Merge branch 'omap-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tmlind...
[pandora-kernel.git] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  * multiq: This parameter used to enable/disable MULTIQUEUE support.
54  *      Possible values '1' for enable and '0' for disable. Default is '0'
55  ************************************************************************/
56
57 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58
59 #include <linux/module.h>
60 #include <linux/types.h>
61 #include <linux/errno.h>
62 #include <linux/ioport.h>
63 #include <linux/pci.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/kernel.h>
66 #include <linux/netdevice.h>
67 #include <linux/etherdevice.h>
68 #include <linux/mdio.h>
69 #include <linux/skbuff.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/stddef.h>
73 #include <linux/ioctl.h>
74 #include <linux/timex.h>
75 #include <linux/ethtool.h>
76 #include <linux/workqueue.h>
77 #include <linux/if_vlan.h>
78 #include <linux/ip.h>
79 #include <linux/tcp.h>
80 #include <linux/uaccess.h>
81 #include <linux/io.h>
82 #include <linux/slab.h>
83 #include <net/tcp.h>
84
85 #include <asm/system.h>
86 #include <asm/div64.h>
87 #include <asm/irq.h>
88
89 /* local include */
90 #include "s2io.h"
91 #include "s2io-regs.h"
92
93 #define DRV_VERSION "2.0.26.25"
94
95 /* S2io Driver name & version. */
96 static char s2io_driver_name[] = "Neterion";
97 static char s2io_driver_version[] = DRV_VERSION;
98
99 static int rxd_size[2] = {32, 48};
100 static int rxd_count[2] = {127, 85};
101
102 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
103 {
104         int ret;
105
106         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
107                (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
108
109         return ret;
110 }
111
112 /*
113  * Cards with following subsystem_id have a link state indication
114  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
115  * macro below identifies these cards given the subsystem_id.
116  */
117 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)              \
118         (dev_type == XFRAME_I_DEVICE) ?                                 \
119         ((((subid >= 0x600B) && (subid <= 0x600D)) ||                   \
120           ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
121
122 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
123                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
124
125 static inline int is_s2io_card_up(const struct s2io_nic *sp)
126 {
127         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
128 }
129
130 /* Ethtool related variables and Macros. */
131 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
132         "Register test\t(offline)",
133         "Eeprom test\t(offline)",
134         "Link test\t(online)",
135         "RLDRAM test\t(offline)",
136         "BIST Test\t(offline)"
137 };
138
139 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
140         {"tmac_frms"},
141         {"tmac_data_octets"},
142         {"tmac_drop_frms"},
143         {"tmac_mcst_frms"},
144         {"tmac_bcst_frms"},
145         {"tmac_pause_ctrl_frms"},
146         {"tmac_ttl_octets"},
147         {"tmac_ucst_frms"},
148         {"tmac_nucst_frms"},
149         {"tmac_any_err_frms"},
150         {"tmac_ttl_less_fb_octets"},
151         {"tmac_vld_ip_octets"},
152         {"tmac_vld_ip"},
153         {"tmac_drop_ip"},
154         {"tmac_icmp"},
155         {"tmac_rst_tcp"},
156         {"tmac_tcp"},
157         {"tmac_udp"},
158         {"rmac_vld_frms"},
159         {"rmac_data_octets"},
160         {"rmac_fcs_err_frms"},
161         {"rmac_drop_frms"},
162         {"rmac_vld_mcst_frms"},
163         {"rmac_vld_bcst_frms"},
164         {"rmac_in_rng_len_err_frms"},
165         {"rmac_out_rng_len_err_frms"},
166         {"rmac_long_frms"},
167         {"rmac_pause_ctrl_frms"},
168         {"rmac_unsup_ctrl_frms"},
169         {"rmac_ttl_octets"},
170         {"rmac_accepted_ucst_frms"},
171         {"rmac_accepted_nucst_frms"},
172         {"rmac_discarded_frms"},
173         {"rmac_drop_events"},
174         {"rmac_ttl_less_fb_octets"},
175         {"rmac_ttl_frms"},
176         {"rmac_usized_frms"},
177         {"rmac_osized_frms"},
178         {"rmac_frag_frms"},
179         {"rmac_jabber_frms"},
180         {"rmac_ttl_64_frms"},
181         {"rmac_ttl_65_127_frms"},
182         {"rmac_ttl_128_255_frms"},
183         {"rmac_ttl_256_511_frms"},
184         {"rmac_ttl_512_1023_frms"},
185         {"rmac_ttl_1024_1518_frms"},
186         {"rmac_ip"},
187         {"rmac_ip_octets"},
188         {"rmac_hdr_err_ip"},
189         {"rmac_drop_ip"},
190         {"rmac_icmp"},
191         {"rmac_tcp"},
192         {"rmac_udp"},
193         {"rmac_err_drp_udp"},
194         {"rmac_xgmii_err_sym"},
195         {"rmac_frms_q0"},
196         {"rmac_frms_q1"},
197         {"rmac_frms_q2"},
198         {"rmac_frms_q3"},
199         {"rmac_frms_q4"},
200         {"rmac_frms_q5"},
201         {"rmac_frms_q6"},
202         {"rmac_frms_q7"},
203         {"rmac_full_q0"},
204         {"rmac_full_q1"},
205         {"rmac_full_q2"},
206         {"rmac_full_q3"},
207         {"rmac_full_q4"},
208         {"rmac_full_q5"},
209         {"rmac_full_q6"},
210         {"rmac_full_q7"},
211         {"rmac_pause_cnt"},
212         {"rmac_xgmii_data_err_cnt"},
213         {"rmac_xgmii_ctrl_err_cnt"},
214         {"rmac_accepted_ip"},
215         {"rmac_err_tcp"},
216         {"rd_req_cnt"},
217         {"new_rd_req_cnt"},
218         {"new_rd_req_rtry_cnt"},
219         {"rd_rtry_cnt"},
220         {"wr_rtry_rd_ack_cnt"},
221         {"wr_req_cnt"},
222         {"new_wr_req_cnt"},
223         {"new_wr_req_rtry_cnt"},
224         {"wr_rtry_cnt"},
225         {"wr_disc_cnt"},
226         {"rd_rtry_wr_ack_cnt"},
227         {"txp_wr_cnt"},
228         {"txd_rd_cnt"},
229         {"txd_wr_cnt"},
230         {"rxd_rd_cnt"},
231         {"rxd_wr_cnt"},
232         {"txf_rd_cnt"},
233         {"rxf_wr_cnt"}
234 };
235
236 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
237         {"rmac_ttl_1519_4095_frms"},
238         {"rmac_ttl_4096_8191_frms"},
239         {"rmac_ttl_8192_max_frms"},
240         {"rmac_ttl_gt_max_frms"},
241         {"rmac_osized_alt_frms"},
242         {"rmac_jabber_alt_frms"},
243         {"rmac_gt_max_alt_frms"},
244         {"rmac_vlan_frms"},
245         {"rmac_len_discard"},
246         {"rmac_fcs_discard"},
247         {"rmac_pf_discard"},
248         {"rmac_da_discard"},
249         {"rmac_red_discard"},
250         {"rmac_rts_discard"},
251         {"rmac_ingm_full_discard"},
252         {"link_fault_cnt"}
253 };
254
255 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
256         {"\n DRIVER STATISTICS"},
257         {"single_bit_ecc_errs"},
258         {"double_bit_ecc_errs"},
259         {"parity_err_cnt"},
260         {"serious_err_cnt"},
261         {"soft_reset_cnt"},
262         {"fifo_full_cnt"},
263         {"ring_0_full_cnt"},
264         {"ring_1_full_cnt"},
265         {"ring_2_full_cnt"},
266         {"ring_3_full_cnt"},
267         {"ring_4_full_cnt"},
268         {"ring_5_full_cnt"},
269         {"ring_6_full_cnt"},
270         {"ring_7_full_cnt"},
271         {"alarm_transceiver_temp_high"},
272         {"alarm_transceiver_temp_low"},
273         {"alarm_laser_bias_current_high"},
274         {"alarm_laser_bias_current_low"},
275         {"alarm_laser_output_power_high"},
276         {"alarm_laser_output_power_low"},
277         {"warn_transceiver_temp_high"},
278         {"warn_transceiver_temp_low"},
279         {"warn_laser_bias_current_high"},
280         {"warn_laser_bias_current_low"},
281         {"warn_laser_output_power_high"},
282         {"warn_laser_output_power_low"},
283         {"lro_aggregated_pkts"},
284         {"lro_flush_both_count"},
285         {"lro_out_of_sequence_pkts"},
286         {"lro_flush_due_to_max_pkts"},
287         {"lro_avg_aggr_pkts"},
288         {"mem_alloc_fail_cnt"},
289         {"pci_map_fail_cnt"},
290         {"watchdog_timer_cnt"},
291         {"mem_allocated"},
292         {"mem_freed"},
293         {"link_up_cnt"},
294         {"link_down_cnt"},
295         {"link_up_time"},
296         {"link_down_time"},
297         {"tx_tcode_buf_abort_cnt"},
298         {"tx_tcode_desc_abort_cnt"},
299         {"tx_tcode_parity_err_cnt"},
300         {"tx_tcode_link_loss_cnt"},
301         {"tx_tcode_list_proc_err_cnt"},
302         {"rx_tcode_parity_err_cnt"},
303         {"rx_tcode_abort_cnt"},
304         {"rx_tcode_parity_abort_cnt"},
305         {"rx_tcode_rda_fail_cnt"},
306         {"rx_tcode_unkn_prot_cnt"},
307         {"rx_tcode_fcs_err_cnt"},
308         {"rx_tcode_buf_size_err_cnt"},
309         {"rx_tcode_rxd_corrupt_cnt"},
310         {"rx_tcode_unkn_err_cnt"},
311         {"tda_err_cnt"},
312         {"pfc_err_cnt"},
313         {"pcc_err_cnt"},
314         {"tti_err_cnt"},
315         {"tpa_err_cnt"},
316         {"sm_err_cnt"},
317         {"lso_err_cnt"},
318         {"mac_tmac_err_cnt"},
319         {"mac_rmac_err_cnt"},
320         {"xgxs_txgxs_err_cnt"},
321         {"xgxs_rxgxs_err_cnt"},
322         {"rc_err_cnt"},
323         {"prc_pcix_err_cnt"},
324         {"rpa_err_cnt"},
325         {"rda_err_cnt"},
326         {"rti_err_cnt"},
327         {"mc_err_cnt"}
328 };
329
330 #define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
331 #define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
332 #define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
333
334 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
335 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
336
337 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
338 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
339
340 #define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
341 #define S2IO_STRINGS_LEN        (S2IO_TEST_LEN * ETH_GSTRING_LEN)
342
343 #define S2IO_TIMER_CONF(timer, handle, arg, exp)        \
344         init_timer(&timer);                             \
345         timer.function = handle;                        \
346         timer.data = (unsigned long)arg;                \
347         mod_timer(&timer, (jiffies + exp))              \
348
349 /* copy mac addr to def_mac_addr array */
350 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
351 {
352         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
353         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
354         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
355         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
356         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
357         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
358 }
359
360 /* Add the vlan */
361 static void s2io_vlan_rx_register(struct net_device *dev,
362                                   struct vlan_group *grp)
363 {
364         int i;
365         struct s2io_nic *nic = netdev_priv(dev);
366         unsigned long flags[MAX_TX_FIFOS];
367         struct config_param *config = &nic->config;
368         struct mac_info *mac_control = &nic->mac_control;
369
370         for (i = 0; i < config->tx_fifo_num; i++) {
371                 struct fifo_info *fifo = &mac_control->fifos[i];
372
373                 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
374         }
375
376         nic->vlgrp = grp;
377
378         for (i = config->tx_fifo_num - 1; i >= 0; i--) {
379                 struct fifo_info *fifo = &mac_control->fifos[i];
380
381                 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
382         }
383 }
384
385 /* Unregister the vlan */
386 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
387 {
388         int i;
389         struct s2io_nic *nic = netdev_priv(dev);
390         unsigned long flags[MAX_TX_FIFOS];
391         struct config_param *config = &nic->config;
392         struct mac_info *mac_control = &nic->mac_control;
393
394         for (i = 0; i < config->tx_fifo_num; i++) {
395                 struct fifo_info *fifo = &mac_control->fifos[i];
396
397                 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
398         }
399
400         if (nic->vlgrp)
401                 vlan_group_set_device(nic->vlgrp, vid, NULL);
402
403         for (i = config->tx_fifo_num - 1; i >= 0; i--) {
404                 struct fifo_info *fifo = &mac_control->fifos[i];
405
406                 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
407         }
408 }
409
410 /*
411  * Constants to be programmed into the Xena's registers, to configure
412  * the XAUI.
