Merge branches 'x86-fixes-for-linus', 'sched-fixes-for-linus', 'timers-fixes-for...
[pandora-kernel.git] / drivers / net / wireless / ath / ath5k / eeprom.c
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  */
19
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
23
24 #include <linux/slab.h>
25
26 #include "ath5k.h"
27 #include "reg.h"
28 #include "debug.h"
29 #include "base.h"
30
31
32 /******************\
33 * Helper functions *
34 \******************/
35
36 /*
37  * Translate binary channel representation in EEPROM to frequency
38  */
39 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
40                                                         unsigned int mode)
41 {
42         u16 val;
43
44         if (bin == AR5K_EEPROM_CHANNEL_DIS)
45                 return bin;
46
47         if (mode == AR5K_EEPROM_MODE_11A) {
48                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
49                         val = (5 * bin) + 4800;
50                 else
51                         val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
52                                 (bin * 10) + 5100;
53         } else {
54                 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
55                         val = bin + 2300;
56                 else
57                         val = bin + 2400;
58         }
59
60         return val;
61 }
62
63
64 /*********\
65 * Parsers *
66 \*********/
67
68 /*
69  * Initialize eeprom & capabilities structs
70  */
71 static int
72 ath5k_eeprom_init_header(struct ath5k_hw *ah)
73 {
74         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
75         u16 val;
76         u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
77
78         /*
79          * Read values from EEPROM and store them in the capability structure
80          */
81         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
82         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
83         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
84         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
85         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
86
87         /* Return if we have an old EEPROM */
88         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
89                 return 0;
90
91         /*
92          * Validate the checksum of the EEPROM date. There are some
93          * devices with invalid EEPROMs.
94          */
95         AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
96         if (val) {
97                 eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
98                            AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
99                 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
100                 eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
101
102                 /*
103                  * Fail safe check to prevent stupid loops due
104                  * to busted EEPROMs. XXX: This value is likely too
105                  * big still, waiting on a better value.
106                  */
107                 if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
108                         ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: "
109                                   "%d (0x%04x) max expected: %d (0x%04x)\n",
110                                   eep_max, eep_max,
111                                   3 * AR5K_EEPROM_INFO_MAX,
112                                   3 * AR5K_EEPROM_INFO_MAX);
113                         return -EIO;
114                 }
115         }
116
117         for (cksum = 0, offset = 0; offset < eep_max; offset++) {
118                 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
119                 cksum ^= val;
120         }
121         if (cksum != AR5K_EEPROM_INFO_CKSUM) {
122                 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM "
123                           "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
124                           cksum, eep_max,
125                           eep_max == AR5K_EEPROM_INFO_MAX ?
126                                 "default size" : "custom size");
127                 return -EIO;
128         }
129
130         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
131             ee_ant_gain);
132
133         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
134                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
135                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
136
137                 /* XXX: Don't know which versions include these two */
138                 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
139
140                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
141                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
142
143                 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
144                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
145                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
146                         AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
147                 }
148         }
149
150         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
151                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
152                 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
153                 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
154
155                 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
156                 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
157                 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
158         }
159
160         AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
161
162         if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
163                 ee->ee_is_hb63 = true;
164         else
165                 ee->ee_is_hb63 = false;
166
167         AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
168         ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
169         ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
170
171         /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
172          * and enable serdes programming if needed.
173          *
174          * XXX: Serdes values seem to be fixed so
175          * no need to read them here, we write them
176          * during ath5k_hw_init */
177         AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
178         ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
179                                                         true : false;
180
181         return 0;
182 }
183
184
185 /*
186  * Read antenna infos from eeprom
187  */
188 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
189                 unsigned int mode)
190 {
191         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
192         u32 o = *offset;
193         u16 val;
194         int i = 0;
195
196         AR5K_EEPROM_READ(o++, val);
197         ee->ee_switch_settling[mode]    = (val >> 8) & 0x7f;
198         ee->ee_atn_tx_rx[mode]          = (val >> 2) & 0x3f;
199         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
200
201         AR5K_EEPROM_READ(o++, val);
202         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
203         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
204         ee->ee_ant_control[mode][i++]   = val & 0x3f;
205
206         AR5K_EEPROM_READ(o++, val);
207         ee->ee_ant_control[mode][i++]   = (val >> 10) & 0x3f;
208         ee->ee_ant_control[mode][i++]   = (val >> 4) & 0x3f;
209         ee->ee_ant_control[mode][i]     = (val << 2) & 0x3f;
210
211         AR5K_EEPROM_READ(o++, val);
212         ee->ee_ant_control[mode][i++]   |= (val >> 14) & 0x3;
213         ee->ee_ant_control[mode][i++]   = (val >> 8) & 0x3f;
214         ee->ee_ant_control[mode][i++]   = (val >> 2) & 0x3f;
215         ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
216
217         AR5K_EEPROM_READ(o++, val);
218         ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
219         ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
220         ee->ee_ant_control[mode][i++]   = val & 0x3f;
221
222         /* Get antenna switch tables */
223         ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
224             (ee->ee_ant_control[mode][0] << 4);
225         ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
226              ee->ee_ant_control[mode][1]        |
227             (ee->ee_ant_control[mode][2] << 6)  |
228             (ee->ee_ant_control[mode][3] << 12) |
229             (ee->ee_ant_control[mode][4] << 18) |
230             (ee->ee_ant_control[mode][5] << 24);
231         ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
232              ee->ee_ant_control[mode][6]        |
233             (ee->ee_ant_control[mode][7] << 6)  |
234             (ee->ee_ant_control[mode][8] << 12) |
235             (ee->ee_ant_control[mode][9] << 18) |
236             (ee->ee_ant_control[mode][10] << 24);
237
238         /* return new offset */
239         *offset = o;
240
