins)
3702                 return 0xffffffff;
3703
3704         if (AR_SREV_9287_10_OR_LATER(ah))
3705                 return MS_REG_READ(AR9287, gpio) != 0;
3706         else if (AR_SREV_9285_10_OR_LATER(ah))
3707                 return MS_REG_READ(AR9285, gpio) != 0;
3708         else if (AR_SREV_9280_10_OR_LATER(ah))
3709                 return MS_REG_READ(AR928X, gpio) != 0;
3710         else
3711                 return MS_REG_READ(AR, gpio) != 0;
3712 }
3713
3714 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3715                          u32 ah_signal_type)
3716 {
3717         u32 gpio_shift;
3718
3719         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3720
3721         gpio_shift = 2 * gpio;
3722
3723         REG_RMW(ah,
3724                 AR_GPIO_OE_OUT,
3725                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3726                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3727 }
3728
3729 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3730 {
3731         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3732                 AR_GPIO_BIT(gpio));
3733 }
3734
3735 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3736 {
3737         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3738 }
3739
3740 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3741 {
3742         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3743 }
3744
3745 bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
3746                                enum ath9k_ant_setting settings,
3747                                struct ath9k_channel *chan,
3748                                u8 *tx_chainmask,
3749                                u8 *rx_chainmask,
3750                                u8 *antenna_cfgd)
3751 {
3752         static u8 tx_chainmask_cfg, rx_chainmask_cfg;
3753
3754         if (AR_SREV_9280(ah)) {
3755                 if (!tx_chainmask_cfg) {
3756
3757                         tx_chainmask_cfg = *tx_chainmask;
3758                         rx_chainmask_cfg = *rx_chainmask;
3759                 }
3760
3761                 switch (settings) {
3762                 case ATH9K_ANT_FIXED_A:
3763                         *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3764                         *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3765                         *antenna_cfgd = true;
3766                         break;
3767                 case ATH9K_ANT_FIXED_B:
3768                         if (ah->caps.tx_chainmask >
3769                             ATH9K_ANTENNA1_CHAINMASK) {
3770                                 *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3771                         }
3772                         *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3773                         *antenna_cfgd = true;
3774                         break;
3775                 case ATH9K_ANT_VARIABLE:
3776                         *tx_chainmask = tx_chainmask_cfg;
3777                         *rx_chainmask = rx_chainmask_cfg;
3778                         *antenna_cfgd = true;
3779                         break;
3780                 default:
3781                         break;
3782                 }
3783         } else {
3784                 ah->diversity_control = settings;
3785         }
3786
3787         return true;
3788 }
3789
3790 /*********************/
3791 /* General Operation */
3792 /*********************/
3793
3794 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3795 {
3796         u32 bits = REG_READ(ah, AR_RX_FILTER);
3797         u32 phybits = REG_READ(ah, AR_PHY_ERR);
3798
3799         if (phybits & AR_PHY_ERR_RADAR)
3800                 bits |= ATH9K_RX_FILTER_PHYRADAR;
3801         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3802                 bits |= ATH9K_RX_FILTER_PHYERR;
3803
3804         return bits;
3805 }
3806
3807 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3808 {
3809         u32 phybits;
3810
3811         REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
3812         phybits = 0;
3813         if (bits & ATH9K_RX_FILTER_PHYRADAR)
3814                 phybits |= AR_PHY_ERR_RADAR;
3815         if (bits & ATH9K_RX_FILTER_PHYERR)
3816                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3817         REG_WRITE(ah, AR_PHY_ERR, phybits);
3818
3819         if (phybits)
3820                 REG_WRITE(ah, AR_RXCFG,
3821                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3822         else
3823                 REG_WRITE(ah, AR_RXCFG,
3824                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3825 }
3826
3827 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3828 {
3829         return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
3830 }
3831
3832 bool ath9k_hw_disable(struct ath_hw *ah)
3833 {
3834         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3835                 return false;
3836
3837         return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
3838 }
3839
