Merge git://git.infradead.org/~dwmw2/iommu-2.6.31
[pandora-kernel.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "ath9k.h"
21 #include "initvals.h"
22
23 static int btcoex_enable;
24 module_param(btcoex_enable, bool, 0);
25 MODULE_PARM_DESC(btcoex_enable, "Enable Bluetooth coexistence support");
26
27 #define ATH9K_CLOCK_RATE_CCK            22
28 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
29 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
30
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
33                               enum ath9k_ht_macmode macmode);
34 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
35                               struct ar5416_eeprom_def *pEepData,
36                               u32 reg, u32 value);
37 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
38 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
39
40 /********************/
41 /* Helper Functions */
42 /********************/
43
44 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
45 {
46         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
47
48         if (!ah->curchan) /* should really check for CCK instead */
49                 return clks / ATH9K_CLOCK_RATE_CCK;
50         if (conf->channel->band == IEEE80211_BAND_2GHZ)
51                 return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
52
53         return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
54 }
55
56 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
57 {
58         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
59
60         if (conf_is_ht40(conf))
61                 return ath9k_hw_mac_usec(ah, clks) / 2;
62         else
63                 return ath9k_hw_mac_usec(ah, clks);
64 }
65
66 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
67 {
68         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
69
70         if (!ah->curchan) /* should really check for CCK instead */
71                 return usecs *ATH9K_CLOCK_RATE_CCK;
72         if (conf->channel->band == IEEE80211_BAND_2GHZ)
73                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
74         return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
75 }
76
77 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
78 {
79         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
80
81         if (conf_is_ht40(conf))
82                 return ath9k_hw_mac_clks(ah, usecs) * 2;
83         else
84                 return ath9k_hw_mac_clks(ah, usecs);
85 }
86
87 /*
88  * Read and write, they both share the same lock. We do this to serialize
89  * reads and writes on Atheros 802.11n PCI devices only. This is required
90  * as the FIFO on these devices can only accept sanely 2 requests. After
91  * that the device goes bananas. Serializing the reads/writes prevents this
92  * from happening.
93  */
94
95 void ath9k_iowrite32(struct ath_hw *ah, u32 reg_offset, u32 val)
96 {
97         if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
98                 unsigned long flags;
99                 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
100                 iowrite32(val, ah->ah_sc->mem + reg_offset);
101                 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
102         } else
103                 iowrite32(val, ah->ah_sc->mem + reg_offset);
104 }
105
106 unsigned int ath9k_ioread32(struct ath_hw *ah, u32 reg_offset)
107 {
108         u32 val;
109         if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
110                 unsigned long flags;
111                 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
112                 val = ioread32(ah->ah_sc->mem + reg_offset);
113                 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
114         } else
115                 val = ioread32(ah->ah_sc->mem + reg_offset);
116         return val;
117 }
118
119 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
120 {
121         int i;
122
123         BUG_ON(timeout < AH_TIME_QUANTUM);
124
125         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
126                 if ((REG_READ(ah, reg) & mask) == val)
127                         return true;
128
129                 udelay(AH_TIME_QUANTUM);
130         }
131
132         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
133                 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
134                 timeout, reg, REG_READ(ah, reg), mask, val);
135
136         return false;
137 }
138
139 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
140 {
141         u32 retval;
142         int i;
143
144         for (i = 0, retval = 0; i < n; i++) {
145                 retval = (retval << 1) | (val & 1);
146                 val >>= 1;
147         }
148         return retval;
149 }
150
151 bool ath9k_get_channel_edges(struct ath_hw *ah,
152                              u16 flags, u16 *low,
153                              u16 *high)
154 {
155         struct ath9k_hw_capabilities *pCap = &ah->caps;
156
157         if (flags & CHANNEL_5GHZ) {
158                 *low = pCap->low_5ghz_chan;
159                 *high = pCap->high_5ghz_chan;
160                 return true;
161         }
162         if ((flags & CHANNEL_2GHZ)) {
163                 *low = pCap->low_2ghz_chan;
164                 *high = pCap->high_2ghz_chan;
165                 return true;
166         }
167         return false;
168 }
169
170 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
171                            const struct ath_rate_table *rates,
172                            u32 frameLen, u16 rateix,
173                            bool shortPreamble)
174 {
175         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
176         u32 kbps;
177
178         kbps = rates->info[rateix].ratekbps;
179
180         if (kbps == 0)
181                 return 0;
182
183         switch (rates->info[rateix].phy) {
184         case WLAN_RC_PHY_CCK:
185                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
186                 if (shortPreamble && rates->info[rateix].short_preamble)
187                         phyTime >>= 1;
188                 numBits = frameLen << 3;
189                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
190                 break;
191         case WLAN_RC_PHY_OFDM:
192                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
193                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
194                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
195                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
196                         txTime = OFDM_SIFS_TIME_QUARTER
197                                 + OFDM_PREAMBLE_TIME_QUARTER
198                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
199                 } else if (ah->curchan &&
200                            IS_CHAN_HALF_RATE(ah->curchan)) {
201                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
202                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
203                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
204                         txTime = OFDM_SIFS_TIME_HALF +
205                                 OFDM_PREAMBLE_TIME_HALF
206                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
207                 } else {
208                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
209                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
210                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
211                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
212                                 + (numSymbols * OFDM_SYMBOL_TIME);
213                 }
214                 break;
215         default:
216                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
217                         "Unknown phy %u (rate ix %u)\n",
218                         rates->info[rateix].phy, rateix);
219                 txTime = 0;
220                 break;
221         }
222
223         return txTime;
224 }
225
226 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
227                                   struct ath9k_channel *chan,
228                                   struct chan_centers *centers)
229 {
230         int8_t extoff;
231
232         if (!IS_CHAN_HT40(chan)) {
233                 centers->ctl_center = centers->ext_center =
234                         centers->synth_center = chan->channel;
235                 return;
236         }
237
238         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
239             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
240                 centers->synth_center =
241                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
242                 extoff = 1;
243         } else {
244                 centers->synth_center =
245                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
246                 extoff = -1;
247         }
248
249         centers->ctl_center =
250                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
251         centers->ext_center =
252                 centers->synth_center + (extoff *
253                          ((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
254                           HT40_CHANNEL_CENTER_SHIFT : 15));
255 }
256
257 /******************/
258 /* Chip Revisions */
259 /******************/
260
261 static void ath9k_hw_read_revisions(struct ath_hw *ah)
262 {
263         u32 val;
264
265         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
266
267         if (val == 0xFF) {
268                 val = REG_READ(ah, AR_SREV);
269                 ah->hw_version.macVersion =
270                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
271                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
272                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
273         } else {
274                 if (!AR_SREV_9100(ah))
275                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
276
277                 ah->hw_version.macRev = val & AR_SREV_REVISION;
278
279                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
280                         ah->is_pciexpress = true;
281         }
282 }
283
284 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
285 {
286         u32 val;
287         int i;
288
289         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
290
291         for (i = 0; i < 8; i++)
292                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
293         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
294         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
295
296         return ath9k_hw_reverse_bits(val, 8);
297 }
298
299 /************************************/
300 /* HW Attach, Detach, Init Routines */
301 /************************************/
302
303 static void ath9k_hw_disablepcie(struct ath_hw *ah)
304 {
305         if (AR_SREV_9100(ah))
306                 return;
307
308         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
309         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
310         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
311         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
312         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
313         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
314         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
315         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
316         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
317
318         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
319 }
320
321 static bool ath9k_hw_chip_test(struct ath_hw *ah)
322 {
323         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
324         u32 regHold[2];
325         u32 patternData[4] = { 0x55555555,
326                                0xaaaaaaaa,
327                                0x66666666,
328                                0x99999999 };
329         int i, j;
330
331         for (i = 0; i < 2; i++) {
332                 u32 addr = regAddr[i];
333                 u32 wrData, rdData;
334
335                 regHold[i] = REG_READ(ah, addr);
336                 for (j = 0; j < 0x100; j++) {
337                         wrData = (j << 16) | j;
338                         REG_WRITE(ah, addr, wrData);
339                         rdData = REG_READ(ah, addr);
340                         if (rdData != wrData) {
341                                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
342                                         "address test failed "
343                                         "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
344                                         addr, wrData, rdData);
345                                 return false;
346                         }
347                 }
348                 for (j = 0; j < 4; j++) {
349                         wrData = patternData[j];
350                         REG_WRITE(ah, addr, wrData);
351                         rdData = REG_READ(ah, addr);
352                         if (wrData != rdData) {
353                                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
354                                         "address test failed "
355                                         "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
356                                         addr, wrData, rdData);
357                                 return false;
358                         }
359                 }
360                 REG_WRITE(ah, regAddr[i], regHold[i]);
361         }
362         udelay(100);
363
364         return true;
365 }
366
367 static const char *ath9k_hw_devname(u16 devid)
368 {
369         switch (devid) {
370         case AR5416_DEVID_PCI:
371                 return "Atheros 5416";
372         case AR5416_DEVID_PCIE:
373                 return "Atheros 5418";
374         case AR9160_DEVID_PCI:
375                 return "Atheros 9160";
376         case AR5416_AR9100_DEVID:
377                 return "Atheros 9100";
378         case AR9280_DEVID_PCI:
379         case AR9280_DEVID_PCIE:
380                 return "Atheros 9280";
381         case AR9285_DEVID_PCIE:
382                 return "Atheros 9285";
383         }
384
385         return NULL;
386 }
387
388 static void ath9k_hw_set_defaults(struct ath_hw *ah)
389 {
390         int i;
391
392         ah->config.dma_beacon_response_time = 2;
393         ah->config.sw_beacon_response_time = 10;
394         ah->config.additional_swba_backoff = 0;
395         ah->config.ack_6mb = 0x0;
396         ah->config.cwm_ignore_extcca = 0;
397         ah->config.pcie_powersave_enable = 0;
398         ah->config.pcie_clock_req = 0;
399         ah->config.pcie_waen = 0;
400         ah->config.analog_shiftreg = 1;
401         ah->config.ht_enable = 1;
402         ah->config.ofdm_trig_low = 200;
403         ah->config.ofdm_trig_high = 500;
404         ah->config.cck_trig_high = 200;
405         ah->config.cck_trig_low = 100;
406         ah->config.enable_ani = 1;
407         ah->config.diversity_control = 0;
408         ah->config.antenna_switch_swap = 0;
409
410         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
411                 ah->config.spurchans[i][0] = AR_NO_SPUR;
412                 ah->config.spurchans[i][1] = AR_NO_SPUR;
413         }
414
415         ah->config.intr_mitigation = true;
416
417         /*
418          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
419          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
420          * This means we use it for all AR5416 devices, and the few
421          * minor PCI AR9280 devices out there.
422          *
423          * Serialization is required because these devices do not handle
424          * well the case of two concurrent reads/writes due to the latency
425          * involved. During one read/write another read/write can be issued
426          * on another CPU while the previous read/write may still be working
427          * on our hardware, if we hit this case the hardware poops in a loop.
428          * We prevent this by serializing reads and writes.
429          *
430          * This issue is not present on PCI-Express devices or pre-AR5416
431          * devices (legacy, 802.11abg).
