p54usb: New USB ID for Gemtek WUBI-100GW
[pandora-kernel.git] / drivers / net / sb1250-mac.c
1 /*
2  * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
3  * Copyright (c) 2006, 2007  Maciej W. Rozycki
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18  *
19  *
20  * This driver is designed for the Broadcom SiByte SOC built-in
21  * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
22  *
23  * Updated to the driver model and the PHY abstraction layer
24  * by Maciej W. Rozycki.
25  */
26
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/string.h>
31 #include <linux/timer.h>
32 #include <linux/errno.h>
33 #include <linux/ioport.h>
34 #include <linux/slab.h>
35 #include <linux/interrupt.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/init.h>
40 #include <linux/bitops.h>
41 #include <linux/err.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/phy.h>
45 #include <linux/platform_device.h>
46
47 #include <asm/cache.h>
48 #include <asm/io.h>
49 #include <asm/processor.h>      /* Processor type for cache alignment. */
50
51 /* Operational parameters that usually are not changed. */
52
53 #define CONFIG_SBMAC_COALESCE
54
55 /* Time in jiffies before concluding the transmitter is hung. */
56 #define TX_TIMEOUT  (2*HZ)
57
58
59 MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
60 MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
61
62 /* A few user-configurable values which may be modified when a driver
63    module is loaded. */
64
65 /* 1 normal messages, 0 quiet .. 7 verbose. */
66 static int debug = 1;
67 module_param(debug, int, S_IRUGO);
68 MODULE_PARM_DESC(debug, "Debug messages");
69
70 #ifdef CONFIG_SBMAC_COALESCE
71 static int int_pktcnt_tx = 255;
72 module_param(int_pktcnt_tx, int, S_IRUGO);
73 MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
74
75 static int int_timeout_tx = 255;
76 module_param(int_timeout_tx, int, S_IRUGO);
77 MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
78
79 static int int_pktcnt_rx = 64;
80 module_param(int_pktcnt_rx, int, S_IRUGO);
81 MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
82
83 static int int_timeout_rx = 64;
84 module_param(int_timeout_rx, int, S_IRUGO);
85 MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
86 #endif
87
88 #include <asm/sibyte/board.h>
89 #include <asm/sibyte/sb1250.h>
90 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
91 #include <asm/sibyte/bcm1480_regs.h>
92 #include <asm/sibyte/bcm1480_int.h>
93 #define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
94 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
95 #include <asm/sibyte/sb1250_regs.h>
96 #include <asm/sibyte/sb1250_int.h>
97 #else
98 #error invalid SiByte MAC configuration
99 #endif
100 #include <asm/sibyte/sb1250_scd.h>
101 #include <asm/sibyte/sb1250_mac.h>
102 #include <asm/sibyte/sb1250_dma.h>
103
104 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
105 #define UNIT_INT(n)             (K_BCM1480_INT_MAC_0 + ((n) * 2))
106 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
107 #define UNIT_INT(n)             (K_INT_MAC_0 + (n))
108 #else
109 #error invalid SiByte MAC configuration
110 #endif
111
112 #ifdef K_INT_PHY
113 #define SBMAC_PHY_INT                   K_INT_PHY
114 #else
115 #define SBMAC_PHY_INT                   PHY_POLL
116 #endif
117
118 /**********************************************************************
119  *  Simple types
120  ********************************************************************* */
121
122 enum sbmac_speed {
123         sbmac_speed_none = 0,
124         sbmac_speed_10 = SPEED_10,
125         sbmac_speed_100 = SPEED_100,
126         sbmac_speed_1000 = SPEED_1000,
127 };
128
129 enum sbmac_duplex {
130         sbmac_duplex_none = -1,
131         sbmac_duplex_half = DUPLEX_HALF,
132         sbmac_duplex_full = DUPLEX_FULL,
133 };
134
135 enum sbmac_fc {
136         sbmac_fc_none,
137         sbmac_fc_disabled,
138         sbmac_fc_frame,
139         sbmac_fc_collision,
140         sbmac_fc_carrier,
141 };
142
143 enum sbmac_state {
144         sbmac_state_uninit,
145         sbmac_state_off,
146         sbmac_state_on,
147         sbmac_state_broken,
148 };
149
150
151 /**********************************************************************
152  *  Macros
153  ********************************************************************* */
154
155
156 #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
157                           (d)->sbdma_dscrtable : (d)->f+1)
158
159
160 #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
161
162 #define SBMAC_MAX_TXDESCR       256
163 #define SBMAC_MAX_RXDESCR       256
164
165 #define ETHER_ADDR_LEN          6
166 #define ENET_PACKET_SIZE        1518
167 /*#define ENET_PACKET_SIZE      9216 */
168
169 /**********************************************************************
170  *  DMA Descriptor structure
171  ********************************************************************* */
172
173 struct sbdmadscr {
174         uint64_t  dscr_a;
175         uint64_t  dscr_b;
176 };
177
178 /**********************************************************************
179  *  DMA Controller structure
180  ********************************************************************* */
181
182 struct sbmacdma {
183
184         /*
185          * This stuff is used to identify the channel and the registers
186          * associated with it.
187          */
188         struct sbmac_softc      *sbdma_eth;     /* back pointer to associated
189                                                    MAC */
190         int                     sbdma_channel;  /* channel number */
191         int                     sbdma_txdir;    /* direction (1=transmit) */
192         int                     sbdma_maxdescr; /* total # of descriptors
193                                                    in ring */
194 #ifdef CONFIG_SBMAC_COALESCE
195         int                     sbdma_int_pktcnt;
196                                                 /* # descriptors rx/tx
197                                                    before interrupt */
198         int                     sbdma_int_timeout;
199                                                 /* # usec rx/tx interrupt */
200 #endif
201         void __iomem            *sbdma_config0; /* DMA config register 0 */
202         void __iomem            *sbdma_config1; /* DMA config register 1 */
203         void __iomem            *sbdma_dscrbase;
204                                                 /* descriptor base address */
205         void __iomem            *sbdma_dscrcnt; /* descriptor count register */
206         void __iomem            *sbdma_curdscr; /* current descriptor
207                                                    address */
208         void __iomem            *sbdma_oodpktlost;
209                                                 /* pkt drop (rx only) */
210
211         /*
212          * This stuff is for maintenance of the ring
213          */
214         void                    *sbdma_dscrtable_unaligned;
215         struct sbdmadscr        *sbdma_dscrtable;
216                                                 /* base of descriptor table */
217         struct sbdmadscr        *sbdma_dscrtable_end;
218                                                 /* end of descriptor table */
219         struct sk_buff          **sbdma_ctxtable;
220                                                 /* context table, one
221                                                    per descr */
222         dma_addr_t              sbdma_dscrtable_phys;
223                                                 /* and also the phys addr */
224         struct sbdmadscr        *sbdma_addptr;  /* next dscr for sw to add */
225         struct sbdmadscr        *sbdma_remptr;  /* next dscr for sw
226                                                    to remove */
227 };
228
229
230 /**********************************************************************
231  *  Ethernet softc structure
232  ********************************************************************* */
233
234 struct sbmac_softc {
235
236         /*
237          * Linux-specific things
238          */
239         struct net_device       *sbm_dev;       /* pointer to linux device */
240         struct napi_struct      napi;
241         struct phy_device       *phy_dev;       /* the associated PHY device */
242         struct mii_bus          *mii_bus;       /* the MII bus */
243         int                     phy_irq[PHY_MAX_ADDR];
244         spinlock_t              sbm_lock;       /* spin lock */
245         int                     sbm_devflags;   /* current device flags */
246
247         /*
248          * Controller-specific things
249          */
250         void __iomem            *sbm_base;      /* MAC's base address */
251         enum sbmac_state        sbm_state;      /* current state */
252
253         void __iomem            *sbm_macenable; /* MAC Enable Register */
254         void __iomem            *sbm_maccfg;    /* MAC Config Register */
255         void __iomem            *sbm_fifocfg;   /* FIFO Config Register */
256         void __iomem            *sbm_framecfg;  /* Frame Config Register */
257         void __iomem            *sbm_rxfilter;  /* Receive Filter Register */
258         void __iomem            *sbm_isr;       /* Interrupt Status Register */
259         void __iomem            *sbm_imr;       /* Interrupt Mask Register */
260         void __iomem            *sbm_mdio;      /* MDIO Register */
261
262         enum sbmac_speed        sbm_speed;      /* current speed */
263         enum sbmac_duplex       sbm_duplex;     /* current duplex */
264         enum sbmac_fc           sbm_fc;         /* cur. flow control setting */
265         int                     sbm_pause;      /* current pause setting */
266         int                     sbm_link;       /* current link state */
267
268         unsigned char           sbm_hwaddr[ETHER_ADDR_LEN];
269
270         struct sbmacdma         sbm_txdma;      /* only channel 0 for now */
271         struct sbmacdma         sbm_rxdma;
272         int                     rx_hw_checksum;
273         int                     sbe_idx;
274 };
275
276
277 /**********************************************************************
278  *  Externs
279  ********************************************************************* */
280
281 /**********************************************************************
282  *  Prototypes
283  ********************************************************************* */
284
285 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
286                           int txrx, int maxdescr);
287 static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
288 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
289                                struct sk_buff *m);
290 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
291 static void sbdma_emptyring(struct sbmacdma *d);
292 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
293 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
294                             int work_to_do, int poll);
295 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
296                              int poll);
297 static int sbmac_initctx(struct sbmac_softc *s);
298 static void sbmac_channel_start(struct sbmac_softc *s);
299 static void sbmac_channel_stop(struct sbmac_softc *s);
300 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
301                                                 enum sbmac_state);
302 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
303 static uint64_t sbmac_addr2reg(unsigned char *ptr);
304 static irqreturn_t sbmac_intr(int irq, void *dev_instance);
305 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
306 static void sbmac_setmulti(struct sbmac_softc *sc);
307 static int sbmac_init(struct platform_device *pldev, long long base);
308 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
309 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
310                             enum sbmac_fc fc);
311
312 static int sbmac_open(struct net_device *dev);
313 static void sbmac_tx_timeout (struct net_device *dev);
314 static void sbmac_set_rx_mode(struct net_device *dev);
315 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
316 static int sbmac_close(struct net_device *dev);
317 static int sbmac_poll(struct napi_struct *napi, int budget);
318
319 static void sbmac_mii_poll(struct net_device *dev);
320 static int sbmac_mii_probe(struct net_device *dev);
321
322 static void sbmac_mii_sync(void __iomem *sbm_mdio);
323 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
324                                int bitcnt);
325 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
326 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
327                            u16 val);
328
329
330 /**********************************************************************
331  *  Globals
332  ********************************************************************* */
333
334 static char sbmac_string[] = "sb1250-mac";
335
336 static char sbmac_mdio_string[] = "sb1250-mac-mdio";
337
338
339 /**********************************************************************
340  *  MDIO constants
341  ********************************************************************* */
342
343 #define MII_COMMAND_START       0x01
344 #define MII_COMMAND_READ        0x02
345 #define MII_COMMAND_WRITE       0x01
346 #define MII_COMMAND_ACK         0x02
347
348 #define M_MAC_MDIO_DIR_OUTPUT   0               /* for clarity */
349
350 #define ENABLE          1
351 #define DISABLE         0
352
353 /**********************************************************************
354  *  SBMAC_MII_SYNC(sbm_mdio)
355  *
356  *  Synchronize with the MII - send a pattern of bits to the MII
357  *  that will guarantee that it is ready to accept a command.
