Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / drivers / net / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2010 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
24
25 /*
26  * TX descriptor ring full threshold
27  *
28  * The tx_queue descriptor ring fill-level must fall below this value
29  * before we restart the netif queue
30  */
31 #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
32
33 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
34                                struct efx_tx_buffer *buffer)
35 {
36         if (buffer->unmap_len) {
37                 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
38                 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
39                                          buffer->unmap_len);
40                 if (buffer->unmap_single)
41                         pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
42                                          PCI_DMA_TODEVICE);
43                 else
44                         pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
45                                        PCI_DMA_TODEVICE);
46                 buffer->unmap_len = 0;
47                 buffer->unmap_single = false;
48         }
49
50         if (buffer->skb) {
51                 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
52                 buffer->skb = NULL;
53                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
54                            "TX queue %d transmission id %x complete\n",
55                            tx_queue->queue, tx_queue->read_count);
56         }
57 }
58
59 /**
60  * struct efx_tso_header - a DMA mapped buffer for packet headers
61  * @next: Linked list of free ones.
62  *      The list is protected by the TX queue lock.
63  * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
64  * @dma_addr: The DMA address of the header below.
65  *
66  * This controls the memory used for a TSO header.  Use TSOH_DATA()
67  * to find the packet header data.  Use TSOH_SIZE() to calculate the
68  * total size required for a given packet header length.  TSO headers
69  * in the free list are exactly %TSOH_STD_SIZE bytes in size.
70  */
71 struct efx_tso_header {
72         union {
73                 struct efx_tso_header *next;
74                 size_t unmap_len;
75         };
76         dma_addr_t dma_addr;
77 };
78
79 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
80                                struct sk_buff *skb);
81 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
82 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
83                                struct efx_tso_header *tsoh);
84
85 static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
86                           struct efx_tx_buffer *buffer)
87 {
88         if (buffer->tsoh) {
89                 if (likely(!buffer->tsoh->unmap_len)) {
90                         buffer->tsoh->next = tx_queue->tso_headers_free;
91                         tx_queue->tso_headers_free = buffer->tsoh;
92                 } else {
93                         efx_tsoh_heap_free(tx_queue, buffer->tsoh);
94                 }
95                 buffer->tsoh = NULL;
96         }
97 }
98
99
100 static inline unsigned
101 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
102 {
103         /* Depending on the NIC revision, we can use descriptor
104          * lengths up to 8K or 8K-1.  However, since PCI Express
105          * devices must split read requests at 4K boundaries, there is
106          * little benefit from using descriptors that cross those
107          * boundaries and we keep things simple by not doing so.
108          */
109         unsigned len = (~dma_addr & 0xfff) + 1;
110
111         /* Work around hardware bug for unaligned buffers. */
112         if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
113                 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
114
115         return len;
116 }
117
118 /*
119  * Add a socket buffer to a TX queue
120  *
121  * This maps all fragments of a socket buffer for DMA and adds them to
122  * the TX queue.  The queue's insert pointer will be incremented by
123  * the number of fragments in the socket buffer.
124  *
125  * If any DMA mapping fails, any mapped fragments will be unmapped,
126  * the queue's insert pointer will be restored to its original value.
127  *
128  * This function is split out from efx_hard_start_xmit to allow the
129  * loopback test to direct packets via specific TX queues.
130  *
131  * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
132  * You must hold netif_tx_lock() to call this function.
133  */
134 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
135 {
136         struct efx_nic *efx = tx_queue->efx;
137         struct pci_dev *pci_dev = efx->pci_dev;
138         struct efx_tx_buffer *buffer;
139         skb_frag_t *fragment;
140         struct page *page;
141         int page_offset;
142         unsigned int len, unmap_len = 0, fill_level, insert_ptr;
143         dma_addr_t dma_addr, unmap_addr = 0;
144         unsigned int dma_len;
145         bool unmap_single;
146         int q_space, i = 0;
147         netdev_tx_t rc = NETDEV_TX_OK;
148
149         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
150
151         if (skb_shinfo(skb)->gso_size)
152                 return efx_enqueue_skb_tso(tx_queue, skb);
153
154         /* Get size of the initial fragment */
155         len = skb_headlen(skb);
156
157         /* Pad if necessary */
158         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
159                 EFX_BUG_ON_PARANOID(skb->data_len);
160                 len = 32 + 1;
161                 if (skb_pad(skb, len - skb->len))
162                         return NETDEV_TX_OK;
163         }
164
165         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
166         q_space = efx->txq_entries - 1 - fill_level;
167
168         /* Map for DMA.  Use pci_map_single rather than pci_map_page
169          * since this is more efficient on machines with sparse
170          * memory.