432          */
433         if (num_possible_cpus() > 1)
434                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
435 }
436
437 static struct ath_hw *ath9k_hw_newstate(u16 devid, struct ath_softc *sc,
438                                         int *status)
439 {
440         struct ath_hw *ah;
441
442         ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
443         if (ah == NULL) {
444                 DPRINTF(sc, ATH_DBG_FATAL,
445                         "Cannot allocate memory for state block\n");
446                 *status = -ENOMEM;
447                 return NULL;
448         }
449
450         ah->ah_sc = sc;
451         ah->hw_version.magic = AR5416_MAGIC;
452         ah->regulatory.country_code = CTRY_DEFAULT;
453         ah->hw_version.devid = devid;
454         ah->hw_version.subvendorid = 0;
455
456         ah->ah_flags = 0;
457         if ((devid == AR5416_AR9100_DEVID))
458                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
459         if (!AR_SREV_9100(ah))
460                 ah->ah_flags = AH_USE_EEPROM;
461
462         ah->regulatory.power_limit = MAX_RATE_POWER;
463         ah->regulatory.tp_scale = ATH9K_TP_SCALE_MAX;
464         ah->atim_window = 0;
465         ah->diversity_control = ah->config.diversity_control;
466         ah->antenna_switch_swap =
467                 ah->config.antenna_switch_swap;
468         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
469         ah->beacon_interval = 100;
470         ah->enable_32kHz_clock = DONT_USE_32KHZ;
471         ah->slottime = (u32) -1;
472         ah->acktimeout = (u32) -1;
473         ah->ctstimeout = (u32) -1;
474         ah->globaltxtimeout = (u32) -1;
475
476         ah->gbeacon_rate = 0;
477
478         return ah;
479 }
480
481 static int ath9k_hw_rfattach(struct ath_hw *ah)
482 {
483         bool rfStatus = false;
484         int ecode = 0;
485
486         rfStatus = ath9k_hw_init_rf(ah, &ecode);
487         if (!rfStatus) {
488                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
489                         "RF setup failed, status: %u\n", ecode);
490                 return ecode;
491         }
492
493         return 0;
494 }
495
496 static int ath9k_hw_rf_claim(struct ath_hw *ah)
497 {
498         u32 val;
499
500         REG_WRITE(ah, AR_PHY(0), 0x00000007);
501
502         val = ath9k_hw_get_radiorev(ah);
503         switch (val & AR_RADIO_SREV_MAJOR) {
504         case 0:
505                 val = AR_RAD5133_SREV_MAJOR;
506                 break;
507         case AR_RAD5133_SREV_MAJOR:
508         case AR_RAD5122_SREV_MAJOR:
509         case AR_RAD2133_SREV_MAJOR:
510         case AR_RAD2122_SREV_MAJOR:
511                 break;
512         default:
513                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
514                         "Radio Chip Rev 0x%02X not supported\n",
515                         val & AR_RADIO_SREV_MAJOR);
516                 return -EOPNOTSUPP;
517         }
518
519         ah->hw_version.analog5GhzRev = val;
520
521         return 0;
522 }
523
524 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
525 {
526         u32 sum;
527         int i;
528         u16 eeval;
529
530         sum = 0;
531         for (i = 0; i < 3; i++) {
532                 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
533                 sum += eeval;
534                 ah->macaddr[2 * i] = eeval >> 8;
535                 ah->macaddr[2 * i + 1] = eeval & 0xff;
536         }
537         if (sum == 0 || sum == 0xffff * 3)
538                 return -EADDRNOTAVAIL;
539
540         return 0;
541 }
542
543 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
544 {
545         u32 rxgain_type;
546
547         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
548                 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
549
550                 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
551                         INIT_INI_ARRAY(&ah->iniModesRxGain,
552                         ar9280Modes_backoff_13db_rxgain_9280_2,
553                         ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
554                 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
555                         INIT_INI_ARRAY(&ah->iniModesRxGain,
556                         ar9280Modes_backoff_23db_rxgain_9280_2,
557                         ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
558                 else
559                         INIT_INI_ARRAY(&ah->iniModesRxGain,
560                         ar9280Modes_original_rxgain_9280_2,
561                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
562         } else {
563                 INIT_INI_ARRAY(&ah->iniModesRxGain,
564                         ar9280Modes_original_rxgain_9280_2,
565                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
566         }
567 }
568
569 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
570 {
571         u32 txgain_type;
572
573         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
574                 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
575
576                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
577                         INIT_INI_ARRAY(&ah->iniModesTxGain,
578                         ar9280Modes_high_power_tx_gain_9280_2,
579                         ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
580                 else
581                         INIT_INI_ARRAY(&ah->iniModesTxGain,
582                         ar9280Modes_original_tx_gain_9280_2,
583                         ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
584         } else {
585                 INIT_INI_ARRAY(&ah->iniModesTxGain,
586                 ar9280Modes_original_tx_gain_9280_2,
587                 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
588         }
589 }
590
591 static int ath9k_hw_post_attach(struct ath_hw *ah)
592 {
593         int ecode;
594
595         if (!ath9k_hw_chip_test(ah))
596                 return -ENODEV;
597
598         ecode = ath9k_hw_rf_claim(ah);
599         if (ecode != 0)
600                 return ecode;
601
602         ecode = ath9k_hw_eeprom_attach(ah);
603         if (ecode != 0)
604                 return ecode;
605
606         DPRINTF(ah->ah_sc, ATH_DBG_CONFIG, "Eeprom VER: %d, REV: %d\n",
607                 ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah));
608
609         ecode = ath9k_hw_rfattach(ah);
610         if (ecode != 0)
611                 return ecode;
612
613         if (!AR_SREV_9100(ah)) {
614                 ath9k_hw_ani_setup(ah);
615                 ath9k_hw_ani_attach(ah);
616         }
617
618         return 0;
619 }
620
621 static struct ath_hw *ath9k_hw_do_attach(u16 devid, struct ath_softc *sc,
622                                          int *status)
623 {
624         struct ath_hw *ah;
625         int ecode;
626         u32 i, j;
627
628         ah = ath9k_hw_newstate(devid, sc, status);
629         if (ah == NULL)
630                 return NULL;
631
632         ath9k_hw_set_defaults(ah);
633
634         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
635                 DPRINTF(sc, ATH_DBG_FATAL, "Couldn't reset chip\n");
636                 ecode = -EIO;
637                 goto bad;
638         }
639
640         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
641                 DPRINTF(sc, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
642                 ecode = -EIO;
643                 goto bad;
644         }
645
646         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
647                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
648                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
649                         ah->config.serialize_regmode =
650                                 SER_REG_MODE_ON;
651                 } else {
652                         ah->config.serialize_regmode =
653                                 SER_REG_MODE_OFF;
654                 }
655         }
656
657         DPRINTF(sc, ATH_DBG_RESET, "serialize_regmode is %d\n",
658                 ah->config.serialize_regmode);
659
660         if ((ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCI) &&
661             (ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCIE) &&
662             (ah->hw_version.macVersion != AR_SREV_VERSION_9160) &&
663             (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah)) && (!AR_SREV_9285(ah))) {
664                 DPRINTF(sc, ATH_DBG_FATAL,
665                         "Mac Chip Rev 0x%02x.%x is not supported by "
666                         "this driver\n", ah->hw_version.macVersion,
667                         ah->hw_version.macRev);
668                 ecode = -EOPNOTSUPP;
669                 goto bad;
670         }
671
672         if (AR_SREV_9100(ah)) {
673                 ah->iq_caldata.calData = &iq_cal_multi_sample;
674                 ah->supp_cals = IQ_MISMATCH_CAL;
675                 ah->is_pciexpress = false;
676         }
677         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
678
679         if (AR_SREV_9160_10_OR_LATER(ah)) {
680                 if (AR_SREV_9280_10_OR_LATER(ah)) {
681                         ah->iq_caldata.calData = &iq_cal_single_sample;
682                         ah->adcgain_caldata.calData =
683                                 &adc_gain_cal_single_sample;
684                         ah->adcdc_caldata.calData =
685                                 &adc_dc_cal_single_sample;
686                         ah->adcdc_calinitdata.calData =
687                                 &adc_init_dc_cal;
688                 } else {
689                         ah->iq_caldata.calData = &iq_cal_multi_sample;
690                         ah->adcgain_caldata.calData =
691                                 &adc_gain_cal_multi_sample;
692                         ah->adcdc_caldata.calData =
693                                 &adc_dc_cal_multi_sample;
694                         ah->adcdc_calinitdata.calData =
695                                 &adc_init_dc_cal;
696                 }
697                 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
698         }
699
700         ah->ani_function = ATH9K_ANI_ALL;
701         if (AR_SREV_9280_10_OR_LATER(ah))
702                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
703
704         if (AR_SREV_9285_12_OR_LATER(ah)) {
705
706                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
707                                ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
708                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
709                                ARRAY_SIZE(ar9285Common_9285_1_2), 2);
710
711                 if (ah->config.pcie_clock_req) {
712                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
713                         ar9285PciePhy_clkreq_off_L1_9285_1_2,
714                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
715                 } else {
716                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
717                         ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
718                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
719                                   2);
720                 }
721         } else if (AR_SREV_9285_10_OR_LATER(ah)) {
722                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
723                                ARRAY_SIZE(ar9285Modes_9285), 6);
724                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
725                                ARRAY_SIZE(ar9285Common_9285), 2);
726
727                 if (ah->config.pcie_clock_req) {
728                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
729                         ar9285PciePhy_clkreq_off_L1_9285,
730                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
731                 } else {
732                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
733                         ar9285PciePhy_clkreq_always_on_L1_9285,
734                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
735                 }
736         } else if (AR_SREV_9280_20_OR_LATER(ah)) {
737                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
738                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
739                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
740                                ARRAY_SIZE(ar9280Common_9280_2), 2);
741
742                 if (ah->config.pcie_clock_req) {
743                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
744                                ar9280PciePhy_clkreq_off_L1_9280,
745                                ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
746                 } else {
747                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
748                                ar9280PciePhy_clkreq_always_on_L1_9280,
749                                ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
750                 }
751                 INIT_INI_ARRAY(&ah->iniModesAdditional,
752                                ar9280Modes_fast_clock_9280_2,
753                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
754         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
755                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
756                                ARRAY_SIZE(ar9280Modes_9280), 6);
757                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
758                                ARRAY_SIZE(ar9280Common_9280), 2);
759         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
760                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
761                                ARRAY_SIZE(ar5416Modes_9160), 6);
762                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
763                                ARRAY_SIZE(ar5416Common_9160), 2);
764                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
765                                ARRAY_SIZE(ar5416Bank0_9160), 2);
766                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
767                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
768                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
769                                ARRAY_SIZE(ar5416Bank1_9160), 2);
770                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
771                                ARRAY_SIZE(ar5416Bank2_9160), 2);
772                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
773                                ARRAY_SIZE(ar5416Bank3_9160), 3);
774                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
775                                ARRAY_SIZE(ar5416Bank6_9160), 3);
776                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
777                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
778                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
779                                ARRAY_SIZE(ar5416Bank7_9160), 2);
780                 if (AR_SREV_9160_11(ah)) {
781                         INIT_INI_ARRAY(&ah->iniAddac,
782                                        ar5416Addac_91601_1,
783                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
784                 } else {
785                         INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
786                                        ARRAY_SIZE(ar5416Addac_9160), 2);
787                 }
788         } else if (AR_SREV_9100_OR_LATER(ah)) {
789                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
790                                ARRAY_SIZE(ar5416Modes_9100), 6);
791                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
792                                ARRAY_SIZE(ar5416Common_9100), 2);
793                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
794                                ARRAY_SIZE(ar5416Bank0_9100), 2);
795                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
796                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
797                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
798                                ARRAY_SIZE(ar5416Bank1_9100), 2);
799                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
800                                ARRAY_SIZE(ar5416Bank2_9100), 2);
801                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
802                                ARRAY_SIZE(ar5416Bank3_9100), 3);
803                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
804                                ARRAY_SIZE(ar5416Bank6_9100), 3);
805                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
806                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
807                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
808                                ARRAY_SIZE(ar5416Bank7_9100), 2);
809                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
810                                ARRAY_SIZE(ar5416Addac_9100), 2);
811         } else {
812                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
813                                ARRAY_SIZE(ar5416Modes), 6);
814                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
815                                ARRAY_SIZE(ar5416Common), 2);
816                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
817                                ARRAY_SIZE(ar5416Bank0), 2);
818                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
819                                ARRAY_SIZE(ar5416BB_RfGain), 3);
820                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
821                                ARRAY_SIZE(ar5416Bank1), 2);
822                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
823                                ARRAY_SIZE(ar5416Bank2), 2);
824                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
825                                ARRAY_SIZE(ar5416Bank3), 3);
826                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
827                                ARRAY_SIZE(ar5416Bank6), 3);
828                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
829                                ARRAY_SIZE(ar5416Bank6TPC), 3);
830                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
831                                ARRAY_SIZE(ar5416Bank7), 2);
832                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
833                                ARRAY_SIZE(ar5416Addac), 2);
834         }
835
836         if (ah->is_pciexpress)
837                 ath9k_hw_configpcipowersave(ah, 0);
838         else
839                 ath9k_hw_disablepcie(ah);
840
841         ecode = ath9k_hw_post_attach(ah);
842         if (ecode != 0)
843                 goto bad;
844
845         if (AR_SREV_9285_12_OR_LATER(ah)) {
846                 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
847
848                 /* txgain table */
849                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
850                         INIT_INI_ARRAY(&ah->iniModesTxGain,
851                         ar9285Modes_high_power_tx_gain_9285_1_2,
852                         ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
853                 } else {
854                         INIT_INI_ARRAY(&ah->iniModesTxGain,
855                         ar9285Modes_original_tx_gain_9285_1_2,
856                         ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
857                 }
858
859         }
860
861         /* rxgain table */
862         if (AR_SREV_9280_20(ah))
863                 ath9k_hw_init_rxgain_ini(ah);
864
865         /* txgain table */
866         if (AR_SREV_9280_20(ah))
867                 ath9k_hw_init_txgain_ini(ah);
868
869         ath9k_hw_fill_cap_info(ah);
870
871         if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
872             test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
873
874                 /* EEPROM Fixup */
875                 for (i = 0; i < ah->iniModes.ia_rows; i++) {
876                         u32 reg = INI_RA(&ah->iniModes, i, 0);
877
878                         for (j = 1; j < ah->iniModes.ia_columns; j++) {
879                                 u32 val = INI_RA(&ah->iniModes, i, j);
880
881                                 INI_RA(&ah->iniModes, i, j) =
882                                         ath9k_hw_ini_fixup(ah,
883                                                            &ah->eeprom.def,
884                                                            reg, val);
885                         }
886                 }
887         }
888
889         ecode = ath9k_hw_init_macaddr(ah);
890         if (ecode != 0) {
891                 DPRINTF(sc, ATH_DBG_FATAL,
892                         "Failed to initialize MAC address\n");
893                 goto bad;
894         }
895
896         if (AR_SREV_9285(ah))
897                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
898         else
899                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
900
901         ath9k_init_nfcal_hist_buffer(ah);
902
903         return ah;
904 bad:
905         if (ah)
906                 ath9k_hw_detach(ah);
907         if (status)
908                 *status = ecode;
909
910         return NULL;
911 }
912
913 static void ath9k_hw_init_bb(struct ath_hw *ah,
914                              struct ath9k_channel *chan)
915 {
916         u32 synthDelay;
917
918         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
919         if (IS_CHAN_B(chan))
920                 synthDelay = (4 * synthDelay) / 22;
921         else
922                 synthDelay /= 10;
923
924         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
925
926         udelay(synthDelay + BASE_ACTIVATE_DELAY);
927 }
928
929 static void ath9k_hw_init_qos(struct ath_hw *ah)
930 {
931         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
932         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
933
934         REG_WRITE(ah, AR_QOS_NO_ACK,
935                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
936                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
937                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
938
939         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
940         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
941         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
942         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
943         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
944 }
945
946 static void ath9k_hw_init_pll(struct ath_hw *ah,
947                               struct ath9k_channel *chan)
948 {
949         u32 pll;
950
951         if (AR_SREV_9100(ah)) {
952                 if (chan && IS_CHAN_5GHZ(chan))
953                         pll = 0x1450;
954                 else
955                         pll = 0x1458;
956         } else {
957                 if (AR_SREV_9280_10_OR_LATER(ah)) {
958                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
959
960                         if (chan && IS_CHAN_HALF_RATE(chan))
961                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
962                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
963                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
964
965                         if (chan && IS_CHAN_5GHZ(chan)) {
966                                 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
967
968
969                                 if (AR_SREV_9280_20(ah)) {
970                                         if (((chan->channel % 20) == 0)
971                                             || ((chan->channel % 10) == 0))
972                                                 pll = 0x2850;
973                                         else
974                                                 pll = 0x142c;
975                                 }
976                         } else {
977                                 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
978                         }
979
980                 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
981
982                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
983
984                         if (chan && IS_CHAN_HALF_RATE(chan))
985                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
986                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
987                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
988
989                         if (chan && IS_CHAN_5GHZ(chan))
990                                 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
991                         else
992                                 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
993                 } else {
994                         pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
995
996                         if (chan && IS_CHAN_HALF_RATE(chan))
997                                 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
998                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
999                                 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1000
1001                         if (chan && IS_CHAN_5GHZ(chan))
1002                                 pll |= SM(0xa, AR_RTC_PLL_DIV);
1003                         else
1004                                 pll |= SM(0xb, AR_RTC_PLL_DIV);
1005                 }
1006         }
1007         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1008
1009         udelay(RTC_PLL_SETTLE_DELAY);
1010
1011         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1012 }
1013
1014 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1015 {
1016         int rx_chainmask, tx_chainmask;
1017
1018         rx_chainmask = ah->rxchainmask;
1019         tx_chainmask = ah->txchainmask;
1020
1021         switch (rx_chainmask) {
1022         case 0x5:
1023                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1024                             AR_PHY_SWAP_ALT_CHAIN);
1025         case 0x3:
1026                 if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
1027                         REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1028                         REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1029                         break;
1030                 }
1031         case 0x1:
1032         case 0x2:
1033         case 0x7:
1034                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1035                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1036                 break;
1037         default:
1038                 break;
1039         }
1040
1041         REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1042         if (tx_chainmask == 0x5) {
1043                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1044                             AR_PHY_SWAP_ALT_CHAIN);
1045         }
1046         if (AR_SREV_9100(ah))
1047                 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1048                           REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1049 }
1050
1051 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1052                                           enum nl80211_iftype opmode)
1053 {
1054         ah->mask_reg = AR_IMR_TXERR |
1055                 AR_IMR_TXURN |
1056                 AR_IMR_RXERR |
1057                 AR_IMR_RXORN |
1058                 AR_IMR_BCNMISC;
1059
1060         if (ah->config.intr_mitigation)
1061                 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1062         else
1063                 ah->mask_reg |= AR_IMR_RXOK;
1064
1065         ah->mask_reg |= AR_IMR_TXOK;
1066
1067         if (opmode == NL80211_IFTYPE_AP)
1068                 ah->mask_reg |= AR_IMR_MIB;
1069
1070         REG_WRITE(ah, AR_IMR, ah->mask_reg);
1071         REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1072
1073         if (!AR_SREV_9100(ah)) {
1074                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1075                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1076                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1077         }
1078 }
1079
1080 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1081 {
1082         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1083                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
1084                 ah->acktimeout = (u32) -1;
1085                 return false;
1086         } else {
1087                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1088                               AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1089                 ah->acktimeout = us;
1090                 return true;
1091         }
1092 }
1093
1094 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1095 {
1096         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1097                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
1098                 ah->ctstimeout = (u32) -1;
1099                 return false;
1100         } else {
1101                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1102                               AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1103                 ah->ctstimeout = us;
1104                 return true;
1105         }
1106 }
1107
1108 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1109 {
1110         if (tu > 0xFFFF) {
1111                 DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
1112                         "bad global tx timeout %u\n", tu);
1113                 ah->globaltxtimeout = (u32) -1;
1114                 return false;
1115         } else {
1116                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1117                 ah->globaltxtimeout = tu;
1118                 return true;
1119         }
1120 }
1121
1122 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1123 {
1124         DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1125                 ah->misc_mode);
1126
1127         if (ah->misc_mode != 0)
1128                 REG_WRITE(ah, AR_PCU_MISC,
1129                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1130         if (ah->slottime != (u32) -1)
1131                 ath9k_hw_setslottime(ah, ah->slottime);
1132         if (ah->acktimeout != (u32) -1)
1133                 ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1134         if (ah->ctstimeout != (u32) -1)
1135                 ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1136         if (ah->globaltxtimeout != (u32) -1)
1137                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1138 }
1139
1140 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1141 {
1142         return vendorid == ATHEROS_VENDOR_ID ?
