rtc: fix coh901331 startup crash
[pandora-kernel.git] / drivers / net / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2010 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
24
25 /*
26  * TX descriptor ring full threshold
27  *
28  * The tx_queue descriptor ring fill-level must fall below this value
29  * before we restart the netif queue
30  */
31 #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
32
33 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
34                                struct efx_tx_buffer *buffer)
35 {
36         if (buffer->unmap_len) {
37                 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
38                 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
39                                          buffer->unmap_len);
40                 if (buffer->unmap_single)
41                         pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
42                                          PCI_DMA_TODEVICE);
43                 else
44                         pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
45                                        PCI_DMA_TODEVICE);
46                 buffer->unmap_len = 0;
47                 buffer->unmap_single = false;
48         }
49
50         if (buffer->skb) {
51                 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
52                 buffer->skb = NULL;
53                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
54                            "TX queue %d transmission id %x complete\n",
55                            tx_queue->queue, tx_queue->read_count);
56         }
57 }
58
59 /**
60  * struct efx_tso_header - a DMA mapped buffer for packet headers
61  * @next: Linked list of free ones.
62  *      The list is protected by the TX queue lock.
63  * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
64  * @dma_addr: The DMA address of the header below.
65  *
66  * This controls the memory used for a TSO header.  Use TSOH_DATA()
67  * to find the packet header data.  Use TSOH_SIZE() to calculate the
68  * total size required for a given packet header length.  TSO headers
69  * in the free list are exactly %TSOH_STD_SIZE bytes in size.
70  */
71 struct efx_tso_header {
72         union {
73                 struct efx_tso_header *next;
74                 size_t unmap_len;
75         };
76         dma_addr_t dma_addr;
77 };
78
79 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
80                                struct sk_buff *skb);
81 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
82 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
83                                struct efx_tso_header *tsoh);
84
85 static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
86                           struct efx_tx_buffer *buffer)
87 {
88         if (buffer->tsoh) {
89                 if (likely(!buffer->tsoh->unmap_len)) {
90                         buffer->tsoh->next = tx_queue->tso_headers_free;
91                         tx_queue->tso_headers_free = buffer->tsoh;
92                 } else {
93                         efx_tsoh_heap_free(tx_queue, buffer->tsoh);
94                 }
95                 buffer->tsoh = NULL;
96         }
97 }
98
99
100 static inline unsigned
101 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
102 {
103         /* Depending on the NIC revision, we can use descriptor
104          * lengths up to 8K or 8K-1.  However, since PCI Express
105          * devices must split read requests at 4K boundaries, there is
106          * little benefit from using descriptors that cross those
107          * boundaries and we keep things simple by not doing so.
108          */
109         unsigned len = (~dma_addr & 0xfff) + 1;
110
111         /* Work around hardware bug for unaligned buffers. */
112         if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
113                 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
114
115         return len;
116 }
117
118 /*
119  * Add a socket buffer to a TX queue
120  *
121  * This maps all fragments of a socket buffer for DMA and adds them to
122  * the TX queue.  The queue's insert pointer will be incremented by
123  * the number of fragments in the socket buffer.
124  *
125  * If any DMA mapping fails, any mapped fragments will be unmapped,
126  * the queue's insert pointer will be restored to its original value.
127  *
128  * This function is split out from efx_hard_start_xmit to allow the
129  * loopback test to direct packets via specific TX queues.
130  *
131  * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
132  * You must hold netif_tx_lock() to call this function.
133  */
134 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
135 {
136         struct efx_nic *efx = tx_queue->efx;
137         struct pci_dev *pci_dev = efx->pci_dev;
138         struct efx_tx_buffer *buffer;
139         skb_frag_t *fragment;
140         struct page *page;
141         int page_offset;
142         unsigned int len, unmap_len = 0, fill_level, insert_ptr;
143         dma_addr_t dma_addr, unmap_addr = 0;
144         unsigned int dma_len;
145         bool unmap_single;
146         int q_space, i = 0;
147         netdev_tx_t rc = NETDEV_TX_OK;
148
149         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
150
151         if (skb_shinfo(skb)->gso_size)
152                 return efx_enqueue_skb_tso(tx_queue, skb);
153
154         /* Get size of the initial fragment */
155         len = skb_headlen(skb);
156
157         /* Pad if necessary */
158         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
159                 EFX_BUG_ON_PARANOID(skb->data_len);
160                 len = 32 + 1;
161                 if (skb_pad(skb, len - skb->len))
162                         return NETDEV_TX_OK;
163         }
164
165         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
166         q_space = efx->txq_entries - 1 - fill_level;
167
168         /* Map for DMA.  Use pci_map_single rather than pci_map_page
169          * since this is more efficient on machines with sparse
170          * memory.
