Merge branch 'topic/asoc' into for-linus
[pandora-kernel.git] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  * multiq: This parameter used to enable/disable MULTIQUEUE support.
54  *      Possible values '1' for enable and '0' for disable. Default is '0'
55  ************************************************************************/
56
57 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58
59 #include <linux/module.h>
60 #include <linux/types.h>
61 #include <linux/errno.h>
62 #include <linux/ioport.h>
63 #include <linux/pci.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/kernel.h>
66 #include <linux/netdevice.h>
67 #include <linux/etherdevice.h>
68 #include <linux/mdio.h>
69 #include <linux/skbuff.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/stddef.h>
73 #include <linux/ioctl.h>
74 #include <linux/timex.h>
75 #include <linux/ethtool.h>
76 #include <linux/workqueue.h>
77 #include <linux/if_vlan.h>
78 #include <linux/ip.h>
79 #include <linux/tcp.h>
80 #include <linux/uaccess.h>
81 #include <linux/io.h>
82 #include <linux/slab.h>
83 #include <net/tcp.h>
84
85 #include <asm/system.h>
86 #include <asm/div64.h>
87 #include <asm/irq.h>
88
89 /* local include */
90 #include "s2io.h"
91 #include "s2io-regs.h"
92
93 #define DRV_VERSION "2.0.26.25"
94
95 /* S2io Driver name & version. */
96 static char s2io_driver_name[] = "Neterion";
97 static char s2io_driver_version[] = DRV_VERSION;
98
99 static int rxd_size[2] = {32, 48};
100 static int rxd_count[2] = {127, 85};
101
102 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
103 {
104         int ret;
105
106         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
107                (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
108
109         return ret;
110 }
111
112 /*
113  * Cards with following subsystem_id have a link state indication
114  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
115  * macro below identifies these cards given the subsystem_id.
116  */
117 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)              \
118         (dev_type == XFRAME_I_DEVICE) ?                                 \
119         ((((subid >= 0x600B) && (subid <= 0x600D)) ||                   \
120           ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
121
122 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
123                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
124
125 static inline int is_s2io_card_up(const struct s2io_nic *sp)
126 {
127         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
128 }
129
130 /* Ethtool related variables and Macros. */
131 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
132         "Register test\t(offline)",
133         "Eeprom test\t(offline)",
134         "Link test\t(online)",
135         "RLDRAM test\t(offline)",
136         "BIST Test\t(offline)"
137 };
138
139 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
140         {"tmac_frms"},
141         {"tmac_data_octets"},
142         {"tmac_drop_frms"},
143         {"tmac_mcst_frms"},
144         {"tmac_bcst_frms"},
145         {"tmac_pause_ctrl_frms"},
146         {"tmac_ttl_octets"},
147         {"tmac_ucst_frms"},
148         {"tmac_nucst_frms"},
149         {"tmac_any_err_frms"},
150         {"tmac_ttl_less_fb_octets"},
151         {"tmac_vld_ip_octets"},
152         {"tmac_vld_ip"},
153         {"tmac_drop_ip"},
154         {"tmac_icmp"},
155         {"tmac_rst_tcp"},
156         {"tmac_tcp"},
157         {"tmac_udp"},
158         {"rmac_vld_frms"},
159         {"rmac_data_octets"},
160         {"rmac_fcs_err_frms"},
161         {"rmac_drop_frms"},
162         {"rmac_vld_mcst_frms"},
163         {"rmac_vld_bcst_frms"},
164         {"rmac_in_rng_len_err_frms"},
165         {"rmac_out_rng_len_err_frms"},
166         {"rmac_long_frms"},
167         {"rmac_pause_ctrl_frms"},
168         {"rmac_unsup_ctrl_frms"},
169         {"rmac_ttl_octets"},
170         {"rmac_accepted_ucst_frms"},
171         {"rmac_accepted_nucst_frms"},
172         {"rmac_discarded_frms"},
173         {"rmac_drop_events"},
174         {"rmac_ttl_less_fb_octets"},
175         {"rmac_ttl_frms"},
176         {"rmac_usized_frms"},
177         {"rmac_osized_frms"},
178         {"rmac_frag_frms"},
179         {"rmac_jabber_frms"},
180         {"rmac_ttl_64_frms"},
181         {"rmac_ttl_65_127_frms"},
182         {"rmac_ttl_128_255_frms"},
183         {"rmac_ttl_256_511_frms"},
184         {"rmac_ttl_512_1023_frms"},
185         {"rmac_ttl_1024_1518_frms"},
186         {"rmac_ip"},
187         {"rmac_ip_octets"},
188         {"rmac_hdr_err_ip"},
189         {"rmac_drop_ip"},
190         {"rmac_icmp"},
191         {"rmac_tcp"},
192         {"rmac_udp"},
193         {"rmac_err_drp_udp"},
194         {"rmac_xgmii_err_sym"},
195         {"rmac_frms_q0"},
196         {"rmac_frms_q1"},
197         {"rmac_frms_q2"},
198         {"rmac_frms_q3"},
199         {"rmac_frms_q4"},
200         {"rmac_frms_q5"},
201         {"rmac_frms_q6"},
202         {"rmac_frms_q7"},
203         {"rmac_full_q0"},
204         {"rmac_full_q1"},
205         {"rmac_full_q2"},
206         {"rmac_full_q3"},
207         {"rmac_full_q4"},
208         {"rmac_full_q5"},
209         {"rmac_full_q6"},
210         {"rmac_full_q7"},
211         {"rmac_pause_cnt"},
212         {"rmac_xgmii_data_err_cnt"},
213         {"rmac_xgmii_ctrl_err_cnt"},
214         {"rmac_accepted_ip"},
215         {"rmac_err_tcp"},
216         {"rd_req_cnt"},
217         {"new_rd_req_cnt"},
218         {"new_rd_req_rtry_cnt"},
219         {"rd_rtry_cnt"},
220         {"wr_rtry_rd_ack_cnt"},
221         {"wr_req_cnt"},
222         {"new_wr_req_cnt"},
223         {"new_wr_req_rtry_cnt"},
224         {"wr_rtry_cnt"},
225         {"wr_disc_cnt"},
226         {"rd_rtry_wr_ack_cnt"},
227         {"txp_wr_cnt"},
228         {"txd_rd_cnt"},
229         {"txd_wr_cnt"},
230         {"rxd_rd_cnt"},
231         {"rxd_wr_cnt"},
232         {"txf_rd_cnt"},
233         {"rxf_wr_cnt"}
234 };
235
236 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
237         {"rmac_ttl_1519_4095_frms"},
238         {"rmac_ttl_4096_8191_frms"},
239         {"rmac_ttl_8192_max_frms"},
240         {"rmac_ttl_gt_max_frms"},
241         {"rmac_osized_alt_frms"},
242         {"rmac_jabber_alt_frms"},
243         {"rmac_gt_max_alt_frms"},
244         {"rmac_vlan_frms"},
245         {"rmac_len_discard"},
246         {"rmac_fcs_discard"},
247         {"rmac_pf_discard"},
248         {"rmac_da_discard"},
249         {"rmac_red_discard"},
250         {"rmac_rts_discard"},
251         {"rmac_ingm_full_discard"},
252         {"link_fault_cnt"}
253 };
254
255 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
256         {"\n DRIVER STATISTICS"},
257         {"single_bit_ecc_errs"},
258         {"double_bit_ecc_errs"},
259         {"parity_err_cnt"},
260         {"serious_err_cnt"},
261         {"soft_reset_cnt"},
262         {"fifo_full_cnt"},
263         {"ring_0_full_cnt"},
264         {"ring_1_full_cnt"},
265         {"ring_2_full_cnt"},
266         {"ring_3_full_cnt"},
267         {"ring_4_full_cnt"},
268         {"ring_5_full_cnt"},
269         {"ring_6_full_cnt"},
270         {"ring_7_full_cnt"},
271         {"alarm_transceiver_temp_high"},
272         {"alarm_transceiver_temp_low"},
273         {"alarm_laser_bias_current_high"},
274         {"alarm_laser_bias_current_low"},
275         {"alarm_laser_output_power_high"},
276         {"alarm_laser_output_power_low"},
277         {"warn_transceiver_temp_high"},
278         {"warn_transceiver_temp_low"},
279         {"warn_laser_bias_current_high"},
280         {"warn_laser_bias_current_low"},
281         {"warn_laser_output_power_high"},
282         {"warn_laser_output_power_low"},
283         {"lro_aggregated_pkts"},
284         {"lro_flush_both_count"},
285         {"lro_out_of_sequence_pkts"},
286         {"lro_flush_due_to_max_pkts"},
287         {"lro_avg_aggr_pkts"},
288         {"mem_alloc_fail_cnt"},
289         {"pci_map_fail_cnt"},
290         {"watchdog_timer_cnt"},
291         {"mem_allocated"},
292         {"mem_freed"},
293         {"link_up_cnt"},
294         {"link_down_cnt"},
295         {"link_up_time"},
296         {"link_down_time"},
297         {"tx_tcode_buf_abort_cnt"},
298         {"tx_tcode_desc_abort_cnt"},
299         {"tx_tcode_parity_err_cnt"},
300         {"tx_tcode_link_loss_cnt"},
301         {"tx_tcode_list_proc_err_cnt"},
302         {"rx_tcode_parity_err_cnt"},
303         {"rx_tcode_abort_cnt"},
304         {"rx_tcode_parity_abort_cnt"},
305         {"rx_tcode_rda_fail_cnt"},
306         {"rx_tcode_unkn_prot_cnt"},
307         {"rx_tcode_fcs_err_cnt"},
308         {"rx_tcode_buf_size_err_cnt"},
309         {"rx_tcode_rxd_corrupt_cnt"},
310         {"rx_tcode_unkn_err_cnt"},
311         {"tda_err_cnt"},
312         {"pfc_err_cnt"},
313         {"pcc_err_cnt"},
314         {"tti_err_cnt"},
315         {"tpa_err_cnt"},
316         {"sm_err_cnt"},
317         {"lso_err_cnt"},
318         {"mac_tmac_err_cnt"},
319         {"mac_rmac_err_cnt"},
320         {"xgxs_txgxs_err_cnt"},
321         {"xgxs_rxgxs_err_cnt"},
322         {"rc_err_cnt"},
323         {"prc_pcix_err_cnt"},
324         {"rpa_err_cnt"},
325         {"rda_err_cnt"},
326         {"rti_err_cnt"},
327         {"mc_err_cnt"}
328 };
329
330 #define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
331 #define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
332 #define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
333
334 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
335 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
336
337 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
338 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
339
340 #define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
341 #define S2IO_STRINGS_LEN        (S2IO_TEST_LEN * ETH_GSTRING_LEN)
342
343 #define S2IO_TIMER_CONF(timer, handle, arg, exp)        \
344         init_timer(&timer);                             \
345         timer.function = handle;                        \
346         timer.data = (unsigned long)arg;                \
347         mod_timer(&timer, (jiffies + exp))              \
348
349 /* copy mac addr to def_mac_addr array */
350 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
351 {
352         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
353         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
354         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
355         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
356         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
357         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
358 }
359
360 /* Add the vlan */
361 static void s2io_vlan_rx_register(struct net_device *dev,
362                                   struct vlan_group *grp)
363 {
364         int i;
365         struct s2io_nic *nic = netdev_priv(dev);
366         unsigned long flags[MAX_TX_FIFOS];
367         struct config_param *config = &nic->config;
368         struct mac_info *mac_control = &nic->mac_control;
369
370         for (i = 0; i < config->tx_fifo_num; i++) {
371                 struct fifo_info *fifo = &mac_control->fifos[i];
372
373                 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
374         }
375
376         nic->vlgrp = grp;
377
378         for (i = config->tx_fifo_num - 1; i >= 0; i--) {
379                 struct fifo_info *fifo = &mac_control->fifos[i];
380
381                 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
382         }
383 }
384
385 /* Unregister the vlan */
386 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
387 {
388         int i;
389         struct s2io_nic *nic = netdev_priv(dev);
390         unsigned long flags[MAX_TX_FIFOS];
391         struct config_param *config = &nic->config;
392         struct mac_info *mac_control = &nic->mac_control;
393
394         for (i = 0; i < config->tx_fifo_num; i++) {
395                 struct fifo_info *fifo = &mac_control->fifos[i];
396
397                 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
398         }
399
400         if (nic->vlgrp)
401                 vlan_group_set_device(nic->vlgrp, vid, NULL);
402
403         for (i = config->tx_fifo_num - 1; i >= 0; i--) {
404                 struct fifo_info *fifo = &mac_control->fifos[i];
405
406                 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
407         }
408 }
409
410 /*
411  * Constants to be programmed into the Xena's registers, to configure
412  * the XAUI.
413  */
414
415 #define END_SIGN        0x0
416 static const u64 herc_act_dtx_cfg[] = {
417         /* Set address */
418         0x8000051536750000ULL, 0x80000515367500E0ULL,
419         /* Write data */
420         0x8000051536750004ULL, 0x80000515367500E4ULL,
421         /* Set address */
422         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
423         /* Write data */
424         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
425         /* Set address */
426         0x801205150D440000ULL, 0x801205150D4400E0ULL,
427         /* Write data */
428         0x801205150D440004ULL, 0x801205150D4400E4ULL,
429         /* Set address */
430         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
431         /* Write data */
432         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
433         /* Done */
434         END_SIGN
435 };
436
437 static const u64 xena_dtx_cfg[] = {
438         /* Set address */
439         0x8000051500000000ULL, 0x80000515000000E0ULL,
440         /* Write data */
441         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
442         /* Set address */
443         0x8001051500000000ULL, 0x80010515000000E0ULL,
444         /* Write data */
445         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
446         /* Set address */
447         0x8002051500000000ULL, 0x80020515000000E0ULL,
448         /* Write data */
449         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
450         END_SIGN
451 };
452
453 /*
454  * Constants for Fixing the MacAddress problem seen mostly on
455  * Alpha machines.
456  */
457 static const u64 fix_mac[] = {
458         0x0060000000000000ULL, 0x0060600000000000ULL,
459         0x0040600000000000ULL, 0x0000600000000000ULL,
460         0x0020600000000000ULL, 0x0060600000000000ULL,
461         0x0020600000000000ULL, 0x0060600000000000ULL,
462         0x0020600000000000ULL, 0x0060600000000000ULL,
463         0x0020600000000000ULL, 0x0060600000000000ULL,
464         0x0020600000000000ULL, 0x0060600000000000ULL,
465         0x0020600000000000ULL, 0x0060600000000000ULL,
466         0x0020600000000000ULL, 0x0060600000000000ULL,
467         0x0020600000000000ULL, 0x0060600000000000ULL,
468         0x0020600000000000ULL, 0x0060600000000000ULL,
469         0x0020600000000000ULL, 0x0060600000000000ULL,
470         0x0020600000000000ULL, 0x0000600000000000ULL,
471         0x0040600000000000ULL, 0x0060600000000000ULL,
472         END_SIGN
473 };
474
475 MODULE_LICENSE("GPL");
476 MODULE_VERSION(DRV_VERSION);
477
478
479 /* Module Loadable parameters. */
480 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
481 S2IO_PARM_INT(rx_ring_num, 1);
482 S2IO_PARM_INT(multiq, 0);
483 S2IO_PARM_INT(rx_ring_mode, 1);
484 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
485 S2IO_PARM_INT(rmac_pause_time, 0x100);
486 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
487 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
488 S2IO_PARM_INT(shared_splits, 0);
489 S2IO_PARM_INT(tmac_util_period, 5);
490 S2IO_PARM_INT(rmac_util_period, 5);
491 S2IO_PARM_INT(l3l4hdr_size, 128);
492 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
493 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
494 /* Frequency of Rx desc syncs expressed as power of 2 */
495 S2IO_PARM_INT(rxsync_frequency, 3);
496 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
497 S2IO_PARM_INT(intr_type, 2);
498 /* Large receive offload feature */
499 static unsigned int lro_enable;
500 module_param_named(lro, lro_enable, uint, 0);
501
502 /* Max pkts to be aggregated by LRO at one time. If not specified,
503  * aggregation happens until we hit max IP pkt size(64K)
504  */
505 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
506 S2IO_PARM_INT(indicate_max_pkts, 0);
507
508 S2IO_PARM_INT(napi, 1);
509 S2IO_PARM_INT(ufo, 0);
510 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
511
512 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
513 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
514 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
515 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
516 static unsigned int rts_frm_len[MAX_RX_RINGS] =
517 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
518
519 module_param_array(tx_fifo_len, uint, NULL, 0);
520 module_param_array(rx_ring_sz, uint, NULL, 0);
521 module_param_array(rts_frm_len, uint, NULL, 0);
522
523 /*
524  * S2IO device table.
525  * This table lists all the devices that this driver supports.
526  */
527 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
528         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
529          PCI_ANY_ID, PCI_ANY_ID},
530         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
531          PCI_ANY_ID, PCI_ANY_ID},
532         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
533          PCI_ANY_ID, PCI_ANY_ID},
534         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
535          PCI_ANY_ID, PCI_ANY_ID},
536         {0,}
537 };
538
539 MODULE_DEVICE_TABLE(pci, s2io_tbl);
540
541 static struct pci_error_handlers s2io_err_handler = {
542         .error_detected = s2io_io_error_detected,
543         .slot_reset = s2io_io_slot_reset,
544         .resume = s2io_io_resume,
545 };
546
547 static struct pci_driver s2io_driver = {
548         .name = "S2IO",
549         .id_table = s2io_tbl,
550         .probe = s2io_init_nic,
551         .remove = __devexit_p(s2io_rem_nic),
552         .err_handler = &s2io_err_handler,
553 };
554
555 /* A simplifier macro used both by init and free shared_mem Fns(). */
556 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
557
558 /* netqueue manipulation helper functions */
559 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
560 {
561         if (!sp->config.multiq) {
562                 int i;
563
564                 for (i = 0; i < sp->config.tx_fifo_num; i++)
565                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
566         }
567         netif_tx_stop_all_queues(sp->dev);
568 }
569
570 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
571 {
572         if (!sp->config.multiq)
573                 sp->mac_control.fifos[fifo_no].queue_state =
574                         FIFO_QUEUE_STOP;
575
576         netif_tx_stop_all_queues(sp->dev);
577 }
578
579 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
580 {
581         if (!sp->config.multiq) {
582                 int i;
583
584                 for (i = 0; i < sp->config.tx_fifo_num; i++)
585                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
586         }
587         netif_tx_start_all_queues(sp->dev);
588 }
589
590 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
591 {
592         if (!sp->config.multiq)
593                 sp->mac_control.fifos[fifo_no].queue_state =
594                         FIFO_QUEUE_START;
595
596         netif_tx_start_all_queues(sp->dev);
597 }
598
599 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
600 {
601         if (!sp->config.multiq) {
602                 int i;
603
604                 for (i = 0; i < sp->config.tx_fifo_num; i++)
605                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
606         }
607         netif_tx_wake_all_queues(sp->dev);
608 }
609
610 static inline void s2io_wake_tx_queue(
611         struct fifo_info *fifo, int cnt, u8 multiq)
612 {
613
614         if (multiq) {
615                 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
616                         netif_wake_subqueue(fifo->dev, fifo->fifo_no);
617         } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
618                 if (netif_queue_stopped(fifo->dev)) {
619                         fifo->queue_state = FIFO_QUEUE_START;
620                         netif_wake_queue(fifo->dev);
621                 }
622         }
623 }
624
625 /**
626  * init_shared_mem - Allocation and Initialization of Memory
627  * @nic: Device private variable.
628  * Description: The function allocates all the memory areas shared
629  * between the NIC and the driver. This includes Tx descriptors,
630  * Rx descriptors and the statistics block.
631  */
632
633 static int init_shared_mem(struct s2io_nic *nic)
634 {
635         u32 size;
636         void *tmp_v_addr, *tmp_v_addr_next;
637         dma_addr_t tmp_p_addr, tmp_p_addr_next;
638         struct RxD_block *pre_rxd_blk = NULL;
639         int i, j, blk_cnt;
640         int lst_size, lst_per_page;
641         struct net_device *dev = nic->dev;
642         unsigned long tmp;
643         struct buffAdd *ba;
644         struct config_param *config = &nic->config;
645         struct mac_info *mac_control = &nic->mac_control;
646         unsigned long long mem_allocated = 0;
647
648         /* Allocation and initialization of TXDLs in FIFOs */
649         size = 0;
650         for (i = 0; i < config->tx_fifo_num; i++) {
651                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
652
653                 size += tx_cfg->fifo_len;
654         }
655         if (size > MAX_AVAILABLE_TXDS) {
656                 DBG_PRINT(ERR_DBG,
657                           "Too many TxDs requested: %d, max supported: %d\n",
658                           size, MAX_AVAILABLE_TXDS);
659                 return -EINVAL;
660         }
661
662         size = 0;
663         for (i = 0; i < config->tx_fifo_num; i++) {
664                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
665
666                 size = tx_cfg->fifo_len;
667                 /*
668                  * Legal values are from 2 to 8192
669                  */
670                 if (size < 2) {
671                         DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
672                                   "Valid lengths are 2 through 8192\n",
673                                   i, size);
674                         return -EINVAL;
675                 }
676         }
677
678         lst_size = (sizeof(struct TxD) * config->max_txds);
679         lst_per_page = PAGE_SIZE / lst_size;
680
681         for (i = 0; i < config->tx_fifo_num; i++) {
682                 struct fifo_info *fifo = &mac_control->fifos[i];
683                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
684                 int fifo_len = tx_cfg->fifo_len;
685                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
686
687                 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
688                 if (!fifo->list_info) {
689                         DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
690                         return -ENOMEM;
691                 }
692                 mem_allocated += list_holder_size;
693         }
694         for (i = 0; i < config->tx_fifo_num; i++) {
695                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
696                                                 lst_per_page);
697                 struct fifo_info *fifo = &mac_control->fifos[i];
698                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
699
700                 fifo->tx_curr_put_info.offset = 0;
701                 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
702                 fifo->tx_curr_get_info.offset = 0;
703                 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
704                 fifo->fifo_no = i;
705                 fifo->nic = nic;
706                 fifo->max_txds = MAX_SKB_FRAGS + 2;
707                 fifo->dev = dev;
708
709                 for (j = 0; j < page_num; j++) {
710                         int k = 0;
711                         dma_addr_t tmp_p;
712                         void *tmp_v;
713                         tmp_v = pci_alloc_consistent(nic->pdev,
714                                                      PAGE_SIZE, &tmp_p);
715                         if (!tmp_v) {
716                                 DBG_PRINT(INFO_DBG,
717                                           "pci_alloc_consistent failed for TxDL\n");
718                                 return -ENOMEM;
719                         }
720                         /* If we got a zero DMA address(can happen on
721                          * certain platforms like PPC), reallocate.
722                          * Store virtual address of page we don't want,
723                          * to be freed later.
724                          */
725                         if (!tmp_p) {
726                                 mac_control->zerodma_virt_addr = tmp_v;
727                                 DBG_PRINT(INIT_DBG,
728                                           "%s: Zero DMA address for TxDL. "
729                                           "Virtual address %p\n",
730                                           dev->name, tmp_v);
731                                 tmp_v = pci_alloc_consistent(nic->pdev,
732                                                              PAGE_SIZE, &tmp_p);
733                                 if (!tmp_v) {
734                                         DBG_PRINT(INFO_DBG,
735                                                   "pci_alloc_consistent failed for TxDL\n");
736                                         return -ENOMEM;
737                                 }
738                                 mem_allocated += PAGE_SIZE;
739                         }
740                         while (k < lst_per_page) {
741                                 int l = (j * lst_per_page) + k;
742                                 if (l == tx_cfg->fifo_len)
743                                         break;
744                                 fifo->list_info[l].list_virt_addr =
745                                         tmp_v + (k * lst_size);
746                                 fifo->list_info[l].list_phy_addr =
747                                         tmp_p + (k * lst_size);
748                                 k++;
749                         }
750                 }
751         }
752
753         for (i = 0; i < config->tx_fifo_num; i++) {
754                 struct fifo_info *fifo = &mac_control->fifos[i];
755                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
756
757                 size = tx_cfg->fifo_len;
758                 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
759                 if (!fifo->ufo_in_band_v)
760                         return -ENOMEM;
761                 mem_allocated += (size * sizeof(u64));
762         }
763
764         /* Allocation and initialization of RXDs in Rings */
765         size = 0;
766         for (i = 0; i < config->rx_ring_num; i++) {
767                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
768                 struct ring_info *ring = &mac_control->rings[i];
769
770                 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
771                         DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
772                                   "multiple of RxDs per Block\n",
773                                   dev->name, i);
774                         return FAILURE;
775                 }
776                 size += rx_cfg->num_rxd;
777                 ring->block_count = rx_cfg->num_rxd /
778                         (rxd_count[nic->rxd_mode] + 1);
779                 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
780         }
781         if (nic->rxd_mode == RXD_MODE_1)
782                 size = (size * (sizeof(struct RxD1)));
783         else
784                 size = (size * (sizeof(struct RxD3)));
785
786         for (i = 0; i < config->rx_ring_num; i++) {
787                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
788                 struct ring_info *ring = &mac_control->rings[i];
789
790                 ring->rx_curr_get_info.block_index = 0;
791                 ring->rx_curr_get_info.offset = 0;
792                 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
793                 ring->rx_curr_put_info.block_index = 0;
794                 ring->rx_curr_put_info.offset = 0;
795                 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
796                 ring->nic = nic;
797                 ring->ring_no = i;
798                 ring->lro = lro_enable;
799
800                 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
801                 /*  Allocating all the Rx blocks */
802                 for (j = 0; j < blk_cnt; j++) {
803                         struct rx_block_info *rx_blocks;
804                         int l;
805
806                         rx_blocks = &ring->rx_blocks[j];
807                         size = SIZE_OF_BLOCK;   /* size is always page size */
808                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
809                                                           &tmp_p_addr);
810                         if (tmp_v_addr == NULL) {
811                                 /*
812                                  * In case of failure, free_shared_mem()
813                                  * is called, which should free any
814                                  * memory that was alloced till the
815                                  * failure happened.
816                                  */
817                                 rx_blocks->block_virt_addr = tmp_v_addr;
818                                 return -ENOMEM;
819                         }
820                         mem_allocated += size;
821                         memset(tmp_v_addr, 0, size);
822
823                         size = sizeof(struct rxd_info) *
824                                 rxd_count[nic->rxd_mode];
825                         rx_blocks->block_virt_addr = tmp_v_addr;
826                         rx_blocks->block_dma_addr = tmp_p_addr;
827                         rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
828                         if (!rx_blocks->rxds)
829                                 return -ENOMEM;
830                         mem_allocated += size;
831                         for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
832                                 rx_blocks->rxds[l].virt_addr =
833                                         rx_blocks->block_virt_addr +
834                                         (rxd_size[nic->rxd_mode] * l);
835                                 rx_blocks->rxds[l].dma_addr =
836                                         rx_blocks->block_dma_addr +
837                                         (rxd_size[nic->rxd_mode] * l);
838                         }
839                 }
840                 /* Interlinking all Rx Blocks */
841                 for (j = 0; j < blk_cnt; j++) {
842                         int next = (j + 1) % blk_cnt;
843                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
844                         tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
845                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
846                         tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
847
848                         pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
849                         pre_rxd_blk->reserved_2_pNext_RxD_block =
850                                 (unsigned long)tmp_v_addr_next;
851                         pre_rxd_blk->pNext_RxD_Blk_physical =
852                                 (u64)tmp_p_addr_next;
853                 }
854         }
855         if (nic->rxd_mode == RXD_MODE_3B) {
856                 /*
857                  * Allocation of Storages for buffer addresses in 2BUFF mode
858                  * and the buffers as well.
859                  */
860                 for (i = 0; i < config->rx_ring_num; i++) {
861                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
862                         struct ring_info *ring = &mac_control->rings[i];
863
864                         blk_cnt = rx_cfg->num_rxd /
865                                 (rxd_count[nic->rxd_mode] + 1);
866                         size = sizeof(struct buffAdd *) * blk_cnt;
867                         ring->ba = kmalloc(size, GFP_KERNEL);
868                         if (!ring->ba)
869                                 return -ENOMEM;
870                         mem_allocated += size;
871                         for (j = 0; j < blk_cnt; j++) {
872                                 int k = 0;
873
874                                 size = sizeof(struct buffAdd) *
875                                         (rxd_count[nic->rxd_mode] + 1);
876                                 ring->ba[j] = kmalloc(size, GFP_KERNEL);
877                                 if (!ring->ba[j])
878                                         return -ENOMEM;
879                                 mem_allocated += size;
880                                 while (k != rxd_count[nic->rxd_mode]) {
881                                         ba = &ring->ba[j][k];
882                                         size = BUF0_LEN + ALIGN_SIZE;
883                                         ba->ba_0_org = kmalloc(size, GFP_KERNEL);
884                                         if (!ba->ba_0_org)
885                                                 return -ENOMEM;
886                                         mem_allocated += size;
887                                         tmp = (unsigned long)ba->ba_0_org;
888                                         tmp += ALIGN_SIZE;
889                                         tmp &= ~((unsigned long)ALIGN_SIZE);
890                                         ba->ba_0 = (void *)tmp;
891
892                                         size = BUF1_LEN + ALIGN_SIZE;
893                                         ba->ba_1_org = kmalloc(size, GFP_KERNEL);
894                                         if (!ba->ba_1_org)
895                                                 return -ENOMEM;
896                                         mem_allocated += size;
897                                         tmp = (unsigned long)ba->ba_1_org;
898                                         tmp += ALIGN_SIZE;
899                                         tmp &= ~((unsigned long)ALIGN_SIZE);
900                                         ba->ba_1 = (void *)tmp;
901                                         k++;
902                                 }
903                         }
904                 }
905         }
906
907         /* Allocation and initialization of Statistics block */
908         size = sizeof(struct stat_block);
909         mac_control->stats_mem =
910                 pci_alloc_consistent(nic->pdev, size,
911                                      &mac_control->stats_mem_phy);
912
913         if (!mac_control->stats_mem) {
914                 /*
915                  * In case of failure, free_shared_mem() is called, which
916                  * should free any memory that was alloced till the
917                  * failure happened.
918                  */
919                 return -ENOMEM;
920         }
921         mem_allocated += size;
922         mac_control->stats_mem_sz = size;
923
924         tmp_v_addr = mac_control->stats_mem;
925         mac_control->stats_info = (struct stat_block *)tmp_v_addr;
926         memset(tmp_v_addr, 0, size);
927         DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
928                 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
929         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
930         return SUCCESS;
931 }
932
933 /**
934  * free_shared_mem - Free the allocated Memory
935  * @nic:  Device private variable.
936  * Description: This function is to free all memory locations allocated by
937  * the init_shared_mem() function and return it to the kernel.
938  */
939
940 static void free_shared_mem(struct s2io_nic *nic)
941 {
942         int i, j, blk_cnt, size;
943         void *tmp_v_addr;
944         dma_addr_t tmp_p_addr;
945         int lst_size, lst_per_page;
946         struct net_device *dev;
947         int page_num = 0;
948         struct config_param *config;
949         struct mac_info *mac_control;
950         struct stat_block *stats;
951         struct swStat *swstats;
952
953         if (!nic)
954                 return;
955
956         dev = nic->dev;
957
958         config = &nic->config;
959         mac_control = &nic->mac_control;
960         stats = mac_control->stats_info;
961         swstats = &stats->sw_stat;
962
963         lst_size = sizeof(struct TxD) * config->max_txds;
964         lst_per_page = PAGE_SIZE / lst_size;
965
966         for (i = 0; i < config->tx_fifo_num; i++) {
967                 struct fifo_info *fifo = &mac_control->fifos[i];
968                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
969
970                 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
971                 for (j = 0; j < page_num; j++) {
972                         int mem_blks = (j * lst_per_page);
973                         struct list_info_hold *fli;
974
975                         if (!fifo->list_info)
976                                 return;
977
978                         fli = &fifo->list_info[mem_blks];
979                         if (!fli->list_virt_addr)
980                                 break;
981                         pci_free_consistent(nic->pdev, PAGE_SIZE,
982                                             fli->list_virt_addr,
983                                             fli->list_phy_addr);
984                         swstats->mem_freed += PAGE_SIZE;
985                 }
986                 /* If we got a zero DMA address during allocation,
987                  * free the page now
988                  */
989                 if (mac_control->zerodma_virt_addr) {
990                         pci_free_consistent(nic->pdev, PAGE_SIZE,
991                                             mac_control->zerodma_virt_addr,
992                                             (dma_addr_t)0);
993                         DBG_PRINT(INIT_DBG,
994                                   "%s: Freeing TxDL with zero DMA address. "
995                                   "Virtual address %p\n",
996                                   dev->name, mac_control->zerodma_virt_addr);
997                         swstats->mem_freed += PAGE_SIZE;
998                 }
999                 kfree(fifo->list_info);
1000                 swstats->mem_freed += tx_cfg->fifo_len *
1001                         sizeof(struct list_info_hold);
1002         }
1003
1004         size = SIZE_OF_BLOCK;
1005         for (i = 0; i < config->rx_ring_num; i++) {
1006                 struct ring_info *ring = &mac_control->rings[i];
1007
1008                 blk_cnt = ring->block_count;
1009                 for (j = 0; j < blk_cnt; j++) {
1010                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1011                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1012                         if (tmp_v_addr == NULL)
1013                                 break;
1014                         pci_free_consistent(nic->pdev, size,
1015                                             tmp_v_addr, tmp_p_addr);
1016                         swstats->mem_freed += size;
1017                         kfree(ring->rx_blocks[j].rxds);
1018                         swstats->mem_freed += sizeof(struct rxd_info) *
1019                                 rxd_count[nic->rxd_mode];
1020                 }
1021         }
1022
1023         if (nic->rxd_mode == RXD_MODE_3B) {
1024                 /* Freeing buffer storage addresses in 2BUFF mode. */
1025                 for (i = 0; i < config->rx_ring_num; i++) {
1026                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1027                         struct ring_info *ring = &mac_control->rings[i];
1028
1029                         blk_cnt = rx_cfg->num_rxd /
1030                                 (rxd_count[nic->rxd_mode] + 1);
1031                         for (j = 0; j < blk_cnt; j++) {
1032                                 int k = 0;
1033                                 if (!ring->ba[j])
1034                                         continue;
1035                                 while (k != rxd_count[nic->rxd_mode]) {
1036                                         struct buffAdd *ba = &ring->ba[j][k];
1037                                         kfree(ba->ba_0_org);
1038                                         swstats->mem_freed +=
1039                                                 BUF0_LEN + ALIGN_SIZE;
1040                                         kfree(ba->ba_1_org);
1041                                         swstats->mem_freed +=
1042                                                 BUF1_LEN + ALIGN_SIZE;
1043                                         k++;
1044                                 }
1045                                 kfree(ring->ba[j]);
1046                                 swstats->mem_freed += sizeof(struct buffAdd) *
1047                                         (rxd_count[nic->rxd_mode] + 1);
1048                         }
1049                         kfree(ring->ba);
1050                         swstats->mem_freed += sizeof(struct buffAdd *) *
1051                                 blk_cnt;
1052                 }
1053         }
1054
1055         for (i = 0; i < nic->config.tx_fifo_num; i++) {
1056                 struct fifo_info *fifo = &mac_control->fifos[i];
1057                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1058
1059                 if (fifo->ufo_in_band_v) {
1060                         swstats->mem_freed += tx_cfg->fifo_len *
1061                                 sizeof(u64);
1062                         kfree(fifo->ufo_in_band_v);
1063                 }
1064         }
1065
1066         if (mac_control->stats_mem) {
1067                 swstats->mem_freed += mac_control->stats_mem_sz;
1068                 pci_free_consistent(nic->pdev,
1069                                     mac_control->stats_mem_sz,
1070                                     mac_control->stats_mem,
1071                                     mac_control->stats_mem_phy);
1072         }
1073 }
1074
1075 /**
1076  * s2io_verify_pci_mode -
1077  */
1078
1079 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1080 {
1081         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1082         register u64 val64 = 0;
1083         int     mode;
1084
1085         val64 = readq(&bar0->pci_mode);
1086         mode = (u8)GET_PCI_MODE(val64);
1087
1088         if (val64 & PCI_MODE_UNKNOWN_MODE)
1089                 return -1;      /* Unknown PCI mode */
1090         return mode;
1091 }
1092
1093 #define NEC_VENID   0x1033
1094 #define NEC_DEVID   0x0125
1095 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1096 {
1097         struct pci_dev *tdev = NULL;
1098         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1099                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1100                         if (tdev->bus == s2io_pdev->bus->parent) {
1101                                 pci_dev_put(tdev);
1102                                 return 1;
1103                         }
1104                 }
1105         }
1106         return 0;
1107 }
1108
1109 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1110 /**
1111  * s2io_print_pci_mode -
1112  */
1113 static int s2io_print_pci_mode(struct s2io_nic *nic)
1114 {
1115         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1116         register u64 val64 = 0;
1117         int     mode;
1118         struct config_param *config = &nic->config;
1119         const char *pcimode;
1120
1121         val64 = readq(&bar0->pci_mode);
1122         mode = (u8)GET_PCI_MODE(val64);
1123
1124         if (val64 & PCI_MODE_UNKNOWN_MODE)
1125                 return -1;      /* Unknown PCI mode */
1126
1127         config->bus_speed = bus_speed[mode];
1128
1129         if (s2io_on_nec_bridge(nic->pdev)) {
1130                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1131                           nic->dev->name);
1132                 return mode;
1133         }
1134
1135         switch (mode) {
1136         case PCI_MODE_PCI_33:
1137                 pcimode = "33MHz PCI bus";
1138                 break;
1139         case PCI_MODE_PCI_66:
1140                 pcimode = "66MHz PCI bus";
1141                 break;
1142         case PCI_MODE_PCIX_M1_66:
1143                 pcimode = "66MHz PCIX(M1) bus";
1144                 break;
1145         case PCI_MODE_PCIX_M1_100:
1146                 pcimode = "100MHz PCIX(M1) bus";
1147                 break;
1148         case PCI_MODE_PCIX_M1_133:
1149                 pcimode = "133MHz PCIX(M1) bus";
1150                 break;
1151         case PCI_MODE_PCIX_M2_66:
1152                 pcimode = "133MHz PCIX(M2) bus";
1153                 break;
1154         case PCI_MODE_PCIX_M2_100:
1155                 pcimode = "200MHz PCIX(M2) bus";
1156                 break;
1157         case PCI_MODE_PCIX_M2_133:
1158                 pcimode = "266MHz PCIX(M2) bus";
1159                 break;
1160         default:
1161                 pcimode = "unsupported bus!";
1162                 mode = -1;
1163         }
1164
1165         DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1166                   nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1167
1168         return mode;
1169 }
1170
1171 /**
1172  *  init_tti - Initialization transmit traffic interrupt scheme
1173  *  @nic: device private variable
1174  *  @link: link status (UP/DOWN) used to enable/disable continuous
1175  *  transmit interrupts
1176  *  Description: The function configures transmit traffic interrupts
1177  *  Return Value:  SUCCESS on success and
1178  *  '-1' on failure
1179  */
1180
1181 static int init_tti(struct s2io_nic *nic, int link)
1182 {
1183         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1184         register u64 val64 = 0;
1185         int i;
1186         struct config_param *config = &nic->config;
1187
1188         for (i = 0; i < config->tx_fifo_num; i++) {
1189                 /*
1190                  * TTI Initialization. Default Tx timer gets us about
1191                  * 250 interrupts per sec. Continuous interrupts are enabled
1192                  * by default.