358  *
359  *  Input parameters:
360  *         sbm_mdio - address of the MAC's MDIO register
361  *
362  *  Return value:
363  *         nothing
364  ********************************************************************* */
365
366 static void sbmac_mii_sync(void __iomem *sbm_mdio)
367 {
368         int cnt;
369         uint64_t bits;
370         int mac_mdio_genc;
371
372         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
373
374         bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
375
376         __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
377
378         for (cnt = 0; cnt < 32; cnt++) {
379                 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
380                 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
381         }
382 }
383
384 /**********************************************************************
385  *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
386  *
387  *  Send some bits to the MII.  The bits to be sent are right-
388  *  justified in the 'data' parameter.
389  *
390  *  Input parameters:
391  *         sbm_mdio - address of the MAC's MDIO register
392  *         data     - data to send
393  *         bitcnt   - number of bits to send
394  ********************************************************************* */
395
396 static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
397                                int bitcnt)
398 {
399         int i;
400         uint64_t bits;
401         unsigned int curmask;
402         int mac_mdio_genc;
403
404         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
405
406         bits = M_MAC_MDIO_DIR_OUTPUT;
407         __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
408
409         curmask = 1 << (bitcnt - 1);
410
411         for (i = 0; i < bitcnt; i++) {
412                 if (data & curmask)
413                         bits |= M_MAC_MDIO_OUT;
414                 else bits &= ~M_MAC_MDIO_OUT;
415                 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
416                 __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
417                 __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
418                 curmask >>= 1;
419         }
420 }
421
422
423
424 /**********************************************************************
425  *  SBMAC_MII_READ(bus, phyaddr, regidx)
426  *  Read a PHY register.
427  *
428  *  Input parameters:
429  *         bus     - MDIO bus handle
430  *         phyaddr - PHY's address
431  *         regnum  - index of register to read
432  *
433  *  Return value:
434  *         value read, or 0xffff if an error occurred.
435  ********************************************************************* */
436
437 static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
438 {
439         struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
440         void __iomem *sbm_mdio = sc->sbm_mdio;
441         int idx;
442         int error;
443         int regval;
444         int mac_mdio_genc;
445
446         /*
447          * Synchronize ourselves so that the PHY knows the next
448          * thing coming down is a command
449          */
450         sbmac_mii_sync(sbm_mdio);
451
452         /*
453          * Send the data to the PHY.  The sequence is
454          * a "start" command (2 bits)
455          * a "read" command (2 bits)
456          * the PHY addr (5 bits)
457          * the register index (5 bits)
458          */
459         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
460         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
461         sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
462         sbmac_mii_senddata(sbm_mdio, regidx, 5);
463
464         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
465
466         /*
467          * Switch the port around without a clock transition.
468          */
469         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
470
471         /*
472          * Send out a clock pulse to signal we want the status
473          */
474         __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
475                      sbm_mdio);
476         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
477
478         /*
479          * If an error occurred, the PHY will signal '1' back
480          */
481         error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
482
483         /*
484          * Issue an 'idle' clock pulse, but keep the direction
485          * the same.
486          */
487         __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
488                      sbm_mdio);
489         __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
490
491         regval = 0;
492
493         for (idx = 0; idx < 16; idx++) {
494                 regval <<= 1;
495
496                 if (error == 0) {
497                         if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
498                                 regval |= 1;
499                 }
500
501                 __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
502                              sbm_mdio);
503                 __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
504         }
505
506         /* Switch back to output */
507         __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
508
509         if (error == 0)
510                 return regval;
511         return 0xffff;
512 }
513
514
515 /**********************************************************************
516  *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
517  *
518  *  Write a value to a PHY register.
519  *
520  *  Input parameters:
521  *         bus     - MDIO bus handle
522  *         phyaddr - PHY to use
523  *         regidx  - register within the PHY
524  *         regval  - data to write to register
525  *
526  *  Return value:
527  *         0 for success
528  ********************************************************************* */
529
530 static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
531                            u16 regval)
532 {
533         struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
534         void __iomem *sbm_mdio = sc->sbm_mdio;
535         int mac_mdio_genc;
536
537         sbmac_mii_sync(sbm_mdio);
538
539         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
540         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
541         sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
542         sbmac_mii_senddata(sbm_mdio, regidx, 5);
543         sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
544         sbmac_mii_senddata(sbm_mdio, regval, 16);
545
546         mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
547
548         __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
549
550         return 0;
551 }
552
553
554
555 /**********************************************************************
556  *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
557  *
558  *  Initialize a DMA channel context.  Since there are potentially
559  *  eight DMA channels per MAC, it's nice to do this in a standard
560  *  way.
561  *
562  *  Input parameters:
563  *         d - struct sbmacdma (DMA channel context)
564  *         s - struct sbmac_softc (pointer to a MAC)
565  *         chan - channel number (0..1 right now)
566  *         txrx - Identifies DMA_TX or DMA_RX for channel direction
567  *      maxdescr - number of descriptors
568  *
569  *  Return value:
570  *         nothing
571  ********************************************************************* */
572
573 static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
574                           int txrx, int maxdescr)
575 {
576 #ifdef CONFIG_SBMAC_COALESCE
577         int int_pktcnt, int_timeout;
578 #endif
579
580         /*
581          * Save away interesting stuff in the structure
582          */
583
584         d->sbdma_eth       = s;
585         d->sbdma_channel   = chan;
586         d->sbdma_txdir     = txrx;
587
588 #if 0
589         /* RMON clearing */
590         s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
591 #endif
592
593         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
594         __raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
595         __raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
596         __raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
597         __raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
598         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
599         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
600         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
601         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
602         __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
603         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
604         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
605         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
606         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
607         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
608         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
609         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
610         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
611         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
612         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
613         __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
614
615         /*
616          * initialize register pointers
617          */
618
619         d->sbdma_config0 =
620                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
621         d->sbdma_config1 =
622                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
623         d->sbdma_dscrbase =
624                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
625         d->sbdma_dscrcnt =
626                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
627         d->sbdma_curdscr =
628                 s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
629         if (d->sbdma_txdir)
630                 d->sbdma_oodpktlost = NULL;
631         else
632                 d->sbdma_oodpktlost =
633                         s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
634
635         /*
636          * Allocate memory for the ring
637          */
638
639         d->sbdma_maxdescr = maxdescr;
640
641         d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
642                                                sizeof(*d->sbdma_dscrtable),
643                                                GFP_KERNEL);
644
645         /*
646          * The descriptor table must be aligned to at least 16 bytes or the
647          * MAC will corrupt it.
648          */
649         d->sbdma_dscrtable = (struct sbdmadscr *)
650                              ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
651                                    sizeof(*d->sbdma_dscrtable));
652
653         d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
654
655         d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
656
657         /*
658          * And context table
659          */
660
661         d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
662                                     sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
663
664 #ifdef CONFIG_SBMAC_COALESCE
665         /*
666          * Setup Rx/Tx DMA coalescing defaults
667          */
668
669         int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
670         if ( int_pktcnt ) {
671                 d->sbdma_int_pktcnt = int_pktcnt;
672         } else {
673                 d->sbdma_int_pktcnt = 1;
674         }
675
676         int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
677         if ( int_timeout ) {
678                 d->sbdma_int_timeout = int_timeout;
679         } else {
680                 d->sbdma_int_timeout = 0;
681         }
682 #endif
683
684 }
685
686 /**********************************************************************
687  *  SBDMA_CHANNEL_START(d)
688  *
689  *  Initialize the hardware registers for a DMA channel.