171          */
172         unmap_single = true;
173         dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
174
175         /* Process all fragments */
176         while (1) {
177                 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
178                         goto pci_err;
179
180                 /* Store fields for marking in the per-fragment final
181                  * descriptor */
182                 unmap_len = len;
183                 unmap_addr = dma_addr;
184
185                 /* Add to TX queue, splitting across DMA boundaries */
186                 do {
187                         if (unlikely(q_space-- <= 0)) {
188                                 /* It might be that completions have
189                                  * happened since the xmit path last
190                                  * checked.  Update the xmit path's
191                                  * copy of read_count.
192                                  */
193                                 netif_tx_stop_queue(tx_queue->core_txq);
194                                 /* This memory barrier protects the
195                                  * change of queue state from the access
196                                  * of read_count. */
197                                 smp_mb();
198                                 tx_queue->old_read_count =
199                                         ACCESS_ONCE(tx_queue->read_count);
200                                 fill_level = (tx_queue->insert_count
201                                               - tx_queue->old_read_count);
202                                 q_space = efx->txq_entries - 1 - fill_level;
203                                 if (unlikely(q_space-- <= 0)) {
204                                         rc = NETDEV_TX_BUSY;
205                                         goto unwind;
206                                 }
207                                 smp_mb();
208                                 netif_tx_start_queue(tx_queue->core_txq);
209                         }
210
211                         insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
212                         buffer = &tx_queue->buffer[insert_ptr];
213                         efx_tsoh_free(tx_queue, buffer);
214                         EFX_BUG_ON_PARANOID(buffer->tsoh);
215                         EFX_BUG_ON_PARANOID(buffer->skb);
216                         EFX_BUG_ON_PARANOID(buffer->len);
217                         EFX_BUG_ON_PARANOID(!buffer->continuation);
218                         EFX_BUG_ON_PARANOID(buffer->unmap_len);
219
220                         dma_len = efx_max_tx_len(efx, dma_addr);
221                         if (likely(dma_len >= len))
222                                 dma_len = len;
223
224                         /* Fill out per descriptor fields */
225                         buffer->len = dma_len;
226                         buffer->dma_addr = dma_addr;
227                         len -= dma_len;
228                         dma_addr += dma_len;
229                         ++tx_queue->insert_count;
230                 } while (len);
231
232                 /* Transfer ownership of the unmapping to the final buffer */
233                 buffer->unmap_single = unmap_single;
234                 buffer->unmap_len = unmap_len;
235                 unmap_len = 0;
236
237                 /* Get address and size of next fragment */
238                 if (i >= skb_shinfo(skb)->nr_frags)
239                         break;
240                 fragment = &skb_shinfo(skb)->frags[i];
241                 len = fragment->size;
242                 page = fragment->page;
243                 page_offset = fragment->page_offset;
244                 i++;
245                 /* Map for DMA */
246                 unmap_single = false;
247                 dma_addr = pci_map_page(pci_dev, page, page_offset, len,
248                                         PCI_DMA_TODEVICE);
249         }
250
251         /* Transfer ownership of the skb to the final buffer */
252         buffer->skb = skb;
253         buffer->continuation = false;
254
255         /* Pass off to hardware */
256         efx_nic_push_buffers(tx_queue);
257
258         return NETDEV_TX_OK;
259
260  pci_err:
261         netif_err(efx, tx_err, efx->net_dev,
262                   " TX queue %d could not map skb with %d bytes %d "
263                   "fragments for DMA\n", tx_queue->queue, skb->len,
264                   skb_shinfo(skb)->nr_frags + 1);
265
266         /* Mark the packet as transmitted, and free the SKB ourselves */
267         dev_kfree_skb_any(skb);
268
269  unwind:
270         /* Work backwards until we hit the original insert pointer value */
271         while (tx_queue->insert_count != tx_queue->write_count) {
272                 --tx_queue->insert_count;
273                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
274                 buffer = &tx_queue->buffer[insert_ptr];
275                 efx_dequeue_buffer(tx_queue, buffer);
276                 buffer->len = 0;
277         }
278
279         /* Free the fragment we were mid-way through pushing */
280         if (unmap_len) {
281                 if (unmap_single)
282                         pci_unmap_single(pci_dev, unmap_addr, unmap_len,
283                                          PCI_DMA_TODEVICE);
284                 else
285                         pci_unmap_page(pci_dev, unmap_addr, unmap_len,
286                                        PCI_DMA_TODEVICE);
287         }
288
289         return rc;
290 }
291
292 /* Remove packets from the TX queue
293  *
294  * This removes packets from the TX queue, up to and including the
295  * specified index.