413  */
414
415 #define END_SIGN        0x0
416 static const u64 herc_act_dtx_cfg[] = {
417         /* Set address */
418         0x8000051536750000ULL, 0x80000515367500E0ULL,
419         /* Write data */
420         0x8000051536750004ULL, 0x80000515367500E4ULL,
421         /* Set address */
422         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
423         /* Write data */
424         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
425         /* Set address */
426         0x801205150D440000ULL, 0x801205150D4400E0ULL,
427         /* Write data */
428         0x801205150D440004ULL, 0x801205150D4400E4ULL,
429         /* Set address */
430         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
431         /* Write data */
432         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
433         /* Done */
434         END_SIGN
435 };
436
437 static const u64 xena_dtx_cfg[] = {
438         /* Set address */
439         0x8000051500000000ULL, 0x80000515000000E0ULL,
440         /* Write data */
441         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
442         /* Set address */
443         0x8001051500000000ULL, 0x80010515000000E0ULL,
444         /* Write data */
445         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
446         /* Set address */
447         0x8002051500000000ULL, 0x80020515000000E0ULL,
448         /* Write data */
449         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
450         END_SIGN
451 };
452
453 /*
454  * Constants for Fixing the MacAddress problem seen mostly on
455  * Alpha machines.
456  */
457 static const u64 fix_mac[] = {
458         0x0060000000000000ULL, 0x0060600000000000ULL,
459         0x0040600000000000ULL, 0x0000600000000000ULL,
460         0x0020600000000000ULL, 0x0060600000000000ULL,
461         0x0020600000000000ULL, 0x0060600000000000ULL,
462         0x0020600000000000ULL, 0x0060600000000000ULL,
463         0x0020600000000000ULL, 0x0060600000000000ULL,
464         0x0020600000000000ULL, 0x0060600000000000ULL,
465         0x0020600000000000ULL, 0x0060600000000000ULL,
466         0x0020600000000000ULL, 0x0060600000000000ULL,
467         0x0020600000000000ULL, 0x0060600000000000ULL,
468         0x0020600000000000ULL, 0x0060600000000000ULL,
469         0x0020600000000000ULL, 0x0060600000000000ULL,
470         0x0020600000000000ULL, 0x0000600000000000ULL,
471         0x0040600000000000ULL, 0x0060600000000000ULL,
472         END_SIGN
473 };
474
475 MODULE_LICENSE("GPL");
476 MODULE_VERSION(DRV_VERSION);
477
478
479 /* Module Loadable parameters. */
480 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
481 S2IO_PARM_INT(rx_ring_num, 1);
482 S2IO_PARM_INT(multiq, 0);
483 S2IO_PARM_INT(rx_ring_mode, 1);
484 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
485 S2IO_PARM_INT(rmac_pause_time, 0x100);
486 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
487 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
488 S2IO_PARM_INT(shared_splits, 0);
489 S2IO_PARM_INT(tmac_util_period, 5);
490 S2IO_PARM_INT(rmac_util_period, 5);
491 S2IO_PARM_INT(l3l4hdr_size, 128);
492 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
493 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
494 /* Frequency of Rx desc syncs expressed as power of 2 */
495 S2IO_PARM_INT(rxsync_frequency, 3);
496 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
497 S2IO_PARM_INT(intr_type, 2);
498 /* Large receive offload feature */
499 static unsigned int lro_enable;
500 module_param_named(lro, lro_enable, uint, 0);
501
502 /* Max pkts to be aggregated by LRO at one time. If not specified,
503  * aggregation happens until we hit max IP pkt size(64K)
504  */
505 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
506 S2IO_PARM_INT(indicate_max_pkts, 0);
507
508 S2IO_PARM_INT(napi, 1);
509 S2IO_PARM_INT(ufo, 0);
510 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
511
512 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
513 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
514 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
515 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
516 static unsigned int rts_frm_len[MAX_RX_RINGS] =
517 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
518
519 module_param_array(tx_fifo_len, uint, NULL, 0);
520 module_param_array(rx_ring_sz, uint, NULL, 0);
521 module_param_array(rts_frm_len, uint, NULL, 0);
522
523 /*
524  * S2IO device table.
525  * This table lists all the devices that this driver supports.
526  */
527 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
528         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
529          PCI_ANY_ID, PCI_ANY_ID},
530         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
531          PCI_ANY_ID, PCI_ANY_ID},
532         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
533          PCI_ANY_ID, PCI_ANY_ID},
534         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
535          PCI_ANY_ID, PCI_ANY_ID},
536         {0,}
537 };
538
539 MODULE_DEVICE_TABLE(pci, s2io_tbl);
540
541 static struct pci_error_handlers s2io_err_handler = {
542         .error_detected = s2io_io_error_detected,
543         .slot_reset = s2io_io_slot_reset,
544         .resume = s2io_io_resume,
545 };
546
547 static struct pci_driver s2io_driver = {
548         .name = "S2IO",
549         .id_table = s2io_tbl,
550         .probe = s2io_init_nic,
551         .remove = __devexit_p(s2io_rem_nic),
552         .err_handler = &s2io_err_handler,
553 };
554
555 /* A simplifier macro used both by init and free shared_mem Fns(). */
556 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
557
558 /* netqueue manipulation helper functions */
559 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
560 {
561         if (!sp->config.multiq) {
562                 int i;
563
564                 for (i = 0; i < sp->config.tx_fifo_num; i++)
565                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
566         }
567         netif_tx_stop_all_queues(sp->dev);
568 }
569
570 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
571 {
572         if (!sp->config.multiq)
573                 sp->mac_control.fifos[fifo_no].queue_state =
574                         FIFO_QUEUE_STOP;
575
576         netif_tx_stop_all_queues(sp->dev);
577 }
578
579 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
580 {
581         if (!sp->config.multiq) {
582                 int i;
583
584                 for (i = 0; i < sp->config.tx_fifo_num; i++)
585                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
586         }
587         netif_tx_start_all_queues(sp->dev);
588 }
589
590 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
591 {
592         if (!sp->config.multiq)
593                 sp->mac_control.fifos[fifo_no].queue_state =
594                         FIFO_QUEUE_START;
595
596         netif_tx_start_all_queues(sp->dev);
597 }
598
599 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
600 {
601         if (!sp->config.multiq) {
602                 int i;
603
604                 for (i = 0; i < sp->config.tx_fifo_num; i++)
605                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
606         }
607         netif_tx_wake_all_queues(sp->dev);
608 }
609
610 static inline void s2io_wake_tx_queue(
611         struct fifo_info *fifo, int cnt, u8 multiq)
612 {
613
614         if (multiq) {
615                 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
616                         netif_wake_subqueue(fifo->dev, fifo->fifo_no);
617         } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
618                 if (netif_queue_stopped(fifo->dev)) {
619                         fifo->queue_state = FIFO_QUEUE_START;
620                         netif_wake_queue(fifo->dev);
621                 }
622         }
623 }
624
625 /**
626  * init_shared_mem - Allocation and Initialization of Memory
627  * @nic: Device private variable.
628  * Description: The function allocates all the memory areas shared
629  * between the NIC and the driver. This includes Tx descriptors,
630  * Rx descriptors and the statistics block.
631  */
632
633 static int init_shared_mem(struct s2io_nic *nic)
634 {
635         u32 size;
636         void *tmp_v_addr, *tmp_v_addr_next;
637         dma_addr_t tmp_p_addr, tmp_p_addr_next;
638         struct RxD_block *pre_rxd_blk = NULL;
639         int i, j, blk_cnt;
640         int lst_size, lst_per_page;
641         struct net_device *dev = nic->dev;
642         unsigned long tmp;
643         struct buffAdd *ba;
644         struct config_param *config = &nic->config;
645         struct mac_info *mac_control = &nic->mac_control;
646         unsigned long long mem_allocated = 0;
647
648         /* Allocation and initialization of TXDLs in FIFOs */
649         size = 0;
650         for (i = 0; i < config->tx_fifo_num; i++) {
651                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
652
653                 size += tx_cfg->fifo_len;
654         }
655         if (size > MAX_AVAILABLE_TXDS) {
656                 DBG_PRINT(ERR_DBG,
657                           "Too many TxDs requested: %d, max supported: %d\n",
658                           size, MAX_AVAILABLE_TXDS);
659                 return -EINVAL;
660         }
661
662         size = 0;
663         for (i = 0; i < config->tx_fifo_num; i++) {
664                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
665
666                 size = tx_cfg->fifo_len;
667                 /*
668                  * Legal values are from 2 to 8192
669                  */
670                 if (size < 2) {
671                         DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
672                                   "Valid lengths are 2 through 8192\n",
673                                   i, size);
674                         return -EINVAL;
675                 }
676         }
677
678         lst_size = (sizeof(struct TxD) * config->max_txds);
679         lst_per_page = PAGE_SIZE / lst_size;
680
681         for (i = 0; i < config->tx_fifo_num; i++) {
682                 struct fifo_info *fifo = &mac_control->fifos[i];
683                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
684                 int fifo_len = tx_cfg->fifo_len;
685                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
686
687                 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
688                 if (!fifo->list_info) {
689                         DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
690                         return -ENOMEM;
691                 }
692                 mem_allocated += list_holder_size;
693         }
694         for (i = 0; i < config->tx_fifo_num; i++) {
695                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
696                                                 lst_per_page);
697                 struct fifo_info *fifo = &mac_control->fifos[i];
698                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
699
700                 fifo->tx_curr_put_info.offset = 0;
701                 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
702                 fifo->tx_curr_get_info.offset = 0;
703                 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
704                 fifo->fifo_no = i;
705                 fifo->nic = nic;
706                 fifo->max_txds = MAX_SKB_FRAGS + 2;
707                 fifo->dev = dev;
708
709                 for (j = 0; j < page_num; j++) {
710                         int k = 0;
711                         dma_addr_t tmp_p;
712                         void *tmp_v;
713                         tmp_v = pci_alloc_consistent(nic->pdev,
714                                                      PAGE_SIZE, &tmp_p);
715                         if (!tmp_v) {
716                                 DBG_PRINT(INFO_DBG,
717                                           "pci_alloc_consistent failed for TxDL\n");
718                                 return -ENOMEM;
719                         }
720                         /* If we got a zero DMA address(can happen on
721                          * certain platforms like PPC), reallocate.