171          */
172         unmap_single = true;
173         dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
174
175         /* Process all fragments */
176         while (1) {
177                 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
178                         goto pci_err;
179
180                 /* Store fields for marking in the per-fragment final
181                  * descriptor */
182                 unmap_len = len;
183                 unmap_addr = dma_addr;
184
185                 /* Add to TX queue, splitting across DMA boundaries */
186                 do {
187                         if (unlikely(q_space-- <= 0)) {
188                                 /* It might be that completions have
189                                  * happened since the xmit path last
190                                  * checked.  Update the xmit path's
191                                  * copy of read_count.
192                                  */
193                                 netif_tx_stop_queue(tx_queue->core_txq);
194                                 /* This memory barrier protects the
195                                  * change of queue state from the access
196                                  * of read_count. */
197                                 smp_mb();
198                                 tx_queue->old_read_count =
199                                         ACCESS_ONCE(tx_queue->read_count);
200                                 fill_level = (tx_queue->insert_count
201                                               - tx_queue->old_read_count);
202                                 q_space = efx->txq_entries - 1 - fill_level;
203                                 if (unlikely(q_space-- <= 0)) {
204                                         rc = NETDEV_TX_BUSY;
205                                         goto unwind;
206                                 }
207                                 smp_mb();
208                                 if (likely(!efx->loopback_selftest))
209                                         netif_tx_start_queue(
210                                                 tx_queue->core_txq);
211                         }
212
213                         insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
214                         buffer = &tx_queue->buffer[insert_ptr];
215                         efx_tsoh_free(tx_queue, buffer);
216                         EFX_BUG_ON_PARANOID(buffer->tsoh);
217                         EFX_BUG_ON_PARANOID(buffer->skb);
218                         EFX_BUG_ON_PARANOID(buffer->len);
219                         EFX_BUG_ON_PARANOID(!buffer->continuation);
220                         EFX_BUG_ON_PARANOID(buffer->unmap_len);
221
222                         dma_len = efx_max_tx_len(efx, dma_addr);
223                         if (likely(dma_len >= len))
224                                 dma_len = len;
225
226                         /* Fill out per descriptor fields */
227                         buffer->len = dma_len;
228                         buffer->dma_addr = dma_addr;
229                         len -= dma_len;
230                         dma_addr += dma_len;
231                         ++tx_queue->insert_count;
232                 } while (len);
233
234                 /* Transfer ownership of the unmapping to the final buffer */
235                 buffer->unmap_single = unmap_single;
236                 buffer->unmap_len = unmap_len;
237                 unmap_len = 0;
238
239                 /* Get address and size of next fragment */
240                 if (i >= skb_shinfo(skb)->nr_frags)
241                         break;
242                 fragment = &skb_shinfo(skb)->frags[i];
243                 len = fragment->size;
244                 page = fragment->page;
245                 page_offset = fragment->page_offset;
246                 i++;
247                 /* Map for DMA */
248                 unmap_single = false;
249                 dma_addr = pci_map_page(pci_dev, page, page_offset, len,
250                                         PCI_DMA_TODEVICE);
251         }
252
253         /* Transfer ownership of the skb to the final buffer */
254         buffer->skb = skb;
255         buffer->continuation = false;
256
257         /* Pass off to hardware */
258         efx_nic_push_buffers(tx_queue);
259
260         return NETDEV_TX_OK;
261
262  pci_err:
263         netif_err(efx, tx_err, efx->net_dev,
264                   " TX queue %d could not map skb with %d bytes %d "
265                   "fragments for DMA\n", tx_queue->queue, skb->len,
266                   skb_shinfo(skb)->nr_frags + 1);
267
268         /* Mark the packet as transmitted, and free the SKB ourselves */
269         dev_kfree_skb_any(skb);
270
271  unwind:
272         /* Work backwards until we hit the original insert pointer value */
273         while (tx_queue->insert_count != tx_queue->write_count) {
274                 --tx_queue->insert_count;
275                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
276                 buffer = &tx_queue->buffer[insert_ptr];
277                 efx_dequeue_buffer(tx_queue, buffer);
278                 buffer->len = 0;
279         }
280
281         /* Free the fragment we were mid-way through pushing */
282         if (unmap_len) {
283                 if (unmap_single)
284                         pci_unmap_single(pci_dev, unmap_addr, unmap_len,
285                                          PCI_DMA_TODEVICE);
286                 else
287                         pci_unmap_page(pci_dev, unmap_addr, unmap_len,
288                                        PCI_DMA_TODEVICE);
289         }
290
291         return rc;
292 }
293
294 /* Remove packets from the TX queue
295  *
296  * This removes packets from the TX queue, up to and including the
297  * specified index.
