Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[pandora-kernel.git] / drivers / net / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2010 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
24
25 /*
26  * TX descriptor ring full threshold
27  *
28  * The tx_queue descriptor ring fill-level must fall below this value
29  * before we restart the netif queue
30  */
31 #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
32
33 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
34                                struct efx_tx_buffer *buffer)
35 {
36         if (buffer->unmap_len) {
37                 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
38                 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
39                                          buffer->unmap_len);
40                 if (buffer->unmap_single)
41                         pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
42                                          PCI_DMA_TODEVICE);
43                 else
44                         pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
45                                        PCI_DMA_TODEVICE);
46                 buffer->unmap_len = 0;
47                 buffer->unmap_single = false;
48         }
49
50         if (buffer->skb) {
51                 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
52                 buffer->skb = NULL;
53                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
54                            "TX queue %d transmission id %x complete\n",
55                            tx_queue->queue, tx_queue->read_count);
56         }
57 }
58
59 /**
60  * struct efx_tso_header - a DMA mapped buffer for packet headers
61  * @next: Linked list of free ones.
62  *      The list is protected by the TX queue lock.
63  * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
64  * @dma_addr: The DMA address of the header below.
65  *
66  * This controls the memory used for a TSO header.  Use TSOH_DATA()
67  * to find the packet header data.  Use TSOH_SIZE() to calculate the
68  * total size required for a given packet header length.  TSO headers
69  * in the free list are exactly %TSOH_STD_SIZE bytes in size.
70  */
71 struct efx_tso_header {
72         union {
73                 struct efx_tso_header *next;
74                 size_t unmap_len;
75         };
76         dma_addr_t dma_addr;
77 };
78
79 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
80                                struct sk_buff *skb);
81 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
82 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
83                                struct efx_tso_header *tsoh);
84
85 static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
86                           struct efx_tx_buffer *buffer)
87 {
88         if (buffer->tsoh) {
89                 if (likely(!buffer->tsoh->unmap_len)) {
90                         buffer->tsoh->next = tx_queue->tso_headers_free;
91                         tx_queue->tso_headers_free = buffer->tsoh;
92                 } else {
93                         efx_tsoh_heap_free(tx_queue, buffer->tsoh);
94                 }
95                 buffer->tsoh = NULL;
96         }
97 }
98
99
100 static inline unsigned
101 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
102 {
103         /* Depending on the NIC revision, we can use descriptor
104          * lengths up to 8K or 8K-1.  However, since PCI Express
105          * devices must split read requests at 4K boundaries, there is
106          * little benefit from using descriptors that cross those
107          * boundaries and we keep things simple by not doing so.
108          */
109         unsigned len = (~dma_addr & 0xfff) + 1;
110
111         /* Work around hardware bug for unaligned buffers. */
112         if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
113                 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
114
115         return len;
116 }
117
118 /*
119  * Add a socket buffer to a TX queue
120  *
121  * This maps all fragments of a socket buffer for DMA and adds them to
122  * the TX queue.  The queue's insert pointer will be incremented by
123  * the number of fragments in the socket buffer.
124  *
125  * If any DMA mapping fails, any mapped fragments will be unmapped,
126  * the queue's insert pointer will be restored to its original value.
127  *
128  * This function is split out from efx_hard_start_xmit to allow the
129  * loopback test to direct packets via specific TX queues.
130  *
131  * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
132  * You must hold netif_tx_lock() to call this function.
133  */
134 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
135 {
136         struct efx_nic *efx = tx_queue->efx;
137         struct pci_dev *pci_dev = efx->pci_dev;
138         struct efx_tx_buffer *buffer;
139         skb_frag_t *fragment;
140         struct page *page;
141         int page_offset;
142         unsigned int len, unmap_len = 0, fill_level, insert_ptr;
143         dma_addr_t dma_addr, unmap_addr = 0;
144         unsigned int dma_len;
145         bool unmap_single;
146         int q_space, i = 0;
147         netdev_tx_t rc = NETDEV_TX_OK;
148
149         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
150
151         if (skb_shinfo(skb)->gso_size)
152                 return efx_enqueue_skb_tso(tx_queue, skb);
153
154         /* Get size of the initial fragment */
155         len = skb_headlen(skb);
156
157         /* Pad if necessary */
158         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
159                 EFX_BUG_ON_PARANOID(skb->data_len);
160                 len = 32 + 1;
161                 if (skb_pad(skb, len - skb->len))
162                         return NETDEV_TX_OK;
163         }
164
165         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
166         q_space = efx->txq_entries - 1 - fill_level;
167
168         /* Map for DMA.  Use pci_map_single rather than pci_map_page
169          * since this is more efficient on machines with sparse
170          * memory.