241         return 0;
242 }
243
244 /*
245  * Read supported modes and some mode-specific calibration data
246  * from eeprom
247  */
248 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
249                 unsigned int mode)
250 {
251         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
252         u32 o = *offset;
253         u16 val;
254
255         ee->ee_n_piers[mode] = 0;
256         AR5K_EEPROM_READ(o++, val);
257         ee->ee_adc_desired_size[mode]   = (s8)((val >> 8) & 0xff);
258         switch(mode) {
259         case AR5K_EEPROM_MODE_11A:
260                 ee->ee_ob[mode][3]      = (val >> 5) & 0x7;
261                 ee->ee_db[mode][3]      = (val >> 2) & 0x7;
262                 ee->ee_ob[mode][2]      = (val << 1) & 0x7;
263
264                 AR5K_EEPROM_READ(o++, val);
265                 ee->ee_ob[mode][2]      |= (val >> 15) & 0x1;
266                 ee->ee_db[mode][2]      = (val >> 12) & 0x7;
267                 ee->ee_ob[mode][1]      = (val >> 9) & 0x7;
268                 ee->ee_db[mode][1]      = (val >> 6) & 0x7;
269                 ee->ee_ob[mode][0]      = (val >> 3) & 0x7;
270                 ee->ee_db[mode][0]      = val & 0x7;
271                 break;
272         case AR5K_EEPROM_MODE_11G:
273         case AR5K_EEPROM_MODE_11B:
274                 ee->ee_ob[mode][1]      = (val >> 4) & 0x7;
275                 ee->ee_db[mode][1]      = val & 0x7;
276                 break;
277         }
278
279         AR5K_EEPROM_READ(o++, val);
280         ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
281         ee->ee_thr_62[mode]             = val & 0xff;
282
283         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
284                 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
285
286         AR5K_EEPROM_READ(o++, val);
287         ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
288         ee->ee_tx_frm2xpa_enable[mode]  = val & 0xff;
289
290         AR5K_EEPROM_READ(o++, val);
291         ee->ee_pga_desired_size[mode]   = (val >> 8) & 0xff;
292
293         if ((val & 0xff) & 0x80)
294                 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
295         else
296                 ee->ee_noise_floor_thr[mode] = val & 0xff;
297
298         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
299                 ee->ee_noise_floor_thr[mode] =
300                     mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
301
302         AR5K_EEPROM_READ(o++, val);
303         ee->ee_xlna_gain[mode]          = (val >> 5) & 0xff;
304         ee->ee_x_gain[mode]             = (val >> 1) & 0xf;
305         ee->ee_xpd[mode]                = val & 0x1;
306
307         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
308             mode != AR5K_EEPROM_MODE_11B)
309                 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
310
311         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
312                 AR5K_EEPROM_READ(o++, val);
313                 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
314
315                 if (mode == AR5K_EEPROM_MODE_11A)
316                         ee->ee_xr_power[mode] = val & 0x3f;
317                 else {
318                         /* b_DB_11[bg] and b_OB_11[bg] */
319                         ee->ee_ob[mode][0] = val & 0x7;
320                         ee->ee_db[mode][0] = (val >> 3) & 0x7;
321                 }
322         }
323
324         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
325                 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
326                 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
327         } else {
328                 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
329
330                 AR5K_EEPROM_READ(o++, val);
331                 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
332
333                 if (mode == AR5K_EEPROM_MODE_11G) {
334                         ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
335                         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
336                                 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
337                 }
338         }
339
340         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
341                         mode == AR5K_EEPROM_MODE_11A) {
342                 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
343                 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
344         }
345
346         if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
347                 goto done;
348
349         /* Note: >= v5 have bg freq piers on another location
350          * so these freq piers are ignored for >= v5 (should be 0xff
351          * anyway) */
352         switch(mode) {
353         case AR5K_EEPROM_MODE_11A:
354                 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
355                         break;
356
357                 AR5K_EEPROM_READ(o++, val);
358                 ee->ee_margin_tx_rx[mode] = val & 0x3f;
359                 break;
360         case AR5K_EEPROM_MODE_11B:
361                 AR5K_EEPROM_READ(o++, val);
362
363                 ee->ee_pwr_cal_b[0].freq =
364                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
365                 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
366                         ee->ee_n_piers[mode]++;
367
368                 ee->ee_pwr_cal_b[1].freq =
369                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
370                 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
371                         ee->ee_n_piers[mode]++;
372
373                 AR5K_EEPROM_READ(o++, val);
374                 ee->ee_pwr_cal_b[2].freq =
375                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
376                 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
377                         ee->ee_n_piers[mode]++;
378
379                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
380                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
381                 break;
382         case AR5K_EEPROM_MODE_11G:
383                 AR5K_EEPROM_READ(o++, val);
384
385                 ee->ee_pwr_cal_g[0].freq =
386                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
387                 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
388                         ee->ee_n_piers[mode]++;
389
390                 ee->ee_pwr_cal_g[1].freq =
391                         ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
392                 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
393                         ee->ee_n_piers[mode]++;
394
395                 AR5K_EEPROM_READ(o++, val);
396                 ee->ee_turbo_max_power[mode] = val & 0x7f;
397                 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
398
399                 AR5K_EEPROM_READ(o++, val);
400                 ee->ee_pwr_cal_g[2].freq =
401                         ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
402                 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
403                         ee->ee_n_piers[mode]++;
404
405                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
406                         ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
407
408                 AR5K_EEPROM_READ(o++, val);
409                 ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
410                 ee->ee_q_cal[mode] = val & 0x1f;
411
412                 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
413                         AR5K_EEPROM_READ(o++, val);
414                         ee->ee_cck_ofdm_gain_delta = val & 0xff;
415                 }
416                 break;
417         }
418
419         /*
420          * Read turbo mode information on newer EEPROM versions
421          */
422         if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
423                 goto done;
424
425         switch (mode){
426         case AR5K_EEPROM_MODE_11A:
427                 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
428
429                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
430                 AR5K_EEPROM_READ(o++, val);
431                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
432                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
433
434                 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
435                 AR5K_EEPROM_READ(o++, val);
436                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
437                 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
438
439                 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
440                         ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
441                 break;
442         case AR5K_EEPROM_MODE_11G:
443                 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
444
445                 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
446                 AR5K_EEPROM_READ(o++, val);