296  */
297 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
298                                 unsigned int index)
299 {
300         struct efx_nic *efx = tx_queue->efx;
301         unsigned int stop_index, read_ptr;
302
303         stop_index = (index + 1) & tx_queue->ptr_mask;
304         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
305
306         while (read_ptr != stop_index) {
307                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
308                 if (unlikely(buffer->len == 0)) {
309                         netif_err(efx, tx_err, efx->net_dev,
310                                   "TX queue %d spurious TX completion id %x\n",
311                                   tx_queue->queue, read_ptr);
312                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
313                         return;
314                 }
315
316                 efx_dequeue_buffer(tx_queue, buffer);
317                 buffer->continuation = true;
318                 buffer->len = 0;
319
320                 ++tx_queue->read_count;
321                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
322         }
323 }
324
325 /* Initiate a packet transmission.  We use one channel per CPU
326  * (sharing when we have more CPUs than channels).  On Falcon, the TX
327  * completion events will be directed back to the CPU that transmitted
328  * the packet, which should be cache-efficient.
329  *
330  * Context: non-blocking.
331  * Note that returning anything other than NETDEV_TX_OK will cause the
332  * OS to free the skb.
333  */
334 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
335                                       struct net_device *net_dev)
336 {
337         struct efx_nic *efx = netdev_priv(net_dev);
338         struct efx_tx_queue *tx_queue;
339         unsigned index, type;
340
341         if (unlikely(efx->port_inhibited))
342                 return NETDEV_TX_BUSY;
343
344         index = skb_get_queue_mapping(skb);
345         type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
346         if (index >= efx->n_tx_channels) {
347                 index -= efx->n_tx_channels;
348                 type |= EFX_TXQ_TYPE_HIGHPRI;
349         }
350         tx_queue = efx_get_tx_queue(efx, index, type);
351
352         return efx_enqueue_skb(tx_queue, skb);
353 }
354
355 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
356 {
357         struct efx_nic *efx = tx_queue->efx;
358
359         /* Must be inverse of queue lookup in efx_hard_start_xmit() */
360         tx_queue->core_txq =
361                 netdev_get_tx_queue(efx->net_dev,
362                                     tx_queue->queue / EFX_TXQ_TYPES +
363                                     ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
364                                      efx->n_tx_channels : 0));
365 }
366
367 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
368 {
369         struct efx_nic *efx = netdev_priv(net_dev);
370         struct efx_channel *channel;
371         struct efx_tx_queue *tx_queue;
372         unsigned tc;
373         int rc;
374
375         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
376                 return -EINVAL;
377
378         if (num_tc == net_dev->num_tc)
379                 return 0;
380
381         for (tc = 0; tc < num_tc; tc++) {
382                 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
383                 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
384         }
385
386         if (num_tc > net_dev->num_tc) {
387                 /* Initialise high-priority queues as necessary */
388                 efx_for_each_channel(channel, efx) {
389                         efx_for_each_possible_channel_tx_queue(tx_queue,
390                                                                channel) {
391                                 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
392                                         continue;
393                                 if (!tx_queue->buffer) {
394                                         rc = efx_probe_tx_queue(tx_queue);
395                                         if (rc)
396                                                 return rc;
397                                 }
398                                 if (!tx_queue->initialised)
399                                         efx_init_tx_queue(tx_queue);
400                                 efx_init_tx_queue_core_txq(tx_queue);
401                         }
402                 }
403         } else {
404                 /* Reduce number of classes before number of queues */
405                 net_dev->num_tc = num_tc;
406         }
407
408         rc = netif_set_real_num_tx_queues(net_dev,
409                                           max_t(int, num_tc, 1) *
410                                           efx->n_tx_channels);
411         if (rc)
412                 return rc;
413
414         /* Do not destroy high-priority queues when they become
415          * unused.  We would have to flush them first, and it is
416          * fairly difficult to flush a subset of TX queues.  Leave
417          * it to efx_fini_channels().