690  *
691  *  Input parameters:
692  *         d - DMA channel to init (context must be previously init'd
693  *         rxtx - DMA_RX or DMA_TX depending on what type of channel
694  *
695  *  Return value:
696  *         nothing
697  ********************************************************************* */
698
699 static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
700 {
701         /*
702          * Turn on the DMA channel
703          */
704
705 #ifdef CONFIG_SBMAC_COALESCE
706         __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
707                        0, d->sbdma_config1);
708         __raw_writeq(M_DMA_EOP_INT_EN |
709                        V_DMA_RINGSZ(d->sbdma_maxdescr) |
710                        V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
711                        0, d->sbdma_config0);
712 #else
713         __raw_writeq(0, d->sbdma_config1);
714         __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
715                        0, d->sbdma_config0);
716 #endif
717
718         __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
719
720         /*
721          * Initialize ring pointers
722          */
723
724         d->sbdma_addptr = d->sbdma_dscrtable;
725         d->sbdma_remptr = d->sbdma_dscrtable;
726 }
727
728 /**********************************************************************
729  *  SBDMA_CHANNEL_STOP(d)
730  *
731  *  Initialize the hardware registers for a DMA channel.
732  *
733  *  Input parameters:
734  *         d - DMA channel to init (context must be previously init'd
735  *
736  *  Return value:
737  *         nothing
738  ********************************************************************* */
739
740 static void sbdma_channel_stop(struct sbmacdma *d)
741 {
742         /*
743          * Turn off the DMA channel
744          */
745
746         __raw_writeq(0, d->sbdma_config1);
747
748         __raw_writeq(0, d->sbdma_dscrbase);
749
750         __raw_writeq(0, d->sbdma_config0);
751
752         /*
753          * Zero ring pointers
754          */
755
756         d->sbdma_addptr = NULL;
757         d->sbdma_remptr = NULL;
758 }
759
760 static inline void sbdma_align_skb(struct sk_buff *skb,
761                                    unsigned int power2, unsigned int offset)
762 {
763         unsigned char *addr = skb->data;
764         unsigned char *newaddr = PTR_ALIGN(addr, power2);
765
766         skb_reserve(skb, newaddr - addr + offset);
767 }
768
769
770 /**********************************************************************
771  *  SBDMA_ADD_RCVBUFFER(d,sb)
772  *
773  *  Add a buffer to the specified DMA channel.   For receive channels,
774  *  this queues a buffer for inbound packets.
775  *
776  *  Input parameters:
777  *         sc - softc structure
778  *          d - DMA channel descriptor
779  *         sb - sk_buff to add, or NULL if we should allocate one
780  *
781  *  Return value:
782  *         0 if buffer could not be added (ring is full)
783  *         1 if buffer added successfully
784  ********************************************************************* */
785
786
787 static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
788                                struct sk_buff *sb)
789 {
790         struct net_device *dev = sc->sbm_dev;
791         struct sbdmadscr *dsc;
792         struct sbdmadscr *nextdsc;
793         struct sk_buff *sb_new = NULL;
794         int pktsize = ENET_PACKET_SIZE;
795
796         /* get pointer to our current place in the ring */
797
798         dsc = d->sbdma_addptr;
799         nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
800
801         /*
802          * figure out if the ring is full - if the next descriptor
803          * is the same as the one that we're going to remove from
804          * the ring, the ring is full
805          */
806
807         if (nextdsc == d->sbdma_remptr) {
808                 return -ENOSPC;
809         }
810
811         /*
812          * Allocate a sk_buff if we don't already have one.
813          * If we do have an sk_buff, reset it so that it's empty.
814          *
815          * Note: sk_buffs don't seem to be guaranteed to have any sort
816          * of alignment when they are allocated.  Therefore, allocate enough
817          * extra space to make sure that:
818          *
819          *    1. the data does not start in the middle of a cache line.
820          *    2. The data does not end in the middle of a cache line
821          *    3. The buffer can be aligned such that the IP addresses are
822          *       naturally aligned.
823          *
824          *  Remember, the SOCs MAC writes whole cache lines at a time,
825          *  without reading the old contents first.  So, if the sk_buff's
826          *  data portion starts in the middle of a cache line, the SOC
827          *  DMA will trash the beginning (and ending) portions.
828          */
829
830         if (sb == NULL) {
831                 sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
832                                                SMP_CACHE_BYTES * 2 +
833                                                NET_IP_ALIGN);
834                 if (sb_new == NULL) {
835                         pr_info("%s: sk_buff allocation failed\n",
836                                d->sbdma_eth->sbm_dev->name);
837                         return -ENOBUFS;
838                 }
839
840                 sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
841         }
842         else {
843                 sb_new = sb;
844                 /*
845                  * nothing special to reinit buffer, it's already aligned
846                  * and sb->data already points to a good place.
847                  */
848         }
849
850         /*
851          * fill in the descriptor
852          */
853
854 #ifdef CONFIG_SBMAC_COALESCE
855         /*
856          * Do not interrupt per DMA transfer.
857          */
858         dsc->dscr_a = virt_to_phys(sb_new->data) |
859                 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
860 #else
861         dsc->dscr_a = virt_to_phys(sb_new->data) |
862                 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
863                 M_DMA_DSCRA_INTERRUPT;
864 #endif
865
866         /* receiving: no options */
867         dsc->dscr_b = 0;
868
869         /*
870          * fill in the context
871          */
872
873         d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
874
875         /*
876          * point at next packet
877          */
878
879         d->sbdma_addptr = nextdsc;
880
881         /*
882          * Give the buffer to the DMA engine.
883          */
884
885         __raw_writeq(1, d->sbdma_dscrcnt);
886
887         return 0;                                       /* we did it */
888 }
889
890 /**********************************************************************
891  *  SBDMA_ADD_TXBUFFER(d,sb)
892  *
893  *  Add a transmit buffer to the specified DMA channel, causing a
894  *  transmit to start.
895  *
896  *  Input parameters:
897  *         d - DMA channel descriptor
898  *         sb - sk_buff to add
899  *
900  *  Return value:
901  *         0 transmit queued successfully
902  *         otherwise error code
903  ********************************************************************* */
904
905
906 static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
907 {
908         struct sbdmadscr *dsc;
909         struct sbdmadscr *nextdsc;
910         uint64_t phys;
911         uint64_t ncb;
912         int length;
913
914         /* get pointer to our current place in the ring */
915
916         dsc = d->sbdma_addptr;
917         nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
918
919         /*
920          * figure out if the ring is full - if the next descriptor
921          * is the same as the one that we're going to remove from
922          * the ring, the ring is full
923          */
924
925         if (nextdsc == d->sbdma_remptr) {
926                 return -ENOSPC;
927         }
928
929         /*
930          * Under Linux, it's not necessary to copy/coalesce buffers
931          * like it is on NetBSD.  We think they're all contiguous,
932          * but that may not be true for GBE.
933          */
934
935         length = sb->len;
936
937         /*
938          * fill in the descriptor.  Note that the number of cache
939          * blocks in the descriptor is the number of blocks
940          * *spanned*, so we need to add in the offset (if any)
941          * while doing the calculation.
942          */
943
944         phys = virt_to_phys(sb->data);
945         ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
946
947         dsc->dscr_a = phys |
948                 V_DMA_DSCRA_A_SIZE(ncb) |
949 #ifndef CONFIG_SBMAC_COALESCE
950                 M_DMA_DSCRA_INTERRUPT |
951 #endif
952                 M_DMA_ETHTX_SOP;
953
954         /* transmitting: set outbound options and length */
955
956         dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
957                 V_DMA_DSCRB_PKT_SIZE(length);
958
959         /*
960          * fill in the context
961          */
962
963         d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
964
965         /*
966          * point at next packet
967          */
968
969         d->sbdma_addptr = nextdsc;
970
971         /*
972          * Give the buffer to the DMA engine.
973          */
974
975         __raw_writeq(1, d->sbdma_dscrcnt);
976
977         return 0;                                       /* we did it */
978 }
979
980
981
982
983 /**********************************************************************
984  *  SBDMA_EMPTYRING(d)
985  *
986  *  Free all allocated sk_buffs on the specified DMA channel;
987  *
988  *  Input parameters:
989  *         d  - DMA channel
990  *
991  *  Return value:
992  *         nothing
993  ********************************************************************* */
994
995 static void sbdma_emptyring(struct sbmacdma *d)
996 {
997         int idx;
998         struct sk_buff *sb;
999
1000         for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
1001                 sb = d->sbdma_ctxtable[idx];
1002                 if (sb) {
1003                         dev_kfree_skb(sb);
1004                         d->sbdma_ctxtable[idx] = NULL;
1005                 }
1006         }
1007 }
1008
1009
1010 /**********************************************************************
1011  *  SBDMA_FILLRING(d)
1012  *
1013  *  Fill the specified DMA channel (must be receive channel)
1014  *  with sk_buffs
1015  *
1016  *  Input parameters:
1017  *         sc - softc structure
1018  *          d - DMA channel
1019  *
1020  *  Return value:
1021  *         nothing
1022  ********************************************************************* */
1023
1024 static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1025 {
1026         int idx;
1027
1028         for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1029                 if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1030                         break;
1031         }
1032 }
1033
1034 #ifdef CONFIG_NET_POLL_CONTROLLER
1035 static void sbmac_netpoll(struct net_device *netdev)
1036 {
1037         struct sbmac_softc *sc = netdev_priv(netdev);
1038         int irq = sc->sbm_dev->irq;
1039
1040         __raw_writeq(0, sc->sbm_imr);
1041
1042         sbmac_intr(irq, netdev);
1043
1044 #ifdef CONFIG_SBMAC_COALESCE
1045         __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1046         ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1047         sc->sbm_imr);
1048 #else
1049         __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1050         (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1051 #endif
1052 }
1053 #endif
1054
1055 /**********************************************************************
1056  *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1057  *
1058  *  Process "completed" receive buffers on the specified DMA channel.
