Merge branches 'x86-fixes-for-linus', 'sched-fixes-for-linus', 'timers-fixes-for...
[pandora-kernel.git] / drivers / net / wimax / i2400m / netdev.c
1 /*
2  * Intel Wireless WiMAX Connection 2400m
3  * Glue with the networking stack
4  *
5  *
6  * Copyright (C) 2007 Intel Corporation <linux-wimax@intel.com>
7  * Yanir Lubetkin <yanirx.lubetkin@intel.com>
8  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License version
12  * 2 as published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
22  * 02110-1301, USA.
23  *
24  *
25  * This implements an ethernet device for the i2400m.
26  *
27  * We fake being an ethernet device to simplify the support from user
28  * space and from the other side. The world is (sadly) configured to
29  * take in only Ethernet devices...
30  *
31  * Because of this, when using firmwares <= v1.3, there is an
32  * copy-each-rxed-packet overhead on the RX path. Each IP packet has
33  * to be reallocated to add an ethernet header (as there is no space
34  * in what we get from the device). This is a known drawback and
35  * firmwares >= 1.4 add header space that can be used to insert the
36  * ethernet header without having to reallocate and copy.
37  *
38  * TX error handling is tricky; because we have to FIFO/queue the
39  * buffers for transmission (as the hardware likes it aggregated), we
40  * just give the skb to the TX subsystem and by the time it is
41  * transmitted, we have long forgotten about it. So we just don't care
42  * too much about it.
43  *
44  * Note that when the device is in idle mode with the basestation, we
45  * need to negotiate coming back up online. That involves negotiation
46  * and possible user space interaction. Thus, we defer to a workqueue
47  * to do all that. By default, we only queue a single packet and drop
48  * the rest, as potentially the time to go back from idle to normal is
49  * long.
50  *
51  * ROADMAP
52  *
53  * i2400m_open         Called on ifconfig up
54  * i2400m_stop         Called on ifconfig down
55  *
56  * i2400m_hard_start_xmit Called by the network stack to send a packet
57  *   i2400m_net_wake_tx   Wake up device from basestation-IDLE & TX
58  *     i2400m_wake_tx_work
59  *       i2400m_cmd_exit_idle
60  *       i2400m_tx
61  *   i2400m_net_tx        TX a data frame
62  *     i2400m_tx
63  *
64  * i2400m_change_mtu      Called on ifconfig mtu XXX
65  *
66  * i2400m_tx_timeout      Called when the device times out
67  *
68  * i2400m_net_rx          Called by the RX code when a data frame is
69  *                        available (firmware <= 1.3)
70  * i2400m_net_erx         Called by the RX code when a data frame is
71  *                        available (firmware >= 1.4).
72  * i2400m_netdev_setup    Called to setup all the netdev stuff from
73  *                        alloc_netdev.
74  */
75 #include <linux/if_arp.h>
76 #include <linux/slab.h>
77 #include <linux/netdevice.h>
78 #include <linux/ethtool.h>
79 #include "i2400m.h"
80
81
82 #define D_SUBMODULE netdev
83 #include "debug-levels.h"
84
85 enum {
86 /* netdev interface */
87         /* 20 secs? yep, this is the maximum timeout that the device
88          * might take to get out of IDLE / negotiate it with the base
89          * station. We add 1sec for good measure. */
90         I2400M_TX_TIMEOUT = 21 * HZ,
91         /*
92          * Experimentation has determined that, 20 to be a good value
93          * for minimizing the jitter in the throughput.
94          */
95         I2400M_TX_QLEN = 20,
96 };
97
98
99 static
100 int i2400m_open(struct net_device *net_dev)
101 {
102         int result;
103         struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
104         struct device *dev = i2400m_dev(i2400m);
105
106         d_fnstart(3, dev, "(net_dev %p [i2400m %p])\n", net_dev, i2400m);
107         /* Make sure we wait until init is complete... */
108         mutex_lock(&i2400m->init_mutex);
109         if (i2400m->updown)
110                 result = 0;
111         else
112                 result = -EBUSY;
113         mutex_unlock(&i2400m->init_mutex);
114         d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
115                 net_dev, i2400m, result);
116         return result;
117 }
118
119
120 static
121 int i2400m_stop(struct net_device *net_dev)
122 {
123         struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
124         struct device *dev = i2400m_dev(i2400m);
125
126         d_fnstart(3, dev, "(net_dev %p [i2400m %p])\n", net_dev, i2400m);
127         i2400m_net_wake_stop(i2400m);
128         d_fnend(3, dev, "(net_dev %p [i2400m %p]) = 0\n", net_dev, i2400m);
129         return 0;
130 }
131
132
133 /*
134  * Wake up the device and transmit a held SKB, then restart the net queue
135  *
136  * When the device goes into basestation-idle mode, we need to tell it
137  * to exit that mode; it will negotiate with the base station, user
138  * space may have to intervene to rehandshake crypto and then tell us
139  * when it is ready to transmit the packet we have "queued". Still we
140  * need to give it sometime after it reports being ok.