418          */
419
420         net_dev->num_tc = num_tc;
421         return 0;
422 }
423
424 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
425 {
426         unsigned fill_level;
427         struct efx_nic *efx = tx_queue->efx;
428
429         EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
430
431         efx_dequeue_buffers(tx_queue, index);
432
433         /* See if we need to restart the netif queue.  This barrier
434          * separates the update of read_count from the test of the
435          * queue state. */
436         smp_mb();
437         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
438             likely(efx->port_enabled)) {
439                 fill_level = tx_queue->insert_count - tx_queue->read_count;
440                 if (fill_level < EFX_TXQ_THRESHOLD(efx)) {
441                         EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
442                         netif_tx_wake_queue(tx_queue->core_txq);
443                 }
444         }
445
446         /* Check whether the hardware queue is now empty */
447         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
448                 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
449                 if (tx_queue->read_count == tx_queue->old_write_count) {
450                         smp_mb();
451                         tx_queue->empty_read_count =
452                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
453                 }
454         }
455 }
456
457 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
458 {
459         struct efx_nic *efx = tx_queue->efx;
460         unsigned int entries;
461         int i, rc;
462
463         /* Create the smallest power-of-two aligned ring */
464         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
465         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
466         tx_queue->ptr_mask = entries - 1;
467
468         netif_dbg(efx, probe, efx->net_dev,
469                   "creating TX queue %d size %#x mask %#x\n",
470                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
471
472         /* Allocate software ring */
473         tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer),
474                                    GFP_KERNEL);
475         if (!tx_queue->buffer)
476                 return -ENOMEM;
477         for (i = 0; i <= tx_queue->ptr_mask; ++i)
478                 tx_queue->buffer[i].continuation = true;
479
480         /* Allocate hardware ring */
481         rc = efx_nic_probe_tx(tx_queue);
482         if (rc)
483                 goto fail;
484
485         return 0;
486
487  fail:
488         kfree(tx_queue->buffer);
489         tx_queue->buffer = NULL;
490         return rc;
491 }
492
493 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
494 {
495         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
496                   "initialising TX queue %d\n", tx_queue->queue);
497
498         tx_queue->insert_count = 0;
499         tx_queue->write_count = 0;
500         tx_queue->old_write_count = 0;
501         tx_queue->read_count = 0;
502         tx_queue->old_read_count = 0;
503         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
504
505         /* Set up TX descriptor ring */
506         efx_nic_init_tx(tx_queue);
507
508         tx_queue->initialised = true;
509 }
510
511 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
512 {
513         struct efx_tx_buffer *buffer;
514
515         if (!tx_queue->buffer)
516                 return;
517
518         /* Free any buffers left in the ring */
519         while (tx_queue->read_count != tx_queue->write_count) {
520                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
521                 efx_dequeue_buffer(tx_queue, buffer);
522                 buffer->continuation = true;
523                 buffer->len = 0;
524
525                 ++tx_queue->read_count;
526         }
527 }
528
529 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
530 {
531         if (!tx_queue->initialised)
532                 return;
533
534         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
535                   "shutting down TX queue %d\n", tx_queue->queue);
536
537         tx_queue->initialised = false;
538
539         /* Flush TX queue, remove descriptor ring */
540         efx_nic_fini_tx(tx_queue);
541
542         efx_release_tx_buffers(tx_queue);
543
544         /* Free up TSO header cache */
545         efx_fini_tso(tx_queue);
546 }
547
548 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
549 {
550         if (!tx_queue->buffer)
551                 return;
552
553         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
554                   "destroying TX queue %d\n", tx_queue->queue);
555         efx_nic_remove_tx(tx_queue);
556
557         kfree(tx_queue->buffer);
558         tx_queue->buffer = NULL;
559 }
560
561
562 /* Efx TCP segmentation acceleration.
563  *
564  * Why?  Because by doing it here in the driver we can go significantly
565  * faster than the GSO.
566  *
567  * Requires TX checksum offload support.
568  */
569
570 /* Number of bytes inserted at the start of a TSO header buffer,
571  * similar to NET_IP_ALIGN.
572  */
573 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
574 #define TSOH_OFFSET     0
575 #else
576 #define TSOH_OFFSET     NET_IP_ALIGN
577 #endif
578
579 #define TSOH_BUFFER(tsoh)       ((u8 *)(tsoh + 1) + TSOH_OFFSET)
580
581 /* Total size of struct efx_tso_header, buffer and padding */
582 #define TSOH_SIZE(hdr_len)                                      \
583         (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
584
585 /* Size of blocks on free list.  Larger blocks must be allocated from
586  * the heap.
587  */
588 #define TSOH_STD_SIZE           128
589
590 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
591 #define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
592 #define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
593 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
594 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
595
596 /**
597  * struct tso_state - TSO state for an SKB
598  * @out_len: Remaining length in current segment
599  * @seqnum: Current sequence number
600  * @ipv4_id: Current IPv4 ID, host endian
601  * @packet_space: Remaining space in current packet
602  * @dma_addr: DMA address of current position
603  * @in_len: Remaining length in current SKB fragment
604  * @unmap_len: Length of SKB fragment
605  * @unmap_addr: DMA address of SKB fragment
606  * @unmap_single: DMA single vs page mapping flag
607  * @protocol: Network protocol (after any VLAN header)
608  * @header_len: Number of bytes of header
609  * @full_packet_size: Number of bytes to put in each outgoing segment
610  *
611  * The state used during segmentation.  It is put into this data structure
612  * just to make it easy to pass into inline functions.
