Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[pandora-kernel.git] / drivers / net / wireless / ath / ath9k / eeprom.c
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include "hw.h"
18
19 static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
20 {
21         if (fbin == AR5416_BCHAN_UNUSED)
22                 return fbin;
23
24         return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
25 }
26
27 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
28 {
29         REG_WRITE(ah, reg, val);
30
31         if (ah->config.analog_shiftreg)
32                 udelay(100);
33 }
34
35 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
36                                u32 shift, u32 val)
37 {
38         u32 regVal;
39
40         regVal = REG_READ(ah, reg) & ~mask;
41         regVal |= (val << shift) & mask;
42
43         REG_WRITE(ah, reg, regVal);
44
45         if (ah->config.analog_shiftreg)
46                 udelay(100);
47 }
48
49 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
50                              int16_t targetLeft, int16_t targetRight)
51 {
52         int16_t rv;
53
54         if (srcRight == srcLeft) {
55                 rv = targetLeft;
56         } else {
57                 rv = (int16_t) (((target - srcLeft) * targetRight +
58                                  (srcRight - target) * targetLeft) /
59                                 (srcRight - srcLeft));
60         }
61         return rv;
62 }
63
64 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
65                                     u16 *indexL, u16 *indexR)
66 {
67         u16 i;
68
69         if (target <= pList[0]) {
70                 *indexL = *indexR = 0;
71                 return true;
72         }
73         if (target >= pList[listSize - 1]) {
74                 *indexL = *indexR = (u16) (listSize - 1);
75                 return true;
76         }
77
78         for (i = 0; i < listSize - 1; i++) {
79                 if (pList[i] == target) {
80                         *indexL = *indexR = i;
81                         return true;
82                 }
83                 if (target < pList[i + 1]) {
84                         *indexL = i;
85                         *indexR = (u16) (i + 1);
86                         return false;
87                 }
88         }
89         return false;
90 }
91
92 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
93                                   int eep_start_loc, int size)
94 {
95         int i = 0, j, addr;
96         u32 addrdata[8];
97         u32 data[8];
98
99         for (addr = 0; addr < size; addr++) {
100                 addrdata[i] = AR5416_EEPROM_OFFSET +
101                         ((addr + eep_start_loc) << AR5416_EEPROM_S);
102                 i++;
103                 if (i == 8) {
104                         REG_READ_MULTI(ah, addrdata, data, i);
105
106                         for (j = 0; j < i; j++) {
107                                 *eep_data = data[j];
108                                 eep_data++;
109                         }
110                         i = 0;
111                 }
112         }
113
114         if (i != 0) {
115                 REG_READ_MULTI(ah, addrdata, data, i);
116
117                 for (j = 0; j < i; j++) {
118                         *eep_data = data[j];
119                         eep_data++;
120                 }
121         }
122 }
123
124 bool ath9k_hw_nvram_read(struct ath_common *common, u32 off, u16 *data)
125 {
126         return common->bus_ops->eeprom_read(common, off, data);
127 }
128
129 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
130                              u8 *pVpdList, u16 numIntercepts,
131                              u8 *pRetVpdList)
132 {
133         u16 i, k;
134         u8 currPwr = pwrMin;
135         u16 idxL = 0, idxR = 0;
136
137         for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
138                 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
139                                                numIntercepts, &(idxL),
140                                                &(idxR));
141                 if (idxR < 1)
142                         idxR = 1;
143                 if (idxL == numIntercepts - 1)
144                         idxL = (u16) (numIntercepts - 2);
145                 if (pPwrList[idxL] == pPwrList[idxR])
146                         k = pVpdList[idxL];
147                 else
148                         k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
149                                    (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
150                                   (pPwrList[idxR] - pPwrList[idxL]));
151                 pRetVpdList[i] = (u8) k;
152                 currPwr += 2;
153         }
154 }
155
156 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
157                                        struct ath9k_channel *chan,
158                                        struct cal_target_power_leg *powInfo,
159                                        u16 numChannels,
160                                        struct cal_target_power_leg *pNewPower,
161                                        u16 numRates, bool isExtTarget)
162 {
163         struct chan_centers centers;
164         u16 clo, chi;
165         int i;
166         int matchIndex = -1, lowIndex = -1;
167         u16 freq;
168
169         ath9k_hw_get_channel_centers(ah, chan, &centers);
170         freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
171
172         if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
173                                        IS_CHAN_2GHZ(chan))) {
174                 matchIndex = 0;
175         } else {
176                 for (i = 0; (i < numChannels) &&
177                              (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
178                         if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
179                                                        IS_CHAN_2GHZ(chan))) {
180                                 matchIndex = i;
181                                 break;
182                         } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
183                                                 IS_CHAN_2GHZ(chan)) && i > 0 &&
