PM / x86: Save/restore MISC_ENABLE register
[pandora-kernel.git] / drivers / net / wireless / ath / ath5k / phy.c
1 /*
2  * PHY functions
3  *
4  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25
26 #include "ath5k.h"
27 #include "reg.h"
28 #include "base.h"
29 #include "rfbuffer.h"
30 #include "rfgain.h"
31
32 /*
33  * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
34  */
35 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
36                                         const struct ath5k_rf_reg *rf_regs,
37                                         u32 val, u8 reg_id, bool set)
38 {
39         const struct ath5k_rf_reg *rfreg = NULL;
40         u8 offset, bank, num_bits, col, position;
41         u16 entry;
42         u32 mask, data, last_bit, bits_shifted, first_bit;
43         u32 *rfb;
44         s32 bits_left;
45         int i;
46
47         data = 0;
48         rfb = ah->ah_rf_banks;
49
50         for (i = 0; i < ah->ah_rf_regs_count; i++) {
51                 if (rf_regs[i].index == reg_id) {
52                         rfreg = &rf_regs[i];
53                         break;
54                 }
55         }
56
57         if (rfb == NULL || rfreg == NULL) {
58                 ATH5K_PRINTF("Rf register not found!\n");
59                 /* should not happen */
60                 return 0;
61         }
62
63         bank = rfreg->bank;
64         num_bits = rfreg->field.len;
65         first_bit = rfreg->field.pos;
66         col = rfreg->field.col;
67
68         /* first_bit is an offset from bank's
69          * start. Since we have all banks on
70          * the same array, we use this offset
71          * to mark each bank's start */
72         offset = ah->ah_offset[bank];
73
74         /* Boundary check */
75         if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
76                 ATH5K_PRINTF("invalid values at offset %u\n", offset);
77                 return 0;
78         }
79
80         entry = ((first_bit - 1) / 8) + offset;
81         position = (first_bit - 1) % 8;
82
83         if (set)
84                 data = ath5k_hw_bitswap(val, num_bits);
85
86         for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
87         position = 0, entry++) {
88
89                 last_bit = (position + bits_left > 8) ? 8 :
90                                         position + bits_left;
91
92                 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
93                                                                 (col * 8);
94
95                 if (set) {
96                         rfb[entry] &= ~mask;
97                         rfb[entry] |= ((data << position) << (col * 8)) & mask;
98                         data >>= (8 - position);
99                 } else {
100                         data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
101                                 << bits_shifted;
102                         bits_shifted += last_bit - position;
103                 }
104
105                 bits_left -= 8 - position;
106         }
107
108         data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
109
110         return data;
111 }
112
113 /**********************\
114 * RF Gain optimization *
115 \**********************/
116
117 /*
118  * This code is used to optimize rf gain on different environments
119  * (temperature mostly) based on feedback from a power detector.
120  *
121  * It's only used on RF5111 and RF5112, later RF chips seem to have
122  * auto adjustment on hw -notice they have a much smaller BANK 7 and
123  * no gain optimization ladder-.
124  *
125  * For more infos check out this patent doc
126  * http://www.freepatentsonline.com/7400691.html
127  *
128  * This paper describes power drops as seen on the receiver due to
129  * probe packets
130  * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
131  * %20of%20Power%20Control.pdf
132  *
133  * And this is the MadWiFi bug entry related to the above
134  * http://madwifi-project.org/ticket/1659
135  * with various measurements and diagrams
136  *
137  * TODO: Deal with power drops due to probes by setting an apropriate
138  * tx power on the probe packets ! Make this part of the calibration process.
139  */
140
141 /* Initialize ah_gain durring attach */
142 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
143 {
144         /* Initialize the gain optimization values */
145         switch (ah->ah_radio) {
146         case AR5K_RF5111:
147                 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
148                 ah->ah_gain.g_low = 20;
149                 ah->ah_gain.g_high = 35;
150                 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
151                 break;
152         case AR5K_RF5112:
153                 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
154                 ah->ah_gain.g_low = 20;
155                 ah->ah_gain.g_high = 85;
156                 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
157                 break;
158         default:
159                 return -EINVAL;
160         }
161
162         return 0;
163 }
164
165 /* Schedule a gain probe check on the next transmited packet.
166  * That means our next packet is going to be sent with lower
167  * tx power and a Peak to Average Power Detector (PAPD) will try
168  * to measure the gain.
169  *
170  * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
171  * just after we enable the probe so that we don't mess with
172  * standard traffic ? Maybe it's time to use sw interrupts and
173  * a probe tasklet !!!
174  */
175 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
176 {
177
178         /* Skip if gain calibration is inactive or
179          * we already handle a probe request */
180         if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
181                 return;
182
183         /* Send the packet with 2dB below max power as
184          * patent doc suggest */
185         ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
186                         AR5K_PHY_PAPD_PROBE_TXPOWER) |
187                         AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
188
189         ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
190
191 }
192
193 /* Calculate gain_F measurement correction
194  * based on the current step for RF5112 rev. 2 */
195 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
196 {
197         u32 mix, step;
198         u32 *rf;
199         const struct ath5k_gain_opt *go;
200         const struct ath5k_gain_opt_step *g_step;
201         const struct ath5k_rf_reg *rf_regs;
202
203         /* Only RF5112 Rev. 2 supports it */
204         if ((ah->ah_radio != AR5K_RF5112) ||
205         (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
206                 return 0;
207
208         go = &rfgain_opt_5112;
209         rf_regs = rf_regs_5112a;
210         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
211
212         g_step = &go->go_step[ah->ah_gain.g_step_idx];
213
214         if (ah->ah_rf_banks == NULL)
215                 return 0;
216
217         rf = ah->ah_rf_banks;
218         ah->ah_gain.g_f_corr = 0;
219
220         /* No VGA (Variable Gain Amplifier) override, skip */
221         if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
222                 return 0;
223
224         /* Mix gain stepping */
225         step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
226
227         /* Mix gain override */
228         mix = g_step->gos_param[0];
229
230         switch (mix) {
231         case 3:
232                 ah->ah_gain.g_f_corr = step * 2;
233                 break;
234         case 2:
235                 ah->ah_gain.g_f_corr = (step - 5) * 2;
236                 break;
237         case 1:
238                 ah->ah_gain.g_f_corr = step;
239                 break;
240         default:
241                 ah->ah_gain.g_f_corr = 0;
242                 break;
243         }
244
245         return ah->ah_gain.g_f_corr;
246 }
247
248 /* Check if current gain_F measurement is in the range of our
249  * power detector windows. If we get a measurement outside range
250  * we know it's not accurate (detectors can't measure anything outside
251  * their detection window) so we must ignore it */
252 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
253 {
254         const struct ath5k_rf_reg *rf_regs;
255         u32 step, mix_ovr, level[4];
256         u32 *rf;
257
258         if (ah->ah_rf_banks == NULL)
259                 return false;
260
261         rf = ah->ah_rf_banks;
262
263         if (ah->ah_radio == AR5K_RF5111) {
264
265                 rf_regs = rf_regs_5111;
266                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
267
268                 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
269                         false);
270
271                 level[0] = 0;
272                 level[1] = (step == 63) ? 50 : step + 4;
273                 level[2] = (step != 63) ? 64 : level[0];
274                 level[3] = level[2] + 50 ;
275
276                 ah->ah_gain.g_high = level[3] -
277                         (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
278                 ah->ah_gain.g_low = level[0] +
279                         (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
280         } else {
281
282                 rf_regs = rf_regs_5112;
283                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
284
285                 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
286                         false);
287
288                 level[0] = level[2] = 0;
289
290                 if (mix_ovr == 1) {
291                         level[1] = level[3] = 83;
292                 } else {
293                         level[1] = level[3] = 107;
294                         ah->ah_gain.g_high = 55;
295                 }
296         }
297
298         return (ah->ah_gain.g_current >= level[0] &&
299                         ah->ah_gain.g_current <= level[1]) ||
300                 (ah->ah_gain.g_current >= level[2] &&
301                         ah->ah_gain.g_current <= level[3]);
302 }
303
304 /* Perform gain_F adjustment by choosing the right set
305  * of parameters from rf gain optimization ladder */
306 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
307 {
308         const struct ath5k_gain_opt *go;
309         const struct ath5k_gain_opt_step *g_step;
310         int ret = 0;
311
312         switch (ah->ah_radio) {
313         case AR5K_RF5111:
314                 go = &rfgain_opt_5111;
315                 break;
316         case AR5K_RF5112:
317                 go = &rfgain_opt_5112;
318                 break;
319         default:
320                 return 0;
321         }
322
323         g_step = &go->go_step[ah->ah_gain.g_step_idx];
324
325         if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
326
327                 /* Reached maximum */
328                 if (ah->ah_gain.g_step_idx == 0)
329                         return -1;
330
331                 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
332                                 ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
333                                 ah->ah_gain.g_step_idx > 0;
334                                 g_step = &go->go_step[ah->ah_gain.g_step_idx])
335                         ah->ah_gain.g_target -= 2 *
336                             (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
337                             g_step->gos_gain);
338
339                 ret = 1;
340                 goto done;
341         }
342
343         if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
344
345                 /* Reached minimum */
346                 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
347                         return -2;
348
349                 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
350                                 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
351                                 ah->ah_gain.g_step_idx < go->go_steps_count-1;
352                                 g_step = &go->go_step[ah->ah_gain.g_step_idx])
353                         ah->ah_gain.g_target -= 2 *
354                             (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
355                             g_step->gos_gain);
356
357                 ret = 2;
358                 goto done;
359         }
360
361 done:
362         ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
363                 "ret %d, gain step %u, current gain %u, target gain %u\n",
364                 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
365                 ah->ah_gain.g_target);
366
367         return ret;
368 }
369
370 /* Main callback for thermal rf gain calibration engine
371  * Check for a new gain reading and schedule an adjustment
372  * if needed.