141  *
142  * On error, there is not much we can do. If the error was on TX, we
143  * still wake the queue up to see if the next packet will be luckier.
144  *
145  * If _cmd_exit_idle() fails...well, it could be many things; most
146  * commonly it is that something else took the device out of IDLE mode
147  * (for example, the base station). In that case we get an -EILSEQ and
148  * we are just going to ignore that one. If the device is back to
149  * connected, then fine -- if it is someother state, the packet will
150  * be dropped anyway.
151  */
152 void i2400m_wake_tx_work(struct work_struct *ws)
153 {
154         int result;
155         struct i2400m *i2400m = container_of(ws, struct i2400m, wake_tx_ws);
156         struct net_device *net_dev = i2400m->wimax_dev.net_dev;
157         struct device *dev = i2400m_dev(i2400m);
158         struct sk_buff *skb = i2400m->wake_tx_skb;
159         unsigned long flags;
160
161         spin_lock_irqsave(&i2400m->tx_lock, flags);
162         skb = i2400m->wake_tx_skb;
163         i2400m->wake_tx_skb = NULL;
164         spin_unlock_irqrestore(&i2400m->tx_lock, flags);
165
166         d_fnstart(3, dev, "(ws %p i2400m %p skb %p)\n", ws, i2400m, skb);
167         result = -EINVAL;
168         if (skb == NULL) {
169                 dev_err(dev, "WAKE&TX: skb disappeared!\n");
170                 goto out_put;
171         }
172         /* If we have, somehow, lost the connection after this was
173          * queued, don't do anything; this might be the device got
174          * reset or just disconnected. */
175         if (unlikely(!netif_carrier_ok(net_dev)))
176                 goto out_kfree;
177         result = i2400m_cmd_exit_idle(i2400m);
178         if (result == -EILSEQ)
179                 result = 0;
180         if (result < 0) {
181                 dev_err(dev, "WAKE&TX: device didn't get out of idle: "
182                         "%d - resetting\n", result);
183                 i2400m_reset(i2400m, I2400M_RT_BUS);
184                 goto error;
185         }
186         result = wait_event_timeout(i2400m->state_wq,
187                                     i2400m->state != I2400M_SS_IDLE,
188                                     net_dev->watchdog_timeo - HZ/2);
189         if (result == 0)
190                 result = -ETIMEDOUT;
191         if (result < 0) {
192                 dev_err(dev, "WAKE&TX: error waiting for device to exit IDLE: "
193                         "%d - resetting\n", result);
194                 i2400m_reset(i2400m, I2400M_RT_BUS);
195                 goto error;
196         }
197         msleep(20);     /* device still needs some time or it drops it */
198         result = i2400m_tx(i2400m, skb->data, skb->len, I2400M_PT_DATA);
199 error:
200         netif_wake_queue(net_dev);
201 out_kfree:
202         kfree_skb(skb); /* refcount transferred by _hard_start_xmit() */
203 out_put:
204         i2400m_put(i2400m);
205         d_fnend(3, dev, "(ws %p i2400m %p skb %p) = void [%d]\n",
206                 ws, i2400m, skb, result);
207 }
208
209
210 /*
211  * Prepare the data payload TX header
212  *
213  * The i2400m expects a 4 byte header in front of a data packet.
214  *
215  * Because we pretend to be an ethernet device, this packet comes with
216  * an ethernet header. Pull it and push our header.
217  */
218 static
219 void i2400m_tx_prep_header(struct sk_buff *skb)
220 {
221         struct i2400m_pl_data_hdr *pl_hdr;
222         skb_pull(skb, ETH_HLEN);
223         pl_hdr = (struct i2400m_pl_data_hdr *) skb_push(skb, sizeof(*pl_hdr));
224         pl_hdr->reserved = 0;
225 }
226
227
228
229 /*
230  * Cleanup resources acquired during i2400m_net_wake_tx()
231  *
232  * This is called by __i2400m_dev_stop and means we have to make sure
233  * the workqueue is flushed from any pending work.