447                 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
448                 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
449
450                 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
451                 AR5K_EEPROM_READ(o++, val);
452                 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
453                 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
454                 break;
455         }
456
457 done:
458         /* return new offset */
459         *offset = o;
460
461         return 0;
462 }
463
464 /* Read mode-specific data (except power calibration data) */
465 static int
466 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
467 {
468         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
469         u32 mode_offset[3];
470         unsigned int mode;
471         u32 offset;
472         int ret;
473
474         /*
475          * Get values for all modes
476          */
477         mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
478         mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
479         mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
480
481         ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
482                 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
483
484         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
485                 offset = mode_offset[mode];
486
487                 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
488                 if (ret)
489                         return ret;
490
491                 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
492                 if (ret)
493                         return ret;
494         }
495
496         /* override for older eeprom versions for better performance */
497         if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
498                 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
499                 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
500                 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
501         }
502
503         return 0;
504 }
505
506 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
507  * frequency mask) */
508 static inline int
509 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
510                         struct ath5k_chan_pcal_info *pc, unsigned int mode)
511 {
512         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
513         int o = *offset;
514         int i = 0;
515         u8 freq1, freq2;
516         u16 val;
517
518         ee->ee_n_piers[mode] = 0;
519         while(i < max) {
520                 AR5K_EEPROM_READ(o++, val);
521
522                 freq1 = val & 0xff;
523                 if (!freq1)
524                         break;
525
526                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
527                                 freq1, mode);
528                 ee->ee_n_piers[mode]++;
529
530                 freq2 = (val >> 8) & 0xff;
531                 if (!freq2)
532                         break;
533
534                 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
535                                 freq2, mode);
536                 ee->ee_n_piers[mode]++;
537         }
538
539         /* return new offset */
540         *offset = o;
541
542         return 0;
543 }
544
545 /* Read frequency piers for 802.11a */
546 static int
547 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
548 {
549         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
550         struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
551         int i;
552         u16 val;
553         u8 mask;
554
555         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
556                 ath5k_eeprom_read_freq_list(ah, &offset,
557                         AR5K_EEPROM_N_5GHZ_CHAN, pcal,
558                         AR5K_EEPROM_MODE_11A);
559         } else {
560                 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
561
562                 AR5K_EEPROM_READ(offset++, val);
563                 pcal[0].freq  = (val >> 9) & mask;
564                 pcal[1].freq  = (val >> 2) & mask;
565                 pcal[2].freq  = (val << 5) & mask;
566
567                 AR5K_EEPROM_READ(offset++, val);
568                 pcal[2].freq |= (val >> 11) & 0x1f;
569                 pcal[3].freq  = (val >> 4) & mask;
570                 pcal[4].freq  = (val << 3) & mask;
571
572                 AR5K_EEPROM_READ(offset++, val);
573                 pcal[4].freq |= (val >> 13) & 0x7;
574                 pcal[5].freq  = (val >> 6) & mask;
575                 pcal[6].freq  = (val << 1) & mask;
576
577                 AR5K_EEPROM_READ(offset++, val);
578                 pcal[6].freq |= (val >> 15) & 0x1;
579                 pcal[7].freq  = (val >> 8) & mask;
580                 pcal[8].freq  = (val >> 1) & mask;
581                 pcal[9].freq  = (val << 6) & mask;
582
583                 AR5K_EEPROM_READ(offset++, val);
584                 pcal[9].freq |= (val >> 10) & 0x3f;
585
586                 /* Fixed number of piers */
587                 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
588
589                 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
590                         pcal[i].freq = ath5k_eeprom_bin2freq(ee,
591                                 pcal[i].freq, AR5K_EEPROM_MODE_11A);
592                 }
593         }
594
595         return 0;
596 }
597
598 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
599 static inline int
600 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
601 {
602         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
603         struct ath5k_chan_pcal_info *pcal;
604
605         switch(mode) {
606         case AR5K_EEPROM_MODE_11B:
607                 pcal = ee->ee_pwr_cal_b;
608                 break;
609         case AR5K_EEPROM_MODE_11G:
610                 pcal = ee->ee_pwr_cal_g;
611                 break;
612         default:
613                 return -EINVAL;
614         }
615
616         ath5k_eeprom_read_freq_list(ah, &offset,
617                 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
618                 mode);
619
620         return 0;
621 }
622
623
624 /*
625  * Read power calibration for RF5111 chips
626  *
627  * For RF5111 we have an XPD -eXternal Power Detector- curve
628  * for each calibrated channel. Each curve has 0,5dB Power steps
629  * on x axis and PCDAC steps (offsets) on y axis and looks like an
630  * exponential function. To recreate the curve we read 11 points
631  * here and interpolate later.
632  */
633
634 /* Used to match PCDAC steps with power values on RF5111 chips
635  * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
636  * steps that match with the power values we read from eeprom. On
637  * older eeprom versions (< 3.2) these steps are equaly spaced at
638  * 10% of the pcdac curve -until the curve reaches its maximum-
639  * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
640  * these 11 steps are spaced in a different way. This function returns
641  * the pcdac steps based on eeprom version and curve min/max so that we
642  * can have pcdac/pwr points.
643  */
644 static inline void
645 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
646 {
647         static const u16 intercepts3[] =
648                 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
649         static const u16 intercepts3_2[] =
650                 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
651         const u16 *ip;
652         int i;
653
654         if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
655                 ip = intercepts3_2;
656         else
657                 ip = intercepts3;
658
659         for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
660                 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
661 }
662
663 /* Convert RF5111 specific data to generic raw data
664  * used by interpolation code */
665 static int
666 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
667                                 struct ath5k_chan_pcal_info *chinfo)
668 {
669         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
670         struct ath5k_chan_pcal_info_rf5111 *pcinfo;
671         struct ath5k_pdgain_info *pd;
672         u8 pier, point, idx;
673         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
674
675         /* Fill raw data for each calibration pier */
676         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
677
678                 pcinfo = &chinfo[pier].rf5111_info;
679
680                 /* Allocate pd_curves for this cal pier */
681                 chinfo[pier].pd_curves =
682                         kcalloc(AR5K_EEPROM_N_PD_CURVES,
683                                 sizeof(struct ath5k_pdgain_info),
684                                 GFP_KERNEL);
685
686                 if (!chinfo[pier].pd_curves)
687                         return -ENOMEM;
688
689                 /* Only one curve for RF5111
690                  * find out which one and place
691                  * in pd_curves.