373  *
374  * TODO: Use sw interrupt to schedule reset if gain_F needs
375  * adjustment */
376 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
377 {
378         u32 data, type;
379         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
380
381         ATH5K_TRACE(ah->ah_sc);
382
383         if (ah->ah_rf_banks == NULL ||
384         ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
385                 return AR5K_RFGAIN_INACTIVE;
386
387         /* No check requested, either engine is inactive
388          * or an adjustment is already requested */
389         if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
390                 goto done;
391
392         /* Read the PAPD (Peak to Average Power Detector)
393          * register */
394         data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
395
396         /* No probe is scheduled, read gain_F measurement */
397         if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
398                 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
399                 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
400
401                 /* If tx packet is CCK correct the gain_F measurement
402                  * by cck ofdm gain delta */
403                 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
404                         if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
405                                 ah->ah_gain.g_current +=
406                                         ee->ee_cck_ofdm_gain_delta;
407                         else
408                                 ah->ah_gain.g_current +=
409                                         AR5K_GAIN_CCK_PROBE_CORR;
410                 }
411
412                 /* Further correct gain_F measurement for
413                  * RF5112A radios */
414                 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
415                         ath5k_hw_rf_gainf_corr(ah);
416                         ah->ah_gain.g_current =
417                                 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
418                                 (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
419                                 0;
420                 }
421
422                 /* Check if measurement is ok and if we need
423                  * to adjust gain, schedule a gain adjustment,
424                  * else switch back to the acive state */
425                 if (ath5k_hw_rf_check_gainf_readback(ah) &&
426                 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
427                 ath5k_hw_rf_gainf_adjust(ah)) {
428                         ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
429                 } else {
430                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
431                 }
432         }
433
434 done:
435         return ah->ah_gain.g_state;
436 }
437
438 /* Write initial rf gain table to set the RF sensitivity
439  * this one works on all RF chips and has nothing to do
440  * with gain_F calibration */
441 int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
442 {
443         const struct ath5k_ini_rfgain *ath5k_rfg;
444         unsigned int i, size;
445
446         switch (ah->ah_radio) {
447         case AR5K_RF5111:
448                 ath5k_rfg = rfgain_5111;
449                 size = ARRAY_SIZE(rfgain_5111);
450                 break;
451         case AR5K_RF5112:
452                 ath5k_rfg = rfgain_5112;
453                 size = ARRAY_SIZE(rfgain_5112);
454                 break;
455         case AR5K_RF2413:
456                 ath5k_rfg = rfgain_2413;
457                 size = ARRAY_SIZE(rfgain_2413);
458                 break;
459         case AR5K_RF2316:
460                 ath5k_rfg = rfgain_2316;
461                 size = ARRAY_SIZE(rfgain_2316);
462                 break;
463         case AR5K_RF5413:
464                 ath5k_rfg = rfgain_5413;
465                 size = ARRAY_SIZE(rfgain_5413);
466                 break;
467         case AR5K_RF2317:
468         case AR5K_RF2425:
469                 ath5k_rfg = rfgain_2425;
470                 size = ARRAY_SIZE(rfgain_2425);
471                 break;
472         default:
473                 return -EINVAL;
474         }
475
476         switch (freq) {
477         case AR5K_INI_RFGAIN_2GHZ:
478         case AR5K_INI_RFGAIN_5GHZ:
479                 break;
480         default:
481                 return -EINVAL;
482         }
483
484         for (i = 0; i < size; i++) {
485                 AR5K_REG_WAIT(i);
486                 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
487                         (u32)ath5k_rfg[i].rfg_register);
488         }
489
490         return 0;
491 }
492
493
494
495 /********************\
496 * RF Registers setup *
497 \********************/
498
499
500 /*
501  * Setup RF registers by writing rf buffer on hw
502  */
503 int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
504                 unsigned int mode)
505 {
506         const struct ath5k_rf_reg *rf_regs;
507         const struct ath5k_ini_rfbuffer *ini_rfb;
508         const struct ath5k_gain_opt *go = NULL;
509         const struct ath5k_gain_opt_step *g_step;
510         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
511         u8 ee_mode = 0;
512         u32 *rfb;
513         int i, obdb = -1, bank = -1;
514
515         switch (ah->ah_radio) {
516         case AR5K_RF5111:
517                 rf_regs = rf_regs_5111;
518                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
519                 ini_rfb = rfb_5111;
520                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
521                 go = &rfgain_opt_5111;
522                 break;
523         case AR5K_RF5112:
524                 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
525                         rf_regs = rf_regs_5112a;
526                         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
527                         ini_rfb = rfb_5112a;
528                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
529                 } else {
530                         rf_regs = rf_regs_5112;
531                         ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
532                         ini_rfb = rfb_5112;
533                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
534                 }
535                 go = &rfgain_opt_5112;
536                 break;
537         case AR5K_RF2413:
538                 rf_regs = rf_regs_2413;
539                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
540                 ini_rfb = rfb_2413;
541                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
542                 break;
543         case AR5K_RF2316:
544                 rf_regs = rf_regs_2316;
545                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
546                 ini_rfb = rfb_2316;
547                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
548                 break;
549         case AR5K_RF5413:
550                 rf_regs = rf_regs_5413;
551                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
552                 ini_rfb = rfb_5413;
553                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
554                 break;
555         case AR5K_RF2317:
556                 rf_regs = rf_regs_2425;
557                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
558                 ini_rfb = rfb_2317;
559                 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
560                 break;
561         case AR5K_RF2425:
562                 rf_regs = rf_regs_2425;
563                 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
564                 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
565                         ini_rfb = rfb_2425;
566                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
567                 } else {
568                         ini_rfb = rfb_2417;
569                         ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
570                 }
571                 break;
572         default:
573                 return -EINVAL;
574         }
575
576         /* If it's the first time we set rf buffer, allocate
577          * ah->ah_rf_banks based on ah->ah_rf_banks_size
578          * we set above */
579         if (ah->ah_rf_banks == NULL) {
580                 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
581                                                                 GFP_KERNEL);
582                 if (ah->ah_rf_banks == NULL) {
583                         ATH5K_ERR(ah->ah_sc, "out of memory\n");
584                         return -ENOMEM;
585                 }
586         }
587
588         /* Copy values to modify them */
589         rfb = ah->ah_rf_banks;
590
591         for (i = 0; i < ah->ah_rf_banks_size; i++) {
592                 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
593                         ATH5K_ERR(ah->ah_sc, "invalid bank\n");
594                         return -EINVAL;
595                 }
596
597                 /* Bank changed, write down the offset */
598                 if (bank != ini_rfb[i].rfb_bank) {
599                         bank = ini_rfb[i].rfb_bank;
600                         ah->ah_offset[bank] = i;
601                 }
602
603                 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
604         }
605
606         /* Set Output and Driver bias current (OB/DB) */
607         if (channel->hw_value & CHANNEL_2GHZ) {
608
609                 if (channel->hw_value & CHANNEL_CCK)
610                         ee_mode = AR5K_EEPROM_MODE_11B;
611                 else
612                         ee_mode = AR5K_EEPROM_MODE_11G;
613
614                 /* For RF511X/RF211X combination we
615                  * use b_OB and b_DB parameters stored
616                  * in eeprom on ee->ee_ob[ee_mode][0]
617                  *
618                  * For all other chips we use OB/DB for 2Ghz
619                  * stored in the b/g modal section just like
620                  * 802.11a on ee->ee_ob[ee_mode][1] */
621                 if ((ah->ah_radio == AR5K_RF5111) ||
622                 (ah->ah_radio == AR5K_RF5112))
623                         obdb = 0;
624                 else
625                         obdb = 1;
626
627                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
628                                                 AR5K_RF_OB_2GHZ, true);
629
630                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
631                                                 AR5K_RF_DB_2GHZ, true);
632
633         /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
634         } else if ((channel->hw_value & CHANNEL_5GHZ) ||
635                         (ah->ah_radio == AR5K_RF5111)) {
636
637                 /* For 11a, Turbo and XR we need to choose
638                  * OB/DB based on frequency range */
639                 ee_mode = AR5K_EEPROM_MODE_11A;
640                 obdb =   channel->center_freq >= 5725 ? 3 :
641                         (channel->center_freq >= 5500 ? 2 :
642                         (channel->center_freq >= 5260 ? 1 :
643                          (channel->center_freq > 4000 ? 0 : -1)));
644
645                 if (obdb < 0)
646                         return -EINVAL;
647
648                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
649                                                 AR5K_RF_OB_5GHZ, true);
650
651                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
652                                                 AR5K_RF_DB_5GHZ, true);
653         }
654
655         g_step = &go->go_step[ah->ah_gain.g_step_idx];
656
657         /* Bank Modifications (chip-specific) */
658         if (ah->ah_radio == AR5K_RF5111) {
659
660                 /* Set gain_F settings according to current step */
661                 if (channel->hw_value & CHANNEL_OFDM) {
662
663                         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
664                                         AR5K_PHY_FRAME_CTL_TX_CLIP,
665                                         g_step->gos_param[0]);
666
667                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
668                                                         AR5K_RF_PWD_90, true);
669
670                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
671                                                         AR5K_RF_PWD_84, true);
672
673                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
674                                                 AR5K_RF_RFGAIN_SEL, true);
675
676                         /* We programmed gain_F parameters, switch back
677                          * to active state */
678                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
679
680                 }
681
682                 /* Bank 6/7 setup */
683
684                 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
685                                                 AR5K_RF_PWD_XPD, true);
686
687                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
688                                                 AR5K_RF_XPD_GAIN, true);
689
690                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
691                                                 AR5K_RF_GAIN_I, true);
692
693                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
694                                                 AR5K_RF_PLO_SEL, true);
695
696                 /* TODO: Half/quarter channel support */
697         }
698
699         if (ah->ah_radio == AR5K_RF5112) {
700
701                 /* Set gain_F settings according to current step */
702                 if (channel->hw_value & CHANNEL_OFDM) {
703
704                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
705                                                 AR5K_RF_MIXGAIN_OVR, true);
706
707                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
708                                                 AR5K_RF_PWD_138, true);
709
710                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
711                                                 AR5K_RF_PWD_137, true);
712
713                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
714                                                 AR5K_RF_PWD_136, true);
715
716                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
717                                                 AR5K_RF_PWD_132, true);
718
719                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
720                                                 AR5K_RF_PWD_131, true);
721
722                         ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
723                                                 AR5K_RF_PWD_130, true);
724
725                         /* We programmed gain_F parameters, switch back
726                          * to active state */
727                         ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
728                 }
729
730                 /* Bank 6/7 setup */
731
732                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
733                                                 AR5K_RF_XPD_SEL, true);
734
735                 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
736                         /* Rev. 1 supports only one xpd */
737                         ath5k_hw_rfb_op(ah, rf_regs,
738                                                 ee->ee_x_gain[ee_mode],
739                                                 AR5K_RF_XPD_GAIN, true);
740
741                 } else {
742                         u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
743                         if (ee->ee_pd_gains[ee_mode] > 1) {
744                                 ath5k_hw_rfb_op(ah, rf_regs,
745                                                 pdg_curve_to_idx[0],
746                                                 AR5K_RF_PD_GAIN_LO, true);
747                                 ath5k_hw_rfb_op(ah, rf_regs,
748                                                 pdg_curve_to_idx[1],
749                                                 AR5K_RF_PD_GAIN_HI, true);
750                         } else {
751                                 ath5k_hw_rfb_op(ah, rf_regs,
752                                                 pdg_curve_to_idx[0],
753                                                 AR5K_RF_PD_GAIN_LO, true);
754                                 ath5k_hw_rfb_op(ah, rf_regs,
755                                                 pdg_curve_to_idx[0],
756                                                 AR5K_RF_PD_GAIN_HI, true);
757                         }
758
759                         /* Lower synth voltage on Rev 2 */
760                         ath5k_hw_rfb_op(ah, rf_regs, 2,
761                                         AR5K_RF_HIGH_VC_CP, true);
762
763                         ath5k_hw_rfb_op(ah, rf_regs, 2,
764                                         AR5K_RF_MID_VC_CP, true);
765
766                         ath5k_hw_rfb_op(ah, rf_regs, 2,
767                                         AR5K_RF_LOW_VC_CP, true);
768
769                         ath5k_hw_rfb_op(ah, rf_regs, 2,
770                                         AR5K_RF_PUSH_UP, true);
771
772                         /* Decrease power consumption on 5213+ BaseBand */
773                         if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
774                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
775                                                 AR5K_RF_PAD2GND, true);
776
777                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
778                                                 AR5K_RF_XB2_LVL, true);
779
780                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
781                                                 AR5K_RF_XB5_LVL, true);
782
783                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
784                                                 AR5K_RF_PWD_167, true);
785
786                                 ath5k_hw_rfb_op(ah, rf_regs, 1,
787                                                 AR5K_RF_PWD_166, true);
788                         }
789                 }
790
791                 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
792                                                 AR5K_RF_GAIN_I, true);
793
794                 /* TODO: Half/quarter channel support */
795
796         }
797
798         if (ah->ah_radio == AR5K_RF5413 &&
799         channel->hw_value & CHANNEL_2GHZ) {
800
801                 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
802                                                                         true);
803
804                 /* Set optimum value for early revisions (on pci-e chips) */
805                 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
806                 ah->ah_mac_srev < AR5K_SREV_AR5413)
807                         ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
808                                                 AR5K_RF_PWD_ICLOBUF_2G, true);
809
810         }
811
812         /* Write RF banks on hw */
813         for (i = 0; i < ah->ah_rf_banks_size; i++) {
814                 AR5K_REG_WAIT(i);
815                 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
816         }
817
818         return 0;
819 }
820
821
822 /**************************\
823   PHY/RF channel functions
824 \**************************/
825
826 /*
827  * Check if a channel is supported
828  */
829 bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
830 {
831         /* Check if the channel is in our supported range */
832         if (flags & CHANNEL_2GHZ) {
833                 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
834                     (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
835                         return true;
836         } else if (flags & CHANNEL_5GHZ)
837                 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
838                     (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
839                         return true;
840
841         return false;
842 }
843
844 /*
845  * Convertion needed for RF5110
846  */
847 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
848 {
849         u32 athchan;
850
851         /*
852          * Convert IEEE channel/MHz to an internal channel value used
853          * by the AR5210 chipset. This has not been verified with
854          * newer chipsets like the AR5212A who have a completely
855          * different RF/PHY part.