1059  *
1060  *  Input parameters:
1061  *            sc - softc structure
1062  *             d - DMA channel context
1063  *    work_to_do - no. of packets to process before enabling interrupt
1064  *                 again (for NAPI)
1065  *          poll - 1: using polling (for NAPI)
1066  *
1067  *  Return value:
1068  *         nothing
1069  ********************************************************************* */
1070
1071 static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1072                             int work_to_do, int poll)
1073 {
1074         struct net_device *dev = sc->sbm_dev;
1075         int curidx;
1076         int hwidx;
1077         struct sbdmadscr *dsc;
1078         struct sk_buff *sb;
1079         int len;
1080         int work_done = 0;
1081         int dropped = 0;
1082
1083         prefetch(d);
1084
1085 again:
1086         /* Check if the HW dropped any frames */
1087         dev->stats.rx_fifo_errors
1088             += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1089         __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1090
1091         while (work_to_do-- > 0) {
1092                 /*
1093                  * figure out where we are (as an index) and where
1094                  * the hardware is (also as an index)
1095                  *
1096                  * This could be done faster if (for example) the
1097                  * descriptor table was page-aligned and contiguous in
1098                  * both virtual and physical memory -- you could then
1099                  * just compare the low-order bits of the virtual address
1100                  * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1101                  */
1102
1103                 dsc = d->sbdma_remptr;
1104                 curidx = dsc - d->sbdma_dscrtable;
1105
1106                 prefetch(dsc);
1107                 prefetch(&d->sbdma_ctxtable[curidx]);
1108
1109                 hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1110                          d->sbdma_dscrtable_phys) /
1111                         sizeof(*d->sbdma_dscrtable);
1112
1113                 /*
1114                  * If they're the same, that means we've processed all
1115                  * of the descriptors up to (but not including) the one that
1116                  * the hardware is working on right now.
1117                  */
1118
1119                 if (curidx == hwidx)
1120                         goto done;
1121
1122                 /*
1123                  * Otherwise, get the packet's sk_buff ptr back
1124                  */
1125
1126                 sb = d->sbdma_ctxtable[curidx];
1127                 d->sbdma_ctxtable[curidx] = NULL;
1128
1129                 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1130
1131                 /*
1132                  * Check packet status.  If good, process it.
1133                  * If not, silently drop it and put it back on the
1134                  * receive ring.
1135                  */
1136
1137                 if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1138
1139                         /*
1140                          * Add a new buffer to replace the old one.  If we fail
1141                          * to allocate a buffer, we're going to drop this
1142                          * packet and put it right back on the receive ring.
1143                          */
1144
1145                         if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1146                                      -ENOBUFS)) {
1147                                 dev->stats.rx_dropped++;
1148                                 /* Re-add old buffer */
1149                                 sbdma_add_rcvbuffer(sc, d, sb);
1150                                 /* No point in continuing at the moment */
1151                                 printk(KERN_ERR "dropped packet (1)\n");
1152                                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1153                                 goto done;
1154                         } else {
1155                                 /*
1156                                  * Set length into the packet
1157                                  */
1158                                 skb_put(sb,len);
1159
1160                                 /*
1161                                  * Buffer has been replaced on the
1162                                  * receive ring.  Pass the buffer to
1163                                  * the kernel
1164                                  */
1165                                 sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1166                                 /* Check hw IPv4/TCP checksum if supported */
1167                                 if (sc->rx_hw_checksum == ENABLE) {
1168                                         if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1169                                             !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1170                                                 sb->ip_summed = CHECKSUM_UNNECESSARY;
1171                                                 /* don't need to set sb->csum */
1172                                         } else {
1173                                                 skb_checksum_none_assert(sb);
1174                                         }
1175                                 }
1176                                 prefetch(sb->data);
1177                                 prefetch((const void *)(((char *)sb->data)+32));
1178                                 if (poll)
1179                                         dropped = netif_receive_skb(sb);
1180                                 else
1181                                         dropped = netif_rx(sb);
1182
1183                                 if (dropped == NET_RX_DROP) {
1184                                         dev->stats.rx_dropped++;
1185                                         d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1186                                         goto done;
1187                                 }
1188                                 else {
1189                                         dev->stats.rx_bytes += len;
1190                                         dev->stats.rx_packets++;
1191                                 }
1192                         }
1193                 } else {
1194                         /*
1195                          * Packet was mangled somehow.  Just drop it and
1196                          * put it back on the receive ring.
1197                          */
1198                         dev->stats.rx_errors++;
1199                         sbdma_add_rcvbuffer(sc, d, sb);
1200                 }
1201
1202
1203                 /*
1204                  * .. and advance to the next buffer.
1205                  */
1206
1207                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1208                 work_done++;
1209         }
1210         if (!poll) {
1211                 work_to_do = 32;
1212                 goto again; /* collect fifo drop statistics again */
1213         }
1214 done:
1215         return work_done;
1216 }
1217
1218 /**********************************************************************
1219  *  SBDMA_TX_PROCESS(sc,d)
1220  *
1221  *  Process "completed" transmit buffers on the specified DMA channel.
1222  *  This is normally called within the interrupt service routine.
1223  *  Note that this isn't really ideal for priority channels, since
1224  *  it processes all of the packets on a given channel before
1225  *  returning.
1226  *
1227  *  Input parameters:
1228  *      sc - softc structure
1229  *       d - DMA channel context
1230  *    poll - 1: using polling (for NAPI)
1231  *
1232  *  Return value:
1233  *         nothing
1234  ********************************************************************* */
1235
1236 static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1237                              int poll)
1238 {
1239         struct net_device *dev = sc->sbm_dev;
1240         int curidx;
1241         int hwidx;
1242         struct sbdmadscr *dsc;
1243         struct sk_buff *sb;
1244         unsigned long flags;
1245         int packets_handled = 0;
1246
1247         spin_lock_irqsave(&(sc->sbm_lock), flags);
1248
1249         if (d->sbdma_remptr == d->sbdma_addptr)
1250           goto end_unlock;
1251
1252         hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1253                  d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1254
1255         for (;;) {
1256                 /*
1257                  * figure out where we are (as an index) and where
1258                  * the hardware is (also as an index)
1259                  *
1260                  * This could be done faster if (for example) the
1261                  * descriptor table was page-aligned and contiguous in
1262                  * both virtual and physical memory -- you could then
1263                  * just compare the low-order bits of the virtual address
1264                  * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1265                  */
1266
1267                 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1268
1269                 /*
1270                  * If they're the same, that means we've processed all
1271                  * of the descriptors up to (but not including) the one that
1272                  * the hardware is working on right now.
1273                  */
1274
1275                 if (curidx == hwidx)
1276                         break;
1277
1278                 /*
1279                  * Otherwise, get the packet's sk_buff ptr back
1280                  */
1281
1282                 dsc = &(d->sbdma_dscrtable[curidx]);
1283                 sb = d->sbdma_ctxtable[curidx];
1284                 d->sbdma_ctxtable[curidx] = NULL;
1285
1286                 /*
1287                  * Stats
1288                  */
1289
1290                 dev->stats.tx_bytes += sb->len;
1291                 dev->stats.tx_packets++;
1292
1293                 /*
1294                  * for transmits, we just free buffers.
1295                  */
1296
1297                 dev_kfree_skb_irq(sb);
1298
1299                 /*
1300                  * .. and advance to the next buffer.
1301                  */
1302
1303                 d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1304
1305                 packets_handled++;
1306
1307         }
1308
1309         /*
1310          * Decide if we should wake up the protocol or not.
1311          * Other drivers seem to do this when we reach a low
1312          * watermark on the transmit queue.
1313          */
1314
1315         if (packets_handled)
1316                 netif_wake_queue(d->sbdma_eth->sbm_dev);
1317
1318 end_unlock:
1319         spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1320
1321 }
1322
1323
1324
1325 /**********************************************************************
1326  *  SBMAC_INITCTX(s)
1327  *
1328  *  Initialize an Ethernet context structure - this is called
1329  *  once per MAC on the 1250.  Memory is allocated here, so don't
1330  *  call it again from inside the ioctl routines that bring the
1331  *  interface up/down
1332  *
1333  *  Input parameters:
1334  *         s - sbmac context structure
1335  *
1336  *  Return value:
1337  *         0
1338  ********************************************************************* */
1339
1340 static int sbmac_initctx(struct sbmac_softc *s)
1341 {
1342
1343         /*
1344          * figure out the addresses of some ports
1345          */
1346
1347         s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1348         s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1349         s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1350         s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1351         s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1352         s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1353         s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1354         s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1355
1356         /*
1357          * Initialize the DMA channels.  Right now, only one per MAC is used
1358          * Note: Only do this _once_, as it allocates memory from the kernel!
1359          */
1360
1361         sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1362         sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1363
1364         /*
1365          * initial state is OFF
1366          */
1367
1368         s->sbm_state = sbmac_state_off;
1369
1370         return 0;
1371 }
1372
1373
1374 static void sbdma_uninitctx(struct sbmacdma *d)
1375 {
1376         if (d->sbdma_dscrtable_unaligned) {
1377                 kfree(d->sbdma_dscrtable_unaligned);
1378                 d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1379         }
1380
1381         if (d->sbdma_ctxtable) {
1382                 kfree(d->sbdma_ctxtable);
1383                 d->sbdma_ctxtable = NULL;
1384         }
1385 }
1386
1387
1388 static void sbmac_uninitctx(struct sbmac_softc *sc)
1389 {
1390         sbdma_uninitctx(&(sc->sbm_txdma));
1391         sbdma_uninitctx(&(sc->sbm_rxdma));
1392 }
1393
1394
1395 /**********************************************************************
1396  *  SBMAC_CHANNEL_START(s)
1397  *
1398  *  Start packet processing on this MAC.