298  */
299 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
300                                 unsigned int index)
301 {
302         struct efx_nic *efx = tx_queue->efx;
303         unsigned int stop_index, read_ptr;
304
305         stop_index = (index + 1) & tx_queue->ptr_mask;
306         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
307
308         while (read_ptr != stop_index) {
309                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
310                 if (unlikely(buffer->len == 0)) {
311                         netif_err(efx, tx_err, efx->net_dev,
312                                   "TX queue %d spurious TX completion id %x\n",
313                                   tx_queue->queue, read_ptr);
314                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
315                         return;
316                 }
317
318                 efx_dequeue_buffer(tx_queue, buffer);
319                 buffer->continuation = true;
320                 buffer->len = 0;
321
322                 ++tx_queue->read_count;
323                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
324         }
325 }
326
327 /* Initiate a packet transmission.  We use one channel per CPU
328  * (sharing when we have more CPUs than channels).  On Falcon, the TX
329  * completion events will be directed back to the CPU that transmitted
330  * the packet, which should be cache-efficient.
331  *
332  * Context: non-blocking.
333  * Note that returning anything other than NETDEV_TX_OK will cause the
334  * OS to free the skb.
335  */
336 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
337                                       struct net_device *net_dev)
338 {
339         struct efx_nic *efx = netdev_priv(net_dev);
340         struct efx_tx_queue *tx_queue;
341         unsigned index, type;
342
343         EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
344
345         index = skb_get_queue_mapping(skb);
346         type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
347         if (index >= efx->n_tx_channels) {
348                 index -= efx->n_tx_channels;
349                 type |= EFX_TXQ_TYPE_HIGHPRI;
350         }
351         tx_queue = efx_get_tx_queue(efx, index, type);
352
353         return efx_enqueue_skb(tx_queue, skb);
354 }
355
356 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
357 {
358         struct efx_nic *efx = tx_queue->efx;
359
360         /* Must be inverse of queue lookup in efx_hard_start_xmit() */
361         tx_queue->core_txq =
362                 netdev_get_tx_queue(efx->net_dev,
363                                     tx_queue->queue / EFX_TXQ_TYPES +
364                                     ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
365                                      efx->n_tx_channels : 0));
366 }
367
368 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
369 {
370         struct efx_nic *efx = netdev_priv(net_dev);
371         struct efx_channel *channel;
372         struct efx_tx_queue *tx_queue;
373         unsigned tc;
374         int rc;
375
376         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
377                 return -EINVAL;
378
379         if (num_tc == net_dev->num_tc)
380                 return 0;
381
382         for (tc = 0; tc < num_tc; tc++) {
383                 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
384                 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
385         }
386
387         if (num_tc > net_dev->num_tc) {
388                 /* Initialise high-priority queues as necessary */
389                 efx_for_each_channel(channel, efx) {
390                         efx_for_each_possible_channel_tx_queue(tx_queue,
391                                                                channel) {
392                                 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
393                                         continue;
394                                 if (!tx_queue->buffer) {
395                                         rc = efx_probe_tx_queue(tx_queue);
396                                         if (rc)
397                                                 return rc;
398                                 }
399                                 if (!tx_queue->initialised)
400                                         efx_init_tx_queue(tx_queue);
401                                 efx_init_tx_queue_core_txq(tx_queue);
402                         }
403                 }
404         } else {
405                 /* Reduce number of classes before number of queues */
406                 net_dev->num_tc = num_tc;
407         }
408
409         rc = netif_set_real_num_tx_queues(net_dev,
410                                           max_t(int, num_tc, 1) *
411                                           efx->n_tx_channels);
412         if (rc)
413                 return rc;
414
415         /* Do not destroy high-priority queues when they become
416          * unused.  We would have to flush them first, and it is
417          * fairly difficult to flush a subset of TX queues.  Leave
418          * it to efx_fini_channels().