856          */
857         athchan = (ath5k_hw_bitswap(
858                         (ieee80211_frequency_to_channel(
859                                 channel->center_freq) - 24) / 2, 5)
860                                 << 1) | (1 << 6) | 0x1;
861         return athchan;
862 }
863
864 /*
865  * Set channel on RF5110
866  */
867 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
868                 struct ieee80211_channel *channel)
869 {
870         u32 data;
871
872         /*
873          * Set the channel and wait
874          */
875         data = ath5k_hw_rf5110_chan2athchan(channel);
876         ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
877         ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
878         mdelay(1);
879
880         return 0;
881 }
882
883 /*
884  * Convertion needed for 5111
885  */
886 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
887                 struct ath5k_athchan_2ghz *athchan)
888 {
889         int channel;
890
891         /* Cast this value to catch negative channel numbers (>= -19) */
892         channel = (int)ieee;
893
894         /*
895          * Map 2GHz IEEE channel to 5GHz Atheros channel
896          */
897         if (channel <= 13) {
898                 athchan->a2_athchan = 115 + channel;
899                 athchan->a2_flags = 0x46;
900         } else if (channel == 14) {
901                 athchan->a2_athchan = 124;
902                 athchan->a2_flags = 0x44;
903         } else if (channel >= 15 && channel <= 26) {
904                 athchan->a2_athchan = ((channel - 14) * 4) + 132;
905                 athchan->a2_flags = 0x46;
906         } else
907                 return -EINVAL;
908
909         return 0;
910 }
911
912 /*
913  * Set channel on 5111
914  */
915 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
916                 struct ieee80211_channel *channel)
917 {
918         struct ath5k_athchan_2ghz ath5k_channel_2ghz;
919         unsigned int ath5k_channel =
920                 ieee80211_frequency_to_channel(channel->center_freq);
921         u32 data0, data1, clock;
922         int ret;
923
924         /*
925          * Set the channel on the RF5111 radio
926          */
927         data0 = data1 = 0;
928
929         if (channel->hw_value & CHANNEL_2GHZ) {
930                 /* Map 2GHz channel to 5GHz Atheros channel ID */
931                 ret = ath5k_hw_rf5111_chan2athchan(
932                         ieee80211_frequency_to_channel(channel->center_freq),
933                         &ath5k_channel_2ghz);
934                 if (ret)
935                         return ret;
936
937                 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
938                 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
939                     << 5) | (1 << 4);
940         }
941
942         if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
943                 clock = 1;
944                 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
945                         (clock << 1) | (1 << 10) | 1;
946         } else {
947                 clock = 0;
948                 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
949                         << 2) | (clock << 1) | (1 << 10) | 1;
950         }
951
952         ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
953                         AR5K_RF_BUFFER);
954         ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
955                         AR5K_RF_BUFFER_CONTROL_3);
956
957         return 0;
958 }
959
960 /*
961  * Set channel on 5112 and newer
962  */
963 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
964                 struct ieee80211_channel *channel)
965 {
966         u32 data, data0, data1, data2;
967         u16 c;
968
969         data = data0 = data1 = data2 = 0;
970         c = channel->center_freq;
971
972         if (c < 4800) {
973                 if (!((c - 2224) % 5)) {
974                         data0 = ((2 * (c - 704)) - 3040) / 10;
975                         data1 = 1;
976                 } else if (!((c - 2192) % 5)) {
977                         data0 = ((2 * (c - 672)) - 3040) / 10;
978                         data1 = 0;
979                 } else
980                         return -EINVAL;
981
982                 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
983         } else if ((c % 5) != 2 || c > 5435) {
984                 if (!(c % 20) && c >= 5120) {
985                         data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
986                         data2 = ath5k_hw_bitswap(3, 2);
987                 } else if (!(c % 10)) {
988                         data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
989                         data2 = ath5k_hw_bitswap(2, 2);
990                 } else if (!(c % 5)) {
991                         data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
992                         data2 = ath5k_hw_bitswap(1, 2);
993                 } else
994                         return -EINVAL;
995         } else {
996                 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
997                 data2 = ath5k_hw_bitswap(0, 2);
998         }
999
1000         data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1001
1002         ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1003         ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1004
1005         return 0;
1006 }
1007
1008 /*
1009  * Set the channel on the RF2425
1010  */
1011 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1012                 struct ieee80211_channel *channel)
1013 {
1014         u32 data, data0, data2;
1015         u16 c;
1016
1017         data = data0 = data2 = 0;
1018         c = channel->center_freq;
1019
1020         if (c < 4800) {
1021                 data0 = ath5k_hw_bitswap((c - 2272), 8);
1022                 data2 = 0;
1023         /* ? 5GHz ? */
1024         } else if ((c % 5) != 2 || c > 5435) {
1025                 if (!(c % 20) && c < 5120)
1026                         data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1027                 else if (!(c % 10))
1028                         data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1029                 else if (!(c % 5))
1030                         data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1031                 else
1032                         return -EINVAL;
1033                 data2 = ath5k_hw_bitswap(1, 2);
1034         } else {
1035                 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1036                 data2 = ath5k_hw_bitswap(0, 2);
1037         }
1038
1039         data = (data0 << 4) | data2 << 2 | 0x1001;
1040
1041         ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1042         ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1043
1044         return 0;
1045 }
1046
1047 /*
1048  * Set a channel on the radio chip
1049  */
1050 int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1051 {
1052         int ret;
1053         /*
1054          * Check bounds supported by the PHY (we don't care about regultory
1055          * restrictions at this point). Note: hw_value already has the band
1056          * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1057          * of the band by that */
1058         if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1059                 ATH5K_ERR(ah->ah_sc,
1060                         "channel frequency (%u MHz) out of supported "
1061                         "band range\n",
1062                         channel->center_freq);
1063                         return -EINVAL;
1064         }
1065
1066         /*
1067          * Set the channel and wait
1068          */
1069         switch (ah->ah_radio) {
1070         case AR5K_RF5110:
1071                 ret = ath5k_hw_rf5110_channel(ah, channel);
1072                 break;
1073         case AR5K_RF5111:
1074                 ret = ath5k_hw_rf5111_channel(ah, channel);
1075                 break;
1076         case AR5K_RF2425:
1077                 ret = ath5k_hw_rf2425_channel(ah, channel);
1078                 break;
1079         default:
1080                 ret = ath5k_hw_rf5112_channel(ah, channel);
1081                 break;
1082         }
1083
1084         if (ret)
1085                 return ret;
1086
1087         /* Set JAPAN setting for channel 14 */
1088         if (channel->center_freq == 2484) {
1089                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1090                                 AR5K_PHY_CCKTXCTL_JAPAN);
1091         } else {
1092                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1093                                 AR5K_PHY_CCKTXCTL_WORLD);
1094         }
1095
1096         ah->ah_current_channel = channel;
1097         ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1098
1099         return 0;
1100 }
1101
1102 /*****************\
1103   PHY calibration
1104 \*****************/
1105
1106 static int sign_extend(int val, const int nbits)
1107 {
1108         int order = BIT(nbits-1);
1109         return (val ^ order) - order;
1110 }
1111
1112 static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1113 {
1114         s32 val;
1115
1116         val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1117         return sign_extend(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 9);
1118 }
1119
1120 void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1121 {
1122         int i;
1123
1124         ah->ah_nfcal_hist.index = 0;
1125         for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1126                 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1127 }
1128
1129 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1130 {
1131         struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1132         hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1133         hist->nfval[hist->index] = noise_floor;
1134 }
1135
1136 static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1137 {
1138         s16 sort[ATH5K_NF_CAL_HIST_MAX];
1139         s16 tmp;
1140         int i, j;
1141
1142         memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1143         for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1144                 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1145                         if (sort[j] > sort[j-1]) {
1146                                 tmp = sort[j];
1147                                 sort[j] = sort[j-1];
1148                                 sort[j-1] = tmp;
1149                         }
1150                 }
1151         }
1152         for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1153                 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1154                         "cal %d:%d\n", i, sort[i]);
1155         }
1156         return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1157 }
1158
1159 /*
1160  * When we tell the hardware to perform a noise floor calibration
1161  * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1162  * sample-and-hold the minimum noise level seen at the antennas.
1163  * This value is then stored in a ring buffer of recently measured
1164  * noise floor values so we have a moving window of the last few
1165  * samples.
1166  *
1167  * The median of the values in the history is then loaded into the
1168  * hardware for its own use for RSSI and CCA measurements.
1169  */
1170 static void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1171 {
1172         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1173         u32 val;
1174         s16 nf, threshold;
1175         u8 ee_mode;
1176
1177         /* keep last value if calibration hasn't completed */
1178         if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1179                 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1180                         "NF did not complete in calibration window\n");
1181
1182                 return;
1183         }
1184
1185         switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1186         case CHANNEL_A:
1187         case CHANNEL_T:
1188         case CHANNEL_XR:
1189                 ee_mode = AR5K_EEPROM_MODE_11A;
1190                 break;
1191         case CHANNEL_G:
1192         case CHANNEL_TG:
1193                 ee_mode = AR5K_EEPROM_MODE_11G;
1194                 break;
1195         default:
1196         case CHANNEL_B:
1197                 ee_mode = AR5K_EEPROM_MODE_11B;
1198                 break;
1199         }
1200
1201
1202         /* completed NF calibration, test threshold */
1203         nf = ath5k_hw_read_measured_noise_floor(ah);
1204         threshold = ee->ee_noise_floor_thr[ee_mode];
1205
1206         if (nf > threshold) {
1207                 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1208                         "noise floor failure detected; "
1209                         "read %d, threshold %d\n",
1210                         nf, threshold);
1211
1212                 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1213         }
1214
1215         ath5k_hw_update_nfcal_hist(ah, nf);
1216         nf = ath5k_hw_get_median_noise_floor(ah);
1217
1218         /* load noise floor (in .5 dBm) so the hardware will use it */
1219         val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1220         val |= (nf * 2) & AR5K_PHY_NF_M;
1221         ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1222
1223         AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1224                 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1225
1226         ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1227                 0, false);
1228
1229         /*
1230          * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1231          * so that we're not capped by the median we just loaded.
1232          * This will be used as the initial value for the next noise
1233          * floor calibration.