692                  * Note: ee_x_gain is reversed here */
693                 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
694
695                         if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
696                                 pdgain_idx[0] = idx;
697                                 break;
698                         }
699                 }
700
701                 ee->ee_pd_gains[mode] = 1;
702
703                 pd = &chinfo[pier].pd_curves[idx];
704
705                 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
706
707                 /* Allocate pd points for this curve */
708                 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
709                                         sizeof(u8), GFP_KERNEL);
710                 if (!pd->pd_step)
711                         return -ENOMEM;
712
713                 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
714                                         sizeof(s16), GFP_KERNEL);
715                 if (!pd->pd_pwr)
716                         return -ENOMEM;
717
718                 /* Fill raw dataset
719                  * (convert power to 0.25dB units
720                  * for RF5112 combatibility) */
721                 for (point = 0; point < pd->pd_points; point++) {
722
723                         /* Absolute values */
724                         pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
725
726                         /* Already sorted */
727                         pd->pd_step[point] = pcinfo->pcdac[point];
728                 }
729
730                 /* Set min/max pwr */
731                 chinfo[pier].min_pwr = pd->pd_pwr[0];
732                 chinfo[pier].max_pwr = pd->pd_pwr[10];
733
734         }
735
736         return 0;
737 }
738
739 /* Parse EEPROM data */
740 static int
741 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
742 {
743         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
744         struct ath5k_chan_pcal_info *pcal;
745         int offset, ret;
746         int i;
747         u16 val;
748
749         offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
750         switch(mode) {
751         case AR5K_EEPROM_MODE_11A:
752                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
753                         return 0;
754
755                 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
756                         offset + AR5K_EEPROM_GROUP1_OFFSET);
757                 if (ret < 0)
758                         return ret;
759
760                 offset += AR5K_EEPROM_GROUP2_OFFSET;
761                 pcal = ee->ee_pwr_cal_a;
762                 break;
763         case AR5K_EEPROM_MODE_11B:
764                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
765                     !AR5K_EEPROM_HDR_11G(ee->ee_header))
766                         return 0;
767
768                 pcal = ee->ee_pwr_cal_b;
769                 offset += AR5K_EEPROM_GROUP3_OFFSET;
770
771                 /* fixed piers */
772                 pcal[0].freq = 2412;
773                 pcal[1].freq = 2447;
774                 pcal[2].freq = 2484;
775                 ee->ee_n_piers[mode] = 3;
776                 break;
777         case AR5K_EEPROM_MODE_11G:
778                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
779                         return 0;
780
781                 pcal = ee->ee_pwr_cal_g;
782                 offset += AR5K_EEPROM_GROUP4_OFFSET;
783
784                 /* fixed piers */
785                 pcal[0].freq = 2312;
786                 pcal[1].freq = 2412;
787                 pcal[2].freq = 2484;
788                 ee->ee_n_piers[mode] = 3;
789                 break;
790         default:
791                 return -EINVAL;
792         }
793
794         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
795                 struct ath5k_chan_pcal_info_rf5111 *cdata =
796                         &pcal[i].rf5111_info;
797
798                 AR5K_EEPROM_READ(offset++, val);
799                 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
800                 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
801                 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
802
803                 AR5K_EEPROM_READ(offset++, val);
804                 cdata->pwr[0] |= ((val >> 14) & 0x3);
805                 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
806                 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
807                 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
808
809                 AR5K_EEPROM_READ(offset++, val);
810                 cdata->pwr[3] |= ((val >> 12) & 0xf);
811                 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
812                 cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
813
814                 AR5K_EEPROM_READ(offset++, val);
815                 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
816                 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
817                 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
818
819                 AR5K_EEPROM_READ(offset++, val);
820                 cdata->pwr[8] |= ((val >> 14) & 0x3);
821                 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
822                 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
823
824                 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
825                         cdata->pcdac_max, cdata->pcdac);
826         }
827
828         return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
829 }
830
831
832 /*
833  * Read power calibration for RF5112 chips
834  *
835  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
836  * for each calibrated channel on 0, -6, -12 and -18dbm but we only
837  * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
838  * power steps on x axis and PCDAC steps on y axis and looks like a
839  * linear function. To recreate the curve and pass the power values
840  * on hw, we read 4 points for xpd 0 (lower gain -> max power)
841  * and 3 points for xpd 3 (higher gain -> lower power) here and
842  * interpolate later.
843  *
844  * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
845  */
846
847 /* Convert RF5112 specific data to generic raw data
848  * used by interpolation code */
849 static int
850 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
851                                 struct ath5k_chan_pcal_info *chinfo)
852 {
853         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
854         struct ath5k_chan_pcal_info_rf5112 *pcinfo;
855         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
856         unsigned int pier, pdg, point;
857
858         /* Fill raw data for each calibration pier */
859         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
860
861                 pcinfo = &chinfo[pier].rf5112_info;
862
863                 /* Allocate pd_curves for this cal pier */
864                 chinfo[pier].pd_curves =
865                                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
866                                         sizeof(struct ath5k_pdgain_info),
867                                         GFP_KERNEL);
868
869                 if (!chinfo[pier].pd_curves)
870                         return -ENOMEM;
871
872                 /* Fill pd_curves */
873                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
874
875                         u8 idx = pdgain_idx[pdg];
876                         struct ath5k_pdgain_info *pd =
877                                         &chinfo[pier].pd_curves[idx];
878
879                         /* Lowest gain curve (max power) */
880                         if (pdg == 0) {
881                                 /* One more point for better accuracy */
882                                 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
883
884                                 /* Allocate pd points for this curve */
885                                 pd->pd_step = kcalloc(pd->pd_points,
886                                                 sizeof(u8), GFP_KERNEL);
887
888                                 if (!pd->pd_step)
889                                         return -ENOMEM;
890
891                                 pd->pd_pwr = kcalloc(pd->pd_points,
892                                                 sizeof(s16), GFP_KERNEL);
893
894                                 if (!pd->pd_pwr)
895                                         return -ENOMEM;
896
897
898                                 /* Fill raw dataset
899                                  * (all power levels are in 0.25dB units) */
900                                 pd->pd_step[0] = pcinfo->pcdac_x0[0];
901                                 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
902
903                                 for (point = 1; point < pd->pd_points;
904                                 point++) {
905                                         /* Absolute values */
906                                         pd->pd_pwr[point] =
907                                                 pcinfo->pwr_x0[point];
908
909                                         /* Deltas */
910                                         pd->pd_step[point] =
911                                                 pd->pd_step[point - 1] +
912                                                 pcinfo->pcdac_x0[point];
913                                 }
914
915                                 /* Set min power for this frequency */
916                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
917
918                         /* Highest gain curve (min power) */
919                         } else if (pdg == 1) {
920
921                                 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
922
923                                 /* Allocate pd points for this curve */
924                                 pd->pd_step = kcalloc(pd->pd_points,
925                                                 sizeof(u8), GFP_KERNEL);
926
927                                 if (!pd->pd_step)
928                                         return -ENOMEM;
929
930                                 pd->pd_pwr = kcalloc(pd->pd_points,
931                                                 sizeof(s16), GFP_KERNEL);
932
933                                 if (!pd->pd_pwr)
934                                         return -ENOMEM;
935
936                                 /* Fill raw dataset
937                                  * (all power levels are in 0.25dB units) */
938                                 for (point = 0; point < pd->pd_points;
939                                 point++) {
940                                         /* Absolute values */
941                                         pd->pd_pwr[point] =
942                                                 pcinfo->pwr_x3[point];
943
944                                         /* Fixed points */
945                                         pd->pd_step[point] =
946                                                 pcinfo->pcdac_x3[point];
947                                 }
948
949                                 /* Since we have a higher gain curve
950                                  * override min power */
951                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
952                         }
953                 }
954         }
955
956         return 0;
957 }
958
959 /* Parse EEPROM data */
960 static int
961 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
962 {
963         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
964         struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
965         struct ath5k_chan_pcal_info *gen_chan_info;
966         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
967         u32 offset;
968         u8 i, c;
969         u16 val;
970         u8 pd_gains = 0;
971
972         /* Count how many curves we have and
973          * identify them (which one of the 4
974          * available curves we have on each count).