1193                  */
1194                 if (nic->device_type == XFRAME_II_DEVICE) {
1195                         int count = (nic->config.bus_speed * 125)/2;
1196                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1197                 } else
1198                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1199
1200                 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1201                         TTI_DATA1_MEM_TX_URNG_B(0x10) |
1202                         TTI_DATA1_MEM_TX_URNG_C(0x30) |
1203                         TTI_DATA1_MEM_TX_TIMER_AC_EN;
1204                 if (i == 0)
1205                         if (use_continuous_tx_intrs && (link == LINK_UP))
1206                                 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1207                 writeq(val64, &bar0->tti_data1_mem);
1208
1209                 if (nic->config.intr_type == MSI_X) {
1210                         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1211                                 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1212                                 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1213                                 TTI_DATA2_MEM_TX_UFC_D(0x300);
1214                 } else {
1215                         if ((nic->config.tx_steering_type ==
1216                              TX_DEFAULT_STEERING) &&
1217                             (config->tx_fifo_num > 1) &&
1218                             (i >= nic->udp_fifo_idx) &&
1219                             (i < (nic->udp_fifo_idx +
1220                                   nic->total_udp_fifos)))
1221                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1222                                         TTI_DATA2_MEM_TX_UFC_B(0x80) |
1223                                         TTI_DATA2_MEM_TX_UFC_C(0x100) |
1224                                         TTI_DATA2_MEM_TX_UFC_D(0x120);
1225                         else
1226                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1227                                         TTI_DATA2_MEM_TX_UFC_B(0x20) |
1228                                         TTI_DATA2_MEM_TX_UFC_C(0x40) |
1229                                         TTI_DATA2_MEM_TX_UFC_D(0x80);
1230                 }
1231
1232                 writeq(val64, &bar0->tti_data2_mem);
1233
1234                 val64 = TTI_CMD_MEM_WE |
1235                         TTI_CMD_MEM_STROBE_NEW_CMD |
1236                         TTI_CMD_MEM_OFFSET(i);
1237                 writeq(val64, &bar0->tti_command_mem);
1238
1239                 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1240                                           TTI_CMD_MEM_STROBE_NEW_CMD,
1241                                           S2IO_BIT_RESET) != SUCCESS)
1242                         return FAILURE;
1243         }
1244
1245         return SUCCESS;
1246 }
1247
1248 /**
1249  *  init_nic - Initialization of hardware
1250  *  @nic: device private variable
1251  *  Description: The function sequentially configures every block
1252  *  of the H/W from their reset values.
1253  *  Return Value:  SUCCESS on success and
1254  *  '-1' on failure (endian settings incorrect).
1255  */
1256
1257 static int init_nic(struct s2io_nic *nic)
1258 {
1259         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1260         struct net_device *dev = nic->dev;
1261         register u64 val64 = 0;
1262         void __iomem *add;
1263         u32 time;
1264         int i, j;
1265         int dtx_cnt = 0;
1266         unsigned long long mem_share;
1267         int mem_size;
1268         struct config_param *config = &nic->config;
1269         struct mac_info *mac_control = &nic->mac_control;
1270
1271         /* to set the swapper controle on the card */
1272         if (s2io_set_swapper(nic)) {
1273                 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1274                 return -EIO;
1275         }
1276
1277         /*
1278          * Herc requires EOI to be removed from reset before XGXS, so..
1279          */
1280         if (nic->device_type & XFRAME_II_DEVICE) {
1281                 val64 = 0xA500000000ULL;
1282                 writeq(val64, &bar0->sw_reset);
1283                 msleep(500);
1284                 val64 = readq(&bar0->sw_reset);
1285         }
1286
1287         /* Remove XGXS from reset state */
1288         val64 = 0;
1289         writeq(val64, &bar0->sw_reset);
1290         msleep(500);
1291         val64 = readq(&bar0->sw_reset);
1292
1293         /* Ensure that it's safe to access registers by checking
1294          * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1295          */
1296         if (nic->device_type == XFRAME_II_DEVICE) {
1297                 for (i = 0; i < 50; i++) {
1298                         val64 = readq(&bar0->adapter_status);
1299                         if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1300                                 break;
1301                         msleep(10);
1302                 }
1303                 if (i == 50)
1304                         return -ENODEV;
1305         }
1306
1307         /*  Enable Receiving broadcasts */
1308         add = &bar0->mac_cfg;
1309         val64 = readq(&bar0->mac_cfg);
1310         val64 |= MAC_RMAC_BCAST_ENABLE;
1311         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1312         writel((u32)val64, add);
1313         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1314         writel((u32) (val64 >> 32), (add + 4));
1315
1316         /* Read registers in all blocks */
1317         val64 = readq(&bar0->mac_int_mask);
1318         val64 = readq(&bar0->mc_int_mask);
1319         val64 = readq(&bar0->xgxs_int_mask);
1320
1321         /*  Set MTU */
1322         val64 = dev->mtu;
1323         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1324
1325         if (nic->device_type & XFRAME_II_DEVICE) {
1326                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1327                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1328                                           &bar0->dtx_control, UF);
1329                         if (dtx_cnt & 0x1)
1330                                 msleep(1); /* Necessary!! */
1331                         dtx_cnt++;
1332                 }
1333         } else {
1334                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1335                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1336                                           &bar0->dtx_control, UF);
1337                         val64 = readq(&bar0->dtx_control);
1338                         dtx_cnt++;
1339                 }
1340         }
1341
1342         /*  Tx DMA Initialization */
1343         val64 = 0;
1344         writeq(val64, &bar0->tx_fifo_partition_0);
1345         writeq(val64, &bar0->tx_fifo_partition_1);
1346         writeq(val64, &bar0->tx_fifo_partition_2);
1347         writeq(val64, &bar0->tx_fifo_partition_3);
1348
1349         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1350                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1351
1352                 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1353                         vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1354
1355                 if (i == (config->tx_fifo_num - 1)) {
1356                         if (i % 2 == 0)
1357                                 i++;
1358                 }
1359
1360                 switch (i) {
1361                 case 1:
1362                         writeq(val64, &bar0->tx_fifo_partition_0);
1363                         val64 = 0;
1364                         j = 0;
1365                         break;
1366                 case 3:
1367                         writeq(val64, &bar0->tx_fifo_partition_1);
1368                         val64 = 0;
1369                         j = 0;
1370                         break;
1371                 case 5:
1372                         writeq(val64, &bar0->tx_fifo_partition_2);
1373                         val64 = 0;
1374                         j = 0;
1375                         break;
1376                 case 7:
1377                         writeq(val64, &bar0->tx_fifo_partition_3);
1378                         val64 = 0;
1379                         j = 0;
1380                         break;
1381                 default:
1382                         j++;
1383                         break;
1384                 }
1385         }
1386
1387         /*
1388          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1389          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1390          */
1391         if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1392                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1393
1394         val64 = readq(&bar0->tx_fifo_partition_0);
1395         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1396                   &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1397
1398         /*
1399          * Initialization of Tx_PA_CONFIG register to ignore packet
1400          * integrity checking.
1401          */
1402         val64 = readq(&bar0->tx_pa_cfg);
1403         val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1404                 TX_PA_CFG_IGNORE_SNAP_OUI |
1405                 TX_PA_CFG_IGNORE_LLC_CTRL |
1406                 TX_PA_CFG_IGNORE_L2_ERR;
1407         writeq(val64, &bar0->tx_pa_cfg);
1408
1409         /* Rx DMA intialization. */
1410         val64 = 0;
1411         for (i = 0; i < config->rx_ring_num; i++) {
1412                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1413
1414                 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1415         }
1416         writeq(val64, &bar0->rx_queue_priority);
1417
1418         /*
1419          * Allocating equal share of memory to all the
1420          * configured Rings.
1421          */
1422         val64 = 0;
1423         if (nic->device_type & XFRAME_II_DEVICE)
1424                 mem_size = 32;
1425         else
1426                 mem_size = 64;
1427
1428         for (i = 0; i < config->rx_ring_num; i++) {
1429                 switch (i) {
1430                 case 0:
1431                         mem_share = (mem_size / config->rx_ring_num +
1432                                      mem_size % config->rx_ring_num);
1433                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1434                         continue;
1435                 case 1:
1436                         mem_share = (mem_size / config->rx_ring_num);
1437                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1438                         continue;
1439                 case 2:
1440                         mem_share = (mem_size / config->rx_ring_num);
1441                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1442                         continue;
1443                 case 3:
1444                         mem_share = (mem_size / config->rx_ring_num);
1445                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1446                         continue;
1447                 case 4:
1448                         mem_share = (mem_size / config->rx_ring_num);
1449                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1450                         continue;
1451                 case 5:
1452                         mem_share = (mem_size / config->rx_ring_num);
1453                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1454                         continue;
1455                 case 6:
1456                         mem_share = (mem_size / config->rx_ring_num);
1457                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1458                         continue;
1459                 case 7:
1460                         mem_share = (mem_size / config->rx_ring_num);
1461                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1462                         continue;
1463                 }
1464         }
1465         writeq(val64, &bar0->rx_queue_cfg);
1466
1467         /*
1468          * Filling Tx round robin registers
1469          * as per the number of FIFOs for equal scheduling priority
1470          */
1471         switch (config->tx_fifo_num) {
1472         case 1:
1473                 val64 = 0x0;
1474                 writeq(val64, &bar0->tx_w_round_robin_0);
1475                 writeq(val64, &bar0->tx_w_round_robin_1);
1476                 writeq(val64, &bar0->tx_w_round_robin_2);
1477                 writeq(val64, &bar0->tx_w_round_robin_3);
1478                 writeq(val64, &bar0->tx_w_round_robin_4);
1479                 break;
1480         case 2:
1481                 val64 = 0x0001000100010001ULL;
1482                 writeq(val64, &bar0->tx_w_round_robin_0);
1483                 writeq(val64, &bar0->tx_w_round_robin_1);
1484                 writeq(val64, &bar0->tx_w_round_robin_2);
1485                 writeq(val64, &bar0->tx_w_round_robin_3);
1486                 val64 = 0x0001000100000000ULL;
1487                 writeq(val64, &bar0->tx_w_round_robin_4);
1488                 break;
1489         case 3:
1490                 val64 = 0x0001020001020001ULL;
1491                 writeq(val64, &bar0->tx_w_round_robin_0);
1492                 val64 = 0x0200010200010200ULL;
1493                 writeq(val64, &bar0->tx_w_round_robin_1);
1494                 val64 = 0x0102000102000102ULL;
1495                 writeq(val64, &bar0->tx_w_round_robin_2);
1496                 val64 = 0x0001020001020001ULL;
1497                 writeq(val64, &bar0->tx_w_round_robin_3);
1498                 val64 = 0x0200010200000000ULL;
1499                 writeq(val64, &bar0->tx_w_round_robin_4);
1500                 break;
1501         case 4:
1502                 val64 = 0x0001020300010203ULL;
1503                 writeq(val64, &bar0->tx_w_round_robin_0);
1504                 writeq(val64, &bar0->tx_w_round_robin_1);
1505                 writeq(val64, &bar0->tx_w_round_robin_2);
1506                 writeq(val64, &bar0->tx_w_round_robin_3);
1507                 val64 = 0x0001020300000000ULL;
1508                 writeq(val64, &bar0->tx_w_round_robin_4);
1509                 break;
1510         case 5:
1511                 val64 = 0x0001020304000102ULL;
1512                 writeq(val64, &bar0->tx_w_round_robin_0);
1513                 val64 = 0x0304000102030400ULL;
1514                 writeq(val64, &bar0->tx_w_round_robin_1);
1515                 val64 = 0x0102030400010203ULL;
1516                 writeq(val64, &bar0->tx_w_round_robin_2);
1517                 val64 = 0x0400010203040001ULL;
1518                 writeq(val64, &bar0->tx_w_round_robin_3);
1519                 val64 = 0x0203040000000000ULL;
1520                 writeq(val64, &bar0->tx_w_round_robin_4);
1521                 break;
1522         case 6:
1523                 val64 = 0x0001020304050001ULL;
1524                 writeq(val64, &bar0->tx_w_round_robin_0);
1525                 val64 = 0x0203040500010203ULL;
1526                 writeq(val64, &bar0->tx_w_round_robin_1);
1527                 val64 = 0x0405000102030405ULL;
1528                 writeq(val64, &bar0->tx_w_round_robin_2);
1529                 val64 = 0x0001020304050001ULL;
1530                 writeq(val64, &bar0->tx_w_round_robin_3);
1531                 val64 = 0x0203040500000000ULL;
1532                 writeq(val64, &bar0->tx_w_round_robin_4);
1533                 break;
1534         case 7:
1535                 val64 = 0x0001020304050600ULL;
1536                 writeq(val64, &bar0->tx_w_round_robin_0);
1537                 val64 = 0x0102030405060001ULL;
1538                 writeq(val64, &bar0->tx_w_round_robin_1);
1539                 val64 = 0x0203040506000102ULL;
1540                 writeq(val64, &bar0->tx_w_round_robin_2);
1541                 val64 = 0x0304050600010203ULL;
1542                 writeq(val64, &bar0->tx_w_round_robin_3);
1543                 val64 = 0x0405060000000000ULL;
1544                 writeq(val64, &bar0->tx_w_round_robin_4);
1545                 break;
1546         case 8:
1547                 val64 = 0x0001020304050607ULL;
1548                 writeq(val64, &bar0->tx_w_round_robin_0);
1549                 writeq(val64, &bar0->tx_w_round_robin_1);
1550                 writeq(val64, &bar0->tx_w_round_robin_2);
1551                 writeq(val64, &bar0->tx_w_round_robin_3);
1552                 val64 = 0x0001020300000000ULL;
1553                 writeq(val64, &bar0->tx_w_round_robin_4);
1554                 break;
1555         }
1556
1557         /* Enable all configured Tx FIFO partitions */
1558         val64 = readq(&bar0->tx_fifo_partition_0);
1559         val64 |= (TX_FIFO_PARTITION_EN);
1560         writeq(val64, &bar0->tx_fifo_partition_0);
1561
1562         /* Filling the Rx round robin registers as per the
1563          * number of Rings and steering based on QoS with
1564          * equal priority.
1565          */
1566         switch (config->rx_ring_num) {
1567         case 1:
1568                 val64 = 0x0;
1569                 writeq(val64, &bar0->rx_w_round_robin_0);
1570                 writeq(val64, &bar0->rx_w_round_robin_1);
1571                 writeq(val64, &bar0->rx_w_round_robin_2);
1572                 writeq(val64, &bar0->rx_w_round_robin_3);
1573                 writeq(val64, &bar0->rx_w_round_robin_4);
1574
1575                 val64 = 0x8080808080808080ULL;
1576                 writeq(val64, &bar0->rts_qos_steering);
1577                 break;
1578         case 2:
1579                 val64 = 0x0001000100010001ULL;
1580                 writeq(val64, &bar0->rx_w_round_robin_0);
1581                 writeq(val64, &bar0->rx_w_round_robin_1);
1582                 writeq(val64, &bar0->rx_w_round_robin_2);
1583                 writeq(val64, &bar0->rx_w_round_robin_3);
1584                 val64 = 0x0001000100000000ULL;
1585                 writeq(val64, &bar0->rx_w_round_robin_4);
1586
1587                 val64 = 0x8080808040404040ULL;
1588                 writeq(val64, &bar0->rts_qos_steering);
1589                 break;
1590         case 3:
1591                 val64 = 0x0001020001020001ULL;
1592                 writeq(val64, &bar0->rx_w_round_robin_0);
1593                 val64 = 0x0200010200010200ULL;
1594                 writeq(val64, &bar0->rx_w_round_robin_1);
1595                 val64 = 0x0102000102000102ULL;
1596                 writeq(val64, &bar0->rx_w_round_robin_2);
1597                 val64 = 0x0001020001020001ULL;
1598                 writeq(val64, &bar0->rx_w_round_robin_3);
1599                 val64 = 0x0200010200000000ULL;
1600                 writeq(val64, &bar0->rx_w_round_robin_4);
1601
1602                 val64 = 0x8080804040402020ULL;
1603                 writeq(val64, &bar0->rts_qos_steering);
1604                 break;
1605         case 4:
1606                 val64 = 0x0001020300010203ULL;
1607                 writeq(val64, &bar0->rx_w_round_robin_0);
1608                 writeq(val64, &bar0->rx_w_round_robin_1);
1609                 writeq(val64, &bar0->rx_w_round_robin_2);
1610                 writeq(val64, &bar0->rx_w_round_robin_3);
1611                 val64 = 0x0001020300000000ULL;
1612                 writeq(val64, &bar0->rx_w_round_robin_4);
1613
1614                 val64 = 0x8080404020201010ULL;
1615                 writeq(val64, &bar0->rts_qos_steering);
1616                 break;
1617         case 5:
1618                 val64 = 0x0001020304000102ULL;
1619                 writeq(val64, &bar0->rx_w_round_robin_0);
1620                 val64 = 0x0304000102030400ULL;
1621                 writeq(val64, &bar0->rx_w_round_robin_1);
1622                 val64 = 0x0102030400010203ULL;
1623                 writeq(val64, &bar0->rx_w_round_robin_2);
1624                 val64 = 0x0400010203040001ULL;
1625                 writeq(val64, &bar0->rx_w_round_robin_3);
1626                 val64 = 0x0203040000000000ULL;
1627                 writeq(val64, &bar0->rx_w_round_robin_4);
1628
1629                 val64 = 0x8080404020201008ULL;
1630                 writeq(val64, &bar0->rts_qos_steering);
1631                 break;
1632         case 6:
1633                 val64 = 0x0001020304050001ULL;
1634                 writeq(val64, &bar0->rx_w_round_robin_0);
1635                 val64 = 0x0203040500010203ULL;
1636                 writeq(val64, &bar0->rx_w_round_robin_1);
1637                 val64 = 0x0405000102030405ULL;
1638                 writeq(val64, &bar0->rx_w_round_robin_2);
1639                 val64 = 0x0001020304050001ULL;
1640                 writeq(val64, &bar0->rx_w_round_robin_3);
1641                 val64 = 0x0203040500000000ULL;
1642                 writeq(val64, &bar0->rx_w_round_robin_4);
1643
1644                 val64 = 0x8080404020100804ULL;
1645                 writeq(val64, &bar0->rts_qos_steering);
1646                 break;
1647         case 7:
1648                 val64 = 0x0001020304050600ULL;
1649                 writeq(val64, &bar0->rx_w_round_robin_0);
1650                 val64 = 0x0102030405060001ULL;
1651                 writeq(val64, &bar0->rx_w_round_robin_1);
1652                 val64 = 0x0203040506000102ULL;
1653                 writeq(val64, &bar0->rx_w_round_robin_2);
1654                 val64 = 0x0304050600010203ULL;
1655                 writeq(val64, &bar0->rx_w_round_robin_3);
1656                 val64 = 0x0405060000000000ULL;
1657                 writeq(val64, &bar0->rx_w_round_robin_4);
1658
1659                 val64 = 0x8080402010080402ULL;
1660                 writeq(val64, &bar0->rts_qos_steering);
1661                 break;
1662         case 8:
1663                 val64 = 0x0001020304050607ULL;
1664                 writeq(val64, &bar0->rx_w_round_robin_0);
1665                 writeq(val64, &bar0->rx_w_round_robin_1);
1666                 writeq(val64, &bar0->rx_w_round_robin_2);
1667                 writeq(val64, &bar0->rx_w_round_robin_3);
1668                 val64 = 0x0001020300000000ULL;
1669                 writeq(val64, &bar0->rx_w_round_robin_4);
1670
1671                 val64 = 0x8040201008040201ULL;
1672                 writeq(val64, &bar0->rts_qos_steering);
1673                 break;
1674         }
1675
1676         /* UDP Fix */
1677         val64 = 0;
1678         for (i = 0; i < 8; i++)
1679                 writeq(val64, &bar0->rts_frm_len_n[i]);
1680
1681         /* Set the default rts frame length for the rings configured */
1682         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1683         for (i = 0 ; i < config->rx_ring_num ; i++)
1684                 writeq(val64, &bar0->rts_frm_len_n[i]);
1685
1686         /* Set the frame length for the configured rings
1687          * desired by the user
1688          */
1689         for (i = 0; i < config->rx_ring_num; i++) {
1690                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1691                  * specified frame length steering.
1692                  * If the user provides the frame length then program
1693                  * the rts_frm_len register for those values or else
1694                  * leave it as it is.
1695                  */
1696                 if (rts_frm_len[i] != 0) {
1697                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1698                                &bar0->rts_frm_len_n[i]);
1699                 }
1700         }
1701
1702         /* Disable differentiated services steering logic */
1703         for (i = 0; i < 64; i++) {
1704                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1705                         DBG_PRINT(ERR_DBG,
1706                                   "%s: rts_ds_steer failed on codepoint %d\n",
1707                                   dev->name, i);
1708                         return -ENODEV;
1709                 }
1710         }
1711
1712         /* Program statistics memory */
1713         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1714
1715         if (nic->device_type == XFRAME_II_DEVICE) {
1716                 val64 = STAT_BC(0x320);
1717                 writeq(val64, &bar0->stat_byte_cnt);
1718         }
1719
1720         /*
1721          * Initializing the sampling rate for the device to calculate the
1722          * bandwidth utilization.
1723          */
1724         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1725                 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1726         writeq(val64, &bar0->mac_link_util);
1727
1728         /*
1729          * Initializing the Transmit and Receive Traffic Interrupt
1730          * Scheme.
1731          */
1732
1733         /* Initialize TTI */
1734         if (SUCCESS != init_tti(nic, nic->last_link_state))
1735                 return -ENODEV;
1736
1737         /* RTI Initialization */
1738         if (nic->device_type == XFRAME_II_DEVICE) {
1739                 /*
1740                  * Programmed to generate Apprx 500 Intrs per
1741                  * second
1742                  */
1743                 int count = (nic->config.bus_speed * 125)/4;
1744                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1745         } else
1746                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1747         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1748                 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1749                 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1750                 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1751
1752         writeq(val64, &bar0->rti_data1_mem);
1753
1754         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1755                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1756         if (nic->config.intr_type == MSI_X)
1757                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1758                           RTI_DATA2_MEM_RX_UFC_D(0x40));
1759         else
1760                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1761                           RTI_DATA2_MEM_RX_UFC_D(0x80));
1762         writeq(val64, &bar0->rti_data2_mem);
1763
1764         for (i = 0; i < config->rx_ring_num; i++) {
1765                 val64 = RTI_CMD_MEM_WE |
1766                         RTI_CMD_MEM_STROBE_NEW_CMD |
1767                         RTI_CMD_MEM_OFFSET(i);
1768                 writeq(val64, &bar0->rti_command_mem);
1769
1770                 /*
1771                  * Once the operation completes, the Strobe bit of the
1772                  * command register will be reset. We poll for this
1773                  * particular condition. We wait for a maximum of 500ms
1774                  * for the operation to complete, if it's not complete
1775                  * by then we return error.
1776                  */
1777                 time = 0;
1778                 while (true) {
1779                         val64 = readq(&bar0->rti_command_mem);
1780                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1781                                 break;
1782
1783                         if (time > 10) {
1784                                 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1785                                           dev->name);
1786                                 return -ENODEV;
1787                         }
1788                         time++;
1789                         msleep(50);
1790                 }
1791         }
1792
1793         /*
1794          * Initializing proper values as Pause threshold into all
1795          * the 8 Queues on Rx side.
1796          */
1797         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1798         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1799
1800         /* Disable RMAC PAD STRIPPING */
1801         add = &bar0->mac_cfg;
1802         val64 = readq(&bar0->mac_cfg);
1803         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1804         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1805         writel((u32) (val64), add);
1806         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1807         writel((u32) (val64 >> 32), (add + 4));
1808         val64 = readq(&bar0->mac_cfg);
1809
1810         /* Enable FCS stripping by adapter */
1811         add = &bar0->mac_cfg;
1812         val64 = readq(&bar0->mac_cfg);
1813         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1814         if (nic->device_type == XFRAME_II_DEVICE)
1815                 writeq(val64, &bar0->mac_cfg);
1816         else {
1817                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1818                 writel((u32) (val64), add);
1819                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1820                 writel((u32) (val64 >> 32), (add + 4));
1821         }
1822
1823         /*
1824          * Set the time value to be inserted in the pause frame
1825          * generated by xena.
1826          */
1827         val64 = readq(&bar0->rmac_pause_cfg);
1828         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1829         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1830         writeq(val64, &bar0->rmac_pause_cfg);
1831
1832         /*
1833          * Set the Threshold Limit for Generating the pause frame
1834          * If the amount of data in any Queue exceeds ratio of
1835          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1836          * pause frame is generated
1837          */
1838         val64 = 0;
1839         for (i = 0; i < 4; i++) {
1840                 val64 |= (((u64)0xFF00 |
1841                            nic->mac_control.mc_pause_threshold_q0q3)
1842                           << (i * 2 * 8));
1843         }
1844         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1845
1846         val64 = 0;
1847         for (i = 0; i < 4; i++) {
1848                 val64 |= (((u64)0xFF00 |
1849                            nic->mac_control.mc_pause_threshold_q4q7)
1850                           << (i * 2 * 8));
1851         }
1852         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1853
1854         /*
1855          * TxDMA will stop Read request if the number of read split has
1856          * exceeded the limit pointed by shared_splits
1857          */
1858         val64 = readq(&bar0->pic_control);
1859         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1860         writeq(val64, &bar0->pic_control);
1861
1862         if (nic->config.bus_speed == 266) {
1863                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1864                 writeq(0x0, &bar0->read_retry_delay);
1865                 writeq(0x0, &bar0->write_retry_delay);
1866         }
1867
1868         /*
1869          * Programming the Herc to split every write transaction
1870          * that does not start on an ADB to reduce disconnects.
1871          */
1872         if (nic->device_type == XFRAME_II_DEVICE) {
1873                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1874                         MISC_LINK_STABILITY_PRD(3);
1875                 writeq(val64, &bar0->misc_control);
1876                 val64 = readq(&bar0->pic_control2);
1877                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1878                 writeq(val64, &bar0->pic_control2);
1879         }
1880         if (strstr(nic->product_name, "CX4")) {
1881                 val64 = TMAC_AVG_IPG(0x17);
1882                 writeq(val64, &bar0->tmac_avg_ipg);
1883         }
1884
1885         return SUCCESS;
1886 }
1887 #define LINK_UP_DOWN_INTERRUPT          1
1888 #define MAC_RMAC_ERR_TIMER              2
1889
1890 static int s2io_link_fault_indication(struct s2io_nic *nic)
1891 {
1892         if (nic->device_type == XFRAME_II_DEVICE)
1893                 return LINK_UP_DOWN_INTERRUPT;
1894         else
1895                 return MAC_RMAC_ERR_TIMER;
1896 }
1897
1898 /**
1899  *  do_s2io_write_bits -  update alarm bits in alarm register
1900  *  @value: alarm bits
1901  *  @flag: interrupt status
1902  *  @addr: address value
1903  *  Description: update alarm bits in alarm register
1904  *  Return Value:
1905  *  NONE.
1906  */
1907 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1908 {
1909         u64 temp64;
1910
1911         temp64 = readq(addr);
1912
1913         if (flag == ENABLE_INTRS)
1914                 temp64 &= ~((u64)value);
1915         else
1916                 temp64 |= ((u64)value);
1917         writeq(temp64, addr);
1918 }
1919
1920 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1921 {
1922         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1923         register u64 gen_int_mask = 0;
1924         u64 interruptible;
1925
1926         writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1927         if (mask & TX_DMA_INTR) {
1928                 gen_int_mask |= TXDMA_INT_M;
1929
1930                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1931                                    TXDMA_PCC_INT | TXDMA_TTI_INT |
1932                                    TXDMA_LSO_INT | TXDMA_TPA_INT |
1933                                    TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1934
1935                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1936                                    PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1937                                    PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1938                                    &bar0->pfc_err_mask);
1939
1940                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1941                                    TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1942                                    TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1943
1944                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1945                                    PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1946                                    PCC_N_SERR | PCC_6_COF_OV_ERR |
1947                                    PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1948                                    PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1949                                    PCC_TXB_ECC_SG_ERR,
1950                                    flag, &bar0->pcc_err_mask);
1951
1952                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1953                                    TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1954
1955                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1956                                    LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1957                                    LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1958                                    flag, &bar0->lso_err_mask);
1959
1960                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1961                                    flag, &bar0->tpa_err_mask);
1962
1963                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1964         }
1965
1966         if (mask & TX_MAC_INTR) {
1967                 gen_int_mask |= TXMAC_INT_M;
1968                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1969                                    &bar0->mac_int_mask);
1970                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1971                                    TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1972                                    TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1973                                    flag, &bar0->mac_tmac_err_mask);
1974         }
1975
1976         if (mask & TX_XGXS_INTR) {
1977                 gen_int_mask |= TXXGXS_INT_M;
1978                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1979                                    &bar0->xgxs_int_mask);
1980                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1981                                    TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1982                                    flag, &bar0->xgxs_txgxs_err_mask);
1983         }
1984
1985         if (mask & RX_DMA_INTR) {
1986                 gen_int_mask |= RXDMA_INT_M;
1987                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1988                                    RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1989                                    flag, &bar0->rxdma_int_mask);
1990                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1991                                    RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1992                                    RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1993                                    RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1994                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1995                                    PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1996                                    PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1997                                    &bar0->prc_pcix_err_mask);
1998                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1999                                    RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
2000                                    &bar0->rpa_err_mask);
2001                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2002                                    RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2003                                    RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2004                                    RDA_FRM_ECC_SG_ERR |
2005                                    RDA_MISC_ERR|RDA_PCIX_ERR,
2006                                    flag, &bar0->rda_err_mask);
2007                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2008                                    RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2009                                    flag, &bar0->rti_err_mask);
2010         }
2011
2012         if (mask & RX_MAC_INTR) {
2013                 gen_int_mask |= RXMAC_INT_M;
2014                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2015                                    &bar0->mac_int_mask);
2016                 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2017                                  RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2018                                  RMAC_DOUBLE_ECC_ERR);
2019                 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2020                         interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2021                 do_s2io_write_bits(interruptible,
2022                                    flag, &bar0->mac_rmac_err_mask);
2023         }
2024
2025         if (mask & RX_XGXS_INTR) {
2026                 gen_int_mask |= RXXGXS_INT_M;
2027                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2028                                    &bar0->xgxs_int_mask);
2029                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2030                                    &bar0->xgxs_rxgxs_err_mask);
2031         }
2032
2033         if (mask & MC_INTR) {
2034                 gen_int_mask |= MC_INT_M;
2035                 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2036                                    flag, &bar0->mc_int_mask);
2037                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2038                                    MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2039                                    &bar0->mc_err_mask);
2040         }
2041         nic->general_int_mask = gen_int_mask;
2042
2043         /* Remove this line when alarm interrupts are enabled */
2044         nic->general_int_mask = 0;
2045 }
2046
2047 /**
2048  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
2049  *  @nic: device private variable,
2050  *  @mask: A mask indicating which Intr block must be modified and,
2051  *  @flag: A flag indicating whether to enable or disable the Intrs.
2052  *  Description: This function will either disable or enable the interrupts
2053  *  depending on the flag argument. The mask argument can be used to
2054  *  enable/disable any Intr block.
2055  *  Return Value: NONE.
2056  */
2057
2058 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2059 {
2060         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2061         register u64 temp64 = 0, intr_mask = 0;
2062
2063         intr_mask = nic->general_int_mask;
2064
2065         /*  Top level interrupt classification */
2066         /*  PIC Interrupts */
2067         if (mask & TX_PIC_INTR) {
2068                 /*  Enable PIC Intrs in the general intr mask register */
2069                 intr_mask |= TXPIC_INT_M;
2070                 if (flag == ENABLE_INTRS) {
2071                         /*
2072                          * If Hercules adapter enable GPIO otherwise
2073                          * disable all PCIX, Flash, MDIO, IIC and GPIO
2074                          * interrupts for now.
2075                          * TODO
2076                          */
2077                         if (s2io_link_fault_indication(nic) ==
2078                             LINK_UP_DOWN_INTERRUPT) {
2079                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
2080                                                    &bar0->pic_int_mask);
2081                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2082                                                    &bar0->gpio_int_mask);
2083                         } else
2084                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2085                 } else if (flag == DISABLE_INTRS) {
2086                         /*
2087                          * Disable PIC Intrs in the general
2088                          * intr mask register
2089                          */
2090                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2091                 }
2092         }
2093
2094         /*  Tx traffic interrupts */
2095         if (mask & TX_TRAFFIC_INTR) {
2096                 intr_mask |= TXTRAFFIC_INT_M;
2097                 if (flag == ENABLE_INTRS) {
2098                         /*
2099                          * Enable all the Tx side interrupts
2100                          * writing 0 Enables all 64 TX interrupt levels
2101                          */
2102                         writeq(0x0, &bar0->tx_traffic_mask);
2103                 } else if (flag == DISABLE_INTRS) {
2104                         /*
2105                          * Disable Tx Traffic Intrs in the general intr mask
2106                          * register.
