Merge branch 'egalax' into for-linus
[pandora-kernel.git] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2009 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "mac.h"
23 #include "spi.h"
24 #include "nic.h"
25 #include "regs.h"
26 #include "io.h"
27 #include "mdio_10g.h"
28 #include "phy.h"
29 #include "workarounds.h"
30
31 /* Hardware control for SFC4000 (aka Falcon). */
32
33 static const unsigned int
34 /* "Large" EEPROM device: Atmel AT25640 or similar
35  * 8 KB, 16-bit address, 32 B write block */
36 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
37                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
38                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
39 /* Default flash device: Atmel AT25F1024
40  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
41 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
42                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
43                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
44                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
45                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
46
47 /**************************************************************************
48  *
49  * I2C bus - this is a bit-bashing interface using GPIO pins
50  * Note that it uses the output enables to tristate the outputs
51  * SDA is the data pin and SCL is the clock
52  *
53  **************************************************************************
54  */
55 static void falcon_setsda(void *data, int state)
56 {
57         struct efx_nic *efx = (struct efx_nic *)data;
58         efx_oword_t reg;
59
60         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
61         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
62         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
63 }
64
65 static void falcon_setscl(void *data, int state)
66 {
67         struct efx_nic *efx = (struct efx_nic *)data;
68         efx_oword_t reg;
69
70         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
71         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
72         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
73 }
74
75 static int falcon_getsda(void *data)
76 {
77         struct efx_nic *efx = (struct efx_nic *)data;
78         efx_oword_t reg;
79
80         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
81         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
82 }
83
84 static int falcon_getscl(void *data)
85 {
86         struct efx_nic *efx = (struct efx_nic *)data;
87         efx_oword_t reg;
88
89         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
90         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
91 }
92
93 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
94         .setsda         = falcon_setsda,
95         .setscl         = falcon_setscl,
96         .getsda         = falcon_getsda,
97         .getscl         = falcon_getscl,
98         .udelay         = 5,
99         /* Wait up to 50 ms for slave to let us pull SCL high */
100         .timeout        = DIV_ROUND_UP(HZ, 20),
101 };
102
103 static void falcon_push_irq_moderation(struct efx_channel *channel)
104 {
105         efx_dword_t timer_cmd;
106         struct efx_nic *efx = channel->efx;
107
108         /* Set timer register */
109         if (channel->irq_moderation) {
110                 EFX_POPULATE_DWORD_2(timer_cmd,
111                                      FRF_AB_TC_TIMER_MODE,
112                                      FFE_BB_TIMER_MODE_INT_HLDOFF,
113                                      FRF_AB_TC_TIMER_VAL,
114                                      channel->irq_moderation - 1);
115         } else {
116                 EFX_POPULATE_DWORD_2(timer_cmd,
117                                      FRF_AB_TC_TIMER_MODE,
118                                      FFE_BB_TIMER_MODE_DIS,
119                                      FRF_AB_TC_TIMER_VAL, 0);
120         }
121         BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
122         efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
123                                channel->channel);
124 }
125
126 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
127
128 static void falcon_prepare_flush(struct efx_nic *efx)
129 {
130         falcon_deconfigure_mac_wrapper(efx);
131
132         /* Wait for the tx and rx fifo's to get to the next packet boundary
133          * (~1ms without back-pressure), then to drain the remainder of the
134          * fifo's at data path speeds (negligible), with a healthy margin. */
135         msleep(10);
136 }
137
138 /* Acknowledge a legacy interrupt from Falcon
139  *
140  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
141  *
142  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
143  * BIU. Interrupt acknowledge is read sensitive so must write instead
144  * (then read to ensure the BIU collector is flushed)
145  *
146  * NB most hardware supports MSI interrupts
147  */
148 inline void falcon_irq_ack_a1(struct efx_nic *efx)
149 {
150         efx_dword_t reg;
151
152         EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
153         efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
154         efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
155 }
156
157
158 irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
159 {
160         struct efx_nic *efx = dev_id;
161         efx_oword_t *int_ker = efx->irq_status.addr;
162         struct efx_channel *channel;
163         int syserr;
164         int queues;
165
166         /* Check to see if this is our interrupt.  If it isn't, we
167          * exit without having touched the hardware.
168          */
169         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
170                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
171                           raw_smp_processor_id());
172                 return IRQ_NONE;
173         }
174         efx->last_irq_cpu = raw_smp_processor_id();
175         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
176                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
177
178         /* Check to see if we have a serious error condition */
179         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
180         if (unlikely(syserr))
181                 return efx_nic_fatal_interrupt(efx);
182
183         /* Determine interrupting queues, clear interrupt status
184          * register and acknowledge the device interrupt.
185          */
186         BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
187         queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
188         EFX_ZERO_OWORD(*int_ker);
189         wmb(); /* Ensure the vector is cleared before interrupt ack */
190         falcon_irq_ack_a1(efx);
191
192         /* Schedule processing of any interrupting queues */
193         channel = &efx->channel[0];
194         while (queues) {
195                 if (queues & 0x01)
196                         efx_schedule_channel(channel);
197                 channel++;
198                 queues >>= 1;
199         }
200
201         return IRQ_HANDLED;
202 }
203 /**************************************************************************
204  *
205  * EEPROM/flash
206  *
207  **************************************************************************
208  */
209
210 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
211
212 static int falcon_spi_poll(struct efx_nic *efx)
213 {
214         efx_oword_t reg;
215         efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
216         return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
217 }
218
219 /* Wait for SPI command completion */
220 static int falcon_spi_wait(struct efx_nic *efx)
221 {
222         /* Most commands will finish quickly, so we start polling at
223          * very short intervals.  Sometimes the command may have to
224          * wait for VPD or expansion ROM access outside of our
225          * control, so we allow up to 100 ms. */
226         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
227         int i;
228
229         for (i = 0; i < 10; i++) {
230                 if (!falcon_spi_poll(efx))
231                         return 0;
232                 udelay(10);
233         }
234
235         for (;;) {
236                 if (!falcon_spi_poll(efx))
237                         return 0;
238                 if (time_after_eq(jiffies, timeout)) {
239                         EFX_ERR(efx, "timed out waiting for SPI\n");
240                         return -ETIMEDOUT;
241                 }
242                 schedule_timeout_uninterruptible(1);
243         }
244 }
245
246 int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
247                    unsigned int command, int address,
248                    const void *in, void *out, size_t len)
249 {
250         bool addressed = (address >= 0);
251         bool reading = (out != NULL);
252         efx_oword_t reg;
253         int rc;
254