975          * Curves are stored from lower (x0) to
976          * higher (x3) gain */
977         for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
978                 /* ee_x_gain[mode] is x gain mask */
979                 if ((ee->ee_x_gain[mode] >> i) & 0x1)
980                         pdgain_idx[pd_gains++] = i;
981         }
982         ee->ee_pd_gains[mode] = pd_gains;
983
984         if (pd_gains == 0 || pd_gains > 2)
985                 return -EINVAL;
986
987         switch (mode) {
988         case AR5K_EEPROM_MODE_11A:
989                 /*
990                  * Read 5GHz EEPROM channels
991                  */
992                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
993                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
994
995                 offset += AR5K_EEPROM_GROUP2_OFFSET;
996                 gen_chan_info = ee->ee_pwr_cal_a;
997                 break;
998         case AR5K_EEPROM_MODE_11B:
999                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1000                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1001                         offset += AR5K_EEPROM_GROUP3_OFFSET;
1002
1003                 /* NB: frequency piers parsed during mode init */
1004                 gen_chan_info = ee->ee_pwr_cal_b;
1005                 break;
1006         case AR5K_EEPROM_MODE_11G:
1007                 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1008                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1009                         offset += AR5K_EEPROM_GROUP4_OFFSET;
1010                 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1011                         offset += AR5K_EEPROM_GROUP2_OFFSET;
1012
1013                 /* NB: frequency piers parsed during mode init */
1014                 gen_chan_info = ee->ee_pwr_cal_g;
1015                 break;
1016         default:
1017                 return -EINVAL;
1018         }
1019
1020         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1021                 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1022
1023                 /* Power values in quarter dB
1024                  * for the lower xpd gain curve
1025                  * (0 dBm -> higher output power) */
1026                 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1027                         AR5K_EEPROM_READ(offset++, val);
1028                         chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1029                         chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1030                 }
1031
1032                 /* PCDAC steps
1033                  * corresponding to the above power
1034                  * measurements */
1035                 AR5K_EEPROM_READ(offset++, val);
1036                 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1037                 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1038                 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1039
1040                 /* Power values in quarter dB
1041                  * for the higher xpd gain curve
1042                  * (18 dBm -> lower output power) */
1043                 AR5K_EEPROM_READ(offset++, val);
1044                 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1045                 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1046
1047                 AR5K_EEPROM_READ(offset++, val);
1048                 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1049
1050                 /* PCDAC steps
1051                  * corresponding to the above power
1052                  * measurements (fixed) */
1053                 chan_pcal_info->pcdac_x3[0] = 20;
1054                 chan_pcal_info->pcdac_x3[1] = 35;
1055                 chan_pcal_info->pcdac_x3[2] = 63;
1056
1057                 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1058                         chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1059
1060                         /* Last xpd0 power level is also channel maximum */
1061                         gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1062                 } else {
1063                         chan_pcal_info->pcdac_x0[0] = 1;
1064                         gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1065                 }
1066
1067         }
1068
1069         return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1070 }
1071
1072
1073 /*
1074  * Read power calibration for RF2413 chips
1075  *
1076  * For RF2413 we have a Power to PDDAC table (Power Detector)
1077  * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1078  * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1079  * axis and looks like an exponential function like the RF5111 curve.
1080  *
1081  * To recreate the curves we read here the points and interpolate
1082  * later. Note that in most cases only 2 (higher and lower) curves are
1083  * used (like RF5112) but vendors have the opportunity to include all
1084  * 4 curves on eeprom. The final curve (higher power) has an extra
1085  * point for better accuracy like RF5112.
1086  */
1087
1088 /* For RF2413 power calibration data doesn't start on a fixed location and
1089  * if a mode is not supported, its section is missing -not zeroed-.