722                          * Store virtual address of page we don't want,
723                          * to be freed later.
724                          */
725                         if (!tmp_p) {
726                                 mac_control->zerodma_virt_addr = tmp_v;
727                                 DBG_PRINT(INIT_DBG,
728                                           "%s: Zero DMA address for TxDL. "
729                                           "Virtual address %p\n",
730                                           dev->name, tmp_v);
731                                 tmp_v = pci_alloc_consistent(nic->pdev,
732                                                              PAGE_SIZE, &tmp_p);
733                                 if (!tmp_v) {
734                                         DBG_PRINT(INFO_DBG,
735                                                   "pci_alloc_consistent failed for TxDL\n");
736                                         return -ENOMEM;
737                                 }
738                                 mem_allocated += PAGE_SIZE;
739                         }
740                         while (k < lst_per_page) {
741                                 int l = (j * lst_per_page) + k;
742                                 if (l == tx_cfg->fifo_len)
743                                         break;
744                                 fifo->list_info[l].list_virt_addr =
745                                         tmp_v + (k * lst_size);
746                                 fifo->list_info[l].list_phy_addr =
747                                         tmp_p + (k * lst_size);
748                                 k++;
749                         }
750                 }
751         }
752
753         for (i = 0; i < config->tx_fifo_num; i++) {
754                 struct fifo_info *fifo = &mac_control->fifos[i];
755                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
756
757                 size = tx_cfg->fifo_len;
758                 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
759                 if (!fifo->ufo_in_band_v)
760                         return -ENOMEM;
761                 mem_allocated += (size * sizeof(u64));
762         }
763
764         /* Allocation and initialization of RXDs in Rings */
765         size = 0;
766         for (i = 0; i < config->rx_ring_num; i++) {
767                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
768                 struct ring_info *ring = &mac_control->rings[i];
769
770                 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
771                         DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
772                                   "multiple of RxDs per Block\n",
773                                   dev->name, i);
774                         return FAILURE;
775                 }
776                 size += rx_cfg->num_rxd;
777                 ring->block_count = rx_cfg->num_rxd /
778                         (rxd_count[nic->rxd_mode] + 1);
779                 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
780         }
781         if (nic->rxd_mode == RXD_MODE_1)
782                 size = (size * (sizeof(struct RxD1)));
783         else
784                 size = (size * (sizeof(struct RxD3)));
785
786         for (i = 0; i < config->rx_ring_num; i++) {
787                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
788                 struct ring_info *ring = &mac_control->rings[i];
789
790                 ring->rx_curr_get_info.block_index = 0;
791                 ring->rx_curr_get_info.offset = 0;
792                 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
793                 ring->rx_curr_put_info.block_index = 0;
794                 ring->rx_curr_put_info.offset = 0;
795                 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
796                 ring->nic = nic;
797                 ring->ring_no = i;
798                 ring->lro = lro_enable;
799
800                 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
801                 /*  Allocating all the Rx blocks */
802                 for (j = 0; j < blk_cnt; j++) {
803                         struct rx_block_info *rx_blocks;
804                         int l;
805
806                         rx_blocks = &ring->rx_blocks[j];
807                         size = SIZE_OF_BLOCK;   /* size is always page size */
808                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
809                                                           &tmp_p_addr);
810                         if (tmp_v_addr == NULL) {
811                                 /*
812                                  * In case of failure, free_shared_mem()
813                                  * is called, which should free any
814                                  * memory that was alloced till the
815                                  * failure happened.
816                                  */
817                                 rx_blocks->block_virt_addr = tmp_v_addr;
818                                 return -ENOMEM;
819                         }
820                         mem_allocated += size;
821                         memset(tmp_v_addr, 0, size);
822
823                         size = sizeof(struct rxd_info) *
824                                 rxd_count[nic->rxd_mode];
825                         rx_blocks->block_virt_addr = tmp_v_addr;
826                         rx_blocks->block_dma_addr = tmp_p_addr;
827                         rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
828                         if (!rx_blocks->rxds)
829                                 return -ENOMEM;
830                         mem_allocated += size;
831                         for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
832                                 rx_blocks->rxds[l].virt_addr =
833                                         rx_blocks->block_virt_addr +
834                                         (rxd_size[nic->rxd_mode] * l);
835                                 rx_blocks->rxds[l].dma_addr =
836                                         rx_blocks->block_dma_addr +
837                                         (rxd_size[nic->rxd_mode] * l);
838                         }
839                 }
840                 /* Interlinking all Rx Blocks */
841                 for (j = 0; j < blk_cnt; j++) {
842                         int next = (j + 1) % blk_cnt;
843                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
844                         tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
845                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
846                         tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
847
848                         pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
849                         pre_rxd_blk->reserved_2_pNext_RxD_block =
850                                 (unsigned long)tmp_v_addr_next;
851                         pre_rxd_blk->pNext_RxD_Blk_physical =
852                                 (u64)tmp_p_addr_next;
853                 }
854         }
855         if (nic->rxd_mode == RXD_MODE_3B) {
856                 /*
857                  * Allocation of Storages for buffer addresses in 2BUFF mode
858                  * and the buffers as well.
859                  */
860                 for (i = 0; i < config->rx_ring_num; i++) {
861                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
862                         struct ring_info *ring = &mac_control->rings[i];
863
864                         blk_cnt = rx_cfg->num_rxd /
865                                 (rxd_count[nic->rxd_mode] + 1);
866                         size = sizeof(struct buffAdd *) * blk_cnt;
867                         ring->ba = kmalloc(size, GFP_KERNEL);
868                         if (!ring->ba)
869                                 return -ENOMEM;
870                         mem_allocated += size;
871                         for (j = 0; j < blk_cnt; j++) {
872                                 int k = 0;
873
874                                 size = sizeof(struct buffAdd) *
875                                         (rxd_count[nic->rxd_mode] + 1);
876                                 ring->ba[j] = kmalloc(size, GFP_KERNEL);
877                                 if (!ring->ba[j])
878                                         return -ENOMEM;
879                                 mem_allocated += size;
880                                 while (k != rxd_count[nic->rxd_mode]) {
881                                         ba = &ring->ba[j][k];
882                                         size = BUF0_LEN + ALIGN_SIZE;
883                                         ba->ba_0_org = kmalloc(size, GFP_KERNEL);
884                                         if (!ba->ba_0_org)
885                                                 return -ENOMEM;
886                                         mem_allocated += size;
887                                         tmp = (unsigned long)ba->ba_0_org;
888                                         tmp += ALIGN_SIZE;
889                                         tmp &= ~((unsigned long)ALIGN_SIZE);
890                                         ba->ba_0 = (void *)tmp;
891
892                                         size = BUF1_LEN + ALIGN_SIZE;
893                                         ba->ba_1_org = kmalloc(size, GFP_KERNEL);
894                                         if (!ba->ba_1_org)
895                                                 return -ENOMEM;
896                                         mem_allocated += size;
897                                         tmp = (unsigned long)ba->ba_1_org;
898                                         tmp += ALIGN_SIZE;
899                                         tmp &= ~((unsigned long)ALIGN_SIZE);
900                                         ba->ba_1 = (void *)tmp;
901                                         k++;
902                                 }
903                         }
904                 }
905         }
906
907         /* Allocation and initialization of Statistics block */
908         size = sizeof(struct stat_block);
909         mac_control->stats_mem =
910                 pci_alloc_consistent(nic->pdev, size,
911                                      &mac_control->stats_mem_phy);
912
913         if (!mac_control->stats_mem) {
914                 /*
915                  * In case of failure, free_shared_mem() is called, which
916                  * should free any memory that was alloced till the
917                  * failure happened.
918                  */
919                 return -ENOMEM;
920         }
921         mem_allocated += size;
922         mac_control->stats_mem_sz = size;
923
924         tmp_v_addr = mac_control->stats_mem;
925         mac_control->stats_info = (struct stat_block *)tmp_v_addr;
926         memset(tmp_v_addr, 0, size);
927         DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
928                 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
929         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
930         return SUCCESS;
931 }
932
933 /**
934  * free_shared_mem - Free the allocated Memory
935  * @nic:  Device private variable.
936  * Description: This function is to free all memory locations allocated by
937  * the init_shared_mem() function and return it to the kernel.