1399  *
1400  *  Input parameters:
1401  *         s - sbmac structure
1402  *
1403  *  Return value:
1404  *         nothing
1405  ********************************************************************* */
1406
1407 static void sbmac_channel_start(struct sbmac_softc *s)
1408 {
1409         uint64_t reg;
1410         void __iomem *port;
1411         uint64_t cfg,fifo,framecfg;
1412         int idx, th_value;
1413
1414         /*
1415          * Don't do this if running
1416          */
1417
1418         if (s->sbm_state == sbmac_state_on)
1419                 return;
1420
1421         /*
1422          * Bring the controller out of reset, but leave it off.
1423          */
1424
1425         __raw_writeq(0, s->sbm_macenable);
1426
1427         /*
1428          * Ignore all received packets
1429          */
1430
1431         __raw_writeq(0, s->sbm_rxfilter);
1432
1433         /*
1434          * Calculate values for various control registers.
1435          */
1436
1437         cfg = M_MAC_RETRY_EN |
1438                 M_MAC_TX_HOLD_SOP_EN |
1439                 V_MAC_TX_PAUSE_CNT_16K |
1440                 M_MAC_AP_STAT_EN |
1441                 M_MAC_FAST_SYNC |
1442                 M_MAC_SS_EN |
1443                 0;
1444
1445         /*
1446          * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1447          * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1448          * Use a larger RD_THRSH for gigabit
1449          */
1450         if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1451                 th_value = 28;
1452         else
1453                 th_value = 64;
1454
1455         fifo = V_MAC_TX_WR_THRSH(4) |   /* Must be '4' or '8' */
1456                 ((s->sbm_speed == sbmac_speed_1000)
1457                  ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1458                 V_MAC_TX_RL_THRSH(4) |
1459                 V_MAC_RX_PL_THRSH(4) |
1460                 V_MAC_RX_RD_THRSH(4) |  /* Must be '4' */
1461                 V_MAC_RX_RL_THRSH(8) |
1462                 0;
1463
1464         framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1465                 V_MAC_MAX_FRAMESZ_DEFAULT |
1466                 V_MAC_BACKOFF_SEL(1);
1467
1468         /*
1469          * Clear out the hash address map
1470          */
1471
1472         port = s->sbm_base + R_MAC_HASH_BASE;
1473         for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1474                 __raw_writeq(0, port);
1475                 port += sizeof(uint64_t);
1476         }
1477
1478         /*
1479          * Clear out the exact-match table
1480          */
1481
1482         port = s->sbm_base + R_MAC_ADDR_BASE;
1483         for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1484                 __raw_writeq(0, port);
1485                 port += sizeof(uint64_t);
1486         }
1487
1488         /*
1489          * Clear out the DMA Channel mapping table registers
1490          */
1491
1492         port = s->sbm_base + R_MAC_CHUP0_BASE;
1493         for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1494                 __raw_writeq(0, port);
1495                 port += sizeof(uint64_t);
1496         }
1497
1498
1499         port = s->sbm_base + R_MAC_CHLO0_BASE;
1500         for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1501                 __raw_writeq(0, port);
1502                 port += sizeof(uint64_t);
1503         }
1504
1505         /*
1506          * Program the hardware address.  It goes into the hardware-address
1507          * register as well as the first filter register.
1508          */
1509
1510         reg = sbmac_addr2reg(s->sbm_hwaddr);
1511
1512         port = s->sbm_base + R_MAC_ADDR_BASE;
1513         __raw_writeq(reg, port);
1514         port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1515
1516 #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1517         /*
1518          * Pass1 SOCs do not receive packets addressed to the
1519          * destination address in the R_MAC_ETHERNET_ADDR register.
1520          * Set the value to zero.
1521          */
1522         __raw_writeq(0, port);
1523 #else
1524         __raw_writeq(reg, port);
1525 #endif
1526
1527         /*
1528          * Set the receive filter for no packets, and write values
1529          * to the various config registers
1530          */
1531
1532         __raw_writeq(0, s->sbm_rxfilter);
1533         __raw_writeq(0, s->sbm_imr);
1534         __raw_writeq(framecfg, s->sbm_framecfg);
1535         __raw_writeq(fifo, s->sbm_fifocfg);
1536         __raw_writeq(cfg, s->sbm_maccfg);
1537
1538         /*
1539          * Initialize DMA channels (rings should be ok now)
1540          */
1541
1542         sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1543         sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1544
1545         /*
1546          * Configure the speed, duplex, and flow control
1547          */
1548
1549         sbmac_set_speed(s,s->sbm_speed);
1550         sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1551
1552         /*
1553          * Fill the receive ring
1554          */
1555
1556         sbdma_fillring(s, &(s->sbm_rxdma));
1557
1558         /*
1559          * Turn on the rest of the bits in the enable register
1560          */
1561
1562 #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1563         __raw_writeq(M_MAC_RXDMA_EN0 |
1564                        M_MAC_TXDMA_EN0, s->sbm_macenable);
1565 #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1566         __raw_writeq(M_MAC_RXDMA_EN0 |
1567                        M_MAC_TXDMA_EN0 |
1568                        M_MAC_RX_ENABLE |
1569                        M_MAC_TX_ENABLE, s->sbm_macenable);
1570 #else
1571 #error invalid SiByte MAC configuration
1572 #endif
1573
1574 #ifdef CONFIG_SBMAC_COALESCE
1575         __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1576                        ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1577 #else
1578         __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1579                        (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1580 #endif
1581
1582         /*
1583          * Enable receiving unicasts and broadcasts
1584          */
1585
1586         __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1587
1588         /*
1589          * we're running now.
1590          */
1591
1592         s->sbm_state = sbmac_state_on;
1593
1594         /*
1595          * Program multicast addresses
1596          */
1597
1598         sbmac_setmulti(s);
1599
1600         /*
1601          * If channel was in promiscuous mode before, turn that on
1602          */
1603
1604         if (s->sbm_devflags & IFF_PROMISC) {
1605                 sbmac_promiscuous_mode(s,1);
1606         }
1607
1608 }
1609
1610
1611 /**********************************************************************
1612  *  SBMAC_CHANNEL_STOP(s)
1613  *
1614  *  Stop packet processing on this MAC.
1615  *
1616  *  Input parameters:
1617  *         s - sbmac structure
1618  *
1619  *  Return value:
1620  *         nothing
1621  ********************************************************************* */
1622
1623 static void sbmac_channel_stop(struct sbmac_softc *s)
1624 {
1625         /* don't do this if already stopped */
1626
1627         if (s->sbm_state == sbmac_state_off)
1628                 return;
1629
1630         /* don't accept any packets, disable all interrupts */
1631
1632         __raw_writeq(0, s->sbm_rxfilter);
1633         __raw_writeq(0, s->sbm_imr);
1634
1635         /* Turn off ticker */
1636
1637         /* XXX */
1638
1639         /* turn off receiver and transmitter */
1640
1641         __raw_writeq(0, s->sbm_macenable);
1642
1643         /* We're stopped now. */
1644
1645         s->sbm_state = sbmac_state_off;
1646
1647         /*
1648          * Stop DMA channels (rings should be ok now)
1649          */
1650
1651         sbdma_channel_stop(&(s->sbm_rxdma));
1652         sbdma_channel_stop(&(s->sbm_txdma));
1653
1654         /* Empty the receive and transmit rings */
1655
1656         sbdma_emptyring(&(s->sbm_rxdma));
1657         sbdma_emptyring(&(s->sbm_txdma));
1658
1659 }
1660
1661 /**********************************************************************
1662  *  SBMAC_SET_CHANNEL_STATE(state)
1663  *
1664  *  Set the channel's state ON or OFF
1665  *
1666  *  Input parameters:
1667  *         state - new state
1668  *
1669  *  Return value:
1670  *         old state
1671  ********************************************************************* */
1672 static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1673                                                 enum sbmac_state state)
1674 {
1675         enum sbmac_state oldstate = sc->sbm_state;
1676
1677         /*
1678          * If same as previous state, return
1679          */
1680
1681         if (state == oldstate) {
1682                 return oldstate;
1683         }
1684
1685         /*
1686          * If new state is ON, turn channel on
1687          */
1688
1689         if (state == sbmac_state_on) {
1690                 sbmac_channel_start(sc);
1691         }
1692         else {
1693                 sbmac_channel_stop(sc);
1694         }
1695
1696         /*
1697          * Return previous state
1698          */
1699
1700         return oldstate;
1701 }
1702
1703
1704 /**********************************************************************
1705  *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1706  *
1707  *  Turn on or off promiscuous mode
1708  *
1709  *  Input parameters:
1710  *         sc - softc
1711  *      onoff - 1 to turn on, 0 to turn off
1712  *
1713  *  Return value:
1714  *         nothing
1715  ********************************************************************* */
1716
1717 static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1718 {
1719         uint64_t reg;
1720
1721         if (sc->sbm_state != sbmac_state_on)
1722                 return;
1723
1724         if (onoff) {
1725                 reg = __raw_readq(sc->sbm_rxfilter);
1726                 reg |= M_MAC_ALLPKT_EN;
1727                 __raw_writeq(reg, sc->sbm_rxfilter);
1728         }
1729         else {
1730                 reg = __raw_readq(sc->sbm_rxfilter);
1731                 reg &= ~M_MAC_ALLPKT_EN;
1732                 __raw_writeq(reg, sc->sbm_rxfilter);
1733         }
1734 }
1735
1736 /**********************************************************************
1737  *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1738  *
1739  *  Set the iphdr offset as 15 assuming ethernet encapsulation
1740  *
1741  *  Input parameters:
1742  *         sc - softc
1743  *
1744  *  Return value:
1745  *         nothing
1746  ********************************************************************* */
1747
1748 static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1749 {
1750         uint64_t reg;
1751
1752         /* Hard code the off set to 15 for now */
1753         reg = __raw_readq(sc->sbm_rxfilter);
1754         reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1755         __raw_writeq(reg, sc->sbm_rxfilter);
1756
1757         /* BCM1250 pass1 didn't have hardware checksum.  Everything
1758            later does.  */
1759         if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1760                 sc->rx_hw_checksum = DISABLE;
1761         } else {
1762                 sc->rx_hw_checksum = ENABLE;
1763         }
1764 }
1765
1766
1767 /**********************************************************************
1768  *  SBMAC_ADDR2REG(ptr)
1769  *
1770  *  Convert six bytes into the 64-bit register value that
1771  *  we typically write into the SBMAC's address/mcast registers
1772  *
1773  *  Input parameters:
1774  *         ptr - pointer to 6 bytes
1775  *
1776  *  Return value:
1777  *         register value
1778  ********************************************************************* */
1779
1780 static uint64_t sbmac_addr2reg(unsigned char *ptr)
1781 {
1782         uint64_t reg = 0;
1783
1784         ptr += 6;
1785
1786         reg |= (uint64_t) *(--ptr);
1787         reg <<= 8;
1788         reg |= (uint64_t) *(--ptr);
1789         reg <<= 8;
1790         reg |= (uint64_t) *(--ptr);
1791         reg <<= 8;
1792         reg |= (uint64_t) *(--ptr);
1793         reg <<= 8;
1794         reg |= (uint64_t) *(--ptr);
1795         reg <<= 8;
1796         reg |= (uint64_t) *(--ptr);
1797
1798         return reg;
1799 }
1800
1801
1802 /**********************************************************************
1803  *  SBMAC_SET_SPEED(s,speed)
1804  *
1805  *  Configure LAN speed for the specified MAC.