2107                          */
2108                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2109                 }
2110         }
2111
2112         /*  Rx traffic interrupts */
2113         if (mask & RX_TRAFFIC_INTR) {
2114                 intr_mask |= RXTRAFFIC_INT_M;
2115                 if (flag == ENABLE_INTRS) {
2116                         /* writing 0 Enables all 8 RX interrupt levels */
2117                         writeq(0x0, &bar0->rx_traffic_mask);
2118                 } else if (flag == DISABLE_INTRS) {
2119                         /*
2120                          * Disable Rx Traffic Intrs in the general intr mask
2121                          * register.
2122                          */
2123                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2124                 }
2125         }
2126
2127         temp64 = readq(&bar0->general_int_mask);
2128         if (flag == ENABLE_INTRS)
2129                 temp64 &= ~((u64)intr_mask);
2130         else
2131                 temp64 = DISABLE_ALL_INTRS;
2132         writeq(temp64, &bar0->general_int_mask);
2133
2134         nic->general_int_mask = readq(&bar0->general_int_mask);
2135 }
2136
2137 /**
2138  *  verify_pcc_quiescent- Checks for PCC quiescent state
2139  *  Return: 1 If PCC is quiescence
2140  *          0 If PCC is not quiescence
2141  */
2142 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2143 {
2144         int ret = 0, herc;
2145         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2146         u64 val64 = readq(&bar0->adapter_status);
2147
2148         herc = (sp->device_type == XFRAME_II_DEVICE);
2149
2150         if (flag == false) {
2151                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2152                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2153                                 ret = 1;
2154                 } else {
2155                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2156                                 ret = 1;
2157                 }
2158         } else {
2159                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2160                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2161                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2162                                 ret = 1;
2163                 } else {
2164                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2165                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2166                                 ret = 1;
2167                 }
2168         }
2169
2170         return ret;
2171 }
2172 /**
2173  *  verify_xena_quiescence - Checks whether the H/W is ready
2174  *  Description: Returns whether the H/W is ready to go or not. Depending
2175  *  on whether adapter enable bit was written or not the comparison
2176  *  differs and the calling function passes the input argument flag to
2177  *  indicate this.
2178  *  Return: 1 If xena is quiescence
2179  *          0 If Xena is not quiescence
2180  */
2181
2182 static int verify_xena_quiescence(struct s2io_nic *sp)
2183 {
2184         int  mode;
2185         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2186         u64 val64 = readq(&bar0->adapter_status);
2187         mode = s2io_verify_pci_mode(sp);
2188
2189         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2190                 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2191                 return 0;
2192         }
2193         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2194                 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2195                 return 0;
2196         }
2197         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2198                 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2199                 return 0;
2200         }
2201         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2202                 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2203                 return 0;
2204         }
2205         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2206                 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2207                 return 0;
2208         }
2209         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2210                 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2211                 return 0;
2212         }
2213         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2214                 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2215                 return 0;
2216         }
2217         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2218                 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2219                 return 0;
2220         }
2221
2222         /*
2223          * In PCI 33 mode, the P_PLL is not used, and therefore,
2224          * the the P_PLL_LOCK bit in the adapter_status register will
2225          * not be asserted.
2226          */
2227         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2228             sp->device_type == XFRAME_II_DEVICE &&
2229             mode != PCI_MODE_PCI_33) {
2230                 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2231                 return 0;
2232         }
2233         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2234               ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2235                 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2236                 return 0;
2237         }
2238         return 1;
2239 }
2240
2241 /**
2242  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2243  * @sp: Pointer to device specifc structure
2244  * Description :
2245  * New procedure to clear mac address reading  problems on Alpha platforms
2246  *
2247  */
2248
2249 static void fix_mac_address(struct s2io_nic *sp)
2250 {
2251         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2252         u64 val64;
2253         int i = 0;
2254
2255         while (fix_mac[i] != END_SIGN) {
2256                 writeq(fix_mac[i++], &bar0->gpio_control);
2257                 udelay(10);
2258                 val64 = readq(&bar0->gpio_control);
2259         }
2260 }
2261
2262 /**
2263  *  start_nic - Turns the device on
2264  *  @nic : device private variable.
2265  *  Description:
2266  *  This function actually turns the device on. Before this  function is
2267  *  called,all Registers are configured from their reset states
2268  *  and shared memory is allocated but the NIC is still quiescent. On
2269  *  calling this function, the device interrupts are cleared and the NIC is
2270  *  literally switched on by writing into the adapter control register.
2271  *  Return Value:
2272  *  SUCCESS on success and -1 on failure.
2273  */
2274
2275 static int start_nic(struct s2io_nic *nic)
2276 {
2277         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2278         struct net_device *dev = nic->dev;
2279         register u64 val64 = 0;
2280         u16 subid, i;
2281         struct config_param *config = &nic->config;
2282         struct mac_info *mac_control = &nic->mac_control;
2283
2284         /*  PRC Initialization and configuration */
2285         for (i = 0; i < config->rx_ring_num; i++) {
2286                 struct ring_info *ring = &mac_control->rings[i];
2287
2288                 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2289                        &bar0->prc_rxd0_n[i]);
2290
2291                 val64 = readq(&bar0->prc_ctrl_n[i]);
2292                 if (nic->rxd_mode == RXD_MODE_1)
2293                         val64 |= PRC_CTRL_RC_ENABLED;
2294                 else
2295                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2296                 if (nic->device_type == XFRAME_II_DEVICE)
2297                         val64 |= PRC_CTRL_GROUP_READS;
2298                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2299                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2300                 writeq(val64, &bar0->prc_ctrl_n[i]);
2301         }
2302
2303         if (nic->rxd_mode == RXD_MODE_3B) {
2304                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2305                 val64 = readq(&bar0->rx_pa_cfg);
2306                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2307                 writeq(val64, &bar0->rx_pa_cfg);
2308         }
2309
2310         if (vlan_tag_strip == 0) {
2311                 val64 = readq(&bar0->rx_pa_cfg);
2312                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2313                 writeq(val64, &bar0->rx_pa_cfg);
2314                 nic->vlan_strip_flag = 0;
2315         }
2316
2317         /*
2318          * Enabling MC-RLDRAM. After enabling the device, we timeout
2319          * for around 100ms, which is approximately the time required
2320          * for the device to be ready for operation.
2321          */
2322         val64 = readq(&bar0->mc_rldram_mrs);
2323         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2324         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2325         val64 = readq(&bar0->mc_rldram_mrs);
2326
2327         msleep(100);    /* Delay by around 100 ms. */
2328
2329         /* Enabling ECC Protection. */
2330         val64 = readq(&bar0->adapter_control);
2331         val64 &= ~ADAPTER_ECC_EN;
2332         writeq(val64, &bar0->adapter_control);
2333
2334         /*
2335          * Verify if the device is ready to be enabled, if so enable
2336          * it.
2337          */
2338         val64 = readq(&bar0->adapter_status);
2339         if (!verify_xena_quiescence(nic)) {
2340                 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2341                           "Adapter status reads: 0x%llx\n",
2342                           dev->name, (unsigned long long)val64);
2343                 return FAILURE;
2344         }
2345
2346         /*
2347          * With some switches, link might be already up at this point.
2348          * Because of this weird behavior, when we enable laser,
2349          * we may not get link. We need to handle this. We cannot
2350          * figure out which switch is misbehaving. So we are forced to
2351          * make a global change.
2352          */
2353
2354         /* Enabling Laser. */
2355         val64 = readq(&bar0->adapter_control);
2356         val64 |= ADAPTER_EOI_TX_ON;
2357         writeq(val64, &bar0->adapter_control);
2358
2359         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2360                 /*
2361                  * Dont see link state interrupts initally on some switches,
2362                  * so directly scheduling the link state task here.
2363                  */
2364                 schedule_work(&nic->set_link_task);
2365         }
2366         /* SXE-002: Initialize link and activity LED */
2367         subid = nic->pdev->subsystem_device;
2368         if (((subid & 0xFF) >= 0x07) &&
2369             (nic->device_type == XFRAME_I_DEVICE)) {
2370                 val64 = readq(&bar0->gpio_control);
2371                 val64 |= 0x0000800000000000ULL;
2372                 writeq(val64, &bar0->gpio_control);
2373                 val64 = 0x0411040400000000ULL;
2374                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2375         }
2376
2377         return SUCCESS;
2378 }
2379 /**
2380  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2381  */
2382 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2383                                         struct TxD *txdlp, int get_off)
2384 {
2385         struct s2io_nic *nic = fifo_data->nic;
2386         struct sk_buff *skb;
2387         struct TxD *txds;
2388         u16 j, frg_cnt;
2389
2390         txds = txdlp;
2391         if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2392                 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2393                                  sizeof(u64), PCI_DMA_TODEVICE);
2394                 txds++;
2395         }
2396
2397         skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2398         if (!skb) {
2399                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2400                 return NULL;
2401         }
2402         pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2403                          skb->len - skb->data_len, PCI_DMA_TODEVICE);
2404         frg_cnt = skb_shinfo(skb)->nr_frags;
2405         if (frg_cnt) {
2406                 txds++;
2407                 for (j = 0; j < frg_cnt; j++, txds++) {
2408                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2409                         if (!txds->Buffer_Pointer)
2410                                 break;
2411                         pci_unmap_page(nic->pdev,
2412                                        (dma_addr_t)txds->Buffer_Pointer,
2413                                        frag->size, PCI_DMA_TODEVICE);
2414                 }
2415         }
2416         memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2417         return skb;
2418 }
2419
2420 /**
2421  *  free_tx_buffers - Free all queued Tx buffers
2422  *  @nic : device private variable.
2423  *  Description:
2424  *  Free all queued Tx buffers.
2425  *  Return Value: void
2426  */
2427
2428 static void free_tx_buffers(struct s2io_nic *nic)
2429 {
2430         struct net_device *dev = nic->dev;
2431         struct sk_buff *skb;
2432         struct TxD *txdp;
2433         int i, j;
2434         int cnt = 0;
2435         struct config_param *config = &nic->config;
2436         struct mac_info *mac_control = &nic->mac_control;
2437         struct stat_block *stats = mac_control->stats_info;
2438         struct swStat *swstats = &stats->sw_stat;
2439
2440         for (i = 0; i < config->tx_fifo_num; i++) {
2441                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2442                 struct fifo_info *fifo = &mac_control->fifos[i];
2443                 unsigned long flags;
2444
2445                 spin_lock_irqsave(&fifo->tx_lock, flags);
2446                 for (j = 0; j < tx_cfg->fifo_len; j++) {
2447                         txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
2448                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2449                         if (skb) {
2450                                 swstats->mem_freed += skb->truesize;
2451                                 dev_kfree_skb(skb);
2452                                 cnt++;
2453                         }
2454                 }
2455                 DBG_PRINT(INTR_DBG,
2456                           "%s: forcibly freeing %d skbs on FIFO%d\n",
2457                           dev->name, cnt, i);
2458                 fifo->tx_curr_get_info.offset = 0;
2459                 fifo->tx_curr_put_info.offset = 0;
2460                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2461         }
2462 }
2463
2464 /**
2465  *   stop_nic -  To stop the nic
2466  *   @nic ; device private variable.
2467  *   Description:
2468  *   This function does exactly the opposite of what the start_nic()
2469  *   function does. This function is called to stop the device.
2470  *   Return Value:
2471  *   void.
2472  */
2473
2474 static void stop_nic(struct s2io_nic *nic)
2475 {
2476         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2477         register u64 val64 = 0;
2478         u16 interruptible;
2479
2480         /*  Disable all interrupts */
2481         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2482         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2483         interruptible |= TX_PIC_INTR;
2484         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2485
2486         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2487         val64 = readq(&bar0->adapter_control);
2488         val64 &= ~(ADAPTER_CNTL_EN);
2489         writeq(val64, &bar0->adapter_control);
2490 }
2491
2492 /**
2493  *  fill_rx_buffers - Allocates the Rx side skbs
2494  *  @ring_info: per ring structure
2495  *  @from_card_up: If this is true, we will map the buffer to get
2496  *     the dma address for buf0 and buf1 to give it to the card.
2497  *     Else we will sync the already mapped buffer to give it to the card.
2498  *  Description:
2499  *  The function allocates Rx side skbs and puts the physical
2500  *  address of these buffers into the RxD buffer pointers, so that the NIC
2501  *  can DMA the received frame into these locations.
2502  *  The NIC supports 3 receive modes, viz
2503  *  1. single buffer,
2504  *  2. three buffer and
2505  *  3. Five buffer modes.
2506  *  Each mode defines how many fragments the received frame will be split
2507  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2508  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2509  *  is split into 3 fragments. As of now only single buffer mode is
2510  *  supported.
2511  *   Return Value:
2512  *  SUCCESS on success or an appropriate -ve value on failure.
2513  */
2514 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2515                            int from_card_up)
2516 {
2517         struct sk_buff *skb;
2518         struct RxD_t *rxdp;
2519         int off, size, block_no, block_no1;
2520         u32 alloc_tab = 0;
2521         u32 alloc_cnt;
2522         u64 tmp;
2523         struct buffAdd *ba;
2524         struct RxD_t *first_rxdp = NULL;
2525         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2526         int rxd_index = 0;
2527         struct RxD1 *rxdp1;
2528         struct RxD3 *rxdp3;
2529         struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2530
2531         alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2532
2533         block_no1 = ring->rx_curr_get_info.block_index;
2534         while (alloc_tab < alloc_cnt) {
2535                 block_no = ring->rx_curr_put_info.block_index;
2536
2537                 off = ring->rx_curr_put_info.offset;
2538
2539                 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2540
2541                 rxd_index = off + 1;
2542                 if (block_no)
2543                         rxd_index += (block_no * ring->rxd_count);
2544
2545                 if ((block_no == block_no1) &&
2546                     (off == ring->rx_curr_get_info.offset) &&
2547                     (rxdp->Host_Control)) {
2548                         DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2549                                   ring->dev->name);
2550                         goto end;
2551                 }
2552                 if (off && (off == ring->rxd_count)) {
2553                         ring->rx_curr_put_info.block_index++;
2554                         if (ring->rx_curr_put_info.block_index ==
2555                             ring->block_count)
2556                                 ring->rx_curr_put_info.block_index = 0;
2557                         block_no = ring->rx_curr_put_info.block_index;
2558                         off = 0;
2559                         ring->rx_curr_put_info.offset = off;
2560                         rxdp = ring->rx_blocks[block_no].block_virt_addr;
2561                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2562                                   ring->dev->name, rxdp);
2563
2564                 }
2565
2566                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2567                     ((ring->rxd_mode == RXD_MODE_3B) &&
2568                      (rxdp->Control_2 & s2BIT(0)))) {
2569                         ring->rx_curr_put_info.offset = off;
2570                         goto end;
2571                 }
2572                 /* calculate size of skb based on ring mode */
2573                 size = ring->mtu +
2574                         HEADER_ETHERNET_II_802_3_SIZE +
2575                         HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2576                 if (ring->rxd_mode == RXD_MODE_1)
2577                         size += NET_IP_ALIGN;
2578                 else
2579                         size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2580
2581                 /* allocate skb */
2582                 skb = dev_alloc_skb(size);
2583                 if (!skb) {
2584                         DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2585                                   ring->dev->name);
2586                         if (first_rxdp) {
2587                                 wmb();
2588                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2589                         }
2590                         swstats->mem_alloc_fail_cnt++;
2591
2592                         return -ENOMEM ;
2593                 }
2594                 swstats->mem_allocated += skb->truesize;
2595
2596                 if (ring->rxd_mode == RXD_MODE_1) {
2597                         /* 1 buffer mode - normal operation mode */
2598                         rxdp1 = (struct RxD1 *)rxdp;
2599                         memset(rxdp, 0, sizeof(struct RxD1));
2600                         skb_reserve(skb, NET_IP_ALIGN);
2601                         rxdp1->Buffer0_ptr =
2602                                 pci_map_single(ring->pdev, skb->data,
2603                                                size - NET_IP_ALIGN,
2604                                                PCI_DMA_FROMDEVICE);
2605                         if (pci_dma_mapping_error(nic->pdev,
2606                                                   rxdp1->Buffer0_ptr))
2607                                 goto pci_map_failed;
2608
2609                         rxdp->Control_2 =
2610                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2611                         rxdp->Host_Control = (unsigned long)skb;
2612                 } else if (ring->rxd_mode == RXD_MODE_3B) {
2613                         /*
2614                          * 2 buffer mode -
2615                          * 2 buffer mode provides 128
2616                          * byte aligned receive buffers.
2617                          */
2618
2619                         rxdp3 = (struct RxD3 *)rxdp;
2620                         /* save buffer pointers to avoid frequent dma mapping */
2621                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2622                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2623                         memset(rxdp, 0, sizeof(struct RxD3));
2624                         /* restore the buffer pointers for dma sync*/
2625                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2626                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2627
2628                         ba = &ring->ba[block_no][off];
2629                         skb_reserve(skb, BUF0_LEN);
2630                         tmp = (u64)(unsigned long)skb->data;
2631                         tmp += ALIGN_SIZE;
2632                         tmp &= ~ALIGN_SIZE;
2633                         skb->data = (void *) (unsigned long)tmp;
2634                         skb_reset_tail_pointer(skb);
2635
2636                         if (from_card_up) {
2637                                 rxdp3->Buffer0_ptr =
2638                                         pci_map_single(ring->pdev, ba->ba_0,
2639                                                        BUF0_LEN,
2640                                                        PCI_DMA_FROMDEVICE);
2641                                 if (pci_dma_mapping_error(nic->pdev,
2642                                                           rxdp3->Buffer0_ptr))
2643                                         goto pci_map_failed;
2644                         } else
2645                                 pci_dma_sync_single_for_device(ring->pdev,
2646                                                                (dma_addr_t)rxdp3->Buffer0_ptr,
2647                                                                BUF0_LEN,
2648                                                                PCI_DMA_FROMDEVICE);
2649
2650                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2651                         if (ring->rxd_mode == RXD_MODE_3B) {
2652                                 /* Two buffer mode */
2653
2654                                 /*
2655                                  * Buffer2 will have L3/L4 header plus
2656                                  * L4 payload
2657                                  */
2658                                 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2659                                                                     skb->data,
2660                                                                     ring->mtu + 4,
2661                                                                     PCI_DMA_FROMDEVICE);
2662
2663                                 if (pci_dma_mapping_error(nic->pdev,
2664                                                           rxdp3->Buffer2_ptr))
2665                                         goto pci_map_failed;
2666
2667                                 if (from_card_up) {
2668                                         rxdp3->Buffer1_ptr =
2669                                                 pci_map_single(ring->pdev,
2670                                                                ba->ba_1,
2671                                                                BUF1_LEN,
2672                                                                PCI_DMA_FROMDEVICE);
2673
2674                                         if (pci_dma_mapping_error(nic->pdev,
2675                                                                   rxdp3->Buffer1_ptr)) {
2676                                                 pci_unmap_single(ring->pdev,
2677                                                                  (dma_addr_t)(unsigned long)
2678                                                                  skb->data,
2679                                                                  ring->mtu + 4,
2680                                                                  PCI_DMA_FROMDEVICE);
2681                                                 goto pci_map_failed;
2682                                         }
2683                                 }
2684                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2685                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2686                                         (ring->mtu + 4);
2687                         }
2688                         rxdp->Control_2 |= s2BIT(0);
2689                         rxdp->Host_Control = (unsigned long) (skb);
2690                 }
2691                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2692                         rxdp->Control_1 |= RXD_OWN_XENA;
2693                 off++;
2694                 if (off == (ring->rxd_count + 1))
2695                         off = 0;
2696                 ring->rx_curr_put_info.offset = off;
2697
2698                 rxdp->Control_2 |= SET_RXD_MARKER;
2699                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2700                         if (first_rxdp) {
2701                                 wmb();
2702                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2703                         }
2704                         first_rxdp = rxdp;
2705                 }
2706                 ring->rx_bufs_left += 1;
2707                 alloc_tab++;
2708         }
2709
2710 end:
2711         /* Transfer ownership of first descriptor to adapter just before
2712          * exiting. Before that, use memory barrier so that ownership
2713          * and other fields are seen by adapter correctly.
2714          */
2715         if (first_rxdp) {
2716                 wmb();
2717                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2718         }
2719
2720         return SUCCESS;
2721
2722 pci_map_failed:
2723         swstats->pci_map_fail_cnt++;
2724         swstats->mem_freed += skb->truesize;
2725         dev_kfree_skb_irq(skb);
2726         return -ENOMEM;
2727 }
2728
2729 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2730 {
2731         struct net_device *dev = sp->dev;
2732         int j;
2733         struct sk_buff *skb;
2734         struct RxD_t *rxdp;
2735         struct buffAdd *ba;
2736         struct RxD1 *rxdp1;
2737         struct RxD3 *rxdp3;
2738         struct mac_info *mac_control = &sp->mac_control;
2739         struct stat_block *stats = mac_control->stats_info;
2740         struct swStat *swstats = &stats->sw_stat;
2741
2742         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2743                 rxdp = mac_control->rings[ring_no].
2744                         rx_blocks[blk].rxds[j].virt_addr;
2745                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2746                 if (!skb)
2747                         continue;
2748                 if (sp->rxd_mode == RXD_MODE_1) {
2749                         rxdp1 = (struct RxD1 *)rxdp;
2750                         pci_unmap_single(sp->pdev,
2751                                          (dma_addr_t)rxdp1->Buffer0_ptr,
2752                                          dev->mtu +
2753                                          HEADER_ETHERNET_II_802_3_SIZE +
2754                                          HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2755                                          PCI_DMA_FROMDEVICE);
2756                         memset(rxdp, 0, sizeof(struct RxD1));
2757                 } else if (sp->rxd_mode == RXD_MODE_3B) {
2758                         rxdp3 = (struct RxD3 *)rxdp;
2759                         ba = &mac_control->rings[ring_no].ba[blk][j];
2760                         pci_unmap_single(sp->pdev,
2761                                          (dma_addr_t)rxdp3->Buffer0_ptr,
2762                                          BUF0_LEN,
2763                                          PCI_DMA_FROMDEVICE);
2764                         pci_unmap_single(sp->pdev,
2765                                          (dma_addr_t)rxdp3->Buffer1_ptr,
2766                                          BUF1_LEN,
2767                                          PCI_DMA_FROMDEVICE);
2768                         pci_unmap_single(sp->pdev,
2769                                          (dma_addr_t)rxdp3->Buffer2_ptr,
2770                                          dev->mtu + 4,
2771                                          PCI_DMA_FROMDEVICE);
2772                         memset(rxdp, 0, sizeof(struct RxD3));
2773                 }
2774                 swstats->mem_freed += skb->truesize;
2775                 dev_kfree_skb(skb);
2776                 mac_control->rings[ring_no].rx_bufs_left -= 1;
2777         }
2778 }
2779
2780 /**
2781  *  free_rx_buffers - Frees all Rx buffers
2782  *  @sp: device private variable.
2783  *  Description:
2784  *  This function will free all Rx buffers allocated by host.
2785  *  Return Value:
2786  *  NONE.
2787  */
2788
2789 static void free_rx_buffers(struct s2io_nic *sp)
2790 {
2791         struct net_device *dev = sp->dev;
2792         int i, blk = 0, buf_cnt = 0;
2793         struct config_param *config = &sp->config;
2794         struct mac_info *mac_control = &sp->mac_control;
2795
2796         for (i = 0; i < config->rx_ring_num; i++) {
2797                 struct ring_info *ring = &mac_control->rings[i];
2798
2799                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2800                         free_rxd_blk(sp, i, blk);
2801
2802                 ring->rx_curr_put_info.block_index = 0;
2803                 ring->rx_curr_get_info.block_index = 0;
2804                 ring->rx_curr_put_info.offset = 0;
2805                 ring->rx_curr_get_info.offset = 0;
2806                 ring->rx_bufs_left = 0;
2807                 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2808                           dev->name, buf_cnt, i);
2809         }
2810 }
2811
2812 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2813 {
2814         if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2815                 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2816                           ring->dev->name);
2817         }
2818         return 0;
2819 }
2820
2821 /**
2822  * s2io_poll - Rx interrupt handler for NAPI support
2823  * @napi : pointer to the napi structure.
2824  * @budget : The number of packets that were budgeted to be processed
2825  * during  one pass through the 'Poll" function.
2826  * Description:
2827  * Comes into picture only if NAPI support has been incorporated. It does
2828  * the same thing that rx_intr_handler does, but not in a interrupt context
2829  * also It will process only a given number of packets.
2830  * Return value:
2831  * 0 on success and 1 if there are No Rx packets to be processed.
2832  */
2833
2834 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2835 {
2836         struct ring_info *ring = container_of(napi, struct ring_info, napi);
2837         struct net_device *dev = ring->dev;
2838         int pkts_processed = 0;
2839         u8 __iomem *addr = NULL;
2840         u8 val8 = 0;
2841         struct s2io_nic *nic = netdev_priv(dev);
2842         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2843         int budget_org = budget;
2844
2845         if (unlikely(!is_s2io_card_up(nic)))
2846                 return 0;
2847
2848         pkts_processed = rx_intr_handler(ring, budget);
2849         s2io_chk_rx_buffers(nic, ring);
2850
2851         if (pkts_processed < budget_org) {
2852                 napi_complete(napi);
2853                 /*Re Enable MSI-Rx Vector*/
2854                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2855                 addr += 7 - ring->ring_no;
2856                 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2857                 writeb(val8, addr);
2858                 val8 = readb(addr);
2859         }
2860         return pkts_processed;
2861 }
2862
2863 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2864 {
2865         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2866         int pkts_processed = 0;
2867         int ring_pkts_processed, i;
2868         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2869         int budget_org = budget;
2870         struct config_param *config = &nic->config;
2871         struct mac_info *mac_control = &nic->mac_control;
2872
2873         if (unlikely(!is_s2io_card_up(nic)))
2874                 return 0;
2875
2876         for (i = 0; i < config->rx_ring_num; i++) {
2877                 struct ring_info *ring = &mac_control->rings[i];
2878                 ring_pkts_processed = rx_intr_handler(ring, budget);
2879                 s2io_chk_rx_buffers(nic, ring);
2880                 pkts_processed += ring_pkts_processed;
2881                 budget -= ring_pkts_processed;
2882                 if (budget <= 0)
2883                         break;
2884         }
2885         if (pkts_processed < budget_org) {
2886                 napi_complete(napi);
2887                 /* Re enable the Rx interrupts for the ring */
2888                 writeq(0, &bar0->rx_traffic_mask);
2889                 readl(&bar0->rx_traffic_mask);
2890         }
2891         return pkts_processed;
2892 }
2893
2894 #ifdef CONFIG_NET_POLL_CONTROLLER
2895 /**
2896  * s2io_netpoll - netpoll event handler entry point
2897  * @dev : pointer to the device structure.
2898  * Description:
2899  *      This function will be called by upper layer to check for events on the
2900  * interface in situations where interrupts are disabled. It is used for
2901  * specific in-kernel networking tasks, such as remote consoles and kernel
2902  * debugging over the network (example netdump in RedHat).
2903  */
2904 static void s2io_netpoll(struct net_device *dev)
2905 {
2906         struct s2io_nic *nic = netdev_priv(dev);
2907         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2908         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2909         int i;
2910         struct config_param *config = &nic->config;
2911         struct mac_info *mac_control = &nic->mac_control;
2912
2913         if (pci_channel_offline(nic->pdev))
2914                 return;
2915
2916         disable_irq(dev->irq);
2917
2918         writeq(val64, &bar0->rx_traffic_int);
2919         writeq(val64, &bar0->tx_traffic_int);
2920
2921         /* we need to free up the transmitted skbufs or else netpoll will
2922          * run out of skbs and will fail and eventually netpoll application such
2923          * as netdump will fail.
2924          */
2925         for (i = 0; i < config->tx_fifo_num; i++)
2926                 tx_intr_handler(&mac_control->fifos[i]);
2927
2928         /* check for received packet and indicate up to network */
2929         for (i = 0; i < config->rx_ring_num; i++) {
2930                 struct ring_info *ring = &mac_control->rings[i];
2931
2932                 rx_intr_handler(ring, 0);
2933         }
2934
2935         for (i = 0; i < config->rx_ring_num; i++) {
2936                 struct ring_info *ring = &mac_control->rings[i];
2937
2938                 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2939                         DBG_PRINT(INFO_DBG,
2940                                   "%s: Out of memory in Rx Netpoll!!\n",
2941                                   dev->name);
2942                         break;
2943                 }
2944         }
2945         enable_irq(dev->irq);
2946         return;
2947 }
2948 #endif
2949
2950 /**
2951  *  rx_intr_handler - Rx interrupt handler
2952  *  @ring_info: per ring structure.
2953  *  @budget: budget for napi processing.
2954  *  Description:
2955  *  If the interrupt is because of a received frame or if the
2956  *  receive ring contains fresh as yet un-processed frames,this function is
2957  *  called. It picks out the RxD at which place the last Rx processing had
2958  *  stopped and sends the skb to the OSM's Rx handler and then increments
2959  *  the offset.
2960  *  Return Value:
2961  *  No. of napi packets processed.
2962  */
2963 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2964 {
2965         int get_block, put_block;
2966         struct rx_curr_get_info get_info, put_info;
2967         struct RxD_t *rxdp;
2968         struct sk_buff *skb;
2969         int pkt_cnt = 0, napi_pkts = 0;
2970         int i;
2971         struct RxD1 *rxdp1;
2972         struct RxD3 *rxdp3;
2973
2974         get_info = ring_data->rx_curr_get_info;
2975         get_block = get_info.block_index;
2976         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2977         put_block = put_info.block_index;
2978         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2979
2980         while (RXD_IS_UP2DT(rxdp)) {
2981                 /*
2982                  * If your are next to put index then it's
2983                  * FIFO full condition
2984                  */
2985                 if ((get_block == put_block) &&
2986                     (get_info.offset + 1) == put_info.offset) {
2987                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2988                                   ring_data->dev->name);
2989                         break;
2990                 }
2991                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2992                 if (skb == NULL) {
2993                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2994                                   ring_data->dev->name);
2995                         return 0;
2996                 }
2997                 if (ring_data->rxd_mode == RXD_MODE_1) {
2998                         rxdp1 = (struct RxD1 *)rxdp;
2999                         pci_unmap_single(ring_data->pdev, (dma_addr_t)
3000                                          rxdp1->Buffer0_ptr,
3001                                          ring_data->mtu +
3002                                          HEADER_ETHERNET_II_802_3_SIZE +
3003                                          HEADER_802_2_SIZE +
3004                                          HEADER_SNAP_SIZE,
3005                                          PCI_DMA_FROMDEVICE);
3006                 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3007                         rxdp3 = (struct RxD3 *)rxdp;
3008                         pci_dma_sync_single_for_cpu(ring_data->pdev,
3009                                                     (dma_addr_t)rxdp3->Buffer0_ptr,
3010                                                     BUF0_LEN,
3011                                                     PCI_DMA_FROMDEVICE);
3012                         pci_unmap_single(ring_data->pdev,
3013                                          (dma_addr_t)rxdp3->Buffer2_ptr,
3014                                          ring_data->mtu + 4,
3015                                          PCI_DMA_FROMDEVICE);
3016                 }
3017                 prefetch(skb->data);
3018                 rx_osm_handler(ring_data, rxdp);
3019                 get_info.offset++;
3020                 ring_data->rx_curr_get_info.offset = get_info.offset;
3021                 rxdp = ring_data->rx_blocks[get_block].
3022                         rxds[get_info.offset].virt_addr;
3023                 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3024                         get_info.offset = 0;
3025                         ring_data->rx_curr_get_info.offset = get_info.offset;
3026                         get_block++;
3027                         if (get_block == ring_data->block_count)
3028                                 get_block = 0;
3029                         ring_data->rx_curr_get_info.block_index = get_block;
3030                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3031                 }
3032
3033                 if (ring_data->nic->config.napi) {
3034                         budget--;
3035                         napi_pkts++;
3036                         if (!budget)
3037                                 break;
3038                 }
3039                 pkt_cnt++;
3040                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3041                         break;
3042         }
3043         if (ring_data->lro) {
3044                 /* Clear all LRO sessions before exiting */
3045                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
3046                         struct lro *lro = &ring_data->lro0_n[i];
3047                         if (lro->in_use) {
3048                                 update_L3L4_header(ring_data->nic, lro);
3049                                 queue_rx_frame(lro->parent, lro->vlan_tag);
3050                                 clear_lro_session(lro);
3051                         }
3052                 }
3053         }
3054         return napi_pkts;
3055 }
3056
3057 /**
3058  *  tx_intr_handler - Transmit interrupt handler
3059  *  @nic : device private variable
3060  *  Description:
3061  *  If an interrupt was raised to indicate DMA complete of the
3062  *  Tx packet, this function is called. It identifies the last TxD
3063  *  whose buffer was freed and frees all skbs whose data have already
3064  *  DMA'ed into the NICs internal memory.