613  */
614 struct tso_state {
615         /* Output position */
616         unsigned out_len;
617         unsigned seqnum;
618         unsigned ipv4_id;
619         unsigned packet_space;
620
621         /* Input position */
622         dma_addr_t dma_addr;
623         unsigned in_len;
624         unsigned unmap_len;
625         dma_addr_t unmap_addr;
626         bool unmap_single;
627
628         __be16 protocol;
629         unsigned header_len;
630         int full_packet_size;
631 };
632
633
634 /*
635  * Verify that our various assumptions about sk_buffs and the conditions
636  * under which TSO will be attempted hold true.  Return the protocol number.
637  */
638 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
639 {
640         __be16 protocol = skb->protocol;
641
642         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
643                             protocol);
644         if (protocol == htons(ETH_P_8021Q)) {
645                 /* Find the encapsulated protocol; reset network header
646                  * and transport header based on that. */
647                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
648                 protocol = veh->h_vlan_encapsulated_proto;
649                 skb_set_network_header(skb, sizeof(*veh));
650                 if (protocol == htons(ETH_P_IP))
651                         skb_set_transport_header(skb, sizeof(*veh) +
652                                                  4 * ip_hdr(skb)->ihl);
653                 else if (protocol == htons(ETH_P_IPV6))
654                         skb_set_transport_header(skb, sizeof(*veh) +
655                                                  sizeof(struct ipv6hdr));
656         }
657
658         if (protocol == htons(ETH_P_IP)) {
659                 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
660         } else {
661                 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
662                 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
663         }
664         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
665                              + (tcp_hdr(skb)->doff << 2u)) >
666                             skb_headlen(skb));
667
668         return protocol;
669 }
670
671
672 /*
673  * Allocate a page worth of efx_tso_header structures, and string them
674  * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
675  */
676 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
677 {
678
679         struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
680         struct efx_tso_header *tsoh;
681         dma_addr_t dma_addr;
682         u8 *base_kva, *kva;
683
684         base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
685         if (base_kva == NULL) {
686                 netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
687                           "Unable to allocate page for TSO headers\n");
688                 return -ENOMEM;
689         }
690
691         /* pci_alloc_consistent() allocates pages. */
692         EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
693
694         for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
695                 tsoh = (struct efx_tso_header *)kva;
696                 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
697                 tsoh->next = tx_queue->tso_headers_free;
698                 tx_queue->tso_headers_free = tsoh;
699         }
700
701         return 0;
702 }
703
704
705 /* Free up a TSO header, and all others in the same page. */
706 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
707                                 struct efx_tso_header *tsoh,
708                                 struct pci_dev *pci_dev)
709 {
710         struct efx_tso_header **p;
711         unsigned long base_kva;
712         dma_addr_t base_dma;
713
714         base_kva = (unsigned long)tsoh & PAGE_MASK;
715         base_dma = tsoh->dma_addr & PAGE_MASK;
716
717         p = &tx_queue->tso_headers_free;
718         while (*p != NULL) {
719                 if (((unsigned long)*p & PAGE_MASK) == base_kva)
720                         *p = (*p)->next;
721                 else
722                         p = &(*p)->next;
723         }
724
725         pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
726 }
727
728 static struct efx_tso_header *
729 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
730 {
731         struct efx_tso_header *tsoh;
732
733         tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
734         if (unlikely(!tsoh))
735                 return NULL;
736
737         tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
738                                         TSOH_BUFFER(tsoh), header_len,
739                                         PCI_DMA_TODEVICE);
740         if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
741                                            tsoh->dma_addr))) {
742                 kfree(tsoh);
743                 return NULL;
744         }
745
746         tsoh->unmap_len = header_len;
747         return tsoh;
748 }
749
750 static void
751 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
752 {
753         pci_unmap_single(tx_queue->efx->pci_dev,
754                          tsoh->dma_addr, tsoh->unmap_len,
755                          PCI_DMA_TODEVICE);
756         kfree(tsoh);
757 }
758
759 /**
760  * efx_tx_queue_insert - push descriptors onto the TX queue
761  * @tx_queue:           Efx TX queue
762  * @dma_addr:           DMA address of fragment
763  * @len:                Length of fragment
764  * @final_buffer:       The final buffer inserted into the queue
765  *
766  * Push descriptors onto the TX queue.  Return 0 on success or 1 if
767  * @tx_queue full.
768  */
769 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
770                                dma_addr_t dma_addr, unsigned len,
771                                struct efx_tx_buffer **final_buffer)
772 {
773         struct efx_tx_buffer *buffer;
774         struct efx_nic *efx = tx_queue->efx;
775         unsigned dma_len, fill_level, insert_ptr;
776         int q_space;
777
778         EFX_BUG_ON_PARANOID(len <= 0);
779
780         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
781         /* -1 as there is no way to represent all descriptors used */
782         q_space = efx->txq_entries - 1 - fill_level;
783
784         while (1) {
785                 if (unlikely(q_space-- <= 0)) {
786                         /* It might be that completions have happened
787                          * since the xmit path last checked.  Update
788                          * the xmit path's copy of read_count.