171          */
172         unmap_single = true;
173         dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
174
175         /* Process all fragments */
176         while (1) {
177                 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
178                         goto pci_err;
179
180                 /* Store fields for marking in the per-fragment final
181                  * descriptor */
182                 unmap_len = len;
183                 unmap_addr = dma_addr;
184
185                 /* Add to TX queue, splitting across DMA boundaries */
186                 do {
187                         if (unlikely(q_space-- <= 0)) {
188                                 /* It might be that completions have
189                                  * happened since the xmit path last
190                                  * checked.  Update the xmit path's
191                                  * copy of read_count.
192                                  */
193                                 netif_tx_stop_queue(tx_queue->core_txq);
194                                 /* This memory barrier protects the
195                                  * change of queue state from the access
196                                  * of read_count. */
197                                 smp_mb();
198                                 tx_queue->old_read_count =
199                                         ACCESS_ONCE(tx_queue->read_count);
200                                 fill_level = (tx_queue->insert_count
201                                               - tx_queue->old_read_count);
202                                 q_space = efx->txq_entries - 1 - fill_level;
203                                 if (unlikely(q_space-- <= 0)) {
204                                         rc = NETDEV_TX_BUSY;
205                                         goto unwind;
206                                 }
207                                 smp_mb();
208                                 netif_tx_start_queue(tx_queue->core_txq);
209                         }
210
211                         insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
212                         buffer = &tx_queue->buffer[insert_ptr];
213                         efx_tsoh_free(tx_queue, buffer);
214                         EFX_BUG_ON_PARANOID(buffer->tsoh);
215                         EFX_BUG_ON_PARANOID(buffer->skb);
216                         EFX_BUG_ON_PARANOID(buffer->len);
217                         EFX_BUG_ON_PARANOID(!buffer->continuation);
218                         EFX_BUG_ON_PARANOID(buffer->unmap_len);
219
220                         dma_len = efx_max_tx_len(efx, dma_addr);
221                         if (likely(dma_len >= len))
222                                 dma_len = len;
223
224                         /* Fill out per descriptor fields */
225                         buffer->len = dma_len;
226                         buffer->dma_addr = dma_addr;
227                         len -= dma_len;
228                         dma_addr += dma_len;
229                         ++tx_queue->insert_count;
230                 } while (len);
231
232                 /* Transfer ownership of the unmapping to the final buffer */
233                 buffer->unmap_single = unmap_single;
234                 buffer->unmap_len = unmap_len;
235                 unmap_len = 0;
236
237                 /* Get address and size of next fragment */
238                 if (i >= skb_shinfo(skb)->nr_frags)
239                         break;
240                 fragment = &skb_shinfo(skb)->frags[i];
241                 len = fragment->size;
242                 page = fragment->page;
243                 page_offset = fragment->page_offset;
244                 i++;
245                 /* Map for DMA */
246                 unmap_single = false;
247                 dma_addr = pci_map_page(pci_dev, page, page_offset, len,
248                                         PCI_DMA_TODEVICE);
249         }
250
251         /* Transfer ownership of the skb to the final buffer */
252         buffer->skb = skb;
253         buffer->continuation = false;
254
255         /* Pass off to hardware */
256         efx_nic_push_buffers(tx_queue);
257
258         return NETDEV_TX_OK;
259
260  pci_err:
261         netif_err(efx, tx_err, efx->net_dev,
262                   " TX queue %d could not map skb with %d bytes %d "
263                   "fragments for DMA\n", tx_queue->queue, skb->len,
264                   skb_shinfo(skb)->nr_frags + 1);
265
266         /* Mark the packet as transmitted, and free the SKB ourselves */
267         dev_kfree_skb_any(skb);
268
269  unwind:
270         /* Work backwards until we hit the original insert pointer value */
271         while (tx_queue->insert_count != tx_queue->write_count) {
272                 --tx_queue->insert_count;
273                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
274                 buffer = &tx_queue->buffer[insert_ptr];
275                 efx_dequeue_buffer(tx_queue, buffer);
276                 buffer->len = 0;
277         }
278
279         /* Free the fragment we were mid-way through pushing */
280         if (unmap_len) {
281                 if (unmap_single)
282                         pci_unmap_single(pci_dev, unmap_addr, unmap_len,
283                                          PCI_DMA_TODEVICE);
284                 else
285                         pci_unmap_page(pci_dev, unmap_addr, unmap_len,
286                                        PCI_DMA_TODEVICE);
287         }
288
289         return rc;
290 }
291
292 /* Remove packets from the TX queue
293  *
294  * This removes packets from the TX queue, up to and including the
295  * specified index.