3065  *  Return Value:
3066  *  NONE
3067  */
3068
3069 static void tx_intr_handler(struct fifo_info *fifo_data)
3070 {
3071         struct s2io_nic *nic = fifo_data->nic;
3072         struct tx_curr_get_info get_info, put_info;
3073         struct sk_buff *skb = NULL;
3074         struct TxD *txdlp;
3075         int pkt_cnt = 0;
3076         unsigned long flags = 0;
3077         u8 err_mask;
3078         struct stat_block *stats = nic->mac_control.stats_info;
3079         struct swStat *swstats = &stats->sw_stat;
3080
3081         if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3082                 return;
3083
3084         get_info = fifo_data->tx_curr_get_info;
3085         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3086         txdlp = (struct TxD *)
3087                 fifo_data->list_info[get_info.offset].list_virt_addr;
3088         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3089                (get_info.offset != put_info.offset) &&
3090                (txdlp->Host_Control)) {
3091                 /* Check for TxD errors */
3092                 if (txdlp->Control_1 & TXD_T_CODE) {
3093                         unsigned long long err;
3094                         err = txdlp->Control_1 & TXD_T_CODE;
3095                         if (err & 0x1) {
3096                                 swstats->parity_err_cnt++;
3097                         }
3098
3099                         /* update t_code statistics */
3100                         err_mask = err >> 48;
3101                         switch (err_mask) {
3102                         case 2:
3103                                 swstats->tx_buf_abort_cnt++;
3104                                 break;
3105
3106                         case 3:
3107                                 swstats->tx_desc_abort_cnt++;
3108                                 break;
3109
3110                         case 7:
3111                                 swstats->tx_parity_err_cnt++;
3112                                 break;
3113
3114                         case 10:
3115                                 swstats->tx_link_loss_cnt++;
3116                                 break;
3117
3118                         case 15:
3119                                 swstats->tx_list_proc_err_cnt++;
3120                                 break;
3121                         }
3122                 }
3123
3124                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3125                 if (skb == NULL) {
3126                         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3127                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3128                                   __func__);
3129                         return;
3130                 }
3131                 pkt_cnt++;
3132
3133                 /* Updating the statistics block */
3134                 nic->dev->stats.tx_bytes += skb->len;
3135                 swstats->mem_freed += skb->truesize;
3136                 dev_kfree_skb_irq(skb);
3137
3138                 get_info.offset++;
3139                 if (get_info.offset == get_info.fifo_len + 1)
3140                         get_info.offset = 0;
3141                 txdlp = (struct TxD *)
3142                         fifo_data->list_info[get_info.offset].list_virt_addr;
3143                 fifo_data->tx_curr_get_info.offset = get_info.offset;
3144         }
3145
3146         s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3147
3148         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3149 }
3150
3151 /**
3152  *  s2io_mdio_write - Function to write in to MDIO registers
3153  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3154  *  @addr     : address value
3155  *  @value    : data value
3156  *  @dev      : pointer to net_device structure
3157  *  Description:
3158  *  This function is used to write values to the MDIO registers
3159  *  NONE
3160  */
3161 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3162                             struct net_device *dev)
3163 {
3164         u64 val64;
3165         struct s2io_nic *sp = netdev_priv(dev);
3166         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3167
3168         /* address transaction */
3169         val64 = MDIO_MMD_INDX_ADDR(addr) |
3170                 MDIO_MMD_DEV_ADDR(mmd_type) |
3171                 MDIO_MMS_PRT_ADDR(0x0);
3172         writeq(val64, &bar0->mdio_control);
3173         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3174         writeq(val64, &bar0->mdio_control);
3175         udelay(100);
3176
3177         /* Data transaction */
3178         val64 = MDIO_MMD_INDX_ADDR(addr) |
3179                 MDIO_MMD_DEV_ADDR(mmd_type) |
3180                 MDIO_MMS_PRT_ADDR(0x0) |
3181                 MDIO_MDIO_DATA(value) |
3182                 MDIO_OP(MDIO_OP_WRITE_TRANS);
3183         writeq(val64, &bar0->mdio_control);
3184         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3185         writeq(val64, &bar0->mdio_control);
3186         udelay(100);
3187
3188         val64 = MDIO_MMD_INDX_ADDR(addr) |
3189                 MDIO_MMD_DEV_ADDR(mmd_type) |
3190                 MDIO_MMS_PRT_ADDR(0x0) |
3191                 MDIO_OP(MDIO_OP_READ_TRANS);
3192         writeq(val64, &bar0->mdio_control);
3193         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3194         writeq(val64, &bar0->mdio_control);
3195         udelay(100);
3196 }
3197
3198 /**
3199  *  s2io_mdio_read - Function to write in to MDIO registers
3200  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3201  *  @addr     : address value
3202  *  @dev      : pointer to net_device structure
3203  *  Description:
3204  *  This function is used to read values to the MDIO registers
3205  *  NONE
3206  */
3207 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3208 {
3209         u64 val64 = 0x0;
3210         u64 rval64 = 0x0;
3211         struct s2io_nic *sp = netdev_priv(dev);
3212         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3213
3214         /* address transaction */
3215         val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3216                          | MDIO_MMD_DEV_ADDR(mmd_type)
3217                          | MDIO_MMS_PRT_ADDR(0x0));
3218         writeq(val64, &bar0->mdio_control);
3219         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3220         writeq(val64, &bar0->mdio_control);
3221         udelay(100);
3222
3223         /* Data transaction */
3224         val64 = MDIO_MMD_INDX_ADDR(addr) |
3225                 MDIO_MMD_DEV_ADDR(mmd_type) |
3226                 MDIO_MMS_PRT_ADDR(0x0) |
3227                 MDIO_OP(MDIO_OP_READ_TRANS);
3228         writeq(val64, &bar0->mdio_control);
3229         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3230         writeq(val64, &bar0->mdio_control);
3231         udelay(100);
3232
3233         /* Read the value from regs */
3234         rval64 = readq(&bar0->mdio_control);
3235         rval64 = rval64 & 0xFFFF0000;
3236         rval64 = rval64 >> 16;
3237         return rval64;
3238 }
3239
3240 /**
3241  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3242  *  @counter      : counter value to be updated
3243  *  @flag         : flag to indicate the status
3244  *  @type         : counter type
3245  *  Description:
3246  *  This function is to check the status of the xpak counters value
3247  *  NONE
3248  */
3249
3250 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3251                                   u16 flag, u16 type)
3252 {
3253         u64 mask = 0x3;
3254         u64 val64;
3255         int i;
3256         for (i = 0; i < index; i++)
3257                 mask = mask << 0x2;
3258
3259         if (flag > 0) {
3260                 *counter = *counter + 1;
3261                 val64 = *regs_stat & mask;
3262                 val64 = val64 >> (index * 0x2);
3263                 val64 = val64 + 1;
3264                 if (val64 == 3) {
3265                         switch (type) {
3266                         case 1:
3267                                 DBG_PRINT(ERR_DBG,
3268                                           "Take Xframe NIC out of service.\n");
3269                                 DBG_PRINT(ERR_DBG,
3270 "Excessive temperatures may result in premature transceiver failure.\n");
3271                                 break;
3272                         case 2:
3273                                 DBG_PRINT(ERR_DBG,
3274                                           "Take Xframe NIC out of service.\n");
3275                                 DBG_PRINT(ERR_DBG,
3276 "Excessive bias currents may indicate imminent laser diode failure.\n");
3277                                 break;
3278                         case 3:
3279                                 DBG_PRINT(ERR_DBG,
3280                                           "Take Xframe NIC out of service.\n");
3281                                 DBG_PRINT(ERR_DBG,
3282 "Excessive laser output power may saturate far-end receiver.\n");
3283                                 break;
3284                         default:
3285                                 DBG_PRINT(ERR_DBG,
3286                                           "Incorrect XPAK Alarm type\n");
3287                         }
3288                         val64 = 0x0;
3289                 }
3290                 val64 = val64 << (index * 0x2);
3291                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3292
3293         } else {
3294                 *regs_stat = *regs_stat & (~mask);
3295         }
3296 }
3297
3298 /**
3299  *  s2io_updt_xpak_counter - Function to update the xpak counters
3300  *  @dev         : pointer to net_device struct
3301  *  Description:
3302  *  This function is to upate the status of the xpak counters value
3303  *  NONE
3304  */
3305 static void s2io_updt_xpak_counter(struct net_device *dev)
3306 {
3307         u16 flag  = 0x0;
3308         u16 type  = 0x0;
3309         u16 val16 = 0x0;
3310         u64 val64 = 0x0;
3311         u64 addr  = 0x0;
3312
3313         struct s2io_nic *sp = netdev_priv(dev);
3314         struct stat_block *stats = sp->mac_control.stats_info;
3315         struct xpakStat *xstats = &stats->xpak_stat;
3316
3317         /* Check the communication with the MDIO slave */
3318         addr = MDIO_CTRL1;
3319         val64 = 0x0;
3320         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3321         if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3322                 DBG_PRINT(ERR_DBG,
3323                           "ERR: MDIO slave access failed - Returned %llx\n",
3324                           (unsigned long long)val64);
3325                 return;
3326         }
3327
3328         /* Check for the expected value of control reg 1 */
3329         if (val64 != MDIO_CTRL1_SPEED10G) {
3330                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3331                           "Returned: %llx- Expected: 0x%x\n",
3332                           (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3333                 return;
3334         }
3335
3336         /* Loading the DOM register to MDIO register */
3337         addr = 0xA100;
3338         s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3339         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3340
3341         /* Reading the Alarm flags */
3342         addr = 0xA070;
3343         val64 = 0x0;
3344         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3345
3346         flag = CHECKBIT(val64, 0x7);
3347         type = 1;
3348         s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3349                               &xstats->xpak_regs_stat,
3350                               0x0, flag, type);
3351
3352         if (CHECKBIT(val64, 0x6))
3353                 xstats->alarm_transceiver_temp_low++;
3354
3355         flag = CHECKBIT(val64, 0x3);
3356         type = 2;
3357         s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3358                               &xstats->xpak_regs_stat,
3359                               0x2, flag, type);
3360
3361         if (CHECKBIT(val64, 0x2))
3362                 xstats->alarm_laser_bias_current_low++;
3363
3364         flag = CHECKBIT(val64, 0x1);
3365         type = 3;
3366         s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3367                               &xstats->xpak_regs_stat,
3368                               0x4, flag, type);
3369
3370         if (CHECKBIT(val64, 0x0))
3371                 xstats->alarm_laser_output_power_low++;
3372
3373         /* Reading the Warning flags */
3374         addr = 0xA074;
3375         val64 = 0x0;
3376         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3377
3378         if (CHECKBIT(val64, 0x7))
3379                 xstats->warn_transceiver_temp_high++;
3380
3381         if (CHECKBIT(val64, 0x6))
3382                 xstats->warn_transceiver_temp_low++;
3383
3384         if (CHECKBIT(val64, 0x3))
3385                 xstats->warn_laser_bias_current_high++;
3386
3387         if (CHECKBIT(val64, 0x2))
3388                 xstats->warn_laser_bias_current_low++;
3389
3390         if (CHECKBIT(val64, 0x1))
3391                 xstats->warn_laser_output_power_high++;
3392
3393         if (CHECKBIT(val64, 0x0))
3394                 xstats->warn_laser_output_power_low++;
3395 }
3396
3397 /**
3398  *  wait_for_cmd_complete - waits for a command to complete.
3399  *  @sp : private member of the device structure, which is a pointer to the
3400  *  s2io_nic structure.
3401  *  Description: Function that waits for a command to Write into RMAC
3402  *  ADDR DATA registers to be completed and returns either success or
3403  *  error depending on whether the command was complete or not.
3404  *  Return value:
3405  *   SUCCESS on success and FAILURE on failure.
3406  */
3407
3408 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3409                                  int bit_state)
3410 {
3411         int ret = FAILURE, cnt = 0, delay = 1;
3412         u64 val64;
3413
3414         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3415                 return FAILURE;
3416
3417         do {
3418                 val64 = readq(addr);
3419                 if (bit_state == S2IO_BIT_RESET) {
3420                         if (!(val64 & busy_bit)) {
3421                                 ret = SUCCESS;
3422                                 break;
3423                         }
3424                 } else {
3425                         if (val64 & busy_bit) {
3426                                 ret = SUCCESS;
3427                                 break;
3428                         }
3429                 }
3430
3431                 if (in_interrupt())
3432                         mdelay(delay);
3433                 else
3434                         msleep(delay);
3435
3436                 if (++cnt >= 10)
3437                         delay = 50;
3438         } while (cnt < 20);
3439         return ret;
3440 }
3441 /*
3442  * check_pci_device_id - Checks if the device id is supported
3443  * @id : device id
3444  * Description: Function to check if the pci device id is supported by driver.
3445  * Return value: Actual device id if supported else PCI_ANY_ID
3446  */
3447 static u16 check_pci_device_id(u16 id)
3448 {
3449         switch (id) {
3450         case PCI_DEVICE_ID_HERC_WIN:
3451         case PCI_DEVICE_ID_HERC_UNI:
3452                 return XFRAME_II_DEVICE;
3453         case PCI_DEVICE_ID_S2IO_UNI:
3454         case PCI_DEVICE_ID_S2IO_WIN:
3455                 return XFRAME_I_DEVICE;
3456         default:
3457                 return PCI_ANY_ID;
3458         }
3459 }
3460
3461 /**
3462  *  s2io_reset - Resets the card.
3463  *  @sp : private member of the device structure.
3464  *  Description: Function to Reset the card. This function then also
3465  *  restores the previously saved PCI configuration space registers as
3466  *  the card reset also resets the configuration space.
3467  *  Return value:
3468  *  void.
3469  */
3470
3471 static void s2io_reset(struct s2io_nic *sp)
3472 {
3473         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3474         u64 val64;
3475         u16 subid, pci_cmd;
3476         int i;
3477         u16 val16;
3478         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3479         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3480         struct stat_block *stats;
3481         struct swStat *swstats;
3482
3483         DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3484                   __func__, pci_name(sp->pdev));
3485
3486         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3487         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3488
3489         val64 = SW_RESET_ALL;
3490         writeq(val64, &bar0->sw_reset);
3491         if (strstr(sp->product_name, "CX4"))
3492                 msleep(750);
3493         msleep(250);
3494         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3495
3496                 /* Restore the PCI state saved during initialization. */
3497                 pci_restore_state(sp->pdev);
3498                 pci_save_state(sp->pdev);
3499                 pci_read_config_word(sp->pdev, 0x2, &val16);
3500                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3501                         break;
3502                 msleep(200);
3503         }
3504
3505         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3506                 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3507
3508         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3509
3510         s2io_init_pci(sp);
3511
3512         /* Set swapper to enable I/O register access */
3513         s2io_set_swapper(sp);
3514
3515         /* restore mac_addr entries */
3516         do_s2io_restore_unicast_mc(sp);
3517
3518         /* Restore the MSIX table entries from local variables */
3519         restore_xmsi_data(sp);
3520
3521         /* Clear certain PCI/PCI-X fields after reset */
3522         if (sp->device_type == XFRAME_II_DEVICE) {
3523                 /* Clear "detected parity error" bit */
3524                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3525
3526                 /* Clearing PCIX Ecc status register */
3527                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3528
3529                 /* Clearing PCI_STATUS error reflected here */
3530                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3531         }
3532
3533         /* Reset device statistics maintained by OS */
3534         memset(&sp->stats, 0, sizeof(struct net_device_stats));
3535
3536         stats = sp->mac_control.stats_info;
3537         swstats = &stats->sw_stat;
3538
3539         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3540         up_cnt = swstats->link_up_cnt;
3541         down_cnt = swstats->link_down_cnt;
3542         up_time = swstats->link_up_time;
3543         down_time = swstats->link_down_time;
3544         reset_cnt = swstats->soft_reset_cnt;
3545         mem_alloc_cnt = swstats->mem_allocated;
3546         mem_free_cnt = swstats->mem_freed;
3547         watchdog_cnt = swstats->watchdog_timer_cnt;
3548
3549         memset(stats, 0, sizeof(struct stat_block));
3550
3551         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3552         swstats->link_up_cnt = up_cnt;
3553         swstats->link_down_cnt = down_cnt;
3554         swstats->link_up_time = up_time;
3555         swstats->link_down_time = down_time;
3556         swstats->soft_reset_cnt = reset_cnt;
3557         swstats->mem_allocated = mem_alloc_cnt;
3558         swstats->mem_freed = mem_free_cnt;
3559         swstats->watchdog_timer_cnt = watchdog_cnt;
3560
3561         /* SXE-002: Configure link and activity LED to turn it off */
3562         subid = sp->pdev->subsystem_device;
3563         if (((subid & 0xFF) >= 0x07) &&
3564             (sp->device_type == XFRAME_I_DEVICE)) {
3565                 val64 = readq(&bar0->gpio_control);
3566                 val64 |= 0x0000800000000000ULL;
3567                 writeq(val64, &bar0->gpio_control);
3568                 val64 = 0x0411040400000000ULL;
3569                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3570         }
3571
3572         /*
3573          * Clear spurious ECC interrupts that would have occured on
3574          * XFRAME II cards after reset.
3575          */
3576         if (sp->device_type == XFRAME_II_DEVICE) {
3577                 val64 = readq(&bar0->pcc_err_reg);
3578                 writeq(val64, &bar0->pcc_err_reg);
3579         }
3580
3581         sp->device_enabled_once = false;
3582 }
3583
3584 /**
3585  *  s2io_set_swapper - to set the swapper controle on the card
3586  *  @sp : private member of the device structure,
3587  *  pointer to the s2io_nic structure.
3588  *  Description: Function to set the swapper control on the card
3589  *  correctly depending on the 'endianness' of the system.
3590  *  Return value:
3591  *  SUCCESS on success and FAILURE on failure.
3592  */
3593
3594 static int s2io_set_swapper(struct s2io_nic *sp)
3595 {
3596         struct net_device *dev = sp->dev;
3597         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3598         u64 val64, valt, valr;
3599
3600         /*
3601          * Set proper endian settings and verify the same by reading
3602          * the PIF Feed-back register.
3603          */
3604
3605         val64 = readq(&bar0->pif_rd_swapper_fb);
3606         if (val64 != 0x0123456789ABCDEFULL) {
3607                 int i = 0;
3608                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3609                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3610                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3611                                 0};                     /* FE=0, SE=0 */
3612
3613                 while (i < 4) {
3614                         writeq(value[i], &bar0->swapper_ctrl);
3615                         val64 = readq(&bar0->pif_rd_swapper_fb);
3616                         if (val64 == 0x0123456789ABCDEFULL)
3617                                 break;
3618                         i++;
3619                 }
3620                 if (i == 4) {
3621                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3622                                   "feedback read %llx\n",
3623                                   dev->name, (unsigned long long)val64);
3624                         return FAILURE;
3625                 }
3626                 valr = value[i];
3627         } else {
3628                 valr = readq(&bar0->swapper_ctrl);
3629         }
3630
3631         valt = 0x0123456789ABCDEFULL;
3632         writeq(valt, &bar0->xmsi_address);
3633         val64 = readq(&bar0->xmsi_address);
3634
3635         if (val64 != valt) {
3636                 int i = 0;
3637                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3638                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3639                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3640                                 0};                     /* FE=0, SE=0 */
3641
3642                 while (i < 4) {
3643                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3644                         writeq(valt, &bar0->xmsi_address);
3645                         val64 = readq(&bar0->xmsi_address);
3646                         if (val64 == valt)
3647                                 break;
3648                         i++;
3649                 }
3650                 if (i == 4) {
3651                         unsigned long long x = val64;
3652                         DBG_PRINT(ERR_DBG,
3653                                   "Write failed, Xmsi_addr reads:0x%llx\n", x);
3654                         return FAILURE;
3655                 }
3656         }
3657         val64 = readq(&bar0->swapper_ctrl);
3658         val64 &= 0xFFFF000000000000ULL;
3659
3660 #ifdef __BIG_ENDIAN
3661         /*
3662          * The device by default set to a big endian format, so a
3663          * big endian driver need not set anything.
3664          */
3665         val64 |= (SWAPPER_CTRL_TXP_FE |
3666                   SWAPPER_CTRL_TXP_SE |
3667                   SWAPPER_CTRL_TXD_R_FE |
3668                   SWAPPER_CTRL_TXD_W_FE |
3669                   SWAPPER_CTRL_TXF_R_FE |
3670                   SWAPPER_CTRL_RXD_R_FE |
3671                   SWAPPER_CTRL_RXD_W_FE |
3672                   SWAPPER_CTRL_RXF_W_FE |
3673                   SWAPPER_CTRL_XMSI_FE |
3674                   SWAPPER_CTRL_STATS_FE |
3675                   SWAPPER_CTRL_STATS_SE);
3676         if (sp->config.intr_type == INTA)
3677                 val64 |= SWAPPER_CTRL_XMSI_SE;
3678         writeq(val64, &bar0->swapper_ctrl);
3679 #else
3680         /*
3681          * Initially we enable all bits to make it accessible by the
3682          * driver, then we selectively enable only those bits that
3683          * we want to set.
3684          */
3685         val64 |= (SWAPPER_CTRL_TXP_FE |
3686                   SWAPPER_CTRL_TXP_SE |
3687                   SWAPPER_CTRL_TXD_R_FE |
3688                   SWAPPER_CTRL_TXD_R_SE |
3689                   SWAPPER_CTRL_TXD_W_FE |
3690                   SWAPPER_CTRL_TXD_W_SE |
3691                   SWAPPER_CTRL_TXF_R_FE |
3692                   SWAPPER_CTRL_RXD_R_FE |
3693                   SWAPPER_CTRL_RXD_R_SE |
3694                   SWAPPER_CTRL_RXD_W_FE |
3695                   SWAPPER_CTRL_RXD_W_SE |
3696                   SWAPPER_CTRL_RXF_W_FE |
3697                   SWAPPER_CTRL_XMSI_FE |
3698                   SWAPPER_CTRL_STATS_FE |
3699                   SWAPPER_CTRL_STATS_SE);
3700         if (sp->config.intr_type == INTA)
3701                 val64 |= SWAPPER_CTRL_XMSI_SE;
3702         writeq(val64, &bar0->swapper_ctrl);
3703 #endif
3704         val64 = readq(&bar0->swapper_ctrl);
3705
3706         /*
3707          * Verifying if endian settings are accurate by reading a
3708          * feedback register.
3709          */
3710         val64 = readq(&bar0->pif_rd_swapper_fb);
3711         if (val64 != 0x0123456789ABCDEFULL) {
3712                 /* Endian settings are incorrect, calls for another dekko. */
3713                 DBG_PRINT(ERR_DBG,
3714                           "%s: Endian settings are wrong, feedback read %llx\n",
3715                           dev->name, (unsigned long long)val64);
3716                 return FAILURE;
3717         }
3718
3719         return SUCCESS;
3720 }
3721
3722 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3723 {
3724         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3725         u64 val64;
3726         int ret = 0, cnt = 0;
3727
3728         do {
3729                 val64 = readq(&bar0->xmsi_access);
3730                 if (!(val64 & s2BIT(15)))
3731                         break;
3732                 mdelay(1);
3733                 cnt++;
3734         } while (cnt < 5);
3735         if (cnt == 5) {
3736                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3737                 ret = 1;
3738         }
3739
3740         return ret;
3741 }
3742
3743 static void restore_xmsi_data(struct s2io_nic *nic)
3744 {
3745         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3746         u64 val64;
3747         int i, msix_index;
3748
3749         if (nic->device_type == XFRAME_I_DEVICE)
3750                 return;
3751
3752         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3753                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3754                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3755                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3756                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3757                 writeq(val64, &bar0->xmsi_access);
3758                 if (wait_for_msix_trans(nic, msix_index)) {
3759                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3760                                   __func__, msix_index);
3761                         continue;
3762                 }
3763         }
3764 }
3765
3766 static void store_xmsi_data(struct s2io_nic *nic)
3767 {
3768         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3769         u64 val64, addr, data;
3770         int i, msix_index;
3771
3772         if (nic->device_type == XFRAME_I_DEVICE)
3773                 return;
3774
3775         /* Store and display */
3776         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3777                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3778                 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3779                 writeq(val64, &bar0->xmsi_access);
3780                 if (wait_for_msix_trans(nic, msix_index)) {
3781                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3782                                   __func__, msix_index);
3783                         continue;
3784                 }
3785                 addr = readq(&bar0->xmsi_address);
3786                 data = readq(&bar0->xmsi_data);
3787                 if (addr && data) {
3788                         nic->msix_info[i].addr = addr;
3789                         nic->msix_info[i].data = data;
3790                 }
3791         }
3792 }
3793
3794 static int s2io_enable_msi_x(struct s2io_nic *nic)
3795 {
3796         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3797         u64 rx_mat;
3798         u16 msi_control; /* Temp variable */
3799         int ret, i, j, msix_indx = 1;
3800         int size;
3801         struct stat_block *stats = nic->mac_control.stats_info;
3802         struct swStat *swstats = &stats->sw_stat;
3803
3804         size = nic->num_entries * sizeof(struct msix_entry);
3805         nic->entries = kzalloc(size, GFP_KERNEL);
3806         if (!nic->entries) {
3807                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3808                           __func__);
3809                 swstats->mem_alloc_fail_cnt++;
3810                 return -ENOMEM;
3811         }
3812         swstats->mem_allocated += size;
3813
3814         size = nic->num_entries * sizeof(struct s2io_msix_entry);
3815         nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3816         if (!nic->s2io_entries) {
3817                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3818                           __func__);
3819                 swstats->mem_alloc_fail_cnt++;
3820                 kfree(nic->entries);
3821                 swstats->mem_freed
3822                         += (nic->num_entries * sizeof(struct msix_entry));
3823                 return -ENOMEM;
3824         }
3825         swstats->mem_allocated += size;
3826
3827         nic->entries[0].entry = 0;
3828         nic->s2io_entries[0].entry = 0;
3829         nic->s2io_entries[0].in_use = MSIX_FLG;
3830         nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3831         nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3832
3833         for (i = 1; i < nic->num_entries; i++) {
3834                 nic->entries[i].entry = ((i - 1) * 8) + 1;
3835                 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3836                 nic->s2io_entries[i].arg = NULL;
3837                 nic->s2io_entries[i].in_use = 0;
3838         }
3839
3840         rx_mat = readq(&bar0->rx_mat);
3841         for (j = 0; j < nic->config.rx_ring_num; j++) {
3842                 rx_mat |= RX_MAT_SET(j, msix_indx);
3843                 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3844                 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3845                 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3846                 msix_indx += 8;
3847         }
3848         writeq(rx_mat, &bar0->rx_mat);
3849         readq(&bar0->rx_mat);
3850
3851         ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3852         /* We fail init if error or we get less vectors than min required */
3853         if (ret) {
3854                 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3855                 kfree(nic->entries);
3856                 swstats->mem_freed += nic->num_entries *
3857                         sizeof(struct msix_entry);
3858                 kfree(nic->s2io_entries);
3859                 swstats->mem_freed += nic->num_entries *
3860                         sizeof(struct s2io_msix_entry);
3861                 nic->entries = NULL;
3862                 nic->s2io_entries = NULL;
3863                 return -ENOMEM;
3864         }
3865
3866         /*
3867          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3868          * in the herc NIC. (Temp change, needs to be removed later)
3869          */
3870         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3871         msi_control |= 0x1; /* Enable MSI */
3872         pci_write_config_word(nic->pdev, 0x42, msi_control);
3873
3874         return 0;
3875 }
3876
3877 /* Handle software interrupt used during MSI(X) test */
3878 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3879 {
3880         struct s2io_nic *sp = dev_id;
3881
3882         sp->msi_detected = 1;
3883         wake_up(&sp->msi_wait);
3884
3885         return IRQ_HANDLED;
3886 }
3887
3888 /* Test interrupt path by forcing a a software IRQ */
3889 static int s2io_test_msi(struct s2io_nic *sp)
3890 {
3891         struct pci_dev *pdev = sp->pdev;
3892         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3893         int err;
3894         u64 val64, saved64;
3895
3896         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3897                           sp->name, sp);
3898         if (err) {
3899                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3900                           sp->dev->name, pci_name(pdev), pdev->irq);
3901                 return err;
3902         }
3903
3904         init_waitqueue_head(&sp->msi_wait);
3905         sp->msi_detected = 0;
3906
3907         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3908         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3909         val64 |= SCHED_INT_CTRL_TIMER_EN;
3910         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3911         writeq(val64, &bar0->scheduled_int_ctrl);
3912
3913         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3914
3915         if (!sp->msi_detected) {
3916                 /* MSI(X) test failed, go back to INTx mode */
3917                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3918                           "using MSI(X) during test\n",
3919                           sp->dev->name, pci_name(pdev));
3920
3921                 err = -EOPNOTSUPP;
3922         }
3923
3924         free_irq(sp->entries[1].vector, sp);
3925
3926         writeq(saved64, &bar0->scheduled_int_ctrl);
3927
3928         return err;
3929 }
3930
3931 static void remove_msix_isr(struct s2io_nic *sp)
3932 {
3933         int i;
3934         u16 msi_control;
3935
3936         for (i = 0; i < sp->num_entries; i++) {
3937                 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3938                         int vector = sp->entries[i].vector;
3939                         void *arg = sp->s2io_entries[i].arg;
3940                         free_irq(vector, arg);
3941                 }
3942         }
3943
3944         kfree(sp->entries);
3945         kfree(sp->s2io_entries);
3946         sp->entries = NULL;
3947         sp->s2io_entries = NULL;
3948
3949         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3950         msi_control &= 0xFFFE; /* Disable MSI */
3951         pci_write_config_word(sp->pdev, 0x42, msi_control);
3952
3953         pci_disable_msix(sp->pdev);
3954 }
3955
3956 static void remove_inta_isr(struct s2io_nic *sp)
3957 {
3958         struct net_device *dev = sp->dev;
3959
3960         free_irq(sp->pdev->irq, dev);
3961 }
3962
3963 /* ********************************************************* *
3964  * Functions defined below concern the OS part of the driver *
3965  * ********************************************************* */
3966
3967 /**
3968  *  s2io_open - open entry point of the driver
3969  *  @dev : pointer to the device structure.
3970  *  Description:
3971  *  This function is the open entry point of the driver. It mainly calls a
3972  *  function to allocate Rx buffers and inserts them into the buffer
3973  *  descriptors and then enables the Rx part of the NIC.
3974  *  Return value:
3975  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3976  *   file on failure.
3977  */
3978
3979 static int s2io_open(struct net_device *dev)
3980 {
3981         struct s2io_nic *sp = netdev_priv(dev);
3982         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3983         int err = 0;
3984
3985         /*
3986          * Make sure you have link off by default every time
3987          * Nic is initialized
3988          */
3989         netif_carrier_off(dev);
3990         sp->last_link_state = 0;
3991
3992         /* Initialize H/W and enable interrupts */
3993         err = s2io_card_up(sp);
3994         if (err) {
3995                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3996                           dev->name);
3997                 goto hw_init_failed;
3998         }
3999
4000         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4001                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4002                 s2io_card_down(sp);
4003                 err = -ENODEV;
4004                 goto hw_init_failed;
4005         }
4006         s2io_start_all_tx_queue(sp);
4007         return 0;
4008
4009 hw_init_failed:
4010         if (sp->config.intr_type == MSI_X) {
4011                 if (sp->entries) {
4012                         kfree(sp->entries);
4013                         swstats->mem_freed += sp->num_entries *
4014                                 sizeof(struct msix_entry);
4015                 }
4016                 if (sp->s2io_entries) {
4017                         kfree(sp->s2io_entries);
4018                         swstats->mem_freed += sp->num_entries *
4019                                 sizeof(struct s2io_msix_entry);
4020                 }
4021         }
4022         return err;
4023 }
4024
4025 /**
4026  *  s2io_close -close entry point of the driver
4027  *  @dev : device pointer.
4028  *  Description:
4029  *  This is the stop entry point of the driver. It needs to undo exactly
4030  *  whatever was done by the open entry point,thus it's usually referred to
4031  *  as the close function.Among other things this function mainly stops the
4032  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4033  *  Return value:
4034  *  0 on success and an appropriate (-)ve integer as defined in errno.h
4035  *  file on failure.
4036  */
4037
4038 static int s2io_close(struct net_device *dev)
4039 {
4040         struct s2io_nic *sp = netdev_priv(dev);
4041         struct config_param *config = &sp->config;
4042         u64 tmp64;
4043         int offset;
4044
4045         /* Return if the device is already closed               *
4046          *  Can happen when s2io_card_up failed in change_mtu    *
4047          */
4048         if (!is_s2io_card_up(sp))
4049                 return 0;
4050
4051         s2io_stop_all_tx_queue(sp);
4052         /* delete all populated mac entries */
4053         for (offset = 1; offset < config->max_mc_addr; offset++) {
4054                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4055                 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4056                         do_s2io_delete_unicast_mc(sp, tmp64);
4057         }
4058
4059         s2io_card_down(sp);
4060
4061         return 0;
4062 }
4063
4064 /**
4065  *  s2io_xmit - Tx entry point of te driver
4066  *  @skb : the socket buffer containing the Tx data.
4067  *  @dev : device pointer.
4068  *  Description :
4069  *  This function is the Tx entry point of the driver. S2IO NIC supports
4070  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4071  *  NOTE: when device cant queue the pkt,just the trans_start variable will
4072  *  not be upadted.
4073  *  Return value:
4074  *  0 on success & 1 on failure.
4075  */
4076
4077 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4078 {
4079         struct s2io_nic *sp = netdev_priv(dev);
4080         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4081         register u64 val64;
4082         struct TxD *txdp;
4083         struct TxFIFO_element __iomem *tx_fifo;
4084         unsigned long flags = 0;
4085         u16 vlan_tag = 0;
4086         struct fifo_info *fifo = NULL;
4087         int do_spin_lock = 1;
4088         int offload_type;
4089         int enable_per_list_interrupt = 0;
4090         struct config_param *config = &sp->config;
4091         struct mac_info *mac_control = &sp->mac_control;
4092         struct stat_block *stats = mac_control->stats_info;
4093         struct swStat *swstats = &stats->sw_stat;
4094
4095         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4096
4097         if (unlikely(skb->len <= 0)) {
4098                 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4099                 dev_kfree_skb_any(skb);
4100                 return NETDEV_TX_OK;
4101         }
4102
4103         if (!is_s2io_card_up(sp)) {
4104                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4105                           dev->name);
4106                 dev_kfree_skb(skb);
4107                 return NETDEV_TX_OK;
4108         }
4109
4110         queue = 0;
4111         if (sp->vlgrp && vlan_tx_tag_present(skb))
4112                 vlan_tag = vlan_tx_tag_get(skb);
4113         if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4114                 if (skb->protocol == htons(ETH_P_IP)) {
4115                         struct iphdr *ip;
4116                         struct tcphdr *th;
4117                         ip = ip_hdr(skb);
4118
4119                         if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4120                                 th = (struct tcphdr *)(((unsigned char *)ip) +
4121                                                        ip->ihl*4);
4122
4123                                 if (ip->protocol == IPPROTO_TCP) {
4124                                         queue_len = sp->total_tcp_fifos;
4125                                         queue = (ntohs(th->source) +
4126                                                  ntohs(th->dest)) &
4127                                                 sp->fifo_selector[queue_len - 1];
4128                                         if (queue >= queue_len)
4129                                                 queue = queue_len - 1;
4130                                 } else if (ip->protocol == IPPROTO_UDP) {
4131                                         queue_len = sp->total_udp_fifos;
4132                                         queue = (ntohs(th->source) +
4133                                                  ntohs(th->dest)) &
4134                                                 sp->fifo_selector[queue_len - 1];
4135                                         if (queue >= queue_len)
4136                                                 queue = queue_len - 1;
4137                                         queue += sp->udp_fifo_idx;
4138                                         if (skb->len > 1024)
4139                                                 enable_per_list_interrupt = 1;
4140                                         do_spin_lock = 0;
4141                                 }
4142                         }
4143                 }
4144         } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4145                 /* get fifo number based on skb->priority value */
4146                 queue = config->fifo_mapping
4147                         [skb->priority & (MAX_TX_FIFOS - 1)];
4148         fifo = &mac_control->fifos[queue];
4149
4150         if (do_spin_lock)
4151                 spin_lock_irqsave(&fifo->tx_lock, flags);
4152         else {
4153                 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4154                         return NETDEV_TX_LOCKED;
4155         }
4156
4157         if (sp->config.multiq) {
4158                 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4159                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4160                         return NETDEV_TX_BUSY;
4161                 }
4162         } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4163                 if (netif_queue_stopped(dev)) {
4164                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4165                         return NETDEV_TX_BUSY;
4166                 }
4167         }
4168
4169         put_off = (u16)fifo->tx_curr_put_info.offset;
4170         get_off = (u16)fifo->tx_curr_get_info.offset;
4171         txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
4172
4173         queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4174         /* Avoid "put" pointer going beyond "get" pointer */
4175         if (txdp->Host_Control ||
4176             ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4177                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4178                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4179                 dev_kfree_skb(skb);
4180                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4181                 return NETDEV_TX_OK;
4182         }
4183
4184         offload_type = s2io_offload_type(skb);
4185         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4186                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4187                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4188         }
4189         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4190                 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4191                                     TXD_TX_CKO_TCP_EN |
4192                                     TXD_TX_CKO_UDP_EN);
4193         }
4194         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4195         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4196         txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4197         if (enable_per_list_interrupt)
4198                 if (put_off & (queue_len >> 5))
4199                         txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4200         if (vlan_tag) {
4201                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4202                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4203         }
4204
4205         frg_len = skb->len - skb->data_len;
4206         if (offload_type == SKB_GSO_UDP) {
4207                 int ufo_size;
4208
4209                 ufo_size = s2io_udp_mss(skb);
4210                 ufo_size &= ~7;
4211                 txdp->Control_1 |= TXD_UFO_EN;
4212                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4213                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4214 #ifdef __BIG_ENDIAN
4215                 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4216                 fifo->ufo_in_band_v[put_off] =
4217                         (__force u64)skb_shinfo(skb)->ip6_frag_id;
4218 #else
4219                 fifo->ufo_in_band_v[put_off] =
4220                         (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4221 #endif
4222                 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4223                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4224                                                       fifo->ufo_in_band_v,
4225                                                       sizeof(u64),
4226                                                       PCI_DMA_TODEVICE);
4227                 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4228                         goto pci_map_failed;
4229                 txdp++;
4230         }
4231
4232         txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4233                                               frg_len, PCI_DMA_TODEVICE);
4234         if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4235                 goto pci_map_failed;
4236
4237         txdp->Host_Control = (unsigned long)skb;
4238         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4239         if (offload_type == SKB_GSO_UDP)
4240                 txdp->Control_1 |= TXD_UFO_EN;
4241
4242         frg_cnt = skb_shinfo(skb)->nr_frags;
4243         /* For fragmented SKB. */
4244         for (i = 0; i < frg_cnt; i++) {
4245                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4246                 /* A '0' length fragment will be ignored */
4247                 if (!frag->size)
4248                         continue;
4249                 txdp++;
4250                 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4251                                                          frag->page_offset,
4252                                                          frag->size,
4253                                                          PCI_DMA_TODEVICE);
4254                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4255                 if (offload_type == SKB_GSO_UDP)
4256                         txdp->Control_1 |= TXD_UFO_EN;
4257         }
4258         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4259
4260         if (offload_type == SKB_GSO_UDP)
4261                 frg_cnt++; /* as Txd0 was used for inband header */
4262
4263         tx_fifo = mac_control->tx_FIFO_start[queue];
4264         val64 = fifo->list_info[put_off].list_phy_addr;
4265         writeq(val64, &tx_fifo->TxDL_Pointer);
4266
4267         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4268                  TX_FIFO_LAST_LIST);
4269         if (offload_type)
4270                 val64 |= TX_FIFO_SPECIAL_FUNC;
4271
4272         writeq(val64, &tx_fifo->List_Control);
4273
4274         mmiowb();
4275
4276         put_off++;
4277         if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4278                 put_off = 0;
4279         fifo->tx_curr_put_info.offset = put_off;
4280
4281         /* Avoid "put" pointer going beyond "get" pointer */
4282         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4283                 swstats->fifo_full_cnt++;
4284                 DBG_PRINT(TX_DBG,
4285                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4286                           put_off, get_off);
4287                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4288         }
4289         swstats->mem_allocated += skb->truesize;
4290         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4291
4292         if (sp->config.intr_type == MSI_X)
4293                 tx_intr_handler(fifo);
4294
4295         return NETDEV_TX_OK;
4296
4297 pci_map_failed:
4298         swstats->pci_map_fail_cnt++;
4299         s2io_stop_tx_queue(sp, fifo->fifo_no);
4300         swstats->mem_freed += skb->truesize;
4301         dev_kfree_skb(skb);
4302         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4303         return NETDEV_TX_OK;
4304 }
4305
4306 static void
4307 s2io_alarm_handle(unsigned long data)
4308 {
4309         struct s2io_nic *sp = (struct s2io_nic *)data;
4310         struct net_device *dev = sp->dev;
4311
4312         s2io_handle_errors(dev);
4313         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4314 }
4315
4316 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4317 {
4318         struct ring_info *ring = (struct ring_info *)dev_id;
4319         struct s2io_nic *sp = ring->nic;
4320         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4321
4322         if (unlikely(!is_s2io_card_up(sp)))
4323                 return IRQ_HANDLED;
4324
4325         if (sp->config.napi) {
4326                 u8 __iomem *addr = NULL;
4327                 u8 val8 = 0;
4328
4329                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4330                 addr += (7 - ring->ring_no);
4331                 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4332                 writeb(val8, addr);
4333                 val8 = readb(addr);
4334                 napi_schedule(&ring->napi);
4335         } else {
4336                 rx_intr_handler(ring, 0);
4337                 s2io_chk_rx_buffers(sp, ring);
4338         }
4339
4340         return IRQ_HANDLED;
4341 }
4342
4343 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4344 {
4345         int i;
4346         struct fifo_info *fifos = (struct fifo_info *)dev_id;
4347         struct s2io_nic *sp = fifos->nic;
4348         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4349         struct config_param *config  = &sp->config;
4350         u64 reason;
4351
4352         if (unlikely(!is_s2io_card_up(sp)))
4353                 return IRQ_NONE;
4354
4355         reason = readq(&bar0->general_int_status);
4356         if (unlikely(reason == S2IO_MINUS_ONE))
4357                 /* Nothing much can be done. Get out */
4358                 return IRQ_HANDLED;
4359
4360         if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4361                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4362
4363                 if (reason & GEN_INTR_TXPIC)
4364                         s2io_txpic_intr_handle(sp);
4365
4366                 if (reason & GEN_INTR_TXTRAFFIC)
4367                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4368
4369                 for (i = 0; i < config->tx_fifo_num; i++)
4370                         tx_intr_handler(&fifos[i]);
4371
4372                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4373                 readl(&bar0->general_int_status);
4374                 return IRQ_HANDLED;
4375         }
4376         /* The interrupt was not raised by us */
4377         return IRQ_NONE;
4378 }
4379
4380 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4381 {
4382         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4383         u64 val64;
4384
4385         val64 = readq(&bar0->pic_int_status);
4386         if (val64 & PIC_INT_GPIO) {
4387                 val64 = readq(&bar0->gpio_int_reg);
4388                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4389                     (val64 & GPIO_INT_REG_LINK_UP)) {
4390                         /*
4391                          * This is unstable state so clear both up/down
4392                          * interrupt and adapter to re-evaluate the link state.