1143                 ath9k_hw_devname(devid) : NULL;
1144 }
1145
1146 void ath9k_hw_detach(struct ath_hw *ah)
1147 {
1148         if (!AR_SREV_9100(ah))
1149                 ath9k_hw_ani_detach(ah);
1150
1151         ath9k_hw_rfdetach(ah);
1152         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1153         kfree(ah);
1154 }
1155
1156 struct ath_hw *ath9k_hw_attach(u16 devid, struct ath_softc *sc, int *error)
1157 {
1158         struct ath_hw *ah = NULL;
1159
1160         switch (devid) {
1161         case AR5416_DEVID_PCI:
1162         case AR5416_DEVID_PCIE:
1163         case AR5416_AR9100_DEVID:
1164         case AR9160_DEVID_PCI:
1165         case AR9280_DEVID_PCI:
1166         case AR9280_DEVID_PCIE:
1167         case AR9285_DEVID_PCIE:
1168                 ah = ath9k_hw_do_attach(devid, sc, error);
1169                 break;
1170         default:
1171                 *error = -ENXIO;
1172                 break;
1173         }
1174
1175         return ah;
1176 }
1177
1178 /*******/
1179 /* INI */
1180 /*******/
1181
1182 static void ath9k_hw_override_ini(struct ath_hw *ah,
1183                                   struct ath9k_channel *chan)
1184 {
1185         /*
1186          * Set the RX_ABORT and RX_DIS and clear if off only after
1187          * RXE is set for MAC. This prevents frames with corrupted
1188          * descriptor status.
1189          */
1190         REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1191
1192
1193         if (!AR_SREV_5416_20_OR_LATER(ah) ||
1194             AR_SREV_9280_10_OR_LATER(ah))
1195                 return;
1196
1197         REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1198 }
1199
1200 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1201                               struct ar5416_eeprom_def *pEepData,
1202                               u32 reg, u32 value)
1203 {
1204         struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1205
1206         switch (ah->hw_version.devid) {
1207         case AR9280_DEVID_PCI:
1208                 if (reg == 0x7894) {
1209                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1210                                 "ini VAL: %x  EEPROM: %x\n", value,
1211                                 (pBase->version & 0xff));
1212
1213                         if ((pBase->version & 0xff) > 0x0a) {
1214                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1215                                         "PWDCLKIND: %d\n",
1216                                         pBase->pwdclkind);
1217                                 value &= ~AR_AN_TOP2_PWDCLKIND;
1218                                 value |= AR_AN_TOP2_PWDCLKIND &
1219                                         (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1220                         } else {
1221                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1222                                         "PWDCLKIND Earlier Rev\n");
1223                         }
1224
1225                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1226                                 "final ini VAL: %x\n", value);
1227                 }
1228                 break;
1229         }
1230
1231         return value;
1232 }
1233
1234 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1235                               struct ar5416_eeprom_def *pEepData,
1236                               u32 reg, u32 value)
1237 {
1238         if (ah->eep_map == EEP_MAP_4KBITS)
1239                 return value;
1240         else
1241                 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1242 }
1243
1244 static void ath9k_olc_init(struct ath_hw *ah)
1245 {
1246         u32 i;
1247
1248         for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1249                 ah->originalGain[i] =
1250                         MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1251                                         AR_PHY_TX_GAIN);
1252         ah->PDADCdelta = 0;
1253 }
1254
1255 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1256                               struct ath9k_channel *chan)
1257 {
1258         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1259
1260         if (IS_CHAN_B(chan))
1261                 ctl |= CTL_11B;
1262         else if (IS_CHAN_G(chan))
1263                 ctl |= CTL_11G;
1264         else
1265                 ctl |= CTL_11A;
1266
1267         return ctl;
1268 }
1269
1270 static int ath9k_hw_process_ini(struct ath_hw *ah,
1271                                 struct ath9k_channel *chan,
1272                                 enum ath9k_ht_macmode macmode)
1273 {
1274         int i, regWrites = 0;
1275         struct ieee80211_channel *channel = chan->chan;
1276         u32 modesIndex, freqIndex;
1277
1278         switch (chan->chanmode) {
1279         case CHANNEL_A:
1280         case CHANNEL_A_HT20:
1281                 modesIndex = 1;
1282                 freqIndex = 1;
1283                 break;
1284         case CHANNEL_A_HT40PLUS:
1285         case CHANNEL_A_HT40MINUS:
1286                 modesIndex = 2;
1287                 freqIndex = 1;
1288                 break;
1289         case CHANNEL_G:
1290         case CHANNEL_G_HT20:
1291         case CHANNEL_B:
1292                 modesIndex = 4;
1293                 freqIndex = 2;
1294                 break;
1295         case CHANNEL_G_HT40PLUS:
1296         case CHANNEL_G_HT40MINUS:
1297                 modesIndex = 3;
1298                 freqIndex = 2;
1299                 break;
1300
1301         default:
1302                 return -EINVAL;
1303         }
1304
1305         REG_WRITE(ah, AR_PHY(0), 0x00000007);
1306         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1307         ah->eep_ops->set_addac(ah, chan);
1308
1309         if (AR_SREV_5416_22_OR_LATER(ah)) {
1310                 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1311         } else {
1312                 struct ar5416IniArray temp;
1313                 u32 addacSize =
1314                         sizeof(u32) * ah->iniAddac.ia_rows *
1315                         ah->iniAddac.ia_columns;
1316
1317                 memcpy(ah->addac5416_21,
1318                        ah->iniAddac.ia_array, addacSize);
1319
1320                 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1321
1322                 temp.ia_array = ah->addac5416_21;
1323                 temp.ia_columns = ah->iniAddac.ia_columns;
1324                 temp.ia_rows = ah->iniAddac.ia_rows;
1325                 REG_WRITE_ARRAY(&temp, 1, regWrites);
1326         }
1327
1328         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1329
1330         for (i = 0; i < ah->iniModes.ia_rows; i++) {
1331                 u32 reg = INI_RA(&ah->iniModes, i, 0);
1332                 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1333
1334                 REG_WRITE(ah, reg, val);
1335
1336                 if (reg >= 0x7800 && reg < 0x78a0
1337                     && ah->config.analog_shiftreg) {
1338                         udelay(100);
1339                 }
1340
1341                 DO_DELAY(regWrites);
1342         }
1343
1344         if (AR_SREV_9280(ah))
1345                 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1346
1347         if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah))
1348                 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1349
1350         for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1351                 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1352                 u32 val = INI_RA(&ah->iniCommon, i, 1);
1353
1354                 REG_WRITE(ah, reg, val);
1355
1356                 if (reg >= 0x7800 && reg < 0x78a0
1357                     && ah->config.analog_shiftreg) {
1358                         udelay(100);
1359                 }
1360
1361                 DO_DELAY(regWrites);
1362         }
1363
1364         ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
1365
1366         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1367                 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1368                                 regWrites);
1369         }
1370
1371         ath9k_hw_override_ini(ah, chan);
1372         ath9k_hw_set_regs(ah, chan, macmode);
1373         ath9k_hw_init_chain_masks(ah);
1374
1375         if (OLC_FOR_AR9280_20_LATER)
1376                 ath9k_olc_init(ah);
1377
1378         ah->eep_ops->set_txpower(ah, chan,
1379                                  ath9k_regd_get_ctl(&ah->regulatory, chan),
1380                                  channel->max_antenna_gain * 2,
1381                                  channel->max_power * 2,
1382                                  min((u32) MAX_RATE_POWER,
1383                                  (u32) ah->regulatory.power_limit));
1384
1385         if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1386                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1387                         "ar5416SetRfRegs failed\n");
1388                 return -EIO;
1389         }
1390
1391         return 0;
1392 }
1393
1394 /****************************************/
1395 /* Reset and Channel Switching Routines */
1396 /****************************************/
1397
1398 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1399 {
1400         u32 rfMode = 0;
1401
1402         if (chan == NULL)
1403                 return;
1404
1405         rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1406                 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1407
1408         if (!AR_SREV_9280_10_OR_LATER(ah))
1409                 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1410                         AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1411
1412         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1413                 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1414
1415         REG_WRITE(ah, AR_PHY_MODE, rfMode);
1416 }
1417
1418 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1419 {
1420         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1421 }
1422
1423 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1424 {
1425         u32 regval;
1426
1427         regval = REG_READ(ah, AR_AHB_MODE);
1428         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1429
1430         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1431         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1432
1433         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1434
1435         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1436         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1437
1438         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1439
1440         if (AR_SREV_9285(ah)) {
1441                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1442                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1443         } else {
1444                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1445                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1446         }
1447 }
1448
1449 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1450 {
1451         u32 val;
1452
1453         val = REG_READ(ah, AR_STA_ID1);
1454         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1455         switch (opmode) {
1456         case NL80211_IFTYPE_AP:
1457                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1458                           | AR_STA_ID1_KSRCH_MODE);
1459                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1460                 break;
1461         case NL80211_IFTYPE_ADHOC:
1462         case NL80211_IFTYPE_MESH_POINT:
1463                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1464                           | AR_STA_ID1_KSRCH_MODE);
1465                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1466                 break;
1467         case NL80211_IFTYPE_STATION:
1468         case NL80211_IFTYPE_MONITOR:
1469                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1470                 break;
1471         }
1472 }
1473
1474 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1475                                                  u32 coef_scaled,
1476                                                  u32 *coef_mantissa,
1477                                                  u32 *coef_exponent)
1478 {
1479         u32 coef_exp, coef_man;
1480
1481         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1482                 if ((coef_scaled >> coef_exp) & 0x1)
1483                         break;
1484
1485         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1486
1487         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1488
1489         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1490         *coef_exponent = coef_exp - 16;
1491 }
1492
1493 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1494                                      struct ath9k_channel *chan)
1495 {
1496         u32 coef_scaled, ds_coef_exp, ds_coef_man;
1497         u32 clockMhzScaled = 0x64000000;
1498         struct chan_centers centers;
1499
1500         if (IS_CHAN_HALF_RATE(chan))
1501                 clockMhzScaled = clockMhzScaled >> 1;
1502         else if (IS_CHAN_QUARTER_RATE(chan))
1503                 clockMhzScaled = clockMhzScaled >> 2;
1504
1505         ath9k_hw_get_channel_centers(ah, chan, &centers);
1506         coef_scaled = clockMhzScaled / centers.synth_center;
1507
1508         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1509                                       &ds_coef_exp);
1510
1511         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1512                       AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1513         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1514                       AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1515
1516         coef_scaled = (9 * coef_scaled) / 10;
1517
1518         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1519                                       &ds_coef_exp);
1520
1521         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1522                       AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1523         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1524                       AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1525 }
1526
1527 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1528 {
1529         u32 rst_flags;
1530         u32 tmpReg;
1531
1532         if (AR_SREV_9100(ah)) {
1533                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1534                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1535                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1536                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1537                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1538         }
1539
1540         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1541                   AR_RTC_FORCE_WAKE_ON_INT);
1542
1543         if (AR_SREV_9100(ah)) {
1544                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1545                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1546         } else {
1547                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1548                 if (tmpReg &
1549                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1550                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1551                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1552                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1553                 } else {
1554                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1555                 }
1556
1557                 rst_flags = AR_RTC_RC_MAC_WARM;
1558                 if (type == ATH9K_RESET_COLD)
1559                         rst_flags |= AR_RTC_RC_MAC_COLD;
1560         }
1561
1562         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1563         udelay(50);
1564
1565         REG_WRITE(ah, AR_RTC_RC, 0);
1566         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1567                 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
1568                         "RTC stuck in MAC reset\n");