1234          */
1235         val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1236         ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1237         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1238                 AR5K_PHY_AGCCTL_NF_EN |
1239                 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1240                 AR5K_PHY_AGCCTL_NF);
1241
1242         ah->ah_noise_floor = nf;
1243
1244         ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1245                 "noise floor calibrated: %d\n", nf);
1246 }
1247
1248 /*
1249  * Perform a PHY calibration on RF5110
1250  * -Fix BPSK/QAM Constellation (I/Q correction)
1251  * -Calculate Noise Floor
1252  */
1253 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1254                 struct ieee80211_channel *channel)
1255 {
1256         u32 phy_sig, phy_agc, phy_sat, beacon;
1257         int ret;
1258
1259         /*
1260          * Disable beacons and RX/TX queues, wait
1261          */
1262         AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1263                 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1264         beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1265         ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1266
1267         mdelay(2);
1268
1269         /*
1270          * Set the channel (with AGC turned off)
1271          */
1272         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1273         udelay(10);
1274         ret = ath5k_hw_channel(ah, channel);
1275
1276         /*
1277          * Activate PHY and wait
1278          */
1279         ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1280         mdelay(1);
1281
1282         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1283
1284         if (ret)
1285                 return ret;
1286
1287         /*
1288          * Calibrate the radio chip
1289          */
1290
1291         /* Remember normal state */
1292         phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1293         phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1294         phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1295
1296         /* Update radio registers */
1297         ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1298                 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1299
1300         ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1301                         AR5K_PHY_AGCCOARSE_LO)) |
1302                 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1303                 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1304
1305         ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1306                         AR5K_PHY_ADCSAT_THR)) |
1307                 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1308                 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1309
1310         udelay(20);
1311
1312         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1313         udelay(10);
1314         ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1315         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1316
1317         mdelay(1);
1318
1319         /*
1320          * Enable calibration and wait until completion
1321          */
1322         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1323
1324         ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1325                         AR5K_PHY_AGCCTL_CAL, 0, false);
1326
1327         /* Reset to normal state */
1328         ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1329         ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1330         ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1331
1332         if (ret) {
1333                 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1334                                 channel->center_freq);
1335                 return ret;
1336         }
1337
1338         ath5k_hw_update_noise_floor(ah);
1339
1340         /*
1341          * Re-enable RX/TX and beacons
1342          */
1343         AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1344                 AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1345         ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1346
1347         return 0;
1348 }
1349
1350 /*
1351  * Perform a PHY calibration on RF5111/5112 and newer chips
1352  */
1353 static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1354                 struct ieee80211_channel *channel)
1355 {
1356         u32 i_pwr, q_pwr;
1357         s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1358         int i;
1359         ATH5K_TRACE(ah->ah_sc);
1360
1361         if (!ah->ah_calibration ||
1362                 ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1363                 goto done;
1364
1365         /* Calibration has finished, get the results and re-run */
1366
1367         /* work around empty results which can apparently happen on 5212 */
1368         for (i = 0; i <= 10; i++) {
1369                 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1370                 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1371                 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1372                 ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1373                         "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1374                 if (i_pwr && q_pwr)
1375                         break;
1376         }
1377
1378         i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1379
1380         if (ah->ah_version == AR5K_AR5211)
1381                 q_coffd = q_pwr >> 6;
1382         else
1383                 q_coffd = q_pwr >> 7;
1384
1385         /* protect against divide by 0 and loss of sign bits */
1386         if (i_coffd == 0 || q_coffd < 2)
1387                 goto done;
1388
1389         i_coff = (-iq_corr) / i_coffd;
1390         i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1391
1392         if (ah->ah_version == AR5K_AR5211)
1393                 q_coff = (i_pwr / q_coffd) - 64;
1394         else
1395                 q_coff = (i_pwr / q_coffd) - 128;
1396         q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1397
1398         ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1399                         "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1400                         i_coff, q_coff, i_coffd, q_coffd);
1401
1402         /* Commit new I/Q values (set enable bit last to match HAL sources) */
1403         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1404         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1405         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1406
1407         /* Re-enable calibration -if we don't we'll commit
1408          * the same values again and again */
1409         AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1410                         AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1411         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1412
1413 done:
1414
1415         /* TODO: Separate noise floor calibration from I/Q calibration
1416          * since noise floor calibration interrupts rx path while I/Q
1417          * calibration doesn't. We don't need to run noise floor calibration
1418          * as often as I/Q calibration.*/
1419         ath5k_hw_update_noise_floor(ah);
1420
1421         /* Initiate a gain_F calibration */
1422         ath5k_hw_request_rfgain_probe(ah);
1423
1424         return 0;
1425 }
1426
1427 /*
1428  * Perform a PHY calibration
1429  */
1430 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1431                 struct ieee80211_channel *channel)
1432 {
1433         int ret;
1434
1435         if (ah->ah_radio == AR5K_RF5110)
1436                 ret = ath5k_hw_rf5110_calibrate(ah, channel);
1437         else
1438                 ret = ath5k_hw_rf511x_calibrate(ah, channel);
1439
1440         return ret;
1441 }
1442
1443 /***************************\
1444 * Spur mitigation functions *
1445 \***************************/
1446
1447 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1448                                 struct ieee80211_channel *channel)
1449 {
1450         u8 refclk_freq;
1451
1452         if ((ah->ah_radio == AR5K_RF5112) ||
1453         (ah->ah_radio == AR5K_RF5413) ||
1454         (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1455                 refclk_freq = 40;
1456         else
1457                 refclk_freq = 32;
1458
1459         if ((channel->center_freq % refclk_freq != 0) &&
1460         ((channel->center_freq % refclk_freq < 10) ||
1461         (channel->center_freq % refclk_freq > 22)))
1462                 return true;
1463         else
1464                 return false;
1465 }
1466
1467 void
1468 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1469                                 struct ieee80211_channel *channel)
1470 {
1471         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1472         u32 mag_mask[4] = {0, 0, 0, 0};
1473         u32 pilot_mask[2] = {0, 0};
1474         /* Note: fbin values are scaled up by 2 */
1475         u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1476         s32 spur_delta_phase, spur_freq_sigma_delta;
1477         s32 spur_offset, num_symbols_x16;
1478         u8 num_symbol_offsets, i, freq_band;
1479
1480         /* Convert current frequency to fbin value (the same way channels
1481          * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1482          * up by 2 so we can compare it later */
1483         if (channel->hw_value & CHANNEL_2GHZ) {
1484                 chan_fbin = (channel->center_freq - 2300) * 10;
1485                 freq_band = AR5K_EEPROM_BAND_2GHZ;
1486         } else {
1487                 chan_fbin = (channel->center_freq - 4900) * 10;
1488                 freq_band = AR5K_EEPROM_BAND_5GHZ;
1489         }
1490
1491         /* Check if any spur_chan_fbin from EEPROM is
1492          * within our current channel's spur detection range */
1493         spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1494         spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1495         /* XXX: Half/Quarter channels ?*/
1496         if (channel->hw_value & CHANNEL_TURBO)
1497                 spur_detection_window *= 2;
1498
1499         for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1500                 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1501
1502                 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1503                  * so it's zero if we got nothing from EEPROM */
1504                 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1505                         spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1506                         break;
1507                 }
1508
1509                 if ((chan_fbin - spur_detection_window <=
1510                 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1511                 (chan_fbin + spur_detection_window >=
1512                 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1513                         spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1514                         break;
1515                 }
1516         }
1517
1518         /* We need to enable spur filter for this channel */
1519         if (spur_chan_fbin) {
1520                 spur_offset = spur_chan_fbin - chan_fbin;
1521                 /*
1522                  * Calculate deltas:
1523                  * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1524                  * spur_delta_phase -> spur_offset / chip_freq << 11
1525                  * Note: Both values have 100KHz resolution
1526                  */
1527                 /* XXX: Half/Quarter rate channels ? */
1528                 switch (channel->hw_value) {
1529                 case CHANNEL_A:
1530                         /* Both sample_freq and chip_freq are 40MHz */
1531                         spur_delta_phase = (spur_offset << 17) / 25;
1532                         spur_freq_sigma_delta = (spur_delta_phase >> 10);
1533                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1534                         break;
1535                 case CHANNEL_G:
1536                         /* sample_freq -> 40MHz chip_freq -> 44MHz
1537                          * (for b compatibility) */
1538                         spur_freq_sigma_delta = (spur_offset << 8) / 55;
1539                         spur_delta_phase = (spur_offset << 17) / 25;
1540                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1541                         break;
1542                 case CHANNEL_T:
1543                 case CHANNEL_TG:
1544                         /* Both sample_freq and chip_freq are 80MHz */
1545                         spur_delta_phase = (spur_offset << 16) / 25;
1546                         spur_freq_sigma_delta = (spur_delta_phase >> 10);
1547                         symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1548                         break;
1549                 default:
1550                         return;
1551                 }
1552
1553                 /* Calculate pilot and magnitude masks */
1554
1555                 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
1556                  * and divide by symbol_width to find how many symbols we have
1557                  * Note: number of symbols is scaled up by 16 */
1558                 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1559
1560                 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1561                 if (!(num_symbols_x16 & 0xF))
1562                         /* _X_ */
1563                         num_symbol_offsets = 3;
1564                 else
1565                         /* _xx_ */
1566                         num_symbol_offsets = 4;
1567
1568                 for (i = 0; i < num_symbol_offsets; i++) {
1569
1570                         /* Calculate pilot mask */
1571                         s32 curr_sym_off =
1572                                 (num_symbols_x16 / 16) + i + 25;
1573
1574                         /* Pilot magnitude mask seems to be a way to
1575                          * declare the boundaries for our detection
1576                          * window or something, it's 2 for the middle
1577                          * value(s) where the symbol is expected to be
1578                          * and 1 on the boundary values */
1579                         u8 plt_mag_map =
1580                                 (i == 0 || i == (num_symbol_offsets - 1))
1581                                                                 ? 1 : 2;
1582
1583                         if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1584                                 if (curr_sym_off <= 25)
1585                                         pilot_mask[0] |= 1 << curr_sym_off;
1586                                 else if (curr_sym_off >= 27)
1587                                         pilot_mask[0] |= 1 << (curr_sym_off - 1);
1588                         } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1589                                 pilot_mask[1] |= 1 << (curr_sym_off - 33);
1590
1591                         /* Calculate magnitude mask (for viterbi decoder) */
1592                         if (curr_sym_off >= -1 && curr_sym_off <= 14)
1593                                 mag_mask[0] |=
1594                                         plt_mag_map << (curr_sym_off + 1) * 2;
1595                         else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1596                                 mag_mask[1] |=
1597                                         plt_mag_map << (curr_sym_off - 15) * 2;
1598                         else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1599                                 mag_mask[2] |=
1600                                         plt_mag_map << (curr_sym_off - 31) * 2;
1601                         else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1602                                 mag_mask[3] |=
1603                                         plt_mag_map << (curr_sym_off - 47) * 2;
1604
1605                 }
1606
1607                 /* Write settings on hw to enable spur filter */
1608                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1609                                         AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1610                 /* XXX: Self correlator also ? */
1611                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1612                                         AR5K_PHY_IQ_PILOT_MASK_EN |