938  */
939
940 static void free_shared_mem(struct s2io_nic *nic)
941 {
942         int i, j, blk_cnt, size;
943         void *tmp_v_addr;
944         dma_addr_t tmp_p_addr;
945         int lst_size, lst_per_page;
946         struct net_device *dev;
947         int page_num = 0;
948         struct config_param *config;
949         struct mac_info *mac_control;
950         struct stat_block *stats;
951         struct swStat *swstats;
952
953         if (!nic)
954                 return;
955
956         dev = nic->dev;
957
958         config = &nic->config;
959         mac_control = &nic->mac_control;
960         stats = mac_control->stats_info;
961         swstats = &stats->sw_stat;
962
963         lst_size = sizeof(struct TxD) * config->max_txds;
964         lst_per_page = PAGE_SIZE / lst_size;
965
966         for (i = 0; i < config->tx_fifo_num; i++) {
967                 struct fifo_info *fifo = &mac_control->fifos[i];
968                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
969
970                 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
971                 for (j = 0; j < page_num; j++) {
972                         int mem_blks = (j * lst_per_page);
973                         struct list_info_hold *fli;
974
975                         if (!fifo->list_info)
976                                 return;
977
978                         fli = &fifo->list_info[mem_blks];
979                         if (!fli->list_virt_addr)
980                                 break;
981                         pci_free_consistent(nic->pdev, PAGE_SIZE,
982                                             fli->list_virt_addr,
983                                             fli->list_phy_addr);
984                         swstats->mem_freed += PAGE_SIZE;
985                 }
986                 /* If we got a zero DMA address during allocation,
987                  * free the page now
988                  */
989                 if (mac_control->zerodma_virt_addr) {
990                         pci_free_consistent(nic->pdev, PAGE_SIZE,
991                                             mac_control->zerodma_virt_addr,
992                                             (dma_addr_t)0);
993                         DBG_PRINT(INIT_DBG,
994                                   "%s: Freeing TxDL with zero DMA address. "
995                                   "Virtual address %p\n",
996                                   dev->name, mac_control->zerodma_virt_addr);
997                         swstats->mem_freed += PAGE_SIZE;
998                 }
999                 kfree(fifo->list_info);
1000                 swstats->mem_freed += tx_cfg->fifo_len *
1001                         sizeof(struct list_info_hold);
1002         }
1003
1004         size = SIZE_OF_BLOCK;
1005         for (i = 0; i < config->rx_ring_num; i++) {
1006                 struct ring_info *ring = &mac_control->rings[i];
1007
1008                 blk_cnt = ring->block_count;
1009                 for (j = 0; j < blk_cnt; j++) {
1010                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1011                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1012                         if (tmp_v_addr == NULL)
1013                                 break;
1014                         pci_free_consistent(nic->pdev, size,
1015                                             tmp_v_addr, tmp_p_addr);
1016                         swstats->mem_freed += size;
1017                         kfree(ring->rx_blocks[j].rxds);
1018                         swstats->mem_freed += sizeof(struct rxd_info) *
1019                                 rxd_count[nic->rxd_mode];
1020                 }
1021         }
1022
1023         if (nic->rxd_mode == RXD_MODE_3B) {
1024                 /* Freeing buffer storage addresses in 2BUFF mode. */
1025                 for (i = 0; i < config->rx_ring_num; i++) {
1026                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1027                         struct ring_info *ring = &mac_control->rings[i];
1028
1029                         blk_cnt = rx_cfg->num_rxd /
1030                                 (rxd_count[nic->rxd_mode] + 1);
1031                         for (j = 0; j < blk_cnt; j++) {
1032                                 int k = 0;
1033                                 if (!ring->ba[j])
1034                                         continue;
1035                                 while (k != rxd_count[nic->rxd_mode]) {
1036                                         struct buffAdd *ba = &ring->ba[j][k];
1037                                         kfree(ba->ba_0_org);
1038                                         swstats->mem_freed +=
1039                                                 BUF0_LEN + ALIGN_SIZE;
1040                                         kfree(ba->ba_1_org);
1041                                         swstats->mem_freed +=
1042                                                 BUF1_LEN + ALIGN_SIZE;
1043                                         k++;
1044                                 }
1045                                 kfree(ring->ba[j]);
1046                                 swstats->mem_freed += sizeof(struct buffAdd) *
1047                                         (rxd_count[nic->rxd_mode] + 1);
1048                         }
1049                         kfree(ring->ba);
1050                         swstats->mem_freed += sizeof(struct buffAdd *) *
1051                                 blk_cnt;
1052                 }
1053         }
1054
1055         for (i = 0; i < nic->config.tx_fifo_num; i++) {
1056                 struct fifo_info *fifo = &mac_control->fifos[i];
1057                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1058
1059                 if (fifo->ufo_in_band_v) {
1060                         swstats->mem_freed += tx_cfg->fifo_len *
1061                                 sizeof(u64);
1062                         kfree(fifo->ufo_in_band_v);
1063                 }
1064         }
1065
1066         if (mac_control->stats_mem) {
1067                 swstats->mem_freed += mac_control->stats_mem_sz;
1068                 pci_free_consistent(nic->pdev,
1069                                     mac_control->stats_mem_sz,
1070                                     mac_control->stats_mem,
1071                                     mac_control->stats_mem_phy);
1072         }
1073 }
1074
1075 /**
1076  * s2io_verify_pci_mode -
1077  */
1078
1079 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1080 {
1081         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1082         register u64 val64 = 0;
1083         int     mode;
1084
1085         val64 = readq(&bar0->pci_mode);
1086         mode = (u8)GET_PCI_MODE(val64);
1087
1088         if (val64 & PCI_MODE_UNKNOWN_MODE)
1089                 return -1;      /* Unknown PCI mode */
1090         return mode;
1091 }
1092
1093 #define NEC_VENID   0x1033
1094 #define NEC_DEVID   0x0125
1095 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1096 {
1097         struct pci_dev *tdev = NULL;
1098         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1099                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1100                         if (tdev->bus == s2io_pdev->bus->parent) {
1101                                 pci_dev_put(tdev);
1102                                 return 1;
1103                         }
1104                 }
1105         }
1106         return 0;
1107 }
1108
1109 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1110 /**
1111  * s2io_print_pci_mode -
1112  */
1113 static int s2io_print_pci_mode(struct s2io_nic *nic)
1114 {
1115         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1116         register u64 val64 = 0;
1117         int     mode;
1118         struct config_param *config = &nic->config;
1119         const char *pcimode;
1120
1121         val64 = readq(&bar0->pci_mode);
1122         mode = (u8)GET_PCI_MODE(val64);
1123
1124         if (val64 & PCI_MODE_UNKNOWN_MODE)
1125                 return -1;      /* Unknown PCI mode */
1126
1127         config->bus_speed = bus_speed[mode];
1128
1129         if (s2io_on_nec_bridge(nic->pdev)) {
1130                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1131                           nic->dev->name);
1132                 return mode;
1133         }
1134
1135         switch (mode) {
1136         case PCI_MODE_PCI_33:
1137                 pcimode = "33MHz PCI bus";
1138                 break;
1139         case PCI_MODE_PCI_66:
1140                 pcimode = "66MHz PCI bus";
1141                 break;
1142         case PCI_MODE_PCIX_M1_66:
1143                 pcimode = "66MHz PCIX(M1) bus";
1144                 break;
1145         case PCI_MODE_PCIX_M1_100:
1146                 pcimode = "100MHz PCIX(M1) bus";
1147                 break;
1148         case PCI_MODE_PCIX_M1_133:
1149                 pcimode = "133MHz PCIX(M1) bus";
1150                 break;
1151         case PCI_MODE_PCIX_M2_66:
1152                 pcimode = "133MHz PCIX(M2) bus";
1153                 break;
1154         case PCI_MODE_PCIX_M2_100:
1155                 pcimode = "200MHz PCIX(M2) bus";
1156                 break;
1157         case PCI_MODE_PCIX_M2_133:
1158                 pcimode = "266MHz PCIX(M2) bus";
1159                 break;
1160         default:
1161                 pcimode = "unsupported bus!";
1162                 mode = -1;
1163         }
1164
1165         DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1166                   nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1167
1168         return mode;
1169 }
1170
1171 /**
1172  *  init_tti - Initialization transmit traffic interrupt scheme
1173  *  @nic: device private variable
1174  *  @link: link status (UP/DOWN) used to enable/disable continuous
1175  *  transmit interrupts
1176  *  Description: The function configures transmit traffic interrupts
1177  *  Return Value:  SUCCESS on success and
1178  *  '-1' on failure
1179  */
1180
1181 static int init_tti(struct s2io_nic *nic, int link)
1182 {
1183         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1184         register u64 val64 = 0;
1185         int i;
1186         struct config_param *config = &nic->config;
1187
1188         for (i = 0; i < config->tx_fifo_num; i++) {
1189                 /*
1190                  * TTI Initialization. Default Tx timer gets us about
1191                  * 250 interrupts per sec. Continuous interrupts are enabled
1192                  * by default.
1193                  */
1194                 if (nic->device_type == XFRAME_II_DEVICE) {
1195                         int count = (nic->config.bus_speed * 125)/2;
1196                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1197                 } else
1198                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1199
1200                 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1201                         TTI_DATA1_MEM_TX_URNG_B(0x10) |
1202                         TTI_DATA1_MEM_TX_URNG_C(0x30) |
1203                         TTI_DATA1_MEM_TX_TIMER_AC_EN;
1204                 if (i == 0)
1205                         if (use_continuous_tx_intrs && (link == LINK_UP))
1206                                 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1207                 writeq(val64, &bar0->tti_data1_mem);
1208
1209                 if (nic->config.intr_type == MSI_X) {
1210                         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1211                                 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1212                                 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1213                                 TTI_DATA2_MEM_TX_UFC_D(0x300);
1214                 } else {
1215                         if ((nic->config.tx_steering_type ==
1216                              TX_DEFAULT_STEERING) &&
1217                             (config->tx_fifo_num > 1) &&
1218                             (i >= nic->udp_fifo_idx) &&
1219                             (i < (nic->udp_fifo_idx +
1220                                   nic->total_udp_fifos)))
1221                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1222                                         TTI_DATA2_MEM_TX_UFC_B(0x80) |
1223                                         TTI_DATA2_MEM_TX_UFC_C(0x100) |
1224                                         TTI_DATA2_MEM_TX_UFC_D(0x120);
1225                         else
1226                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1227                                         TTI_DATA2_MEM_TX_UFC_B(0x20) |
1228                                         TTI_DATA2_MEM_TX_UFC_C(0x40) |
1229                                         TTI_DATA2_MEM_TX_UFC_D(0x80);
1230                 }
1231
1232                 writeq(val64, &bar0->tti_data2_mem);
1233
1234                 val64 = TTI_CMD_MEM_WE |
1235                         TTI_CMD_MEM_STROBE_NEW_CMD |
1236                         TTI_CMD_MEM_OFFSET(i);
1237                 writeq(val64, &bar0->tti_command_mem);
1238
1239                 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1240                                           TTI_CMD_MEM_STROBE_NEW_CMD,
1241                                           S2IO_BIT_RESET) != SUCCESS)
1242                         return FAILURE;
1243         }
1244
1245         return SUCCESS;
1246 }
1247
1248 /**
1249  *  init_nic - Initialization of hardware
1250  *  @nic: device private variable
1251  *  Description: The function sequentially configures every block
1252  *  of the H/W from their reset values.
1253  *  Return Value:  SUCCESS on success and
1254  *  '-1' on failure (endian settings incorrect).
1255  */
1256
1257 static int init_nic(struct s2io_nic *nic)
1258 {
1259         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1260         struct net_device *dev = nic->dev;
1261         register u64 val64 = 0;
1262         void __iomem *add;
1263         u32 time;
1264         int i, j;
1265         int dtx_cnt = 0;
1266         unsigned long long mem_share;
1267         int mem_size;
1268         struct config_param *config = &nic->config;
1269         struct mac_info *mac_control = &nic->mac_control;
1270
1271         /* to set the swapper controle on the card */
1272         if (s2io_set_swapper(nic)) {
1273                 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1274                 return -EIO;
1275         }
1276
1277         /*
1278          * Herc requires EOI to be removed from reset before XGXS, so..
1279          */
1280         if (nic->device_type & XFRAME_II_DEVICE) {
1281                 val64 = 0xA500000000ULL;
1282                 writeq(val64, &bar0->sw_reset);
1283                 msleep(500);
1284                 val64 = readq(&bar0->sw_reset);
1285         }
1286
1287         /* Remove XGXS from reset state */
1288         val64 = 0;
1289         writeq(val64, &bar0->sw_reset);
1290         msleep(500);
1291         val64 = readq(&bar0->sw_reset);
1292
1293         /* Ensure that it's safe to access registers by checking
1294          * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1295          */
1296         if (nic->device_type == XFRAME_II_DEVICE) {
1297                 for (i = 0; i < 50; i++) {
1298                         val64 = readq(&bar0->adapter_status);
1299                         if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1300                                 break;
1301                         msleep(10);
1302                 }
1303                 if (i == 50)
1304                         return -ENODEV;
1305         }
1306
1307         /*  Enable Receiving broadcasts */
1308         add = &bar0->mac_cfg;
1309         val64 = readq(&bar0->mac_cfg);
1310         val64 |= MAC_RMAC_BCAST_ENABLE;
1311         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1312         writel((u32)val64, add);
1313         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1314         writel((u32) (val64 >> 32), (add + 4));
1315
1316         /* Read registers in all blocks */
1317         val64 = readq(&bar0->mac_int_mask);
1318         val64 = readq(&bar0->mc_int_mask);
1319         val64 = readq(&bar0->xgxs_int_mask);
1320
1321         /*  Set MTU */
1322         val64 = dev->mtu;
1323         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1324
1325         if (nic->device_type & XFRAME_II_DEVICE) {
1326                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1327                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1328                                           &bar0->dtx_control, UF);
1329                         if (dtx_cnt & 0x1)
1330                                 msleep(1); /* Necessary!! */
1331                         dtx_cnt++;
1332                 }
1333         } else {
1334                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1335                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1336                                           &bar0->dtx_control, UF);
1337                         val64 = readq(&bar0->dtx_control);
1338                         dtx_cnt++;
1339                 }
1340         }
1341
1342         /*  Tx DMA Initialization */
1343         val64 = 0;
1344         writeq(val64, &bar0->tx_fifo_partition_0);
1345         writeq(val64, &bar0->tx_fifo_partition_1);
1346         writeq(val64, &bar0->tx_fifo_partition_2);
1347         writeq(val64, &bar0->tx_fifo_partition_3);
1348
1349         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1350                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1351
1352                 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1353                         vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1354
1355                 if (i == (config->tx_fifo_num - 1)) {
1356                         if (i % 2 == 0)
1357                                 i++;
1358                 }
1359
1360                 switch (i) {
1361                 case 1:
1362                         writeq(val64, &bar0->tx_fifo_partition_0);
1363                         val64 = 0;
1364                         j = 0;
1365                         break;
1366                 case 3:
1367                         writeq(val64, &bar0->tx_fifo_partition_1);
1368                         val64 = 0;
1369                         j = 0;
1370                         break;
1371                 case 5:
1372                         writeq(val64, &bar0->tx_fifo_partition_2);
1373                         val64 = 0;
1374                         j = 0;
1375                         break;
1376                 case 7:
1377                         writeq(val64, &bar0->tx_fifo_partition_3);
1378                         val64 = 0;
1379                         j = 0;
1380                         break;
1381                 default:
1382                         j++;
1383                         break;
1384                 }
1385         }
1386
1387         /*
1388          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1389          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1390          */
1391         if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1392                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1393
1394         val64 = readq(&bar0->tx_fifo_partition_0);
1395         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1396                   &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1397
1398         /*
1399          * Initialization of Tx_PA_CONFIG register to ignore packet
1400          * integrity checking.