255         /* Input validation */
256         if (len > FALCON_SPI_MAX_LEN)
257                 return -EINVAL;
258         BUG_ON(!mutex_is_locked(&efx->spi_lock));
259
260         /* Check that previous command is not still running */
261         rc = falcon_spi_poll(efx);
262         if (rc)
263                 return rc;
264
265         /* Program address register, if we have an address */
266         if (addressed) {
267                 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
268                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
269         }
270
271         /* Program data register, if we have data */
272         if (in != NULL) {
273                 memcpy(&reg, in, len);
274                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
275         }
276
277         /* Issue read/write command */
278         EFX_POPULATE_OWORD_7(reg,
279                              FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
280                              FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
281                              FRF_AB_EE_SPI_HCMD_DABCNT, len,
282                              FRF_AB_EE_SPI_HCMD_READ, reading,
283                              FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
284                              FRF_AB_EE_SPI_HCMD_ADBCNT,
285                              (addressed ? spi->addr_len : 0),
286                              FRF_AB_EE_SPI_HCMD_ENC, command);
287         efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
288
289         /* Wait for read/write to complete */
290         rc = falcon_spi_wait(efx);
291         if (rc)
292                 return rc;
293
294         /* Read data */
295         if (out != NULL) {
296                 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
297                 memcpy(out, &reg, len);
298         }
299
300         return 0;
301 }
302
303 static size_t
304 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
305 {
306         return min(FALCON_SPI_MAX_LEN,
307                    (spi->block_size - (start & (spi->block_size - 1))));
308 }
309
310 static inline u8
311 efx_spi_munge_command(const struct efx_spi_device *spi,
312                       const u8 command, const unsigned int address)
313 {
314         return command | (((address >> 8) & spi->munge_address) << 3);
315 }
316
317 /* Wait up to 10 ms for buffered write completion */
318 int
319 falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
320 {
321         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
322         u8 status;
323         int rc;
324
325         for (;;) {
326                 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
327                                     &status, sizeof(status));
328                 if (rc)
329                         return rc;
330                 if (!(status & SPI_STATUS_NRDY))
331                         return 0;
332                 if (time_after_eq(jiffies, timeout)) {
333                         EFX_ERR(efx, "SPI write timeout on device %d"
334                                 " last status=0x%02x\n",
335                                 spi->device_id, status);
336                         return -ETIMEDOUT;
337                 }
338                 schedule_timeout_uninterruptible(1);
339         }
340 }
341
342 int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
343                     loff_t start, size_t len, size_t *retlen, u8 *buffer)
344 {
345         size_t block_len, pos = 0;
346         unsigned int command;
347         int rc = 0;
348
349         while (pos < len) {
350                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
351
352                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
353                 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
354                                     buffer + pos, block_len);
355                 if (rc)
356                         break;
357                 pos += block_len;
358
359                 /* Avoid locking up the system */
360                 cond_resched();
361                 if (signal_pending(current)) {
362                         rc = -EINTR;
363                         break;
364                 }
365         }
366
367         if (retlen)
368                 *retlen = pos;
369         return rc;
370 }
371
372 int
373 falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
374                  loff_t start, size_t len, size_t *retlen, const u8 *buffer)
375 {
376         u8 verify_buffer[FALCON_SPI_MAX_LEN];
377         size_t block_len, pos = 0;
378         unsigned int command;
379         int rc = 0;
380
381         while (pos < len) {
382                 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
383                 if (rc)
384                         break;
385
386                 block_len = min(len - pos,
387                                 falcon_spi_write_limit(spi, start + pos));
388                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
389                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
390                                     buffer + pos, NULL, block_len);
391                 if (rc)
392                         break;
393
394                 rc = falcon_spi_wait_write(efx, spi);
395                 if (rc)
396                         break;
397
398                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
399                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
400                                     NULL, verify_buffer, block_len);
401                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
402                         rc = -EIO;
403                         break;
404                 }
405
406                 pos += block_len;
407
408                 /* Avoid locking up the system */
409                 cond_resched();
410                 if (signal_pending(current)) {
411                         rc = -EINTR;
412                         break;
413                 }
414         }
415
416         if (retlen)
417                 *retlen = pos;
418         return rc;
419 }
420
421 /**************************************************************************
422  *
423  * MAC wrapper
424  *
425  **************************************************************************
426  */
427
428 static void falcon_push_multicast_hash(struct efx_nic *efx)
429 {
430         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
431
432         WARN_ON(!mutex_is_locked(&efx->mac_lock));
433
434         efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
435         efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
436 }
437
438 static void falcon_reset_macs(struct efx_nic *efx)
439 {
440         struct falcon_nic_data *nic_data = efx->nic_data;
441         efx_oword_t reg, mac_ctrl;
442         int count;
443
444         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
445                 /* It's not safe to use GLB_CTL_REG to reset the
446                  * macs, so instead use the internal MAC resets
447                  */
448                 if (!EFX_IS10G(efx)) {
449                         EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
450                         efx_writeo(efx, &reg, FR_AB_GM_CFG1);
451                         udelay(1000);
452
453                         EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
454                         efx_writeo(efx, &reg, FR_AB_GM_CFG1);
455                         udelay(1000);
456                         return;
457                 } else {
458                         EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
459                         efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
460
461                         for (count = 0; count < 10000; count++) {
462                                 efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
463                                 if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
464                                     0)
465                                         return;
466                                 udelay(10);
467                         }
468
469                         EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
470                 }
471         }
472
473         /* Mac stats will fail whist the TX fifo is draining */
474         WARN_ON(nic_data->stats_disable_count == 0);
475
476         efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
477         EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
478         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
479
480         efx_reado(efx, &reg, FR_AB_GLB_CTL);
481         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
482         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
483         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
484         efx_writeo(efx, &reg, FR_AB_GLB_CTL);
485
486         count = 0;
487         while (1) {
488                 efx_reado(efx, &reg, FR_AB_GLB_CTL);