789                          */
790                         netif_tx_stop_queue(tx_queue->core_txq);
791                         /* This memory barrier protects the change of
792                          * queue state from the access of read_count. */
793                         smp_mb();
794                         tx_queue->old_read_count =
795                                 ACCESS_ONCE(tx_queue->read_count);
796                         fill_level = (tx_queue->insert_count
797                                       - tx_queue->old_read_count);
798                         q_space = efx->txq_entries - 1 - fill_level;
799                         if (unlikely(q_space-- <= 0)) {
800                                 *final_buffer = NULL;
801                                 return 1;
802                         }
803                         smp_mb();
804                         netif_tx_start_queue(tx_queue->core_txq);
805                 }
806
807                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
808                 buffer = &tx_queue->buffer[insert_ptr];
809                 ++tx_queue->insert_count;
810
811                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
812                                     tx_queue->read_count >=
813                                     efx->txq_entries);
814
815                 efx_tsoh_free(tx_queue, buffer);
816                 EFX_BUG_ON_PARANOID(buffer->len);
817                 EFX_BUG_ON_PARANOID(buffer->unmap_len);
818                 EFX_BUG_ON_PARANOID(buffer->skb);
819                 EFX_BUG_ON_PARANOID(!buffer->continuation);
820                 EFX_BUG_ON_PARANOID(buffer->tsoh);
821
822                 buffer->dma_addr = dma_addr;
823
824                 dma_len = efx_max_tx_len(efx, dma_addr);
825
826                 /* If there is enough space to send then do so */
827                 if (dma_len >= len)
828                         break;
829
830                 buffer->len = dma_len; /* Don't set the other members */
831                 dma_addr += dma_len;
832                 len -= dma_len;
833         }
834
835         EFX_BUG_ON_PARANOID(!len);
836         buffer->len = len;
837         *final_buffer = buffer;
838         return 0;
839 }
840
841
842 /*
843  * Put a TSO header into the TX queue.
844  *
845  * This is special-cased because we know that it is small enough to fit in
846  * a single fragment, and we know it doesn't cross a page boundary.  It
847  * also allows us to not worry about end-of-packet etc.
848  */
849 static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
850                                struct efx_tso_header *tsoh, unsigned len)
851 {
852         struct efx_tx_buffer *buffer;
853
854         buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
855         efx_tsoh_free(tx_queue, buffer);
856         EFX_BUG_ON_PARANOID(buffer->len);
857         EFX_BUG_ON_PARANOID(buffer->unmap_len);
858         EFX_BUG_ON_PARANOID(buffer->skb);
859         EFX_BUG_ON_PARANOID(!buffer->continuation);
860         EFX_BUG_ON_PARANOID(buffer->tsoh);
861         buffer->len = len;
862         buffer->dma_addr = tsoh->dma_addr;
863         buffer->tsoh = tsoh;
864
865         ++tx_queue->insert_count;
866 }
867
868
869 /* Remove descriptors put into a tx_queue. */
870 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
871 {
872         struct efx_tx_buffer *buffer;
873         dma_addr_t unmap_addr;
874
875         /* Work backwards until we hit the original insert pointer value */
876         while (tx_queue->insert_count != tx_queue->write_count) {
877                 --tx_queue->insert_count;
878                 buffer = &tx_queue->buffer[tx_queue->insert_count &
879                                            tx_queue->ptr_mask];
880                 efx_tsoh_free(tx_queue, buffer);
881                 EFX_BUG_ON_PARANOID(buffer->skb);
882                 if (buffer->unmap_len) {
883                         unmap_addr = (buffer->dma_addr + buffer->len -
884                                       buffer->unmap_len);
885                         if (buffer->unmap_single)
886                                 pci_unmap_single(tx_queue->efx->pci_dev,
887                                                  unmap_addr, buffer->unmap_len,
888                                                  PCI_DMA_TODEVICE);
889                         else
890                                 pci_unmap_page(tx_queue->efx->pci_dev,
891                                                unmap_addr, buffer->unmap_len,
892                                                PCI_DMA_TODEVICE);
893                         buffer->unmap_len = 0;
894                 }
895                 buffer->len = 0;
896                 buffer->continuation = true;
897         }
898 }
899
900
901 /* Parse the SKB header and initialise state. */
902 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
903 {
904         /* All ethernet/IP/TCP headers combined size is TCP header size
905          * plus offset of TCP header relative to start of packet.