1569                 return false;
1570         }
1571
1572         if (!AR_SREV_9100(ah))
1573                 REG_WRITE(ah, AR_RC, 0);
1574
1575         ath9k_hw_init_pll(ah, NULL);
1576
1577         if (AR_SREV_9100(ah))
1578                 udelay(50);
1579
1580         return true;
1581 }
1582
1583 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1584 {
1585         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1586                   AR_RTC_FORCE_WAKE_ON_INT);
1587
1588         REG_WRITE(ah, AR_RTC_RESET, 0);
1589         udelay(2);
1590         REG_WRITE(ah, AR_RTC_RESET, 1);
1591
1592         if (!ath9k_hw_wait(ah,
1593                            AR_RTC_STATUS,
1594                            AR_RTC_STATUS_M,
1595                            AR_RTC_STATUS_ON,
1596                            AH_WAIT_TIMEOUT)) {
1597                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
1598                 return false;
1599         }
1600
1601         ath9k_hw_read_revisions(ah);
1602
1603         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1604 }
1605
1606 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1607 {
1608         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1609                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1610
1611         switch (type) {
1612         case ATH9K_RESET_POWER_ON:
1613                 return ath9k_hw_set_reset_power_on(ah);
1614         case ATH9K_RESET_WARM:
1615         case ATH9K_RESET_COLD:
1616                 return ath9k_hw_set_reset(ah, type);
1617         default:
1618                 return false;
1619         }
1620 }
1621
1622 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
1623                               enum ath9k_ht_macmode macmode)
1624 {
1625         u32 phymode;
1626         u32 enableDacFifo = 0;
1627
1628         if (AR_SREV_9285_10_OR_LATER(ah))
1629                 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1630                                          AR_PHY_FC_ENABLE_DAC_FIFO);
1631
1632         phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1633                 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1634
1635         if (IS_CHAN_HT40(chan)) {
1636                 phymode |= AR_PHY_FC_DYN2040_EN;
1637
1638                 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1639                     (chan->chanmode == CHANNEL_G_HT40PLUS))
1640                         phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1641
1642                 if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
1643                         phymode |= AR_PHY_FC_DYN2040_EXT_CH;
1644         }
1645         REG_WRITE(ah, AR_PHY_TURBO, phymode);
1646
1647         ath9k_hw_set11nmac2040(ah, macmode);
1648
1649         REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1650         REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1651 }
1652
1653 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1654                                 struct ath9k_channel *chan)
1655 {
1656         if (OLC_FOR_AR9280_20_LATER) {
1657                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1658                         return false;
1659         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1660                 return false;
1661
1662         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1663                 return false;
1664
1665         ah->chip_fullsleep = false;
1666         ath9k_hw_init_pll(ah, chan);
1667         ath9k_hw_set_rfmode(ah, chan);
1668
1669         return true;
1670 }
1671
1672 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1673                                     struct ath9k_channel *chan,
1674                                     enum ath9k_ht_macmode macmode)
1675 {
1676         struct ieee80211_channel *channel = chan->chan;
1677         u32 synthDelay, qnum;
1678
1679         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1680                 if (ath9k_hw_numtxpending(ah, qnum)) {
1681                         DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
1682                                 "Transmit frames pending on queue %d\n", qnum);
1683                         return false;
1684                 }
1685         }
1686
1687         REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1688         if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1689                            AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1690                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1691                         "Could not kill baseband RX\n");
1692                 return false;
1693         }
1694
1695         ath9k_hw_set_regs(ah, chan, macmode);
1696
1697         if (AR_SREV_9280_10_OR_LATER(ah)) {
1698                 ath9k_hw_ar9280_set_channel(ah, chan);
1699         } else {
1700                 if (!(ath9k_hw_set_channel(ah, chan))) {
1701                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1702                                 "Failed to set channel\n");
1703                         return false;
1704                 }
1705         }
1706
1707         ah->eep_ops->set_txpower(ah, chan,
1708                              ath9k_regd_get_ctl(&ah->regulatory, chan),
1709                              channel->max_antenna_gain * 2,
1710                              channel->max_power * 2,
1711                              min((u32) MAX_RATE_POWER,
1712                              (u32) ah->regulatory.power_limit));
1713
1714         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1715         if (IS_CHAN_B(chan))
1716                 synthDelay = (4 * synthDelay) / 22;
1717         else
1718                 synthDelay /= 10;
1719
1720         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1721
1722         REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1723
1724         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1725                 ath9k_hw_set_delta_slope(ah, chan);
1726
1727         if (AR_SREV_9280_10_OR_LATER(ah))
1728                 ath9k_hw_9280_spur_mitigate(ah, chan);
1729         else
1730                 ath9k_hw_spur_mitigate(ah, chan);
1731
1732         if (!chan->oneTimeCalsDone)
1733                 chan->oneTimeCalsDone = true;
1734
1735         return true;
1736 }
1737
1738 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1739 {
1740         int bb_spur = AR_NO_SPUR;
1741         int freq;
1742         int bin, cur_bin;
1743         int bb_spur_off, spur_subchannel_sd;
1744         int spur_freq_sd;
1745         int spur_delta_phase;
1746         int denominator;
1747         int upper, lower, cur_vit_mask;
1748         int tmp, newVal;
1749         int i;
1750         int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1751                           AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1752         };
1753         int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1754                          AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1755         };
1756         int inc[4] = { 0, 100, 0, 0 };
1757         struct chan_centers centers;
1758
1759         int8_t mask_m[123];
1760         int8_t mask_p[123];
1761         int8_t mask_amt;
1762         int tmp_mask;
1763         int cur_bb_spur;
1764         bool is2GHz = IS_CHAN_2GHZ(chan);
1765
1766         memset(&mask_m, 0, sizeof(int8_t) * 123);
1767         memset(&mask_p, 0, sizeof(int8_t) * 123);
1768
1769         ath9k_hw_get_channel_centers(ah, chan, &centers);
1770         freq = centers.synth_center;
1771
1772         ah->config.spurmode = SPUR_ENABLE_EEPROM;
1773         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1774                 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
1775
1776                 if (is2GHz)
1777                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1778                 else
1779                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1780
1781                 if (AR_NO_SPUR == cur_bb_spur)
1782                         break;
1783                 cur_bb_spur = cur_bb_spur - freq;
1784
1785                 if (IS_CHAN_HT40(chan)) {
1786                         if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1787                             (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1788                                 bb_spur = cur_bb_spur;
1789                                 break;
1790                         }
1791                 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1792                            (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1793                         bb_spur = cur_bb_spur;
1794                         break;
1795                 }
1796         }
1797
1798         if (AR_NO_SPUR == bb_spur) {
1799                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1800                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1801                 return;
1802         } else {
1803                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1804                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1805         }
1806
1807         bin = bb_spur * 320;
1808
1809         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
1810
1811         newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1812                         AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1813                         AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1814                         AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1815         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
1816
1817         newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1818                   AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1819                   AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1820                   AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1821                   SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1822         REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1823
1824         if (IS_CHAN_HT40(chan)) {
1825                 if (bb_spur < 0) {
1826                         spur_subchannel_sd = 1;
1827                         bb_spur_off = bb_spur + 10;
1828                 } else {
1829                         spur_subchannel_sd = 0;
1830                         bb_spur_off = bb_spur - 10;
1831                 }
1832         } else {
1833                 spur_subchannel_sd = 0;
1834                 bb_spur_off = bb_spur;
1835         }
1836
1837         if (IS_CHAN_HT40(chan))
1838                 spur_delta_phase =
1839                         ((bb_spur * 262144) /
1840                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1841         else
1842                 spur_delta_phase =
1843                         ((bb_spur * 524288) /
1844                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1845
1846         denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
1847         spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1848
1849         newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1850                   SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1851                   SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1852         REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1853
1854         newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1855         REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1856
1857         cur_bin = -6000;
1858         upper = bin + 100;
1859         lower = bin - 100;
1860
1861         for (i = 0; i < 4; i++) {
1862                 int pilot_mask = 0;
1863                 int chan_mask = 0;
1864                 int bp = 0;
1865                 for (bp = 0; bp < 30; bp++) {
1866                         if ((cur_bin > lower) && (cur_bin < upper)) {
1867                                 pilot_mask = pilot_mask | 0x1 << bp;
1868                                 chan_mask = chan_mask | 0x1 << bp;
1869                         }
1870                         cur_bin += 100;
1871                 }
1872                 cur_bin += inc[i];
1873                 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
1874                 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
1875         }
1876
1877         cur_vit_mask = 6100;
1878         upper = bin + 120;
1879         lower = bin - 120;
1880
1881         for (i = 0; i < 123; i++) {
1882                 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1883
1884                         /* workaround for gcc bug #37014 */
1885                         volatile int tmp_v = abs(cur_vit_mask - bin);
1886
1887                         if (tmp_v < 75)
1888                                 mask_amt = 1;
1889                         else
1890                                 mask_amt = 0;
1891                         if (cur_vit_mask < 0)
1892                                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
1893                         else
1894                                 mask_p[cur_vit_mask / 100] = mask_amt;
1895                 }
1896                 cur_vit_mask -= 100;
1897         }
1898
1899         tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
1900                 | (mask_m[48] << 26) | (mask_m[49] << 24)
1901                 | (mask_m[50] << 22) | (mask_m[51] << 20)
1902                 | (mask_m[52] << 18) | (mask_m[53] << 16)
1903                 | (mask_m[54] << 14) | (mask_m[55] << 12)
1904                 | (mask_m[56] << 10) | (mask_m[57] << 8)
1905                 | (mask_m[58] << 6) | (mask_m[59] << 4)
1906                 | (mask_m[60] << 2) | (mask_m[61] << 0);
1907         REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
1908         REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
1909
1910         tmp_mask = (mask_m[31] << 28)
1911                 | (mask_m[32] << 26) | (mask_m[33] << 24)
1912                 | (mask_m[34] << 22) | (mask_m[35] << 20)
1913                 | (mask_m[36] << 18) | (mask_m[37] << 16)
1914                 | (mask_m[48] << 14) | (mask_m[39] << 12)
1915                 | (mask_m[40] << 10) | (mask_m[41] << 8)
1916                 | (mask_m[42] << 6) | (mask_m[43] << 4)
1917                 | (mask_m[44] << 2) | (mask_m[45] << 0);
1918         REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
1919         REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
1920
1921         tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
1922                 | (mask_m[18] << 26) | (mask_m[18] << 24)
1923                 | (mask_m[20] << 22) | (mask_m[20] << 20)
1924                 | (mask_m[22] << 18) | (mask_m[22] << 16)
1925                 | (mask_m[24] << 14) | (mask_m[24] << 12)
1926                 | (mask_m[25] << 10) | (mask_m[26] << 8)
1927                 | (mask_m[27] << 6) | (mask_m[28] << 4)
1928                 | (mask_m[29] << 2) | (mask_m[30] << 0);
1929         REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
1930         REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
1931
1932         tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
1933                 | (mask_m[2] << 26) | (mask_m[3] << 24)
1934                 | (mask_m[4] << 22) | (mask_m[5] << 20)
1935                 | (mask_m[6] << 18) | (mask_m[7] << 16)
1936                 | (mask_m[8] << 14) | (mask_m[9] << 12)
1937                 | (mask_m[10] << 10) | (mask_m[11] << 8)
1938                 | (mask_m[12] << 6) | (mask_m[13] << 4)
1939                 | (mask_m[14] << 2) | (mask_m[15] << 0);
1940         REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
1941         REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
1942
1943         tmp_mask = (mask_p[15] << 28)
1944                 | (mask_p[14] << 26) | (mask_p[13] << 24)
1945                 | (mask_p[12] << 22) | (mask_p[11] << 20)
1946                 | (mask_p[10] << 18) | (mask_p[9] << 16)
1947                 | (mask_p[8] << 14) | (mask_p[7] << 12)
1948                 | (mask_p[6] << 10) | (mask_p[5] << 8)
1949                 | (mask_p[4] << 6) | (mask_p[3] << 4)
1950                 | (mask_p[2] << 2) | (mask_p[1] << 0);