1806  *  Warning: must be called when MAC is off!
1807  *
1808  *  Input parameters:
1809  *         s - sbmac structure
1810  *         speed - speed to set MAC to (see enum sbmac_speed)
1811  *
1812  *  Return value:
1813  *         1 if successful
1814  *      0 indicates invalid parameters
1815  ********************************************************************* */
1816
1817 static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1818 {
1819         uint64_t cfg;
1820         uint64_t framecfg;
1821
1822         /*
1823          * Save new current values
1824          */
1825
1826         s->sbm_speed = speed;
1827
1828         if (s->sbm_state == sbmac_state_on)
1829                 return 0;       /* save for next restart */
1830
1831         /*
1832          * Read current register values
1833          */
1834
1835         cfg = __raw_readq(s->sbm_maccfg);
1836         framecfg = __raw_readq(s->sbm_framecfg);
1837
1838         /*
1839          * Mask out the stuff we want to change
1840          */
1841
1842         cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1843         framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1844                       M_MAC_SLOT_SIZE);
1845
1846         /*
1847          * Now add in the new bits
1848          */
1849
1850         switch (speed) {
1851         case sbmac_speed_10:
1852                 framecfg |= V_MAC_IFG_RX_10 |
1853                         V_MAC_IFG_TX_10 |
1854                         K_MAC_IFG_THRSH_10 |
1855                         V_MAC_SLOT_SIZE_10;
1856                 cfg |= V_MAC_SPEED_SEL_10MBPS;
1857                 break;
1858
1859         case sbmac_speed_100:
1860                 framecfg |= V_MAC_IFG_RX_100 |
1861                         V_MAC_IFG_TX_100 |
1862                         V_MAC_IFG_THRSH_100 |
1863                         V_MAC_SLOT_SIZE_100;
1864                 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1865                 break;
1866
1867         case sbmac_speed_1000:
1868                 framecfg |= V_MAC_IFG_RX_1000 |
1869                         V_MAC_IFG_TX_1000 |
1870                         V_MAC_IFG_THRSH_1000 |
1871                         V_MAC_SLOT_SIZE_1000;
1872                 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1873                 break;
1874
1875         default:
1876                 return 0;
1877         }
1878
1879         /*
1880          * Send the bits back to the hardware
1881          */
1882
1883         __raw_writeq(framecfg, s->sbm_framecfg);
1884         __raw_writeq(cfg, s->sbm_maccfg);
1885
1886         return 1;
1887 }
1888
1889 /**********************************************************************
1890  *  SBMAC_SET_DUPLEX(s,duplex,fc)
1891  *
1892  *  Set Ethernet duplex and flow control options for this MAC
1893  *  Warning: must be called when MAC is off!
1894  *
1895  *  Input parameters:
1896  *         s - sbmac structure
1897  *         duplex - duplex setting (see enum sbmac_duplex)
1898  *         fc - flow control setting (see enum sbmac_fc)
1899  *
1900  *  Return value:
1901  *         1 if ok
1902  *         0 if an invalid parameter combination was specified
1903  ********************************************************************* */
1904
1905 static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1906                             enum sbmac_fc fc)
1907 {
1908         uint64_t cfg;
1909
1910         /*
1911          * Save new current values
1912          */
1913
1914         s->sbm_duplex = duplex;
1915         s->sbm_fc = fc;
1916
1917         if (s->sbm_state == sbmac_state_on)
1918                 return 0;       /* save for next restart */
1919
1920         /*
1921          * Read current register values
1922          */
1923
1924         cfg = __raw_readq(s->sbm_maccfg);
1925
1926         /*
1927          * Mask off the stuff we're about to change
1928          */
1929
1930         cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1931
1932
1933         switch (duplex) {
1934         case sbmac_duplex_half:
1935                 switch (fc) {
1936                 case sbmac_fc_disabled:
1937                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1938                         break;
1939
1940                 case sbmac_fc_collision:
1941                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1942                         break;
1943
1944                 case sbmac_fc_carrier:
1945                         cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1946                         break;
1947
1948                 case sbmac_fc_frame:            /* not valid in half duplex */
1949                 default:                        /* invalid selection */
1950                         return 0;
1951                 }
1952                 break;
1953
1954         case sbmac_duplex_full:
1955                 switch (fc) {
1956                 case sbmac_fc_disabled:
1957                         cfg |= V_MAC_FC_CMD_DISABLED;
1958                         break;
1959
1960                 case sbmac_fc_frame:
1961                         cfg |= V_MAC_FC_CMD_ENABLED;
1962                         break;
1963
1964                 case sbmac_fc_collision:        /* not valid in full duplex */
1965                 case sbmac_fc_carrier:          /* not valid in full duplex */
1966                 default:
1967                         return 0;
1968                 }
1969                 break;
1970         default:
1971                 return 0;
1972         }
1973
1974         /*
1975          * Send the bits back to the hardware
1976          */
1977
1978         __raw_writeq(cfg, s->sbm_maccfg);
1979
1980         return 1;
1981 }
1982
1983
1984
1985
1986 /**********************************************************************
1987  *  SBMAC_INTR()
1988  *
1989  *  Interrupt handler for MAC interrupts
1990  *
1991  *  Input parameters:
1992  *         MAC structure
1993  *
1994  *  Return value:
1995  *         nothing
1996  ********************************************************************* */
1997 static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1998 {
1999         struct net_device *dev = (struct net_device *) dev_instance;
2000         struct sbmac_softc *sc = netdev_priv(dev);
2001         uint64_t isr;
2002         int handled = 0;
2003
2004         /*
2005          * Read the ISR (this clears the bits in the real
2006          * register, except for counter addr)
2007          */
2008
2009         isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2010
2011         if (isr == 0)
2012                 return IRQ_RETVAL(0);
2013         handled = 1;
2014
2015         /*
2016          * Transmits on channel 0
2017          */
2018
2019         if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2020                 sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2021
2022         if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2023                 if (napi_schedule_prep(&sc->napi)) {
2024                         __raw_writeq(0, sc->sbm_imr);
2025                         __napi_schedule(&sc->napi);
2026                         /* Depend on the exit from poll to reenable intr */
2027                 }
2028                 else {
2029                         /* may leave some packets behind */
2030                         sbdma_rx_process(sc,&(sc->sbm_rxdma),
2031                                          SBMAC_MAX_RXDESCR * 2, 0);
2032                 }
2033         }
2034         return IRQ_RETVAL(handled);
2035 }
2036
2037 /**********************************************************************
2038  *  SBMAC_START_TX(skb,dev)
2039  *
2040  *  Start output on the specified interface.  Basically, we
2041  *  queue as many buffers as we can until the ring fills up, or
2042  *  we run off the end of the queue, whichever comes first.
2043  *
2044  *  Input parameters:
2045  *
2046  *
2047  *  Return value:
2048  *         nothing
2049  ********************************************************************* */
2050 static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2051 {
2052         struct sbmac_softc *sc = netdev_priv(dev);
2053         unsigned long flags;
2054
2055         /* lock eth irq */
2056         spin_lock_irqsave(&sc->sbm_lock, flags);
2057
2058         /*
2059          * Put the buffer on the transmit ring.  If we
2060          * don't have room, stop the queue.
2061          */
2062
2063         if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2064                 /* XXX save skb that we could not send */
2065                 netif_stop_queue(dev);
2066                 spin_unlock_irqrestore(&sc->sbm_lock, flags);
2067
2068                 return NETDEV_TX_BUSY;
2069         }
2070
2071         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2072
2073         return NETDEV_TX_OK;
2074 }
2075
2076 /**********************************************************************
2077  *  SBMAC_SETMULTI(sc)
2078  *
2079  *  Reprogram the multicast table into the hardware, given
2080  *  the list of multicasts associated with the interface
2081  *  structure.