1613                                         AR5K_PHY_IQ_CHAN_MASK_EN |
1614                                         AR5K_PHY_IQ_SPUR_FILT_EN);
1615
1616                 /* Set delta phase and freq sigma delta */
1617                 ath5k_hw_reg_write(ah,
1618                                 AR5K_REG_SM(spur_delta_phase,
1619                                         AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1620                                 AR5K_REG_SM(spur_freq_sigma_delta,
1621                                 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1622                                 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1623                                 AR5K_PHY_TIMING_11);
1624
1625                 /* Write pilot masks */
1626                 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1627                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1628                                         AR5K_PHY_TIMING_8_PILOT_MASK_2,
1629                                         pilot_mask[1]);
1630
1631                 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1632                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1633                                         AR5K_PHY_TIMING_10_PILOT_MASK_2,
1634                                         pilot_mask[1]);
1635
1636                 /* Write magnitude masks */
1637                 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1638                 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1639                 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1640                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1641                                         AR5K_PHY_BIN_MASK_CTL_MASK_4,
1642                                         mag_mask[3]);
1643
1644                 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1645                 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1646                 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1647                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1648                                         AR5K_PHY_BIN_MASK2_4_MASK_4,
1649                                         mag_mask[3]);
1650
1651         } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1652         AR5K_PHY_IQ_SPUR_FILT_EN) {
1653                 /* Clean up spur mitigation settings and disable fliter */
1654                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1655                                         AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1656                 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1657                                         AR5K_PHY_IQ_PILOT_MASK_EN |
1658                                         AR5K_PHY_IQ_CHAN_MASK_EN |
1659                                         AR5K_PHY_IQ_SPUR_FILT_EN);
1660                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1661
1662                 /* Clear pilot masks */
1663                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1664                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1665                                         AR5K_PHY_TIMING_8_PILOT_MASK_2,
1666                                         0);
1667
1668                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1669                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1670                                         AR5K_PHY_TIMING_10_PILOT_MASK_2,
1671                                         0);
1672
1673                 /* Clear magnitude masks */
1674                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1675                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1676                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1677                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1678                                         AR5K_PHY_BIN_MASK_CTL_MASK_4,
1679                                         0);
1680
1681                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1682                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1683                 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1684                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1685                                         AR5K_PHY_BIN_MASK2_4_MASK_4,
1686                                         0);
1687         }
1688 }
1689
1690 /********************\
1691   Misc PHY functions
1692 \********************/
1693
1694 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1695 {
1696         ATH5K_TRACE(ah->ah_sc);
1697         /*Just a try M.F.*/
1698         ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1699
1700         return 0;
1701 }
1702
1703 /*
1704  * Get the PHY Chip revision
1705  */
1706 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1707 {
1708         unsigned int i;
1709         u32 srev;
1710         u16 ret;
1711
1712         ATH5K_TRACE(ah->ah_sc);
1713
1714         /*
1715          * Set the radio chip access register
1716          */
1717         switch (chan) {
1718         case CHANNEL_2GHZ:
1719                 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1720                 break;
1721         case CHANNEL_5GHZ:
1722                 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1723                 break;
1724         default:
1725                 return 0;
1726         }
1727
1728         mdelay(2);
1729
1730         /* ...wait until PHY is ready and read the selected radio revision */
1731         ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1732
1733         for (i = 0; i < 8; i++)
1734                 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1735
1736         if (ah->ah_version == AR5K_AR5210) {
1737                 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1738                 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1739         } else {
1740                 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1741                 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1742                                 ((srev & 0x0f) << 4), 8);
1743         }
1744
1745         /* Reset to the 5GHz mode */
1746         ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1747
1748         return ret;
1749 }
1750
1751 /*****************\
1752 * Antenna control *
1753 \*****************/
1754
1755 static void /*TODO:Boundary check*/
1756 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1757 {
1758         ATH5K_TRACE(ah->ah_sc);
1759
1760         if (ah->ah_version != AR5K_AR5210)
1761                 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1762 }
1763
1764 /*
1765  * Enable/disable fast rx antenna diversity
1766  */
1767 static void
1768 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1769 {
1770         switch (ee_mode) {
1771         case AR5K_EEPROM_MODE_11G:
1772                 /* XXX: This is set to
1773                  * disabled on initvals !!! */
1774         case AR5K_EEPROM_MODE_11A:
1775                 if (enable)
1776                         AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1777                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1778                 else
1779                         AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1780                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1781                 break;
1782         case AR5K_EEPROM_MODE_11B:
1783                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1784                                         AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1785                 break;
1786         default:
1787                 return;
1788         }
1789
1790         if (enable) {
1791                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1792                                 AR5K_PHY_RESTART_DIV_GC, 0xc);
1793
1794                 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1795                                         AR5K_PHY_FAST_ANT_DIV_EN);
1796         } else {
1797                 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1798                                 AR5K_PHY_RESTART_DIV_GC, 0x8);
1799
1800                 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1801                                         AR5K_PHY_FAST_ANT_DIV_EN);
1802         }
1803 }
1804
1805 /*
1806  * Set antenna operating mode
1807  */
1808 void
1809 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1810 {
1811         struct ieee80211_channel *channel = ah->ah_current_channel;
1812         bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1813         bool use_def_for_sg;
1814         u8 def_ant, tx_ant, ee_mode;
1815         u32 sta_id1 = 0;
1816
1817         def_ant = ah->ah_def_ant;
1818
1819         ATH5K_TRACE(ah->ah_sc);
1820
1821         switch (channel->hw_value & CHANNEL_MODES) {
1822         case CHANNEL_A:
1823         case CHANNEL_T:
1824         case CHANNEL_XR:
1825                 ee_mode = AR5K_EEPROM_MODE_11A;
1826                 break;
1827         case CHANNEL_G:
1828         case CHANNEL_TG:
1829                 ee_mode = AR5K_EEPROM_MODE_11G;
1830                 break;
1831         case CHANNEL_B:
1832                 ee_mode = AR5K_EEPROM_MODE_11B;
1833                 break;
1834         default:
1835                 ATH5K_ERR(ah->ah_sc,
1836                         "invalid channel: %d\n", channel->center_freq);
1837                 return;
1838         }
1839
1840         switch (ant_mode) {
1841         case AR5K_ANTMODE_DEFAULT:
1842                 tx_ant = 0;
1843                 use_def_for_tx = false;
1844                 update_def_on_tx = false;
1845                 use_def_for_rts = false;
1846                 use_def_for_sg = false;
1847                 fast_div = true;
1848                 break;
1849         case AR5K_ANTMODE_FIXED_A:
1850                 def_ant = 1;
1851                 tx_ant = 1;
1852                 use_def_for_tx = true;
1853                 update_def_on_tx = false;
1854                 use_def_for_rts = true;
1855                 use_def_for_sg = true;
1856                 fast_div = false;
1857                 break;
1858         case AR5K_ANTMODE_FIXED_B:
1859                 def_ant = 2;
1860                 tx_ant = 2;
1861                 use_def_for_tx = true;
1862                 update_def_on_tx = false;
1863                 use_def_for_rts = true;
1864                 use_def_for_sg = true;
1865                 fast_div = false;
1866                 break;
1867         case AR5K_ANTMODE_SINGLE_AP:
1868                 def_ant = 1;    /* updated on tx */
1869                 tx_ant = 0;
1870                 use_def_for_tx = true;
1871                 update_def_on_tx = true;
1872                 use_def_for_rts = true;
1873                 use_def_for_sg = true;
1874                 fast_div = true;
1875                 break;
1876         case AR5K_ANTMODE_SECTOR_AP:
1877                 tx_ant = 1;     /* variable */
1878                 use_def_for_tx = false;
1879                 update_def_on_tx = false;
1880                 use_def_for_rts = true;
1881                 use_def_for_sg = false;
1882                 fast_div = false;
1883                 break;
1884         case AR5K_ANTMODE_SECTOR_STA:
1885                 tx_ant = 1;     /* variable */
1886                 use_def_for_tx = true;
1887                 update_def_on_tx = false;
1888                 use_def_for_rts = true;
1889                 use_def_for_sg = false;
1890                 fast_div = true;
1891                 break;
1892         case AR5K_ANTMODE_DEBUG:
1893                 def_ant = 1;
1894                 tx_ant = 2;
1895                 use_def_for_tx = false;
1896                 update_def_on_tx = false;
1897                 use_def_for_rts = false;
1898                 use_def_for_sg = false;
1899                 fast_div = false;
1900                 break;
1901         default:
1902                 return;
1903         }
1904
1905         ah->ah_tx_ant = tx_ant;
1906         ah->ah_ant_mode = ant_mode;
1907         ah->ah_def_ant = def_ant;
1908
1909         sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1910         sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1911         sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1912         sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1913
1914         AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1915
1916         if (sta_id1)
1917                 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1918
1919         /* Note: set diversity before default antenna
1920          * because it won't work correctly */
1921         ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1922         ath5k_hw_set_def_antenna(ah, def_ant);
1923 }
1924
1925
1926 /****************\
1927 * TX power setup *
1928 \****************/
1929
1930 /*
1931  * Helper functions
1932  */
1933
1934 /*
1935  * Do linear interpolation between two given (x, y) points
1936  */
1937 static s16
1938 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1939                                         s16 y_left, s16 y_right)
1940 {
1941         s16 ratio, result;
1942
1943         /* Avoid divide by zero and skip interpolation
1944          * if we have the same point */
1945         if ((x_left == x_right) || (y_left == y_right))
1946                 return y_left;
1947
1948         /*
1949          * Since we use ints and not fps, we need to scale up in
1950          * order to get a sane ratio value (or else we 'll eg. get
1951          * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1952          * to have some accuracy both for 0.5 and 0.25 steps.
1953          */
1954         ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1955
1956         /* Now scale down to be in range */
1957         result = y_left + (ratio * (target - x_left) / 100);
1958
1959         return result;
1960 }
1961
1962 /*
1963  * Find vertical boundary (min pwr) for the linear PCDAC curve.
1964  *
1965  * Since we have the top of the curve and we draw the line below
1966  * until we reach 1 (1 pcdac step) we need to know which point
1967  * (x value) that is so that we don't go below y axis and have negative
1968  * pcdac values when creating the curve, or fill the table with zeroes.
1969  */
1970 static s16
1971 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1972                                 const s16 *pwrL, const s16 *pwrR)
1973 {
1974         s8 tmp;
1975         s16 min_pwrL, min_pwrR;
1976         s16 pwr_i;
1977
1978         /* Some vendors write the same pcdac value twice !!! */
1979         if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
1980                 return max(pwrL[0], pwrR[0]);
1981
1982         if (pwrL[0] == pwrL[1])
1983                 min_pwrL = pwrL[0];
1984         else {
1985                 pwr_i = pwrL[0];
1986                 do {
1987                         pwr_i--;
1988                         tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1989                                                         pwrL[0], pwrL[1],
1990                                                         stepL[0], stepL[1]);
1991                 } while (tmp > 1);
1992
1993                 min_pwrL = pwr_i;
1994         }
1995
1996         if (pwrR[0] == pwrR[1])
1997                 min_pwrR = pwrR[0];
1998         else {
1999                 pwr_i = pwrR[0];
2000                 do {
2001                         pwr_i--;
2002                         tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2003                                                         pwrR[0], pwrR[1],
2004                                                         stepR[0], stepR[1]);
2005                 } while (tmp > 1);
2006
2007                 min_pwrR = pwr_i;
2008         }
2009
2010         /* Keep the right boundary so that it works for both curves */
2011         return max(min_pwrL, min_pwrR);
2012 }
2013
2014 /*
2015  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2016  * Power to PCDAC curve.
2017  *
2018  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2019  * steps (offsets) on y axis. Power can go up to 31.5dB and max
2020  * PCDAC/PDADC step for each curve is 64 but we can write more than
2021  * one curves on hw so we can go up to 128 (which is the max step we
2022  * can write on the final table).