489                 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
490                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
491                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
492                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
493                                 count);
494                         break;
495                 }
496                 if (count > 20) {
497                         EFX_ERR(efx, "MAC reset failed\n");
498                         break;
499                 }
500                 count++;
501                 udelay(10);
502         }
503
504         /* Ensure the correct MAC is selected before statistics
505          * are re-enabled by the caller */
506         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
507 }
508
509 void falcon_drain_tx_fifo(struct efx_nic *efx)
510 {
511         efx_oword_t reg;
512
513         if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
514             (efx->loopback_mode != LOOPBACK_NONE))
515                 return;
516
517         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
518         /* There is no point in draining more than once */
519         if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
520                 return;
521
522         falcon_reset_macs(efx);
523 }
524
525 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
526 {
527         efx_oword_t reg;
528
529         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
530                 return;
531
532         /* Isolate the MAC -> RX */
533         efx_reado(efx, &reg, FR_AZ_RX_CFG);
534         EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
535         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
536
537         /* Isolate TX -> MAC */
538         falcon_drain_tx_fifo(efx);
539 }
540
541 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
542 {
543         struct efx_link_state *link_state = &efx->link_state;
544         efx_oword_t reg;
545         int link_speed;
546
547         switch (link_state->speed) {
548         case 10000: link_speed = 3; break;
549         case 1000:  link_speed = 2; break;
550         case 100:   link_speed = 1; break;
551         default:    link_speed = 0; break;
552         }
553         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
554          * as advertised.  Disable to ensure packets are not
555          * indefinitely held and TX queue can be flushed at any point
556          * while the link is down. */
557         EFX_POPULATE_OWORD_5(reg,
558                              FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
559                              FRF_AB_MAC_BCAD_ACPT, 1,
560                              FRF_AB_MAC_UC_PROM, efx->promiscuous,
561                              FRF_AB_MAC_LINK_STATUS, 1, /* always set */
562                              FRF_AB_MAC_SPEED, link_speed);
563         /* On B0, MAC backpressure can be disabled and packets get
564          * discarded. */
565         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
566                 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
567                                     !link_state->up);
568         }
569
570         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
571
572         /* Restore the multicast hash registers. */
573         falcon_push_multicast_hash(efx);
574
575         efx_reado(efx, &reg, FR_AZ_RX_CFG);
576         /* Enable XOFF signal from RX FIFO (we enabled it during NIC
577          * initialisation but it may read back as 0) */
578         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
579         /* Unisolate the MAC -> RX */
580         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
581                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
582         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
583 }
584
585 static void falcon_stats_request(struct efx_nic *efx)
586 {
587         struct falcon_nic_data *nic_data = efx->nic_data;
588         efx_oword_t reg;
589
590         WARN_ON(nic_data->stats_pending);
591         WARN_ON(nic_data->stats_disable_count);
592
593         if (nic_data->stats_dma_done == NULL)
594                 return; /* no mac selected */
595
596         *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
597         nic_data->stats_pending = true;
598         wmb(); /* ensure done flag is clear */
599
600         /* Initiate DMA transfer of stats */
601         EFX_POPULATE_OWORD_2(reg,
602                              FRF_AB_MAC_STAT_DMA_CMD, 1,
603                              FRF_AB_MAC_STAT_DMA_ADR,
604                              efx->stats_buffer.dma_addr);
605         efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
606
607         mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
608 }
609
610 static void falcon_stats_complete(struct efx_nic *efx)
611 {
612         struct falcon_nic_data *nic_data = efx->nic_data;
613
614         if (!nic_data->stats_pending)
615                 return;
616
617         nic_data->stats_pending = 0;
618         if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
619                 rmb(); /* read the done flag before the stats */
620                 efx->mac_op->update_stats(efx);
621         } else {
622                 EFX_ERR(efx, "timed out waiting for statistics\n");
623         }
624 }
625
626 static void falcon_stats_timer_func(unsigned long context)
627 {
628         struct efx_nic *efx = (struct efx_nic *)context;
629         struct falcon_nic_data *nic_data = efx->nic_data;
630
631         spin_lock(&efx->stats_lock);
632
633         falcon_stats_complete(efx);
634         if (nic_data->stats_disable_count == 0)
635                 falcon_stats_request(efx);
636
637         spin_unlock(&efx->stats_lock);
638 }
639
640 static void falcon_switch_mac(struct efx_nic *efx);
641
642 static bool falcon_loopback_link_poll(struct efx_nic *efx)
643 {
644         struct efx_link_state old_state = efx->link_state;
645
646         WARN_ON(!mutex_is_locked(&efx->mac_lock));
647         WARN_ON(!LOOPBACK_INTERNAL(efx));
648
649         efx->link_state.fd = true;
650         efx->link_state.fc = efx->wanted_fc;
651         efx->link_state.up = true;
652
653         if (efx->loopback_mode == LOOPBACK_GMAC)
654                 efx->link_state.speed = 1000;
655         else
656                 efx->link_state.speed = 10000;
657
658         return !efx_link_state_equal(&efx->link_state, &old_state);
659 }
660
661 static int falcon_reconfigure_port(struct efx_nic *efx)
662 {
663         int rc;
664
665         WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
666
667         /* Poll the PHY link state *before* reconfiguring it. This means we
668          * will pick up the correct speed (in loopback) to select the correct
669          * MAC.
670          */
671         if (LOOPBACK_INTERNAL(efx))
672                 falcon_loopback_link_poll(efx);
673         else
674                 efx->phy_op->poll(efx);
675
676         falcon_stop_nic_stats(efx);
677         falcon_deconfigure_mac_wrapper(efx);
678
679         falcon_switch_mac(efx);
680
681         efx->phy_op->reconfigure(efx);
682         rc = efx->mac_op->reconfigure(efx);
683         BUG_ON(rc);
684
685         falcon_start_nic_stats(efx);
686
687         /* Synchronise efx->link_state with the kernel */
688         efx_link_status_changed(efx);
689
690         return 0;
691 }
692
693 /**************************************************************************
694  *
695  * PHY access via GMII
696  *
697  **************************************************************************
698  */
699
700 /* Wait for GMII access to complete */
701 static int falcon_gmii_wait(struct efx_nic *efx)
702 {
703         efx_oword_t md_stat;
704         int count;
705
706         /* wait upto 50ms - taken max from datasheet */
707         for (count = 0; count < 5000; count++) {
708                 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
709                 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
710                         if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
711                             EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
712                                 EFX_ERR(efx, "error from GMII access "
713                                         EFX_OWORD_FMT"\n",
714                                         EFX_OWORD_VAL(md_stat));
715                                 return -EIO;
716                         }
717                         return 0;
718                 }
719                 udelay(10);
720         }
721         EFX_ERR(efx, "timed out waiting for GMII\n");
722         return -ETIMEDOUT;
723 }
724
725 /* Write an MDIO register of a PHY connected to Falcon. */
726 static int falcon_mdio_write(struct net_device *net_dev,
727                              int prtad, int devad, u16 addr, u16 value)
728 {
729         struct efx_nic *efx = netdev_priv(net_dev);