3840 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3841 {
3842         struct ath9k_channel *chan = ah->curchan;
3843         struct ieee80211_channel *channel = chan->chan;
3844
3845         ah->regulatory.power_limit = min(limit, (u32) MAX_RATE_POWER);
3846
3847         ah->eep_ops->set_txpower(ah, chan,
3848                                  ath9k_regd_get_ctl(&ah->regulatory, chan),
3849                                  channel->max_antenna_gain * 2,
3850                                  channel->max_power * 2,
3851                                  min((u32) MAX_RATE_POWER,
3852                                  (u32) ah->regulatory.power_limit));
3853 }
3854
3855 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3856 {
3857         memcpy(ah->macaddr, mac, ETH_ALEN);
3858 }
3859
3860 void ath9k_hw_setopmode(struct ath_hw *ah)
3861 {
3862         ath9k_hw_set_operating_mode(ah, ah->opmode);
3863 }
3864
3865 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3866 {
3867         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3868         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3869 }
3870
3871 void ath9k_hw_setbssidmask(struct ath_softc *sc)
3872 {
3873         REG_WRITE(sc->sc_ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
3874         REG_WRITE(sc->sc_ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
3875 }
3876
3877 void ath9k_hw_write_associd(struct ath_softc *sc)
3878 {
3879         REG_WRITE(sc->sc_ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
3880         REG_WRITE(sc->sc_ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
3881                   ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3882 }
3883
3884 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3885 {
3886         u64 tsf;
3887
3888         tsf = REG_READ(ah, AR_TSF_U32);
3889         tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3890
3891         return tsf;
3892 }
3893
3894 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3895 {
3896         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3897         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3898 }
3899
3900 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3901 {
3902         ath9k_ps_wakeup(ah->ah_sc);
3903         if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3904                            AH_TSF_WRITE_TIMEOUT))
3905                 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3906                         "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3907
3908         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3909         ath9k_ps_restore(ah->ah_sc);
3910 }
3911
3912 bool ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3913 {
3914         if (setting)
3915                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3916         else
3917                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3918
3919         return true;
3920 }
3921
3922 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
3923 {
3924         if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
3925                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us);
3926                 ah->slottime = (u32) -1;
3927                 return false;
3928         } else {
3929                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
3930                 ah->slottime = us;
3931                 return true;
3932         }
3933 }
3934
3935 void ath9k_hw_set11nmac2040(struct ath_hw *ah, enum ath9k_ht_macmode mode)
3936 {
3937         u32 macmode;
3938
3939         if (mode == ATH9K_HT_MACMODE_2040 &&
3940             !ah->config.cwm_ignore_extcca)
3941                 macmode = AR_2040_JOINED_RX_CLEAR;
3942         else
3943                 macmode = 0;
3944
3945         REG_WRITE(ah, AR_2040_MODE, macmode);
3946 }
3947
3948 /***************************/
3949 /*  Bluetooth Coexistence  */
3950 /***************************/
3951
3952 void ath9k_hw_btcoex_enable(struct ath_hw *ah)
3953 {
3954         /* connect bt_active to baseband */
3955         REG_CLR_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3956                         (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
3957                          AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
3958
3959         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3960                         AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
3961
3962         /* Set input mux for bt_active to gpio pin */
3963         REG_RMW_FIELD(ah, AR_GPIO_INPUT_MUX1,
3964                         AR_GPIO_INPUT_MUX1_BT_ACTIVE,
3965                         ah->btactive_gpio);
3966
3967         /* Configure the desired gpio port for input */
3968         ath9k_hw_cfg_gpio_input(ah, ah->btactive_gpio);
3969
3970         /* Configure the desired GPIO port for TX_FRAME output */
3971         ath9k_hw_cfg_output(ah, ah->wlanactive_gpio,
3972                             AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
3973 }