1090  * So we need to calculate the starting offset for each section by using
1091  * these two functions */
1092
1093 /* Return the size of each section based on the mode and the number of pd
1094  * gains available (maximum 4). */
1095 static inline unsigned int
1096 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1097 {
1098         static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1099         unsigned int sz;
1100
1101         sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1102         sz *= ee->ee_n_piers[mode];
1103
1104         return sz;
1105 }
1106
1107 /* Return the starting offset for a section based on the modes supported
1108  * and each section's size. */
1109 static unsigned int
1110 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1111 {
1112         u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1113
1114         switch(mode) {
1115         case AR5K_EEPROM_MODE_11G:
1116                 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1117                         offset += ath5k_pdgains_size_2413(ee,
1118                                         AR5K_EEPROM_MODE_11B) +
1119                                         AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1120                 /* fall through */
1121         case AR5K_EEPROM_MODE_11B:
1122                 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1123                         offset += ath5k_pdgains_size_2413(ee,
1124                                         AR5K_EEPROM_MODE_11A) +
1125                                         AR5K_EEPROM_N_5GHZ_CHAN / 2;
1126                 /* fall through */
1127         case AR5K_EEPROM_MODE_11A:
1128                 break;
1129         default:
1130                 break;
1131         }
1132
1133         return offset;
1134 }
1135
1136 /* Convert RF2413 specific data to generic raw data
1137  * used by interpolation code */
1138 static int
1139 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1140                                 struct ath5k_chan_pcal_info *chinfo)
1141 {
1142         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1143         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1144         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1145         unsigned int pier, pdg, point;
1146
1147         /* Fill raw data for each calibration pier */
1148         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1149
1150                 pcinfo = &chinfo[pier].rf2413_info;
1151
1152                 /* Allocate pd_curves for this cal pier */
1153                 chinfo[pier].pd_curves =
1154                                 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1155                                         sizeof(struct ath5k_pdgain_info),
1156                                         GFP_KERNEL);
1157
1158                 if (!chinfo[pier].pd_curves)
1159                         return -ENOMEM;
1160
1161                 /* Fill pd_curves */
1162                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1163
1164                         u8 idx = pdgain_idx[pdg];
1165                         struct ath5k_pdgain_info *pd =
1166                                         &chinfo[pier].pd_curves[idx];
1167
1168                         /* One more point for the highest power
1169                          * curve (lowest gain) */
1170                         if (pdg == ee->ee_pd_gains[mode] - 1)
1171                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1172                         else
1173                                 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1174
1175                         /* Allocate pd points for this curve */
1176                         pd->pd_step = kcalloc(pd->pd_points,
1177                                         sizeof(u8), GFP_KERNEL);
1178
1179                         if (!pd->pd_step)
1180                                 return -ENOMEM;
1181
1182                         pd->pd_pwr = kcalloc(pd->pd_points,
1183                                         sizeof(s16), GFP_KERNEL);
1184
1185                         if (!pd->pd_pwr)
1186                                 return -ENOMEM;
1187
1188                         /* Fill raw dataset
1189                          * convert all pwr levels to
1190                          * quarter dB for RF5112 combatibility */
1191                         pd->pd_step[0] = pcinfo->pddac_i[pdg];
1192                         pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1193
1194                         for (point = 1; point < pd->pd_points; point++) {
1195
1196                                 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1197                                         2 * pcinfo->pwr[pdg][point - 1];
1198
1199                                 pd->pd_step[point] = pd->pd_step[point - 1] +
1200                                                 pcinfo->pddac[pdg][point - 1];
1201
1202                         }
1203
1204                         /* Highest gain curve -> min power */
1205                         if (pdg == 0)
1206                                 chinfo[pier].min_pwr = pd->pd_pwr[0];
1207
1208                         /* Lowest gain curve -> max power */
1209                         if (pdg == ee->ee_pd_gains[mode] - 1)
1210                                 chinfo[pier].max_pwr =
1211                                         pd->pd_pwr[pd->pd_points - 1];
1212                 }
1213         }
1214
1215         return 0;
1216 }
1217
1218 /* Parse EEPROM data */
1219 static int
1220 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1221 {
1222         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1223         struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1224         struct ath5k_chan_pcal_info *chinfo;
1225         u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1226         u32 offset;
1227         int idx, i;
1228         u16 val;
1229         u8 pd_gains = 0;
1230
1231         /* Count how many curves we have and
1232          * identify them (which one of the 4
1233          * available curves we have on each count).
1234          * Curves are stored from higher to
1235          * lower gain so we go backwards */
1236         for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1237                 /* ee_x_gain[mode] is x gain mask */
1238                 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1239                         pdgain_idx[pd_gains++] = idx;
1240
1241         }
1242         ee->ee_pd_gains[mode] = pd_gains;
1243
1244         if (pd_gains == 0)
1245                 return -EINVAL;
1246
1247         offset = ath5k_cal_data_offset_2413(ee, mode);
1248         switch (mode) {
1249         case AR5K_EEPROM_MODE_11A:
1250                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1251                         return 0;
1252
1253                 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1254                 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1255                 chinfo = ee->ee_pwr_cal_a;
1256                 break;
1257         case AR5K_EEPROM_MODE_11B:
1258                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1259                         return 0;
1260
1261                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1262                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1263                 chinfo = ee->ee_pwr_cal_b;
1264                 break;
1265         case AR5K_EEPROM_MODE_11G:
1266                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1267                         return 0;
1268
1269                 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1270                 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1271                 chinfo = ee->ee_pwr_cal_g;
1272                 break;
1273         default:
1274                 return -EINVAL;
1275         }
1276
1277         for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1278                 pcinfo = &chinfo[i].rf2413_info;
1279
1280                 /*
1281                  * Read pwr_i, pddac_i and the first
1282                  * 2 pd points (pwr, pddac)
1283                  */
1284                 AR5K_EEPROM_READ(offset++, val);
1285                 pcinfo->pwr_i[0] = val & 0x1f;
1286                 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1287                 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1288
1289                 AR5K_EEPROM_READ(offset++, val);
1290                 pcinfo->pddac[0][0] = val & 0x3f;
1291                 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1292                 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1293
1294                 AR5K_EEPROM_READ(offset++, val);
1295                 pcinfo->pwr[0][2] = val & 0xf;
1296                 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1297
1298                 pcinfo->pwr[0][3] = 0;
1299                 pcinfo->pddac[0][3] = 0;
1300
1301                 if (pd_gains > 1) {
1302                         /*
1303                          * Pd gain 0 is not the last pd gain
1304                          * so it only has 2 pd points.
1305                          * Continue with pd gain 1.
1306                          */
1307                         pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1308
1309                         pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1310                         AR5K_EEPROM_READ(offset++, val);
1311                         pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1312
1313                         pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1314                         pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1315
1316                         AR5K_EEPROM_READ(offset++, val);
1317                         pcinfo->pwr[1][1] = val & 0xf;
1318                         pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1319                         pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1320
1321                         pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1322                         AR5K_EEPROM_READ(offset++, val);
1323                         pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1324
1325                         pcinfo->pwr[1][3] = 0;
1326                         pcinfo->pddac[1][3] = 0;
1327                 } else if (pd_gains == 1) {
1328                         /*
1329                          * Pd gain 0 is the last one so
1330                          * read the extra point.
1331                          */
1332                         pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1333
1334                         pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1335                         AR5K_EEPROM_READ(offset++, val);
1336                         pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1337                 }
1338
1339                 /*
1340                  * Proceed with the other pd_gains
1341                  * as above.
1342                  */
1343                 if (pd_gains > 2) {
1344                         pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1345                         pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1346
1347                         AR5K_EEPROM_READ(offset++, val);
1348                         pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1349                         pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1350                         pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1351
1352                         pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1353                         AR5K_EEPROM_READ(offset++, val);
1354                         pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1355
1356                         pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1357                         pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1358
1359                         pcinfo->pwr[2][3] = 0;
1360                         pcinfo->pddac[2][3] = 0;
1361                 } else if (pd_gains == 2) {
1362                         pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1363                         pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1364                 }
1365
1366                 if (pd_gains > 3) {
1367                         pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1368                         AR5K_EEPROM_READ(offset++, val);
1369                         pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1370
1371                         pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1372                         pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1373                         pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1374
1375                         AR5K_EEPROM_READ(offset++, val);
1376                         pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1377                         pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1378                         pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1379
1380                         pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1381                         AR5K_EEPROM_READ(offset++, val);
1382                         pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1383
1384                         pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1385                         pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1386
1387                         pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1388                         AR5K_EEPROM_READ(offset++, val);
1389                         pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1390                 } else if (pd_gains == 3) {
1391                         pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1392                         AR5K_EEPROM_READ(offset++, val);
1393                         pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1394
1395                         pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1396                 }
1397         }
1398
1399         return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1400 }
1401
1402
1403 /*
1404  * Read per rate target power (this is the maximum tx power
1405  * supported by the card). This info is used when setting
1406  * tx power, no matter the channel.