4393                          */
4394                         val64 |= GPIO_INT_REG_LINK_DOWN;
4395                         val64 |= GPIO_INT_REG_LINK_UP;
4396                         writeq(val64, &bar0->gpio_int_reg);
4397                         val64 = readq(&bar0->gpio_int_mask);
4398                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4399                                    GPIO_INT_MASK_LINK_DOWN);
4400                         writeq(val64, &bar0->gpio_int_mask);
4401                 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4402                         val64 = readq(&bar0->adapter_status);
4403                         /* Enable Adapter */
4404                         val64 = readq(&bar0->adapter_control);
4405                         val64 |= ADAPTER_CNTL_EN;
4406                         writeq(val64, &bar0->adapter_control);
4407                         val64 |= ADAPTER_LED_ON;
4408                         writeq(val64, &bar0->adapter_control);
4409                         if (!sp->device_enabled_once)
4410                                 sp->device_enabled_once = 1;
4411
4412                         s2io_link(sp, LINK_UP);
4413                         /*
4414                          * unmask link down interrupt and mask link-up
4415                          * intr
4416                          */
4417                         val64 = readq(&bar0->gpio_int_mask);
4418                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4419                         val64 |= GPIO_INT_MASK_LINK_UP;
4420                         writeq(val64, &bar0->gpio_int_mask);
4421
4422                 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4423                         val64 = readq(&bar0->adapter_status);
4424                         s2io_link(sp, LINK_DOWN);
4425                         /* Link is down so unmaks link up interrupt */
4426                         val64 = readq(&bar0->gpio_int_mask);
4427                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4428                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4429                         writeq(val64, &bar0->gpio_int_mask);
4430
4431                         /* turn off LED */
4432                         val64 = readq(&bar0->adapter_control);
4433                         val64 = val64 & (~ADAPTER_LED_ON);
4434                         writeq(val64, &bar0->adapter_control);
4435                 }
4436         }
4437         val64 = readq(&bar0->gpio_int_mask);
4438 }
4439
4440 /**
4441  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4442  *  @value: alarm bits
4443  *  @addr: address value
4444  *  @cnt: counter variable
4445  *  Description: Check for alarm and increment the counter
4446  *  Return Value:
4447  *  1 - if alarm bit set
4448  *  0 - if alarm bit is not set
4449  */
4450 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4451                                  unsigned long long *cnt)
4452 {
4453         u64 val64;
4454         val64 = readq(addr);
4455         if (val64 & value) {
4456                 writeq(val64, addr);
4457                 (*cnt)++;
4458                 return 1;
4459         }
4460         return 0;
4461
4462 }
4463
4464 /**
4465  *  s2io_handle_errors - Xframe error indication handler
4466  *  @nic: device private variable
4467  *  Description: Handle alarms such as loss of link, single or
4468  *  double ECC errors, critical and serious errors.
4469  *  Return Value:
4470  *  NONE
4471  */
4472 static void s2io_handle_errors(void *dev_id)
4473 {
4474         struct net_device *dev = (struct net_device *)dev_id;
4475         struct s2io_nic *sp = netdev_priv(dev);
4476         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4477         u64 temp64 = 0, val64 = 0;
4478         int i = 0;
4479
4480         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4481         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4482
4483         if (!is_s2io_card_up(sp))
4484                 return;
4485
4486         if (pci_channel_offline(sp->pdev))
4487                 return;
4488
4489         memset(&sw_stat->ring_full_cnt, 0,
4490                sizeof(sw_stat->ring_full_cnt));
4491
4492         /* Handling the XPAK counters update */
4493         if (stats->xpak_timer_count < 72000) {
4494                 /* waiting for an hour */
4495                 stats->xpak_timer_count++;
4496         } else {
4497                 s2io_updt_xpak_counter(dev);
4498                 /* reset the count to zero */
4499                 stats->xpak_timer_count = 0;
4500         }
4501
4502         /* Handling link status change error Intr */
4503         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4504                 val64 = readq(&bar0->mac_rmac_err_reg);
4505                 writeq(val64, &bar0->mac_rmac_err_reg);
4506                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4507                         schedule_work(&sp->set_link_task);
4508         }
4509
4510         /* In case of a serious error, the device will be Reset. */
4511         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4512                                   &sw_stat->serious_err_cnt))
4513                 goto reset;
4514
4515         /* Check for data parity error */
4516         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4517                                   &sw_stat->parity_err_cnt))
4518                 goto reset;
4519
4520         /* Check for ring full counter */
4521         if (sp->device_type == XFRAME_II_DEVICE) {
4522                 val64 = readq(&bar0->ring_bump_counter1);
4523                 for (i = 0; i < 4; i++) {
4524                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4525                         temp64 >>= 64 - ((i+1)*16);
4526                         sw_stat->ring_full_cnt[i] += temp64;
4527                 }
4528
4529                 val64 = readq(&bar0->ring_bump_counter2);
4530                 for (i = 0; i < 4; i++) {
4531                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4532                         temp64 >>= 64 - ((i+1)*16);
4533                         sw_stat->ring_full_cnt[i+4] += temp64;
4534                 }
4535         }
4536
4537         val64 = readq(&bar0->txdma_int_status);
4538         /*check for pfc_err*/
4539         if (val64 & TXDMA_PFC_INT) {
4540                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4541                                           PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4542                                           PFC_PCIX_ERR,
4543                                           &bar0->pfc_err_reg,
4544                                           &sw_stat->pfc_err_cnt))
4545                         goto reset;
4546                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4547                                       &bar0->pfc_err_reg,
4548                                       &sw_stat->pfc_err_cnt);
4549         }
4550
4551         /*check for tda_err*/
4552         if (val64 & TXDMA_TDA_INT) {
4553                 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4554                                           TDA_SM0_ERR_ALARM |
4555                                           TDA_SM1_ERR_ALARM,
4556                                           &bar0->tda_err_reg,
4557                                           &sw_stat->tda_err_cnt))
4558                         goto reset;
4559                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4560                                       &bar0->tda_err_reg,
4561                                       &sw_stat->tda_err_cnt);
4562         }
4563         /*check for pcc_err*/
4564         if (val64 & TXDMA_PCC_INT) {
4565                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4566                                           PCC_N_SERR | PCC_6_COF_OV_ERR |
4567                                           PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4568                                           PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4569                                           PCC_TXB_ECC_DB_ERR,
4570                                           &bar0->pcc_err_reg,
4571                                           &sw_stat->pcc_err_cnt))
4572                         goto reset;
4573                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4574                                       &bar0->pcc_err_reg,
4575                                       &sw_stat->pcc_err_cnt);
4576         }
4577
4578         /*check for tti_err*/
4579         if (val64 & TXDMA_TTI_INT) {
4580                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4581                                           &bar0->tti_err_reg,
4582                                           &sw_stat->tti_err_cnt))
4583                         goto reset;
4584                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4585                                       &bar0->tti_err_reg,
4586                                       &sw_stat->tti_err_cnt);
4587         }
4588
4589         /*check for lso_err*/
4590         if (val64 & TXDMA_LSO_INT) {
4591                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4592                                           LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4593                                           &bar0->lso_err_reg,
4594                                           &sw_stat->lso_err_cnt))
4595                         goto reset;
4596                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4597                                       &bar0->lso_err_reg,
4598                                       &sw_stat->lso_err_cnt);
4599         }
4600
4601         /*check for tpa_err*/
4602         if (val64 & TXDMA_TPA_INT) {
4603                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4604                                           &bar0->tpa_err_reg,
4605                                           &sw_stat->tpa_err_cnt))
4606                         goto reset;
4607                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4608                                       &bar0->tpa_err_reg,
4609                                       &sw_stat->tpa_err_cnt);
4610         }
4611
4612         /*check for sm_err*/
4613         if (val64 & TXDMA_SM_INT) {
4614                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4615                                           &bar0->sm_err_reg,
4616                                           &sw_stat->sm_err_cnt))
4617                         goto reset;
4618         }
4619
4620         val64 = readq(&bar0->mac_int_status);
4621         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4622                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4623                                           &bar0->mac_tmac_err_reg,
4624                                           &sw_stat->mac_tmac_err_cnt))
4625                         goto reset;
4626                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4627                                       TMAC_DESC_ECC_SG_ERR |
4628                                       TMAC_DESC_ECC_DB_ERR,
4629                                       &bar0->mac_tmac_err_reg,
4630                                       &sw_stat->mac_tmac_err_cnt);
4631         }
4632
4633         val64 = readq(&bar0->xgxs_int_status);
4634         if (val64 & XGXS_INT_STATUS_TXGXS) {
4635                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4636                                           &bar0->xgxs_txgxs_err_reg,
4637                                           &sw_stat->xgxs_txgxs_err_cnt))
4638                         goto reset;
4639                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4640                                       &bar0->xgxs_txgxs_err_reg,
4641                                       &sw_stat->xgxs_txgxs_err_cnt);
4642         }
4643
4644         val64 = readq(&bar0->rxdma_int_status);
4645         if (val64 & RXDMA_INT_RC_INT_M) {
4646                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4647                                           RC_FTC_ECC_DB_ERR |
4648                                           RC_PRCn_SM_ERR_ALARM |
4649                                           RC_FTC_SM_ERR_ALARM,
4650                                           &bar0->rc_err_reg,
4651                                           &sw_stat->rc_err_cnt))
4652                         goto reset;
4653                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4654                                       RC_FTC_ECC_SG_ERR |
4655                                       RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4656                                       &sw_stat->rc_err_cnt);
4657                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4658                                           PRC_PCI_AB_WR_Rn |
4659                                           PRC_PCI_AB_F_WR_Rn,
4660                                           &bar0->prc_pcix_err_reg,
4661                                           &sw_stat->prc_pcix_err_cnt))
4662                         goto reset;
4663                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4664                                       PRC_PCI_DP_WR_Rn |
4665                                       PRC_PCI_DP_F_WR_Rn,
4666                                       &bar0->prc_pcix_err_reg,
4667                                       &sw_stat->prc_pcix_err_cnt);
4668         }
4669
4670         if (val64 & RXDMA_INT_RPA_INT_M) {
4671                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4672                                           &bar0->rpa_err_reg,
4673                                           &sw_stat->rpa_err_cnt))
4674                         goto reset;
4675                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4676                                       &bar0->rpa_err_reg,
4677                                       &sw_stat->rpa_err_cnt);
4678         }
4679
4680         if (val64 & RXDMA_INT_RDA_INT_M) {
4681                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4682                                           RDA_FRM_ECC_DB_N_AERR |
4683                                           RDA_SM1_ERR_ALARM |
4684                                           RDA_SM0_ERR_ALARM |
4685                                           RDA_RXD_ECC_DB_SERR,
4686                                           &bar0->rda_err_reg,
4687                                           &sw_stat->rda_err_cnt))
4688                         goto reset;
4689                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4690                                       RDA_FRM_ECC_SG_ERR |
4691                                       RDA_MISC_ERR |
4692                                       RDA_PCIX_ERR,
4693                                       &bar0->rda_err_reg,
4694                                       &sw_stat->rda_err_cnt);
4695         }
4696
4697         if (val64 & RXDMA_INT_RTI_INT_M) {
4698                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4699                                           &bar0->rti_err_reg,
4700                                           &sw_stat->rti_err_cnt))
4701                         goto reset;
4702                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4703                                       &bar0->rti_err_reg,
4704                                       &sw_stat->rti_err_cnt);
4705         }
4706
4707         val64 = readq(&bar0->mac_int_status);
4708         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4709                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4710                                           &bar0->mac_rmac_err_reg,
4711                                           &sw_stat->mac_rmac_err_cnt))
4712                         goto reset;
4713                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4714                                       RMAC_SINGLE_ECC_ERR |
4715                                       RMAC_DOUBLE_ECC_ERR,
4716                                       &bar0->mac_rmac_err_reg,
4717                                       &sw_stat->mac_rmac_err_cnt);
4718         }
4719
4720         val64 = readq(&bar0->xgxs_int_status);
4721         if (val64 & XGXS_INT_STATUS_RXGXS) {
4722                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4723                                           &bar0->xgxs_rxgxs_err_reg,
4724                                           &sw_stat->xgxs_rxgxs_err_cnt))
4725                         goto reset;
4726         }
4727
4728         val64 = readq(&bar0->mc_int_status);
4729         if (val64 & MC_INT_STATUS_MC_INT) {
4730                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4731                                           &bar0->mc_err_reg,
4732                                           &sw_stat->mc_err_cnt))
4733                         goto reset;
4734
4735                 /* Handling Ecc errors */
4736                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4737                         writeq(val64, &bar0->mc_err_reg);
4738                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4739                                 sw_stat->double_ecc_errs++;
4740                                 if (sp->device_type != XFRAME_II_DEVICE) {
4741                                         /*
4742                                          * Reset XframeI only if critical error
4743                                          */
4744                                         if (val64 &
4745                                             (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4746                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4747                                                 goto reset;
4748                                 }
4749                         } else
4750                                 sw_stat->single_ecc_errs++;
4751                 }
4752         }
4753         return;
4754
4755 reset:
4756         s2io_stop_all_tx_queue(sp);
4757         schedule_work(&sp->rst_timer_task);
4758         sw_stat->soft_reset_cnt++;
4759         return;
4760 }
4761
4762 /**
4763  *  s2io_isr - ISR handler of the device .
4764  *  @irq: the irq of the device.
4765  *  @dev_id: a void pointer to the dev structure of the NIC.
4766  *  Description:  This function is the ISR handler of the device. It
4767  *  identifies the reason for the interrupt and calls the relevant
4768  *  service routines. As a contongency measure, this ISR allocates the
4769  *  recv buffers, if their numbers are below the panic value which is
4770  *  presently set to 25% of the original number of rcv buffers allocated.
4771  *  Return value:
4772  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4773  *   IRQ_NONE: will be returned if interrupt is not from our device
4774  */
4775 static irqreturn_t s2io_isr(int irq, void *dev_id)
4776 {
4777         struct net_device *dev = (struct net_device *)dev_id;
4778         struct s2io_nic *sp = netdev_priv(dev);
4779         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4780         int i;
4781         u64 reason = 0;
4782         struct mac_info *mac_control;
4783         struct config_param *config;
4784
4785         /* Pretend we handled any irq's from a disconnected card */
4786         if (pci_channel_offline(sp->pdev))
4787                 return IRQ_NONE;
4788
4789         if (!is_s2io_card_up(sp))
4790                 return IRQ_NONE;
4791
4792         config = &sp->config;
4793         mac_control = &sp->mac_control;
4794
4795         /*
4796          * Identify the cause for interrupt and call the appropriate
4797          * interrupt handler. Causes for the interrupt could be;
4798          * 1. Rx of packet.
4799          * 2. Tx complete.
4800          * 3. Link down.
4801          */
4802         reason = readq(&bar0->general_int_status);
4803
4804         if (unlikely(reason == S2IO_MINUS_ONE))
4805                 return IRQ_HANDLED;     /* Nothing much can be done. Get out */
4806
4807         if (reason &
4808             (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4809                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4810
4811                 if (config->napi) {
4812                         if (reason & GEN_INTR_RXTRAFFIC) {
4813                                 napi_schedule(&sp->napi);
4814                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4815                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4816                                 readl(&bar0->rx_traffic_int);
4817                         }
4818                 } else {
4819                         /*
4820                          * rx_traffic_int reg is an R1 register, writing all 1's
4821                          * will ensure that the actual interrupt causing bit
4822                          * get's cleared and hence a read can be avoided.
4823                          */
4824                         if (reason & GEN_INTR_RXTRAFFIC)
4825                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4826
4827                         for (i = 0; i < config->rx_ring_num; i++) {
4828                                 struct ring_info *ring = &mac_control->rings[i];
4829
4830                                 rx_intr_handler(ring, 0);
4831                         }
4832                 }
4833
4834                 /*
4835                  * tx_traffic_int reg is an R1 register, writing all 1's
4836                  * will ensure that the actual interrupt causing bit get's
4837                  * cleared and hence a read can be avoided.
4838                  */
4839                 if (reason & GEN_INTR_TXTRAFFIC)
4840                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4841
4842                 for (i = 0; i < config->tx_fifo_num; i++)
4843                         tx_intr_handler(&mac_control->fifos[i]);
4844
4845                 if (reason & GEN_INTR_TXPIC)
4846                         s2io_txpic_intr_handle(sp);
4847
4848                 /*
4849                  * Reallocate the buffers from the interrupt handler itself.
4850                  */
4851                 if (!config->napi) {
4852                         for (i = 0; i < config->rx_ring_num; i++) {
4853                                 struct ring_info *ring = &mac_control->rings[i];
4854
4855                                 s2io_chk_rx_buffers(sp, ring);
4856                         }
4857                 }
4858                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4859                 readl(&bar0->general_int_status);
4860
4861                 return IRQ_HANDLED;
4862
4863         } else if (!reason) {
4864                 /* The interrupt was not raised by us */
4865                 return IRQ_NONE;
4866         }
4867
4868         return IRQ_HANDLED;
4869 }
4870
4871 /**
4872  * s2io_updt_stats -
4873  */
4874 static void s2io_updt_stats(struct s2io_nic *sp)
4875 {
4876         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4877         u64 val64;
4878         int cnt = 0;
4879
4880         if (is_s2io_card_up(sp)) {
4881                 /* Apprx 30us on a 133 MHz bus */
4882                 val64 = SET_UPDT_CLICKS(10) |
4883                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4884                 writeq(val64, &bar0->stat_cfg);
4885                 do {
4886                         udelay(100);
4887                         val64 = readq(&bar0->stat_cfg);
4888                         if (!(val64 & s2BIT(0)))
4889                                 break;
4890                         cnt++;
4891                         if (cnt == 5)
4892                                 break; /* Updt failed */
4893                 } while (1);
4894         }
4895 }
4896
4897 /**
4898  *  s2io_get_stats - Updates the device statistics structure.
4899  *  @dev : pointer to the device structure.
4900  *  Description:
4901  *  This function updates the device statistics structure in the s2io_nic
4902  *  structure and returns a pointer to the same.
4903  *  Return value:
4904  *  pointer to the updated net_device_stats structure.
4905  */
4906
4907 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4908 {
4909         struct s2io_nic *sp = netdev_priv(dev);
4910         struct config_param *config = &sp->config;
4911         struct mac_info *mac_control = &sp->mac_control;
4912         struct stat_block *stats = mac_control->stats_info;
4913         int i;
4914
4915         /* Configure Stats for immediate updt */
4916         s2io_updt_stats(sp);
4917
4918         /* Using sp->stats as a staging area, because reset (due to mtu
4919            change, for example) will clear some hardware counters */
4920         dev->stats.tx_packets += le32_to_cpu(stats->tmac_frms) -
4921                 sp->stats.tx_packets;
4922         sp->stats.tx_packets = le32_to_cpu(stats->tmac_frms);
4923
4924         dev->stats.tx_errors += le32_to_cpu(stats->tmac_any_err_frms) -
4925                 sp->stats.tx_errors;
4926         sp->stats.tx_errors = le32_to_cpu(stats->tmac_any_err_frms);
4927
4928         dev->stats.rx_errors += le64_to_cpu(stats->rmac_drop_frms) -
4929                 sp->stats.rx_errors;
4930         sp->stats.rx_errors = le64_to_cpu(stats->rmac_drop_frms);
4931
4932         dev->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms) -
4933                 sp->stats.multicast;
4934         sp->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms);
4935
4936         dev->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms) -
4937                 sp->stats.rx_length_errors;
4938         sp->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms);
4939
4940         /* collect per-ring rx_packets and rx_bytes */
4941         dev->stats.rx_packets = dev->stats.rx_bytes = 0;
4942         for (i = 0; i < config->rx_ring_num; i++) {
4943                 struct ring_info *ring = &mac_control->rings[i];
4944
4945                 dev->stats.rx_packets += ring->rx_packets;
4946                 dev->stats.rx_bytes += ring->rx_bytes;
4947         }
4948
4949         return &dev->stats;
4950 }
4951
4952 /**
4953  *  s2io_set_multicast - entry point for multicast address enable/disable.
4954  *  @dev : pointer to the device structure
4955  *  Description:
4956  *  This function is a driver entry point which gets called by the kernel
4957  *  whenever multicast addresses must be enabled/disabled. This also gets
4958  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4959  *  determine, if multicast address must be enabled or if promiscuous mode
4960  *  is to be disabled etc.
4961  *  Return value:
4962  *  void.
4963  */
4964
4965 static void s2io_set_multicast(struct net_device *dev)
4966 {
4967         int i, j, prev_cnt;
4968         struct dev_mc_list *mclist;
4969         struct s2io_nic *sp = netdev_priv(dev);
4970         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4971         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4972                 0xfeffffffffffULL;
4973         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4974         void __iomem *add;
4975         struct config_param *config = &sp->config;
4976
4977         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4978                 /*  Enable all Multicast addresses */
4979                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4980                        &bar0->rmac_addr_data0_mem);
4981                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4982                        &bar0->rmac_addr_data1_mem);
4983                 val64 = RMAC_ADDR_CMD_MEM_WE |
4984                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4985                         RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4986                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4987                 /* Wait till command completes */
4988                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4989                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4990                                       S2IO_BIT_RESET);
4991
4992                 sp->m_cast_flg = 1;
4993                 sp->all_multi_pos = config->max_mc_addr - 1;
4994         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4995                 /*  Disable all Multicast addresses */
4996                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4997                        &bar0->rmac_addr_data0_mem);
4998                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4999                        &bar0->rmac_addr_data1_mem);
5000                 val64 = RMAC_ADDR_CMD_MEM_WE |
5001                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5002                         RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
5003                 writeq(val64, &bar0->rmac_addr_cmd_mem);
5004                 /* Wait till command completes */
5005                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5006                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5007                                       S2IO_BIT_RESET);
5008
5009                 sp->m_cast_flg = 0;
5010                 sp->all_multi_pos = 0;
5011         }
5012
5013         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5014                 /*  Put the NIC into promiscuous mode */
5015                 add = &bar0->mac_cfg;
5016                 val64 = readq(&bar0->mac_cfg);
5017                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5018
5019                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5020                 writel((u32)val64, add);
5021                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5022                 writel((u32) (val64 >> 32), (add + 4));
5023
5024                 if (vlan_tag_strip != 1) {
5025                         val64 = readq(&bar0->rx_pa_cfg);
5026                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5027                         writeq(val64, &bar0->rx_pa_cfg);
5028                         sp->vlan_strip_flag = 0;
5029                 }
5030
5031                 val64 = readq(&bar0->mac_cfg);
5032                 sp->promisc_flg = 1;
5033                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5034                           dev->name);
5035         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5036                 /*  Remove the NIC from promiscuous mode */
5037                 add = &bar0->mac_cfg;
5038                 val64 = readq(&bar0->mac_cfg);
5039                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5040
5041                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5042                 writel((u32)val64, add);
5043                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5044                 writel((u32) (val64 >> 32), (add + 4));
5045
5046                 if (vlan_tag_strip != 0) {
5047                         val64 = readq(&bar0->rx_pa_cfg);
5048                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5049                         writeq(val64, &bar0->rx_pa_cfg);
5050                         sp->vlan_strip_flag = 1;
5051                 }
5052
5053                 val64 = readq(&bar0->mac_cfg);
5054                 sp->promisc_flg = 0;
5055                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5056         }
5057
5058         /*  Update individual M_CAST address list */
5059         if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5060                 if (netdev_mc_count(dev) >
5061                     (config->max_mc_addr - config->max_mac_addr)) {
5062                         DBG_PRINT(ERR_DBG,
5063                                   "%s: No more Rx filters can be added - "
5064                                   "please enable ALL_MULTI instead\n",
5065                                   dev->name);
5066                         return;
5067                 }
5068
5069                 prev_cnt = sp->mc_addr_count;
5070                 sp->mc_addr_count = netdev_mc_count(dev);
5071
5072                 /* Clear out the previous list of Mc in the H/W. */
5073                 for (i = 0; i < prev_cnt; i++) {
5074                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5075                                &bar0->rmac_addr_data0_mem);
5076                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5077                                &bar0->rmac_addr_data1_mem);
5078                         val64 = RMAC_ADDR_CMD_MEM_WE |
5079                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5080                                 RMAC_ADDR_CMD_MEM_OFFSET
5081                                 (config->mc_start_offset + i);
5082                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5083
5084                         /* Wait for command completes */
5085                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5086                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5087                                                   S2IO_BIT_RESET)) {
5088                                 DBG_PRINT(ERR_DBG,
5089                                           "%s: Adding Multicasts failed\n",
5090                                           dev->name);
5091                                 return;
5092                         }
5093                 }
5094
5095                 /* Create the new Rx filter list and update the same in H/W. */
5096                 i = 0;
5097                 netdev_for_each_mc_addr(mclist, dev) {
5098                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5099                                ETH_ALEN);
5100                         mac_addr = 0;
5101                         for (j = 0; j < ETH_ALEN; j++) {
5102                                 mac_addr |= mclist->dmi_addr[j];
5103                                 mac_addr <<= 8;
5104                         }
5105                         mac_addr >>= 8;
5106                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5107                                &bar0->rmac_addr_data0_mem);
5108                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5109                                &bar0->rmac_addr_data1_mem);
5110                         val64 = RMAC_ADDR_CMD_MEM_WE |
5111                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5112                                 RMAC_ADDR_CMD_MEM_OFFSET
5113                                 (i + config->mc_start_offset);
5114                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5115
5116                         /* Wait for command completes */
5117                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5118                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5119                                                   S2IO_BIT_RESET)) {
5120                                 DBG_PRINT(ERR_DBG,
5121                                           "%s: Adding Multicasts failed\n",
5122                                           dev->name);
5123                                 return;
5124                         }
5125                         i++;
5126                 }
5127         }
5128 }
5129
5130 /* read from CAM unicast & multicast addresses and store it in
5131  * def_mac_addr structure
5132  */
5133 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5134 {
5135         int offset;
5136         u64 mac_addr = 0x0;
5137         struct config_param *config = &sp->config;
5138
5139         /* store unicast & multicast mac addresses */
5140         for (offset = 0; offset < config->max_mc_addr; offset++) {
5141                 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5142                 /* if read fails disable the entry */
5143                 if (mac_addr == FAILURE)
5144                         mac_addr = S2IO_DISABLE_MAC_ENTRY;
5145                 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5146         }
5147 }
5148
5149 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5150 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5151 {
5152         int offset;
5153         struct config_param *config = &sp->config;
5154         /* restore unicast mac address */
5155         for (offset = 0; offset < config->max_mac_addr; offset++)
5156                 do_s2io_prog_unicast(sp->dev,
5157                                      sp->def_mac_addr[offset].mac_addr);
5158
5159         /* restore multicast mac address */
5160         for (offset = config->mc_start_offset;
5161              offset < config->max_mc_addr; offset++)
5162                 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5163 }
5164
5165 /* add a multicast MAC address to CAM */
5166 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5167 {
5168         int i;
5169         u64 mac_addr = 0;
5170         struct config_param *config = &sp->config;
5171
5172         for (i = 0; i < ETH_ALEN; i++) {
5173                 mac_addr <<= 8;
5174                 mac_addr |= addr[i];
5175         }
5176         if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5177                 return SUCCESS;
5178
5179         /* check if the multicast mac already preset in CAM */
5180         for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5181                 u64 tmp64;
5182                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5183                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5184                         break;
5185
5186                 if (tmp64 == mac_addr)
5187                         return SUCCESS;
5188         }
5189         if (i == config->max_mc_addr) {
5190                 DBG_PRINT(ERR_DBG,
5191                           "CAM full no space left for multicast MAC\n");
5192                 return FAILURE;
5193         }
5194         /* Update the internal structure with this new mac address */
5195         do_s2io_copy_mac_addr(sp, i, mac_addr);
5196
5197         return do_s2io_add_mac(sp, mac_addr, i);
5198 }
5199
5200 /* add MAC address to CAM */
5201 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5202 {
5203         u64 val64;
5204         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5205
5206         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5207                &bar0->rmac_addr_data0_mem);
5208
5209         val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5210                 RMAC_ADDR_CMD_MEM_OFFSET(off);
5211         writeq(val64, &bar0->rmac_addr_cmd_mem);
5212
5213         /* Wait till command completes */
5214         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5215                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5216                                   S2IO_BIT_RESET)) {
5217                 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5218                 return FAILURE;
5219         }
5220         return SUCCESS;
5221 }
5222 /* deletes a specified unicast/multicast mac entry from CAM */
5223 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5224 {
5225         int offset;
5226         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5227         struct config_param *config = &sp->config;
5228
5229         for (offset = 1;
5230              offset < config->max_mc_addr; offset++) {
5231                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5232                 if (tmp64 == addr) {
5233                         /* disable the entry by writing  0xffffffffffffULL */
5234                         if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5235                                 return FAILURE;
5236                         /* store the new mac list from CAM */
5237                         do_s2io_store_unicast_mc(sp);
5238                         return SUCCESS;
5239                 }
5240         }
5241         DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5242                   (unsigned long long)addr);
5243         return FAILURE;
5244 }
5245
5246 /* read mac entries from CAM */
5247 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5248 {
5249         u64 tmp64 = 0xffffffffffff0000ULL, val64;
5250         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5251
5252         /* read mac addr */
5253         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5254                 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5255         writeq(val64, &bar0->rmac_addr_cmd_mem);
5256
5257         /* Wait till command completes */
5258         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5259                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5260                                   S2IO_BIT_RESET)) {
5261                 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5262                 return FAILURE;
5263         }
5264         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5265
5266         return tmp64 >> 16;
5267 }
5268
5269 /**
5270  * s2io_set_mac_addr driver entry point
5271  */
5272
5273 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5274 {
5275         struct sockaddr *addr = p;
5276
5277         if (!is_valid_ether_addr(addr->sa_data))
5278                 return -EINVAL;
5279
5280         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5281
5282         /* store the MAC address in CAM */
5283         return do_s2io_prog_unicast(dev, dev->dev_addr);
5284 }
5285 /**
5286  *  do_s2io_prog_unicast - Programs the Xframe mac address
5287  *  @dev : pointer to the device structure.
5288  *  @addr: a uchar pointer to the new mac address which is to be set.
5289  *  Description : This procedure will program the Xframe to receive
5290  *  frames with new Mac Address
5291  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5292  *  as defined in errno.h file on failure.
5293  */
5294
5295 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5296 {
5297         struct s2io_nic *sp = netdev_priv(dev);
5298         register u64 mac_addr = 0, perm_addr = 0;
5299         int i;
5300         u64 tmp64;
5301         struct config_param *config = &sp->config;
5302
5303         /*
5304          * Set the new MAC address as the new unicast filter and reflect this
5305          * change on the device address registered with the OS. It will be
5306          * at offset 0.
5307          */
5308         for (i = 0; i < ETH_ALEN; i++) {
5309                 mac_addr <<= 8;
5310                 mac_addr |= addr[i];
5311                 perm_addr <<= 8;
5312                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5313         }
5314
5315         /* check if the dev_addr is different than perm_addr */
5316         if (mac_addr == perm_addr)
5317                 return SUCCESS;
5318
5319         /* check if the mac already preset in CAM */
5320         for (i = 1; i < config->max_mac_addr; i++) {
5321                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5322                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5323                         break;
5324
5325                 if (tmp64 == mac_addr) {
5326                         DBG_PRINT(INFO_DBG,
5327                                   "MAC addr:0x%llx already present in CAM\n",
5328                                   (unsigned long long)mac_addr);
5329                         return SUCCESS;
5330                 }
5331         }
5332         if (i == config->max_mac_addr) {
5333                 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5334                 return FAILURE;
5335         }
5336         /* Update the internal structure with this new mac address */
5337         do_s2io_copy_mac_addr(sp, i, mac_addr);
5338
5339         return do_s2io_add_mac(sp, mac_addr, i);
5340 }
5341
5342 /**
5343  * s2io_ethtool_sset - Sets different link parameters.