730         efx_oword_t reg;
731         int rc;
732
733         EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
734                     prtad, devad, addr, value);
735
736         mutex_lock(&efx->mdio_lock);
737
738         /* Check MDIO not currently being accessed */
739         rc = falcon_gmii_wait(efx);
740         if (rc)
741                 goto out;
742
743         /* Write the address/ID register */
744         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
745         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
746
747         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
748                              FRF_AB_MD_DEV_ADR, devad);
749         efx_writeo(efx, &reg, FR_AB_MD_ID);
750
751         /* Write data */
752         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
753         efx_writeo(efx, &reg, FR_AB_MD_TXD);
754
755         EFX_POPULATE_OWORD_2(reg,
756                              FRF_AB_MD_WRC, 1,
757                              FRF_AB_MD_GC, 0);
758         efx_writeo(efx, &reg, FR_AB_MD_CS);
759
760         /* Wait for data to be written */
761         rc = falcon_gmii_wait(efx);
762         if (rc) {
763                 /* Abort the write operation */
764                 EFX_POPULATE_OWORD_2(reg,
765                                      FRF_AB_MD_WRC, 0,
766                                      FRF_AB_MD_GC, 1);
767                 efx_writeo(efx, &reg, FR_AB_MD_CS);
768                 udelay(10);
769         }
770
771 out:
772         mutex_unlock(&efx->mdio_lock);
773         return rc;
774 }
775
776 /* Read an MDIO register of a PHY connected to Falcon. */
777 static int falcon_mdio_read(struct net_device *net_dev,
778                             int prtad, int devad, u16 addr)
779 {
780         struct efx_nic *efx = netdev_priv(net_dev);
781         efx_oword_t reg;
782         int rc;
783
784         mutex_lock(&efx->mdio_lock);
785
786         /* Check MDIO not currently being accessed */
787         rc = falcon_gmii_wait(efx);
788         if (rc)
789                 goto out;
790
791         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
792         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
793
794         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
795                              FRF_AB_MD_DEV_ADR, devad);
796         efx_writeo(efx, &reg, FR_AB_MD_ID);
797
798         /* Request data to be read */
799         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
800         efx_writeo(efx, &reg, FR_AB_MD_CS);
801
802         /* Wait for data to become available */
803         rc = falcon_gmii_wait(efx);
804         if (rc == 0) {
805                 efx_reado(efx, &reg, FR_AB_MD_RXD);
806                 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
807                 EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
808                             prtad, devad, addr, rc);
809         } else {
810                 /* Abort the read operation */
811                 EFX_POPULATE_OWORD_2(reg,
812                                      FRF_AB_MD_RIC, 0,
813                                      FRF_AB_MD_GC, 1);
814                 efx_writeo(efx, &reg, FR_AB_MD_CS);
815
816                 EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
817                         prtad, devad, addr, rc);
818         }
819
820 out:
821         mutex_unlock(&efx->mdio_lock);
822         return rc;
823 }
824
825 static void falcon_clock_mac(struct efx_nic *efx)
826 {
827         unsigned strap_val;
828         efx_oword_t nic_stat;
829
830         /* Configure the NIC generated MAC clock correctly */
831         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
832         strap_val = EFX_IS10G(efx) ? 5 : 3;
833         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
834                 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
835                 EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
836                 efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
837         } else {
838                 /* Falcon A1 does not support 1G/10G speed switching
839                  * and must not be used with a PHY that does. */
840                 BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
841                        strap_val);
842         }
843 }
844
845 static void falcon_switch_mac(struct efx_nic *efx)
846 {
847         struct efx_mac_operations *old_mac_op = efx->mac_op;
848         struct falcon_nic_data *nic_data = efx->nic_data;
849         unsigned int stats_done_offset;
850
851         WARN_ON(!mutex_is_locked(&efx->mac_lock));
852         WARN_ON(nic_data->stats_disable_count == 0);
853
854         efx->mac_op = (EFX_IS10G(efx) ?
855                        &falcon_xmac_operations : &falcon_gmac_operations);
856
857         if (EFX_IS10G(efx))
858                 stats_done_offset = XgDmaDone_offset;
859         else
860                 stats_done_offset = GDmaDone_offset;
861         nic_data->stats_dma_done = efx->stats_buffer.addr + stats_done_offset;
862
863         if (old_mac_op == efx->mac_op)
864                 return;
865
866         falcon_clock_mac(efx);
867
868         EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
869         /* Not all macs support a mac-level link state */
870         efx->xmac_poll_required = false;
871         falcon_reset_macs(efx);
872 }
873
874 /* This call is responsible for hooking in the MAC and PHY operations */
875 static int falcon_probe_port(struct efx_nic *efx)
876 {
877         int rc;
878
879         switch (efx->phy_type) {
880         case PHY_TYPE_SFX7101:
881                 efx->phy_op = &falcon_sfx7101_phy_ops;
882                 break;
883         case PHY_TYPE_SFT9001A:
884         case PHY_TYPE_SFT9001B:
885                 efx->phy_op = &falcon_sft9001_phy_ops;
886                 break;
887         case PHY_TYPE_QT2022C2:
888         case PHY_TYPE_QT2025C:
889                 efx->phy_op = &falcon_qt202x_phy_ops;
890                 break;
891         default:
892                 EFX_ERR(efx, "Unknown PHY type %d\n",
893                         efx->phy_type);
894                 return -ENODEV;
895         }
896
897         /* Fill out MDIO structure and loopback modes */
898         efx->mdio.mdio_read = falcon_mdio_read;
899         efx->mdio.mdio_write = falcon_mdio_write;
900         rc = efx->phy_op->probe(efx);
901         if (rc != 0)
902                 return rc;
903
904         /* Initial assumption */
905         efx->link_state.speed = 10000;
906         efx->link_state.fd = true;
907
908         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
909         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
910                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
911         else
912                 efx->wanted_fc = EFX_FC_RX;
913         if (efx->mdio.mmds & MDIO_DEVS_AN)
914                 efx->wanted_fc |= EFX_FC_AUTO;
915
916         /* Allocate buffer for stats */
917         rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
918                                   FALCON_MAC_STATS_SIZE);
919         if (rc)
920                 return rc;
921         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
922                 (u64)efx->stats_buffer.dma_addr,
923                 efx->stats_buffer.addr,
924                 (u64)virt_to_phys(efx->stats_buffer.addr));
925
926         return 0;
927 }
928
929 static void falcon_remove_port(struct efx_nic *efx)
930 {
931         efx->phy_op->remove(efx);
932         efx_nic_free_buffer(efx, &efx->stats_buffer);
933 }
934
935 /**************************************************************************
936  *
937  * Falcon test code
938  *
939  **************************************************************************/
940
941 static int
942 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
943 {
944         struct falcon_nvconfig *nvconfig;
945         struct efx_spi_device *spi;
946         void *region;
947         int rc, magic_num, struct_ver;
948         __le16 *word, *limit;
949         u32 csum;
950
951         spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
952         if (!spi)
953                 return -EINVAL;
954
955         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
956         if (!region)
957                 return -ENOMEM;
958         nvconfig = region + FALCON_NVCONFIG_OFFSET;
959
960         mutex_lock(&efx->spi_lock);
961         rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
962         mutex_unlock(&efx->spi_lock);
963         if (rc) {
964                 EFX_ERR(efx, "Failed to read %s\n",
965                         efx->spi_flash ? "flash" : "EEPROM");
966                 rc = -EIO;
967                 goto out;
968         }
969
970         magic_num = le16_to_cpu(nvconfig->board_magic_num);
971         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
972
973         rc = -EINVAL;
974         if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