1951         REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
1952         REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
1953
1954         tmp_mask = (mask_p[30] << 28)
1955                 | (mask_p[29] << 26) | (mask_p[28] << 24)
1956                 | (mask_p[27] << 22) | (mask_p[26] << 20)
1957                 | (mask_p[25] << 18) | (mask_p[24] << 16)
1958                 | (mask_p[23] << 14) | (mask_p[22] << 12)
1959                 | (mask_p[21] << 10) | (mask_p[20] << 8)
1960                 | (mask_p[19] << 6) | (mask_p[18] << 4)
1961                 | (mask_p[17] << 2) | (mask_p[16] << 0);
1962         REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
1963         REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
1964
1965         tmp_mask = (mask_p[45] << 28)
1966                 | (mask_p[44] << 26) | (mask_p[43] << 24)
1967                 | (mask_p[42] << 22) | (mask_p[41] << 20)
1968                 | (mask_p[40] << 18) | (mask_p[39] << 16)
1969                 | (mask_p[38] << 14) | (mask_p[37] << 12)
1970                 | (mask_p[36] << 10) | (mask_p[35] << 8)
1971                 | (mask_p[34] << 6) | (mask_p[33] << 4)
1972                 | (mask_p[32] << 2) | (mask_p[31] << 0);
1973         REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
1974         REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
1975
1976         tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
1977                 | (mask_p[59] << 26) | (mask_p[58] << 24)
1978                 | (mask_p[57] << 22) | (mask_p[56] << 20)
1979                 | (mask_p[55] << 18) | (mask_p[54] << 16)
1980                 | (mask_p[53] << 14) | (mask_p[52] << 12)
1981                 | (mask_p[51] << 10) | (mask_p[50] << 8)
1982                 | (mask_p[49] << 6) | (mask_p[48] << 4)
1983                 | (mask_p[47] << 2) | (mask_p[46] << 0);
1984         REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
1985         REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
1986 }
1987
1988 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1989 {
1990         int bb_spur = AR_NO_SPUR;
1991         int bin, cur_bin;
1992         int spur_freq_sd;
1993         int spur_delta_phase;
1994         int denominator;
1995         int upper, lower, cur_vit_mask;
1996         int tmp, new;
1997         int i;
1998         int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1999                           AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
2000         };
2001         int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
2002                          AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
2003         };
2004         int inc[4] = { 0, 100, 0, 0 };
2005
2006         int8_t mask_m[123];
2007         int8_t mask_p[123];
2008         int8_t mask_amt;
2009         int tmp_mask;
2010         int cur_bb_spur;
2011         bool is2GHz = IS_CHAN_2GHZ(chan);
2012
2013         memset(&mask_m, 0, sizeof(int8_t) * 123);
2014         memset(&mask_p, 0, sizeof(int8_t) * 123);
2015
2016         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
2017                 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
2018                 if (AR_NO_SPUR == cur_bb_spur)
2019                         break;
2020                 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
2021                 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
2022                         bb_spur = cur_bb_spur;
2023                         break;
2024                 }
2025         }
2026
2027         if (AR_NO_SPUR == bb_spur)
2028                 return;
2029
2030         bin = bb_spur * 32;
2031
2032         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
2033         new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
2034                      AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
2035                      AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
2036                      AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2037
2038         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
2039
2040         new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2041                AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2042                AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2043                AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2044                SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2045         REG_WRITE(ah, AR_PHY_SPUR_REG, new);
2046
2047         spur_delta_phase = ((bb_spur * 524288) / 100) &
2048                 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2049
2050         denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
2051         spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
2052
2053         new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2054                SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2055                SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2056         REG_WRITE(ah, AR_PHY_TIMING11, new);
2057
2058         cur_bin = -6000;
2059         upper = bin + 100;
2060         lower = bin - 100;
2061
2062         for (i = 0; i < 4; i++) {
2063                 int pilot_mask = 0;
2064                 int chan_mask = 0;
2065                 int bp = 0;
2066                 for (bp = 0; bp < 30; bp++) {
2067                         if ((cur_bin > lower) && (cur_bin < upper)) {
2068                                 pilot_mask = pilot_mask | 0x1 << bp;
2069                                 chan_mask = chan_mask | 0x1 << bp;
2070                         }
2071                         cur_bin += 100;
2072                 }
2073                 cur_bin += inc[i];
2074                 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2075                 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2076         }
2077
2078         cur_vit_mask = 6100;
2079         upper = bin + 120;
2080         lower = bin - 120;
2081
2082         for (i = 0; i < 123; i++) {
2083                 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2084
2085                         /* workaround for gcc bug #37014 */
2086                         volatile int tmp_v = abs(cur_vit_mask - bin);
2087
2088                         if (tmp_v < 75)
2089                                 mask_amt = 1;
2090                         else
2091                                 mask_amt = 0;
2092                         if (cur_vit_mask < 0)
2093                                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2094                         else
2095                                 mask_p[cur_vit_mask / 100] = mask_amt;
2096                 }
2097                 cur_vit_mask -= 100;
2098         }
2099
2100         tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2101                 | (mask_m[48] << 26) | (mask_m[49] << 24)
2102                 | (mask_m[50] << 22) | (mask_m[51] << 20)
2103                 | (mask_m[52] << 18) | (mask_m[53] << 16)
2104                 | (mask_m[54] << 14) | (mask_m[55] << 12)
2105                 | (mask_m[56] << 10) | (mask_m[57] << 8)
2106                 | (mask_m[58] << 6) | (mask_m[59] << 4)
2107                 | (mask_m[60] << 2) | (mask_m[61] << 0);
2108         REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2109         REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2110
2111         tmp_mask = (mask_m[31] << 28)
2112                 | (mask_m[32] << 26) | (mask_m[33] << 24)
2113                 | (mask_m[34] << 22) | (mask_m[35] << 20)
2114                 | (mask_m[36] << 18) | (mask_m[37] << 16)
2115                 | (mask_m[48] << 14) | (mask_m[39] << 12)
2116                 | (mask_m[40] << 10) | (mask_m[41] << 8)
2117                 | (mask_m[42] << 6) | (mask_m[43] << 4)
2118                 | (mask_m[44] << 2) | (mask_m[45] << 0);
2119         REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2120         REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2121
2122         tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2123                 | (mask_m[18] << 26) | (mask_m[18] << 24)
2124                 | (mask_m[20] << 22) | (mask_m[20] << 20)
2125                 | (mask_m[22] << 18) | (mask_m[22] << 16)
2126                 | (mask_m[24] << 14) | (mask_m[24] << 12)
2127                 | (mask_m[25] << 10) | (mask_m[26] << 8)
2128                 | (mask_m[27] << 6) | (mask_m[28] << 4)
2129                 | (mask_m[29] << 2) | (mask_m[30] << 0);
2130         REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2131         REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2132
2133         tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2134                 | (mask_m[2] << 26) | (mask_m[3] << 24)
2135                 | (mask_m[4] << 22) | (mask_m[5] << 20)
2136                 | (mask_m[6] << 18) | (mask_m[7] << 16)
2137                 | (mask_m[8] << 14) | (mask_m[9] << 12)
2138                 | (mask_m[10] << 10) | (mask_m[11] << 8)
2139                 | (mask_m[12] << 6) | (mask_m[13] << 4)
2140                 | (mask_m[14] << 2) | (mask_m[15] << 0);
2141         REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2142         REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2143
2144         tmp_mask = (mask_p[15] << 28)
2145                 | (mask_p[14] << 26) | (mask_p[13] << 24)
2146                 | (mask_p[12] << 22) | (mask_p[11] << 20)
2147                 | (mask_p[10] << 18) | (mask_p[9] << 16)
2148                 | (mask_p[8] << 14) | (mask_p[7] << 12)
2149                 | (mask_p[6] << 10) | (mask_p[5] << 8)
2150                 | (mask_p[4] << 6) | (mask_p[3] << 4)
2151                 | (mask_p[2] << 2) | (mask_p[1] << 0);
2152         REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2153         REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2154
2155         tmp_mask = (mask_p[30] << 28)
2156                 | (mask_p[29] << 26) | (mask_p[28] << 24)
2157                 | (mask_p[27] << 22) | (mask_p[26] << 20)
2158                 | (mask_p[25] << 18) | (mask_p[24] << 16)
2159                 | (mask_p[23] << 14) | (mask_p[22] << 12)
2160                 | (mask_p[21] << 10) | (mask_p[20] << 8)
2161                 | (mask_p[19] << 6) | (mask_p[18] << 4)
2162                 | (mask_p[17] << 2) | (mask_p[16] << 0);
2163         REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2164         REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2165
2166         tmp_mask = (mask_p[45] << 28)
2167                 | (mask_p[44] << 26) | (mask_p[43] << 24)
2168                 | (mask_p[42] << 22) | (mask_p[41] << 20)
2169                 | (mask_p[40] << 18) | (mask_p[39] << 16)
2170                 | (mask_p[38] << 14) | (mask_p[37] << 12)
2171                 | (mask_p[36] << 10) | (mask_p[35] << 8)
2172                 | (mask_p[34] << 6) | (mask_p[33] << 4)
2173                 | (mask_p[32] << 2) | (mask_p[31] << 0);
2174         REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2175         REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2176
2177         tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2178                 | (mask_p[59] << 26) | (mask_p[58] << 24)
2179                 | (mask_p[57] << 22) | (mask_p[56] << 20)
2180                 | (mask_p[55] << 18) | (mask_p[54] << 16)
2181                 | (mask_p[53] << 14) | (mask_p[52] << 12)
2182                 | (mask_p[51] << 10) | (mask_p[50] << 8)
2183                 | (mask_p[49] << 6) | (mask_p[48] << 4)
2184                 | (mask_p[47] << 2) | (mask_p[46] << 0);
2185         REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2186         REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2187 }
2188
2189 static void ath9k_enable_rfkill(struct ath_hw *ah)
2190 {
2191         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
2192                     AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
2193
2194         REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
2195                     AR_GPIO_INPUT_MUX2_RFSILENT);
2196
2197         ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
2198         REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
2199 }
2200
2201 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
2202                     bool bChannelChange)
2203 {
2204         u32 saveLedState;
2205         struct ath_softc *sc = ah->ah_sc;
2206         struct ath9k_channel *curchan = ah->curchan;
2207         u32 saveDefAntenna;
2208         u32 macStaId1;
2209         int i, rx_chainmask, r;
2210
2211         ah->extprotspacing = sc->ht_extprotspacing;
2212         ah->txchainmask = sc->tx_chainmask;
2213         ah->rxchainmask = sc->rx_chainmask;
2214
2215         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2216                 return -EIO;
2217
2218         if (curchan)
2219                 ath9k_hw_getnf(ah, curchan);
2220
2221         if (bChannelChange &&
2222             (ah->chip_fullsleep != true) &&
2223             (ah->curchan != NULL) &&
2224             (chan->channel != ah->curchan->channel) &&
2225             ((chan->channelFlags & CHANNEL_ALL) ==
2226              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
2227             (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
2228                                    !IS_CHAN_A_5MHZ_SPACED(ah->curchan)))) {
2229
2230                 if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
2231                         ath9k_hw_loadnf(ah, ah->curchan);
2232                         ath9k_hw_start_nfcal(ah);
2233                         return 0;
2234                 }
2235         }
2236
2237         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
2238         if (saveDefAntenna == 0)
2239                 saveDefAntenna = 1;
2240
2241         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2242
2243         saveLedState = REG_READ(ah, AR_CFG_LED) &
2244                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
2245                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
2246
2247         ath9k_hw_mark_phy_inactive(ah);
2248
2249         if (!ath9k_hw_chip_reset(ah, chan)) {
2250                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Chip reset failed\n");
2251                 return -EINVAL;
2252         }
2253
2254         if (AR_SREV_9280_10_OR_LATER(ah))
2255                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2256
2257         r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
2258         if (r)
2259                 return r;
2260
2261         /* Setup MFP options for CCMP */
2262         if (AR_SREV_9280_20_OR_LATER(ah)) {
2263                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2264                  * frames when constructing CCMP AAD. */
2265                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2266                               0xc7ff);
2267                 ah->sw_mgmt_crypto = false;
2268         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2269                 /* Disable hardware crypto for management frames */
2270                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2271                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2272                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2273                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2274                 ah->sw_mgmt_crypto = true;
2275         } else
2276                 ah->sw_mgmt_crypto = true;
2277
2278         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2279                 ath9k_hw_set_delta_slope(ah, chan);
2280
2281         if (AR_SREV_9280_10_OR_LATER(ah))
2282                 ath9k_hw_9280_spur_mitigate(ah, chan);
2283         else
2284                 ath9k_hw_spur_mitigate(ah, chan);
2285
2286         ah->eep_ops->set_board_values(ah, chan);
2287
2288         ath9k_hw_decrease_chain_power(ah, chan);
2289
2290         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ah->macaddr));
2291         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ah->macaddr + 4)
2292                   | macStaId1
2293                   | AR_STA_ID1_RTS_USE_DEF
2294                   | (ah->config.