906          */
907         st->header_len = ((tcp_hdr(skb)->doff << 2u)
908                           + PTR_DIFF(tcp_hdr(skb), skb->data));
909         st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
910
911         if (st->protocol == htons(ETH_P_IP))
912                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
913         else
914                 st->ipv4_id = 0;
915         st->seqnum = ntohl(tcp_hdr(skb)->seq);
916
917         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
918         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
919         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
920
921         st->packet_space = st->full_packet_size;
922         st->out_len = skb->len - st->header_len;
923         st->unmap_len = 0;
924         st->unmap_single = false;
925 }
926
927 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
928                             skb_frag_t *frag)
929 {
930         st->unmap_addr = pci_map_page(efx->pci_dev, frag->page,
931                                       frag->page_offset, frag->size,
932                                       PCI_DMA_TODEVICE);
933         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
934                 st->unmap_single = false;
935                 st->unmap_len = frag->size;
936                 st->in_len = frag->size;
937                 st->dma_addr = st->unmap_addr;
938                 return 0;
939         }
940         return -ENOMEM;
941 }
942
943 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
944                                  const struct sk_buff *skb)
945 {
946         int hl = st->header_len;
947         int len = skb_headlen(skb) - hl;
948
949         st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
950                                         len, PCI_DMA_TODEVICE);
951         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
952                 st->unmap_single = true;
953                 st->unmap_len = len;
954                 st->in_len = len;
955                 st->dma_addr = st->unmap_addr;
956                 return 0;
957         }
958         return -ENOMEM;
959 }
960
961
962 /**
963  * tso_fill_packet_with_fragment - form descriptors for the current fragment
964  * @tx_queue:           Efx TX queue
965  * @skb:                Socket buffer
966  * @st:                 TSO state
967  *
968  * Form descriptors for the current fragment, until we reach the end
969  * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
970  * space in @tx_queue.
971  */
972 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
973                                          const struct sk_buff *skb,
974                                          struct tso_state *st)
975 {
976         struct efx_tx_buffer *buffer;
977         int n, end_of_packet, rc;
978
979         if (st->in_len == 0)
980                 return 0;
981         if (st->packet_space == 0)
982                 return 0;
983
984         EFX_BUG_ON_PARANOID(st->in_len <= 0);
985         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
986
987         n = min(st->in_len, st->packet_space);
988
989         st->packet_space -= n;
990         st->out_len -= n;
991         st->in_len -= n;
992
993         rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
994         if (likely(rc == 0)) {
995                 if (st->out_len == 0)
996                         /* Transfer ownership of the skb */
997                         buffer->skb = skb;
998
999                 end_of_packet = st->out_len == 0 || st->packet_space == 0;
1000                 buffer->continuation = !end_of_packet;
1001
1002                 if (st->in_len == 0) {
1003                         /* Transfer ownership of the pci mapping */
1004                         buffer->unmap_len = st->unmap_len;
1005                         buffer->unmap_single = st->unmap_single;
1006                         st->unmap_len = 0;
1007                 }
1008         }
1009
1010         st->dma_addr += n;
1011         return rc;
1012 }
1013
1014
1015 /**
1016  * tso_start_new_packet - generate a new header and prepare for the new packet
1017  * @tx_queue:           Efx TX queue
1018  * @skb:                Socket buffer
1019  * @st:                 TSO state
1020  *
1021  * Generate a new header and prepare for the new packet.  Return 0 on
1022  * success, or -1 if failed to alloc header.
1023  */
1024 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1025                                 const struct sk_buff *skb,
1026                                 struct tso_state *st)
1027 {
1028         struct efx_tso_header *tsoh;
1029         struct tcphdr *tsoh_th;
1030         unsigned ip_length;
1031         u8 *header;
1032
1033         /* Allocate a DMA-mapped header buffer. */
1034         if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
1035                 if (tx_queue->tso_headers_free == NULL) {
1036                         if (efx_tsoh_block_alloc(tx_queue))
1037                                 return -1;
1038                 }
1039                 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
1040                 tsoh = tx_queue->tso_headers_free;
1041                 tx_queue->tso_headers_free = tsoh->next;
1042                 tsoh->unmap_len = 0;
1043         } else {
1044                 tx_queue->tso_long_headers++;
1045                 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
1046                 if (unlikely(!tsoh))
1047                         return -1;
1048         }
1049
1050         header = TSOH_BUFFER(tsoh);
1051         tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
1052
1053         /* Copy and update the headers. */
1054         memcpy(header, skb->data, st->header_len);
1055
1056         tsoh_th->seq = htonl(st->seqnum);
1057         st->seqnum += skb_shinfo(skb)->gso_size;
1058         if (st->out_len > skb_shinfo(skb)->gso_size) {
1059                 /* This packet will not finish the TSO burst. */
1060                 ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
1061                 tsoh_th->fin = 0;
1062                 tsoh_th->psh = 0;
1063         } else {
1064                 /* This packet will be the last in the TSO burst. */
1065                 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
1066                 tsoh_th->fin = tcp_hdr(skb)->fin;
1067                 tsoh_th->psh = tcp_hdr(skb)->psh;
1068         }
1069
1070         if (st->protocol == htons(ETH_P_IP)) {
1071                 struct iphdr *tsoh_iph =
1072                         (struct iphdr *)(header + SKB_IPV4_OFF(skb));
1073
1074                 tsoh_iph->tot_len = htons(ip_length);
1075
1076                 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1077                 tsoh_iph->id = htons(st->ipv4_id);
1078                 st->ipv4_id++;
1079         } else {
1080                 struct ipv6hdr *tsoh_iph =
1081                         (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1082
1083                 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1084         }
1085
1086         st->packet_space = skb_shinfo(skb)->gso_size;
1087         ++tx_queue->tso_packets;
1088
1089         /* Form a descriptor for this header. */
1090         efx_tso_put_header(tx_queue, tsoh, st->header_len);
1091
1092         return 0;
1093 }
1094
1095
1096 /**
1097  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1098  * @tx_queue:           Efx TX queue
1099  * @skb:                Socket buffer
1100  *
1101  * Context: You must hold netif_tx_lock() to call this function.