1401          */
1402         val64 = readq(&bar0->tx_pa_cfg);
1403         val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1404                 TX_PA_CFG_IGNORE_SNAP_OUI |
1405                 TX_PA_CFG_IGNORE_LLC_CTRL |
1406                 TX_PA_CFG_IGNORE_L2_ERR;
1407         writeq(val64, &bar0->tx_pa_cfg);
1408
1409         /* Rx DMA intialization. */
1410         val64 = 0;
1411         for (i = 0; i < config->rx_ring_num; i++) {
1412                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1413
1414                 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1415         }
1416         writeq(val64, &bar0->rx_queue_priority);
1417
1418         /*
1419          * Allocating equal share of memory to all the
1420          * configured Rings.
1421          */
1422         val64 = 0;
1423         if (nic->device_type & XFRAME_II_DEVICE)
1424                 mem_size = 32;
1425         else
1426                 mem_size = 64;
1427
1428         for (i = 0; i < config->rx_ring_num; i++) {
1429                 switch (i) {
1430                 case 0:
1431                         mem_share = (mem_size / config->rx_ring_num +
1432                                      mem_size % config->rx_ring_num);
1433                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1434                         continue;
1435                 case 1:
1436                         mem_share = (mem_size / config->rx_ring_num);
1437                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1438                         continue;
1439                 case 2:
1440                         mem_share = (mem_size / config->rx_ring_num);
1441                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1442                         continue;
1443                 case 3:
1444                         mem_share = (mem_size / config->rx_ring_num);
1445                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1446                         continue;
1447                 case 4:
1448                         mem_share = (mem_size / config->rx_ring_num);
1449                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1450                         continue;
1451                 case 5:
1452                         mem_share = (mem_size / config->rx_ring_num);
1453                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1454                         continue;
1455                 case 6:
1456                         mem_share = (mem_size / config->rx_ring_num);
1457                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1458                         continue;
1459                 case 7:
1460                         mem_share = (mem_size / config->rx_ring_num);
1461                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1462                         continue;
1463                 }
1464         }
1465         writeq(val64, &bar0->rx_queue_cfg);
1466
1467         /*
1468          * Filling Tx round robin registers
1469          * as per the number of FIFOs for equal scheduling priority
1470          */
1471         switch (config->tx_fifo_num) {
1472         case 1:
1473                 val64 = 0x0;
1474                 writeq(val64, &bar0->tx_w_round_robin_0);
1475                 writeq(val64, &bar0->tx_w_round_robin_1);
1476                 writeq(val64, &bar0->tx_w_round_robin_2);
1477                 writeq(val64, &bar0->tx_w_round_robin_3);
1478                 writeq(val64, &bar0->tx_w_round_robin_4);
1479                 break;
1480         case 2:
1481                 val64 = 0x0001000100010001ULL;
1482                 writeq(val64, &bar0->tx_w_round_robin_0);
1483                 writeq(val64, &bar0->tx_w_round_robin_1);
1484                 writeq(val64, &bar0->tx_w_round_robin_2);
1485                 writeq(val64, &bar0->tx_w_round_robin_3);
1486                 val64 = 0x0001000100000000ULL;
1487                 writeq(val64, &bar0->tx_w_round_robin_4);
1488                 break;
1489         case 3:
1490                 val64 = 0x0001020001020001ULL;
1491                 writeq(val64, &bar0->tx_w_round_robin_0);
1492                 val64 = 0x0200010200010200ULL;
1493                 writeq(val64, &bar0->tx_w_round_robin_1);
1494                 val64 = 0x0102000102000102ULL;
1495                 writeq(val64, &bar0->tx_w_round_robin_2);
1496                 val64 = 0x0001020001020001ULL;
1497                 writeq(val64, &bar0->tx_w_round_robin_3);
1498                 val64 = 0x0200010200000000ULL;
1499                 writeq(val64, &bar0->tx_w_round_robin_4);
1500                 break;
1501         case 4:
1502                 val64 = 0x0001020300010203ULL;
1503                 writeq(val64, &bar0->tx_w_round_robin_0);
1504                 writeq(val64, &bar0->tx_w_round_robin_1);
1505                 writeq(val64, &bar0->tx_w_round_robin_2);
1506                 writeq(val64, &bar0->tx_w_round_robin_3);
1507                 val64 = 0x0001020300000000ULL;
1508                 writeq(val64, &bar0->tx_w_round_robin_4);
1509                 break;
1510         case 5:
1511                 val64 = 0x0001020304000102ULL;
1512                 writeq(val64, &bar0->tx_w_round_robin_0);
1513                 val64 = 0x0304000102030400ULL;
1514                 writeq(val64, &bar0->tx_w_round_robin_1);
1515                 val64 = 0x0102030400010203ULL;
1516                 writeq(val64, &bar0->tx_w_round_robin_2);
1517                 val64 = 0x0400010203040001ULL;
1518                 writeq(val64, &bar0->tx_w_round_robin_3);
1519                 val64 = 0x0203040000000000ULL;
1520                 writeq(val64, &bar0->tx_w_round_robin_4);
1521                 break;
1522         case 6:
1523                 val64 = 0x0001020304050001ULL;
1524                 writeq(val64, &bar0->tx_w_round_robin_0);
1525                 val64 = 0x0203040500010203ULL;
1526                 writeq(val64, &bar0->tx_w_round_robin_1);
1527                 val64 = 0x0405000102030405ULL;
1528                 writeq(val64, &bar0->tx_w_round_robin_2);
1529                 val64 = 0x0001020304050001ULL;
1530                 writeq(val64, &bar0->tx_w_round_robin_3);
1531                 val64 = 0x0203040500000000ULL;
1532                 writeq(val64, &bar0->tx_w_round_robin_4);
1533                 break;
1534         case 7:
1535                 val64 = 0x0001020304050600ULL;
1536                 writeq(val64, &bar0->tx_w_round_robin_0);
1537                 val64 = 0x0102030405060001ULL;
1538                 writeq(val64, &bar0->tx_w_round_robin_1);
1539                 val64 = 0x0203040506000102ULL;
1540                 writeq(val64, &bar0->tx_w_round_robin_2);
1541                 val64 = 0x0304050600010203ULL;
1542                 writeq(val64, &bar0->tx_w_round_robin_3);
1543                 val64 = 0x0405060000000000ULL;
1544                 writeq(val64, &bar0->tx_w_round_robin_4);
1545                 break;
1546         case 8:
1547                 val64 = 0x0001020304050607ULL;
1548                 writeq(val64, &bar0->tx_w_round_robin_0);
1549                 writeq(val64, &bar0->tx_w_round_robin_1);
1550                 writeq(val64, &bar0->tx_w_round_robin_2);
1551                 writeq(val64, &bar0->tx_w_round_robin_3);
1552                 val64 = 0x0001020300000000ULL;
1553                 writeq(val64, &bar0->tx_w_round_robin_4);
1554                 break;
1555         }
1556
1557         /* Enable all configured Tx FIFO partitions */
1558         val64 = readq(&bar0->tx_fifo_partition_0);
1559         val64 |= (TX_FIFO_PARTITION_EN);
1560         writeq(val64, &bar0->tx_fifo_partition_0);
1561
1562         /* Filling the Rx round robin registers as per the
1563          * number of Rings and steering based on QoS with
1564          * equal priority.