2023  *
2024  * We write y values (PCDAC/PDADC steps) on hw.
2025  */
2026 static void
2027 ath5k_create_power_curve(s16 pmin, s16 pmax,
2028                         const s16 *pwr, const u8 *vpd,
2029                         u8 num_points,
2030                         u8 *vpd_table, u8 type)
2031 {
2032         u8 idx[2] = { 0, 1 };
2033         s16 pwr_i = 2*pmin;
2034         int i;
2035
2036         if (num_points < 2)
2037                 return;
2038
2039         /* We want the whole line, so adjust boundaries
2040          * to cover the entire power range. Note that
2041          * power values are already 0.25dB so no need
2042          * to multiply pwr_i by 2 */
2043         if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2044                 pwr_i = pmin;
2045                 pmin = 0;
2046                 pmax = 63;
2047         }
2048
2049         /* Find surrounding turning points (TPs)
2050          * and interpolate between them */
2051         for (i = 0; (i <= (u16) (pmax - pmin)) &&
2052         (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2053
2054                 /* We passed the right TP, move to the next set of TPs
2055                  * if we pass the last TP, extrapolate above using the last
2056                  * two TPs for ratio */
2057                 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2058                         idx[0]++;
2059                         idx[1]++;
2060                 }
2061
2062                 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2063                                                 pwr[idx[0]], pwr[idx[1]],
2064                                                 vpd[idx[0]], vpd[idx[1]]);
2065
2066                 /* Increase by 0.5dB
2067                  * (0.25 dB units) */
2068                 pwr_i += 2;
2069         }
2070 }
2071
2072 /*
2073  * Get the surrounding per-channel power calibration piers
2074  * for a given frequency so that we can interpolate between
2075  * them and come up with an apropriate dataset for our current
2076  * channel.
2077  */
2078 static void
2079 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2080                         struct ieee80211_channel *channel,
2081                         struct ath5k_chan_pcal_info **pcinfo_l,
2082                         struct ath5k_chan_pcal_info **pcinfo_r)
2083 {
2084         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2085         struct ath5k_chan_pcal_info *pcinfo;
2086         u8 idx_l, idx_r;
2087         u8 mode, max, i;
2088         u32 target = channel->center_freq;
2089
2090         idx_l = 0;
2091         idx_r = 0;
2092
2093         if (!(channel->hw_value & CHANNEL_OFDM)) {
2094                 pcinfo = ee->ee_pwr_cal_b;
2095                 mode = AR5K_EEPROM_MODE_11B;
2096         } else if (channel->hw_value & CHANNEL_2GHZ) {
2097                 pcinfo = ee->ee_pwr_cal_g;
2098                 mode = AR5K_EEPROM_MODE_11G;
2099         } else {
2100                 pcinfo = ee->ee_pwr_cal_a;
2101                 mode = AR5K_EEPROM_MODE_11A;
2102         }
2103         max = ee->ee_n_piers[mode] - 1;
2104
2105         /* Frequency is below our calibrated
2106          * range. Use the lowest power curve
2107          * we have */
2108         if (target < pcinfo[0].freq) {
2109                 idx_l = idx_r = 0;
2110                 goto done;
2111         }
2112
2113         /* Frequency is above our calibrated
2114          * range. Use the highest power curve
2115          * we have */
2116         if (target > pcinfo[max].freq) {
2117                 idx_l = idx_r = max;
2118                 goto done;
2119         }
2120
2121         /* Frequency is inside our calibrated
2122          * channel range. Pick the surrounding
2123          * calibration piers so that we can
2124          * interpolate */
2125         for (i = 0; i <= max; i++) {
2126
2127                 /* Frequency matches one of our calibration
2128                  * piers, no need to interpolate, just use
2129                  * that calibration pier */
2130                 if (pcinfo[i].freq == target) {
2131                         idx_l = idx_r = i;
2132                         goto done;
2133                 }
2134
2135                 /* We found a calibration pier that's above
2136                  * frequency, use this pier and the previous
2137                  * one to interpolate */
2138                 if (target < pcinfo[i].freq) {
2139                         idx_r = i;
2140                         idx_l = idx_r - 1;
2141                         goto done;
2142                 }
2143         }
2144
2145 done:
2146         *pcinfo_l = &pcinfo[idx_l];
2147         *pcinfo_r = &pcinfo[idx_r];
2148 }
2149
2150 /*
2151  * Get the surrounding per-rate power calibration data
2152  * for a given frequency and interpolate between power
2153  * values to set max target power supported by hw for
2154  * each rate.
2155  */
2156 static void
2157 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2158                         struct ieee80211_channel *channel,
2159                         struct ath5k_rate_pcal_info *rates)
2160 {
2161         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2162         struct ath5k_rate_pcal_info *rpinfo;
2163         u8 idx_l, idx_r;
2164         u8 mode, max, i;
2165         u32 target = channel->center_freq;
2166
2167         idx_l = 0;
2168         idx_r = 0;
2169
2170         if (!(channel->hw_value & CHANNEL_OFDM)) {
2171                 rpinfo = ee->ee_rate_tpwr_b;
2172                 mode = AR5K_EEPROM_MODE_11B;
2173         } else if (channel->hw_value & CHANNEL_2GHZ) {
2174                 rpinfo = ee->ee_rate_tpwr_g;
2175                 mode = AR5K_EEPROM_MODE_11G;
2176         } else {
2177                 rpinfo = ee->ee_rate_tpwr_a;
2178                 mode = AR5K_EEPROM_MODE_11A;
2179         }
2180         max = ee->ee_rate_target_pwr_num[mode] - 1;
2181
2182         /* Get the surrounding calibration
2183          * piers - same as above */
2184         if (target < rpinfo[0].freq) {
2185                 idx_l = idx_r = 0;
2186                 goto done;
2187         }
2188
2189         if (target > rpinfo[max].freq) {
2190                 idx_l = idx_r = max;
2191                 goto done;
2192         }
2193
2194         for (i = 0; i <= max; i++) {
2195
2196                 if (rpinfo[i].freq == target) {
2197                         idx_l = idx_r = i;
2198                         goto done;
2199                 }
2200
2201                 if (target < rpinfo[i].freq) {
2202                         idx_r = i;
2203                         idx_l = idx_r - 1;
2204                         goto done;
2205                 }
2206         }
2207
2208 done:
2209         /* Now interpolate power value, based on the frequency */
2210         rates->freq = target;
2211
2212         rates->target_power_6to24 =
2213                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2214                                         rpinfo[idx_r].freq,
2215                                         rpinfo[idx_l].target_power_6to24,
2216                                         rpinfo[idx_r].target_power_6to24);
2217
2218         rates->target_power_36 =
2219                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2220                                         rpinfo[idx_r].freq,
2221                                         rpinfo[idx_l].target_power_36,
2222                                         rpinfo[idx_r].target_power_36);
2223
2224         rates->target_power_48 =
2225                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2226                                         rpinfo[idx_r].freq,
2227                                         rpinfo[idx_l].target_power_48,
2228                                         rpinfo[idx_r].target_power_48);
2229
2230         rates->target_power_54 =
2231                 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2232                                         rpinfo[idx_r].freq,
2233                                         rpinfo[idx_l].target_power_54,
2234                                         rpinfo[idx_r].target_power_54);
2235 }
2236
2237 /*
2238  * Get the max edge power for this channel if
2239  * we have such data from EEPROM's Conformance Test
2240  * Limits (CTL), and limit max power if needed.
2241  */
2242 static void
2243 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2244                         struct ieee80211_channel *channel)
2245 {
2246         struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2247         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2248         struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2249         u8 *ctl_val = ee->ee_ctl;
2250         s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2251         s16 edge_pwr = 0;
2252         u8 rep_idx;
2253         u8 i, ctl_mode;
2254         u8 ctl_idx = 0xFF;
2255         u32 target = channel->center_freq;
2256
2257         ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2258
2259         switch (channel->hw_value & CHANNEL_MODES) {
2260         case CHANNEL_A:
2261                 ctl_mode |= AR5K_CTL_11A;
2262                 break;
2263         case CHANNEL_G:
2264                 ctl_mode |= AR5K_CTL_11G;
2265                 break;
2266         case CHANNEL_B:
2267                 ctl_mode |= AR5K_CTL_11B;
2268                 break;
2269         case CHANNEL_T:
2270                 ctl_mode |= AR5K_CTL_TURBO;
2271                 break;
2272         case CHANNEL_TG:
2273                 ctl_mode |= AR5K_CTL_TURBOG;
2274                 break;
2275         case CHANNEL_XR:
2276                 /* Fall through */
2277         default:
2278                 return;
2279         }
2280
2281         for (i = 0; i < ee->ee_ctls; i++) {
2282                 if (ctl_val[i] == ctl_mode) {
2283                         ctl_idx = i;
2284                         break;
2285                 }
2286         }
2287
2288         /* If we have a CTL dataset available grab it and find the
2289          * edge power for our frequency */
2290         if (ctl_idx == 0xFF)
2291                 return;
2292
2293         /* Edge powers are sorted by frequency from lower
2294          * to higher. Each CTL corresponds to 8 edge power
2295          * measurements. */
2296         rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2297
2298         /* Don't do boundaries check because we
2299          * might have more that one bands defined
2300          * for this mode */
2301
2302         /* Get the edge power that's closer to our
2303          * frequency */
2304         for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2305                 rep_idx += i;
2306                 if (target <= rep[rep_idx].freq)
2307                         edge_pwr = (s16) rep[rep_idx].edge;
2308         }
2309
2310         if (edge_pwr)
2311                 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2312 }
2313
2314
2315 /*
2316  * Power to PCDAC table functions
2317  */
2318
2319 /*
2320  * Fill Power to PCDAC table on RF5111
2321  *
2322  * No further processing is needed for RF5111, the only thing we have to
2323  * do is fill the values below and above calibration range since eeprom data
2324  * may not cover the entire PCDAC table.
2325  */
2326 static void
2327 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2328                                                         s16 *table_max)
2329 {
2330         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2331         u8      *pcdac_tmp = ah->ah_txpower.tmpL[0];
2332         u8      pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2333         s16     min_pwr, max_pwr;
2334
2335         /* Get table boundaries */
2336         min_pwr = table_min[0];
2337         pcdac_0 = pcdac_tmp[0];
2338
2339         max_pwr = table_max[0];
2340         pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2341
2342         /* Extrapolate below minimum using pcdac_0 */
2343         pcdac_i = 0;
2344         for (i = 0; i < min_pwr; i++)
2345                 pcdac_out[pcdac_i++] = pcdac_0;
2346
2347         /* Copy values from pcdac_tmp */
2348         pwr_idx = min_pwr;
2349         for (i = 0 ; pwr_idx <= max_pwr &&
2350         pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2351                 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2352                 pwr_idx++;
2353         }
2354
2355         /* Extrapolate above maximum */
2356         while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2357                 pcdac_out[pcdac_i++] = pcdac_n;
2358
2359 }
2360
2361 /*
2362  * Combine available XPD Curves and fill Linear Power to PCDAC table
2363  * on RF5112
2364  *
2365  * RFX112 can have up to 2 curves (one for low txpower range and one for
2366  * higher txpower range). We need to put them both on pcdac_out and place
2367  * them in the correct location. In case we only have one curve available
2368  * just fit it on pcdac_out (it's supposed to cover the entire range of
2369  * available pwr levels since it's always the higher power curve). Extrapolate
2370  * below and above final table if needed.