2082  *
2083  *  Input parameters:
2084  *         sc - softc
2085  *
2086  *  Return value:
2087  *         nothing
2088  ********************************************************************* */
2089
2090 static void sbmac_setmulti(struct sbmac_softc *sc)
2091 {
2092         uint64_t reg;
2093         void __iomem *port;
2094         int idx;
2095         struct netdev_hw_addr *ha;
2096         struct net_device *dev = sc->sbm_dev;
2097
2098         /*
2099          * Clear out entire multicast table.  We do this by nuking
2100          * the entire hash table and all the direct matches except
2101          * the first one, which is used for our station address
2102          */
2103
2104         for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2105                 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2106                 __raw_writeq(0, port);
2107         }
2108
2109         for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2110                 port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2111                 __raw_writeq(0, port);
2112         }
2113
2114         /*
2115          * Clear the filter to say we don't want any multicasts.
2116          */
2117
2118         reg = __raw_readq(sc->sbm_rxfilter);
2119         reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2120         __raw_writeq(reg, sc->sbm_rxfilter);
2121
2122         if (dev->flags & IFF_ALLMULTI) {
2123                 /*
2124                  * Enable ALL multicasts.  Do this by inverting the
2125                  * multicast enable bit.
2126                  */
2127                 reg = __raw_readq(sc->sbm_rxfilter);
2128                 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2129                 __raw_writeq(reg, sc->sbm_rxfilter);
2130                 return;
2131         }
2132
2133
2134         /*
2135          * Progam new multicast entries.  For now, only use the
2136          * perfect filter.  In the future we'll need to use the
2137          * hash filter if the perfect filter overflows
2138          */
2139
2140         /* XXX only using perfect filter for now, need to use hash
2141          * XXX if the table overflows */
2142
2143         idx = 1;                /* skip station address */
2144         netdev_for_each_mc_addr(ha, dev) {
2145                 if (idx == MAC_ADDR_COUNT)
2146                         break;
2147                 reg = sbmac_addr2reg(ha->addr);
2148                 port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2149                 __raw_writeq(reg, port);
2150                 idx++;
2151         }
2152
2153         /*
2154          * Enable the "accept multicast bits" if we programmed at least one
2155          * multicast.
2156          */
2157
2158         if (idx > 1) {
2159                 reg = __raw_readq(sc->sbm_rxfilter);
2160                 reg |= M_MAC_MCAST_EN;
2161                 __raw_writeq(reg, sc->sbm_rxfilter);
2162         }
2163 }
2164
2165 static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2166 {
2167         if (new_mtu >  ENET_PACKET_SIZE)
2168                 return -EINVAL;
2169         _dev->mtu = new_mtu;
2170         pr_info("changing the mtu to %d\n", new_mtu);
2171         return 0;
2172 }
2173
2174 static const struct net_device_ops sbmac_netdev_ops = {
2175         .ndo_open               = sbmac_open,
2176         .ndo_stop               = sbmac_close,
2177         .ndo_start_xmit         = sbmac_start_tx,
2178         .ndo_set_multicast_list = sbmac_set_rx_mode,
2179         .ndo_tx_timeout         = sbmac_tx_timeout,
2180         .ndo_do_ioctl           = sbmac_mii_ioctl,
2181         .ndo_change_mtu         = sb1250_change_mtu,
2182         .ndo_validate_addr      = eth_validate_addr,
2183         .ndo_set_mac_address    = eth_mac_addr,
2184 #ifdef CONFIG_NET_POLL_CONTROLLER
2185         .ndo_poll_controller    = sbmac_netpoll,
2186 #endif
2187 };
2188
2189 /**********************************************************************
2190  *  SBMAC_INIT(dev)
2191  *
2192  *  Attach routine - init hardware and hook ourselves into linux
2193  *
2194  *  Input parameters:
2195  *         dev - net_device structure
2196  *
2197  *  Return value:
2198  *         status
2199  ********************************************************************* */
2200
2201 static int sbmac_init(struct platform_device *pldev, long long base)
2202 {
2203         struct net_device *dev = dev_get_drvdata(&pldev->dev);
2204         int idx = pldev->id;
2205         struct sbmac_softc *sc = netdev_priv(dev);
2206         unsigned char *eaddr;
2207         uint64_t ea_reg;
2208         int i;
2209         int err;
2210
2211         sc->sbm_dev = dev;
2212         sc->sbe_idx = idx;
2213
2214         eaddr = sc->sbm_hwaddr;
2215
2216         /*
2217          * Read the ethernet address.  The firmware left this programmed
2218          * for us in the ethernet address register for each mac.
2219          */
2220
2221         ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2222         __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2223         for (i = 0; i < 6; i++) {
2224                 eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2225                 ea_reg >>= 8;
2226         }
2227
2228         for (i = 0; i < 6; i++) {
2229                 dev->dev_addr[i] = eaddr[i];
2230         }
2231
2232         /*
2233          * Initialize context (get pointers to registers and stuff), then
2234          * allocate the memory for the descriptor tables.
2235          */
2236
2237         sbmac_initctx(sc);
2238
2239         /*
2240          * Set up Linux device callins
2241          */
2242
2243         spin_lock_init(&(sc->sbm_lock));
2244
2245         dev->netdev_ops = &sbmac_netdev_ops;
2246         dev->watchdog_timeo = TX_TIMEOUT;
2247
2248         netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2249
2250         dev->irq                = UNIT_INT(idx);
2251
2252         /* This is needed for PASS2 for Rx H/W checksum feature */
2253         sbmac_set_iphdr_offset(sc);
2254
2255         sc->mii_bus = mdiobus_alloc();
2256         if (sc->mii_bus == NULL) {
2257                 err = -ENOMEM;
2258                 goto uninit_ctx;
2259         }
2260
2261         sc->mii_bus->name = sbmac_mdio_string;
2262         snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%x", idx);
2263         sc->mii_bus->priv = sc;
2264         sc->mii_bus->read = sbmac_mii_read;
2265         sc->mii_bus->write = sbmac_mii_write;
2266         sc->mii_bus->irq = sc->phy_irq;
2267         for (i = 0; i < PHY_MAX_ADDR; ++i)
2268                 sc->mii_bus->irq[i] = SBMAC_PHY_INT;
2269
2270         sc->mii_bus->parent = &pldev->dev;
2271         /*
2272          * Probe PHY address
2273          */
2274         err = mdiobus_register(sc->mii_bus);
2275         if (err) {
2276                 printk(KERN_ERR "%s: unable to register MDIO bus\n",
2277                        dev->name);
2278                 goto free_mdio;
2279         }
2280         dev_set_drvdata(&pldev->dev, sc->mii_bus);
2281
2282         err = register_netdev(dev);
2283         if (err) {
2284                 printk(KERN_ERR "%s.%d: unable to register netdev\n",
2285                        sbmac_string, idx);
2286                 goto unreg_mdio;
2287         }
2288
2289         pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2290
2291         if (sc->rx_hw_checksum == ENABLE)
2292                 pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2293
2294         /*
2295          * Display Ethernet address (this is called during the config
2296          * process so we need to finish off the config message that
2297          * was being displayed)
2298          */
2299         pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2300                dev->name, base, eaddr);
2301
2302         return 0;
2303 unreg_mdio:
2304         mdiobus_unregister(sc->mii_bus);
2305         dev_set_drvdata(&pldev->dev, NULL);
2306 free_mdio:
2307         mdiobus_free(sc->mii_bus);
2308 uninit_ctx:
2309         sbmac_uninitctx(sc);
2310         return err;
2311 }
2312
2313
2314 static int sbmac_open(struct net_device *dev)
2315 {
2316         struct sbmac_softc *sc = netdev_priv(dev);
2317         int err;
2318
2319         if (debug > 1)
2320                 pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2321
2322         /*
2323          * map/route interrupt (clear status first, in case something
2324          * weird is pending; we haven't initialized the mac registers
2325          * yet)
2326          */
2327
2328         __raw_readq(sc->sbm_isr);
2329         err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2330         if (err) {
2331                 printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2332                        dev->irq);
2333                 goto out_err;
2334         }
2335
2336         sc->sbm_speed = sbmac_speed_none;
2337         sc->sbm_duplex = sbmac_duplex_none;
2338         sc->sbm_fc = sbmac_fc_none;
2339         sc->sbm_pause = -1;
2340         sc->sbm_link = 0;
2341
2342         /*
2343          * Attach to the PHY
2344          */
2345         err = sbmac_mii_probe(dev);
2346         if (err)
2347                 goto out_unregister;
2348
2349         /*
2350          * Turn on the channel
2351          */
2352
2353         sbmac_set_channel_state(sc,sbmac_state_on);
2354
2355         netif_start_queue(dev);
2356
2357         sbmac_set_rx_mode(dev);
2358
2359         phy_start(sc->phy_dev);
2360
2361         napi_enable(&sc->napi);
2362
2363         return 0;
2364
2365 out_unregister:
2366         free_irq(dev->irq, dev);
2367 out_err:
2368         return err;
2369 }
2370
2371 static int sbmac_mii_probe(struct net_device *dev)
2372 {
2373         struct sbmac_softc *sc = netdev_priv(dev);
2374         struct phy_device *phy_dev;
2375         int i;
2376
2377         for (i = 0; i < PHY_MAX_ADDR; i++) {
2378                 phy_dev = sc->mii_bus->phy_map[i];
2379                 if (phy_dev)
2380                         break;
2381         }
2382         if (!phy_dev) {
2383                 printk(KERN_ERR "%s: no PHY found\n", dev->name);
2384                 return -ENXIO;
2385         }
2386
2387         phy_dev = phy_connect(dev, dev_name(&phy_dev->dev), &sbmac_mii_poll, 0,