975                 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
976                 goto out;
977         }
978         if (struct_ver < 2) {
979                 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
980                 goto out;
981         } else if (struct_ver < 4) {
982                 word = &nvconfig->board_magic_num;
983                 limit = (__le16 *) (nvconfig + 1);
984         } else {
985                 word = region;
986                 limit = region + FALCON_NVCONFIG_END;
987         }
988         for (csum = 0; word < limit; ++word)
989                 csum += le16_to_cpu(*word);
990
991         if (~csum & 0xffff) {
992                 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
993                 goto out;
994         }
995
996         rc = 0;
997         if (nvconfig_out)
998                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
999
1000  out:
1001         kfree(region);
1002         return rc;
1003 }
1004
1005 static int falcon_test_nvram(struct efx_nic *efx)
1006 {
1007         return falcon_read_nvram(efx, NULL);
1008 }
1009
1010 static const struct efx_nic_register_test falcon_b0_register_tests[] = {
1011         { FR_AZ_ADR_REGION,
1012           EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1013         { FR_AZ_RX_CFG,
1014           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1015         { FR_AZ_TX_CFG,
1016           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1017         { FR_AZ_TX_RESERVED,
1018           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1019         { FR_AB_MAC_CTRL,
1020           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1021         { FR_AZ_SRM_TX_DC_CFG,
1022           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1023         { FR_AZ_RX_DC_CFG,
1024           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1025         { FR_AZ_RX_DC_PF_WM,
1026           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1027         { FR_BZ_DP_CTRL,
1028           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1029         { FR_AB_GM_CFG2,
1030           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1031         { FR_AB_GMF_CFG0,
1032           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1033         { FR_AB_XM_GLB_CFG,
1034           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1035         { FR_AB_XM_TX_CFG,
1036           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1037         { FR_AB_XM_RX_CFG,
1038           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1039         { FR_AB_XM_RX_PARAM,
1040           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1041         { FR_AB_XM_FC,
1042           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1043         { FR_AB_XM_ADR_LO,
1044           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1045         { FR_AB_XX_SD_CTL,
1046           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1047 };
1048
1049 static int falcon_b0_test_registers(struct efx_nic *efx)
1050 {
1051         return efx_nic_test_registers(efx, falcon_b0_register_tests,
1052                                       ARRAY_SIZE(falcon_b0_register_tests));
1053 }
1054
1055 /**************************************************************************
1056  *
1057  * Device reset
1058  *
1059  **************************************************************************
1060  */
1061
1062 /* Resets NIC to known state.  This routine must be called in process
1063  * context and is allowed to sleep. */
1064 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1065 {
1066         struct falcon_nic_data *nic_data = efx->nic_data;
1067         efx_oword_t glb_ctl_reg_ker;
1068         int rc;
1069
1070         EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method));
1071
1072         /* Initiate device reset */
1073         if (method == RESET_TYPE_WORLD) {
1074                 rc = pci_save_state(efx->pci_dev);
1075                 if (rc) {
1076                         EFX_ERR(efx, "failed to backup PCI state of primary "
1077                                 "function prior to hardware reset\n");
1078                         goto fail1;
1079                 }
1080                 if (efx_nic_is_dual_func(efx)) {
1081                         rc = pci_save_state(nic_data->pci_dev2);
1082                         if (rc) {
1083                                 EFX_ERR(efx, "failed to backup PCI state of "
1084                                         "secondary function prior to "
1085                                         "hardware reset\n");
1086                                 goto fail2;
1087                         }
1088                 }
1089
1090                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1091                                      FRF_AB_EXT_PHY_RST_DUR,
1092                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
1093                                      FRF_AB_SWRST, 1);
1094         } else {
1095                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1096                                      /* exclude PHY from "invisible" reset */
1097                                      FRF_AB_EXT_PHY_RST_CTL,
1098                                      method == RESET_TYPE_INVISIBLE,
1099                                      /* exclude EEPROM/flash and PCIe */
1100                                      FRF_AB_PCIE_CORE_RST_CTL, 1,
1101                                      FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1102                                      FRF_AB_PCIE_SD_RST_CTL, 1,
1103                                      FRF_AB_EE_RST_CTL, 1,
1104                                      FRF_AB_EXT_PHY_RST_DUR,
1105                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
1106                                      FRF_AB_SWRST, 1);
1107         }
1108         efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1109
1110         EFX_LOG(efx, "waiting for hardware reset\n");
1111         schedule_timeout_uninterruptible(HZ / 20);
1112
1113         /* Restore PCI configuration if needed */
1114         if (method == RESET_TYPE_WORLD) {
1115                 if (efx_nic_is_dual_func(efx)) {
1116                         rc = pci_restore_state(nic_data->pci_dev2);
1117                         if (rc) {
1118                                 EFX_ERR(efx, "failed to restore PCI config for "
1119                                         "the secondary function\n");
1120                                 goto fail3;
1121                         }
1122                 }
1123                 rc = pci_restore_state(efx->pci_dev);
1124                 if (rc) {
1125                         EFX_ERR(efx, "failed to restore PCI config for the "
1126                                 "primary function\n");
1127                         goto fail4;
1128                 }
1129                 EFX_LOG(efx, "successfully restored PCI config\n");
1130         }
1131
1132         /* Assert that reset complete */
1133         efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1134         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
1135                 rc = -ETIMEDOUT;
1136                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
1137                 goto fail5;
1138         }
1139         EFX_LOG(efx, "hardware reset complete\n");
1140
1141         return 0;
1142
1143         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
1144 fail2:
1145 fail3:
1146         pci_restore_state(efx->pci_dev);
1147 fail1:
1148 fail4:
1149 fail5:
1150         return rc;
1151 }
1152
1153 static void falcon_monitor(struct efx_nic *efx)
1154 {
1155         bool link_changed;
1156         int rc;
1157
1158         BUG_ON(!mutex_is_locked(&efx->mac_lock));
1159
1160         rc = falcon_board(efx)->type->monitor(efx);
1161         if (rc) {
1162                 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1163                         (rc == -ERANGE) ? "reported fault" : "failed");
1164                 efx->phy_mode |= PHY_MODE_LOW_POWER;
1165                 rc = __efx_reconfigure_port(efx);
1166                 WARN_ON(rc);
1167         }
1168
1169         if (LOOPBACK_INTERNAL(efx))
1170                 link_changed = falcon_loopback_link_poll(efx);
1171         else
1172                 link_changed = efx->phy_op->poll(efx);
1173
1174         if (link_changed) {
1175                 falcon_stop_nic_stats(efx);
1176                 falcon_deconfigure_mac_wrapper(efx);
1177
1178                 falcon_switch_mac(efx);
1179                 rc = efx->mac_op->reconfigure(efx);
1180                 BUG_ON(rc);
1181
1182                 falcon_start_nic_stats(efx);
1183
1184                 efx_link_status_changed(efx);
1185         }
1186
1187         if (EFX_IS10G(efx))
1188                 falcon_poll_xmac(efx);
1189 }
1190
1191 /* Zeroes out the SRAM contents.  This routine must be called in
1192  * process context and is allowed to sleep.