1407  *
1408  * This also works for v5 EEPROMs.
1409  */
1410 static int
1411 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1412 {
1413         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1414         struct ath5k_rate_pcal_info *rate_pcal_info;
1415         u8 *rate_target_pwr_num;
1416         u32 offset;
1417         u16 val;
1418         int i;
1419
1420         offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1421         rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1422         switch (mode) {
1423         case AR5K_EEPROM_MODE_11A:
1424                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1425                 rate_pcal_info = ee->ee_rate_tpwr_a;
1426                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1427                 break;
1428         case AR5K_EEPROM_MODE_11B:
1429                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1430                 rate_pcal_info = ee->ee_rate_tpwr_b;
1431                 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1432                 break;
1433         case AR5K_EEPROM_MODE_11G:
1434                 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1435                 rate_pcal_info = ee->ee_rate_tpwr_g;
1436                 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1437                 break;
1438         default:
1439                 return -EINVAL;
1440         }
1441
1442         /* Different freq mask for older eeproms (<= v3.2) */
1443         if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1444                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1445                         AR5K_EEPROM_READ(offset++, val);
1446                         rate_pcal_info[i].freq =
1447                             ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1448
1449                         rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1450                         rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1451
1452                         AR5K_EEPROM_READ(offset++, val);
1453
1454                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1455                             val == 0) {
1456                                 (*rate_target_pwr_num) = i;
1457                                 break;
1458                         }
1459
1460                         rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1461                         rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1462                         rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1463                 }
1464         } else {
1465                 for (i = 0; i < (*rate_target_pwr_num); i++) {
1466                         AR5K_EEPROM_READ(offset++, val);
1467                         rate_pcal_info[i].freq =
1468                             ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1469
1470                         rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1471                         rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1472
1473                         AR5K_EEPROM_READ(offset++, val);
1474
1475                         if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1476                             val == 0) {
1477                                 (*rate_target_pwr_num) = i;
1478                                 break;
1479                         }
1480
1481                         rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1482                         rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1483                         rate_pcal_info[i].target_power_54 = (val & 0x3f);
1484                 }
1485         }
1486
1487         return 0;
1488 }
1489
1490
1491 /*
1492  * Read per channel calibration info from EEPROM
1493  *
1494  * This info is used to calibrate the baseband power table. Imagine
1495  * that for each channel there is a power curve that's hw specific
1496  * (depends on amplifier etc) and we try to "correct" this curve using
1497  * offsets we pass on to phy chip (baseband -> before amplifier) so that
1498  * it can use accurate power values when setting tx power (takes amplifier's
1499  * performance on each channel into account).
1500  *
1501  * EEPROM provides us with the offsets for some pre-calibrated channels
1502  * and we have to interpolate to create the full table for these channels and
1503  * also the table for any channel.
1504  */
1505 static int
1506 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1507 {
1508         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1509         int (*read_pcal)(struct ath5k_hw *hw, int mode);
1510         int mode;
1511         int err;
1512
1513         if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1514                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1515                 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1516         else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1517                         (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1518                 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1519         else
1520                 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1521
1522
1523         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1524         mode++) {
1525                 err = read_pcal(ah, mode);
1526                 if (err)
1527                         return err;
1528
1529                 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1530                 if (err < 0)
1531                         return err;
1532         }
1533
1534         return 0;
1535 }
1536
1537 static int
1538 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1539 {
1540         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1541         struct ath5k_chan_pcal_info *chinfo;
1542         u8 pier, pdg;
1543
1544         switch (mode) {
1545         case AR5K_EEPROM_MODE_11A:
1546                 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1547                         return 0;
1548                 chinfo = ee->ee_pwr_cal_a;
1549                 break;
1550         case AR5K_EEPROM_MODE_11B:
1551                 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1552                         return 0;
1553                 chinfo = ee->ee_pwr_cal_b;
1554                 break;
1555         case AR5K_EEPROM_MODE_11G:
1556                 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1557                         return 0;
1558                 chinfo = ee->ee_pwr_cal_g;
1559                 break;
1560         default:
1561                 return -EINVAL;
1562         }
1563
1564         for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1565                 if (!chinfo[pier].pd_curves)
1566                         continue;
1567
1568                 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1569                         struct ath5k_pdgain_info *pd =
1570                                         &chinfo[pier].pd_curves[pdg];
1571
1572                         if (pd != NULL) {
1573                                 kfree(pd->pd_step);
1574                                 kfree(pd->pd_pwr);
1575                         }
1576                 }
1577
1578                 kfree(chinfo[pier].pd_curves);
1579         }
1580
1581         return 0;
1582 }
1583
1584 /* Read conformance test limits used for regulatory control */
1585 static int
1586 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1587 {
1588         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1589         struct ath5k_edge_power *rep;
1590         unsigned int fmask, pmask;
1591         unsigned int ctl_mode;
1592         int i, j;
1593         u32 offset;
1594         u16 val;
1595
1596         pmask = AR5K_EEPROM_POWER_M;
1597         fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1598         offset = AR5K_EEPROM_CTL(ee->ee_version);
1599         ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1600         for (i = 0; i < ee->ee_ctls; i += 2) {
1601                 AR5K_EEPROM_READ(offset++, val);