1565          */
1566         switch (config->rx_ring_num) {
1567         case 1:
1568                 val64 = 0x0;
1569                 writeq(val64, &bar0->rx_w_round_robin_0);
1570                 writeq(val64, &bar0->rx_w_round_robin_1);
1571                 writeq(val64, &bar0->rx_w_round_robin_2);
1572                 writeq(val64, &bar0->rx_w_round_robin_3);
1573                 writeq(val64, &bar0->rx_w_round_robin_4);
1574
1575                 val64 = 0x8080808080808080ULL;
1576                 writeq(val64, &bar0->rts_qos_steering);
1577                 break;
1578         case 2:
1579                 val64 = 0x0001000100010001ULL;
1580                 writeq(val64, &bar0->rx_w_round_robin_0);
1581                 writeq(val64, &bar0->rx_w_round_robin_1);
1582                 writeq(val64, &bar0->rx_w_round_robin_2);
1583                 writeq(val64, &bar0->rx_w_round_robin_3);
1584                 val64 = 0x0001000100000000ULL;
1585                 writeq(val64, &bar0->rx_w_round_robin_4);
1586
1587                 val64 = 0x8080808040404040ULL;
1588                 writeq(val64, &bar0->rts_qos_steering);
1589                 break;
1590         case 3:
1591                 val64 = 0x0001020001020001ULL;
1592                 writeq(val64, &bar0->rx_w_round_robin_0);
1593                 val64 = 0x0200010200010200ULL;
1594                 writeq(val64, &bar0->rx_w_round_robin_1);
1595                 val64 = 0x0102000102000102ULL;
1596                 writeq(val64, &bar0->rx_w_round_robin_2);
1597                 val64 = 0x0001020001020001ULL;
1598                 writeq(val64, &bar0->rx_w_round_robin_3);
1599                 val64 = 0x0200010200000000ULL;
1600                 writeq(val64, &bar0->rx_w_round_robin_4);
1601
1602                 val64 = 0x8080804040402020ULL;
1603                 writeq(val64, &bar0->rts_qos_steering);
1604                 break;
1605         case 4:
1606                 val64 = 0x0001020300010203ULL;
1607                 writeq(val64, &bar0->rx_w_round_robin_0);
1608                 writeq(val64, &bar0->rx_w_round_robin_1);
1609                 writeq(val64, &bar0->rx_w_round_robin_2);
1610                 writeq(val64, &bar0->rx_w_round_robin_3);
1611                 val64 = 0x0001020300000000ULL;
1612                 writeq(val64, &bar0->rx_w_round_robin_4);
1613
1614                 val64 = 0x8080404020201010ULL;
1615                 writeq(val64, &bar0->rts_qos_steering);
1616                 break;
1617         case 5:
1618                 val64 = 0x0001020304000102ULL;
1619                 writeq(val64, &bar0->rx_w_round_robin_0);
1620                 val64 = 0x0304000102030400ULL;
1621                 writeq(val64, &bar0->rx_w_round_robin_1);
1622                 val64 = 0x0102030400010203ULL;
1623                 writeq(val64, &bar0->rx_w_round_robin_2);
1624                 val64 = 0x0400010203040001ULL;
1625                 writeq(val64, &bar0->rx_w_round_robin_3);
1626                 val64 = 0x0203040000000000ULL;
1627                 writeq(val64, &bar0->rx_w_round_robin_4);
1628
1629                 val64 = 0x8080404020201008ULL;
1630                 writeq(val64, &bar0->rts_qos_steering);
1631                 break;
1632         case 6:
1633                 val64 = 0x0001020304050001ULL;
1634                 writeq(val64, &bar0->rx_w_round_robin_0);
1635                 val64 = 0x0203040500010203ULL;
1636                 writeq(val64, &bar0->rx_w_round_robin_1);
1637                 val64 = 0x0405000102030405ULL;
1638                 writeq(val64, &bar0->rx_w_round_robin_2);
1639                 val64 = 0x0001020304050001ULL;
1640                 writeq(val64, &bar0->rx_w_round_robin_3);
1641                 val64 = 0x0203040500000000ULL;
1642                 writeq(val64, &bar0->rx_w_round_robin_4);
1643
1644                 val64 = 0x8080404020100804ULL;
1645                 writeq(val64, &bar0->rts_qos_steering);
1646                 break;
1647         case 7:
1648                 val64 = 0x0001020304050600ULL;
1649                 writeq(val64, &bar0->rx_w_round_robin_0);
1650                 val64 = 0x0102030405060001ULL;
1651                 writeq(val64, &bar0->rx_w_round_robin_1);
1652                 val64 = 0x0203040506000102ULL;
1653                 writeq(val64, &bar0->rx_w_round_robin_2);
1654                 val64 = 0x0304050600010203ULL;
1655                 writeq(val64, &bar0->rx_w_round_robin_3);
1656                 val64 = 0x0405060000000000ULL;
1657                 writeq(val64, &bar0->rx_w_round_robin_4);
1658
1659                 val64 = 0x8080402010080402ULL;
1660                 writeq(val64, &bar0->rts_qos_steering);
1661                 break;
1662         case 8:
1663                 val64 = 0x0001020304050607ULL;
1664                 writeq(val64, &bar0->rx_w_round_robin_0);
1665                 writeq(val64, &bar0->rx_w_round_robin_1);
1666                 writeq(val64, &bar0->rx_w_round_robin_2);
1667                 writeq(val64, &bar0->rx_w_round_robin_3);
1668                 val64 = 0x0001020300000000ULL;
1669                 writeq(val64, &bar0->rx_w_round_robin_4);
1670
1671                 val64 = 0x8040201008040201ULL;
1672                 writeq(val64, &bar0->rts_qos_steering);
1673                 break;
1674         }
1675
1676         /* UDP Fix */
1677         val64 = 0;
1678         for (i = 0; i < 8; i++)
1679                 writeq(val64, &bar0->rts_frm_len_n[i]);
1680
1681         /* Set the default rts frame length for the rings configured */
1682         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1683         for (i = 0 ; i < config->rx_ring_num ; i++)
1684                 writeq(val64, &bar0->rts_frm_len_n[i]);
1685
1686         /* Set the frame length for the configured rings
1687          * desired by the user
1688          */
1689         for (i = 0; i < config->rx_ring_num; i++) {
1690                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1691                  * specified frame length steering.
1692                  * If the user provides the frame length then program
1693                  * the rts_frm_len register for those values or else
1694                  * leave it as it is.
1695                  */
1696                 if (rts_frm_len[i] != 0) {
1697                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1698                                &bar0->rts_frm_len_n[i]);
1699                 }
1700         }
1701
1702         /* Disable differentiated services steering logic */
1703         for (i = 0; i < 64; i++) {
1704                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1705                         DBG_PRINT(ERR_DBG,
1706                                   "%s: rts_ds_steer failed on codepoint %d\n",
1707                                   dev->name, i);
1708                         return -ENODEV;
1709                 }
1710         }
1711
1712         /* Program statistics memory */
1713         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1714
1715         if (nic->device_type == XFRAME_II_DEVICE) {
1716                 val64 = STAT_BC(0x320);
1717                 writeq(val64, &bar0->stat_byte_cnt);
1718         }
1719
1720         /*
1721          * Initializing the sampling rate for the device to calculate the
1722          * bandwidth utilization.
1723          */
1724         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1725                 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1726         writeq(val64, &bar0->mac_link_util);
1727
1728         /*
1729          * Initializing the Transmit and Receive Traffic Interrupt
1730          * Scheme.
1731          */
1732
1733         /* Initialize TTI */
1734         if (SUCCESS != init_tti(nic, nic->last_link_state))
1735                 return -ENODEV;
1736
1737         /* RTI Initialization */
1738         if (nic->device_type == XFRAME_II_DEVICE) {
1739                 /*
1740                  * Programmed to generate Apprx 500 Intrs per
1741                  * second
1742                  */
1743                 int count = (nic->config.bus_speed * 125)/4;
1744                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1745         } else
1746                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1747         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1748                 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1749                 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1750                 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1751
1752         writeq(val64, &bar0->rti_data1_mem);
1753
1754         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1755                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1756         if (nic->config.intr_type == MSI_X)
1757                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1758                           RTI_DATA2_MEM_RX_UFC_D(0x40));
1759         else
1760                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1761                           RTI_DATA2_MEM_RX_UFC_D(0x80));
1762         writeq(val64, &bar0->rti_data2_mem);
1763
1764         for (i = 0; i < config->rx_ring_num; i++) {
1765                 val64 = RTI_CMD_MEM_WE |
1766                         RTI_CMD_MEM_STROBE_NEW_CMD |
1767                         RTI_CMD_MEM_OFFSET(i);
1768                 writeq(val64, &bar0->rti_command_mem);
1769
1770                 /*
1771                  * Once the operation completes, the Strobe bit of the
1772                  * command register will be reset. We poll for this
1773                  * particular condition. We wait for a maximum of 500ms
1774                  * for the operation to complete, if it's not complete
1775                  * by then we return error.
1776                  */
1777                 time = 0;
1778                 while (true) {
1779                         val64 = readq(&bar0->rti_command_mem);
1780                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1781                                 break;
1782
1783                         if (time > 10) {
1784                                 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1785                                           dev->name);
1786                                 return -ENODEV;
1787                         }
1788                         time++;
1789                         msleep(50);
1790                 }
1791         }
1792
1793         /*
1794          * Initializing proper values as Pause threshold into all
1795          * the 8 Queues on Rx side.
1796          */
1797         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1798         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1799
1800         /* Disable RMAC PAD STRIPPING */
1801         add = &bar0->mac_cfg;
1802         val64 = readq(&bar0->mac_cfg);
1803         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1804         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1805         writel((u32) (val64), add);
1806         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1807         writel((u32) (val64 >> 32), (add + 4));
1808         val64 = readq(&bar0->mac_cfg);
1809
1810         /* Enable FCS stripping by adapter */
1811         add = &bar0->mac_cfg;
1812         val64 = readq(&bar0->mac_cfg);
1813         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1814         if (nic->device_type == XFRAME_II_DEVICE)
1815                 writeq(val64, &bar0->mac_cfg);
1816         else {
1817                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1818                 writel((u32) (val64), add);
1819                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1820                 writel((u32) (val64 >> 32), (add + 4));
1821         }
1822
1823         /*
1824          * Set the time value to be inserted in the pause frame
1825          * generated by xena.
1826          */
1827         val64 = readq(&bar0->rmac_pause_cfg);
1828         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1829         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1830         writeq(val64, &bar0->rmac_pause_cfg);
1831
1832         /*
1833          * Set the Threshold Limit for Generating the pause frame
1834          * If the amount of data in any Queue exceeds ratio of
1835          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1836          * pause frame is generated
1837          */
1838         val64 = 0;
1839         for (i = 0; i < 4; i++) {
1840                 val64 |= (((u64)0xFF00 |
1841                            nic->mac_control.mc_pause_threshold_q0q3)
1842                           << (i * 2 * 8));
1843         }
1844         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1845
1846         val64 = 0;
1847         for (i = 0; i < 4; i++) {
1848                 val64 |= (((u64)0xFF00 |
1849                            nic->mac_control.mc_pause_threshold_q4q7)
1850                           << (i * 2 * 8));
1851         }
1852         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1853
1854         /*
1855          * TxDMA will stop Read request if the number of read split has
1856          * exceeded the limit pointed by shared_splits
1857          */
1858         val64 = readq(&bar0->pic_control);
1859         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1860         writeq(val64, &bar0->pic_control);
1861
1862         if (nic->config.bus_speed == 266) {
1863                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1864                 writeq(0x0, &bar0->read_retry_delay);
1865                 writeq(0x0, &bar0->write_retry_delay);
1866         }
1867
1868         /*
1869          * Programming the Herc to split every write transaction
1870          * that does not start on an ADB to reduce disconnects.
1871          */
1872         if (nic->device_type == XFRAME_II_DEVICE) {
1873                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1874                         MISC_LINK_STABILITY_PRD(3);
1875                 writeq(val64, &bar0->misc_control);
1876                 val64 = readq(&bar0->pic_control2);
1877                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1878                 writeq(val64, &bar0->pic_control2);
1879         }
1880         if (strstr(nic->product_name, "CX4")) {
1881                 val64 = TMAC_AVG_IPG(0x17);
1882                 writeq(val64, &bar0->tmac_avg_ipg);
1883         }
1884
1885         return SUCCESS;
1886 }
1887 #define LINK_UP_DOWN_INTERRUPT          1
1888 #define MAC_RMAC_ERR_TIMER              2
1889
1890 static int s2io_link_fault_indication(struct s2io_nic *nic)
1891 {
1892         if (nic->device_type == XFRAME_II_DEVICE)
1893                 return LINK_UP_DOWN_INTERRUPT;
1894         else
1895                 return MAC_RMAC_ERR_TIMER;
1896 }
1897
1898 /**
1899  *  do_s2io_write_bits -  update alarm bits in alarm register
1900  *  @value: alarm bits
1901  *  @flag: interrupt status
1902  *  @addr: address value
1903  *  Description: update alarm bits in alarm register
1904  *  Return Value:
1905  *  NONE.