5344  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5345  * @info: pointer to the structure with parameters given by ethtool to set
5346  * link information.
5347  * Description:
5348  * The function sets different link parameters provided by the user onto
5349  * the NIC.
5350  * Return value:
5351  * 0 on success.
5352  */
5353
5354 static int s2io_ethtool_sset(struct net_device *dev,
5355                              struct ethtool_cmd *info)
5356 {
5357         struct s2io_nic *sp = netdev_priv(dev);
5358         if ((info->autoneg == AUTONEG_ENABLE) ||
5359             (info->speed != SPEED_10000) ||
5360             (info->duplex != DUPLEX_FULL))
5361                 return -EINVAL;
5362         else {
5363                 s2io_close(sp->dev);
5364                 s2io_open(sp->dev);
5365         }
5366
5367         return 0;
5368 }
5369
5370 /**
5371  * s2io_ethtol_gset - Return link specific information.
5372  * @sp : private member of the device structure, pointer to the
5373  *      s2io_nic structure.
5374  * @info : pointer to the structure with parameters given by ethtool
5375  * to return link information.
5376  * Description:
5377  * Returns link specific information like speed, duplex etc.. to ethtool.
5378  * Return value :
5379  * return 0 on success.
5380  */
5381
5382 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5383 {
5384         struct s2io_nic *sp = netdev_priv(dev);
5385         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5386         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5387         info->port = PORT_FIBRE;
5388
5389         /* info->transceiver */
5390         info->transceiver = XCVR_EXTERNAL;
5391
5392         if (netif_carrier_ok(sp->dev)) {
5393                 info->speed = 10000;
5394                 info->duplex = DUPLEX_FULL;
5395         } else {
5396                 info->speed = -1;
5397                 info->duplex = -1;
5398         }
5399
5400         info->autoneg = AUTONEG_DISABLE;
5401         return 0;
5402 }
5403
5404 /**
5405  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5406  * @sp : private member of the device structure, which is a pointer to the
5407  * s2io_nic structure.
5408  * @info : pointer to the structure with parameters given by ethtool to
5409  * return driver information.
5410  * Description:
5411  * Returns driver specefic information like name, version etc.. to ethtool.
5412  * Return value:
5413  *  void
5414  */
5415
5416 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5417                                   struct ethtool_drvinfo *info)
5418 {
5419         struct s2io_nic *sp = netdev_priv(dev);
5420
5421         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5422         strncpy(info->version, s2io_driver_version, sizeof(info->version));
5423         strncpy(info->fw_version, "", sizeof(info->fw_version));
5424         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5425         info->regdump_len = XENA_REG_SPACE;
5426         info->eedump_len = XENA_EEPROM_SPACE;
5427 }
5428
5429 /**
5430  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5431  *  @sp: private member of the device structure, which is a pointer to the
5432  *  s2io_nic structure.
5433  *  @regs : pointer to the structure with parameters given by ethtool for
5434  *  dumping the registers.
5435  *  @reg_space: The input argumnet into which all the registers are dumped.
5436  *  Description:
5437  *  Dumps the entire register space of xFrame NIC into the user given
5438  *  buffer area.
5439  * Return value :
5440  * void .
5441  */
5442
5443 static void s2io_ethtool_gregs(struct net_device *dev,
5444                                struct ethtool_regs *regs, void *space)
5445 {
5446         int i;
5447         u64 reg;
5448         u8 *reg_space = (u8 *)space;
5449         struct s2io_nic *sp = netdev_priv(dev);
5450
5451         regs->len = XENA_REG_SPACE;
5452         regs->version = sp->pdev->subsystem_device;
5453
5454         for (i = 0; i < regs->len; i += 8) {
5455                 reg = readq(sp->bar0 + i);
5456                 memcpy((reg_space + i), &reg, 8);
5457         }
5458 }
5459
5460 /**
5461  *  s2io_phy_id  - timer function that alternates adapter LED.
5462  *  @data : address of the private member of the device structure, which
5463  *  is a pointer to the s2io_nic structure, provided as an u32.
5464  * Description: This is actually the timer function that alternates the
5465  * adapter LED bit of the adapter control bit to set/reset every time on
5466  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5467  *  once every second.
5468  */
5469 static void s2io_phy_id(unsigned long data)
5470 {
5471         struct s2io_nic *sp = (struct s2io_nic *)data;
5472         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5473         u64 val64 = 0;
5474         u16 subid;
5475
5476         subid = sp->pdev->subsystem_device;
5477         if ((sp->device_type == XFRAME_II_DEVICE) ||
5478             ((subid & 0xFF) >= 0x07)) {
5479                 val64 = readq(&bar0->gpio_control);
5480                 val64 ^= GPIO_CTRL_GPIO_0;
5481                 writeq(val64, &bar0->gpio_control);
5482         } else {
5483                 val64 = readq(&bar0->adapter_control);
5484                 val64 ^= ADAPTER_LED_ON;
5485                 writeq(val64, &bar0->adapter_control);
5486         }
5487
5488         mod_timer(&sp->id_timer, jiffies + HZ / 2);
5489 }
5490
5491 /**
5492  * s2io_ethtool_idnic - To physically identify the nic on the system.
5493  * @sp : private member of the device structure, which is a pointer to the
5494  * s2io_nic structure.
5495  * @id : pointer to the structure with identification parameters given by
5496  * ethtool.
5497  * Description: Used to physically identify the NIC on the system.
5498  * The Link LED will blink for a time specified by the user for
5499  * identification.
5500  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5501  * identification is possible only if it's link is up.
5502  * Return value:
5503  * int , returns 0 on success
5504  */
5505
5506 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5507 {
5508         u64 val64 = 0, last_gpio_ctrl_val;
5509         struct s2io_nic *sp = netdev_priv(dev);
5510         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5511         u16 subid;
5512
5513         subid = sp->pdev->subsystem_device;
5514         last_gpio_ctrl_val = readq(&bar0->gpio_control);
5515         if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5516                 val64 = readq(&bar0->adapter_control);
5517                 if (!(val64 & ADAPTER_CNTL_EN)) {
5518                         pr_err("Adapter Link down, cannot blink LED\n");
5519                         return -EFAULT;
5520                 }
5521         }
5522         if (sp->id_timer.function == NULL) {
5523                 init_timer(&sp->id_timer);
5524                 sp->id_timer.function = s2io_phy_id;
5525                 sp->id_timer.data = (unsigned long)sp;
5526         }
5527         mod_timer(&sp->id_timer, jiffies);
5528         if (data)
5529                 msleep_interruptible(data * HZ);
5530         else
5531                 msleep_interruptible(MAX_FLICKER_TIME);
5532         del_timer_sync(&sp->id_timer);
5533
5534         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5535                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5536                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5537         }
5538
5539         return 0;
5540 }
5541
5542 static void s2io_ethtool_gringparam(struct net_device *dev,
5543                                     struct ethtool_ringparam *ering)
5544 {
5545         struct s2io_nic *sp = netdev_priv(dev);
5546         int i, tx_desc_count = 0, rx_desc_count = 0;
5547
5548         if (sp->rxd_mode == RXD_MODE_1)
5549                 ering->rx_max_pending = MAX_RX_DESC_1;
5550         else if (sp->rxd_mode == RXD_MODE_3B)
5551                 ering->rx_max_pending = MAX_RX_DESC_2;
5552
5553         ering->tx_max_pending = MAX_TX_DESC;
5554         for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5555                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5556
5557         DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5558         ering->tx_pending = tx_desc_count;
5559         rx_desc_count = 0;
5560         for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5561                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5562
5563         ering->rx_pending = rx_desc_count;
5564
5565         ering->rx_mini_max_pending = 0;
5566         ering->rx_mini_pending = 0;
5567         if (sp->rxd_mode == RXD_MODE_1)
5568                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5569         else if (sp->rxd_mode == RXD_MODE_3B)
5570                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5571         ering->rx_jumbo_pending = rx_desc_count;
5572 }
5573
5574 /**
5575  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5576  * @sp : private member of the device structure, which is a pointer to the
5577  *      s2io_nic structure.
5578  * @ep : pointer to the structure with pause parameters given by ethtool.
5579  * Description:
5580  * Returns the Pause frame generation and reception capability of the NIC.
5581  * Return value:
5582  *  void
5583  */
5584 static void s2io_ethtool_getpause_data(struct net_device *dev,
5585                                        struct ethtool_pauseparam *ep)
5586 {
5587         u64 val64;
5588         struct s2io_nic *sp = netdev_priv(dev);
5589         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5590
5591         val64 = readq(&bar0->rmac_pause_cfg);
5592         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5593                 ep->tx_pause = true;
5594         if (val64 & RMAC_PAUSE_RX_ENABLE)
5595                 ep->rx_pause = true;
5596         ep->autoneg = false;
5597 }
5598
5599 /**
5600  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5601  * @sp : private member of the device structure, which is a pointer to the
5602  *      s2io_nic structure.
5603  * @ep : pointer to the structure with pause parameters given by ethtool.
5604  * Description:
5605  * It can be used to set or reset Pause frame generation or reception
5606  * support of the NIC.
5607  * Return value:
5608  * int, returns 0 on Success
5609  */
5610
5611 static int s2io_ethtool_setpause_data(struct net_device *dev,
5612                                       struct ethtool_pauseparam *ep)
5613 {
5614         u64 val64;
5615         struct s2io_nic *sp = netdev_priv(dev);
5616         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5617
5618         val64 = readq(&bar0->rmac_pause_cfg);
5619         if (ep->tx_pause)
5620                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5621         else
5622                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5623         if (ep->rx_pause)
5624                 val64 |= RMAC_PAUSE_RX_ENABLE;
5625         else
5626                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5627         writeq(val64, &bar0->rmac_pause_cfg);
5628         return 0;
5629 }
5630
5631 /**
5632  * read_eeprom - reads 4 bytes of data from user given offset.
5633  * @sp : private member of the device structure, which is a pointer to the
5634  *      s2io_nic structure.
5635  * @off : offset at which the data must be written
5636  * @data : Its an output parameter where the data read at the given
5637  *      offset is stored.
5638  * Description:
5639  * Will read 4 bytes of data from the user given offset and return the
5640  * read data.
5641  * NOTE: Will allow to read only part of the EEPROM visible through the
5642  *   I2C bus.
5643  * Return value:
5644  *  -1 on failure and 0 on success.
5645  */
5646
5647 #define S2IO_DEV_ID             5
5648 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5649 {
5650         int ret = -1;
5651         u32 exit_cnt = 0;
5652         u64 val64;
5653         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5654
5655         if (sp->device_type == XFRAME_I_DEVICE) {
5656                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5657                         I2C_CONTROL_ADDR(off) |
5658                         I2C_CONTROL_BYTE_CNT(0x3) |
5659                         I2C_CONTROL_READ |
5660                         I2C_CONTROL_CNTL_START;
5661                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5662
5663                 while (exit_cnt < 5) {
5664                         val64 = readq(&bar0->i2c_control);
5665                         if (I2C_CONTROL_CNTL_END(val64)) {
5666                                 *data = I2C_CONTROL_GET_DATA(val64);
5667                                 ret = 0;
5668                                 break;
5669                         }
5670                         msleep(50);
5671                         exit_cnt++;
5672                 }
5673         }
5674
5675         if (sp->device_type == XFRAME_II_DEVICE) {
5676                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5677                         SPI_CONTROL_BYTECNT(0x3) |
5678                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5679                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5680                 val64 |= SPI_CONTROL_REQ;
5681                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5682                 while (exit_cnt < 5) {
5683                         val64 = readq(&bar0->spi_control);
5684                         if (val64 & SPI_CONTROL_NACK) {
5685                                 ret = 1;
5686                                 break;
5687                         } else if (val64 & SPI_CONTROL_DONE) {
5688                                 *data = readq(&bar0->spi_data);
5689                                 *data &= 0xffffff;
5690                                 ret = 0;
5691                                 break;
5692                         }
5693                         msleep(50);
5694                         exit_cnt++;
5695                 }
5696         }
5697         return ret;
5698 }
5699
5700 /**
5701  *  write_eeprom - actually writes the relevant part of the data value.
5702  *  @sp : private member of the device structure, which is a pointer to the
5703  *       s2io_nic structure.
5704  *  @off : offset at which the data must be written
5705  *  @data : The data that is to be written
5706  *  @cnt : Number of bytes of the data that are actually to be written into
5707  *  the Eeprom. (max of 3)
5708  * Description:
5709  *  Actually writes the relevant part of the data value into the Eeprom
5710  *  through the I2C bus.
5711  * Return value:
5712  *  0 on success, -1 on failure.
5713  */
5714
5715 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5716 {
5717         int exit_cnt = 0, ret = -1;
5718         u64 val64;
5719         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5720
5721         if (sp->device_type == XFRAME_I_DEVICE) {
5722                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5723                         I2C_CONTROL_ADDR(off) |
5724                         I2C_CONTROL_BYTE_CNT(cnt) |
5725                         I2C_CONTROL_SET_DATA((u32)data) |
5726                         I2C_CONTROL_CNTL_START;
5727                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5728
5729                 while (exit_cnt < 5) {
5730                         val64 = readq(&bar0->i2c_control);
5731                         if (I2C_CONTROL_CNTL_END(val64)) {
5732                                 if (!(val64 & I2C_CONTROL_NACK))
5733                                         ret = 0;
5734                                 break;
5735                         }
5736                         msleep(50);
5737                         exit_cnt++;
5738                 }
5739         }
5740
5741         if (sp->device_type == XFRAME_II_DEVICE) {
5742                 int write_cnt = (cnt == 8) ? 0 : cnt;
5743                 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5744
5745                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5746                         SPI_CONTROL_BYTECNT(write_cnt) |
5747                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5748                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5749                 val64 |= SPI_CONTROL_REQ;
5750                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5751                 while (exit_cnt < 5) {
5752                         val64 = readq(&bar0->spi_control);
5753                         if (val64 & SPI_CONTROL_NACK) {
5754                                 ret = 1;
5755                                 break;
5756                         } else if (val64 & SPI_CONTROL_DONE) {
5757                                 ret = 0;
5758                                 break;
5759                         }
5760                         msleep(50);
5761                         exit_cnt++;
5762                 }
5763         }
5764         return ret;
5765 }
5766 static void s2io_vpd_read(struct s2io_nic *nic)
5767 {
5768         u8 *vpd_data;
5769         u8 data;
5770         int i = 0, cnt, fail = 0;
5771         int vpd_addr = 0x80;
5772         struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5773
5774         if (nic->device_type == XFRAME_II_DEVICE) {
5775                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5776                 vpd_addr = 0x80;
5777         } else {
5778                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5779                 vpd_addr = 0x50;
5780         }
5781         strcpy(nic->serial_num, "NOT AVAILABLE");
5782
5783         vpd_data = kmalloc(256, GFP_KERNEL);
5784         if (!vpd_data) {
5785                 swstats->mem_alloc_fail_cnt++;
5786                 return;
5787         }
5788         swstats->mem_allocated += 256;
5789
5790         for (i = 0; i < 256; i += 4) {
5791                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5792                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5793                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5794                 for (cnt = 0; cnt < 5; cnt++) {
5795                         msleep(2);
5796                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5797                         if (data == 0x80)
5798                                 break;
5799                 }
5800                 if (cnt >= 5) {
5801                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5802                         fail = 1;
5803                         break;
5804                 }
5805                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5806                                       (u32 *)&vpd_data[i]);
5807         }
5808
5809         if (!fail) {
5810                 /* read serial number of adapter */
5811                 for (cnt = 0; cnt < 256; cnt++) {
5812                         if ((vpd_data[cnt] == 'S') &&
5813                             (vpd_data[cnt+1] == 'N') &&
5814                             (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5815                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5816                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5817                                        vpd_data[cnt+2]);
5818                                 break;
5819                         }
5820                 }
5821         }
5822
5823         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN))
5824                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5825         kfree(vpd_data);
5826         swstats->mem_freed += 256;
5827 }
5828
5829 /**
5830  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5831  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5832  *  @eeprom : pointer to the user level structure provided by ethtool,
5833  *  containing all relevant information.
5834  *  @data_buf : user defined value to be written into Eeprom.
5835  *  Description: Reads the values stored in the Eeprom at given offset
5836  *  for a given length. Stores these values int the input argument data
5837  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5838  *  Return value:
5839  *  int  0 on success
5840  */
5841
5842 static int s2io_ethtool_geeprom(struct net_device *dev,
5843                                 struct ethtool_eeprom *eeprom, u8 * data_buf)
5844 {
5845         u32 i, valid;
5846         u64 data;
5847         struct s2io_nic *sp = netdev_priv(dev);
5848
5849         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5850
5851         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5852                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5853
5854         for (i = 0; i < eeprom->len; i += 4) {
5855                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5856                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5857                         return -EFAULT;
5858                 }
5859                 valid = INV(data);
5860                 memcpy((data_buf + i), &valid, 4);
5861         }
5862         return 0;
5863 }
5864
5865 /**
5866  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5867  *  @sp : private member of the device structure, which is a pointer to the
5868  *  s2io_nic structure.
5869  *  @eeprom : pointer to the user level structure provided by ethtool,
5870  *  containing all relevant information.
5871  *  @data_buf ; user defined value to be written into Eeprom.
5872  *  Description:
5873  *  Tries to write the user provided value in the Eeprom, at the offset
5874  *  given by the user.
5875  *  Return value:
5876  *  0 on success, -EFAULT on failure.
5877  */
5878
5879 static int s2io_ethtool_seeprom(struct net_device *dev,
5880                                 struct ethtool_eeprom *eeprom,
5881                                 u8 *data_buf)
5882 {
5883         int len = eeprom->len, cnt = 0;
5884         u64 valid = 0, data;
5885         struct s2io_nic *sp = netdev_priv(dev);
5886
5887         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5888                 DBG_PRINT(ERR_DBG,
5889                           "ETHTOOL_WRITE_EEPROM Err: "
5890                           "Magic value is wrong, it is 0x%x should be 0x%x\n",
5891                           (sp->pdev->vendor | (sp->pdev->device << 16)),
5892                           eeprom->magic);
5893                 return -EFAULT;
5894         }
5895
5896         while (len) {
5897                 data = (u32)data_buf[cnt] & 0x000000FF;
5898                 if (data)
5899                         valid = (u32)(data << 24);
5900                 else
5901                         valid = data;
5902
5903                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5904                         DBG_PRINT(ERR_DBG,
5905                                   "ETHTOOL_WRITE_EEPROM Err: "
5906                                   "Cannot write into the specified offset\n");
5907                         return -EFAULT;
5908                 }
5909                 cnt++;
5910                 len--;
5911         }
5912
5913         return 0;
5914 }
5915
5916 /**
5917  * s2io_register_test - reads and writes into all clock domains.
5918  * @sp : private member of the device structure, which is a pointer to the
5919  * s2io_nic structure.
5920  * @data : variable that returns the result of each of the test conducted b
5921  * by the driver.
5922  * Description:
5923  * Read and write into all clock domains. The NIC has 3 clock domains,
5924  * see that registers in all the three regions are accessible.
5925  * Return value:
5926  * 0 on success.
5927  */
5928
5929 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5930 {
5931         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5932         u64 val64 = 0, exp_val;
5933         int fail = 0;
5934
5935         val64 = readq(&bar0->pif_rd_swapper_fb);
5936         if (val64 != 0x123456789abcdefULL) {
5937                 fail = 1;
5938                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5939         }
5940
5941         val64 = readq(&bar0->rmac_pause_cfg);
5942         if (val64 != 0xc000ffff00000000ULL) {
5943                 fail = 1;
5944                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5945         }
5946
5947         val64 = readq(&bar0->rx_queue_cfg);
5948         if (sp->device_type == XFRAME_II_DEVICE)
5949                 exp_val = 0x0404040404040404ULL;
5950         else
5951                 exp_val = 0x0808080808080808ULL;
5952         if (val64 != exp_val) {
5953                 fail = 1;
5954                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5955         }
5956
5957         val64 = readq(&bar0->xgxs_efifo_cfg);
5958         if (val64 != 0x000000001923141EULL) {
5959                 fail = 1;
5960                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5961         }
5962
5963         val64 = 0x5A5A5A5A5A5A5A5AULL;
5964         writeq(val64, &bar0->xmsi_data);
5965         val64 = readq(&bar0->xmsi_data);
5966         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5967                 fail = 1;
5968                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5969         }
5970
5971         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5972         writeq(val64, &bar0->xmsi_data);
5973         val64 = readq(&bar0->xmsi_data);
5974         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5975                 fail = 1;
5976                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5977         }
5978
5979         *data = fail;
5980         return fail;
5981 }
5982
5983 /**
5984  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5985  * @sp : private member of the device structure, which is a pointer to the
5986  * s2io_nic structure.
5987  * @data:variable that returns the result of each of the test conducted by
5988  * the driver.
5989  * Description:
5990  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5991  * register.
5992  * Return value:
5993  * 0 on success.
5994  */
5995
5996 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5997 {
5998         int fail = 0;
5999         u64 ret_data, org_4F0, org_7F0;
6000         u8 saved_4F0 = 0, saved_7F0 = 0;
6001         struct net_device *dev = sp->dev;
6002
6003         /* Test Write Error at offset 0 */
6004         /* Note that SPI interface allows write access to all areas
6005          * of EEPROM. Hence doing all negative testing only for Xframe I.
6006          */
6007         if (sp->device_type == XFRAME_I_DEVICE)
6008                 if (!write_eeprom(sp, 0, 0, 3))
6009                         fail = 1;
6010
6011         /* Save current values at offsets 0x4F0 and 0x7F0 */
6012         if (!read_eeprom(sp, 0x4F0, &org_4F0))
6013                 saved_4F0 = 1;
6014         if (!read_eeprom(sp, 0x7F0, &org_7F0))
6015                 saved_7F0 = 1;
6016
6017         /* Test Write at offset 4f0 */
6018         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6019                 fail = 1;
6020         if (read_eeprom(sp, 0x4F0, &ret_data))
6021                 fail = 1;
6022
6023         if (ret_data != 0x012345) {
6024                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6025                           "Data written %llx Data read %llx\n",
6026                           dev->name, (unsigned long long)0x12345,
6027                           (unsigned long long)ret_data);
6028                 fail = 1;
6029         }
6030
6031         /* Reset the EEPROM data go FFFF */
6032         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6033
6034         /* Test Write Request Error at offset 0x7c */
6035         if (sp->device_type == XFRAME_I_DEVICE)
6036                 if (!write_eeprom(sp, 0x07C, 0, 3))
6037                         fail = 1;
6038
6039         /* Test Write Request at offset 0x7f0 */
6040         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6041                 fail = 1;
6042         if (read_eeprom(sp, 0x7F0, &ret_data))
6043                 fail = 1;
6044
6045         if (ret_data != 0x012345) {
6046                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6047                           "Data written %llx Data read %llx\n",
6048                           dev->name, (unsigned long long)0x12345,
6049                           (unsigned long long)ret_data);
6050                 fail = 1;
6051         }
6052
6053         /* Reset the EEPROM data go FFFF */
6054         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6055
6056         if (sp->device_type == XFRAME_I_DEVICE) {
6057                 /* Test Write Error at offset 0x80 */
6058                 if (!write_eeprom(sp, 0x080, 0, 3))
6059                         fail = 1;
6060
6061                 /* Test Write Error at offset 0xfc */
6062                 if (!write_eeprom(sp, 0x0FC, 0, 3))
6063                         fail = 1;
6064
6065                 /* Test Write Error at offset 0x100 */
6066                 if (!write_eeprom(sp, 0x100, 0, 3))
6067                         fail = 1;
6068
6069                 /* Test Write Error at offset 4ec */
6070                 if (!write_eeprom(sp, 0x4EC, 0, 3))
6071                         fail = 1;
6072         }
6073
6074         /* Restore values at offsets 0x4F0 and 0x7F0 */
6075         if (saved_4F0)
6076                 write_eeprom(sp, 0x4F0, org_4F0, 3);
6077         if (saved_7F0)
6078                 write_eeprom(sp, 0x7F0, org_7F0, 3);
6079
6080         *data = fail;
6081         return fail;
6082 }
6083
6084 /**
6085  * s2io_bist_test - invokes the MemBist test of the card .
6086  * @sp : private member of the device structure, which is a pointer to the
6087  * s2io_nic structure.
6088  * @data:variable that returns the result of each of the test conducted by
6089  * the driver.
6090  * Description:
6091  * This invokes the MemBist test of the card. We give around
6092  * 2 secs time for the Test to complete. If it's still not complete
6093  * within this peiod, we consider that the test failed.
6094  * Return value:
6095  * 0 on success and -1 on failure.
6096  */
6097
6098 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6099 {
6100         u8 bist = 0;
6101         int cnt = 0, ret = -1;
6102
6103         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6104         bist |= PCI_BIST_START;
6105         pci_write_config_word(sp->pdev, PCI_BIST, bist);
6106
6107         while (cnt < 20) {
6108                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6109                 if (!(bist & PCI_BIST_START)) {
6110                         *data = (bist & PCI_BIST_CODE_MASK);
6111                         ret = 0;
6112                         break;
6113                 }
6114                 msleep(100);
6115                 cnt++;
6116         }
6117
6118         return ret;
6119 }
6120
6121 /**
6122  * s2io-link_test - verifies the link state of the nic
6123  * @sp ; private member of the device structure, which is a pointer to the
6124  * s2io_nic structure.
6125  * @data: variable that returns the result of each of the test conducted by
6126  * the driver.
6127  * Description:
6128  * The function verifies the link state of the NIC and updates the input
6129  * argument 'data' appropriately.
6130  * Return value:
6131  * 0 on success.
6132  */
6133
6134 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6135 {
6136         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6137         u64 val64;
6138
6139         val64 = readq(&bar0->adapter_status);
6140         if (!(LINK_IS_UP(val64)))
6141                 *data = 1;
6142         else
6143                 *data = 0;
6144
6145         return *data;
6146 }
6147
6148 /**
6149  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6150  * @sp - private member of the device structure, which is a pointer to the
6151  * s2io_nic structure.
6152  * @data - variable that returns the result of each of the test
6153  * conducted by the driver.
6154  * Description:
6155  *  This is one of the offline test that tests the read and write
6156  *  access to the RldRam chip on the NIC.
6157  * Return value:
6158  *  0 on success.
6159  */
6160
6161 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6162 {
6163         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6164         u64 val64;
6165         int cnt, iteration = 0, test_fail = 0;
6166
6167         val64 = readq(&bar0->adapter_control);
6168         val64 &= ~ADAPTER_ECC_EN;
6169         writeq(val64, &bar0->adapter_control);
6170
6171         val64 = readq(&bar0->mc_rldram_test_ctrl);
6172         val64 |= MC_RLDRAM_TEST_MODE;
6173         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6174
6175         val64 = readq(&bar0->mc_rldram_mrs);
6176         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6177         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6178
6179         val64 |= MC_RLDRAM_MRS_ENABLE;
6180         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6181
6182         while (iteration < 2) {
6183                 val64 = 0x55555555aaaa0000ULL;
6184                 if (iteration == 1)
6185                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6186                 writeq(val64, &bar0->mc_rldram_test_d0);
6187
6188                 val64 = 0xaaaa5a5555550000ULL;
6189                 if (iteration == 1)
6190                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6191                 writeq(val64, &bar0->mc_rldram_test_d1);
6192
6193                 val64 = 0x55aaaaaaaa5a0000ULL;
6194                 if (iteration == 1)
6195                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6196                 writeq(val64, &bar0->mc_rldram_test_d2);
6197
6198                 val64 = (u64) (0x0000003ffffe0100ULL);
6199                 writeq(val64, &bar0->mc_rldram_test_add);
6200
6201                 val64 = MC_RLDRAM_TEST_MODE |
6202                         MC_RLDRAM_TEST_WRITE |
6203                         MC_RLDRAM_TEST_GO;
6204                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6205
6206                 for (cnt = 0; cnt < 5; cnt++) {
6207                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6208                         if (val64 & MC_RLDRAM_TEST_DONE)
6209                                 break;
6210                         msleep(200);
6211                 }
6212
6213                 if (cnt == 5)
6214                         break;
6215
6216                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6217                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6218
6219                 for (cnt = 0; cnt < 5; cnt++) {
6220                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6221                         if (val64 & MC_RLDRAM_TEST_DONE)
6222                                 break;
6223                         msleep(500);
6224                 }
6225
6226                 if (cnt == 5)
6227                         break;
6228
6229                 val64 = readq(&bar0->mc_rldram_test_ctrl);
6230                 if (!(val64 & MC_RLDRAM_TEST_PASS))
6231                         test_fail = 1;
6232
6233                 iteration++;
6234         }
6235
6236         *data = test_fail;
6237
6238         /* Bring the adapter out of test mode */
6239         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6240
6241         return test_fail;
6242 }
6243
6244 /**
6245  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6246  *  @sp : private member of the device structure, which is a pointer to the
6247  *  s2io_nic structure.
6248  *  @ethtest : pointer to a ethtool command specific structure that will be
6249  *  returned to the user.
6250  *  @data : variable that returns the result of each of the test
6251  * conducted by the driver.
6252  * Description:
6253  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6254  *  the health of the card.
6255  * Return value:
6256  *  void
6257  */
6258
6259 static void s2io_ethtool_test(struct net_device *dev,
6260                               struct ethtool_test *ethtest,
6261                               uint64_t *data)
6262 {
6263         struct s2io_nic *sp = netdev_priv(dev);
6264         int orig_state = netif_running(sp->dev);
6265
6266         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6267                 /* Offline Tests. */
6268                 if (orig_state)
6269                         s2io_close(sp->dev);
6270
6271                 if (s2io_register_test(sp, &data[0]))
6272                         ethtest->flags |= ETH_TEST_FL_FAILED;
6273
6274                 s2io_reset(sp);
6275
6276                 if (s2io_rldram_test(sp, &data[3]))
6277                         ethtest->flags |= ETH_TEST_FL_FAILED;
6278
6279                 s2io_reset(sp);
6280
6281                 if (s2io_eeprom_test(sp, &data[1]))
6282                         ethtest->flags |= ETH_TEST_FL_FAILED;
6283
6284                 if (s2io_bist_test(sp, &data[4]))
6285                         ethtest->flags |= ETH_TEST_FL_FAILED;
6286
6287                 if (orig_state)
6288                         s2io_open(sp->dev);
6289
6290                 data[2] = 0;
6291         } else {
6292                 /* Online Tests. */
6293                 if (!orig_state) {
6294                         DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6295                                   dev->name);
6296                         data[0] = -1;
6297                         data[1] = -1;
6298                         data[2] = -1;
6299                         data[3] = -1;
6300                         data[4] = -1;
6301                 }
6302
6303                 if (s2io_link_test(sp, &data[2]))
6304                         ethtest->flags |= ETH_TEST_FL_FAILED;
6305
6306                 data[0] = 0;
6307                 data[1] = 0;
6308                 data[3] = 0;
6309                 data[4] = 0;
6310         }
6311 }
6312
6313 static void s2io_get_ethtool_stats(struct net_device *dev,
6314                                    struct ethtool_stats *estats,
6315                                    u64 *tmp_stats)
6316 {
6317         int i = 0, k;
6318         struct s2io_nic *sp = netdev_priv(dev);
6319         struct stat_block *stats = sp->mac_control.stats_info;
6320         struct swStat *swstats = &stats->sw_stat;
6321         struct xpakStat *xstats = &stats->xpak_stat;
6322
6323         s2io_updt_stats(sp);
6324         tmp_stats[i++] =
6325                 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6326                 le32_to_cpu(stats->tmac_frms);
6327         tmp_stats[i++] =
6328                 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6329                 le32_to_cpu(stats->tmac_data_octets);
6330         tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6331         tmp_stats[i++] =
6332                 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6333                 le32_to_cpu(stats->tmac_mcst_frms);
6334         tmp_stats[i++] =
6335                 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6336                 le32_to_cpu(stats->tmac_bcst_frms);
6337         tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6338         tmp_stats[i++] =
6339                 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6340                 le32_to_cpu(stats->tmac_ttl_octets);
6341         tmp_stats[i++] =
6342                 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6343                 le32_to_cpu(stats->tmac_ucst_frms);
6344         tmp_stats[i++] =
6345                 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6346                 le32_to_cpu(stats->tmac_nucst_frms);
6347         tmp_stats[i++] =
6348                 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6349                 le32_to_cpu(stats->tmac_any_err_frms);
6350         tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6351         tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6352         tmp_stats[i++] =
6353                 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6354                 le32_to_cpu(stats->tmac_vld_ip);
6355         tmp_stats[i++] =
6356                 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6357                 le32_to_cpu(stats->tmac_drop_ip);
6358         tmp_stats[i++] =
6359                 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6360                 le32_to_cpu(stats->tmac_icmp);
6361         tmp_stats[i++] =
6362                 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6363                 le32_to_cpu(stats->tmac_rst_tcp);
6364         tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6365         tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6366                 le32_to_cpu(stats->tmac_udp);
6367         tmp_stats[i++] =
6368                 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6369                 le32_to_cpu(stats->rmac_vld_frms);
6370         tmp_stats[i++] =
6371                 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6372                 le32_to_cpu(stats->rmac_data_octets);
6373         tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6374         tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6375         tmp_stats[i++] =
6376                 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6377                 le32_to_cpu(stats->rmac_vld_mcst_frms);
6378         tmp_stats[i++] =
6379                 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6380                 le32_to_cpu(stats->rmac_vld_bcst_frms);
6381         tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6382         tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6383         tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6384         tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6385         tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6386         tmp_stats[i++] =
6387                 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6388                 le32_to_cpu(stats->rmac_ttl_octets);
6389         tmp_stats[i++] =
6390                 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6391                 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6392         tmp_stats[i++] =
6393                 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6394                 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6395         tmp_stats[i++] =
6396                 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6397                 le32_to_cpu(stats->rmac_discarded_frms);
6398         tmp_stats[i++] =
6399                 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6400                 << 32 | le32_to_cpu(stats->rmac_drop_events);
6401         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6402         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6403         tmp_stats[i++] =
6404                 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6405                 le32_to_cpu(stats->rmac_usized_frms);
6406         tmp_stats[i++] =
6407                 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6408                 le32_to_cpu(stats->rmac_osized_frms);
6409         tmp_stats[i++] =
6410                 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6411                 le32_to_cpu(stats->rmac_frag_frms);
6412         tmp_stats[i++] =
6413                 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6414                 le32_to_cpu(stats->rmac_jabber_frms);
6415         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6416         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6417         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6418         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6419         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6420         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6421         tmp_stats[i++] =
6422                 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6423                 le32_to_cpu(stats->rmac_ip);
6424         tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6425         tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6426         tmp_stats[i++] =
6427                 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6428                 le32_to_cpu(stats->rmac_drop_ip);
6429         tmp_stats[i++] =
6430                 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6431                 le32_to_cpu(stats->rmac_icmp);
6432         tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6433         tmp_stats[i++] =
6434                 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6435                 le32_to_cpu(stats->rmac_udp);
6436         tmp_stats[i++] =
6437                 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6438                 le32_to_cpu(stats->rmac_err_drp_udp);
6439         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6440         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6441         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6442         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6443         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6444         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6445         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6446         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6447         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6448         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6449         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6450         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6451         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6452         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6453         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6454         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6455         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6456         tmp_stats[i++] =
6457                 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6458                 le32_to_cpu(stats->rmac_pause_cnt);
6459         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6460         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6461         tmp_stats[i++] =
6462                 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6463                 le32_to_cpu(stats->rmac_accepted_ip);
6464         tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6465         tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6466         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6467         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6468         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6469         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6470         tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6471         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6472         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6473         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6474         tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6475         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6476         tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6477         tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6478         tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6479         tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6480         tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6481         tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6482         tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6483
6484         /* Enhanced statistics exist only for Hercules */
6485         if (sp->device_type == XFRAME_II_DEVICE) {
6486                 tmp_stats[i++] =
6487                         le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6488                 tmp_stats[i++] =
6489                         le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6490                 tmp_stats[i++] =
6491                         le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6492                 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6493                 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6494                 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6495                 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6496                 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6497                 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6498                 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6499                 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6500                 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6501                 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6502                 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6503                 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6504                 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6505         }
6506
6507         tmp_stats[i++] = 0;
6508         tmp_stats[i++] = swstats->single_ecc_errs;
6509         tmp_stats[i++] = swstats->double_ecc_errs;
6510         tmp_stats[i++] = swstats->parity_err_cnt;
6511         tmp_stats[i++] = swstats->serious_err_cnt;
6512         tmp_stats[i++] = swstats->soft_reset_cnt;
6513         tmp_stats[i++] = swstats->fifo_full_cnt;
6514         for (k = 0; k < MAX_RX_RINGS; k++)
6515                 tmp_stats[i++] = swstats->ring_full_cnt[k];
6516         tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6517         tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6518         tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6519         tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6520         tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6521         tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6522         tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6523         tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6524         tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6525         tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6526         tmp_stats[i++] = xstats->warn_laser_output_power_high;
6527         tmp_stats[i++] = xstats->warn_laser_output_power_low;
6528         tmp_stats[i++] = swstats->clubbed_frms_cnt;
6529         tmp_stats[i++] = swstats->sending_both;
6530         tmp_stats[i++] = swstats->outof_sequence_pkts;
6531         tmp_stats[i++] = swstats->flush_max_pkts;
6532         if (swstats->num_aggregations) {
6533                 u64 tmp = swstats->sum_avg_pkts_aggregated;
6534                 int count = 0;
6535                 /*
6536                  * Since 64-bit divide does not work on all platforms,
6537                  * do repeated subtraction.