2295                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2296                   | ah->sta_id1_defaults);
2297         ath9k_hw_set_operating_mode(ah, ah->opmode);
2298
2299         REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
2300         REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
2301
2302         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2303
2304         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
2305         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
2306                   ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2307
2308         REG_WRITE(ah, AR_ISR, ~0);
2309
2310         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2311
2312         if (AR_SREV_9280_10_OR_LATER(ah))
2313                 ath9k_hw_ar9280_set_channel(ah, chan);
2314         else
2315                 if (!(ath9k_hw_set_channel(ah, chan)))
2316                         return -EIO;
2317
2318         for (i = 0; i < AR_NUM_DCU; i++)
2319                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2320
2321         ah->intr_txqs = 0;
2322         for (i = 0; i < ah->caps.total_queues; i++)
2323                 ath9k_hw_resettxqueue(ah, i);
2324
2325         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2326         ath9k_hw_init_qos(ah);
2327
2328         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2329                 ath9k_enable_rfkill(ah);
2330
2331         ath9k_hw_init_user_settings(ah);
2332
2333         REG_WRITE(ah, AR_STA_ID1,
2334                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2335
2336         ath9k_hw_set_dma(ah);
2337
2338         REG_WRITE(ah, AR_OBS, 8);
2339
2340         if (ah->config.intr_mitigation) {
2341                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2342                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2343         }
2344
2345         ath9k_hw_init_bb(ah, chan);
2346
2347         if (!ath9k_hw_init_cal(ah, chan))
2348                 return -EIO;;
2349
2350         rx_chainmask = ah->rxchainmask;
2351         if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2352                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2353                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2354         }
2355
2356         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2357
2358         if (AR_SREV_9100(ah)) {
2359                 u32 mask;
2360                 mask = REG_READ(ah, AR_CFG);
2361                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2362                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2363                                 "CFG Byte Swap Set 0x%x\n", mask);
2364                 } else {
2365                         mask =
2366                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2367                         REG_WRITE(ah, AR_CFG, mask);
2368                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2369                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2370                 }
2371         } else {
2372 #ifdef __BIG_ENDIAN
2373                 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2374 #endif
2375         }
2376
2377         return 0;
2378 }
2379
2380 /************************/
2381 /* Key Cache Management */
2382 /************************/
2383
2384 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2385 {
2386         u32 keyType;
2387
2388         if (entry >= ah->caps.keycache_size) {
2389                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2390                         "keychache entry %u out of range\n", entry);
2391                 return false;
2392         }
2393
2394         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2395
2396         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2397         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2398         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2399         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2400         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2401         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2402         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2403         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2404
2405         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2406                 u16 micentry = entry + 64;
2407
2408                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2409                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2410                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2411                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2412
2413         }
2414
2415         if (ah->curchan == NULL)
2416                 return true;
2417
2418         return true;
2419 }
2420
2421 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2422 {
2423         u32 macHi, macLo;
2424
2425         if (entry >= ah->caps.keycache_size) {
2426                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2427                         "keychache entry %u out of range\n", entry);
2428                 return false;
2429         }
2430
2431         if (mac != NULL) {
2432                 macHi = (mac[5] << 8) | mac[4];
2433                 macLo = (mac[3] << 24) |
2434                         (mac[2] << 16) |
2435                         (mac[1] << 8) |
2436                         mac[0];
2437                 macLo >>= 1;
2438                 macLo |= (macHi & 1) << 31;
2439                 macHi >>= 1;
2440         } else {
2441                 macLo = macHi = 0;
2442         }
2443         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2444         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2445
2446         return true;
2447 }
2448
2449 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2450                                  const struct ath9k_keyval *k,
2451                                  const u8 *mac)
2452 {
2453         const struct ath9k_hw_capabilities *pCap = &ah->caps;
2454         u32 key0, key1, key2, key3, key4;
2455         u32 keyType;
2456
2457         if (entry >= pCap->keycache_size) {
2458                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2459                         "keycache entry %u out of range\n", entry);
2460                 return false;
2461         }
2462
2463         switch (k->kv_type) {
2464         case ATH9K_CIPHER_AES_OCB:
2465                 keyType = AR_KEYTABLE_TYPE_AES;
2466                 break;
2467         case ATH9K_CIPHER_AES_CCM:
2468                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2469                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2470                                 "AES-CCM not supported by mac rev 0x%x\n",
2471                                 ah->hw_version.macRev);
2472                         return false;
2473                 }
2474                 keyType = AR_KEYTABLE_TYPE_CCM;
2475                 break;
2476         case ATH9K_CIPHER_TKIP:
2477                 keyType = AR_KEYTABLE_TYPE_TKIP;
2478                 if (ATH9K_IS_MIC_ENABLED(ah)
2479                     && entry + 64 >= pCap->keycache_size) {
2480                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2481                                 "entry %u inappropriate for TKIP\n", entry);
2482                         return false;
2483                 }
2484                 break;
2485         case ATH9K_CIPHER_WEP:
2486                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2487                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2488                                 "WEP key length %u too small\n", k->kv_len);
2489                         return false;
2490                 }
2491                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2492                         keyType = AR_KEYTABLE_TYPE_40;
2493                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2494                         keyType = AR_KEYTABLE_TYPE_104;
2495                 else
2496                         keyType = AR_KEYTABLE_TYPE_128;
2497                 break;
2498         case ATH9K_CIPHER_CLR:
2499                 keyType = AR_KEYTABLE_TYPE_CLR;
2500                 break;
2501         default:
2502                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2503                         "cipher %u not supported\n", k->kv_type);
2504                 return false;
2505         }
2506
2507         key0 = get_unaligned_le32(k->kv_val + 0);
2508         key1 = get_unaligned_le16(k->kv_val + 4);
2509         key2 = get_unaligned_le32(k->kv_val + 6);
2510         key3 = get_unaligned_le16(k->kv_val + 10);
2511         key4 = get_unaligned_le32(k->kv_val + 12);
2512         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2513                 key4 &= 0xff;
2514
2515         /*
2516          * Note: Key cache registers access special memory area that requires
2517          * two 32-bit writes to actually update the values in the internal
2518          * memory. Consequently, the exact order and pairs used here must be
2519          * maintained.
2520          */
2521
2522         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2523                 u16 micentry = entry + 64;
2524
2525                 /*
2526                  * Write inverted key[47:0] first to avoid Michael MIC errors
2527                  * on frames that could be sent or received at the same time.
2528                  * The correct key will be written in the end once everything
2529                  * else is ready.
2530                  */
2531                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2532                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2533
2534                 /* Write key[95:48] */
2535                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2536                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2537
2538                 /* Write key[127:96] and key type */
2539                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2540                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2541
2542                 /* Write MAC address for the entry */
2543                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2544
2545                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2546                         /*
2547                          * TKIP uses two key cache entries:
2548                          * Michael MIC TX/RX keys in the same key cache entry
2549                          * (idx = main index + 64):
2550                          * key0 [31:0] = RX key [31:0]
2551                          * key1 [15:0] = TX key [31:16]
2552                          * key1 [31:16] = reserved
2553                          * key2 [31:0] = RX key [63:32]
2554                          * key3 [15:0] = TX key [15:0]
2555                          * key3 [31:16] = reserved
2556                          * key4 [31:0] = TX key [63:32]
2557                          */
2558                         u32 mic0, mic1, mic2, mic3, mic4;
2559
2560                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2561                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2562                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2563                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2564                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
2565
2566                         /* Write RX[31:0] and TX[31:16] */
2567                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2568                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2569
2570                         /* Write RX[63:32] and TX[15:0] */
2571                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2572                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2573
2574                         /* Write TX[63:32] and keyType(reserved) */
2575                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2576                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2577                                   AR_KEYTABLE_TYPE_CLR);
2578
2579                 } else {
2580                         /*
2581                          * TKIP uses four key cache entries (two for group
2582                          * keys):
2583                          * Michael MIC TX/RX keys are in different key cache
2584                          * entries (idx = main index + 64 for TX and
2585                          * main index + 32 + 96 for RX):
2586                          * key0 [31:0] = TX/RX MIC key [31:0]
2587                          * key1 [31:0] = reserved
2588                          * key2 [31:0] = TX/RX MIC key [63:32]
2589                          * key3 [31:0] = reserved
2590                          * key4 [31:0] = reserved
2591                          *
2592                          * Upper layer code will call this function separately
2593                          * for TX and RX keys when these registers offsets are
2594                          * used.
2595                          */
2596                         u32 mic0, mic2;
2597
2598                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2599                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2600
2601                         /* Write MIC key[31:0] */
2602                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2603                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2604
2605                         /* Write MIC key[63:32] */
2606                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2607                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2608
2609                         /* Write TX[63:32] and keyType(reserved) */
2610                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2611                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2612                                   AR_KEYTABLE_TYPE_CLR);
2613                 }
2614
2615                 /* MAC address registers are reserved for the MIC entry */
2616                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2617                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2618
2619                 /*
2620                  * Write the correct (un-inverted) key[47:0] last to enable
2621                  * TKIP now that all other registers are set with correct
2622                  * values.
2623                  */
2624                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2625                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2626         } else {
2627                 /* Write key[47:0] */
2628                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2629                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2630
2631                 /* Write key[95:48] */
2632                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2633                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2634
2635                 /* Write key[127:96] and key type */
2636                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2637                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2638
2639                 /* Write MAC address for the entry */
2640                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2641         }
2642
2643         return true;
2644 }
2645
2646 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2647 {
2648         if (entry < ah->caps.keycache_size) {
2649                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2650                 if (val & AR_KEYTABLE_VALID)
2651                         return true;
2652         }
2653         return false;
2654 }
2655
2656 /******************************/
2657 /* Power Management (Chipset) */
2658 /******************************/
2659
2660 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2661 {
2662         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2663         if (setChip) {
2664                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2665                             AR_RTC_FORCE_WAKE_EN);
2666                 if (!AR_SREV_9100(ah))
2667                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2668
2669                 REG_CLR_BIT(ah, (AR_RTC_RESET),
2670                             AR_RTC_RESET_EN);
2671         }
2672 }
2673
2674 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2675 {
2676         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2677         if (setChip) {
2678                 struct ath9k_hw_capabilities *pCap = &ah->caps;
2679
2680                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2681                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2682                                   AR_RTC_FORCE_WAKE_ON_INT);
2683                 } else {
2684                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2685                                     AR_RTC_FORCE_WAKE_EN);
2686                 }
2687         }
2688 }
2689
2690 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2691 {
2692         u32 val;
2693         int i;
2694
2695         if (setChip) {
2696                 if ((REG_READ(ah, AR_RTC_STATUS) &
2697                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2698                         if (ath9k_hw_set_reset_reg(ah,
2699                                            ATH9K_RESET_POWER_ON) != true) {
2700                                 return false;
2701                         }
2702                 }
2703                 if (AR_SREV_9100(ah))
2704                         REG_SET_BIT(ah, AR_RTC_RESET,
2705                                     AR_RTC_RESET_EN);
2706
2707                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2708                             AR_RTC_FORCE_WAKE_EN);
2709                 udelay(50);
2710
2711                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2712                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2713                         if (val == AR_RTC_STATUS_ON)
2714                                 break;
2715                         udelay(50);
2716                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2717                                     AR_RTC_FORCE_WAKE_EN);
2718                 }
2719                 if (i == 0) {
2720                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2721                                 "Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
2722                         return false;
2723                 }
2724         }
2725
2726         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2727
2728         return true;
2729 }
2730
2731 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2732 {
2733         int status = true, setChip = true;
2734         static const char *modes[] = {
2735                 "AWAKE",
2736                 "FULL-SLEEP",
2737                 "NETWORK SLEEP",
2738                 "UNDEFINED"
2739         };
2740
2741         DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s -> %s\n",
2742                 modes[ah->power_mode], modes[mode]);
2743
2744         switch (mode) {
2745         case ATH9K_PM_AWAKE:
2746                 status = ath9k_hw_set_power_awake(ah, setChip);
2747                 break;
2748         case ATH9K_PM_FULL_SLEEP:
2749                 ath9k_set_power_sleep(ah, setChip);
2750                 ah->chip_fullsleep = true;
2751                 break;
2752         case ATH9K_PM_NETWORK_SLEEP:
2753                 ath9k_set_power_network_sleep(ah, setChip);
2754                 break;
2755         default:
2756                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2757                         "Unknown power mode %u\n", mode);
2758                 return false;
2759         }
2760         ah->power_mode = mode;
2761
2762         return status;
2763 }
2764
2765 /*
2766  * Helper for ASPM support.
2767  *
2768  * Disable PLL when in L0s as well as receiver clock when in L1.
2769  * This power saving option must be enabled through the SerDes.
2770  *
2771  * Programming the SerDes must go through the same 288 bit serial shift
2772  * register as the other analog registers.  Hence the 9 writes.
2773  */
2774 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore)
2775 {
2776         u8 i;
2777
2778         if (ah->is_pciexpress != true)
2779                 return;
2780
2781         /* Do not touch SerDes registers */
2782         if (ah->config.pcie_powersave_enable == 2)
2783                 return;
2784
2785         /* Nothing to do on restore for 11N */
2786         if (restore)
2787                 return;
2788
2789         if (AR_SREV_9280_20_OR_LATER(ah)) {
2790                 /*
2791                  * AR9280 2.0 or later chips use SerDes values from the
2792                  * initvals.h initialized depending on chipset during
2793                  * ath9k_hw_do_attach()
2794                  */
2795                 for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2796                         REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2797                                   INI_RA(&ah->iniPcieSerdes, i, 1));
2798                 }
2799         } else if (AR_SREV_9280(ah) &&
2800                    (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2801                 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2802                 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2803
2804                 /* RX shut off when elecidle is asserted */
2805                 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2806                 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2807                 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2808
2809                 /* Shut off CLKREQ active in L1 */
2810                 if (ah->config.pcie_clock_req)
2811                         REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2812                 else
2813                         REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2814
2815                 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2816                 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2817                 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2818
2819                 /* Load the new settings */
2820                 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2821
2822         } else {
2823                 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2824                 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2825
2826                 /* RX shut off when elecidle is asserted */
2827                 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2828                 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2829                 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2830
2831                 /*
2832                  * Ignore ah->ah_config.pcie_clock_req setting for
2833                  * pre-AR9280 11n
2834                  */
2835                 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2836
2837                 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2838                 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2839                 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2840
2841                 /* Load the new settings */
2842                 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2843         }
2844
2845         udelay(1000);
2846
2847         /* set bit 19 to allow forcing of pcie core into L1 state */
2848         REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2849
2850         /* Several PCIe massages to ensure proper behaviour */
2851         if (ah->config.pcie_waen) {
2852                 REG_WRITE(ah, AR_WA, ah->config.pcie_waen);
2853         } else {
2854                 if (AR_SREV_9285(ah))
2855                         REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);
2856                 /*
2857                  * On AR9280 chips bit 22 of 0x4004 needs to be set to
2858                  * otherwise card may disappear.