419          */
420
421         net_dev->num_tc = num_tc;
422         return 0;
423 }
424
425 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
426 {
427         unsigned fill_level;
428         struct efx_nic *efx = tx_queue->efx;
429
430         EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
431
432         efx_dequeue_buffers(tx_queue, index);
433
434         /* See if we need to restart the netif queue.  This barrier
435          * separates the update of read_count from the test of the
436          * queue state. */
437         smp_mb();
438         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
439             likely(efx->port_enabled) &&
440             likely(netif_device_present(efx->net_dev))) {
441                 fill_level = tx_queue->insert_count - tx_queue->read_count;
442                 if (fill_level < EFX_TXQ_THRESHOLD(efx)) {
443                         EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
444                         netif_tx_wake_queue(tx_queue->core_txq);
445                 }
446         }
447
448         /* Check whether the hardware queue is now empty */
449         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
450                 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
451                 if (tx_queue->read_count == tx_queue->old_write_count) {
452                         smp_mb();
453                         tx_queue->empty_read_count =
454                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
455                 }
456         }
457 }
458
459 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
460 {
461         struct efx_nic *efx = tx_queue->efx;
462         unsigned int entries;
463         int i, rc;
464
465         /* Create the smallest power-of-two aligned ring */
466         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
467         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
468         tx_queue->ptr_mask = entries - 1;
469
470         netif_dbg(efx, probe, efx->net_dev,
471                   "creating TX queue %d size %#x mask %#x\n",
472                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
473
474         /* Allocate software ring */
475         tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer),
476                                    GFP_KERNEL);
477         if (!tx_queue->buffer)
478                 return -ENOMEM;
479         for (i = 0; i <= tx_queue->ptr_mask; ++i)
480                 tx_queue->buffer[i].continuation = true;
481
482         /* Allocate hardware ring */
483         rc = efx_nic_probe_tx(tx_queue);
484         if (rc)
485                 goto fail;
486
487         return 0;
488
489  fail:
490         kfree(tx_queue->buffer);
491         tx_queue->buffer = NULL;
492         return rc;
493 }
494
495 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
496 {
497         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
498                   "initialising TX queue %d\n", tx_queue->queue);
499
500         tx_queue->insert_count = 0;
501         tx_queue->write_count = 0;
502         tx_queue->old_write_count = 0;
503         tx_queue->read_count = 0;
504         tx_queue->old_read_count = 0;
505         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
506
507         /* Set up TX descriptor ring */
508         efx_nic_init_tx(tx_queue);
509
510         tx_queue->initialised = true;
511 }
512
513 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
514 {
515         struct efx_tx_buffer *buffer;
516
517         if (!tx_queue->buffer)
518                 return;
519
520         /* Free any buffers left in the ring */
521         while (tx_queue->read_count != tx_queue->write_count) {
522                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
523                 efx_dequeue_buffer(tx_queue, buffer);
524                 buffer->continuation = true;
525                 buffer->len = 0;
526
527                 ++tx_queue->read_count;
528         }
529 }
530
531 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
532 {
533         if (!tx_queue->initialised)
534                 return;
535
536         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
537                   "shutting down TX queue %d\n", tx_queue->queue);
538
539         tx_queue->initialised = false;
540
541         /* Flush TX queue, remove descriptor ring */
542         efx_nic_fini_tx(tx_queue);
543
544         efx_release_tx_buffers(tx_queue);
545
546         /* Free up TSO header cache */
547         efx_fini_tso(tx_queue);
548 }
549
550 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
551 {
552         if (!tx_queue->buffer)
553                 return;
554
555         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
556                   "destroying TX queue %d\n", tx_queue->queue);
557         efx_nic_remove_tx(tx_queue);
558
559         kfree(tx_queue->buffer);
560         tx_queue->buffer = NULL;
561 }
562
563
564 /* Efx TCP segmentation acceleration.
565  *
566  * Why?  Because by doing it here in the driver we can go significantly
567  * faster than the GSO.
568  *
569  * Requires TX checksum offload support.
570  */
571
572 /* Number of bytes inserted at the start of a TSO header buffer,
573  * similar to NET_IP_ALIGN.
574  */
575 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
576 #define TSOH_OFFSET     0
577 #else
578 #define TSOH_OFFSET     NET_IP_ALIGN
579 #endif
580
581 #define TSOH_BUFFER(tsoh)       ((u8 *)(tsoh + 1) + TSOH_OFFSET)
582
583 /* Total size of struct efx_tso_header, buffer and padding */
584 #define TSOH_SIZE(hdr_len)                                      \
585         (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
586
587 /* Size of blocks on free list.  Larger blocks must be allocated from
588  * the heap.
589  */
590 #define TSOH_STD_SIZE           128
591
592 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
593 #define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
594 #define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
595 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
596 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
597
598 /**
599  * struct tso_state - TSO state for an SKB
600  * @out_len: Remaining length in current segment
601  * @seqnum: Current sequence number
602  * @ipv4_id: Current IPv4 ID, host endian
603  * @packet_space: Remaining space in current packet
604  * @dma_addr: DMA address of current position
605  * @in_len: Remaining length in current SKB fragment
606  * @unmap_len: Length of SKB fragment
607  * @unmap_addr: DMA address of SKB fragment
608  * @unmap_single: DMA single vs page mapping flag
609  * @protocol: Network protocol (after any VLAN header)
610  * @header_len: Number of bytes of header
611  * @full_packet_size: Number of bytes to put in each outgoing segment
612  *
613  * The state used during segmentation.  It is put into this data structure
614  * just to make it easy to pass into inline functions.