1193  */
1194 static int falcon_reset_sram(struct efx_nic *efx)
1195 {
1196         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
1197         int count;
1198
1199         /* Set the SRAM wake/sleep GPIO appropriately. */
1200         efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1201         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
1202         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
1203         efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1204
1205         /* Initiate SRAM reset */
1206         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
1207                              FRF_AZ_SRM_INIT_EN, 1,
1208                              FRF_AZ_SRM_NB_SZ, 0);
1209         efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1210
1211         /* Wait for SRAM reset to complete */
1212         count = 0;
1213         do {
1214                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
1215
1216                 /* SRAM reset is slow; expect around 16ms */
1217                 schedule_timeout_uninterruptible(HZ / 50);
1218
1219                 /* Check for reset complete */
1220                 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1221                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
1222                         EFX_LOG(efx, "SRAM reset complete\n");
1223
1224                         return 0;
1225                 }
1226         } while (++count < 20); /* wait upto 0.4 sec */
1227
1228         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
1229         return -ETIMEDOUT;
1230 }
1231
1232 static int falcon_spi_device_init(struct efx_nic *efx,
1233                                   struct efx_spi_device **spi_device_ret,
1234                                   unsigned int device_id, u32 device_type)
1235 {
1236         struct efx_spi_device *spi_device;
1237
1238         if (device_type != 0) {
1239                 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
1240                 if (!spi_device)
1241                         return -ENOMEM;
1242                 spi_device->device_id = device_id;
1243                 spi_device->size =
1244                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
1245                 spi_device->addr_len =
1246                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
1247                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
1248                                              spi_device->addr_len == 1);
1249                 spi_device->erase_command =
1250                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
1251                 spi_device->erase_size =
1252                         1 << SPI_DEV_TYPE_FIELD(device_type,
1253                                                 SPI_DEV_TYPE_ERASE_SIZE);
1254                 spi_device->block_size =
1255                         1 << SPI_DEV_TYPE_FIELD(device_type,
1256                                                 SPI_DEV_TYPE_BLOCK_SIZE);
1257         } else {
1258                 spi_device = NULL;
1259         }
1260
1261         kfree(*spi_device_ret);
1262         *spi_device_ret = spi_device;
1263         return 0;
1264 }
1265
1266 static void falcon_remove_spi_devices(struct efx_nic *efx)
1267 {
1268         kfree(efx->spi_eeprom);
1269         efx->spi_eeprom = NULL;
1270         kfree(efx->spi_flash);
1271         efx->spi_flash = NULL;
1272 }
1273
1274 /* Extract non-volatile configuration */
1275 static int falcon_probe_nvconfig(struct efx_nic *efx)
1276 {
1277         struct falcon_nvconfig *nvconfig;
1278         int board_rev;
1279         int rc;
1280
1281         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
1282         if (!nvconfig)
1283                 return -ENOMEM;
1284
1285         rc = falcon_read_nvram(efx, nvconfig);
1286         if (rc == -EINVAL) {
1287                 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
1288                 efx->phy_type = PHY_TYPE_NONE;
1289                 efx->mdio.prtad = MDIO_PRTAD_NONE;
1290                 board_rev = 0;
1291                 rc = 0;
1292         } else if (rc) {
1293                 goto fail1;
1294         } else {
1295                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
1296                 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
1297
1298                 efx->phy_type = v2->port0_phy_type;
1299                 efx->mdio.prtad = v2->port0_phy_addr;
1300                 board_rev = le16_to_cpu(v2->board_revision);
1301
1302                 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
1303                         rc = falcon_spi_device_init(
1304                                 efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
1305                                 le32_to_cpu(v3->spi_device_type
1306                                             [FFE_AB_SPI_DEVICE_FLASH]));
1307                         if (rc)
1308                                 goto fail2;
1309                         rc = falcon_spi_device_init(
1310                                 efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
1311                                 le32_to_cpu(v3->spi_device_type
1312                                             [FFE_AB_SPI_DEVICE_EEPROM]));
1313                         if (rc)
1314                                 goto fail2;
1315                 }
1316         }
1317
1318         /* Read the MAC addresses */
1319         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
1320
1321         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
1322
1323         rc = falcon_probe_board(efx, board_rev);
1324         if (rc)
1325                 goto fail2;
1326
1327         kfree(nvconfig);
1328         return 0;
1329
1330  fail2:
1331         falcon_remove_spi_devices(efx);
1332  fail1:
1333         kfree(nvconfig);
1334         return rc;
1335 }
1336
1337 /* Probe all SPI devices on the NIC */
1338 static void falcon_probe_spi_devices(struct efx_nic *efx)
1339 {
1340         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
1341         int boot_dev;
1342
1343         efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
1344         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1345         efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1346
1347         if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
1348                 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
1349                             FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
1350                 EFX_LOG(efx, "Booted from %s\n",
1351                         boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
1352         } else {
1353                 /* Disable VPD and set clock dividers to safe
1354                  * values for initial programming. */
1355                 boot_dev = -1;
1356                 EFX_LOG(efx, "Booted from internal ASIC settings;"
1357                         " setting SPI config\n");
1358                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
1359                                      /* 125 MHz / 7 ~= 20 MHz */
1360                                      FRF_AB_EE_SF_CLOCK_DIV, 7,
1361                                      /* 125 MHz / 63 ~= 2 MHz */
1362                                      FRF_AB_EE_EE_CLOCK_DIV, 63);
1363                 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1364         }
1365
1366         if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
1367                 falcon_spi_device_init(efx, &efx->spi_flash,
1368                                        FFE_AB_SPI_DEVICE_FLASH,
1369                                        default_flash_type);
1370         if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
1371                 falcon_spi_device_init(efx, &efx->spi_eeprom,
1372                                        FFE_AB_SPI_DEVICE_EEPROM,
1373                                        large_eeprom_type);
1374 }
1375
1376 static int falcon_probe_nic(struct efx_nic *efx)
1377 {
1378         struct falcon_nic_data *nic_data;
1379         struct falcon_board *board;
1380         int rc;
1381
1382         /* Allocate storage for hardware specific data */
1383         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1384         if (!nic_data)
1385                 return -ENOMEM;
1386         efx->nic_data = nic_data;
1387
1388         rc = -ENODEV;
1389
1390         if (efx_nic_fpga_ver(efx) != 0) {
1391                 EFX_ERR(efx, "Falcon FPGA not supported\n");
1392                 goto fail1;
1393         }
1394
1395         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1396                 efx_oword_t nic_stat;
1397                 struct pci_dev *dev;
1398                 u8 pci_rev = efx->pci_dev->revision;
1399
1400                 if ((pci_rev == 0xff) || (pci_rev == 0)) {
1401                         EFX_ERR(efx, "Falcon rev A0 not supported\n");
1402                         goto fail1;
1403                 }