6538                  */
6539                 while (tmp >= swstats->num_aggregations) {
6540                         tmp -= swstats->num_aggregations;
6541                         count++;
6542                 }
6543                 tmp_stats[i++] = count;
6544         } else
6545                 tmp_stats[i++] = 0;
6546         tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6547         tmp_stats[i++] = swstats->pci_map_fail_cnt;
6548         tmp_stats[i++] = swstats->watchdog_timer_cnt;
6549         tmp_stats[i++] = swstats->mem_allocated;
6550         tmp_stats[i++] = swstats->mem_freed;
6551         tmp_stats[i++] = swstats->link_up_cnt;
6552         tmp_stats[i++] = swstats->link_down_cnt;
6553         tmp_stats[i++] = swstats->link_up_time;
6554         tmp_stats[i++] = swstats->link_down_time;
6555
6556         tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6557         tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6558         tmp_stats[i++] = swstats->tx_parity_err_cnt;
6559         tmp_stats[i++] = swstats->tx_link_loss_cnt;
6560         tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6561
6562         tmp_stats[i++] = swstats->rx_parity_err_cnt;
6563         tmp_stats[i++] = swstats->rx_abort_cnt;
6564         tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6565         tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6566         tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6567         tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6568         tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6569         tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6570         tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6571         tmp_stats[i++] = swstats->tda_err_cnt;
6572         tmp_stats[i++] = swstats->pfc_err_cnt;
6573         tmp_stats[i++] = swstats->pcc_err_cnt;
6574         tmp_stats[i++] = swstats->tti_err_cnt;
6575         tmp_stats[i++] = swstats->tpa_err_cnt;
6576         tmp_stats[i++] = swstats->sm_err_cnt;
6577         tmp_stats[i++] = swstats->lso_err_cnt;
6578         tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6579         tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6580         tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6581         tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6582         tmp_stats[i++] = swstats->rc_err_cnt;
6583         tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6584         tmp_stats[i++] = swstats->rpa_err_cnt;
6585         tmp_stats[i++] = swstats->rda_err_cnt;
6586         tmp_stats[i++] = swstats->rti_err_cnt;
6587         tmp_stats[i++] = swstats->mc_err_cnt;
6588 }
6589
6590 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6591 {
6592         return XENA_REG_SPACE;
6593 }
6594
6595
6596 static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
6597 {
6598         struct s2io_nic *sp = netdev_priv(dev);
6599
6600         return sp->rx_csum;
6601 }
6602
6603 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6604 {
6605         struct s2io_nic *sp = netdev_priv(dev);
6606
6607         if (data)
6608                 sp->rx_csum = 1;
6609         else
6610                 sp->rx_csum = 0;
6611
6612         return 0;
6613 }
6614
6615 static int s2io_get_eeprom_len(struct net_device *dev)
6616 {
6617         return XENA_EEPROM_SPACE;
6618 }
6619
6620 static int s2io_get_sset_count(struct net_device *dev, int sset)
6621 {
6622         struct s2io_nic *sp = netdev_priv(dev);
6623
6624         switch (sset) {
6625         case ETH_SS_TEST:
6626                 return S2IO_TEST_LEN;
6627         case ETH_SS_STATS:
6628                 switch (sp->device_type) {
6629                 case XFRAME_I_DEVICE:
6630                         return XFRAME_I_STAT_LEN;
6631                 case XFRAME_II_DEVICE:
6632                         return XFRAME_II_STAT_LEN;
6633                 default:
6634                         return 0;
6635                 }
6636         default:
6637                 return -EOPNOTSUPP;
6638         }
6639 }
6640
6641 static void s2io_ethtool_get_strings(struct net_device *dev,
6642                                      u32 stringset, u8 *data)
6643 {
6644         int stat_size = 0;
6645         struct s2io_nic *sp = netdev_priv(dev);
6646
6647         switch (stringset) {
6648         case ETH_SS_TEST:
6649                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6650                 break;
6651         case ETH_SS_STATS:
6652                 stat_size = sizeof(ethtool_xena_stats_keys);
6653                 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6654                 if (sp->device_type == XFRAME_II_DEVICE) {
6655                         memcpy(data + stat_size,
6656                                &ethtool_enhanced_stats_keys,
6657                                sizeof(ethtool_enhanced_stats_keys));
6658                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6659                 }
6660
6661                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6662                        sizeof(ethtool_driver_stats_keys));
6663         }
6664 }
6665
6666 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6667 {
6668         if (data)
6669                 dev->features |= NETIF_F_IP_CSUM;
6670         else
6671                 dev->features &= ~NETIF_F_IP_CSUM;
6672
6673         return 0;
6674 }
6675
6676 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6677 {
6678         return (dev->features & NETIF_F_TSO) != 0;
6679 }
6680 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6681 {
6682         if (data)
6683                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6684         else
6685                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6686
6687         return 0;
6688 }
6689
6690 static const struct ethtool_ops netdev_ethtool_ops = {
6691         .get_settings = s2io_ethtool_gset,
6692         .set_settings = s2io_ethtool_sset,
6693         .get_drvinfo = s2io_ethtool_gdrvinfo,
6694         .get_regs_len = s2io_ethtool_get_regs_len,
6695         .get_regs = s2io_ethtool_gregs,
6696         .get_link = ethtool_op_get_link,
6697         .get_eeprom_len = s2io_get_eeprom_len,
6698         .get_eeprom = s2io_ethtool_geeprom,
6699         .set_eeprom = s2io_ethtool_seeprom,
6700         .get_ringparam = s2io_ethtool_gringparam,
6701         .get_pauseparam = s2io_ethtool_getpause_data,
6702         .set_pauseparam = s2io_ethtool_setpause_data,
6703         .get_rx_csum = s2io_ethtool_get_rx_csum,
6704         .set_rx_csum = s2io_ethtool_set_rx_csum,
6705         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6706         .set_sg = ethtool_op_set_sg,
6707         .get_tso = s2io_ethtool_op_get_tso,
6708         .set_tso = s2io_ethtool_op_set_tso,
6709         .set_ufo = ethtool_op_set_ufo,
6710         .self_test = s2io_ethtool_test,
6711         .get_strings = s2io_ethtool_get_strings,
6712         .phys_id = s2io_ethtool_idnic,
6713         .get_ethtool_stats = s2io_get_ethtool_stats,
6714         .get_sset_count = s2io_get_sset_count,
6715 };
6716
6717 /**
6718  *  s2io_ioctl - Entry point for the Ioctl
6719  *  @dev :  Device pointer.
6720  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6721  *  a proprietary structure used to pass information to the driver.
6722  *  @cmd :  This is used to distinguish between the different commands that
6723  *  can be passed to the IOCTL functions.
6724  *  Description:
6725  *  Currently there are no special functionality supported in IOCTL, hence
6726  *  function always return EOPNOTSUPPORTED
6727  */
6728
6729 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6730 {
6731         return -EOPNOTSUPP;
6732 }
6733
6734 /**
6735  *  s2io_change_mtu - entry point to change MTU size for the device.
6736  *   @dev : device pointer.
6737  *   @new_mtu : the new MTU size for the device.
6738  *   Description: A driver entry point to change MTU size for the device.
6739  *   Before changing the MTU the device must be stopped.
6740  *  Return value:
6741  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6742  *   file on failure.
6743  */
6744
6745 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6746 {
6747         struct s2io_nic *sp = netdev_priv(dev);
6748         int ret = 0;
6749
6750         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6751                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6752                 return -EPERM;
6753         }
6754
6755         dev->mtu = new_mtu;
6756         if (netif_running(dev)) {
6757                 s2io_stop_all_tx_queue(sp);
6758                 s2io_card_down(sp);
6759                 ret = s2io_card_up(sp);
6760                 if (ret) {
6761                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6762                                   __func__);
6763                         return ret;
6764                 }
6765                 s2io_wake_all_tx_queue(sp);
6766         } else { /* Device is down */
6767                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6768                 u64 val64 = new_mtu;
6769
6770                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6771         }
6772
6773         return ret;
6774 }
6775
6776 /**
6777  * s2io_set_link - Set the LInk status
6778  * @data: long pointer to device private structue
6779  * Description: Sets the link status for the adapter
6780  */
6781
6782 static void s2io_set_link(struct work_struct *work)
6783 {
6784         struct s2io_nic *nic = container_of(work, struct s2io_nic,
6785                                             set_link_task);
6786         struct net_device *dev = nic->dev;
6787         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6788         register u64 val64;
6789         u16 subid;
6790
6791         rtnl_lock();
6792
6793         if (!netif_running(dev))
6794                 goto out_unlock;
6795
6796         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6797                 /* The card is being reset, no point doing anything */
6798                 goto out_unlock;
6799         }
6800
6801         subid = nic->pdev->subsystem_device;
6802         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6803                 /*
6804                  * Allow a small delay for the NICs self initiated
6805                  * cleanup to complete.
6806                  */
6807                 msleep(100);
6808         }
6809
6810         val64 = readq(&bar0->adapter_status);
6811         if (LINK_IS_UP(val64)) {
6812                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6813                         if (verify_xena_quiescence(nic)) {
6814                                 val64 = readq(&bar0->adapter_control);
6815                                 val64 |= ADAPTER_CNTL_EN;
6816                                 writeq(val64, &bar0->adapter_control);
6817                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6818                                             nic->device_type, subid)) {
6819                                         val64 = readq(&bar0->gpio_control);
6820                                         val64 |= GPIO_CTRL_GPIO_0;
6821                                         writeq(val64, &bar0->gpio_control);
6822                                         val64 = readq(&bar0->gpio_control);
6823                                 } else {
6824                                         val64 |= ADAPTER_LED_ON;
6825                                         writeq(val64, &bar0->adapter_control);
6826                                 }
6827                                 nic->device_enabled_once = true;
6828                         } else {
6829                                 DBG_PRINT(ERR_DBG,
6830                                           "%s: Error: device is not Quiescent\n",
6831                                           dev->name);
6832                                 s2io_stop_all_tx_queue(nic);
6833                         }
6834                 }
6835                 val64 = readq(&bar0->adapter_control);
6836                 val64 |= ADAPTER_LED_ON;
6837                 writeq(val64, &bar0->adapter_control);
6838                 s2io_link(nic, LINK_UP);
6839         } else {
6840                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6841                                                       subid)) {
6842                         val64 = readq(&bar0->gpio_control);
6843                         val64 &= ~GPIO_CTRL_GPIO_0;
6844                         writeq(val64, &bar0->gpio_control);
6845                         val64 = readq(&bar0->gpio_control);
6846                 }
6847                 /* turn off LED */
6848                 val64 = readq(&bar0->adapter_control);
6849                 val64 = val64 & (~ADAPTER_LED_ON);
6850                 writeq(val64, &bar0->adapter_control);
6851                 s2io_link(nic, LINK_DOWN);
6852         }
6853         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6854
6855 out_unlock:
6856         rtnl_unlock();
6857 }
6858
6859 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6860                                   struct buffAdd *ba,
6861                                   struct sk_buff **skb, u64 *temp0, u64 *temp1,
6862                                   u64 *temp2, int size)
6863 {
6864         struct net_device *dev = sp->dev;
6865         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6866
6867         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6868                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6869                 /* allocate skb */
6870                 if (*skb) {
6871                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6872                         /*
6873                          * As Rx frame are not going to be processed,
6874                          * using same mapped address for the Rxd
6875                          * buffer pointer
6876                          */
6877                         rxdp1->Buffer0_ptr = *temp0;
6878                 } else {
6879                         *skb = dev_alloc_skb(size);
6880                         if (!(*skb)) {
6881                                 DBG_PRINT(INFO_DBG,
6882                                           "%s: Out of memory to allocate %s\n",
6883                                           dev->name, "1 buf mode SKBs");
6884                                 stats->mem_alloc_fail_cnt++;
6885                                 return -ENOMEM ;
6886                         }
6887                         stats->mem_allocated += (*skb)->truesize;
6888                         /* storing the mapped addr in a temp variable
6889                          * such it will be used for next rxd whose
6890                          * Host Control is NULL
6891                          */
6892                         rxdp1->Buffer0_ptr = *temp0 =
6893                                 pci_map_single(sp->pdev, (*skb)->data,
6894                                                size - NET_IP_ALIGN,
6895                                                PCI_DMA_FROMDEVICE);
6896                         if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6897                                 goto memalloc_failed;
6898                         rxdp->Host_Control = (unsigned long) (*skb);
6899                 }
6900         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6901                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6902                 /* Two buffer Mode */
6903                 if (*skb) {
6904                         rxdp3->Buffer2_ptr = *temp2;
6905                         rxdp3->Buffer0_ptr = *temp0;
6906                         rxdp3->Buffer1_ptr = *temp1;
6907                 } else {
6908                         *skb = dev_alloc_skb(size);
6909                         if (!(*skb)) {
6910                                 DBG_PRINT(INFO_DBG,
6911                                           "%s: Out of memory to allocate %s\n",
6912                                           dev->name,
6913                                           "2 buf mode SKBs");
6914                                 stats->mem_alloc_fail_cnt++;
6915                                 return -ENOMEM;
6916                         }
6917                         stats->mem_allocated += (*skb)->truesize;
6918                         rxdp3->Buffer2_ptr = *temp2 =
6919                                 pci_map_single(sp->pdev, (*skb)->data,
6920                                                dev->mtu + 4,
6921                                                PCI_DMA_FROMDEVICE);
6922                         if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6923                                 goto memalloc_failed;
6924                         rxdp3->Buffer0_ptr = *temp0 =
6925                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6926                                                PCI_DMA_FROMDEVICE);
6927                         if (pci_dma_mapping_error(sp->pdev,
6928                                                   rxdp3->Buffer0_ptr)) {
6929                                 pci_unmap_single(sp->pdev,
6930                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6931                                                  dev->mtu + 4,
6932                                                  PCI_DMA_FROMDEVICE);
6933                                 goto memalloc_failed;
6934                         }
6935                         rxdp->Host_Control = (unsigned long) (*skb);
6936
6937                         /* Buffer-1 will be dummy buffer not used */
6938                         rxdp3->Buffer1_ptr = *temp1 =
6939                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6940                                                PCI_DMA_FROMDEVICE);
6941                         if (pci_dma_mapping_error(sp->pdev,
6942                                                   rxdp3->Buffer1_ptr)) {
6943                                 pci_unmap_single(sp->pdev,
6944                                                  (dma_addr_t)rxdp3->Buffer0_ptr,
6945                                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
6946                                 pci_unmap_single(sp->pdev,
6947                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6948                                                  dev->mtu + 4,
6949                                                  PCI_DMA_FROMDEVICE);
6950                                 goto memalloc_failed;
6951                         }
6952                 }
6953         }
6954         return 0;
6955
6956 memalloc_failed:
6957         stats->pci_map_fail_cnt++;
6958         stats->mem_freed += (*skb)->truesize;
6959         dev_kfree_skb(*skb);
6960         return -ENOMEM;
6961 }
6962
6963 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6964                                 int size)
6965 {
6966         struct net_device *dev = sp->dev;
6967         if (sp->rxd_mode == RXD_MODE_1) {
6968                 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6969         } else if (sp->rxd_mode == RXD_MODE_3B) {
6970                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6971                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6972                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6973         }
6974 }
6975
6976 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6977 {
6978         int i, j, k, blk_cnt = 0, size;
6979         struct config_param *config = &sp->config;
6980         struct mac_info *mac_control = &sp->mac_control;
6981         struct net_device *dev = sp->dev;
6982         struct RxD_t *rxdp = NULL;
6983         struct sk_buff *skb = NULL;
6984         struct buffAdd *ba = NULL;
6985         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6986
6987         /* Calculate the size based on ring mode */
6988         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6989                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6990         if (sp->rxd_mode == RXD_MODE_1)
6991                 size += NET_IP_ALIGN;
6992         else if (sp->rxd_mode == RXD_MODE_3B)
6993                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6994
6995         for (i = 0; i < config->rx_ring_num; i++) {
6996                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6997                 struct ring_info *ring = &mac_control->rings[i];
6998
6999                 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
7000
7001                 for (j = 0; j < blk_cnt; j++) {
7002                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7003                                 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7004                                 if (sp->rxd_mode == RXD_MODE_3B)
7005                                         ba = &ring->ba[j][k];
7006                                 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7007                                                            (u64 *)&temp0_64,
7008                                                            (u64 *)&temp1_64,
7009                                                            (u64 *)&temp2_64,
7010                                                            size) == -ENOMEM) {
7011                                         return 0;
7012                                 }
7013
7014                                 set_rxd_buffer_size(sp, rxdp, size);
7015                                 wmb();
7016                                 /* flip the Ownership bit to Hardware */
7017                                 rxdp->Control_1 |= RXD_OWN_XENA;
7018                         }
7019                 }
7020         }
7021         return 0;
7022
7023 }
7024
7025 static int s2io_add_isr(struct s2io_nic *sp)
7026 {
7027         int ret = 0;
7028         struct net_device *dev = sp->dev;
7029         int err = 0;
7030
7031         if (sp->config.intr_type == MSI_X)
7032                 ret = s2io_enable_msi_x(sp);
7033         if (ret) {
7034                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7035                 sp->config.intr_type = INTA;
7036         }
7037
7038         /*
7039          * Store the values of the MSIX table in
7040          * the struct s2io_nic structure
7041          */
7042         store_xmsi_data(sp);
7043
7044         /* After proper initialization of H/W, register ISR */
7045         if (sp->config.intr_type == MSI_X) {
7046                 int i, msix_rx_cnt = 0;
7047
7048                 for (i = 0; i < sp->num_entries; i++) {
7049                         if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7050                                 if (sp->s2io_entries[i].type ==
7051                                     MSIX_RING_TYPE) {
7052                                         sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7053                                                 dev->name, i);
7054                                         err = request_irq(sp->entries[i].vector,
7055                                                           s2io_msix_ring_handle,
7056                                                           0,
7057                                                           sp->desc[i],
7058                                                           sp->s2io_entries[i].arg);
7059                                 } else if (sp->s2io_entries[i].type ==
7060                                            MSIX_ALARM_TYPE) {
7061                                         sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7062                                                 dev->name, i);
7063                                         err = request_irq(sp->entries[i].vector,
7064                                                           s2io_msix_fifo_handle,
7065                                                           0,
7066                                                           sp->desc[i],
7067                                                           sp->s2io_entries[i].arg);
7068
7069                                 }
7070                                 /* if either data or addr is zero print it. */
7071                                 if (!(sp->msix_info[i].addr &&
7072                                       sp->msix_info[i].data)) {
7073                                         DBG_PRINT(ERR_DBG,
7074                                                   "%s @Addr:0x%llx Data:0x%llx\n",
7075                                                   sp->desc[i],
7076                                                   (unsigned long long)
7077                                                   sp->msix_info[i].addr,
7078                                                   (unsigned long long)
7079                                                   ntohl(sp->msix_info[i].data));
7080                                 } else
7081                                         msix_rx_cnt++;
7082                                 if (err) {
7083                                         remove_msix_isr(sp);
7084
7085                                         DBG_PRINT(ERR_DBG,
7086                                                   "%s:MSI-X-%d registration "
7087                                                   "failed\n", dev->name, i);
7088
7089                                         DBG_PRINT(ERR_DBG,
7090                                                   "%s: Defaulting to INTA\n",
7091                                                   dev->name);
7092                                         sp->config.intr_type = INTA;
7093                                         break;
7094                                 }
7095                                 sp->s2io_entries[i].in_use =
7096                                         MSIX_REGISTERED_SUCCESS;
7097                         }
7098                 }
7099                 if (!err) {
7100                         pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7101                         DBG_PRINT(INFO_DBG,
7102                                   "MSI-X-TX entries enabled through alarm vector\n");
7103                 }
7104         }
7105         if (sp->config.intr_type == INTA) {
7106                 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7107                                   sp->name, dev);
7108                 if (err) {
7109                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7110                                   dev->name);
7111                         return -1;
7112                 }
7113         }
7114         return 0;
7115 }
7116
7117 static void s2io_rem_isr(struct s2io_nic *sp)
7118 {
7119         if (sp->config.intr_type == MSI_X)
7120                 remove_msix_isr(sp);
7121         else
7122                 remove_inta_isr(sp);
7123 }
7124
7125 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7126 {
7127         int cnt = 0;
7128         struct XENA_dev_config __iomem *bar0 = sp->bar0;
7129         register u64 val64 = 0;
7130         struct config_param *config;
7131         config = &sp->config;
7132
7133         if (!is_s2io_card_up(sp))
7134                 return;
7135
7136         del_timer_sync(&sp->alarm_timer);
7137         /* If s2io_set_link task is executing, wait till it completes. */
7138         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7139                 msleep(50);
7140         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7141
7142         /* Disable napi */
7143         if (sp->config.napi) {
7144                 int off = 0;
7145                 if (config->intr_type ==  MSI_X) {
7146                         for (; off < sp->config.rx_ring_num; off++)
7147                                 napi_disable(&sp->mac_control.rings[off].napi);
7148                 }
7149                 else
7150                         napi_disable(&sp->napi);
7151         }
7152
7153         /* disable Tx and Rx traffic on the NIC */
7154         if (do_io)
7155                 stop_nic(sp);
7156
7157         s2io_rem_isr(sp);
7158
7159         /* stop the tx queue, indicate link down */
7160         s2io_link(sp, LINK_DOWN);
7161
7162         /* Check if the device is Quiescent and then Reset the NIC */
7163         while (do_io) {
7164                 /* As per the HW requirement we need to replenish the
7165                  * receive buffer to avoid the ring bump. Since there is
7166                  * no intention of processing the Rx frame at this pointwe are
7167                  * just settting the ownership bit of rxd in Each Rx
7168                  * ring to HW and set the appropriate buffer size
7169                  * based on the ring mode
7170                  */
7171                 rxd_owner_bit_reset(sp);
7172
7173                 val64 = readq(&bar0->adapter_status);
7174                 if (verify_xena_quiescence(sp)) {
7175                         if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7176                                 break;
7177                 }
7178
7179                 msleep(50);
7180                 cnt++;
7181                 if (cnt == 10) {
7182                         DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7183                                   "adapter status reads 0x%llx\n",
7184                                   (unsigned long long)val64);
7185                         break;
7186                 }
7187         }
7188         if (do_io)
7189                 s2io_reset(sp);
7190
7191         /* Free all Tx buffers */
7192         free_tx_buffers(sp);
7193
7194         /* Free all Rx buffers */
7195         free_rx_buffers(sp);
7196
7197         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7198 }
7199
7200 static void s2io_card_down(struct s2io_nic *sp)
7201 {
7202         do_s2io_card_down(sp, 1);
7203 }
7204
7205 static int s2io_card_up(struct s2io_nic *sp)
7206 {
7207         int i, ret = 0;
7208         struct config_param *config;
7209         struct mac_info *mac_control;
7210         struct net_device *dev = (struct net_device *)sp->dev;
7211         u16 interruptible;
7212
7213         /* Initialize the H/W I/O registers */
7214         ret = init_nic(sp);
7215         if (ret != 0) {
7216                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7217                           dev->name);
7218                 if (ret != -EIO)
7219                         s2io_reset(sp);
7220                 return ret;
7221         }
7222
7223         /*
7224          * Initializing the Rx buffers. For now we are considering only 1
7225          * Rx ring and initializing buffers into 30 Rx blocks
7226          */
7227         config = &sp->config;
7228         mac_control = &sp->mac_control;
7229
7230         for (i = 0; i < config->rx_ring_num; i++) {
7231                 struct ring_info *ring = &mac_control->rings[i];
7232
7233                 ring->mtu = dev->mtu;
7234                 ret = fill_rx_buffers(sp, ring, 1);
7235                 if (ret) {
7236                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7237                                   dev->name);
7238                         s2io_reset(sp);
7239                         free_rx_buffers(sp);
7240                         return -ENOMEM;
7241                 }
7242                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7243                           ring->rx_bufs_left);
7244         }
7245
7246         /* Initialise napi */
7247         if (config->napi) {
7248                 if (config->intr_type ==  MSI_X) {
7249                         for (i = 0; i < sp->config.rx_ring_num; i++)
7250                                 napi_enable(&sp->mac_control.rings[i].napi);
7251                 } else {
7252                         napi_enable(&sp->napi);
7253                 }
7254         }
7255
7256         /* Maintain the state prior to the open */
7257         if (sp->promisc_flg)
7258                 sp->promisc_flg = 0;
7259         if (sp->m_cast_flg) {
7260                 sp->m_cast_flg = 0;
7261                 sp->all_multi_pos = 0;
7262         }
7263
7264         /* Setting its receive mode */
7265         s2io_set_multicast(dev);
7266
7267         if (sp->lro) {
7268                 /* Initialize max aggregatable pkts per session based on MTU */
7269                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7270                 /* Check if we can use (if specified) user provided value */
7271                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7272                         sp->lro_max_aggr_per_sess = lro_max_pkts;
7273         }
7274
7275         /* Enable Rx Traffic and interrupts on the NIC */
7276         if (start_nic(sp)) {
7277                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7278                 s2io_reset(sp);
7279                 free_rx_buffers(sp);
7280                 return -ENODEV;
7281         }
7282
7283         /* Add interrupt service routine */
7284         if (s2io_add_isr(sp) != 0) {
7285                 if (sp->config.intr_type == MSI_X)
7286                         s2io_rem_isr(sp);
7287                 s2io_reset(sp);
7288                 free_rx_buffers(sp);
7289                 return -ENODEV;
7290         }
7291
7292         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7293
7294         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7295
7296         /*  Enable select interrupts */
7297         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7298         if (sp->config.intr_type != INTA) {
7299                 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7300                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7301         } else {
7302                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7303                 interruptible |= TX_PIC_INTR;
7304                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7305         }
7306
7307         return 0;
7308 }
7309
7310 /**
7311  * s2io_restart_nic - Resets the NIC.
7312  * @data : long pointer to the device private structure
7313  * Description:
7314  * This function is scheduled to be run by the s2io_tx_watchdog
7315  * function after 0.5 secs to reset the NIC. The idea is to reduce
7316  * the run time of the watch dog routine which is run holding a
7317  * spin lock.
7318  */
7319
7320 static void s2io_restart_nic(struct work_struct *work)
7321 {
7322         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7323         struct net_device *dev = sp->dev;
7324
7325         rtnl_lock();
7326
7327         if (!netif_running(dev))
7328                 goto out_unlock;
7329
7330         s2io_card_down(sp);
7331         if (s2io_card_up(sp)) {
7332                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7333         }
7334         s2io_wake_all_tx_queue(sp);
7335         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7336 out_unlock:
7337         rtnl_unlock();
7338 }
7339
7340 /**
7341  *  s2io_tx_watchdog - Watchdog for transmit side.
7342  *  @dev : Pointer to net device structure
7343  *  Description:
7344  *  This function is triggered if the Tx Queue is stopped
7345  *  for a pre-defined amount of time when the Interface is still up.
7346  *  If the Interface is jammed in such a situation, the hardware is
7347  *  reset (by s2io_close) and restarted again (by s2io_open) to
7348  *  overcome any problem that might have been caused in the hardware.
7349  *  Return value:
7350  *  void
7351  */
7352
7353 static void s2io_tx_watchdog(struct net_device *dev)
7354 {
7355         struct s2io_nic *sp = netdev_priv(dev);
7356         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7357
7358         if (netif_carrier_ok(dev)) {
7359                 swstats->watchdog_timer_cnt++;
7360                 schedule_work(&sp->rst_timer_task);
7361                 swstats->soft_reset_cnt++;
7362         }
7363 }
7364
7365 /**
7366  *   rx_osm_handler - To perform some OS related operations on SKB.
7367  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7368  *   @skb : the socket buffer pointer.
7369  *   @len : length of the packet
7370  *   @cksum : FCS checksum of the frame.
7371  *   @ring_no : the ring from which this RxD was extracted.
7372  *   Description:
7373  *   This function is called by the Rx interrupt serivce routine to perform
7374  *   some OS related operations on the SKB before passing it to the upper
7375  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7376  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7377  *   to the upper layer. If the checksum is wrong, it increments the Rx
7378  *   packet error count, frees the SKB and returns error.
7379  *   Return value:
7380  *   SUCCESS on success and -1 on failure.
7381  */
7382 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7383 {
7384         struct s2io_nic *sp = ring_data->nic;
7385         struct net_device *dev = (struct net_device *)ring_data->dev;
7386         struct sk_buff *skb = (struct sk_buff *)
7387                 ((unsigned long)rxdp->Host_Control);
7388         int ring_no = ring_data->ring_no;
7389         u16 l3_csum, l4_csum;
7390         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7391         struct lro *uninitialized_var(lro);
7392         u8 err_mask;
7393         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7394
7395         skb->dev = dev;
7396
7397         if (err) {
7398                 /* Check for parity error */
7399                 if (err & 0x1)
7400                         swstats->parity_err_cnt++;
7401
7402                 err_mask = err >> 48;
7403                 switch (err_mask) {
7404                 case 1:
7405                         swstats->rx_parity_err_cnt++;
7406                         break;
7407
7408                 case 2:
7409                         swstats->rx_abort_cnt++;
7410                         break;
7411
7412                 case 3:
7413                         swstats->rx_parity_abort_cnt++;
7414                         break;
7415
7416                 case 4:
7417                         swstats->rx_rda_fail_cnt++;
7418                         break;
7419
7420                 case 5:
7421                         swstats->rx_unkn_prot_cnt++;
7422                         break;
7423
7424                 case 6:
7425                         swstats->rx_fcs_err_cnt++;
7426                         break;
7427
7428                 case 7:
7429                         swstats->rx_buf_size_err_cnt++;
7430                         break;
7431
7432                 case 8:
7433                         swstats->rx_rxd_corrupt_cnt++;
7434                         break;
7435
7436                 case 15:
7437                         swstats->rx_unkn_err_cnt++;
7438                         break;
7439                 }
7440                 /*
7441                  * Drop the packet if bad transfer code. Exception being
7442                  * 0x5, which could be due to unsupported IPv6 extension header.
7443                  * In this case, we let stack handle the packet.
7444                  * Note that in this case, since checksum will be incorrect,
7445                  * stack will validate the same.
7446                  */
7447                 if (err_mask != 0x5) {
7448                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7449                                   dev->name, err_mask);
7450                         dev->stats.rx_crc_errors++;
7451                         swstats->mem_freed
7452                                 += skb->truesize;
7453                         dev_kfree_skb(skb);
7454                         ring_data->rx_bufs_left -= 1;
7455                         rxdp->Host_Control = 0;
7456                         return 0;
7457                 }
7458         }
7459
7460         /* Updating statistics */
7461         ring_data->rx_packets++;
7462         rxdp->Host_Control = 0;
7463         if (sp->rxd_mode == RXD_MODE_1) {
7464                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7465
7466                 ring_data->rx_bytes += len;
7467                 skb_put(skb, len);
7468
7469         } else if (sp->rxd_mode == RXD_MODE_3B) {
7470                 int get_block = ring_data->rx_curr_get_info.block_index;
7471                 int get_off = ring_data->rx_curr_get_info.offset;
7472                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7473                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7474                 unsigned char *buff = skb_push(skb, buf0_len);
7475
7476                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7477                 ring_data->rx_bytes += buf0_len + buf2_len;
7478                 memcpy(buff, ba->ba_0, buf0_len);
7479                 skb_put(skb, buf2_len);
7480         }
7481
7482         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7483             ((!ring_data->lro) ||
7484              (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7485             (sp->rx_csum)) {
7486                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7487                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7488                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7489                         /*
7490                          * NIC verifies if the Checksum of the received
7491                          * frame is Ok or not and accordingly returns
7492                          * a flag in the RxD.
7493                          */
7494                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7495                         if (ring_data->lro) {
7496                                 u32 tcp_len;
7497                                 u8 *tcp;
7498                                 int ret = 0;
7499
7500                                 ret = s2io_club_tcp_session(ring_data,
7501                                                             skb->data, &tcp,
7502                                                             &tcp_len, &lro,
7503                                                             rxdp, sp);
7504                                 switch (ret) {
7505                                 case 3: /* Begin anew */
7506                                         lro->parent = skb;
7507                                         goto aggregate;
7508                                 case 1: /* Aggregate */
7509                                         lro_append_pkt(sp, lro, skb, tcp_len);
7510                                         goto aggregate;
7511                                 case 4: /* Flush session */
7512                                         lro_append_pkt(sp, lro, skb, tcp_len);
7513                                         queue_rx_frame(lro->parent,
7514                                                        lro->vlan_tag);
7515                                         clear_lro_session(lro);
7516                                         swstats->flush_max_pkts++;
7517                                         goto aggregate;
7518                                 case 2: /* Flush both */
7519                                         lro->parent->data_len = lro->frags_len;
7520                                         swstats->sending_both++;
7521                                         queue_rx_frame(lro->parent,
7522                                                        lro->vlan_tag);
7523                                         clear_lro_session(lro);
7524                                         goto send_up;
7525                                 case 0: /* sessions exceeded */
7526                                 case -1: /* non-TCP or not L2 aggregatable */
7527                                 case 5: /*
7528                                          * First pkt in session not
7529                                          * L3/L4 aggregatable
7530                                          */
7531                                         break;
7532                                 default:
7533                                         DBG_PRINT(ERR_DBG,
7534                                                   "%s: Samadhana!!\n",
7535                                                   __func__);
7536                                         BUG();
7537                                 }
7538                         }
7539                 } else {
7540                         /*
7541                          * Packet with erroneous checksum, let the
7542                          * upper layers deal with it.
7543                          */
7544                         skb->ip_summed = CHECKSUM_NONE;
7545                 }
7546         } else
7547                 skb->ip_summed = CHECKSUM_NONE;
7548
7549         swstats->mem_freed += skb->truesize;
7550 send_up:
7551         skb_record_rx_queue(skb, ring_no);
7552         queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7553 aggregate:
7554         sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7555         return SUCCESS;
7556 }
7557
7558 /**
7559  *  s2io_link - stops/starts the Tx queue.
7560  *  @sp : private member of the device structure, which is a pointer to the
7561  *  s2io_nic structure.
7562  *  @link : inidicates whether link is UP/DOWN.