615  */
616 struct tso_state {
617         /* Output position */
618         unsigned out_len;
619         unsigned seqnum;
620         unsigned ipv4_id;
621         unsigned packet_space;
622
623         /* Input position */
624         dma_addr_t dma_addr;
625         unsigned in_len;
626         unsigned unmap_len;
627         dma_addr_t unmap_addr;
628         bool unmap_single;
629
630         __be16 protocol;
631         unsigned header_len;
632         int full_packet_size;
633 };
634
635
636 /*
637  * Verify that our various assumptions about sk_buffs and the conditions
638  * under which TSO will be attempted hold true.  Return the protocol number.
639  */
640 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
641 {
642         __be16 protocol = skb->protocol;
643
644         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
645                             protocol);
646         if (protocol == htons(ETH_P_8021Q)) {
647                 /* Find the encapsulated protocol; reset network header
648                  * and transport header based on that. */
649                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
650                 protocol = veh->h_vlan_encapsulated_proto;
651                 skb_set_network_header(skb, sizeof(*veh));
652                 if (protocol == htons(ETH_P_IP))
653                         skb_set_transport_header(skb, sizeof(*veh) +
654                                                  4 * ip_hdr(skb)->ihl);
655                 else if (protocol == htons(ETH_P_IPV6))
656                         skb_set_transport_header(skb, sizeof(*veh) +
657                                                  sizeof(struct ipv6hdr));
658         }
659
660         if (protocol == htons(ETH_P_IP)) {
661                 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
662         } else {
663                 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
664                 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
665         }
666         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
667                              + (tcp_hdr(skb)->doff << 2u)) >
668                             skb_headlen(skb));
669
670         return protocol;
671 }
672
673
674 /*
675  * Allocate a page worth of efx_tso_header structures, and string them
676  * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
677  */
678 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
679 {
680
681         struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
682         struct efx_tso_header *tsoh;
683         dma_addr_t dma_addr;
684         u8 *base_kva, *kva;
685
686         base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
687         if (base_kva == NULL) {
688                 netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
689                           "Unable to allocate page for TSO headers\n");
690                 return -ENOMEM;
691         }
692
693         /* pci_alloc_consistent() allocates pages. */
694         EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
695
696         for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
697                 tsoh = (struct efx_tso_header *)kva;
698                 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
699                 tsoh->next = tx_queue->tso_headers_free;
700                 tx_queue->tso_headers_free = tsoh;
701         }
702
703         return 0;
704 }
705
706
707 /* Free up a TSO header, and all others in the same page. */
708 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
709                                 struct efx_tso_header *tsoh,
710                                 struct pci_dev *pci_dev)
711 {
712         struct efx_tso_header **p;
713         unsigned long base_kva;
714         dma_addr_t base_dma;
715
716         base_kva = (unsigned long)tsoh & PAGE_MASK;
717         base_dma = tsoh->dma_addr & PAGE_MASK;
718
719         p = &tx_queue->tso_headers_free;
720         while (*p != NULL) {
721                 if (((unsigned long)*p & PAGE_MASK) == base_kva)
722                         *p = (*p)->next;
723                 else
724                         p = &(*p)->next;
725         }
726
727         pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
728 }
729
730 static struct efx_tso_header *
731 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
732 {
733         struct efx_tso_header *tsoh;
734
735         tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
736         if (unlikely(!tsoh))
737                 return NULL;
738
739         tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
740                                         TSOH_BUFFER(tsoh), header_len,
741                                         PCI_DMA_TODEVICE);
742         if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
743                                            tsoh->dma_addr))) {
744                 kfree(tsoh);
745                 return NULL;
746         }
747
748         tsoh->unmap_len = header_len;
749         return tsoh;
750 }
751
752 static void
753 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
754 {
755         pci_unmap_single(tx_queue->efx->pci_dev,
756                          tsoh->dma_addr, tsoh->unmap_len,
757                          PCI_DMA_TODEVICE);
758         kfree(tsoh);
759 }
760
761 /**
762  * efx_tx_queue_insert - push descriptors onto the TX queue
763  * @tx_queue:           Efx TX queue
764  * @dma_addr:           DMA address of fragment
765  * @len:                Length of fragment
766  * @final_buffer:       The final buffer inserted into the queue
767  *
768  * Push descriptors onto the TX queue.  Return 0 on success or 1 if
769  * @tx_queue full.
770  */
771 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
772                                dma_addr_t dma_addr, unsigned len,
773                                struct efx_tx_buffer **final_buffer)
774 {
775         struct efx_tx_buffer *buffer;
776         struct efx_nic *efx = tx_queue->efx;
777         unsigned dma_len, fill_level, insert_ptr;
778         int q_space;
779
780         EFX_BUG_ON_PARANOID(len <= 0);
781
782         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
783         /* -1 as there is no way to represent all descriptors used */
784         q_space = efx->txq_entries - 1 - fill_level;
785
786         while (1) {
787                 if (unlikely(q_space-- <= 0)) {
788                         /* It might be that completions have happened
789                          * since the xmit path last checked.  Update
790                          * the xmit path's copy of read_count.