234  */
235 void i2400m_net_wake_stop(struct i2400m *i2400m)
236 {
237         struct device *dev = i2400m_dev(i2400m);
238
239         d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
240         /* See i2400m_hard_start_xmit(), references are taken there
241          * and here we release them if the work was still
242          * pending. Note we can't differentiate work not pending vs
243          * never scheduled, so the NULL check does that. */
244         if (cancel_work_sync(&i2400m->wake_tx_ws) == 0
245             && i2400m->wake_tx_skb != NULL) {
246                 unsigned long flags;
247                 struct sk_buff *wake_tx_skb;
248                 spin_lock_irqsave(&i2400m->tx_lock, flags);
249                 wake_tx_skb = i2400m->wake_tx_skb;      /* compat help */
250                 i2400m->wake_tx_skb = NULL;     /* compat help */
251                 spin_unlock_irqrestore(&i2400m->tx_lock, flags);
252                 i2400m_put(i2400m);
253                 kfree_skb(wake_tx_skb);
254         }
255         d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
256 }
257
258
259 /*
260  * TX an skb to an idle device
261  *
262  * When the device is in basestation-idle mode, we need to wake it up
263  * and then TX. So we queue a work_struct for doing so.
264  *
265  * We need to get an extra ref for the skb (so it is not dropped), as
266  * well as be careful not to queue more than one request (won't help
267  * at all). If more than one request comes or there are errors, we
268  * just drop the packets (see i2400m_hard_start_xmit()).
269  */
270 static
271 int i2400m_net_wake_tx(struct i2400m *i2400m, struct net_device *net_dev,
272                        struct sk_buff *skb)
273 {
274         int result;
275         struct device *dev = i2400m_dev(i2400m);
276         unsigned long flags;
277
278         d_fnstart(3, dev, "(skb %p net_dev %p)\n", skb, net_dev);
279         if (net_ratelimit()) {
280                 d_printf(3, dev, "WAKE&NETTX: "
281                          "skb %p sending %d bytes to radio\n",
282                          skb, skb->len);
283                 d_dump(4, dev, skb->data, skb->len);
284         }
285         /* We hold a ref count for i2400m and skb, so when
286          * stopping() the device, we need to cancel that work
287          * and if pending, release those resources. */
288         result = 0;
289         spin_lock_irqsave(&i2400m->tx_lock, flags);
290         if (!work_pending(&i2400m->wake_tx_ws)) {
291                 netif_stop_queue(net_dev);
292                 i2400m_get(i2400m);
293                 i2400m->wake_tx_skb = skb_get(skb);     /* transfer ref count */
294                 i2400m_tx_prep_header(skb);
295                 result = schedule_work(&i2400m->wake_tx_ws);
296                 WARN_ON(result == 0);
297         }
298         spin_unlock_irqrestore(&i2400m->tx_lock, flags);
299         if (result == 0) {
300                 /* Yes, this happens even if we stopped the
301                  * queue -- blame the queue disciplines that
302                  * queue without looking -- I guess there is a reason
303                  * for that. */
304                 if (net_ratelimit())
305                         d_printf(1, dev, "NETTX: device exiting idle, "
306                                  "dropping skb %p, queue running %d\n",
307                                  skb, netif_queue_stopped(net_dev));
308                 result = -EBUSY;
309         }
310         d_fnend(3, dev, "(skb %p net_dev %p) = %d\n", skb, net_dev, result);
311         return result;
312 }
313
314
315 /*
316  * Transmit a packet to the base station on behalf of the network stack.
317  *
318  * Returns: 0 if ok, < 0 errno code on error.
319  *
320  * We need to pull the ethernet header and add the hardware header,
321  * which is currently set to all zeroes and reserved.