296  */
297 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
298                                 unsigned int index)
299 {
300         struct efx_nic *efx = tx_queue->efx;
301         unsigned int stop_index, read_ptr;
302
303         stop_index = (index + 1) & tx_queue->ptr_mask;
304         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
305
306         while (read_ptr != stop_index) {
307                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
308                 if (unlikely(buffer->len == 0)) {
309                         netif_err(efx, tx_err, efx->net_dev,
310                                   "TX queue %d spurious TX completion id %x\n",
311                                   tx_queue->queue, read_ptr);
312                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
313                         return;
314                 }
315
316                 efx_dequeue_buffer(tx_queue, buffer);
317                 buffer->continuation = true;
318                 buffer->len = 0;
319
320                 ++tx_queue->read_count;
321                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
322         }
323 }
324
325 /* Initiate a packet transmission.  We use one channel per CPU
326  * (sharing when we have more CPUs than channels).  On Falcon, the TX
327  * completion events will be directed back to the CPU that transmitted
328  * the packet, which should be cache-efficient.
329  *
330  * Context: non-blocking.
331  * Note that returning anything other than NETDEV_TX_OK will cause the
332  * OS to free the skb.
333  */
334 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
335                                       struct net_device *net_dev)
336 {
337         struct efx_nic *efx = netdev_priv(net_dev);
338         struct efx_tx_queue *tx_queue;
339         unsigned index, type;
340
341         if (unlikely(efx->port_inhibited))
342                 return NETDEV_TX_BUSY;
343
344         index = skb_get_queue_mapping(skb);
345         type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
346         if (index >= efx->n_tx_channels) {
347                 index -= efx->n_tx_channels;
348                 type |= EFX_TXQ_TYPE_HIGHPRI;
349         }
350         tx_queue = efx_get_tx_queue(efx, index, type);
351
352         return efx_enqueue_skb(tx_queue, skb);
353 }
354
355 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
356 {
357         struct efx_nic *efx = tx_queue->efx;
358
359         /* Must be inverse of queue lookup in efx_hard_start_xmit() */
360         tx_queue->core_txq =
361                 netdev_get_tx_queue(efx->net_dev,
362                                     tx_queue->queue / EFX_TXQ_TYPES +
363                                     ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
364                                      efx->n_tx_channels : 0));
365 }
366
367 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
368 {
369         struct efx_nic *efx = netdev_priv(net_dev);
370         struct efx_channel *channel;
371         struct efx_tx_queue *tx_queue;
372         unsigned tc;
373         int rc;
374
375         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
376                 return -EINVAL;
377
378         if (num_tc == net_dev->num_tc)
379                 return 0;
380
381         for (tc = 0; tc < num_tc; tc++) {
382                 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
383                 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
384         }
385
386         if (num_tc > net_dev->num_tc) {
387                 /* Initialise high-priority queues as necessary */
388                 efx_for_each_channel(channel, efx) {
389                         efx_for_each_possible_channel_tx_queue(tx_queue,
390                                                                channel) {
391                                 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
392                                         continue;
393                                 if (!tx_queue->buffer) {
394                                         rc = efx_probe_tx_queue(tx_queue);
395                                         if (rc)
396                                                 return rc;
397                                 }
398                                 if (!tx_queue->initialised)
399                                         efx_init_tx_queue(tx_queue);
400                                 efx_init_tx_queue_core_txq(tx_queue);
401                         }
402                 }
403         } else {
404                 /* Reduce number of classes before number of queues */
405                 net_dev->num_tc = num_tc;
406         }
407
408         rc = netif_set_real_num_tx_queues(net_dev,
409                                           max_t(int, num_tc, 1) *
410                                           efx->n_tx_channels);
411         if (rc)
412                 return rc;
413
414         /* Do not destroy high-priority queues when they become
415          * unused.  We would have to flush them first, and it is
416          * fairly difficult to flush a subset of TX queues.  Leave
417          * it to efx_fini_channels().