1404                 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1405                 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
1406                         EFX_ERR(efx, "Falcon rev A1 1G not supported\n");
1407                         goto fail1;
1408                 }
1409                 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
1410                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
1411                         goto fail1;
1412                 }
1413
1414                 dev = pci_dev_get(efx->pci_dev);
1415                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
1416                                              dev))) {
1417                         if (dev->bus == efx->pci_dev->bus &&
1418                             dev->devfn == efx->pci_dev->devfn + 1) {
1419                                 nic_data->pci_dev2 = dev;
1420                                 break;
1421                         }
1422                 }
1423                 if (!nic_data->pci_dev2) {
1424                         EFX_ERR(efx, "failed to find secondary function\n");
1425                         rc = -ENODEV;
1426                         goto fail2;
1427                 }
1428         }
1429
1430         /* Now we can reset the NIC */
1431         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
1432         if (rc) {
1433                 EFX_ERR(efx, "failed to reset NIC\n");
1434                 goto fail3;
1435         }
1436
1437         /* Allocate memory for INT_KER */
1438         rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
1439         if (rc)
1440                 goto fail4;
1441         BUG_ON(efx->irq_status.dma_addr & 0x0f);
1442
1443         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
1444                 (u64)efx->irq_status.dma_addr,
1445                 efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
1446
1447         falcon_probe_spi_devices(efx);
1448
1449         /* Read in the non-volatile configuration */
1450         rc = falcon_probe_nvconfig(efx);
1451         if (rc)
1452                 goto fail5;
1453
1454         /* Initialise I2C adapter */
1455         board = falcon_board(efx);
1456         board->i2c_adap.owner = THIS_MODULE;
1457         board->i2c_data = falcon_i2c_bit_operations;
1458         board->i2c_data.data = efx;
1459         board->i2c_adap.algo_data = &board->i2c_data;
1460         board->i2c_adap.dev.parent = &efx->pci_dev->dev;
1461         strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
1462                 sizeof(board->i2c_adap.name));
1463         rc = i2c_bit_add_bus(&board->i2c_adap);
1464         if (rc)
1465                 goto fail5;
1466
1467         rc = falcon_board(efx)->type->init(efx);
1468         if (rc) {
1469                 EFX_ERR(efx, "failed to initialise board\n");
1470                 goto fail6;
1471         }
1472
1473         nic_data->stats_disable_count = 1;
1474         setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
1475                     (unsigned long)efx);
1476
1477         return 0;
1478
1479  fail6:
1480         BUG_ON(i2c_del_adapter(&board->i2c_adap));
1481         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1482  fail5:
1483         falcon_remove_spi_devices(efx);
1484         efx_nic_free_buffer(efx, &efx->irq_status);
1485  fail4:
1486  fail3:
1487         if (nic_data->pci_dev2) {
1488                 pci_dev_put(nic_data->pci_dev2);
1489                 nic_data->pci_dev2 = NULL;
1490         }
1491  fail2:
1492  fail1:
1493         kfree(efx->nic_data);
1494         return rc;
1495 }
1496
1497 static void falcon_init_rx_cfg(struct efx_nic *efx)
1498 {
1499         /* Prior to Siena the RX DMA engine will split each frame at
1500          * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1501          * be so large that that never happens. */
1502         const unsigned huge_buf_size = (3 * 4096) >> 5;
1503         /* RX control FIFO thresholds (32 entries) */
1504         const unsigned ctrl_xon_thr = 20;
1505         const unsigned ctrl_xoff_thr = 25;
1506         /* RX data FIFO thresholds (256-byte units; size varies) */
1507         int data_xon_thr = efx_nic_rx_xon_thresh >> 8;
1508         int data_xoff_thr = efx_nic_rx_xoff_thresh >> 8;
1509         efx_oword_t reg;
1510
1511         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1512         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1513                 /* Data FIFO size is 5.5K */
1514                 if (data_xon_thr < 0)
1515                         data_xon_thr = 512 >> 8;
1516                 if (data_xoff_thr < 0)
1517                         data_xoff_thr = 2048 >> 8;
1518                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
1519                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
1520                                     huge_buf_size);
1521                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
1522                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
1523                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
1524                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
1525         } else {
1526                 /* Data FIFO size is 80K; register fields moved */
1527                 if (data_xon_thr < 0)
1528                         data_xon_thr = 27648 >> 8; /* ~3*max MTU */
1529                 if (data_xoff_thr < 0)
1530                         data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
1531                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
1532                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
1533                                     huge_buf_size);
1534                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
1535                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
1536                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
1537                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
1538                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1539         }
1540         /* Always enable XOFF signal from RX FIFO.  We enable
1541          * or disable transmission of pause frames at the MAC. */
1542         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1543         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1544 }
1545
1546 /* This call performs hardware-specific global initialisation, such as
1547  * defining the descriptor cache sizes and number of RSS channels.
1548  * It does not set up any buffers, descriptor rings or event queues.
1549  */
1550 static int falcon_init_nic(struct efx_nic *efx)
1551 {
1552         efx_oword_t temp;
1553         int rc;
1554
1555         /* Use on-chip SRAM */
1556         efx_reado(efx, &temp, FR_AB_NIC_STAT);
1557         EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
1558         efx_writeo(efx, &temp, FR_AB_NIC_STAT);
1559
1560         /* Set the source of the GMAC clock */
1561         if (efx_nic_rev(efx) == EFX_REV_FALCON_B0) {
1562                 efx_reado(efx, &temp, FR_AB_GPIO_CTL);
1563                 EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
1564                 efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
1565         }
1566
1567         /* Select the correct MAC */
1568         falcon_clock_mac(efx);
1569
1570         rc = falcon_reset_sram(efx);
1571         if (rc)
1572                 return rc;
1573
1574         /* Clear the parity enables on the TX data fifos as
1575          * they produce false parity errors because of timing issues
1576          */
1577         if (EFX_WORKAROUND_5129(efx)) {
1578                 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
1579                 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
1580                 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
1581         }
1582
1583         if (EFX_WORKAROUND_7244(efx)) {
1584                 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
1585                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
1586                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
1587                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
1588                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
1589                 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
1590         }
1591
1592         /* XXX This is documented only for Falcon A0/A1 */
1593         /* Setup RX.  Wait for descriptor is broken and must
1594          * be disabled.  RXDP recovery shouldn't be needed, but is.
1595          */
1596         efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
1597         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
1598         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
1599         if (EFX_WORKAROUND_5583(efx))
1600                 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
1601         efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
1602
1603         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1604          * descriptors (which is bad).