1906  */
1907 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1908 {
1909         u64 temp64;
1910
1911         temp64 = readq(addr);
1912
1913         if (flag == ENABLE_INTRS)
1914                 temp64 &= ~((u64)value);
1915         else
1916                 temp64 |= ((u64)value);
1917         writeq(temp64, addr);
1918 }
1919
1920 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1921 {
1922         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1923         register u64 gen_int_mask = 0;
1924         u64 interruptible;
1925
1926         writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1927         if (mask & TX_DMA_INTR) {
1928                 gen_int_mask |= TXDMA_INT_M;
1929
1930                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1931                                    TXDMA_PCC_INT | TXDMA_TTI_INT |
1932                                    TXDMA_LSO_INT | TXDMA_TPA_INT |
1933                                    TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1934
1935                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1936                                    PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1937                                    PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1938                                    &bar0->pfc_err_mask);
1939
1940                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1941                                    TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1942                                    TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1943
1944                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1945                                    PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1946                                    PCC_N_SERR | PCC_6_COF_OV_ERR |
1947                                    PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1948                                    PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1949                                    PCC_TXB_ECC_SG_ERR,
1950                                    flag, &bar0->pcc_err_mask);
1951
1952                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1953                                    TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1954
1955                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1956                                    LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1957                                    LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1958                                    flag, &bar0->lso_err_mask);
1959
1960                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1961                                    flag, &bar0->tpa_err_mask);
1962
1963                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1964         }
1965
1966         if (mask & TX_MAC_INTR) {
1967                 gen_int_mask |= TXMAC_INT_M;
1968                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1969                                    &bar0->mac_int_mask);
1970                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1971                                    TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1972                                    TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1973                                    flag, &bar0->mac_tmac_err_mask);
1974         }
1975
1976         if (mask & TX_XGXS_INTR) {
1977                 gen_int_mask |= TXXGXS_INT_M;
1978                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1979                                    &bar0->xgxs_int_mask);
1980                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1981                                    TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1982                                    flag, &bar0->xgxs_txgxs_err_mask);
1983         }
1984
1985         if (mask & RX_DMA_INTR) {
1986                 gen_int_mask |= RXDMA_INT_M;
1987                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1988                                    RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1989                                    flag, &bar0->rxdma_int_mask);
1990                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1991                                    RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1992                                    RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1993                                    RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1994                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1995                                    PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1996                                    PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1997                                    &bar0->prc_pcix_err_mask);
1998                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1999                                    RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
2000                                    &bar0->rpa_err_mask);
2001                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2002                                    RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2003                                    RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2004                                    RDA_FRM_ECC_SG_ERR |
2005                                    RDA_MISC_ERR|RDA_PCIX_ERR,
2006                                    flag, &bar0->rda_err_mask);
2007                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2008                                    RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2009                                    flag, &bar0->rti_err_mask);
2010         }
2011
2012         if (mask & RX_MAC_INTR) {
2013                 gen_int_mask |= RXMAC_INT_M;
2014                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2015                                    &bar0->mac_int_mask);
2016                 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2017                                  RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2018                                  RMAC_DOUBLE_ECC_ERR);
2019                 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2020                         interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2021                 do_s2io_write_bits(interruptible,
2022                                    flag, &bar0->mac_rmac_err_mask);
2023         }
2024
2025         if (mask & RX_XGXS_INTR) {
2026                 gen_int_mask |= RXXGXS_INT_M;
2027                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2028                                    &bar0->xgxs_int_mask);
2029                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2030                                    &bar0->xgxs_rxgxs_err_mask);
2031         }
2032
2033         if (mask & MC_INTR) {
2034                 gen_int_mask |= MC_INT_M;
2035                 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2036                                    flag, &bar0->mc_int_mask);
2037                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2038                                    MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2039                                    &bar0->mc_err_mask);
2040         }
2041         nic->general_int_mask = gen_int_mask;
2042
2043         /* Remove this line when alarm interrupts are enabled */
2044         nic->general_int_mask = 0;
2045 }
2046
2047 /**
2048  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
2049  *  @nic: device private variable,
2050  *  @mask: A mask indicating which Intr block must be modified and,
2051  *  @flag: A flag indicating whether to enable or disable the Intrs.
2052  *  Description: This function will either disable or enable the interrupts
2053  *  depending on the flag argument. The mask argument can be used to
2054  *  enable/disable any Intr block.
2055  *  Return Value: NONE.
2056  */
2057
2058 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2059 {
2060         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2061         register u64 temp64 = 0, intr_mask = 0;
2062
2063         intr_mask = nic->general_int_mask;
2064
2065         /*  Top level interrupt classification */
2066         /*  PIC Interrupts */
2067         if (mask & TX_PIC_INTR) {
2068                 /*  Enable PIC Intrs in the general intr mask register */
2069                 intr_mask |= TXPIC_INT_M;
2070                 if (flag == ENABLE_INTRS) {
2071                         /*
2072                          * If Hercules adapter enable GPIO otherwise
2073                          * disable all PCIX, Flash, MDIO, IIC and GPIO
2074                          * interrupts for now.
2075                          * TODO
2076                          */
2077                         if (s2io_link_fault_indication(nic) ==
2078                             LINK_UP_DOWN_INTERRUPT) {
2079                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
2080                                                    &bar0->pic_int_mask);
2081                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2082                                                    &bar0->gpio_int_mask);
2083                         } else
2084                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2085                 } else if (flag == DISABLE_INTRS) {
2086                         /*
2087                          * Disable PIC Intrs in the general
2088                          * intr mask register
2089                          */
2090                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2091                 }
2092         }
2093
2094         /*  Tx traffic interrupts */
2095         if (mask & TX_TRAFFIC_INTR) {
2096                 intr_mask |= TXTRAFFIC_INT_M;
2097                 if (flag == ENABLE_INTRS) {
2098                         /*
2099                          * Enable all the Tx side interrupts
2100                          * writing 0 Enables all 64 TX interrupt levels
2101                          */
2102                         writeq(0x0, &bar0->tx_traffic_mask);
2103                 } else if (flag == DISABLE_INTRS) {
2104                         /*
2105                          * Disable Tx Traffic Intrs in the general intr mask
2106                          * register.
2107                          */
2108                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2109                 }
2110         }
2111
2112         /*  Rx traffic interrupts */
2113         if (mask & RX_TRAFFIC_INTR) {
2114                 intr_mask |= RXTRAFFIC_INT_M;
2115                 if (flag == ENABLE_INTRS) {
2116                         /* writing 0 Enables all 8 RX interrupt levels */
2117                         writeq(0x0, &bar0->rx_traffic_mask);
2118                 } else if (flag == DISABLE_INTRS) {
2119                         /*
2120                          * Disable Rx Traffic Intrs in the general intr mask
2121                          * register.
2122                          */
2123                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2124                 }
2125         }
2126
2127         temp64 = readq(&bar0->general_int_mask);
2128         if (flag == ENABLE_INTRS)
2129                 temp64 &= ~((u64)intr_mask);
2130         else
2131                 temp64 = DISABLE_ALL_INTRS;
2132         writeq(temp64, &bar0->general_int_mask);
2133
2134         nic->general_int_mask = readq(&bar0->general_int_mask);
2135 }
2136
2137 /**
2138  *  verify_pcc_quiescent- Checks for PCC quiescent state
2139  *  Return: 1 If PCC is quiescence
2140  *          0 If PCC is not quiescence
2141  */
2142 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2143 {
2144         int ret = 0, herc;
2145         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2146         u64 val64 = readq(&bar0->adapter_status);
2147
2148         herc = (sp->device_type == XFRAME_II_DEVICE);
2149
2150         if (flag == false) {
2151                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2152                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2153                                 ret = 1;
2154                 } else {
2155                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2156                                 ret = 1;
2157                 }
2158         } else {
2159                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2160                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2161                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2162                                 ret = 1;
2163                 } else {
2164                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2165                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2166                                 ret = 1;
2167                 }
2168         }
2169
2170         return ret;
2171 }
2172 /**
2173  *  verify_xena_quiescence - Checks whether the H/W is ready
2174  *  Description: Returns whether the H/W is ready to go or not. Depending
2175  *  on whether adapter enable bit was written or not the comparison
2176  *  differs and the calling function passes the input argument flag to
2177  *  indicate this.
2178  *  Return: 1 If xena is quiescence
2179  *          0 If Xena is not quiescence
2180  */
2181
2182 static int verify_xena_quiescence(struct s2io_nic *sp)
2183 {
2184         int  mode;
2185         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2186         u64 val64 = readq(&bar0->adapter_status);
2187         mode = s2io_verify_pci_mode(sp);
2188
2189         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2190                 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2191                 return 0;
2192         }
2193         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2194                 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2195                 return 0;
2196         }
2197         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2198                 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2199                 return 0;
2200         }
2201         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2202                 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2203                 return 0;
2204         }
2205         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2206                 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2207                 return 0;
2208         }
2209         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2210                 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2211                 return 0;
2212         }
2213         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2214                 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2215                 return 0;
2216         }
2217         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2218                 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2219                 return 0;
2220         }
2221
2222         /*
2223          * In PCI 33 mode, the P_PLL is not used, and therefore,
2224          * the the P_PLL_LOCK bit in the adapter_status register will
2225          * not be asserted.
2226          */
2227         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2228             sp->device_type == XFRAME_II_DEVICE &&
2229             mode != PCI_MODE_PCI_33) {
2230                 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2231                 return 0;
2232         }
2233         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2234               ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2235                 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2236                 return 0;
2237         }
2238         return 1;
2239 }
2240
2241 /**
2242  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2243  * @sp: Pointer to device specifc structure
2244  * Description :
2245  * New procedure to clear mac address reading  problems on Alpha platforms
2246  *
2247  */
2248
2249 static void fix_mac_address(struct s2io_nic *sp)
2250 {
2251         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2252         u64 val64;
2253         int i = 0;
2254
2255         while (fix_mac[i] != END_SIGN) {
2256                 writeq(fix_mac[i++], &bar0->gpio_control);
2257                 udelay(10);
2258                 val64 = readq(&bar0->gpio_control);
2259         }
2260 }
2261
2262 /**
2263  *  start_nic - Turns the device on
2264  *  @nic : device private variable.
2265  *  Description:
2266  *  This function actually turns the device on. Before this  function is
2267  *  called,all Registers are configured from their reset states
2268  *  and shared memory is allocated but the NIC is still quiescent. On
2269  *  calling this function, the device interrupts are cleared and the NIC is
2270  *  literally switched on by writing into the adapter control register.
2271  *  Return Value:
2272  *  SUCCESS on success and -1 on failure.
2273  */
2274
2275 static int start_nic(struct s2io_nic *nic)
2276 {
2277         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2278         struct net_device *dev = nic->dev;
2279         register u64 val64 = 0;
2280         u16 subid, i;
2281         struct config_param *config = &nic->config;
2282         struct mac_info *mac_control = &nic->mac_control;
2283
2284         /*  PRC Initialization and configuration */
2285         for (i = 0; i < config->rx_ring_num; i++) {
2286                 struct ring_info *ring = &mac_control->rings[i];
2287
2288                 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2289                        &bar0->prc_rxd0_n[i]);
2290
2291                 val64 = readq(&bar0->prc_ctrl_n[i]);
2292                 if (nic->rxd_mode == RXD_MODE_1)
2293                         val64 |= PRC_CTRL_RC_ENABLED;
2294                 else
2295                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2296                 if (nic->device_type == XFRAME_II_DEVICE)
2297                         val64 |= PRC_CTRL_GROUP_READS;
2298                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2299                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2300                 writeq(val64, &bar0->prc_ctrl_n[i]);
2301         }
2302
2303         if (nic->rxd_mode == RXD_MODE_3B) {
2304                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2305                 val64 = readq(&bar0->rx_pa_cfg);
2306                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2307                 writeq(val64, &bar0->rx_pa_cfg);
2308         }
2309
2310         if (vlan_tag_strip == 0) {
2311                 val64 = readq(&bar0->rx_pa_cfg);
2312                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2313                 writeq(val64, &bar0->rx_pa_cfg);
2314                 nic->vlan_strip_flag = 0;
2315         }
2316
2317         /*
2318          * Enabling MC-RLDRAM. After enabling the device, we timeout
2319          * for around 100ms, which is approximately the time required
2320          * for the device to be ready for operation.