184                                    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
185                                                 IS_CHAN_2GHZ(chan))) {
186                                 lowIndex = i - 1;
187                                 break;
188                         }
189                 }
190                 if ((matchIndex == -1) && (lowIndex == -1))
191                         matchIndex = i - 1;
192         }
193
194         if (matchIndex != -1) {
195                 *pNewPower = powInfo[matchIndex];
196         } else {
197                 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
198                                          IS_CHAN_2GHZ(chan));
199                 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
200                                          IS_CHAN_2GHZ(chan));
201
202                 for (i = 0; i < numRates; i++) {
203                         pNewPower->tPow2x[i] =
204                                 (u8)ath9k_hw_interpolate(freq, clo, chi,
205                                                 powInfo[lowIndex].tPow2x[i],
206                                                 powInfo[lowIndex + 1].tPow2x[i]);
207                 }
208         }
209 }
210
211 void ath9k_hw_get_target_powers(struct ath_hw *ah,
212                                 struct ath9k_channel *chan,
213                                 struct cal_target_power_ht *powInfo,
214                                 u16 numChannels,
215                                 struct cal_target_power_ht *pNewPower,
216                                 u16 numRates, bool isHt40Target)
217 {
218         struct chan_centers centers;
219         u16 clo, chi;
220         int i;
221         int matchIndex = -1, lowIndex = -1;
222         u16 freq;
223
224         ath9k_hw_get_channel_centers(ah, chan, &centers);
225         freq = isHt40Target ? centers.synth_center : centers.ctl_center;
226
227         if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
228                 matchIndex = 0;
229         } else {
230                 for (i = 0; (i < numChannels) &&
231                              (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
232                         if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
233                                                        IS_CHAN_2GHZ(chan))) {
234                                 matchIndex = i;
235                                 break;
236                         } else
237                                 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
238                                                 IS_CHAN_2GHZ(chan)) && i > 0 &&
239                                     freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
240                                                 IS_CHAN_2GHZ(chan))) {
241                                         lowIndex = i - 1;
242                                         break;
243                                 }
244                 }
245                 if ((matchIndex == -1) && (lowIndex == -1))
246                         matchIndex = i - 1;
247         }
248
249         if (matchIndex != -1) {
250                 *pNewPower = powInfo[matchIndex];
251         } else {
252                 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
253                                          IS_CHAN_2GHZ(chan));
254                 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
255                                          IS_CHAN_2GHZ(chan));
256
257                 for (i = 0; i < numRates; i++) {
258                         pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
259                                                 clo, chi,
260                                                 powInfo[lowIndex].tPow2x[i],
261                                                 powInfo[lowIndex + 1].tPow2x[i]);
262                 }
263         }
264 }
265
266 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
267                                 bool is2GHz, int num_band_edges)
268 {
269         u16 twiceMaxEdgePower = MAX_RATE_POWER;
270         int i;
271
272         for (i = 0; (i < num_band_edges) &&
273                      (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
274                 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
275                         twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
276                         break;
277                 } else if ((i > 0) &&
278                            (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
279                                                       is2GHz))) {
280                         if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
281                                                is2GHz) < freq &&
282                             CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
283                                 twiceMaxEdgePower =
284                                         CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
285                         }
286                         break;
287                 }
288         }
289
290         return twiceMaxEdgePower;
291 }
292
293 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
294 {
295         struct ath_common *common = ath9k_hw_common(ah);
296         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
297
298         switch (ar5416_get_ntxchains(ah->txchainmask)) {
299         case 1:
300                 break;
301         case 2:
302                 regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
303                 break;
304         case 3:
305                 regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
306                 break;
307         default:
308                 ath_dbg(common, ATH_DBG_EEPROM,
309                         "Invalid chainmask configuration\n");
310                 break;
311         }
312 }
313
314 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
315                                 struct ath9k_channel *chan,
316                                 void *pRawDataSet,
317                                 u8 *bChans, u16 availPiers,
318                                 u16 tPdGainOverlap,