7563  *  Description:
7564  *  This function stops/starts the Tx queue depending on whether the link
7565  *  status of the NIC is is down or up. This is called by the Alarm
7566  *  interrupt handler whenever a link change interrupt comes up.
7567  *  Return value:
7568  *  void.
7569  */
7570
7571 static void s2io_link(struct s2io_nic *sp, int link)
7572 {
7573         struct net_device *dev = (struct net_device *)sp->dev;
7574         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7575
7576         if (link != sp->last_link_state) {
7577                 init_tti(sp, link);
7578                 if (link == LINK_DOWN) {
7579                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7580                         s2io_stop_all_tx_queue(sp);
7581                         netif_carrier_off(dev);
7582                         if (swstats->link_up_cnt)
7583                                 swstats->link_up_time =
7584                                         jiffies - sp->start_time;
7585                         swstats->link_down_cnt++;
7586                 } else {
7587                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7588                         if (swstats->link_down_cnt)
7589                                 swstats->link_down_time =
7590                                         jiffies - sp->start_time;
7591                         swstats->link_up_cnt++;
7592                         netif_carrier_on(dev);
7593                         s2io_wake_all_tx_queue(sp);
7594                 }
7595         }
7596         sp->last_link_state = link;
7597         sp->start_time = jiffies;
7598 }
7599
7600 /**
7601  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7602  *  @sp : private member of the device structure, which is a pointer to the
7603  *  s2io_nic structure.
7604  *  Description:
7605  *  This function initializes a few of the PCI and PCI-X configuration registers
7606  *  with recommended values.
7607  *  Return value:
7608  *  void
7609  */
7610
7611 static void s2io_init_pci(struct s2io_nic *sp)
7612 {
7613         u16 pci_cmd = 0, pcix_cmd = 0;
7614
7615         /* Enable Data Parity Error Recovery in PCI-X command register. */
7616         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7617                              &(pcix_cmd));
7618         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7619                               (pcix_cmd | 1));
7620         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7621                              &(pcix_cmd));
7622
7623         /* Set the PErr Response bit in PCI command register. */
7624         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7625         pci_write_config_word(sp->pdev, PCI_COMMAND,
7626                               (pci_cmd | PCI_COMMAND_PARITY));
7627         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7628 }
7629
7630 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7631                             u8 *dev_multiq)
7632 {
7633         if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7634                 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7635                           "(%d) not supported\n", tx_fifo_num);
7636
7637                 if (tx_fifo_num < 1)
7638                         tx_fifo_num = 1;
7639                 else
7640                         tx_fifo_num = MAX_TX_FIFOS;
7641
7642                 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7643         }
7644
7645         if (multiq)
7646                 *dev_multiq = multiq;
7647
7648         if (tx_steering_type && (1 == tx_fifo_num)) {
7649                 if (tx_steering_type != TX_DEFAULT_STEERING)
7650                         DBG_PRINT(ERR_DBG,
7651                                   "Tx steering is not supported with "
7652                                   "one fifo. Disabling Tx steering.\n");
7653                 tx_steering_type = NO_STEERING;
7654         }
7655
7656         if ((tx_steering_type < NO_STEERING) ||
7657             (tx_steering_type > TX_DEFAULT_STEERING)) {
7658                 DBG_PRINT(ERR_DBG,
7659                           "Requested transmit steering not supported\n");
7660                 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7661                 tx_steering_type = NO_STEERING;
7662         }
7663
7664         if (rx_ring_num > MAX_RX_RINGS) {
7665                 DBG_PRINT(ERR_DBG,
7666                           "Requested number of rx rings not supported\n");
7667                 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7668                           MAX_RX_RINGS);
7669                 rx_ring_num = MAX_RX_RINGS;
7670         }
7671
7672         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7673                 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7674                           "Defaulting to INTA\n");
7675                 *dev_intr_type = INTA;
7676         }
7677
7678         if ((*dev_intr_type == MSI_X) &&
7679             ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7680              (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7681                 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7682                           "Defaulting to INTA\n");
7683                 *dev_intr_type = INTA;
7684         }
7685
7686         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7687                 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7688                 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7689                 rx_ring_mode = 1;
7690         }
7691         return SUCCESS;
7692 }
7693
7694 /**
7695  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7696  * or Traffic class respectively.
7697  * @nic: device private variable
7698  * Description: The function configures the receive steering to
7699  * desired receive ring.
7700  * Return Value:  SUCCESS on success and
7701  * '-1' on failure (endian settings incorrect).
7702  */
7703 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7704 {
7705         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7706         register u64 val64 = 0;
7707
7708         if (ds_codepoint > 63)
7709                 return FAILURE;
7710
7711         val64 = RTS_DS_MEM_DATA(ring);
7712         writeq(val64, &bar0->rts_ds_mem_data);
7713
7714         val64 = RTS_DS_MEM_CTRL_WE |
7715                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7716                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7717
7718         writeq(val64, &bar0->rts_ds_mem_ctrl);
7719
7720         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7721                                      RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7722                                      S2IO_BIT_RESET);
7723 }
7724
7725 static const struct net_device_ops s2io_netdev_ops = {
7726         .ndo_open               = s2io_open,
7727         .ndo_stop               = s2io_close,
7728         .ndo_get_stats          = s2io_get_stats,
7729         .ndo_start_xmit         = s2io_xmit,
7730         .ndo_validate_addr      = eth_validate_addr,
7731         .ndo_set_multicast_list = s2io_set_multicast,
7732         .ndo_do_ioctl           = s2io_ioctl,
7733         .ndo_set_mac_address    = s2io_set_mac_addr,
7734         .ndo_change_mtu         = s2io_change_mtu,
7735         .ndo_vlan_rx_register   = s2io_vlan_rx_register,
7736         .ndo_vlan_rx_kill_vid   = s2io_vlan_rx_kill_vid,
7737         .ndo_tx_timeout         = s2io_tx_watchdog,
7738 #ifdef CONFIG_NET_POLL_CONTROLLER
7739         .ndo_poll_controller    = s2io_netpoll,
7740 #endif
7741 };
7742
7743 /**
7744  *  s2io_init_nic - Initialization of the adapter .
7745  *  @pdev : structure containing the PCI related information of the device.
7746  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7747  *  Description:
7748  *  The function initializes an adapter identified by the pci_dec structure.
7749  *  All OS related initialization including memory and device structure and
7750  *  initlaization of the device private variable is done. Also the swapper
7751  *  control register is initialized to enable read and write into the I/O
7752  *  registers of the device.
7753  *  Return value:
7754  *  returns 0 on success and negative on failure.
7755  */
7756
7757 static int __devinit
7758 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7759 {
7760         struct s2io_nic *sp;
7761         struct net_device *dev;
7762         int i, j, ret;
7763         int dma_flag = false;
7764         u32 mac_up, mac_down;
7765         u64 val64 = 0, tmp64 = 0;
7766         struct XENA_dev_config __iomem *bar0 = NULL;
7767         u16 subid;
7768         struct config_param *config;
7769         struct mac_info *mac_control;
7770         int mode;
7771         u8 dev_intr_type = intr_type;
7772         u8 dev_multiq = 0;
7773
7774         ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7775         if (ret)
7776                 return ret;
7777
7778         ret = pci_enable_device(pdev);
7779         if (ret) {
7780                 DBG_PRINT(ERR_DBG,
7781                           "%s: pci_enable_device failed\n", __func__);
7782                 return ret;
7783         }
7784
7785         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7786                 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7787                 dma_flag = true;
7788                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7789                         DBG_PRINT(ERR_DBG,
7790                                   "Unable to obtain 64bit DMA "
7791                                   "for consistent allocations\n");
7792                         pci_disable_device(pdev);
7793                         return -ENOMEM;
7794                 }
7795         } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7796                 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7797         } else {
7798                 pci_disable_device(pdev);
7799                 return -ENOMEM;
7800         }
7801         ret = pci_request_regions(pdev, s2io_driver_name);
7802         if (ret) {
7803                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7804                           __func__, ret);
7805                 pci_disable_device(pdev);
7806                 return -ENODEV;
7807         }
7808         if (dev_multiq)
7809                 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7810         else
7811                 dev = alloc_etherdev(sizeof(struct s2io_nic));
7812         if (dev == NULL) {
7813                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7814                 pci_disable_device(pdev);
7815                 pci_release_regions(pdev);
7816                 return -ENODEV;
7817         }
7818
7819         pci_set_master(pdev);
7820         pci_set_drvdata(pdev, dev);
7821         SET_NETDEV_DEV(dev, &pdev->dev);
7822
7823         /*  Private member variable initialized to s2io NIC structure */
7824         sp = netdev_priv(dev);
7825         memset(sp, 0, sizeof(struct s2io_nic));
7826         sp->dev = dev;
7827         sp->pdev = pdev;
7828         sp->high_dma_flag = dma_flag;
7829         sp->device_enabled_once = false;
7830         if (rx_ring_mode == 1)
7831                 sp->rxd_mode = RXD_MODE_1;
7832         if (rx_ring_mode == 2)
7833                 sp->rxd_mode = RXD_MODE_3B;
7834
7835         sp->config.intr_type = dev_intr_type;
7836
7837         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7838             (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7839                 sp->device_type = XFRAME_II_DEVICE;
7840         else
7841                 sp->device_type = XFRAME_I_DEVICE;
7842
7843         sp->lro = lro_enable;
7844
7845         /* Initialize some PCI/PCI-X fields of the NIC. */
7846         s2io_init_pci(sp);
7847
7848         /*
7849          * Setting the device configuration parameters.
7850          * Most of these parameters can be specified by the user during
7851          * module insertion as they are module loadable parameters. If
7852          * these parameters are not not specified during load time, they
7853          * are initialized with default values.
7854          */
7855         config = &sp->config;
7856         mac_control = &sp->mac_control;
7857
7858         config->napi = napi;
7859         config->tx_steering_type = tx_steering_type;
7860
7861         /* Tx side parameters. */
7862         if (config->tx_steering_type == TX_PRIORITY_STEERING)
7863                 config->tx_fifo_num = MAX_TX_FIFOS;
7864         else
7865                 config->tx_fifo_num = tx_fifo_num;
7866
7867         /* Initialize the fifos used for tx steering */
7868         if (config->tx_fifo_num < 5) {
7869                 if (config->tx_fifo_num  == 1)
7870                         sp->total_tcp_fifos = 1;
7871                 else
7872                         sp->total_tcp_fifos = config->tx_fifo_num - 1;
7873                 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7874                 sp->total_udp_fifos = 1;
7875                 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7876         } else {
7877                 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7878                                        FIFO_OTHER_MAX_NUM);
7879                 sp->udp_fifo_idx = sp->total_tcp_fifos;
7880                 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7881                 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7882         }
7883
7884         config->multiq = dev_multiq;
7885         for (i = 0; i < config->tx_fifo_num; i++) {
7886                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7887
7888                 tx_cfg->fifo_len = tx_fifo_len[i];
7889                 tx_cfg->fifo_priority = i;
7890         }
7891
7892         /* mapping the QoS priority to the configured fifos */
7893         for (i = 0; i < MAX_TX_FIFOS; i++)
7894                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7895
7896         /* map the hashing selector table to the configured fifos */
7897         for (i = 0; i < config->tx_fifo_num; i++)
7898                 sp->fifo_selector[i] = fifo_selector[i];
7899
7900
7901         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7902         for (i = 0; i < config->tx_fifo_num; i++) {
7903                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7904
7905                 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7906                 if (tx_cfg->fifo_len < 65) {
7907                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7908                         break;
7909                 }
7910         }
7911         /* + 2 because one Txd for skb->data and one Txd for UFO */
7912         config->max_txds = MAX_SKB_FRAGS + 2;
7913
7914         /* Rx side parameters. */
7915         config->rx_ring_num = rx_ring_num;
7916         for (i = 0; i < config->rx_ring_num; i++) {
7917                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7918                 struct ring_info *ring = &mac_control->rings[i];
7919
7920                 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7921                 rx_cfg->ring_priority = i;
7922                 ring->rx_bufs_left = 0;
7923                 ring->rxd_mode = sp->rxd_mode;
7924                 ring->rxd_count = rxd_count[sp->rxd_mode];
7925                 ring->pdev = sp->pdev;
7926                 ring->dev = sp->dev;
7927         }
7928
7929         for (i = 0; i < rx_ring_num; i++) {
7930                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7931
7932                 rx_cfg->ring_org = RING_ORG_BUFF1;
7933                 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7934         }
7935
7936         /*  Setting Mac Control parameters */
7937         mac_control->rmac_pause_time = rmac_pause_time;
7938         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7939         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7940
7941
7942         /*  initialize the shared memory used by the NIC and the host */
7943         if (init_shared_mem(sp)) {
7944                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7945                 ret = -ENOMEM;
7946                 goto mem_alloc_failed;
7947         }
7948
7949         sp->bar0 = pci_ioremap_bar(pdev, 0);
7950         if (!sp->bar0) {
7951                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7952                           dev->name);
7953                 ret = -ENOMEM;
7954                 goto bar0_remap_failed;
7955         }
7956
7957         sp->bar1 = pci_ioremap_bar(pdev, 2);
7958         if (!sp->bar1) {
7959                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7960                           dev->name);
7961                 ret = -ENOMEM;
7962                 goto bar1_remap_failed;
7963         }
7964
7965         dev->irq = pdev->irq;
7966         dev->base_addr = (unsigned long)sp->bar0;
7967
7968         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7969         for (j = 0; j < MAX_TX_FIFOS; j++) {
7970                 mac_control->tx_FIFO_start[j] =
7971                         (struct TxFIFO_element __iomem *)
7972                         (sp->bar1 + (j * 0x00020000));
7973         }
7974
7975         /*  Driver entry points */
7976         dev->netdev_ops = &s2io_netdev_ops;
7977         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7978         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7979
7980         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7981         if (sp->high_dma_flag == true)
7982                 dev->features |= NETIF_F_HIGHDMA;
7983         dev->features |= NETIF_F_TSO;
7984         dev->features |= NETIF_F_TSO6;
7985         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7986                 dev->features |= NETIF_F_UFO;
7987                 dev->features |= NETIF_F_HW_CSUM;
7988         }
7989         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7990         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7991         INIT_WORK(&sp->set_link_task, s2io_set_link);
7992
7993         pci_save_state(sp->pdev);
7994
7995         /* Setting swapper control on the NIC, for proper reset operation */
7996         if (s2io_set_swapper(sp)) {
7997                 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7998                           dev->name);
7999                 ret = -EAGAIN;
8000                 goto set_swap_failed;
8001         }
8002
8003         /* Verify if the Herc works on the slot its placed into */
8004         if (sp->device_type & XFRAME_II_DEVICE) {
8005                 mode = s2io_verify_pci_mode(sp);
8006                 if (mode < 0) {
8007                         DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8008                                   __func__);
8009                         ret = -EBADSLT;
8010                         goto set_swap_failed;
8011                 }
8012         }
8013
8014         if (sp->config.intr_type == MSI_X) {
8015                 sp->num_entries = config->rx_ring_num + 1;
8016                 ret = s2io_enable_msi_x(sp);
8017
8018                 if (!ret) {
8019                         ret = s2io_test_msi(sp);
8020                         /* rollback MSI-X, will re-enable during add_isr() */
8021                         remove_msix_isr(sp);
8022                 }
8023                 if (ret) {
8024
8025                         DBG_PRINT(ERR_DBG,
8026                                   "MSI-X requested but failed to enable\n");
8027                         sp->config.intr_type = INTA;
8028                 }
8029         }
8030
8031         if (config->intr_type ==  MSI_X) {
8032                 for (i = 0; i < config->rx_ring_num ; i++) {
8033                         struct ring_info *ring = &mac_control->rings[i];
8034
8035                         netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8036                 }
8037         } else {
8038                 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8039         }
8040
8041         /* Not needed for Herc */
8042         if (sp->device_type & XFRAME_I_DEVICE) {
8043                 /*
8044                  * Fix for all "FFs" MAC address problems observed on
8045                  * Alpha platforms
8046                  */
8047                 fix_mac_address(sp);
8048                 s2io_reset(sp);
8049         }
8050
8051         /*
8052          * MAC address initialization.
8053          * For now only one mac address will be read and used.
8054          */
8055         bar0 = sp->bar0;
8056         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8057                 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8058         writeq(val64, &bar0->rmac_addr_cmd_mem);
8059         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8060                               RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8061                               S2IO_BIT_RESET);
8062         tmp64 = readq(&bar0->rmac_addr_data0_mem);
8063         mac_down = (u32)tmp64;
8064         mac_up = (u32) (tmp64 >> 32);
8065
8066         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8067         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8068         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8069         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8070         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8071         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8072
8073         /*  Set the factory defined MAC address initially   */
8074         dev->addr_len = ETH_ALEN;
8075         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8076         memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8077
8078         /* initialize number of multicast & unicast MAC entries variables */
8079         if (sp->device_type == XFRAME_I_DEVICE) {
8080                 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8081                 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8082                 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8083         } else if (sp->device_type == XFRAME_II_DEVICE) {
8084                 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8085                 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8086                 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8087         }
8088
8089         /* store mac addresses from CAM to s2io_nic structure */
8090         do_s2io_store_unicast_mc(sp);
8091
8092         /* Configure MSIX vector for number of rings configured plus one */
8093         if ((sp->device_type == XFRAME_II_DEVICE) &&
8094             (config->intr_type == MSI_X))
8095                 sp->num_entries = config->rx_ring_num + 1;
8096
8097         /* Store the values of the MSIX table in the s2io_nic structure */
8098         store_xmsi_data(sp);
8099         /* reset Nic and bring it to known state */
8100         s2io_reset(sp);
8101
8102         /*
8103          * Initialize link state flags
8104          * and the card state parameter
8105          */
8106         sp->state = 0;
8107
8108         /* Initialize spinlocks */
8109         for (i = 0; i < sp->config.tx_fifo_num; i++) {
8110                 struct fifo_info *fifo = &mac_control->fifos[i];
8111
8112                 spin_lock_init(&fifo->tx_lock);
8113         }
8114
8115         /*
8116          * SXE-002: Configure link and activity LED to init state
8117          * on driver load.
8118          */
8119         subid = sp->pdev->subsystem_device;
8120         if ((subid & 0xFF) >= 0x07) {
8121                 val64 = readq(&bar0->gpio_control);
8122                 val64 |= 0x0000800000000000ULL;
8123                 writeq(val64, &bar0->gpio_control);
8124                 val64 = 0x0411040400000000ULL;
8125                 writeq(val64, (void __iomem *)bar0 + 0x2700);
8126                 val64 = readq(&bar0->gpio_control);
8127         }
8128
8129         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
8130
8131         if (register_netdev(dev)) {
8132                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8133                 ret = -ENODEV;
8134                 goto register_failed;
8135         }
8136         s2io_vpd_read(sp);
8137         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8138         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8139                   sp->product_name, pdev->revision);
8140         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8141                   s2io_driver_version);
8142         DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8143         DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8144         if (sp->device_type & XFRAME_II_DEVICE) {
8145                 mode = s2io_print_pci_mode(sp);
8146                 if (mode < 0) {
8147                         ret = -EBADSLT;
8148                         unregister_netdev(dev);
8149                         goto set_swap_failed;
8150                 }
8151         }
8152         switch (sp->rxd_mode) {
8153         case RXD_MODE_1:
8154                 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8155                           dev->name);
8156                 break;
8157         case RXD_MODE_3B:
8158                 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8159                           dev->name);
8160                 break;
8161         }
8162
8163         switch (sp->config.napi) {
8164         case 0:
8165                 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8166                 break;
8167         case 1:
8168                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8169                 break;
8170         }
8171
8172         DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8173                   sp->config.tx_fifo_num);
8174
8175         DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8176                   sp->config.rx_ring_num);
8177
8178         switch (sp->config.intr_type) {
8179         case INTA:
8180                 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8181                 break;
8182         case MSI_X:
8183                 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8184                 break;
8185         }
8186         if (sp->config.multiq) {
8187                 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8188                         struct fifo_info *fifo = &mac_control->fifos[i];
8189
8190                         fifo->multiq = config->multiq;
8191                 }
8192                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8193                           dev->name);
8194         } else
8195                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8196                           dev->name);
8197
8198         switch (sp->config.tx_steering_type) {
8199         case NO_STEERING:
8200                 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8201                           dev->name);
8202                 break;
8203         case TX_PRIORITY_STEERING:
8204                 DBG_PRINT(ERR_DBG,
8205                           "%s: Priority steering enabled for transmit\n",
8206                           dev->name);
8207                 break;
8208         case TX_DEFAULT_STEERING:
8209                 DBG_PRINT(ERR_DBG,
8210                           "%s: Default steering enabled for transmit\n",
8211                           dev->name);
8212         }
8213
8214         if (sp->lro)
8215                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8216                           dev->name);
8217         if (ufo)
8218                 DBG_PRINT(ERR_DBG,
8219                           "%s: UDP Fragmentation Offload(UFO) enabled\n",
8220                           dev->name);
8221         /* Initialize device name */
8222         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8223
8224         if (vlan_tag_strip)
8225                 sp->vlan_strip_flag = 1;
8226         else
8227                 sp->vlan_strip_flag = 0;
8228
8229         /*
8230          * Make Link state as off at this point, when the Link change
8231          * interrupt comes the state will be automatically changed to
8232          * the right state.
8233          */
8234         netif_carrier_off(dev);
8235
8236         return 0;
8237
8238 register_failed:
8239 set_swap_failed:
8240         iounmap(sp->bar1);
8241 bar1_remap_failed:
8242         iounmap(sp->bar0);
8243 bar0_remap_failed:
8244 mem_alloc_failed:
8245         free_shared_mem(sp);
8246         pci_disable_device(pdev);
8247         pci_release_regions(pdev);
8248         pci_set_drvdata(pdev, NULL);
8249         free_netdev(dev);
8250
8251         return ret;
8252 }
8253
8254 /**
8255  * s2io_rem_nic - Free the PCI device
8256  * @pdev: structure containing the PCI related information of the device.
8257  * Description: This function is called by the Pci subsystem to release a
8258  * PCI device and free up all resource held up by the device. This could
8259  * be in response to a Hot plug event or when the driver is to be removed
8260  * from memory.
8261  */
8262
8263 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8264 {
8265         struct net_device *dev =
8266                 (struct net_device *)pci_get_drvdata(pdev);
8267         struct s2io_nic *sp;
8268
8269         if (dev == NULL) {
8270                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8271                 return;
8272         }
8273
8274         flush_scheduled_work();
8275
8276         sp = netdev_priv(dev);
8277         unregister_netdev(dev);
8278
8279         free_shared_mem(sp);
8280         iounmap(sp->bar0);
8281         iounmap(sp->bar1);
8282         pci_release_regions(pdev);
8283         pci_set_drvdata(pdev, NULL);
8284         free_netdev(dev);
8285         pci_disable_device(pdev);
8286 }
8287
8288 /**
8289  * s2io_starter - Entry point for the driver
8290  * Description: This function is the entry point for the driver. It verifies
8291  * the module loadable parameters and initializes PCI configuration space.
8292  */
8293
8294 static int __init s2io_starter(void)
8295 {
8296         return pci_register_driver(&s2io_driver);
8297 }
8298
8299 /**
8300  * s2io_closer - Cleanup routine for the driver
8301  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8302  */
8303
8304 static __exit void s2io_closer(void)
8305 {
8306         pci_unregister_driver(&s2io_driver);
8307         DBG_PRINT(INIT_DBG, "cleanup done\n");
8308 }
8309
8310 module_init(s2io_starter);
8311 module_exit(s2io_closer);
8312
8313 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8314                                 struct tcphdr **tcp, struct RxD_t *rxdp,
8315                                 struct s2io_nic *sp)
8316 {
8317         int ip_off;
8318         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8319
8320         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8321                 DBG_PRINT(INIT_DBG,
8322                           "%s: Non-TCP frames not supported for LRO\n",
8323                           __func__);
8324                 return -1;
8325         }
8326
8327         /* Checking for DIX type or DIX type with VLAN */
8328         if ((l2_type == 0) || (l2_type == 4)) {
8329                 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8330                 /*
8331                  * If vlan stripping is disabled and the frame is VLAN tagged,
8332                  * shift the offset by the VLAN header size bytes.
8333                  */
8334                 if ((!sp->vlan_strip_flag) &&
8335                     (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8336                         ip_off += HEADER_VLAN_SIZE;
8337         } else {
8338                 /* LLC, SNAP etc are considered non-mergeable */
8339                 return -1;
8340         }
8341
8342         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8343         ip_len = (u8)((*ip)->ihl);
8344         ip_len <<= 2;
8345         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8346
8347         return 0;
8348 }
8349
8350 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8351                                   struct tcphdr *tcp)
8352 {
8353         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8354         if ((lro->iph->saddr != ip->saddr) ||
8355             (lro->iph->daddr != ip->daddr) ||
8356             (lro->tcph->source != tcp->source) ||
8357             (lro->tcph->dest != tcp->dest))
8358                 return -1;
8359         return 0;
8360 }
8361
8362 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8363 {
8364         return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8365 }
8366
8367 static void initiate_new_session(struct lro *lro, u8 *l2h,
8368                                  struct iphdr *ip, struct tcphdr *tcp,
8369                                  u32 tcp_pyld_len, u16 vlan_tag)
8370 {
8371         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8372         lro->l2h = l2h;
8373         lro->iph = ip;
8374         lro->tcph = tcp;
8375         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8376         lro->tcp_ack = tcp->ack_seq;
8377         lro->sg_num = 1;
8378         lro->total_len = ntohs(ip->tot_len);
8379         lro->frags_len = 0;
8380         lro->vlan_tag = vlan_tag;
8381         /*
8382          * Check if we saw TCP timestamp.
8383          * Other consistency checks have already been done.
8384          */
8385         if (tcp->doff == 8) {
8386                 __be32 *ptr;
8387                 ptr = (__be32 *)(tcp+1);
8388                 lro->saw_ts = 1;
8389                 lro->cur_tsval = ntohl(*(ptr+1));
8390                 lro->cur_tsecr = *(ptr+2);
8391         }
8392         lro->in_use = 1;
8393 }
8394
8395 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8396 {
8397         struct iphdr *ip = lro->iph;
8398         struct tcphdr *tcp = lro->tcph;
8399         __sum16 nchk;
8400         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8401
8402         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8403
8404         /* Update L3 header */
8405         ip->tot_len = htons(lro->total_len);
8406         ip->check = 0;
8407         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8408         ip->check = nchk;
8409
8410         /* Update L4 header */
8411         tcp->ack_seq = lro->tcp_ack;
8412         tcp->window = lro->window;
8413
8414         /* Update tsecr field if this session has timestamps enabled */
8415         if (lro->saw_ts) {
8416                 __be32 *ptr = (__be32 *)(tcp + 1);
8417                 *(ptr+2) = lro->cur_tsecr;
8418         }
8419
8420         /* Update counters required for calculation of
8421          * average no. of packets aggregated.
8422          */
8423         swstats->sum_avg_pkts_aggregated += lro->sg_num;
8424         swstats->num_aggregations++;
8425 }
8426
8427 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8428                              struct tcphdr *tcp, u32 l4_pyld)
8429 {
8430         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8431         lro->total_len += l4_pyld;
8432         lro->frags_len += l4_pyld;
8433         lro->tcp_next_seq += l4_pyld;
8434         lro->sg_num++;
8435
8436         /* Update ack seq no. and window ad(from this pkt) in LRO object */
8437         lro->tcp_ack = tcp->ack_seq;
8438         lro->window = tcp->window;
8439
8440         if (lro->saw_ts) {
8441                 __be32 *ptr;
8442                 /* Update tsecr and tsval from this packet */
8443                 ptr = (__be32 *)(tcp+1);
8444                 lro->cur_tsval = ntohl(*(ptr+1));
8445                 lro->cur_tsecr = *(ptr + 2);
8446         }
8447 }
8448
8449 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8450                                     struct tcphdr *tcp, u32 tcp_pyld_len)
8451 {
8452         u8 *ptr;
8453
8454         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8455
8456         if (!tcp_pyld_len) {
8457                 /* Runt frame or a pure ack */
8458                 return -1;
8459         }
8460
8461         if (ip->ihl != 5) /* IP has options */
8462                 return -1;
8463
8464         /* If we see CE codepoint in IP header, packet is not mergeable */
8465         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8466                 return -1;
8467
8468         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8469         if (tcp->urg || tcp->psh || tcp->rst ||
8470             tcp->syn || tcp->fin ||
8471             tcp->ece || tcp->cwr || !tcp->ack) {
8472                 /*
8473                  * Currently recognize only the ack control word and
8474                  * any other control field being set would result in
8475                  * flushing the LRO session
8476                  */
8477                 return -1;
8478         }
8479
8480         /*
8481          * Allow only one TCP timestamp option. Don't aggregate if
8482          * any other options are detected.
8483          */
8484         if (tcp->doff != 5 && tcp->doff != 8)
8485                 return -1;
8486
8487         if (tcp->doff == 8) {
8488                 ptr = (u8 *)(tcp + 1);
8489                 while (*ptr == TCPOPT_NOP)
8490                         ptr++;
8491                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8492                         return -1;
8493
8494                 /* Ensure timestamp value increases monotonically */
8495                 if (l_lro)
8496                         if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8497                                 return -1;
8498
8499                 /* timestamp echo reply should be non-zero */
8500                 if (*((__be32 *)(ptr+6)) == 0)
8501                         return -1;
8502         }
8503
8504         return 0;
8505 }
8506
8507 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8508                                  u8 **tcp, u32 *tcp_len, struct lro **lro,
8509                                  struct RxD_t *rxdp, struct s2io_nic *sp)
8510 {
8511         struct iphdr *ip;
8512         struct tcphdr *tcph;
8513         int ret = 0, i;
8514         u16 vlan_tag = 0;
8515         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8516
8517         ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8518                                    rxdp, sp);
8519         if (ret)
8520                 return ret;
8521
8522         DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8523
8524         vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8525         tcph = (struct tcphdr *)*tcp;
8526         *tcp_len = get_l4_pyld_length(ip, tcph);
8527         for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8528                 struct lro *l_lro = &ring_data->lro0_n[i];
8529                 if (l_lro->in_use) {
8530                         if (check_for_socket_match(l_lro, ip, tcph))
8531                                 continue;
8532                         /* Sock pair matched */
8533                         *lro = l_lro;
8534
8535                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8536                                 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8537                                           "expected 0x%x, actual 0x%x\n",
8538                                           __func__,
8539                                           (*lro)->tcp_next_seq,
8540                                           ntohl(tcph->seq));
8541
8542                                 swstats->outof_sequence_pkts++;
8543                                 ret = 2;
8544                                 break;
8545                         }
8546
8547                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8548                                                       *tcp_len))
8549                                 ret = 1; /* Aggregate */
8550                         else
8551                                 ret = 2; /* Flush both */
8552                         break;
8553                 }
8554         }
8555
8556         if (ret == 0) {
8557                 /* Before searching for available LRO objects,
8558                  * check if the pkt is L3/L4 aggregatable. If not
8559                  * don't create new LRO session. Just send this
8560                  * packet up.
8561                  */
8562                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8563                         return 5;
8564
8565                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8566                         struct lro *l_lro = &ring_data->lro0_n[i];
8567                         if (!(l_lro->in_use)) {
8568                                 *lro = l_lro;
8569                                 ret = 3; /* Begin anew */
8570                                 break;
8571                         }
8572                 }
8573         }
8574
8575         if (ret == 0) { /* sessions exceeded */
8576                 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8577                           __func__);
8578                 *lro = NULL;
8579                 return ret;
8580         }
8581
8582         switch (ret) {
8583         case 3:
8584                 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8585                                      vlan_tag);
8586                 break;
8587         case 2:
8588                 update_L3L4_header(sp, *lro);
8589                 break;
8590         case 1:
8591                 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8592                 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8593                         update_L3L4_header(sp, *lro);
8594                         ret = 4; /* Flush the LRO */
8595                 }
8596                 break;
8597         default:
8598                 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8599                 break;
8600         }
8601
8602         return ret;
8603 }
8604
8605 static void clear_lro_session(struct lro *lro)
8606 {
8607         static u16 lro_struct_size = sizeof(struct lro);
8608
8609         memset(lro, 0, lro_struct_size);
8610 }
8611
8612 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8613 {
8614         struct net_device *dev = skb->dev;
8615         struct s2io_nic *sp = netdev_priv(dev);
8616
8617         skb->protocol = eth_type_trans(skb, dev);
8618         if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
8619                 /* Queueing the vlan frame to the upper layer */
8620                 if (sp->config.napi)
8621                         vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8622                 else
8623                         vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8624         } else {
8625                 if (sp->config.napi)
8626                         netif_receive_skb(skb);
8627                 else
8628                         netif_rx(skb);
8629         }
8630 }
8631
8632 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8633                            struct sk_buff *skb, u32 tcp_len)
8634 {
8635         struct sk_buff *first = lro->parent;
8636         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8637
8638         first->len += tcp_len;
8639         first->data_len = lro->frags_len;
8640         skb_pull(skb, (skb->len - tcp_len));
8641         if (skb_shinfo(first)->frag_list)
8642                 lro->last_frag->next = skb;
8643         else
8644                 skb_shinfo(first)->frag_list = skb;
8645         first->truesize += skb->truesize;
8646         lro->last_frag = skb;
8647         swstats->clubbed_frms_cnt++;
8648         return;
8649 }
8650
8651 /**
8652  * s2io_io_error_detected - called when PCI error is detected
8653  * @pdev: Pointer to PCI device
8654  * @state: The current pci connection state
8655  *
8656  * This function is called after a PCI bus error affecting
8657  * this device has been detected.
8658  */
8659 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8660                                                pci_channel_state_t state)
8661 {
8662         struct net_device *netdev = pci_get_drvdata(pdev);
8663         struct s2io_nic *sp = netdev_priv(netdev);
8664
8665         netif_device_detach(netdev);
8666
8667         if (state == pci_channel_io_perm_failure)
8668                 return PCI_ERS_RESULT_DISCONNECT;
8669
8670         if (netif_running(netdev)) {
8671                 /* Bring down the card, while avoiding PCI I/O */
8672                 do_s2io_card_down(sp, 0);
8673         }
8674         pci_disable_device(pdev);
8675
8676         return PCI_ERS_RESULT_NEED_RESET;
8677 }
8678
8679 /**
8680  * s2io_io_slot_reset - called after the pci bus has been reset.
8681  * @pdev: Pointer to PCI device
8682  *
8683  * Restart the card from scratch, as if from a cold-boot.
8684  * At this point, the card has exprienced a hard reset,
8685  * followed by fixups by BIOS, and has its config space
8686  * set up identically to what it was at cold boot.
8687  */
8688 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8689 {
8690         struct net_device *netdev = pci_get_drvdata(pdev);
8691         struct s2io_nic *sp = netdev_priv(netdev);
8692
8693         if (pci_enable_device(pdev)) {
8694                 pr_err("Cannot re-enable PCI device after reset.\n");
8695                 return PCI_ERS_RESULT_DISCONNECT;
8696         }
8697
8698         pci_set_master(pdev);
8699         s2io_reset(sp);
8700
8701         return PCI_ERS_RESULT_RECOVERED;
8702 }
8703
8704 /**
8705  * s2io_io_resume - called when traffic can start flowing again.
8706  * @pdev: Pointer to PCI device
8707  *
8708  * This callback is called when the error recovery driver tells
8709  * us that its OK to resume normal operation.
8710  */
8711 static void s2io_io_resume(struct pci_dev *pdev)
8712 {
8713         struct net_device *netdev = pci_get_drvdata(pdev);
8714         struct s2io_nic *sp = netdev_priv(netdev);
8715
8716         if (netif_running(netdev)) {
8717                 if (s2io_card_up(sp)) {
8718                         pr_err("Can't bring device back up after reset.\n");
8719                         return;
8720                 }
8721
8722                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8723                         s2io_card_down(sp);
8724                         pr_err("Can't restore mac addr after reset.\n");
8725                         return;
8726                 }
8727         }
8728
8729         netif_device_attach(netdev);
8730         netif_tx_wake_all_queues(netdev);
8731 }