791                          */
792                         netif_tx_stop_queue(tx_queue->core_txq);
793                         /* This memory barrier protects the change of
794                          * queue state from the access of read_count. */
795                         smp_mb();
796                         tx_queue->old_read_count =
797                                 ACCESS_ONCE(tx_queue->read_count);
798                         fill_level = (tx_queue->insert_count
799                                       - tx_queue->old_read_count);
800                         q_space = efx->txq_entries - 1 - fill_level;
801                         if (unlikely(q_space-- <= 0)) {
802                                 *final_buffer = NULL;
803                                 return 1;
804                         }
805                         smp_mb();
806                         netif_tx_start_queue(tx_queue->core_txq);
807                 }
808
809                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
810                 buffer = &tx_queue->buffer[insert_ptr];
811                 ++tx_queue->insert_count;
812
813                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
814                                     tx_queue->read_count >=
815                                     efx->txq_entries);
816
817                 efx_tsoh_free(tx_queue, buffer);
818                 EFX_BUG_ON_PARANOID(buffer->len);
819                 EFX_BUG_ON_PARANOID(buffer->unmap_len);
820                 EFX_BUG_ON_PARANOID(buffer->skb);
821                 EFX_BUG_ON_PARANOID(!buffer->continuation);
822                 EFX_BUG_ON_PARANOID(buffer->tsoh);
823
824                 buffer->dma_addr = dma_addr;
825
826                 dma_len = efx_max_tx_len(efx, dma_addr);
827
828                 /* If there is enough space to send then do so */
829                 if (dma_len >= len)
830                         break;
831
832                 buffer->len = dma_len; /* Don't set the other members */
833                 dma_addr += dma_len;
834                 len -= dma_len;
835         }
836
837         EFX_BUG_ON_PARANOID(!len);
838         buffer->len = len;
839         *final_buffer = buffer;
840         return 0;
841 }
842
843
844 /*
845  * Put a TSO header into the TX queue.
846  *
847  * This is special-cased because we know that it is small enough to fit in
848  * a single fragment, and we know it doesn't cross a page boundary.  It
849  * also allows us to not worry about end-of-packet etc.
850  */
851 static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
852                                struct efx_tso_header *tsoh, unsigned len)
853 {
854         struct efx_tx_buffer *buffer;
855
856         buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
857         efx_tsoh_free(tx_queue, buffer);
858         EFX_BUG_ON_PARANOID(buffer->len);
859         EFX_BUG_ON_PARANOID(buffer->unmap_len);
860         EFX_BUG_ON_PARANOID(buffer->skb);
861         EFX_BUG_ON_PARANOID(!buffer->continuation);
862         EFX_BUG_ON_PARANOID(buffer->tsoh);
863         buffer->len = len;
864         buffer->dma_addr = tsoh->dma_addr;
865         buffer->tsoh = tsoh;
866
867         ++tx_queue->insert_count;
868 }
869
870
871 /* Remove descriptors put into a tx_queue. */
872 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
873 {
874         struct efx_tx_buffer *buffer;
875         dma_addr_t unmap_addr;
876
877         /* Work backwards until we hit the original insert pointer value */
878         while (tx_queue->insert_count != tx_queue->write_count) {
879                 --tx_queue->insert_count;
880                 buffer = &tx_queue->buffer[tx_queue->insert_count &
881                                            tx_queue->ptr_mask];
882                 efx_tsoh_free(tx_queue, buffer);
883                 EFX_BUG_ON_PARANOID(buffer->skb);
884                 if (buffer->unmap_len) {
885                         unmap_addr = (buffer->dma_addr + buffer->len -
886                                       buffer->unmap_len);
887                         if (buffer->unmap_single)
888                                 pci_unmap_single(tx_queue->efx->pci_dev,
889                                                  unmap_addr, buffer->unmap_len,
890                                                  PCI_DMA_TODEVICE);
891                         else
892                                 pci_unmap_page(tx_queue->efx->pci_dev,
893                                                unmap_addr, buffer->unmap_len,
894                                                PCI_DMA_TODEVICE);
895                         buffer->unmap_len = 0;
896                 }
897                 buffer->len = 0;
898                 buffer->continuation = true;
899         }
900 }
901
902
903 /* Parse the SKB header and initialise state. */
904 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
905 {
906         /* All ethernet/IP/TCP headers combined size is TCP header size
907          * plus offset of TCP header relative to start of packet.