2859                  */
2860                 else if (AR_SREV_9280(ah))
2861                         REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT);
2862                 else
2863                         REG_WRITE(ah, AR_WA, AR_WA_DEFAULT);
2864         }
2865 }
2866
2867 /**********************/
2868 /* Interrupt Handling */
2869 /**********************/
2870
2871 bool ath9k_hw_intrpend(struct ath_hw *ah)
2872 {
2873         u32 host_isr;
2874
2875         if (AR_SREV_9100(ah))
2876                 return true;
2877
2878         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2879         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2880                 return true;
2881
2882         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2883         if ((host_isr & AR_INTR_SYNC_DEFAULT)
2884             && (host_isr != AR_INTR_SPURIOUS))
2885                 return true;
2886
2887         return false;
2888 }
2889
2890 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2891 {
2892         u32 isr = 0;
2893         u32 mask2 = 0;
2894         struct ath9k_hw_capabilities *pCap = &ah->caps;
2895         u32 sync_cause = 0;
2896         bool fatal_int = false;
2897
2898         if (!AR_SREV_9100(ah)) {
2899                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2900                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2901                             == AR_RTC_STATUS_ON) {
2902                                 isr = REG_READ(ah, AR_ISR);
2903                         }
2904                 }
2905
2906                 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2907                         AR_INTR_SYNC_DEFAULT;
2908
2909                 *masked = 0;
2910
2911                 if (!isr && !sync_cause)
2912                         return false;
2913         } else {
2914                 *masked = 0;
2915                 isr = REG_READ(ah, AR_ISR);
2916         }
2917
2918         if (isr) {
2919                 if (isr & AR_ISR_BCNMISC) {
2920                         u32 isr2;
2921                         isr2 = REG_READ(ah, AR_ISR_S2);
2922                         if (isr2 & AR_ISR_S2_TIM)
2923                                 mask2 |= ATH9K_INT_TIM;
2924                         if (isr2 & AR_ISR_S2_DTIM)
2925                                 mask2 |= ATH9K_INT_DTIM;
2926                         if (isr2 & AR_ISR_S2_DTIMSYNC)
2927                                 mask2 |= ATH9K_INT_DTIMSYNC;
2928                         if (isr2 & (AR_ISR_S2_CABEND))
2929                                 mask2 |= ATH9K_INT_CABEND;
2930                         if (isr2 & AR_ISR_S2_GTT)
2931                                 mask2 |= ATH9K_INT_GTT;
2932                         if (isr2 & AR_ISR_S2_CST)
2933                                 mask2 |= ATH9K_INT_CST;
2934                         if (isr2 & AR_ISR_S2_TSFOOR)
2935                                 mask2 |= ATH9K_INT_TSFOOR;
2936                 }
2937
2938                 isr = REG_READ(ah, AR_ISR_RAC);
2939                 if (isr == 0xffffffff) {
2940                         *masked = 0;
2941                         return false;
2942                 }
2943
2944                 *masked = isr & ATH9K_INT_COMMON;
2945
2946                 if (ah->config.intr_mitigation) {
2947                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2948                                 *masked |= ATH9K_INT_RX;
2949                 }
2950
2951                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2952                         *masked |= ATH9K_INT_RX;
2953                 if (isr &
2954                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2955                      AR_ISR_TXEOL)) {
2956                         u32 s0_s, s1_s;
2957
2958                         *masked |= ATH9K_INT_TX;
2959
2960                         s0_s = REG_READ(ah, AR_ISR_S0_S);
2961                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2962                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2963
2964                         s1_s = REG_READ(ah, AR_ISR_S1_S);
2965                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2966                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2967                 }
2968
2969                 if (isr & AR_ISR_RXORN) {
2970                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
2971                                 "receive FIFO overrun interrupt\n");
2972                 }
2973
2974                 if (!AR_SREV_9100(ah)) {
2975                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2976                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2977                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
2978                                         *masked |= ATH9K_INT_TIM_TIMER;
2979                         }
2980                 }
2981
2982                 *masked |= mask2;
2983         }
2984
2985         if (AR_SREV_9100(ah))
2986                 return true;
2987
2988         if (sync_cause) {
2989                 fatal_int =
2990                         (sync_cause &
2991                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2992                         ? true : false;
2993
2994                 if (fatal_int) {
2995                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2996                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2997                                         "received PCI FATAL interrupt\n");
2998                         }
2999                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
3000                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3001                                         "received PCI PERR interrupt\n");
3002                         }
3003                         *masked |= ATH9K_INT_FATAL;
3004                 }
3005                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
3006                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3007                                 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
3008                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
3009                         REG_WRITE(ah, AR_RC, 0);
3010                         *masked |= ATH9K_INT_FATAL;
3011                 }
3012                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
3013                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3014                                 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3015                 }
3016
3017                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
3018                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
3019         }
3020
3021         return true;
3022 }
3023
3024 enum ath9k_int ath9k_hw_intrget(struct ath_hw *ah)
3025 {
3026         return ah->mask_reg;
3027 }
3028
3029 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
3030 {
3031         u32 omask = ah->mask_reg;
3032         u32 mask, mask2;
3033         struct ath9k_hw_capabilities *pCap = &ah->caps;
3034
3035         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
3036
3037         if (omask & ATH9K_INT_GLOBAL) {
3038                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
3039                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
3040                 (void) REG_READ(ah, AR_IER);
3041                 if (!AR_SREV_9100(ah)) {
3042                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
3043                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
3044
3045                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
3046                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
3047                 }
3048         }
3049
3050         mask = ints & ATH9K_INT_COMMON;
3051         mask2 = 0;
3052
3053         if (ints & ATH9K_INT_TX) {
3054                 if (ah->txok_interrupt_mask)
3055                         mask |= AR_IMR_TXOK;
3056                 if (ah->txdesc_interrupt_mask)
3057                         mask |= AR_IMR_TXDESC;
3058                 if (ah->txerr_interrupt_mask)
3059                         mask |= AR_IMR_TXERR;
3060                 if (ah->txeol_interrupt_mask)
3061                         mask |= AR_IMR_TXEOL;
3062         }
3063         if (ints & ATH9K_INT_RX) {
3064                 mask |= AR_IMR_RXERR;
3065                 if (ah->config.intr_mitigation)
3066                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
3067                 else
3068                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
3069                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
3070                         mask |= AR_IMR_GENTMR;
3071         }
3072
3073         if (ints & (ATH9K_INT_BMISC)) {
3074                 mask |= AR_IMR_BCNMISC;
3075                 if (ints & ATH9K_INT_TIM)
3076                         mask2 |= AR_IMR_S2_TIM;
3077                 if (ints & ATH9K_INT_DTIM)
3078                         mask2 |= AR_IMR_S2_DTIM;
3079                 if (ints & ATH9K_INT_DTIMSYNC)
3080                         mask2 |= AR_IMR_S2_DTIMSYNC;
3081                 if (ints & ATH9K_INT_CABEND)
3082                         mask2 |= AR_IMR_S2_CABEND;
3083                 if (ints & ATH9K_INT_TSFOOR)
3084                         mask2 |= AR_IMR_S2_TSFOOR;
3085         }
3086
3087         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
3088                 mask |= AR_IMR_BCNMISC;
3089                 if (ints & ATH9K_INT_GTT)
3090                         mask2 |= AR_IMR_S2_GTT;
3091                 if (ints & ATH9K_INT_CST)
3092                         mask2 |= AR_IMR_S2_CST;
3093         }
3094
3095         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
3096         REG_WRITE(ah, AR_IMR, mask);
3097         mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
3098                                            AR_IMR_S2_DTIM |
3099                                            AR_IMR_S2_DTIMSYNC |
3100                                            AR_IMR_S2_CABEND |
3101                                            AR_IMR_S2_CABTO |
3102                                            AR_IMR_S2_TSFOOR |
3103                                            AR_IMR_S2_GTT | AR_IMR_S2_CST);
3104         REG_WRITE(ah, AR_IMR_S2, mask | mask2);
3105         ah->mask_reg = ints;
3106
3107         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3108                 if (ints & ATH9K_INT_TIM_TIMER)
3109                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3110                 else
3111                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3112         }
3113
3114         if (ints & ATH9K_INT_GLOBAL) {
3115                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
3116                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
3117                 if (!AR_SREV_9100(ah)) {
3118                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
3119                                   AR_INTR_MAC_IRQ);
3120                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
3121
3122
3123                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
3124                                   AR_INTR_SYNC_DEFAULT);
3125                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
3126                                   AR_INTR_SYNC_DEFAULT);
3127                 }
3128                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
3129                          REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
3130         }
3131
3132         return omask;
3133 }
3134
3135 /*******************/
3136 /* Beacon Handling */
3137 /*******************/
3138
3139 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
3140 {
3141         int flags = 0;
3142
3143         ah->beacon_interval = beacon_period;
3144
3145         switch (ah->opmode) {
3146         case NL80211_IFTYPE_STATION:
3147         case NL80211_IFTYPE_MONITOR:
3148                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3149                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3150                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3151                 flags |= AR_TBTT_TIMER_EN;
3152                 break;
3153         case NL80211_IFTYPE_ADHOC:
3154         case NL80211_IFTYPE_MESH_POINT:
3155                 REG_SET_BIT(ah, AR_TXCFG,
3156                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3157                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3158                           TU_TO_USEC(next_beacon +
3159                                      (ah->atim_window ? ah->
3160                                       atim_window : 1)));
3161                 flags |= AR_NDP_TIMER_EN;
3162         case NL80211_IFTYPE_AP:
3163                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3164                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3165                           TU_TO_USEC(next_beacon -
3166                                      ah->config.
3167                                      dma_beacon_response_time));
3168                 REG_WRITE(ah, AR_NEXT_SWBA,
3169                           TU_TO_USEC(next_beacon -
3170                                      ah->config.
3171                                      sw_beacon_response_time));
3172                 flags |=
3173                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3174                 break;
3175         default:
3176                 DPRINTF(ah->ah_sc, ATH_DBG_BEACON,
3177                         "%s: unsupported opmode: %d\n",
3178                         __func__, ah->opmode);
3179                 return;
3180                 break;
3181         }
3182
3183         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3184         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3185         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3186         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3187
3188         beacon_period &= ~ATH9K_BEACON_ENA;
3189         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3190                 beacon_period &= ~ATH9K_BEACON_RESET_TSF;
3191                 ath9k_hw_reset_tsf(ah);
3192         }
3193
3194         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3195 }
3196
3197 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3198                                     const struct ath9k_beacon_state *bs)
3199 {
3200         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3201         struct ath9k_hw_capabilities *pCap = &ah->caps;
3202
3203         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3204
3205         REG_WRITE(ah, AR_BEACON_PERIOD,
3206                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3207         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3208                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3209
3210         REG_RMW_FIELD(ah, AR_RSSI_THR,
3211                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3212
3213         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3214
3215         if (bs->bs_sleepduration > beaconintval)
3216                 beaconintval = bs->bs_sleepduration;
3217
3218         dtimperiod = bs->bs_dtimperiod;
3219         if (bs->bs_sleepduration > dtimperiod)
3220                 dtimperiod = bs->bs_sleepduration;
3221
3222         if (beaconintval == dtimperiod)
3223                 nextTbtt = bs->bs_nextdtim;
3224         else
3225                 nextTbtt = bs->bs_nexttbtt;
3226
3227         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3228         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3229         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3230         DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3231
3232         REG_WRITE(ah, AR_NEXT_DTIM,
3233                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3234         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3235
3236         REG_WRITE(ah, AR_SLEEP1,
3237                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3238                   | AR_SLEEP1_ASSUME_DTIM);
3239
3240         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3241                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3242         else
3243                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3244
3245         REG_WRITE(ah, AR_SLEEP2,
3246                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3247
3248         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3249         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3250
3251         REG_SET_BIT(ah, AR_TIMER_MODE,
3252                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3253                     AR_DTIM_TIMER_EN);
3254
3255         /* TSF Out of Range Threshold */
3256         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3257 }
3258
3259 /*******************/
3260 /* HW Capabilities */
3261 /*******************/
3262
3263 void ath9k_hw_fill_cap_info(struct ath_hw *ah)
3264 {
3265         struct ath9k_hw_capabilities *pCap = &ah->caps;
3266         u16 capField = 0, eeval;
3267
3268         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3269         ah->regulatory.current_rd = eeval;
3270
3271         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3272         if (AR_SREV_9285_10_OR_LATER(ah))
3273                 eeval |= AR9285_RDEXT_DEFAULT;
3274         ah->regulatory.current_rd_ext = eeval;
3275
3276         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3277
3278         if (ah->opmode != NL80211_IFTYPE_AP &&
3279             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3280                 if (ah->regulatory.current_rd == 0x64 ||
3281                     ah->regulatory.current_rd == 0x65)
3282                         ah->regulatory.current_rd += 5;
3283                 else if (ah->regulatory.current_rd == 0x41)
3284                         ah->regulatory.current_rd = 0x43;
3285                 DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
3286                         "regdomain mapped to 0x%x\n", ah->regulatory.current_rd);
3287         }
3288
3289         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3290         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3291
3292         if (eeval & AR5416_OPFLAGS_11A) {
3293                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3294                 if (ah->config.ht_enable) {
3295                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3296                                 set_bit(ATH9K_MODE_11NA_HT20,
3297                                         pCap->wireless_modes);
3298                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3299                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3300                                         pCap->wireless_modes);
3301                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3302                                         pCap->wireless_modes);
3303                         }
3304                 }
3305         }
3306
3307         if (eeval & AR5416_OPFLAGS_11G) {
3308                 set_bit(ATH9K_MODE_11B, pCap->wireless_modes);
3309                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3310                 if (ah->config.ht_enable) {
3311                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3312                                 set_bit(ATH9K_MODE_11NG_HT20,
3313                                         pCap->wireless_modes);
3314                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3315                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3316                                         pCap->wireless_modes);
3317                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3318                                         pCap->wireless_modes);
3319                         }
3320                 }
3321         }
3322
3323         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3324         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3325             !(eeval & AR5416_OPFLAGS_11A))
3326                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3327         else
3328                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3329
3330         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3331                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3332
3333         pCap->low_2ghz_chan = 2312;
3334         pCap->high_2ghz_chan = 2732;
3335
3336         pCap->low_5ghz_chan = 4920;
3337         pCap->high_5ghz_chan = 6100;
3338