319                                 u16 *pPdGainBoundaries, u8 *pPDADCValues,
320                                 u16 numXpdGains)
321 {
322         int i, j, k;
323         int16_t ss;
324         u16 idxL = 0, idxR = 0, numPiers;
325         static u8 vpdTableL[AR5416_NUM_PD_GAINS]
326                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
327         static u8 vpdTableR[AR5416_NUM_PD_GAINS]
328                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
329         static u8 vpdTableI[AR5416_NUM_PD_GAINS]
330                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
331
332         u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
333         u8 minPwrT4[AR5416_NUM_PD_GAINS];
334         u8 maxPwrT4[AR5416_NUM_PD_GAINS];
335         int16_t vpdStep;
336         int16_t tmpVal;
337         u16 sizeCurrVpdTable, maxIndex, tgtIndex;
338         bool match;
339         int16_t minDelta = 0;
340         struct chan_centers centers;
341         int pdgain_boundary_default;
342         struct cal_data_per_freq *data_def = pRawDataSet;
343         struct cal_data_per_freq_4k *data_4k = pRawDataSet;
344         struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
345         bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
346         int intercepts;
347
348         if (AR_SREV_9287(ah))
349                 intercepts = AR9287_PD_GAIN_ICEPTS;
350         else
351                 intercepts = AR5416_PD_GAIN_ICEPTS;
352
353         memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
354         ath9k_hw_get_channel_centers(ah, chan, &centers);
355
356         for (numPiers = 0; numPiers < availPiers; numPiers++) {
357                 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
358                         break;
359         }
360
361         match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
362                                                              IS_CHAN_2GHZ(chan)),
363                                                bChans, numPiers, &idxL, &idxR);
364
365         if (match) {
366                 if (AR_SREV_9287(ah)) {
367                         /* FIXME: array overrun? */
368                         for (i = 0; i < numXpdGains; i++) {
369                                 minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
370                                 maxPwrT4[i] = data_9287[idxL].pwrPdg[i][4];
371                                 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
372                                                 data_9287[idxL].pwrPdg[i],
373                                                 data_9287[idxL].vpdPdg[i],
374                                                 intercepts,
375                                                 vpdTableI[i]);
376                         }
377                 } else if (eeprom_4k) {
378                         for (i = 0; i < numXpdGains; i++) {
379                                 minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
380                                 maxPwrT4[i] = data_4k[idxL].pwrPdg[i][4];
381                                 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
382                                                 data_4k[idxL].pwrPdg[i],
383                                                 data_4k[idxL].vpdPdg[i],
384                                                 intercepts,
385                                                 vpdTableI[i]);
386                         }
387                 } else {
388                         for (i = 0; i < numXpdGains; i++) {
389                                 minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
390                                 maxPwrT4[i] = data_def[idxL].pwrPdg[i][4];
391                                 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
392                                                 data_def[idxL].pwrPdg[i],
393                                                 data_def[idxL].vpdPdg[i],
394                                                 intercepts,
395                                                 vpdTableI[i]);
396                         }
397                 }
398         } else {
399                 for (i = 0; i < numXpdGains; i++) {
400                         if (AR_SREV_9287(ah)) {
401                                 pVpdL = data_9287[idxL].vpdPdg[i];
402                                 pPwrL = data_9287[idxL].pwrPdg[i];
403                                 pVpdR = data_9287[idxR].vpdPdg[i];
404                                 pPwrR = data_9287[idxR].pwrPdg[i];
405                         } else if (eeprom_4k) {
406                                 pVpdL = data_4k[idxL].vpdPdg[i];
407                                 pPwrL = data_4k[idxL].pwrPdg[i];
408                                 pVpdR = data_4k[idxR].vpdPdg[i];
409                                 pPwrR = data_4k[idxR].pwrPdg[i];
410                         } else {
411                                 pVpdL = data_def[idxL].vpdPdg[i];
412                                 pPwrL = data_def[idxL].pwrPdg[i];
413                                 pVpdR = data_def[idxR].vpdPdg[i];
414                                 pPwrR = data_def[idxR].pwrPdg[i];
415                         }
416
417                         minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
418
419                         maxPwrT4[i] =
420                                 min(pPwrL[intercepts - 1],
421                                     pPwrR[intercepts - 1]);
422
423
424                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
425                                                 pPwrL, pVpdL,
426                                                 intercepts,
427                                                 vpdTableL[i]);
428                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
429                                                 pPwrR, pVpdR,
430                                                 intercepts,
431                                                 vpdTableR[i]);
432
433                         for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
434                                 vpdTableI[i][j] =
435                                         (u8)(ath9k_hw_interpolate((u16)