1605          */
1606         efx_reado(efx, &temp, FR_AZ_TX_CFG);
1607         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
1608         efx_writeo(efx, &temp, FR_AZ_TX_CFG);
1609
1610         falcon_init_rx_cfg(efx);
1611
1612         /* Set destination of both TX and RX Flush events */
1613         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1614                 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
1615                 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
1616         }
1617
1618         efx_nic_init_common(efx);
1619
1620         return 0;
1621 }
1622
1623 static void falcon_remove_nic(struct efx_nic *efx)
1624 {
1625         struct falcon_nic_data *nic_data = efx->nic_data;
1626         struct falcon_board *board = falcon_board(efx);
1627         int rc;
1628
1629         board->type->fini(efx);
1630
1631         /* Remove I2C adapter and clear it in preparation for a retry */
1632         rc = i2c_del_adapter(&board->i2c_adap);
1633         BUG_ON(rc);
1634         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1635
1636         falcon_remove_spi_devices(efx);
1637         efx_nic_free_buffer(efx, &efx->irq_status);
1638
1639         falcon_reset_hw(efx, RESET_TYPE_ALL);
1640
1641         /* Release the second function after the reset */
1642         if (nic_data->pci_dev2) {
1643                 pci_dev_put(nic_data->pci_dev2);
1644                 nic_data->pci_dev2 = NULL;
1645         }
1646
1647         /* Tear down the private nic state */
1648         kfree(efx->nic_data);
1649         efx->nic_data = NULL;
1650 }
1651
1652 static void falcon_update_nic_stats(struct efx_nic *efx)
1653 {
1654         struct falcon_nic_data *nic_data = efx->nic_data;
1655         efx_oword_t cnt;
1656
1657         if (nic_data->stats_disable_count)
1658                 return;
1659
1660         efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
1661         efx->n_rx_nodesc_drop_cnt +=
1662                 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
1663
1664         if (nic_data->stats_pending &&
1665             *nic_data->stats_dma_done == FALCON_STATS_DONE) {
1666                 nic_data->stats_pending = false;
1667                 rmb(); /* read the done flag before the stats */
1668                 efx->mac_op->update_stats(efx);
1669         }
1670 }
1671
1672 void falcon_start_nic_stats(struct efx_nic *efx)
1673 {
1674         struct falcon_nic_data *nic_data = efx->nic_data;
1675
1676         spin_lock_bh(&efx->stats_lock);
1677         if (--nic_data->stats_disable_count == 0)
1678                 falcon_stats_request(efx);
1679         spin_unlock_bh(&efx->stats_lock);
1680 }
1681
1682 void falcon_stop_nic_stats(struct efx_nic *efx)
1683 {
1684         struct falcon_nic_data *nic_data = efx->nic_data;
1685         int i;
1686
1687         might_sleep();
1688
1689         spin_lock_bh(&efx->stats_lock);
1690         ++nic_data->stats_disable_count;
1691         spin_unlock_bh(&efx->stats_lock);
1692
1693         del_timer_sync(&nic_data->stats_timer);
1694
1695         /* Wait enough time for the most recent transfer to
1696          * complete. */
1697         for (i = 0; i < 4 && nic_data->stats_pending; i++) {
1698                 if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
1699                         break;
1700                 msleep(1);
1701         }
1702
1703         spin_lock_bh(&efx->stats_lock);
1704         falcon_stats_complete(efx);
1705         spin_unlock_bh(&efx->stats_lock);
1706 }
1707
1708 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1709 {
1710         falcon_board(efx)->type->set_id_led(efx, mode);
1711 }
1712
1713 /**************************************************************************
1714  *
1715  * Wake on LAN
1716  *
1717  **************************************************************************
1718  */
1719
1720 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1721 {
1722         wol->supported = 0;
1723         wol->wolopts = 0;
1724         memset(&wol->sopass, 0, sizeof(wol->sopass));
1725 }
1726
1727 static int falcon_set_wol(struct efx_nic *efx, u32 type)
1728 {
1729         if (type != 0)
1730                 return -EINVAL;
1731         return 0;
1732 }
1733
1734 /**************************************************************************
1735  *
1736  * Revision-dependent attributes used by efx.c and nic.c
1737  *
1738  **************************************************************************
1739  */
1740
1741 struct efx_nic_type falcon_a1_nic_type = {
1742         .probe = falcon_probe_nic,
1743         .remove = falcon_remove_nic,
1744         .init = falcon_init_nic,
1745         .fini = efx_port_dummy_op_void,
1746         .monitor = falcon_monitor,
1747         .reset = falcon_reset_hw,
1748         .probe_port = falcon_probe_port,
1749         .remove_port = falcon_remove_port,
1750         .prepare_flush = falcon_prepare_flush,
1751         .update_stats = falcon_update_nic_stats,
1752         .start_stats = falcon_start_nic_stats,
1753         .stop_stats = falcon_stop_nic_stats,
1754         .set_id_led = falcon_set_id_led,
1755         .push_irq_moderation = falcon_push_irq_moderation,
1756         .push_multicast_hash = falcon_push_multicast_hash,
1757         .reconfigure_port = falcon_reconfigure_port,
1758         .get_wol = falcon_get_wol,
1759         .set_wol = falcon_set_wol,
1760         .resume_wol = efx_port_dummy_op_void,
1761         .test_nvram = falcon_test_nvram,
1762         .default_mac_ops = &falcon_xmac_operations,
1763
1764         .revision = EFX_REV_FALCON_A1,
1765         .mem_map_size = 0x20000,
1766         .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
1767         .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
1768         .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
1769         .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
1770         .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
1771         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1772         .rx_buffer_padding = 0x24,
1773         .max_interrupt_mode = EFX_INT_MODE_MSI,
1774         .phys_addr_channels = 4,
1775         .tx_dc_base = 0x130000,
1776         .rx_dc_base = 0x100000,
1777         .offload_features = NETIF_F_IP_CSUM,
1778         .reset_world_flags = ETH_RESET_IRQ,
1779 };
1780
1781 struct efx_nic_type falcon_b0_nic_type = {
1782         .probe = falcon_probe_nic,
1783         .remove = falcon_remove_nic,
1784         .init = falcon_init_nic,
1785         .fini = efx_port_dummy_op_void,
1786         .monitor = falcon_monitor,
1787         .reset = falcon_reset_hw,
1788         .probe_port = falcon_probe_port,
1789         .remove_port = falcon_remove_port,
1790         .prepare_flush = falcon_prepare_flush,
1791         .update_stats = falcon_update_nic_stats,
1792         .start_stats = falcon_start_nic_stats,
1793         .stop_stats = falcon_stop_nic_stats,
1794         .set_id_led = falcon_set_id_led,
1795         .push_irq_moderation = falcon_push_irq_moderation,
1796         .push_multicast_hash = falcon_push_multicast_hash,
1797         .reconfigure_port = falcon_reconfigure_port,
1798         .get_wol = falcon_get_wol,
1799         .set_wol = falcon_set_wol,
1800         .resume_wol = efx_port_dummy_op_void,
1801         .test_registers = falcon_b0_test_registers,
1802         .test_nvram = falcon_test_nvram,
1803         .default_mac_ops = &falcon_xmac_operations,
1804
1805         .revision = EFX_REV_FALCON_B0,
1806         /* Map everything up to and including the RSS indirection
1807          * table.  Don't map MSI-X table, MSI-X PBA since Linux
1808          * requires that they not be mapped.  */
1809         .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
1810                          FR_BZ_RX_INDIRECTION_TBL_STEP *
1811                          FR_BZ_RX_INDIRECTION_TBL_ROWS),
1812         .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
1813         .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
1814         .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
1815         .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
1816         .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
1817         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1818         .rx_buffer_padding = 0,
1819         .max_interrupt_mode = EFX_INT_MODE_MSIX,
1820         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
1821                                    * interrupt handler only supports 32
1822                                    * channels */
1823         .tx_dc_base = 0x130000,
1824         .rx_dc_base = 0x100000,
1825         .offload_features = NETIF_F_IP_CSUM,
1826         .reset_world_flags = ETH_RESET_IRQ,
1827 };
1828