2371  */
2372 static void
2373 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2374                                                 s16 *table_max, u8 pdcurves)
2375 {
2376         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2377         u8      *pcdac_low_pwr;
2378         u8      *pcdac_high_pwr;
2379         u8      *pcdac_tmp;
2380         u8      pwr;
2381         s16     max_pwr_idx;
2382         s16     min_pwr_idx;
2383         s16     mid_pwr_idx = 0;
2384         /* Edge flag turs on the 7nth bit on the PCDAC
2385          * to delcare the higher power curve (force values
2386          * to be greater than 64). If we only have one curve
2387          * we don't need to set this, if we have 2 curves and
2388          * fill the table backwards this can also be used to
2389          * switch from higher power curve to lower power curve */
2390         u8      edge_flag;
2391         int     i;
2392
2393         /* When we have only one curve available
2394          * that's the higher power curve. If we have
2395          * two curves the first is the high power curve
2396          * and the next is the low power curve. */
2397         if (pdcurves > 1) {
2398                 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2399                 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2400                 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2401                 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2402
2403                 /* If table size goes beyond 31.5dB, keep the
2404                  * upper 31.5dB range when setting tx power.
2405                  * Note: 126 = 31.5 dB in quarter dB steps */
2406                 if (table_max[0] - table_min[1] > 126)
2407                         min_pwr_idx = table_max[0] - 126;
2408                 else
2409                         min_pwr_idx = table_min[1];
2410
2411                 /* Since we fill table backwards
2412                  * start from high power curve */
2413                 pcdac_tmp = pcdac_high_pwr;
2414
2415                 edge_flag = 0x40;
2416         } else {
2417                 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2418                 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2419                 min_pwr_idx = table_min[0];
2420                 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2421                 pcdac_tmp = pcdac_high_pwr;
2422                 edge_flag = 0;
2423         }
2424
2425         /* This is used when setting tx power*/
2426         ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2427
2428         /* Fill Power to PCDAC table backwards */
2429         pwr = max_pwr_idx;
2430         for (i = 63; i >= 0; i--) {
2431                 /* Entering lower power range, reset
2432                  * edge flag and set pcdac_tmp to lower
2433                  * power curve.*/
2434                 if (edge_flag == 0x40 &&
2435                 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2436                         edge_flag = 0x00;
2437                         pcdac_tmp = pcdac_low_pwr;
2438                         pwr = mid_pwr_idx/2;
2439                 }
2440
2441                 /* Don't go below 1, extrapolate below if we have
2442                  * already swithced to the lower power curve -or
2443                  * we only have one curve and edge_flag is zero
2444                  * anyway */
2445                 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2446                         while (i >= 0) {
2447                                 pcdac_out[i] = pcdac_out[i + 1];
2448                                 i--;
2449                         }
2450                         break;
2451                 }
2452
2453                 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2454
2455                 /* Extrapolate above if pcdac is greater than
2456                  * 126 -this can happen because we OR pcdac_out
2457                  * value with edge_flag on high power curve */
2458                 if (pcdac_out[i] > 126)
2459                         pcdac_out[i] = 126;
2460
2461                 /* Decrease by a 0.5dB step */
2462                 pwr--;
2463         }
2464 }
2465
2466 /* Write PCDAC values on hw */
2467 static void
2468 ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2469 {
2470         u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
2471         int     i;
2472
2473         /*
2474          * Write TX power values
2475          */
2476         for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2477                 ath5k_hw_reg_write(ah,
2478                         (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2479                         (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2480                         AR5K_PHY_PCDAC_TXPOWER(i));
2481         }
2482 }
2483
2484
2485 /*
2486  * Power to PDADC table functions
2487  */
2488
2489 /*
2490  * Set the gain boundaries and create final Power to PDADC table
2491  *
2492  * We can have up to 4 pd curves, we need to do a simmilar process
2493  * as we do for RF5112. This time we don't have an edge_flag but we
2494  * set the gain boundaries on a separate register.
2495  */
2496 static void
2497 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2498                         s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2499 {
2500         u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2501         u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2502         u8 *pdadc_tmp;
2503         s16 pdadc_0;
2504         u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2505         u8 pd_gain_overlap;
2506
2507         /* Note: Register value is initialized on initvals
2508          * there is no feedback from hw.
2509          * XXX: What about pd_gain_overlap from EEPROM ? */
2510         pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2511                 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2512
2513         /* Create final PDADC table */
2514         for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2515                 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2516
2517                 if (pdg == pdcurves - 1)
2518                         /* 2 dB boundary stretch for last
2519                          * (higher power) curve */
2520                         gain_boundaries[pdg] = pwr_max[pdg] + 4;
2521                 else
2522                         /* Set gain boundary in the middle
2523                          * between this curve and the next one */
2524                         gain_boundaries[pdg] =
2525                                 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2526
2527                 /* Sanity check in case our 2 db stretch got out of
2528                  * range. */
2529                 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2530                         gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2531
2532                 /* For the first curve (lower power)
2533                  * start from 0 dB */
2534                 if (pdg == 0)
2535                         pdadc_0 = 0;
2536                 else
2537                         /* For the other curves use the gain overlap */
2538                         pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2539                                                         pd_gain_overlap;
2540
2541                 /* Force each power step to be at least 0.5 dB */
2542                 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2543                         pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2544                 else
2545                         pwr_step = 1;
2546
2547                 /* If pdadc_0 is negative, we need to extrapolate
2548                  * below this pdgain by a number of pwr_steps */
2549                 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2550                         s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2551                         pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2552                         pdadc_0++;
2553                 }
2554
2555                 /* Set last pwr level, using gain boundaries */
2556                 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2557                 /* Limit it to be inside pwr range */
2558                 table_size = pwr_max[pdg] - pwr_min[pdg];
2559                 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2560
2561                 /* Fill pdadc_out table */
2562                 while (pdadc_0 < max_idx && pdadc_i < 128)
2563                         pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2564
2565                 /* Need to extrapolate above this pdgain? */
2566                 if (pdadc_n <= max_idx)
2567                         continue;
2568
2569                 /* Force each power step to be at least 0.5 dB */
2570                 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2571                         pwr_step = pdadc_tmp[table_size - 1] -
2572                                                 pdadc_tmp[table_size - 2];
2573                 else
2574                         pwr_step = 1;
2575
2576                 /* Extrapolate above */
2577                 while ((pdadc_0 < (s16) pdadc_n) &&
2578                 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2579                         s16 tmp = pdadc_tmp[table_size - 1] +
2580                                         (pdadc_0 - max_idx) * pwr_step;
2581                         pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2582                         pdadc_0++;
2583                 }
2584         }
2585
2586         while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2587                 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2588                 pdg++;
2589         }
2590
2591         while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2592                 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2593                 pdadc_i++;
2594         }
2595
2596         /* Set gain boundaries */
2597         ath5k_hw_reg_write(ah,
2598                 AR5K_REG_SM(pd_gain_overlap,
2599                         AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2600                 AR5K_REG_SM(gain_boundaries[0],
2601                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2602                 AR5K_REG_SM(gain_boundaries[1],
2603                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2604                 AR5K_REG_SM(gain_boundaries[2],
2605                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2606                 AR5K_REG_SM(gain_boundaries[3],
2607                         AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2608                 AR5K_PHY_TPC_RG5);
2609
2610         /* Used for setting rate power table */
2611         ah->ah_txpower.txp_min_idx = pwr_min[0];
2612
2613 }
2614
2615 /* Write PDADC values on hw */
2616 static void
2617 ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2618                         u8 pdcurves, u8 *pdg_to_idx)
2619 {
2620         u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2621         u32 reg;
2622         u8 i;
2623
2624         /* Select the right pdgain curves */
2625
2626         /* Clear current settings */
2627         reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2628         reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2629                 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2630                 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2631                 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2632
2633         /*
2634          * Use pd_gains curve from eeprom
2635          *
2636          * This overrides the default setting from initvals
2637          * in case some vendors (e.g. Zcomax) don't use the default
2638          * curves. If we don't honor their settings we 'll get a
2639          * 5dB (1 * gain overlap ?) drop.
2640          */
2641         reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2642
2643         switch (pdcurves) {
2644         case 3:
2645                 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2646                 /* Fall through */
2647         case 2:
2648                 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2649                 /* Fall through */
2650         case 1:
2651                 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2652                 break;
2653         }
2654         ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2655
2656         /*
2657          * Write TX power values
2658          */
2659         for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2660                 ath5k_hw_reg_write(ah,
2661                         ((pdadc_out[4*i + 0] & 0xff) << 0) |
2662                         ((pdadc_out[4*i + 1] & 0xff) << 8) |
2663                         ((pdadc_out[4*i + 2] & 0xff) << 16) |
2664                         ((pdadc_out[4*i + 3] & 0xff) << 24),
2665                         AR5K_PHY_PDADC_TXPOWER(i));
2666         }
2667 }
2668
2669
2670 /*
2671  * Common code for PCDAC/PDADC tables
2672  */
2673
2674 /*
2675  * This is the main function that uses all of the above
2676  * to set PCDAC/PDADC table on hw for the current channel.
2677  * This table is used for tx power calibration on the basband,
2678  * without it we get weird tx power levels and in some cases
2679  * distorted spectral mask
2680  */
2681 static int
2682 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2683                         struct ieee80211_channel *channel,
2684                         u8 ee_mode, u8 type)
2685 {
2686         struct ath5k_pdgain_info *pdg_L, *pdg_R;
2687         struct ath5k_chan_pcal_info *pcinfo_L;
2688         struct ath5k_chan_pcal_info *pcinfo_R;
2689         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2690         u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2691         s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2692         s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2693         u8 *tmpL;
2694         u8 *tmpR;
2695         u32 target = channel->center_freq;
2696         int pdg, i;
2697
2698         /* Get surounding freq piers for this channel */
2699         ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2700                                                 &pcinfo_L,
2701                                                 &pcinfo_R);
2702
2703         /* Loop over pd gain curves on
2704          * surounding freq piers by index */
2705         for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2706
2707                 /* Fill curves in reverse order
2708                  * from lower power (max gain)
2709                  * to higher power. Use curve -> idx
2710                  * backmapping we did on eeprom init */
2711                 u8 idx = pdg_curve_to_idx[pdg];
2712
2713                 /* Grab the needed curves by index */
2714                 pdg_L = &pcinfo_L->pd_curves[idx];
2715                 pdg_R = &pcinfo_R->pd_curves[idx];
2716
2717                 /* Initialize the temp tables */
2718                 tmpL = ah->ah_txpower.tmpL[pdg];
2719                 tmpR = ah->ah_txpower.tmpR[pdg];
2720
2721                 /* Set curve's x boundaries and create
2722                  * curves so that they cover the same
2723                  * range (if we don't do that one table
2724                  * will have values on some range and the
2725                  * other one won't have any so interpolation
2726                  * will fail) */
2727                 table_min[pdg] = min(pdg_L->pd_pwr[0],
2728                                         pdg_R->pd_pwr[0]) / 2;
2729
2730                 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2731                                 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2732
2733                 /* Now create the curves on surrounding channels
2734                  * and interpolate if needed to get the final
2735                  * curve for this gain on this channel */
2736                 switch (type) {
2737                 case AR5K_PWRTABLE_LINEAR_PCDAC:
2738                         /* Override min/max so that we don't loose
2739                          * accuracy (don't divide by 2) */
2740                         table_min[pdg] = min(pdg_L->pd_pwr[0],
2741                                                 pdg_R->pd_pwr[0]);
2742
2743                         table_max[pdg] =
2744                                 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2745                                         pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2746
2747                         /* Override minimum so that we don't get
2748                          * out of bounds while extrapolating
2749                          * below. Don't do this when we have 2
2750                          * curves and we are on the high power curve
2751                          * because table_min is ok in this case */
2752                         if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2753
2754                                 table_min[pdg] =
2755                                         ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2756                                                                 pdg_R->pd_step,
2757                                                                 pdg_L->pd_pwr,
2758                                                                 pdg_R->pd_pwr);
2759
2760                                 /* Don't go too low because we will
2761                                  * miss the upper part of the curve.