1102  *
1103  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1104  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1105  * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1106  */
1107 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1108                                struct sk_buff *skb)
1109 {
1110         struct efx_nic *efx = tx_queue->efx;
1111         int frag_i, rc, rc2 = NETDEV_TX_OK;
1112         struct tso_state state;
1113
1114         /* Find the packet protocol and sanity-check it */
1115         state.protocol = efx_tso_check_protocol(skb);
1116
1117         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1118
1119         tso_start(&state, skb);
1120
1121         /* Assume that skb header area contains exactly the headers, and
1122          * all payload is in the frag list.
1123          */
1124         if (skb_headlen(skb) == state.header_len) {
1125                 /* Grab the first payload fragment. */
1126                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1127                 frag_i = 0;
1128                 rc = tso_get_fragment(&state, efx,
1129                                       skb_shinfo(skb)->frags + frag_i);
1130                 if (rc)
1131                         goto mem_err;
1132         } else {
1133                 rc = tso_get_head_fragment(&state, efx, skb);
1134                 if (rc)
1135                         goto mem_err;
1136                 frag_i = -1;
1137         }
1138
1139         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1140                 goto mem_err;
1141
1142         while (1) {
1143                 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1144                 if (unlikely(rc)) {
1145                         rc2 = NETDEV_TX_BUSY;
1146                         goto unwind;
1147                 }
1148
1149                 /* Move onto the next fragment? */
1150                 if (state.in_len == 0) {
1151                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1152                                 /* End of payload reached. */
1153                                 break;
1154                         rc = tso_get_fragment(&state, efx,
1155                                               skb_shinfo(skb)->frags + frag_i);
1156                         if (rc)
1157                                 goto mem_err;
1158                 }
1159
1160                 /* Start at new packet? */
1161                 if (state.packet_space == 0 &&
1162                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1163                         goto mem_err;
1164         }
1165
1166         /* Pass off to hardware */
1167         efx_nic_push_buffers(tx_queue);
1168
1169         tx_queue->tso_bursts++;
1170         return NETDEV_TX_OK;
1171
1172  mem_err:
1173         netif_err(efx, tx_err, efx->net_dev,
1174                   "Out of memory for TSO headers, or PCI mapping error\n");
1175         dev_kfree_skb_any(skb);
1176
1177  unwind:
1178         /* Free the DMA mapping we were in the process of writing out */
1179         if (state.unmap_len) {
1180                 if (state.unmap_single)
1181                         pci_unmap_single(efx->pci_dev, state.unmap_addr,
1182                                          state.unmap_len, PCI_DMA_TODEVICE);
1183                 else
1184                         pci_unmap_page(efx->pci_dev, state.unmap_addr,
1185                                        state.unmap_len, PCI_DMA_TODEVICE);
1186         }
1187
1188         efx_enqueue_unwind(tx_queue);
1189         return rc2;
1190 }
1191
1192
1193 /*
1194  * Free up all TSO datastructures associated with tx_queue. This
1195  * routine should be called only once the tx_queue is both empty and
1196  * will no longer be used.
1197  */
1198 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1199 {
1200         unsigned i;
1201
1202         if (tx_queue->buffer) {
1203                 for (i = 0; i <= tx_queue->ptr_mask; ++i)
1204                         efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1205         }
1206
1207         while (tx_queue->tso_headers_free != NULL)
1208                 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1209                                     tx_queue->efx->pci_dev);
1210 }