418          */
419
420         net_dev->num_tc = num_tc;
421         return 0;
422 }
423
424 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
425 {
426         unsigned fill_level;
427         struct efx_nic *efx = tx_queue->efx;
428
429         EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
430
431         efx_dequeue_buffers(tx_queue, index);
432
433         /* See if we need to restart the netif queue.  This barrier
434          * separates the update of read_count from the test of the
435          * queue state. */
436         smp_mb();
437         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
438             likely(efx->port_enabled) &&
439             likely(!efx->port_inhibited)) {
440                 fill_level = tx_queue->insert_count - tx_queue->read_count;
441                 if (fill_level < EFX_TXQ_THRESHOLD(efx)) {
442                         EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
443                         netif_tx_wake_queue(tx_queue->core_txq);
444                 }
445         }
446
447         /* Check whether the hardware queue is now empty */
448         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
449                 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
450                 if (tx_queue->read_count == tx_queue->old_write_count) {
451                         smp_mb();
452                         tx_queue->empty_read_count =
453                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
454                 }
455         }
456 }
457
458 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
459 {
460         struct efx_nic *efx = tx_queue->efx;
461         unsigned int entries;
462         int i, rc;
463
464         /* Create the smallest power-of-two aligned ring */
465         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
466         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
467         tx_queue->ptr_mask = entries - 1;
468
469         netif_dbg(efx, probe, efx->net_dev,
470                   "creating TX queue %d size %#x mask %#x\n",
471                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
472
473         /* Allocate software ring */
474         tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer),
475                                    GFP_KERNEL);
476         if (!tx_queue->buffer)
477                 return -ENOMEM;
478         for (i = 0; i <= tx_queue->ptr_mask; ++i)
479                 tx_queue->buffer[i].continuation = true;
480
481         /* Allocate hardware ring */
482         rc = efx_nic_probe_tx(tx_queue);
483         if (rc)
484                 goto fail;
485
486         return 0;
487
488  fail:
489         kfree(tx_queue->buffer);
490         tx_queue->buffer = NULL;
491         return rc;
492 }
493
494 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
495 {
496         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
497                   "initialising TX queue %d\n", tx_queue->queue);
498
499         tx_queue->insert_count = 0;
500         tx_queue->write_count = 0;
501         tx_queue->old_write_count = 0;
502         tx_queue->read_count = 0;
503         tx_queue->old_read_count = 0;
504         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
505
506         /* Set up TX descriptor ring */
507         efx_nic_init_tx(tx_queue);
508
509         tx_queue->initialised = true;
510 }
511
512 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
513 {
514         struct efx_tx_buffer *buffer;
515
516         if (!tx_queue->buffer)
517                 return;
518
519         /* Free any buffers left in the ring */
520         while (tx_queue->read_count != tx_queue->write_count) {
521                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
522                 efx_dequeue_buffer(tx_queue, buffer);
523                 buffer->continuation = true;
524                 buffer->len = 0;
525
526                 ++tx_queue->read_count;
527         }
528 }
529
530 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
531 {
532         if (!tx_queue->initialised)
533                 return;
534
535         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
536                   "shutting down TX queue %d\n", tx_queue->queue);
537
538         tx_queue->initialised = false;
539
540         /* Flush TX queue, remove descriptor ring */
541         efx_nic_fini_tx(tx_queue);
542
543         efx_release_tx_buffers(tx_queue);
544
545         /* Free up TSO header cache */
546         efx_fini_tso(tx_queue);
547 }
548
549 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
550 {
551         if (!tx_queue->buffer)
552                 return;
553
554         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
555                   "destroying TX queue %d\n", tx_queue->queue);
556         efx_nic_remove_tx(tx_queue);
557
558         kfree(tx_queue->buffer);
559         tx_queue->buffer = NULL;
560 }
561
562
563 /* Efx TCP segmentation acceleration.
564  *
565  * Why?  Because by doing it here in the driver we can go significantly
566  * faster than the GSO.
567  *
568  * Requires TX checksum offload support.
569  */
570
571 /* Number of bytes inserted at the start of a TSO header buffer,
572  * similar to NET_IP_ALIGN.
573  */
574 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
575 #define TSOH_OFFSET     0
576 #else
577 #define TSOH_OFFSET     NET_IP_ALIGN
578 #endif
579
580 #define TSOH_BUFFER(tsoh)       ((u8 *)(tsoh + 1) + TSOH_OFFSET)
581
582 /* Total size of struct efx_tso_header, buffer and padding */
583 #define TSOH_SIZE(hdr_len)                                      \
584         (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
585
586 /* Size of blocks on free list.  Larger blocks must be allocated from
587  * the heap.
588  */
589 #define TSOH_STD_SIZE           128
590
591 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
592 #define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
593 #define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
594 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
595 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
596
597 /**
598  * struct tso_state - TSO state for an SKB
599  * @out_len: Remaining length in current segment
600  * @seqnum: Current sequence number
601  * @ipv4_id: Current IPv4 ID, host endian
602  * @packet_space: Remaining space in current packet
603  * @dma_addr: DMA address of current position
604  * @in_len: Remaining length in current SKB fragment
605  * @unmap_len: Length of SKB fragment
606  * @unmap_addr: DMA address of SKB fragment
607  * @unmap_single: DMA single vs page mapping flag
608  * @protocol: Network protocol (after any VLAN header)
609  * @header_len: Number of bytes of header
610  * @full_packet_size: Number of bytes to put in each outgoing segment
611  *
612  * The state used during segmentation.  It is put into this data structure
613  * just to make it easy to pass into inline functions.