2388                               PHY_INTERFACE_MODE_GMII);
2389         if (IS_ERR(phy_dev)) {
2390                 printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2391                 return PTR_ERR(phy_dev);
2392         }
2393
2394         /* Remove any features not supported by the controller */
2395         phy_dev->supported &= SUPPORTED_10baseT_Half |
2396                               SUPPORTED_10baseT_Full |
2397                               SUPPORTED_100baseT_Half |
2398                               SUPPORTED_100baseT_Full |
2399                               SUPPORTED_1000baseT_Half |
2400                               SUPPORTED_1000baseT_Full |
2401                               SUPPORTED_Autoneg |
2402                               SUPPORTED_MII |
2403                               SUPPORTED_Pause |
2404                               SUPPORTED_Asym_Pause;
2405         phy_dev->advertising = phy_dev->supported;
2406
2407         pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2408                 dev->name, phy_dev->drv->name,
2409                 dev_name(&phy_dev->dev), phy_dev->irq);
2410
2411         sc->phy_dev = phy_dev;
2412
2413         return 0;
2414 }
2415
2416
2417 static void sbmac_mii_poll(struct net_device *dev)
2418 {
2419         struct sbmac_softc *sc = netdev_priv(dev);
2420         struct phy_device *phy_dev = sc->phy_dev;
2421         unsigned long flags;
2422         enum sbmac_fc fc;
2423         int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2424
2425         link_chg = (sc->sbm_link != phy_dev->link);
2426         speed_chg = (sc->sbm_speed != phy_dev->speed);
2427         duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2428         pause_chg = (sc->sbm_pause != phy_dev->pause);
2429
2430         if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2431                 return;                                 /* Hmmm... */
2432
2433         if (!phy_dev->link) {
2434                 if (link_chg) {
2435                         sc->sbm_link = phy_dev->link;
2436                         sc->sbm_speed = sbmac_speed_none;
2437                         sc->sbm_duplex = sbmac_duplex_none;
2438                         sc->sbm_fc = sbmac_fc_disabled;
2439                         sc->sbm_pause = -1;
2440                         pr_info("%s: link unavailable\n", dev->name);
2441                 }
2442                 return;
2443         }
2444
2445         if (phy_dev->duplex == DUPLEX_FULL) {
2446                 if (phy_dev->pause)
2447                         fc = sbmac_fc_frame;
2448                 else
2449                         fc = sbmac_fc_disabled;
2450         } else
2451                 fc = sbmac_fc_collision;
2452         fc_chg = (sc->sbm_fc != fc);
2453
2454         pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2455                 phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2456
2457         spin_lock_irqsave(&sc->sbm_lock, flags);
2458
2459         sc->sbm_speed = phy_dev->speed;
2460         sc->sbm_duplex = phy_dev->duplex;
2461         sc->sbm_fc = fc;
2462         sc->sbm_pause = phy_dev->pause;
2463         sc->sbm_link = phy_dev->link;
2464
2465         if ((speed_chg || duplex_chg || fc_chg) &&
2466             sc->sbm_state != sbmac_state_off) {
2467                 /*
2468                  * something changed, restart the channel
2469                  */
2470                 if (debug > 1)
2471                         pr_debug("%s: restarting channel "
2472                                  "because PHY state changed\n", dev->name);
2473                 sbmac_channel_stop(sc);
2474                 sbmac_channel_start(sc);
2475         }
2476
2477         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2478 }
2479
2480
2481 static void sbmac_tx_timeout (struct net_device *dev)
2482 {
2483         struct sbmac_softc *sc = netdev_priv(dev);
2484         unsigned long flags;
2485
2486         spin_lock_irqsave(&sc->sbm_lock, flags);
2487
2488
2489         dev->trans_start = jiffies; /* prevent tx timeout */
2490         dev->stats.tx_errors++;
2491
2492         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2493
2494         printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2495 }
2496
2497
2498
2499
2500 static void sbmac_set_rx_mode(struct net_device *dev)
2501 {
2502         unsigned long flags;
2503         struct sbmac_softc *sc = netdev_priv(dev);
2504
2505         spin_lock_irqsave(&sc->sbm_lock, flags);
2506         if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2507                 /*
2508                  * Promiscuous changed.
2509                  */
2510
2511                 if (dev->flags & IFF_PROMISC) {
2512                         sbmac_promiscuous_mode(sc,1);
2513                 }
2514                 else {
2515                         sbmac_promiscuous_mode(sc,0);
2516                 }
2517         }
2518         spin_unlock_irqrestore(&sc->sbm_lock, flags);
2519
2520         /*
2521          * Program the multicasts.  Do this every time.
2522          */
2523
2524         sbmac_setmulti(sc);
2525
2526 }
2527
2528 static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2529 {
2530         struct sbmac_softc *sc = netdev_priv(dev);
2531
2532         if (!netif_running(dev) || !sc->phy_dev)
2533                 return -EINVAL;
2534
2535         return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2536 }
2537
2538 static int sbmac_close(struct net_device *dev)
2539 {
2540         struct sbmac_softc *sc = netdev_priv(dev);
2541
2542         napi_disable(&sc->napi);
2543
2544         phy_stop(sc->phy_dev);
2545
2546         sbmac_set_channel_state(sc, sbmac_state_off);
2547
2548         netif_stop_queue(dev);
2549
2550         if (debug > 1)
2551                 pr_debug("%s: Shutting down ethercard\n", dev->name);
2552
2553         phy_disconnect(sc->phy_dev);
2554         sc->phy_dev = NULL;
2555         free_irq(dev->irq, dev);
2556
2557         sbdma_emptyring(&(sc->sbm_txdma));
2558         sbdma_emptyring(&(sc->sbm_rxdma));
2559
2560         return 0;
2561 }
2562
2563 static int sbmac_poll(struct napi_struct *napi, int budget)
2564 {
2565         struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2566         int work_done;
2567
2568         work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2569         sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2570
2571         if (work_done < budget) {
2572                 napi_complete(napi);
2573
2574 #ifdef CONFIG_SBMAC_COALESCE
2575                 __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2576                              ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2577                              sc->sbm_imr);
2578 #else
2579                 __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2580                              (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2581 #endif
2582         }
2583
2584         return work_done;
2585 }
2586
2587
2588 static int __devinit sbmac_probe(struct platform_device *pldev)
2589 {
2590         struct net_device *dev;
2591         struct sbmac_softc *sc;
2592         void __iomem *sbm_base;
2593         struct resource *res;
2594         u64 sbmac_orig_hwaddr;
2595         int err;
2596
2597         res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2598         BUG_ON(!res);
2599         sbm_base = ioremap_nocache(res->start, res->end - res->start + 1);
2600         if (!sbm_base) {
2601                 printk(KERN_ERR "%s: unable to map device registers\n",
2602                        dev_name(&pldev->dev));
2603                 err = -ENOMEM;
2604                 goto out_out;
2605         }
2606
2607         /*
2608          * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2609          * value for us by the firmware if we're going to use this MAC.
2610          * If we find a zero, skip this MAC.
2611          */
2612         sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2613         pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2614                  sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2615         if (sbmac_orig_hwaddr == 0) {
2616                 err = 0;
2617                 goto out_unmap;
2618         }
2619
2620         /*
2621          * Okay, cool.  Initialize this MAC.
2622          */
2623         dev = alloc_etherdev(sizeof(struct sbmac_softc));
2624         if (!dev) {
2625                 printk(KERN_ERR "%s: unable to allocate etherdev\n",
2626                        dev_name(&pldev->dev));
2627                 err = -ENOMEM;
2628                 goto out_unmap;
2629         }
2630
2631         dev_set_drvdata(&pldev->dev, dev);
2632         SET_NETDEV_DEV(dev, &pldev->dev);
2633
2634         sc = netdev_priv(dev);
2635         sc->sbm_base = sbm_base;
2636
2637         err = sbmac_init(pldev, res->start);
2638         if (err)
2639                 goto out_kfree;
2640
2641         return 0;
2642
2643 out_kfree:
2644         free_netdev(dev);
2645         __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2646
2647 out_unmap:
2648         iounmap(sbm_base);
2649
2650 out_out:
2651         return err;
2652 }
2653
2654 static int __exit sbmac_remove(struct platform_device *pldev)
2655 {
2656         struct net_device *dev = dev_get_drvdata(&pldev->dev);
2657         struct sbmac_softc *sc = netdev_priv(dev);
2658
2659         unregister_netdev(dev);
2660         sbmac_uninitctx(sc);
2661         mdiobus_unregister(sc->mii_bus);
2662         mdiobus_free(sc->mii_bus);
2663         iounmap(sc->sbm_base);
2664         free_netdev(dev);
2665
2666         return 0;
2667 }
2668
2669 static struct platform_driver sbmac_driver = {
2670         .probe = sbmac_probe,
2671         .remove = __exit_p(sbmac_remove),
2672         .driver = {
2673                 .name = sbmac_string,
2674                 .owner  = THIS_MODULE,
2675         },
2676 };
2677
2678 static int __init sbmac_init_module(void)
2679 {
2680         return platform_driver_register(&sbmac_driver);
2681 }
2682
2683 static void __exit sbmac_cleanup_module(void)
2684 {
2685         platform_driver_unregister(&sbmac_driver);
2686 }
2687
2688 module_init(sbmac_init_module);
2689 module_exit(sbmac_cleanup_module);