1602                 ee->ee_ctl[i] = (val >> 8) & 0xff;
1603                 ee->ee_ctl[i + 1] = val & 0xff;
1604         }
1605
1606         offset = AR5K_EEPROM_GROUP8_OFFSET;
1607         if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1608                 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1609                         AR5K_EEPROM_GROUP5_OFFSET;
1610         else
1611                 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1612
1613         rep = ee->ee_ctl_pwr;
1614         for(i = 0; i < ee->ee_ctls; i++) {
1615                 switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1616                 case AR5K_CTL_11A:
1617                 case AR5K_CTL_TURBO:
1618                         ctl_mode = AR5K_EEPROM_MODE_11A;
1619                         break;
1620                 default:
1621                         ctl_mode = AR5K_EEPROM_MODE_11G;
1622                         break;
1623                 }
1624                 if (ee->ee_ctl[i] == 0) {
1625                         if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1626                                 offset += 8;
1627                         else
1628                                 offset += 7;
1629                         rep += AR5K_EEPROM_N_EDGES;
1630                         continue;
1631                 }
1632                 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1633                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1634                                 AR5K_EEPROM_READ(offset++, val);
1635                                 rep[j].freq = (val >> 8) & fmask;
1636                                 rep[j + 1].freq = val & fmask;
1637                         }
1638                         for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1639                                 AR5K_EEPROM_READ(offset++, val);
1640                                 rep[j].edge = (val >> 8) & pmask;
1641                                 rep[j].flag = (val >> 14) & 1;
1642                                 rep[j + 1].edge = val & pmask;
1643                                 rep[j + 1].flag = (val >> 6) & 1;
1644                         }
1645                 } else {
1646                         AR5K_EEPROM_READ(offset++, val);
1647                         rep[0].freq = (val >> 9) & fmask;
1648                         rep[1].freq = (val >> 2) & fmask;
1649                         rep[2].freq = (val << 5) & fmask;
1650
1651                         AR5K_EEPROM_READ(offset++, val);
1652                         rep[2].freq |= (val >> 11) & 0x1f;
1653                         rep[3].freq = (val >> 4) & fmask;
1654                         rep[4].freq = (val << 3) & fmask;
1655
1656                         AR5K_EEPROM_READ(offset++, val);
1657                         rep[4].freq |= (val >> 13) & 0x7;
1658                         rep[5].freq = (val >> 6) & fmask;
1659                         rep[6].freq = (val << 1) & fmask;
1660
1661                         AR5K_EEPROM_READ(offset++, val);
1662                         rep[6].freq |= (val >> 15) & 0x1;
1663                         rep[7].freq = (val >> 8) & fmask;
1664
1665                         rep[0].edge = (val >> 2) & pmask;
1666                         rep[1].edge = (val << 4) & pmask;
1667
1668                         AR5K_EEPROM_READ(offset++, val);
1669                         rep[1].edge |= (val >> 12) & 0xf;
1670                         rep[2].edge = (val >> 6) & pmask;
1671                         rep[3].edge = val & pmask;
1672
1673                         AR5K_EEPROM_READ(offset++, val);
1674                         rep[4].edge = (val >> 10) & pmask;
1675                         rep[5].edge = (val >> 4) & pmask;
1676                         rep[6].edge = (val << 2) & pmask;
1677
1678                         AR5K_EEPROM_READ(offset++, val);
1679                         rep[6].edge |= (val >> 14) & 0x3;
1680                         rep[7].edge = (val >> 8) & pmask;
1681                 }
1682                 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1683                         rep[j].freq = ath5k_eeprom_bin2freq(ee,
1684                                 rep[j].freq, ctl_mode);
1685                 }
1686                 rep += AR5K_EEPROM_N_EDGES;
1687         }
1688
1689         return 0;
1690 }
1691
1692 static int
1693 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1694 {
1695         struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1696         u32 offset;
1697         u16 val;
1698         int ret = 0, i;
1699
1700         offset = AR5K_EEPROM_CTL(ee->ee_version) +
1701                                 AR5K_EEPROM_N_CTLS(ee->ee_version);
1702
1703         if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1704                 /* No spur info for 5GHz */
1705                 ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1706                 /* 2 channels for 2GHz (2464/2420) */
1707                 ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1708                 ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1709                 ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1710         } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1711                 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1712                         AR5K_EEPROM_READ(offset, val);
1713                         ee->ee_spur_chans[i][0] = val;
1714                         AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1715                                                                         val);
1716                         ee->ee_spur_chans[i][1] = val;
1717                         offset++;
1718                 }
1719         }
1720
1721         return ret;
1722 }
1723
1724 /*
1725  * Read the MAC address from eeprom
1726  */
1727 int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1728 {
1729         u8 mac_d[ETH_ALEN] = {};
1730         u32 total, offset;
1731         u16 data;
1732         int octet;
1733
1734         AR5K_EEPROM_READ(0x20, data);
1735
1736         for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1737                 AR5K_EEPROM_READ(offset, data);
1738
1739                 total += data;
1740                 mac_d[octet + 1] = data & 0xff;
1741                 mac_d[octet] = data >> 8;
1742                 octet += 2;
1743         }
1744
1745         if (!total || total == 3 * 0xffff)
1746                 return -EINVAL;
1747
1748         memcpy(mac, mac_d, ETH_ALEN);
1749
1750         return 0;
1751 }
1752
1753
1754 /***********************\
1755 * Init/Detach functions *
1756 \***********************/
1757
1758 /*
1759  * Initialize eeprom data structure
1760  */
1761 int
1762 ath5k_eeprom_init(struct ath5k_hw *ah)
1763 {
1764         int err;
1765
1766         err = ath5k_eeprom_init_header(ah);
1767         if (err < 0)
1768                 return err;
1769
1770         err = ath5k_eeprom_init_modes(ah);
1771         if (err < 0)
1772                 return err;
1773
1774         err = ath5k_eeprom_read_pcal_info(ah);
1775         if (err < 0)
1776                 return err;
1777
1778         err = ath5k_eeprom_read_ctl_info(ah);
1779         if (err < 0)
1780                 return err;
1781
1782         err = ath5k_eeprom_read_spur_chans(ah);
1783         if (err < 0)
1784                 return err;
1785
1786         return 0;
1787 }
1788
1789 void
1790 ath5k_eeprom_detach(struct ath5k_hw *ah)
1791 {
1792         u8 mode;
1793
1794         for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1795                 ath5k_eeprom_free_pcal_info(ah, mode);
1796 }
1797
1798 int
1799 ath5k_eeprom_mode_from_channel(struct ieee80211_channel *channel)
1800 {
1801         switch (channel->hw_value & CHANNEL_MODES) {
1802         case CHANNEL_A:
1803         case CHANNEL_XR:
1804                 return AR5K_EEPROM_MODE_11A;
1805         case CHANNEL_G:
1806                 return AR5K_EEPROM_MODE_11G;
1807         case CHANNEL_B:
1808                 return AR5K_EEPROM_MODE_11B;
1809         default:
1810                 return -1;
1811         }
1812 }