322  */
323 static
324 int i2400m_net_tx(struct i2400m *i2400m, struct net_device *net_dev,
325                   struct sk_buff *skb)
326 {
327         int result;
328         struct device *dev = i2400m_dev(i2400m);
329
330         d_fnstart(3, dev, "(i2400m %p net_dev %p skb %p)\n",
331                   i2400m, net_dev, skb);
332         /* FIXME: check eth hdr, only IPv4 is routed by the device as of now */
333         net_dev->trans_start = jiffies;
334         i2400m_tx_prep_header(skb);
335         d_printf(3, dev, "NETTX: skb %p sending %d bytes to radio\n",
336                  skb, skb->len);
337         d_dump(4, dev, skb->data, skb->len);
338         result = i2400m_tx(i2400m, skb->data, skb->len, I2400M_PT_DATA);
339         d_fnend(3, dev, "(i2400m %p net_dev %p skb %p) = %d\n",
340                 i2400m, net_dev, skb, result);
341         return result;
342 }
343
344
345 /*
346  * Transmit a packet to the base station on behalf of the network stack
347  *
348  *
349  * Returns: NETDEV_TX_OK (always, even in case of error)
350  *
351  * In case of error, we just drop it. Reasons:
352  *
353  *  - we add a hw header to each skb, and if the network stack
354  *    retries, we have no way to know if that skb has it or not.
355  *
356  *  - network protocols have their own drop-recovery mechanisms
357  *
358  *  - there is not much else we can do
359  *
360  * If the device is idle, we need to wake it up; that is an operation
361  * that will sleep. See i2400m_net_wake_tx() for details.
362  */
363 static
364 netdev_tx_t i2400m_hard_start_xmit(struct sk_buff *skb,
365                                          struct net_device *net_dev)
366 {
367         struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
368         struct device *dev = i2400m_dev(i2400m);
369         int result;
370
371         d_fnstart(3, dev, "(skb %p net_dev %p)\n", skb, net_dev);
372         if (skb_header_cloned(skb)) {
373                 /*
374                  * Make tcpdump/wireshark happy -- if they are
375                  * running, the skb is cloned and we will overwrite
376                  * the mac fields in i2400m_tx_prep_header. Expand
377                  * seems to fix this...
378                  */
379                 result = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
380                 if (result) {
381                         result = NETDEV_TX_BUSY;
382                         goto error_expand;
383                 }
384         }
385
386         if (i2400m->state == I2400M_SS_IDLE)
387                 result = i2400m_net_wake_tx(i2400m, net_dev, skb);
388         else
389                 result = i2400m_net_tx(i2400m, net_dev, skb);
390         if (result <  0)
391                 net_dev->stats.tx_dropped++;
392         else {
393                 net_dev->stats.tx_packets++;
394                 net_dev->stats.tx_bytes += skb->len;
395         }
396         result = NETDEV_TX_OK;
397 error_expand:
398         kfree_skb(skb);
399         d_fnend(3, dev, "(skb %p net_dev %p) = %d\n", skb, net_dev, result);
400         return result;
401 }
402
403
404 static
405 int i2400m_change_mtu(struct net_device *net_dev, int new_mtu)
406 {
407         int result;
408         struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
409         struct device *dev = i2400m_dev(i2400m);
410
411         if (new_mtu >= I2400M_MAX_MTU) {
412                 dev_err(dev, "Cannot change MTU to %d (max is %d)\n",
413                         new_mtu, I2400M_MAX_MTU);
414                 result = -EINVAL;
415         } else {
416                 net_dev->mtu = new_mtu;
417                 result = 0;
418         }
419         return result;
420 }
421
422
423 static
424 void i2400m_tx_timeout(struct net_device *net_dev)
425 {
426         /*
427          * We might want to kick the device
428          *
429          * There is not much we can do though, as the device requires
430          * that we send the data aggregated. By the time we receive
431          * this, there might be data pending to be sent or not...
432          */
433         net_dev->stats.tx_errors++;
434 }
435
436
437 /*
438  * Create a fake ethernet header
439  *
440  * For emulating an ethernet device, every received IP header has to
441  * be prefixed with an ethernet header. Fake it with the given
442  * protocol.
443  */
444 static
445 void i2400m_rx_fake_eth_header(struct net_device *net_dev,
446                                void *_eth_hdr, __be16 protocol)
447 {
448         struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
449         struct ethhdr *eth_hdr = _eth_hdr;
450
451         memcpy(eth_hdr->h_dest, net_dev->dev_addr, sizeof(eth_hdr->h_dest));
452         memcpy(eth_hdr->h_source, i2400m->src_mac_addr,
453                sizeof(eth_hdr->h_source));
454         eth_hdr->h_proto = protocol;
455 }
456
457
458 /*
459  * i2400m_net_rx - pass a network packet to the stack
460  *
461  * @i2400m: device instance
462  * @skb_rx: the skb where the buffer pointed to by @buf is
463  * @i: 1 if payload is the only one
464  * @buf: pointer to the buffer containing the data
465  * @len: buffer's length
466  *
467  * This is only used now for the v1.3 firmware. It will be deprecated
468  * in >= 2.6.31.