614  */
615 struct tso_state {
616         /* Output position */
617         unsigned out_len;
618         unsigned seqnum;
619         unsigned ipv4_id;
620         unsigned packet_space;
621
622         /* Input position */
623         dma_addr_t dma_addr;
624         unsigned in_len;
625         unsigned unmap_len;
626         dma_addr_t unmap_addr;
627         bool unmap_single;
628
629         __be16 protocol;
630         unsigned header_len;
631         int full_packet_size;
632 };
633
634
635 /*
636  * Verify that our various assumptions about sk_buffs and the conditions
637  * under which TSO will be attempted hold true.  Return the protocol number.
638  */
639 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
640 {
641         __be16 protocol = skb->protocol;
642
643         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
644                             protocol);
645         if (protocol == htons(ETH_P_8021Q)) {
646                 /* Find the encapsulated protocol; reset network header
647                  * and transport header based on that. */
648                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
649                 protocol = veh->h_vlan_encapsulated_proto;
650                 skb_set_network_header(skb, sizeof(*veh));
651                 if (protocol == htons(ETH_P_IP))
652                         skb_set_transport_header(skb, sizeof(*veh) +
653                                                  4 * ip_hdr(skb)->ihl);
654                 else if (protocol == htons(ETH_P_IPV6))
655                         skb_set_transport_header(skb, sizeof(*veh) +
656                                                  sizeof(struct ipv6hdr));
657         }
658
659         if (protocol == htons(ETH_P_IP)) {
660                 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
661         } else {
662                 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
663                 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
664         }
665         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
666                              + (tcp_hdr(skb)->doff << 2u)) >
667                             skb_headlen(skb));
668
669         return protocol;
670 }
671
672
673 /*
674  * Allocate a page worth of efx_tso_header structures, and string them
675  * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
676  */
677 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
678 {
679
680         struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
681         struct efx_tso_header *tsoh;
682         dma_addr_t dma_addr;
683         u8 *base_kva, *kva;
684
685         base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
686         if (base_kva == NULL) {
687                 netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
688                           "Unable to allocate page for TSO headers\n");
689                 return -ENOMEM;
690         }
691
692         /* pci_alloc_consistent() allocates pages. */
693         EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
694
695         for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
696                 tsoh = (struct efx_tso_header *)kva;
697                 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
698                 tsoh->next = tx_queue->tso_headers_free;
699                 tx_queue->tso_headers_free = tsoh;
700         }
701
702         return 0;
703 }
704
705
706 /* Free up a TSO header, and all others in the same page. */
707 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
708                                 struct efx_tso_header *tsoh,
709                                 struct pci_dev *pci_dev)
710 {
711         struct efx_tso_header **p;
712         unsigned long base_kva;
713         dma_addr_t base_dma;
714
715         base_kva = (unsigned long)tsoh & PAGE_MASK;
716         base_dma = tsoh->dma_addr & PAGE_MASK;
717
718         p = &tx_queue->tso_headers_free;
719         while (*p != NULL) {
720                 if (((unsigned long)*p & PAGE_MASK) == base_kva)
721                         *p = (*p)->next;
722                 else
723                         p = &(*p)->next;
724         }
725
726         pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
727 }
728
729 static struct efx_tso_header *
730 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
731 {
732         struct efx_tso_header *tsoh;
733
734         tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
735         if (unlikely(!tsoh))
736                 return NULL;
737
738         tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
739                                         TSOH_BUFFER(tsoh), header_len,
740                                         PCI_DMA_TODEVICE);
741         if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
742                                            tsoh->dma_addr))) {
743                 kfree(tsoh);
744                 return NULL;
745         }
746
747         tsoh->unmap_len = header_len;
748         return tsoh;
749 }
750
751 static void
752 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
753 {
754         pci_unmap_single(tx_queue->efx->pci_dev,
755                          tsoh->dma_addr, tsoh->unmap_len,
756                          PCI_DMA_TODEVICE);
757         kfree(tsoh);
758 }
759
760 /**
761  * efx_tx_queue_insert - push descriptors onto the TX queue
762  * @tx_queue:           Efx TX queue
763  * @dma_addr:           DMA address of fragment
764  * @len:                Length of fragment
765  * @final_buffer:       The final buffer inserted into the queue
766  *
767  * Push descriptors onto the TX queue.  Return 0 on success or 1 if
768  * @tx_queue full.
769  */
770 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
771                                dma_addr_t dma_addr, unsigned len,
772                                struct efx_tx_buffer **final_buffer)
773 {
774         struct efx_tx_buffer *buffer;
775         struct efx_nic *efx = tx_queue->efx;
776         unsigned dma_len, fill_level, insert_ptr;
777         int q_space;
778
779         EFX_BUG_ON_PARANOID(len <= 0);
780
781         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
782         /* -1 as there is no way to represent all descriptors used */
783         q_space = efx->txq_entries - 1 - fill_level;
784
785         while (1) {
786                 if (unlikely(q_space-- <= 0)) {
787                         /* It might be that completions have happened
788                          * since the xmit path last checked.  Update
789                          * the xmit path's copy of read_count.