436                                              FREQ2FBIN(centers.
437                                                        synth_center,
438                                                        IS_CHAN_2GHZ
439                                                        (chan)),
440                                              bChans[idxL], bChans[idxR],
441                                              vpdTableL[i][j], vpdTableR[i][j]));
442                         }
443                 }
444         }
445
446         k = 0;
447
448         for (i = 0; i < numXpdGains; i++) {
449                 if (i == (numXpdGains - 1))
450                         pPdGainBoundaries[i] =
451                                 (u16)(maxPwrT4[i] / 2);
452                 else
453                         pPdGainBoundaries[i] =
454                                 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
455
456                 pPdGainBoundaries[i] =
457                         min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
458
459                 if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
460                         minDelta = pPdGainBoundaries[0] - 23;
461                         pPdGainBoundaries[0] = 23;
462                 } else {
463                         minDelta = 0;
464                 }
465
466                 if (i == 0) {
467                         if (AR_SREV_9280_20_OR_LATER(ah))
468                                 ss = (int16_t)(0 - (minPwrT4[i] / 2));
469                         else
470                                 ss = 0;
471                 } else {
472                         ss = (int16_t)((pPdGainBoundaries[i - 1] -
473                                         (minPwrT4[i] / 2)) -
474                                        tPdGainOverlap + 1 + minDelta);
475                 }
476                 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
477                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
478
479                 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
480                         tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
481                         pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
482                         ss++;
483                 }
484
485                 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
486                 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
487                                 (minPwrT4[i] / 2));
488                 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
489                         tgtIndex : sizeCurrVpdTable;
490
491                 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
492                         pPDADCValues[k++] = vpdTableI[i][ss++];
493                 }
494
495                 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
496                                     vpdTableI[i][sizeCurrVpdTable - 2]);
497                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
498
499                 if (tgtIndex >= maxIndex) {
500                         while ((ss <= tgtIndex) &&
501                                (k < (AR5416_NUM_PDADC_VALUES - 1))) {
502                                 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
503                                                     (ss - maxIndex + 1) * vpdStep));
504                                 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
505                                                          255 : tmpVal);
506                                 ss++;
507                         }
508                 }
509         }
510
511         if (eeprom_4k)
512                 pdgain_boundary_default = 58;
513         else
514                 pdgain_boundary_default = pPdGainBoundaries[i - 1];
515
516         while (i < AR5416_PD_GAINS_IN_MASK) {
517                 pPdGainBoundaries[i] = pdgain_boundary_default;
518                 i++;
519         }
520
521         while (k < AR5416_NUM_PDADC_VALUES) {
522                 pPDADCValues[k] = pPDADCValues[k - 1];
523                 k++;
524         }
525 }
526
527 int ath9k_hw_eeprom_init(struct ath_hw *ah)
528 {
529         int status;
530
531         if (AR_SREV_9300_20_OR_LATER(ah))
532                 ah->eep_ops = &eep_ar9300_ops;
533         else if (AR_SREV_9287(ah)) {
534                 ah->eep_ops = &eep_ar9287_ops;
535         } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
536                 ah->eep_ops = &eep_4k_ops;
537         } else {
538                 ah->eep_ops = &eep_def_ops;
539         }
540
541         if (!ah->eep_ops->fill_eeprom(ah))
542                 return -EIO;
543
544         status = ah->eep_ops->check_eeprom(ah);
545
546         return status;
547 }