469  *
470  * Note that due to firmware limitations, we don't have space to add
471  * an ethernet header, so we need to copy each packet. Firmware
472  * versions >= v1.4 fix this [see i2400m_net_erx()].
473  *
474  * We just clone the skb and set it up so that it's skb->data pointer
475  * points to "buf" and it's length.
476  *
477  * Note that if the payload is the last (or the only one) in a
478  * multi-payload message, we don't clone the SKB but just reuse it.
479  *
480  * This function is normally run from a thread context. However, we
481  * still use netif_rx() instead of netif_receive_skb() as was
482  * recommended in the mailing list. Reason is in some stress tests
483  * when sending/receiving a lot of data we seem to hit a softlock in
484  * the kernel's TCP implementation [aroudn tcp_delay_timer()]. Using
485  * netif_rx() took care of the issue.
486  *
487  * This is, of course, still open to do more research on why running
488  * with netif_receive_skb() hits this softlock. FIXME.
489  *
490  * FIXME: currently we don't do any efforts at distinguishing if what
491  * we got was an IPv4 or IPv6 header, to setup the protocol field
492  * correctly.
493  */
494 void i2400m_net_rx(struct i2400m *i2400m, struct sk_buff *skb_rx,
495                    unsigned i, const void *buf, int buf_len)
496 {
497         struct net_device *net_dev = i2400m->wimax_dev.net_dev;
498         struct device *dev = i2400m_dev(i2400m);
499         struct sk_buff *skb;
500
501         d_fnstart(2, dev, "(i2400m %p buf %p buf_len %d)\n",
502                   i2400m, buf, buf_len);
503         if (i) {
504                 skb = skb_get(skb_rx);
505                 d_printf(2, dev, "RX: reusing first payload skb %p\n", skb);
506                 skb_pull(skb, buf - (void *) skb->data);
507                 skb_trim(skb, (void *) skb_end_pointer(skb) - buf);
508         } else {
509                 /* Yes, this is bad -- a lot of overhead -- see
510                  * comments at the top of the file */
511                 skb = __netdev_alloc_skb(net_dev, buf_len, GFP_KERNEL);
512                 if (skb == NULL) {
513                         dev_err(dev, "NETRX: no memory to realloc skb\n");
514                         net_dev->stats.rx_dropped++;
515                         goto error_skb_realloc;
516                 }
517                 memcpy(skb_put(skb, buf_len), buf, buf_len);
518         }
519         i2400m_rx_fake_eth_header(i2400m->wimax_dev.net_dev,
520                                   skb->data - ETH_HLEN,
521                                   cpu_to_be16(ETH_P_IP));
522         skb_set_mac_header(skb, -ETH_HLEN);
523         skb->dev = i2400m->wimax_dev.net_dev;
524         skb->protocol = htons(ETH_P_IP);
525         net_dev->stats.rx_packets++;
526         net_dev->stats.rx_bytes += buf_len;
527         d_printf(3, dev, "NETRX: receiving %d bytes to network stack\n",
528                 buf_len);
529         d_dump(4, dev, buf, buf_len);
530         netif_rx_ni(skb);       /* see notes in function header */
531 error_skb_realloc:
532         d_fnend(2, dev, "(i2400m %p buf %p buf_len %d) = void\n",
533                 i2400m, buf, buf_len);
534 }
535
536
537 /*
538  * i2400m_net_erx - pass a network packet to the stack (extended version)
539  *
540  * @i2400m: device descriptor
541  * @skb: the skb where the packet is - the skb should be set to point
542  *     at the IP packet; this function will add ethernet headers if
543  *     needed.
544  * @cs: packet type
545  *
546  * This is only used now for firmware >= v1.4. Note it is quite
547  * similar to i2400m_net_rx() (used only for v1.3 firmware).
548  *
549  * This function is normally run from a thread context. However, we
550  * still use netif_rx() instead of netif_receive_skb() as was
551  * recommended in the mailing list. Reason is in some stress tests
552  * when sending/receiving a lot of data we seem to hit a softlock in
553  * the kernel's TCP implementation [aroudn tcp_delay_timer()]. Using
554  * netif_rx() took care of the issue.