3339         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3340         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3341         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3342
3343         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3344         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3345         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3346
3347         if (ah->config.ht_enable)
3348                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3349         else
3350                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3351
3352         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3353         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3354         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3355         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3356
3357         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3358                 pCap->total_queues =
3359                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3360         else
3361                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3362
3363         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3364                 pCap->keycache_size =
3365                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3366         else
3367                 pCap->keycache_size = AR_KEYTABLE_SIZE;
3368
3369         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3370         pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3371
3372         if (AR_SREV_9285_10_OR_LATER(ah))
3373                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3374         else if (AR_SREV_9280_10_OR_LATER(ah))
3375                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3376         else
3377                 pCap->num_gpio_pins = AR_NUM_GPIO;
3378
3379         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3380                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3381                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3382         } else {
3383                 pCap->rts_aggr_limit = (8 * 1024);
3384         }
3385
3386         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3387
3388 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3389         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3390         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3391                 ah->rfkill_gpio =
3392                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3393                 ah->rfkill_polarity =
3394                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3395
3396                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3397         }
3398 #endif
3399
3400         if ((ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI) ||
3401             (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) ||
3402             (ah->hw_version.macVersion == AR_SREV_VERSION_9160) ||
3403             (ah->hw_version.macVersion == AR_SREV_VERSION_9100) ||
3404             (ah->hw_version.macVersion == AR_SREV_VERSION_9280) ||
3405             (ah->hw_version.macVersion == AR_SREV_VERSION_9285))
3406                 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3407         else
3408                 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
3409
3410         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3411                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3412         else
3413                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3414
3415         if (ah->regulatory.current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3416                 pCap->reg_cap =
3417                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3418                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3419                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
3420                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3421         } else {
3422                 pCap->reg_cap =
3423                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3424                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3425         }
3426
3427         pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3428
3429         pCap->num_antcfg_5ghz =
3430                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3431         pCap->num_antcfg_2ghz =
3432                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3433
3434         if (AR_SREV_9280_10_OR_LATER(ah) && btcoex_enable) {
3435                 pCap->hw_caps |= ATH9K_HW_CAP_BT_COEX;
3436                 ah->btactive_gpio = 6;
3437                 ah->wlanactive_gpio = 5;
3438         }
3439 }
3440
3441 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3442                             u32 capability, u32 *result)
3443 {
3444         switch (type) {
3445         case ATH9K_CAP_CIPHER:
3446                 switch (capability) {
3447                 case ATH9K_CIPHER_AES_CCM:
3448                 case ATH9K_CIPHER_AES_OCB:
3449                 case ATH9K_CIPHER_TKIP:
3450                 case ATH9K_CIPHER_WEP:
3451                 case ATH9K_CIPHER_MIC:
3452                 case ATH9K_CIPHER_CLR:
3453                         return true;
3454                 default:
3455                         return false;
3456                 }
3457         case ATH9K_CAP_TKIP_MIC:
3458                 switch (capability) {
3459                 case 0:
3460                         return true;
3461                 case 1:
3462                         return (ah->sta_id1_defaults &
3463                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3464                         false;
3465                 }
3466         case ATH9K_CAP_TKIP_SPLIT:
3467                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3468                         false : true;
3469         case ATH9K_CAP_DIVERSITY:
3470                 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3471                         AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3472                         true : false;
3473         case ATH9K_CAP_MCAST_KEYSRCH:
3474                 switch (capability) {
3475                 case 0:
3476                         return true;
3477                 case 1:
3478                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3479                                 return false;
3480                         } else {
3481                                 return (ah->sta_id1_defaults &
3482                                         AR_STA_ID1_MCAST_KSRCH) ? true :
3483                                         false;
3484                         }
3485                 }
3486                 return false;
3487         case ATH9K_CAP_TXPOW:
3488                 switch (capability) {
3489                 case 0:
3490                         return 0;
3491                 case 1:
3492                         *result = ah->regulatory.power_limit;
3493                         return 0;
3494                 case 2:
3495                         *result = ah->regulatory.max_power_level;
3496                         return 0;
3497                 case 3:
3498                         *result = ah->regulatory.tp_scale;
3499                         return 0;
3500                 }
3501                 return false;
3502         case ATH9K_CAP_DS:
3503                 return (AR_SREV_9280_20_OR_LATER(ah) &&
3504                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3505                         ? false : true;
3506         default:
3507                 return false;
3508         }
3509 }
3510
3511 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3512                             u32 capability, u32 setting, int *status)
3513 {
3514         u32 v;
3515
3516         switch (type) {
3517         case ATH9K_CAP_TKIP_MIC:
3518                 if (setting)
3519                         ah->sta_id1_defaults |=
3520                                 AR_STA_ID1_CRPT_MIC_ENABLE;
3521                 else
3522                         ah->sta_id1_defaults &=
3523                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3524                 return true;
3525         case ATH9K_CAP_DIVERSITY:
3526                 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3527                 if (setting)
3528                         v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3529                 else
3530                         v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3531                 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3532                 return true;
3533         case ATH9K_CAP_MCAST_KEYSRCH:
3534                 if (setting)
3535                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3536                 else
3537                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3538                 return true;
3539         default:
3540                 return false;
3541         }
3542 }
3543
3544 /****************************/
3545 /* GPIO / RFKILL / Antennae */
3546 /****************************/
3547
3548 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3549                                          u32 gpio, u32 type)
3550 {
3551         int addr;
3552         u32 gpio_shift, tmp;
3553
3554         if (gpio > 11)
3555                 addr = AR_GPIO_OUTPUT_MUX3;
3556         else if (gpio > 5)
3557                 addr = AR_GPIO_OUTPUT_MUX2;
3558         else
3559                 addr = AR_GPIO_OUTPUT_MUX1;
3560
3561         gpio_shift = (gpio % 6) * 5;
3562
3563         if (AR_SREV_9280_20_OR_LATER(ah)
3564             || (addr != AR_GPIO_OUTPUT_MUX1)) {
3565                 REG_RMW(ah, addr, (type << gpio_shift),
3566                         (0x1f << gpio_shift));
3567         } else {
3568                 tmp = REG_READ(ah, addr);
3569                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3570                 tmp &= ~(0x1f << gpio_shift);
3571                 tmp |= (type << gpio_shift);
3572                 REG_WRITE(ah, addr, tmp);
3573         }
3574 }
3575
3576 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3577 {
3578         u32 gpio_shift;
3579
3580         ASSERT(gpio < ah->caps.num_gpio_pins);
3581
3582         gpio_shift = gpio << 1;
3583
3584         REG_RMW(ah,
3585                 AR_GPIO_OE_OUT,
3586                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3587                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3588 }
3589
3590 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3591 {
3592 #define MS_REG_READ(x, y) \
3593         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3594
3595         if (gpio >= ah->caps.num_gpio_pins)
3596                 return 0xffffffff;
3597
3598         if (AR_SREV_9285_10_OR_LATER(ah))
3599                 return MS_REG_READ(AR9285, gpio) != 0;
3600         else if (AR_SREV_9280_10_OR_LATER(ah))
3601                 return MS_REG_READ(AR928X, gpio) != 0;
3602         else
3603                 return MS_REG_READ(AR, gpio) != 0;
3604 }
3605
3606 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3607                          u32 ah_signal_type)
3608 {
3609         u32 gpio_shift;
3610
3611         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3612
3613         gpio_shift = 2 * gpio;
3614
3615         REG_RMW(ah,
3616                 AR_GPIO_OE_OUT,
3617                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3618                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3619 }
3620
3621 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3622 {
3623         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3624                 AR_GPIO_BIT(gpio));
3625 }
3626
3627 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3628 {
3629         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3630 }
3631
3632 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3633 {
3634         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3635 }
3636
3637 bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
3638                                enum ath9k_ant_setting settings,
3639                                struct ath9k_channel *chan,
3640                                u8 *tx_chainmask,
3641                                u8 *rx_chainmask,
3642                                u8 *antenna_cfgd)
3643 {
3644         static u8 tx_chainmask_cfg, rx_chainmask_cfg;
3645
3646         if (AR_SREV_9280(ah)) {
3647                 if (!tx_chainmask_cfg) {
3648
3649                         tx_chainmask_cfg = *tx_chainmask;
3650                         rx_chainmask_cfg = *rx_chainmask;
3651                 }
3652
3653                 switch (settings) {
3654                 case ATH9K_ANT_FIXED_A:
3655                         *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3656                         *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3657                         *antenna_cfgd = true;
3658                         break;
3659                 case ATH9K_ANT_FIXED_B:
3660                         if (ah->caps.tx_chainmask >
3661                             ATH9K_ANTENNA1_CHAINMASK) {
3662                                 *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3663                         }
3664                         *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3665                         *antenna_cfgd = true;
3666                         break;
3667                 case ATH9K_ANT_VARIABLE:
3668                         *tx_chainmask = tx_chainmask_cfg;
3669                         *rx_chainmask = rx_chainmask_cfg;
3670                         *antenna_cfgd = true;
3671                         break;
3672                 default:
3673                         break;
3674                 }
3675         } else {
3676                 ah->diversity_control = settings;
3677         }
3678
3679         return true;
3680 }
3681
3682 /*********************/
3683 /* General Operation */
3684 /*********************/
3685
3686 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3687 {
3688         u32 bits = REG_READ(ah, AR_RX_FILTER);
3689         u32 phybits = REG_READ(ah, AR_PHY_ERR);
3690
3691         if (phybits & AR_PHY_ERR_RADAR)
3692                 bits |= ATH9K_RX_FILTER_PHYRADAR;
3693         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3694                 bits |= ATH9K_RX_FILTER_PHYERR;
3695
3696         return bits;
3697 }
3698
3699 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3700 {
3701         u32 phybits;
3702
3703         REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
3704         phybits = 0;
3705         if (bits & ATH9K_RX_FILTER_PHYRADAR)
3706                 phybits |= AR_PHY_ERR_RADAR;
3707         if (bits & ATH9K_RX_FILTER_PHYERR)
3708                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3709         REG_WRITE(ah, AR_PHY_ERR, phybits);
3710
3711         if (phybits)
3712                 REG_WRITE(ah, AR_RXCFG,
3713                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3714         else
3715                 REG_WRITE(ah, AR_RXCFG,
3716                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3717 }
3718
3719 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3720 {
3721         return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
3722 }
3723
3724 bool ath9k_hw_disable(struct ath_hw *ah)
3725 {
3726         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3727                 return false;
3728
3729         return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
3730 }
3731
3732 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3733 {
3734         struct ath9k_channel *chan = ah->curchan;
3735         struct ieee80211_channel *channel = chan->chan;
3736
3737         ah->regulatory.power_limit = min(limit, (u32) MAX_RATE_POWER);
3738
3739         ah->eep_ops->set_txpower(ah, chan,
3740                                  ath9k_regd_get_ctl(&ah->regulatory, chan),
3741                                  channel->max_antenna_gain * 2,
3742                                  channel->max_power * 2,
3743                                  min((u32) MAX_RATE_POWER,
3744                                  (u32) ah->regulatory.power_limit));
3745 }
3746
3747 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3748 {
3749         memcpy(ah->macaddr, mac, ETH_ALEN);
3750 }
3751
3752 void ath9k_hw_setopmode(struct ath_hw *ah)
3753 {
3754         ath9k_hw_set_operating_mode(ah, ah->opmode);
3755 }
3756
3757 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3758 {
3759         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3760         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3761 }
3762
3763 void ath9k_hw_setbssidmask(struct ath_softc *sc)
3764 {
3765         REG_WRITE(sc->sc_ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
3766         REG_WRITE(sc->sc_ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
3767 }
3768
3769 void ath9k_hw_write_associd(struct ath_softc *sc)
3770 {
3771         REG_WRITE(sc->sc_ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
3772         REG_WRITE(sc->sc_ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
3773                   ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3774 }
3775
3776 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3777 {
3778         u64 tsf;
3779
3780         tsf = REG_READ(ah, AR_TSF_U32);
3781         tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3782
3783         return tsf;
3784 }
3785
3786 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3787 {
3788         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3789         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3790 }
3791
3792 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3793 {
3794         int count;
3795
3796         count = 0;
3797         while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
3798                 count++;
3799                 if (count > 10) {
3800                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3801                                 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3802                         break;
3803                 }
3804                 udelay(10);
3805         }
3806         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3807 }
3808
3809 bool ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3810 {
3811         if (setting)
3812                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3813         else
3814                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3815
3816         return true;
3817 }
3818
3819 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
3820 {
3821         if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
3822                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us);
3823                 ah->slottime = (u32) -1;
3824                 return false;
3825         } else {
3826                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
3827                 ah->slottime = us;
3828                 return true;
3829         }
3830 }
3831
3832 void ath9k_hw_set11nmac2040(struct ath_hw *ah, enum ath9k_ht_macmode mode)
3833 {
3834         u32 macmode;
3835
3836         if (mode == ATH9K_HT_MACMODE_2040 &&
3837             !ah->config.cwm_ignore_extcca)
3838                 macmode = AR_2040_JOINED_RX_CLEAR;
3839         else
3840                 macmode = 0;
3841
3842         REG_WRITE(ah, AR_2040_MODE, macmode);
3843 }
3844
3845 /***************************/
3846 /*  Bluetooth Coexistence  */
3847 /***************************/
3848
3849 void ath9k_hw_btcoex_enable(struct ath_hw *ah)
3850 {
3851         /* connect bt_active to baseband */
3852         REG_CLR_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3853                         (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
3854                          AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
3855
3856         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3857                         AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
3858
3859         /* Set input mux for bt_active to gpio pin */
3860         REG_RMW_FIELD(ah, AR_GPIO_INPUT_MUX1,
3861                         AR_GPIO_INPUT_MUX1_BT_ACTIVE,
3862                         ah->btactive_gpio);
3863
3864         /* Configure the desired gpio port for input */
3865         ath9k_hw_cfg_gpio_input(ah, ah->btactive_gpio);
3866
3867         /* Configure the desired GPIO port for TX_FRAME output */
3868         ath9k_hw_cfg_output(ah, ah->wlanactive_gpio,
3869                             AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
3870 }