2762                                  * Note: 126 = 31.5dB (max power supported)
2763                                  * in 0.25dB units */
2764                                 if (table_max[pdg] - table_min[pdg] > 126)
2765                                         table_min[pdg] = table_max[pdg] - 126;
2766                         }
2767
2768                         /* Fall through */
2769                 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2770                 case AR5K_PWRTABLE_PWR_TO_PDADC:
2771
2772                         ath5k_create_power_curve(table_min[pdg],
2773                                                 table_max[pdg],
2774                                                 pdg_L->pd_pwr,
2775                                                 pdg_L->pd_step,
2776                                                 pdg_L->pd_points, tmpL, type);
2777
2778                         /* We are in a calibration
2779                          * pier, no need to interpolate
2780                          * between freq piers */
2781                         if (pcinfo_L == pcinfo_R)
2782                                 continue;
2783
2784                         ath5k_create_power_curve(table_min[pdg],
2785                                                 table_max[pdg],
2786                                                 pdg_R->pd_pwr,
2787                                                 pdg_R->pd_step,
2788                                                 pdg_R->pd_points, tmpR, type);
2789                         break;
2790                 default:
2791                         return -EINVAL;
2792                 }
2793
2794                 /* Interpolate between curves
2795                  * of surounding freq piers to
2796                  * get the final curve for this
2797                  * pd gain. Re-use tmpL for interpolation
2798                  * output */
2799                 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2800                 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2801                         tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2802                                                         (s16) pcinfo_L->freq,
2803                                                         (s16) pcinfo_R->freq,
2804                                                         (s16) tmpL[i],
2805                                                         (s16) tmpR[i]);
2806                 }
2807         }
2808
2809         /* Now we have a set of curves for this
2810          * channel on tmpL (x range is table_max - table_min
2811          * and y values are tmpL[pdg][]) sorted in the same
2812          * order as EEPROM (because we've used the backmapping).
2813          * So for RF5112 it's from higher power to lower power
2814          * and for RF2413 it's from lower power to higher power.
2815          * For RF5111 we only have one curve. */
2816
2817         /* Fill min and max power levels for this
2818          * channel by interpolating the values on
2819          * surounding channels to complete the dataset */
2820         ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2821                                         (s16) pcinfo_L->freq,
2822                                         (s16) pcinfo_R->freq,
2823                                         pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2824
2825         ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2826                                         (s16) pcinfo_L->freq,
2827                                         (s16) pcinfo_R->freq,
2828                                         pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2829
2830         /* We are ready to go, fill PCDAC/PDADC
2831          * table and write settings on hardware */
2832         switch (type) {
2833         case AR5K_PWRTABLE_LINEAR_PCDAC:
2834                 /* For RF5112 we can have one or two curves
2835                  * and each curve covers a certain power lvl
2836                  * range so we need to do some more processing */
2837                 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2838                                                 ee->ee_pd_gains[ee_mode]);
2839
2840                 /* Set txp.offset so that we can
2841                  * match max power value with max
2842                  * table index */
2843                 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2844
2845                 /* Write settings on hw */
2846                 ath5k_setup_pcdac_table(ah);
2847                 break;
2848         case AR5K_PWRTABLE_PWR_TO_PCDAC:
2849                 /* We are done for RF5111 since it has only
2850                  * one curve, just fit the curve on the table */
2851                 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2852
2853                 /* No rate powertable adjustment for RF5111 */
2854                 ah->ah_txpower.txp_min_idx = 0;
2855                 ah->ah_txpower.txp_offset = 0;
2856
2857                 /* Write settings on hw */
2858                 ath5k_setup_pcdac_table(ah);
2859                 break;
2860         case AR5K_PWRTABLE_PWR_TO_PDADC:
2861                 /* Set PDADC boundaries and fill
2862                  * final PDADC table */
2863                 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2864                                                 ee->ee_pd_gains[ee_mode]);
2865
2866                 /* Write settings on hw */
2867                 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2868
2869                 /* Set txp.offset, note that table_min
2870                  * can be negative */
2871                 ah->ah_txpower.txp_offset = table_min[0];
2872                 break;
2873         default:
2874                 return -EINVAL;
2875         }
2876
2877         return 0;
2878 }
2879
2880
2881 /*
2882  * Per-rate tx power setting
2883  *
2884  * This is the code that sets the desired tx power (below
2885  * maximum) on hw for each rate (we also have TPC that sets
2886  * power per packet). We do that by providing an index on the
2887  * PCDAC/PDADC table we set up.
2888  */
2889
2890 /*
2891  * Set rate power table
2892  *
2893  * For now we only limit txpower based on maximum tx power
2894  * supported by hw (what's inside rate_info). We need to limit
2895  * this even more, based on regulatory domain etc.
2896  *
2897  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2898  * and is indexed as follows:
2899  * rates[0] - rates[7] -> OFDM rates
2900  * rates[8] - rates[14] -> CCK rates
2901  * rates[15] -> XR rates (they all have the same power)
2902  */
2903 static void
2904 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2905                         struct ath5k_rate_pcal_info *rate_info,
2906                         u8 ee_mode)
2907 {
2908         unsigned int i;
2909         u16 *rates;
2910
2911         /* max_pwr is power level we got from driver/user in 0.5dB
2912          * units, switch to 0.25dB units so we can compare */
2913         max_pwr *= 2;
2914         max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2915
2916         /* apply rate limits */
2917         rates = ah->ah_txpower.txp_rates_power_table;
2918
2919         /* OFDM rates 6 to 24Mb/s */
2920         for (i = 0; i < 5; i++)
2921                 rates[i] = min(max_pwr, rate_info->target_power_6to24);
2922
2923         /* Rest OFDM rates */
2924         rates[5] = min(rates[0], rate_info->target_power_36);
2925         rates[6] = min(rates[0], rate_info->target_power_48);
2926         rates[7] = min(rates[0], rate_info->target_power_54);
2927
2928         /* CCK rates */
2929         /* 1L */
2930         rates[8] = min(rates[0], rate_info->target_power_6to24);
2931         /* 2L */
2932         rates[9] = min(rates[0], rate_info->target_power_36);
2933         /* 2S */
2934         rates[10] = min(rates[0], rate_info->target_power_36);
2935         /* 5L */
2936         rates[11] = min(rates[0], rate_info->target_power_48);
2937         /* 5S */
2938         rates[12] = min(rates[0], rate_info->target_power_48);
2939         /* 11L */
2940         rates[13] = min(rates[0], rate_info->target_power_54);
2941         /* 11S */
2942         rates[14] = min(rates[0], rate_info->target_power_54);
2943
2944         /* XR rates */
2945         rates[15] = min(rates[0], rate_info->target_power_6to24);
2946
2947         /* CCK rates have different peak to average ratio
2948          * so we have to tweak their power so that gainf
2949          * correction works ok. For this we use OFDM to
2950          * CCK delta from eeprom */
2951         if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2952         (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2953                 for (i = 8; i <= 15; i++)
2954                         rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2955
2956         /* Now that we have all rates setup use table offset to
2957          * match the power range set by user with the power indices
2958          * on PCDAC/PDADC table */
2959         for (i = 0; i < 16; i++) {
2960                 rates[i] += ah->ah_txpower.txp_offset;
2961                 /* Don't get out of bounds */
2962                 if (rates[i] > 63)
2963                         rates[i] = 63;
2964         }
2965
2966         /* Min/max in 0.25dB units */
2967         ah->ah_txpower.txp_min_pwr = 2 * rates[7];
2968         ah->ah_txpower.txp_max_pwr = 2 * rates[0];
2969         ah->ah_txpower.txp_ofdm = rates[7];
2970 }
2971
2972
2973 /*
2974  * Set transmition power
2975  */
2976 int
2977 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2978                 u8 ee_mode, u8 txpower)
2979 {
2980         struct ath5k_rate_pcal_info rate_info;
2981         u8 type;
2982         int ret;
2983
2984         ATH5K_TRACE(ah->ah_sc);
2985         if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2986                 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
2987                 return -EINVAL;
2988         }
2989
2990         /* Reset TX power values */
2991         memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2992         ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2993         ah->ah_txpower.txp_min_pwr = 0;
2994         ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2995
2996         /* Initialize TX power table */
2997         switch (ah->ah_radio) {
2998         case AR5K_RF5111:
2999                 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3000                 break;
3001         case AR5K_RF5112:
3002                 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3003                 break;
3004         case AR5K_RF2413:
3005         case AR5K_RF5413:
3006         case AR5K_RF2316:
3007         case AR5K_RF2317:
3008         case AR5K_RF2425:
3009                 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3010                 break;
3011         default:
3012                 return -EINVAL;
3013         }
3014
3015         /* FIXME: Only on channel/mode change */
3016         ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3017         if (ret)
3018                 return ret;
3019
3020         /* Limit max power if we have a CTL available */
3021         ath5k_get_max_ctl_power(ah, channel);
3022
3023         /* FIXME: Tx power limit for this regdomain
3024          * XXX: Mac80211/CRDA will do that anyway ? */
3025
3026         /* FIXME: Antenna reduction stuff */
3027
3028         /* FIXME: Limit power on turbo modes */
3029
3030         /* FIXME: TPC scale reduction */
3031
3032         /* Get surounding channels for per-rate power table
3033          * calibration */
3034         ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3035
3036         /* Setup rate power table */
3037         ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3038
3039         /* Write rate power table on hw */
3040         ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3041                 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3042                 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3043
3044         ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3045                 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3046                 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3047
3048         ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3049                 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3050                 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3051
3052         ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3053                 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3054                 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3055
3056         /* FIXME: TPC support */
3057         if (ah->ah_txpower.txp_tpc) {
3058                 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3059                         AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3060
3061                 ath5k_hw_reg_write(ah,
3062                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3063                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3064                         AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3065                         AR5K_TPC);
3066         } else {
3067                 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3068                         AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3069         }
3070
3071         return 0;
3072 }
3073
3074 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3075 {
3076         /*Just a try M.F.*/
3077         struct ieee80211_channel *channel = ah->ah_current_channel;
3078         u8 ee_mode;
3079
3080         ATH5K_TRACE(ah->ah_sc);
3081
3082         switch (channel->hw_value & CHANNEL_MODES) {
3083         case CHANNEL_A:
3084         case CHANNEL_T:
3085         case CHANNEL_XR:
3086                 ee_mode = AR5K_EEPROM_MODE_11A;
3087                 break;
3088         case CHANNEL_G:
3089         case CHANNEL_TG:
3090                 ee_mode = AR5K_EEPROM_MODE_11G;
3091                 break;
3092         case CHANNEL_B:
3093                 ee_mode = AR5K_EEPROM_MODE_11B;
3094                 break;
3095         default:
3096                 ATH5K_ERR(ah->ah_sc,
3097                         "invalid channel: %d\n", channel->center_freq);
3098                 return -EINVAL;
3099         }
3100
3101         ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3102                 "changing txpower to %d\n", txpower);
3103
3104         return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3105 }