790                          */
791                         netif_tx_stop_queue(tx_queue->core_txq);
792                         /* This memory barrier protects the change of
793                          * queue state from the access of read_count. */
794                         smp_mb();
795                         tx_queue->old_read_count =
796                                 ACCESS_ONCE(tx_queue->read_count);
797                         fill_level = (tx_queue->insert_count
798                                       - tx_queue->old_read_count);
799                         q_space = efx->txq_entries - 1 - fill_level;
800                         if (unlikely(q_space-- <= 0)) {
801                                 *final_buffer = NULL;
802                                 return 1;
803                         }
804                         smp_mb();
805                         netif_tx_start_queue(tx_queue->core_txq);
806                 }
807
808                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
809                 buffer = &tx_queue->buffer[insert_ptr];
810                 ++tx_queue->insert_count;
811
812                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
813                                     tx_queue->read_count >=
814                                     efx->txq_entries);
815
816                 efx_tsoh_free(tx_queue, buffer);
817                 EFX_BUG_ON_PARANOID(buffer->len);
818                 EFX_BUG_ON_PARANOID(buffer->unmap_len);
819                 EFX_BUG_ON_PARANOID(buffer->skb);
820                 EFX_BUG_ON_PARANOID(!buffer->continuation);
821                 EFX_BUG_ON_PARANOID(buffer->tsoh);
822
823                 buffer->dma_addr = dma_addr;
824
825                 dma_len = efx_max_tx_len(efx, dma_addr);
826
827                 /* If there is enough space to send then do so */
828                 if (dma_len >= len)
829                         break;
830
831                 buffer->len = dma_len; /* Don't set the other members */
832                 dma_addr += dma_len;
833                 len -= dma_len;
834         }
835
836         EFX_BUG_ON_PARANOID(!len);
837         buffer->len = len;
838         *final_buffer = buffer;
839         return 0;
840 }
841
842
843 /*
844  * Put a TSO header into the TX queue.
845  *
846  * This is special-cased because we know that it is small enough to fit in
847  * a single fragment, and we know it doesn't cross a page boundary.  It
848  * also allows us to not worry about end-of-packet etc.
849  */
850 static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
851                                struct efx_tso_header *tsoh, unsigned len)
852 {
853         struct efx_tx_buffer *buffer;
854
855         buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
856         efx_tsoh_free(tx_queue, buffer);
857         EFX_BUG_ON_PARANOID(buffer->len);
858         EFX_BUG_ON_PARANOID(buffer->unmap_len);
859         EFX_BUG_ON_PARANOID(buffer->skb);
860         EFX_BUG_ON_PARANOID(!buffer->continuation);
861         EFX_BUG_ON_PARANOID(buffer->tsoh);
862         buffer->len = len;
863         buffer->dma_addr = tsoh->dma_addr;
864         buffer->tsoh = tsoh;
865
866         ++tx_queue->insert_count;
867 }
868
869
870 /* Remove descriptors put into a tx_queue. */
871 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
872 {
873         struct efx_tx_buffer *buffer;
874         dma_addr_t unmap_addr;
875
876         /* Work backwards until we hit the original insert pointer value */
877         while (tx_queue->insert_count != tx_queue->write_count) {
878                 --tx_queue->insert_count;
879                 buffer = &tx_queue->buffer[tx_queue->insert_count &
880                                            tx_queue->ptr_mask];
881                 efx_tsoh_free(tx_queue, buffer);
882                 EFX_BUG_ON_PARANOID(buffer->skb);
883                 if (buffer->unmap_len) {
884                         unmap_addr = (buffer->dma_addr + buffer->len -
885                                       buffer->unmap_len);
886                         if (buffer->unmap_single)
887                                 pci_unmap_single(tx_queue->efx->pci_dev,
888                                                  unmap_addr, buffer->unmap_len,
889                                                  PCI_DMA_TODEVICE);
890                         else
891                                 pci_unmap_page(tx_queue->efx->pci_dev,
892                                                unmap_addr, buffer->unmap_len,
893                                                PCI_DMA_TODEVICE);
894                         buffer->unmap_len = 0;
895                 }
896                 buffer->len = 0;
897                 buffer->continuation = true;
898         }
899 }
900
901
902 /* Parse the SKB header and initialise state. */
903 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
904 {
905         /* All ethernet/IP/TCP headers combined size is TCP header size
906          * plus offset of TCP header relative to start of packet.