555  *
556  * This is, of course, still open to do more research on why running
557  * with netif_receive_skb() hits this softlock. FIXME.
558  */
559 void i2400m_net_erx(struct i2400m *i2400m, struct sk_buff *skb,
560                     enum i2400m_cs cs)
561 {
562         struct net_device *net_dev = i2400m->wimax_dev.net_dev;
563         struct device *dev = i2400m_dev(i2400m);
564         int protocol;
565
566         d_fnstart(2, dev, "(i2400m %p skb %p [%u] cs %d)\n",
567                   i2400m, skb, skb->len, cs);
568         switch(cs) {
569         case I2400M_CS_IPV4_0:
570         case I2400M_CS_IPV4:
571                 protocol = ETH_P_IP;
572                 i2400m_rx_fake_eth_header(i2400m->wimax_dev.net_dev,
573                                           skb->data - ETH_HLEN,
574                                           cpu_to_be16(ETH_P_IP));
575                 skb_set_mac_header(skb, -ETH_HLEN);
576                 skb->dev = i2400m->wimax_dev.net_dev;
577                 skb->protocol = htons(ETH_P_IP);
578                 net_dev->stats.rx_packets++;
579                 net_dev->stats.rx_bytes += skb->len;
580                 break;
581         default:
582                 dev_err(dev, "ERX: BUG? CS type %u unsupported\n", cs);
583                 goto error;
584
585         }
586         d_printf(3, dev, "ERX: receiving %d bytes to the network stack\n",
587                  skb->len);
588         d_dump(4, dev, skb->data, skb->len);
589         netif_rx_ni(skb);       /* see notes in function header */
590 error:
591         d_fnend(2, dev, "(i2400m %p skb %p [%u] cs %d) = void\n",
592                 i2400m, skb, skb->len, cs);
593 }
594
595 static const struct net_device_ops i2400m_netdev_ops = {
596         .ndo_open = i2400m_open,
597         .ndo_stop = i2400m_stop,
598         .ndo_start_xmit = i2400m_hard_start_xmit,
599         .ndo_tx_timeout = i2400m_tx_timeout,
600         .ndo_change_mtu = i2400m_change_mtu,
601 };
602
603 static void i2400m_get_drvinfo(struct net_device *net_dev,
604                                struct ethtool_drvinfo *info)
605 {
606         struct i2400m *i2400m = net_dev_to_i2400m(net_dev);
607
608         strncpy(info->driver, KBUILD_MODNAME, sizeof(info->driver) - 1);
609         strncpy(info->fw_version, i2400m->fw_name, sizeof(info->fw_version) - 1);
610         if (net_dev->dev.parent)
611                 strncpy(info->bus_info, dev_name(net_dev->dev.parent),
612                         sizeof(info->bus_info) - 1);
613 }
614
615 static const struct ethtool_ops i2400m_ethtool_ops = {
616         .get_drvinfo = i2400m_get_drvinfo,
617         .get_link = ethtool_op_get_link,
618 };
619
620 /**
621  * i2400m_netdev_setup - Setup setup @net_dev's i2400m private data
622  *
623  * Called by alloc_netdev()
624  */
625 void i2400m_netdev_setup(struct net_device *net_dev)
626 {
627         d_fnstart(3, NULL, "(net_dev %p)\n", net_dev);
628         ether_setup(net_dev);
629         net_dev->mtu = I2400M_MAX_MTU;
630         net_dev->tx_queue_len = I2400M_TX_QLEN;
631         net_dev->features =
632                   NETIF_F_VLAN_CHALLENGED
633                 | NETIF_F_HIGHDMA;
634         net_dev->flags =
635                 IFF_NOARP               /* i2400m is apure IP device */
636                 & (~IFF_BROADCAST       /* i2400m is P2P */
637                    & ~IFF_MULTICAST);
638         net_dev->watchdog_timeo = I2400M_TX_TIMEOUT;
639         net_dev->netdev_ops = &i2400m_netdev_ops;
640         net_dev->ethtool_ops = &i2400m_ethtool_ops;
641         d_fnend(3, NULL, "(net_dev %p) = void\n", net_dev);
642 }
643 EXPORT_SYMBOL_GPL(i2400m_netdev_setup);
644