908          */
909         st->header_len = ((tcp_hdr(skb)->doff << 2u)
910                           + PTR_DIFF(tcp_hdr(skb), skb->data));
911         st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
912
913         if (st->protocol == htons(ETH_P_IP))
914                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
915         else
916                 st->ipv4_id = 0;
917         st->seqnum = ntohl(tcp_hdr(skb)->seq);
918
919         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
920         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
921         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
922
923         st->packet_space = st->full_packet_size;
924         st->out_len = skb->len - st->header_len;
925         st->unmap_len = 0;
926         st->unmap_single = false;
927 }
928
929 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
930                             skb_frag_t *frag)
931 {
932         st->unmap_addr = pci_map_page(efx->pci_dev, frag->page,
933                                       frag->page_offset, frag->size,
934                                       PCI_DMA_TODEVICE);
935         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
936                 st->unmap_single = false;
937                 st->unmap_len = frag->size;
938                 st->in_len = frag->size;
939                 st->dma_addr = st->unmap_addr;
940                 return 0;
941         }
942         return -ENOMEM;
943 }
944
945 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
946                                  const struct sk_buff *skb)
947 {
948         int hl = st->header_len;
949         int len = skb_headlen(skb) - hl;
950
951         st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
952                                         len, PCI_DMA_TODEVICE);
953         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
954                 st->unmap_single = true;
955                 st->unmap_len = len;
956                 st->in_len = len;
957                 st->dma_addr = st->unmap_addr;
958                 return 0;
959         }
960         return -ENOMEM;
961 }
962
963
964 /**
965  * tso_fill_packet_with_fragment - form descriptors for the current fragment
966  * @tx_queue:           Efx TX queue
967  * @skb:                Socket buffer
968  * @st:                 TSO state
969  *
970  * Form descriptors for the current fragment, until we reach the end
971  * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
972  * space in @tx_queue.
973  */
974 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
975                                          const struct sk_buff *skb,
976                                          struct tso_state *st)
977 {
978         struct efx_tx_buffer *buffer;
979         int n, end_of_packet, rc;
980
981         if (st->in_len == 0)
982                 return 0;
983         if (st->packet_space == 0)
984                 return 0;
985
986         EFX_BUG_ON_PARANOID(st->in_len <= 0);
987         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
988
989         n = min(st->in_len, st->packet_space);
990
991         st->packet_space -= n;
992         st->out_len -= n;
993         st->in_len -= n;
994
995         rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
996         if (likely(rc == 0)) {
997                 if (st->out_len == 0)
998                         /* Transfer ownership of the skb */
999                         buffer->skb = skb;
1000
1001                 end_of_packet = st->out_len == 0 || st->packet_space == 0;
1002                 buffer->continuation = !end_of_packet;
1003
1004                 if (st->in_len == 0) {
1005                         /* Transfer ownership of the pci mapping */
1006                         buffer->unmap_len = st->unmap_len;
1007                         buffer->unmap_single = st->unmap_single;
1008                         st->unmap_len = 0;
1009                 }
1010         }
1011
1012         st->dma_addr += n;
1013         return rc;
1014 }
1015
1016
1017 /**
1018  * tso_start_new_packet - generate a new header and prepare for the new packet
1019  * @tx_queue:           Efx TX queue
1020  * @skb:                Socket buffer
1021  * @st:                 TSO state
1022  *
1023  * Generate a new header and prepare for the new packet.  Return 0 on
1024  * success, or -1 if failed to alloc header.
1025  */
1026 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1027                                 const struct sk_buff *skb,
1028                                 struct tso_state *st)
1029 {
1030         struct efx_tso_header *tsoh;
1031         struct tcphdr *tsoh_th;
1032         unsigned ip_length;
1033         u8 *header;
1034
1035         /* Allocate a DMA-mapped header buffer. */
1036         if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
1037                 if (tx_queue->tso_headers_free == NULL) {
1038                         if (efx_tsoh_block_alloc(tx_queue))
1039                                 return -1;
1040                 }
1041                 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
1042                 tsoh = tx_queue->tso_headers_free;
1043                 tx_queue->tso_headers_free = tsoh->next;
1044                 tsoh->unmap_len = 0;
1045         } else {
1046                 tx_queue->tso_long_headers++;
1047                 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
1048                 if (unlikely(!tsoh))
1049                         return -1;
1050         }
1051
1052         header = TSOH_BUFFER(tsoh);
1053         tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
1054
1055         /* Copy and update the headers. */
1056         memcpy(header, skb->data, st->header_len);
1057
1058         tsoh_th->seq = htonl(st->seqnum);
1059         st->seqnum += skb_shinfo(skb)->gso_size;
1060         if (st->out_len > skb_shinfo(skb)->gso_size) {
1061                 /* This packet will not finish the TSO burst. */
1062                 ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
1063                 tsoh_th->fin = 0;
1064                 tsoh_th->psh = 0;
1065         } else {
1066                 /* This packet will be the last in the TSO burst. */
1067                 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
1068                 tsoh_th->fin = tcp_hdr(skb)->fin;
1069                 tsoh_th->psh = tcp_hdr(skb)->psh;
1070         }
1071
1072         if (st->protocol == htons(ETH_P_IP)) {
1073                 struct iphdr *tsoh_iph =
1074                         (struct iphdr *)(header + SKB_IPV4_OFF(skb));
1075
1076                 tsoh_iph->tot_len = htons(ip_length);
1077
1078                 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1079                 tsoh_iph->id = htons(st->ipv4_id);
1080                 st->ipv4_id++;
1081         } else {
1082                 struct ipv6hdr *tsoh_iph =
1083                         (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1084
1085                 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1086         }
1087
1088         st->packet_space = skb_shinfo(skb)->gso_size;
1089         ++tx_queue->tso_packets;
1090
1091         /* Form a descriptor for this header. */
1092         efx_tso_put_header(tx_queue, tsoh, st->header_len);
1093
1094         return 0;
1095 }
1096
1097
1098 /**
1099  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1100  * @tx_queue:           Efx TX queue
1101  * @skb:                Socket buffer
1102  *
1103  * Context: You must hold netif_tx_lock() to call this function.