907          */
908         st->header_len = ((tcp_hdr(skb)->doff << 2u)
909                           + PTR_DIFF(tcp_hdr(skb), skb->data));
910         st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
911
912         if (st->protocol == htons(ETH_P_IP))
913                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
914         else
915                 st->ipv4_id = 0;
916         st->seqnum = ntohl(tcp_hdr(skb)->seq);
917
918         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
919         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
920         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
921
922         st->packet_space = st->full_packet_size;
923         st->out_len = skb->len - st->header_len;
924         st->unmap_len = 0;
925         st->unmap_single = false;
926 }
927
928 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
929                             skb_frag_t *frag)
930 {
931         st->unmap_addr = pci_map_page(efx->pci_dev, frag->page,
932                                       frag->page_offset, frag->size,
933                                       PCI_DMA_TODEVICE);
934         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
935                 st->unmap_single = false;
936                 st->unmap_len = frag->size;
937                 st->in_len = frag->size;
938                 st->dma_addr = st->unmap_addr;
939                 return 0;
940         }
941         return -ENOMEM;
942 }
943
944 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
945                                  const struct sk_buff *skb)
946 {
947         int hl = st->header_len;
948         int len = skb_headlen(skb) - hl;
949
950         st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
951                                         len, PCI_DMA_TODEVICE);
952         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
953                 st->unmap_single = true;
954                 st->unmap_len = len;
955                 st->in_len = len;
956                 st->dma_addr = st->unmap_addr;
957                 return 0;
958         }
959         return -ENOMEM;
960 }
961
962
963 /**
964  * tso_fill_packet_with_fragment - form descriptors for the current fragment
965  * @tx_queue:           Efx TX queue
966  * @skb:                Socket buffer
967  * @st:                 TSO state
968  *
969  * Form descriptors for the current fragment, until we reach the end
970  * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
971  * space in @tx_queue.
972  */
973 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
974                                          const struct sk_buff *skb,
975                                          struct tso_state *st)
976 {
977         struct efx_tx_buffer *buffer;
978         int n, end_of_packet, rc;
979
980         if (st->in_len == 0)
981                 return 0;
982         if (st->packet_space == 0)
983                 return 0;
984
985         EFX_BUG_ON_PARANOID(st->in_len <= 0);
986         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
987
988         n = min(st->in_len, st->packet_space);
989
990         st->packet_space -= n;
991         st->out_len -= n;
992         st->in_len -= n;
993
994         rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
995         if (likely(rc == 0)) {
996                 if (st->out_len == 0)
997                         /* Transfer ownership of the skb */
998                         buffer->skb = skb;
999
1000                 end_of_packet = st->out_len == 0 || st->packet_space == 0;
1001                 buffer->continuation = !end_of_packet;
1002
1003                 if (st->in_len == 0) {
1004                         /* Transfer ownership of the pci mapping */
1005                         buffer->unmap_len = st->unmap_len;
1006                         buffer->unmap_single = st->unmap_single;
1007                         st->unmap_len = 0;
1008                 }
1009         }
1010
1011         st->dma_addr += n;
1012         return rc;
1013 }
1014
1015
1016 /**
1017  * tso_start_new_packet - generate a new header and prepare for the new packet
1018  * @tx_queue:           Efx TX queue
1019  * @skb:                Socket buffer
1020  * @st:                 TSO state
1021  *
1022  * Generate a new header and prepare for the new packet.  Return 0 on
1023  * success, or -1 if failed to alloc header.
1024  */
1025 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1026                                 const struct sk_buff *skb,
1027                                 struct tso_state *st)
1028 {
1029         struct efx_tso_header *tsoh;
1030         struct tcphdr *tsoh_th;
1031         unsigned ip_length;
1032         u8 *header;
1033
1034         /* Allocate a DMA-mapped header buffer. */
1035         if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
1036                 if (tx_queue->tso_headers_free == NULL) {
1037                         if (efx_tsoh_block_alloc(tx_queue))
1038                                 return -1;
1039                 }
1040                 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
1041                 tsoh = tx_queue->tso_headers_free;
1042                 tx_queue->tso_headers_free = tsoh->next;
1043                 tsoh->unmap_len = 0;
1044         } else {
1045                 tx_queue->tso_long_headers++;
1046                 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
1047                 if (unlikely(!tsoh))
1048                         return -1;
1049         }
1050
1051         header = TSOH_BUFFER(tsoh);
1052         tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
1053
1054         /* Copy and update the headers. */
1055         memcpy(header, skb->data, st->header_len);
1056
1057         tsoh_th->seq = htonl(st->seqnum);
1058         st->seqnum += skb_shinfo(skb)->gso_size;
1059         if (st->out_len > skb_shinfo(skb)->gso_size) {
1060                 /* This packet will not finish the TSO burst. */
1061                 ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
1062                 tsoh_th->fin = 0;
1063                 tsoh_th->psh = 0;
1064         } else {
1065                 /* This packet will be the last in the TSO burst. */
1066                 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
1067                 tsoh_th->fin = tcp_hdr(skb)->fin;
1068                 tsoh_th->psh = tcp_hdr(skb)->psh;
1069         }
1070
1071         if (st->protocol == htons(ETH_P_IP)) {
1072                 struct iphdr *tsoh_iph =
1073                         (struct iphdr *)(header + SKB_IPV4_OFF(skb));
1074
1075                 tsoh_iph->tot_len = htons(ip_length);
1076
1077                 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1078                 tsoh_iph->id = htons(st->ipv4_id);
1079                 st->ipv4_id++;
1080         } else {
1081                 struct ipv6hdr *tsoh_iph =
1082                         (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1083
1084                 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1085         }
1086
1087         st->packet_space = skb_shinfo(skb)->gso_size;
1088         ++tx_queue->tso_packets;
1089
1090         /* Form a descriptor for this header. */
1091         efx_tso_put_header(tx_queue, tsoh, st->header_len);
1092
1093         return 0;
1094 }
1095
1096
1097 /**
1098  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1099  * @tx_queue:           Efx TX queue
1100  * @skb:                Socket buffer
1101  *
1102  * Context: You must hold netif_tx_lock() to call this function.
1103  *
1104  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1105  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1106  * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1107  */
1108 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1109                                struct sk_buff *skb)
1110 {
1111         struct efx_nic *efx = tx_queue->efx;
1112         int frag_i, rc, rc2 = NETDEV_TX_OK;
1113         struct tso_state state;
1114
1115         /* Find the packet protocol and sanity-check it */
1116         state.protocol = efx_tso_check_protocol(skb);
1117
1118         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1119
1120         tso_start(&state, skb);
1121
1122         /* Assume that skb header area contains exactly the headers, and
1123          * all payload is in the frag list.
1124          */
1125         if (skb_headlen(skb) == state.header_len) {
1126                 /* Grab the first payload fragment. */
1127                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1128                 frag_i = 0;
1129                 rc = tso_get_fragment(&state, efx,
1130                                       skb_shinfo(skb)->frags + frag_i);
1131                 if (rc)
1132                         goto mem_err;
1133         } else {
1134                 rc = tso_get_head_fragment(&state, efx, skb);
1135                 if (rc)
1136                         goto mem_err;
1137                 frag_i = -1;
1138         }
1139
1140         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1141                 goto mem_err;
1142
1143         while (1) {
1144                 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1145                 if (unlikely(rc)) {
1146                         rc2 = NETDEV_TX_BUSY;
1147                         goto unwind;
1148                 }
1149
1150                 /* Move onto the next fragment? */
1151                 if (state.in_len == 0) {
1152                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1153                                 /* End of payload reached. */
1154                                 break;
1155                         rc = tso_get_fragment(&state, efx,
1156                                               skb_shinfo(skb)->frags + frag_i);
1157                         if (rc)
1158                                 goto mem_err;
1159                 }
1160
1161                 /* Start at new packet? */
1162                 if (state.packet_space == 0 &&
1163                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1164                         goto mem_err;
1165         }
1166
1167         /* Pass off to hardware */
1168         efx_nic_push_buffers(tx_queue);
1169
1170         tx_queue->tso_bursts++;
1171         return NETDEV_TX_OK;
1172
1173  mem_err:
1174         netif_err(efx, tx_err, efx->net_dev,
1175                   "Out of memory for TSO headers, or PCI mapping error\n");
1176         dev_kfree_skb_any(skb);
1177
1178  unwind:
1179         /* Free the DMA mapping we were in the process of writing out */
1180         if (state.unmap_len) {
1181                 if (state.unmap_single)
1182                         pci_unmap_single(efx->pci_dev, state.unmap_addr,
1183                                          state.unmap_len, PCI_DMA_TODEVICE);
1184                 else
1185                         pci_unmap_page(efx->pci_dev, state.unmap_addr,
1186                                        state.unmap_len, PCI_DMA_TODEVICE);
1187         }
1188
1189         efx_enqueue_unwind(tx_queue);
1190         return rc2;
1191 }
1192
1193
1194 /*
1195  * Free up all TSO datastructures associated with tx_queue. This
1196  * routine should be called only once the tx_queue is both empty and
1197  * will no longer be used.
1198  */
1199 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1200 {
1201         unsigned i;
1202
1203         if (tx_queue->buffer) {
1204                 for (i = 0; i <= tx_queue->ptr_mask; ++i)
1205                         efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1206         }
1207
1208         while (tx_queue->tso_headers_free != NULL)
1209                 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1210                                     tx_queue->efx->pci_dev);
1211 }