1104  *
1105  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1106  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1107  * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1108  */
1109 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1110                                struct sk_buff *skb)
1111 {
1112         struct efx_nic *efx = tx_queue->efx;
1113         int frag_i, rc, rc2 = NETDEV_TX_OK;
1114         struct tso_state state;
1115
1116         /* Find the packet protocol and sanity-check it */
1117         state.protocol = efx_tso_check_protocol(skb);
1118
1119         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1120
1121         tso_start(&state, skb);
1122
1123         /* Assume that skb header area contains exactly the headers, and
1124          * all payload is in the frag list.
1125          */
1126         if (skb_headlen(skb) == state.header_len) {
1127                 /* Grab the first payload fragment. */
1128                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1129                 frag_i = 0;
1130                 rc = tso_get_fragment(&state, efx,
1131                                       skb_shinfo(skb)->frags + frag_i);
1132                 if (rc)
1133                         goto mem_err;
1134         } else {
1135                 rc = tso_get_head_fragment(&state, efx, skb);
1136                 if (rc)
1137                         goto mem_err;
1138                 frag_i = -1;
1139         }
1140
1141         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1142                 goto mem_err;
1143
1144         while (1) {
1145                 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1146                 if (unlikely(rc)) {
1147                         rc2 = NETDEV_TX_BUSY;
1148                         goto unwind;
1149                 }
1150
1151                 /* Move onto the next fragment? */
1152                 if (state.in_len == 0) {
1153                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1154                                 /* End of payload reached. */
1155                                 break;
1156                         rc = tso_get_fragment(&state, efx,
1157                                               skb_shinfo(skb)->frags + frag_i);
1158                         if (rc)
1159                                 goto mem_err;
1160                 }
1161
1162                 /* Start at new packet? */
1163                 if (state.packet_space == 0 &&
1164                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1165                         goto mem_err;
1166         }
1167
1168         /* Pass off to hardware */
1169         efx_nic_push_buffers(tx_queue);
1170
1171         tx_queue->tso_bursts++;
1172         return NETDEV_TX_OK;
1173
1174  mem_err:
1175         netif_err(efx, tx_err, efx->net_dev,
1176                   "Out of memory for TSO headers, or PCI mapping error\n");
1177         dev_kfree_skb_any(skb);
1178
1179  unwind:
1180         /* Free the DMA mapping we were in the process of writing out */
1181         if (state.unmap_len) {
1182                 if (state.unmap_single)
1183                         pci_unmap_single(efx->pci_dev, state.unmap_addr,
1184                                          state.unmap_len, PCI_DMA_TODEVICE);
1185                 else
1186                         pci_unmap_page(efx->pci_dev, state.unmap_addr,
1187                                        state.unmap_len, PCI_DMA_TODEVICE);
1188         }
1189
1190         efx_enqueue_unwind(tx_queue);
1191         return rc2;
1192 }
1193
1194
1195 /*
1196  * Free up all TSO datastructures associated with tx_queue. This
1197  * routine should be called only once the tx_queue is both empty and
1198  * will no longer be used.
1199  */
1200 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1201 {
1202         unsigned i;
1203
1204         if (tx_queue->buffer) {
1205                 for (i = 0; i <= tx_queue->ptr_mask; ++i)
1206                         efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1207         }
1208
1209         while (tx_queue->tso_headers_free != NULL)
1210                 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1211                                     tx_queue->efx->pci_dev);
1212 }