2321          */
2322         val64 = readq(&bar0->mc_rldram_mrs);
2323         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2324         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2325         val64 = readq(&bar0->mc_rldram_mrs);
2326
2327         msleep(100);    /* Delay by around 100 ms. */
2328
2329         /* Enabling ECC Protection. */
2330         val64 = readq(&bar0->adapter_control);
2331         val64 &= ~ADAPTER_ECC_EN;
2332         writeq(val64, &bar0->adapter_control);
2333
2334         /*
2335          * Verify if the device is ready to be enabled, if so enable
2336          * it.
2337          */
2338         val64 = readq(&bar0->adapter_status);
2339         if (!verify_xena_quiescence(nic)) {
2340                 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2341                           "Adapter status reads: 0x%llx\n",
2342                           dev->name, (unsigned long long)val64);
2343                 return FAILURE;
2344         }
2345
2346         /*
2347          * With some switches, link might be already up at this point.
2348          * Because of this weird behavior, when we enable laser,
2349          * we may not get link. We need to handle this. We cannot
2350          * figure out which switch is misbehaving. So we are forced to
2351          * make a global change.
2352          */
2353
2354         /* Enabling Laser. */
2355         val64 = readq(&bar0->adapter_control);
2356         val64 |= ADAPTER_EOI_TX_ON;
2357         writeq(val64, &bar0->adapter_control);
2358
2359         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2360                 /*
2361                  * Dont see link state interrupts initally on some switches,
2362                  * so directly scheduling the link state task here.
2363                  */
2364                 schedule_work(&nic->set_link_task);
2365         }
2366         /* SXE-002: Initialize link and activity LED */
2367         subid = nic->pdev->subsystem_device;
2368         if (((subid & 0xFF) >= 0x07) &&
2369             (nic->device_type == XFRAME_I_DEVICE)) {
2370                 val64 = readq(&bar0->gpio_control);
2371                 val64 |= 0x0000800000000000ULL;
2372                 writeq(val64, &bar0->gpio_control);
2373                 val64 = 0x0411040400000000ULL;
2374                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2375         }
2376
2377         return SUCCESS;
2378 }
2379 /**
2380  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2381  */
2382 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2383                                         struct TxD *txdlp, int get_off)
2384 {
2385         struct s2io_nic *nic = fifo_data->nic;
2386         struct sk_buff *skb;
2387         struct TxD *txds;
2388         u16 j, frg_cnt;
2389
2390         txds = txdlp;
2391         if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2392                 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2393                                  sizeof(u64), PCI_DMA_TODEVICE);
2394                 txds++;
2395         }
2396
2397         skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2398         if (!skb) {
2399                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2400                 return NULL;
2401         }
2402         pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2403                          skb_headlen(skb), PCI_DMA_TODEVICE);
2404         frg_cnt = skb_shinfo(skb)->nr_frags;
2405         if (frg_cnt) {
2406                 txds++;
2407                 for (j = 0; j < frg_cnt; j++, txds++) {
2408                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2409                         if (!txds->Buffer_Pointer)
2410                                 break;
2411                         pci_unmap_page(nic->pdev,
2412                                        (dma_addr_t)txds->Buffer_Pointer,
2413                                        frag->size, PCI_DMA_TODEVICE);
2414                 }
2415         }
2416         memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2417         return skb;
2418 }
2419
2420 /**
2421  *  free_tx_buffers - Free all queued Tx buffers
2422  *  @nic : device private variable.
2423  *  Description:
2424  *  Free all queued Tx buffers.
2425  *  Return Value: void
2426  */
2427
2428 static void free_tx_buffers(struct s2io_nic *nic)
2429 {
2430         struct net_device *dev = nic->dev;
2431         struct sk_buff *skb;
2432         struct TxD *txdp;
2433         int i, j;
2434         int cnt = 0;
2435         struct config_param *config = &nic->config;
2436         struct mac_info *mac_control = &nic->mac_control;
2437         struct stat_block *stats = mac_control->stats_info;
2438         struct swStat *swstats = &stats->sw_stat;
2439
2440         for (i = 0; i < config->tx_fifo_num; i++) {
2441                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2442                 struct fifo_info *fifo = &mac_control->fifos[i];
2443                 unsigned long flags;
2444
2445                 spin_lock_irqsave(&fifo->tx_lock, flags);
2446                 for (j = 0; j < tx_cfg->fifo_len; j++) {
2447                         txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
2448                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2449                         if (skb) {
2450                                 swstats->mem_freed += skb->truesize;
2451                                 dev_kfree_skb(skb);
2452                                 cnt++;
2453                         }
2454                 }
2455                 DBG_PRINT(INTR_DBG,
2456                           "%s: forcibly freeing %d skbs on FIFO%d\n",
2457                           dev->name, cnt, i);
2458                 fifo->tx_curr_get_info.offset = 0;
2459                 fifo->tx_curr_put_info.offset = 0;
2460                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2461         }
2462 }
2463
2464 /**
2465  *   stop_nic -  To stop the nic
2466  *   @nic ; device private variable.
2467  *   Description:
2468  *   This function does exactly the opposite of what the start_nic()
2469  *   function does. This function is called to stop the device.
2470  *   Return Value:
2471  *   void.
2472  */
2473
2474 static void stop_nic(struct s2io_nic *nic)
2475 {
2476         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2477         register u64 val64 = 0;
2478         u16 interruptible;
2479
2480         /*  Disable all interrupts */
2481         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2482         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2483         interruptible |= TX_PIC_INTR;
2484         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2485
2486         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2487         val64 = readq(&bar0->adapter_control);
2488         val64 &= ~(ADAPTER_CNTL_EN);
2489         writeq(val64, &bar0->adapter_control);
2490 }
2491
2492 /**
2493  *  fill_rx_buffers - Allocates the Rx side skbs
2494  *  @ring_info: per ring structure
2495  *  @from_card_up: If this is true, we will map the buffer to get
2496  *     the dma address for buf0 and buf1 to give it to the card.
2497  *     Else we will sync the already mapped buffer to give it to the card.
2498  *  Description:
2499  *  The function allocates Rx side skbs and puts the physical
2500  *  address of these buffers into the RxD buffer pointers, so that the NIC
2501  *  can DMA the received frame into these locations.
2502  *  The NIC supports 3 receive modes, viz
2503  *  1. single buffer,
2504  *  2. three buffer and
2505  *  3. Five buffer modes.
2506  *  Each mode defines how many fragments the received frame will be split
2507  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2508  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2509  *  is split into 3 fragments. As of now only single buffer mode is
2510  *  supported.
2511  *   Return Value:
2512  *  SUCCESS on success or an appropriate -ve value on failure.
2513  */
2514 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2515                            int from_card_up)
2516 {
2517         struct sk_buff *skb;
2518         struct RxD_t *rxdp;
2519         int off, size, block_no, block_no1;
2520         u32 alloc_tab = 0;
2521         u32 alloc_cnt;
2522         u64 tmp;
2523         struct buffAdd *ba;
2524         struct RxD_t *first_rxdp = NULL;
2525         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2526         int rxd_index = 0;
2527         struct RxD1 *rxdp1;
2528         struct RxD3 *rxdp3;
2529         struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2530
2531         alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2532
2533         block_no1 = ring->rx_curr_get_info.block_index;
2534         while (alloc_tab < alloc_cnt) {
2535                 block_no = ring->rx_curr_put_info.block_index;
2536
2537                 off = ring->rx_curr_put_info.offset;
2538
2539                 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2540
2541                 rxd_index = off + 1;
2542                 if (block_no)
2543                         rxd_index += (block_no * ring->rxd_count);
2544
2545                 if ((block_no == block_no1) &&
2546                     (off == ring->rx_curr_get_info.offset) &&
2547                     (rxdp->Host_Control)) {
2548                         DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2549                                   ring->dev->name);
2550                         goto end;
2551                 }
2552                 if (off && (off == ring->rxd_count)) {
2553                         ring->rx_curr_put_info.block_index++;
2554                         if (ring->rx_curr_put_info.block_index ==
2555                             ring->block_count)
2556                                 ring->rx_curr_put_info.block_index = 0;
2557                         block_no = ring->rx_curr_put_info.block_index;
2558                         off = 0;
2559                         ring->rx_curr_put_info.offset = off;
2560                         rxdp = ring->rx_blocks[block_no].block_virt_addr;
2561                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2562                                   ring->dev->name, rxdp);
2563
2564                 }
2565
2566                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2567                     ((ring->rxd_mode == RXD_MODE_3B) &&
2568                      (rxdp->Control_2 & s2BIT(0)))) {
2569                         ring->rx_curr_put_info.offset = off;
2570                         goto end;
2571                 }
2572                 /* calculate size of skb based on ring mode */
2573                 size = ring->mtu +
2574                         HEADER_ETHERNET_II_802_3_SIZE +
2575                         HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2576                 if (ring->rxd_mode == RXD_MODE_1)
2577                         size += NET_IP_ALIGN;
2578                 else
2579                         size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2580
2581                 /* allocate skb */
2582                 skb = dev_alloc_skb(size);
2583                 if (!skb) {
2584                         DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2585                                   ring->dev->name);
2586                         if (first_rxdp) {
2587                                 wmb();
2588                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2589                         }
2590                         swstats->mem_alloc_fail_cnt++;
2591
2592                         return -ENOMEM ;
2593                 }
2594                 swstats->mem_allocated += skb->truesize;
2595
2596                 if (ring->rxd_mode == RXD_MODE_1) {
2597                         /* 1 buffer mode - normal operation mode */
2598                         rxdp1 = (struct RxD1 *)rxdp;
2599                         memset(rxdp, 0, sizeof(struct RxD1));
2600                         skb_reserve(skb, NET_IP_ALIGN);
2601                         rxdp1->Buffer0_ptr =
2602                                 pci_map_single(ring->pdev, skb->data,
2603                                                size - NET_IP_ALIGN,
2604                                                PCI_DMA_FROMDEVICE);
2605                         if (pci_dma_mapping_error(nic->pdev,
2606                                                   rxdp1->Buffer0_ptr))
2607                                 goto pci_map_failed;
2608
2609                         rxdp->Control_2 =
2610                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2611                         rxdp->Host_Control = (unsigned long)skb;
2612                 } else if (ring->rxd_mode == RXD_MODE_3B) {
2613                         /*
2614                          * 2 buffer mode -
2615                          * 2 buffer mode provides 128
2616                          * byte aligned receive buffers.
2617                          */
2618
2619                         rxdp3 = (struct RxD3 *)rxdp;
2620                         /* save buffer pointers to avoid frequent dma mapping */
2621                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2622                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2623                         memset(rxdp, 0, sizeof(struct RxD3));
2624                         /* restore the buffer pointers for dma sync*/
2625                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2626                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2627
2628                         ba = &ring->ba[block_no][off];
2629                         skb_reserve(skb, BUF0_LEN);
2630                         tmp = (u64)(unsigned long)skb->data;
2631                         tmp += ALIGN_SIZE;
2632                         tmp &= ~ALIGN_SIZE;
2633                         skb->data = (void *) (unsigned long)tmp;
2634                         skb_reset_tail_pointer(skb);
2635
2636                         if (from_card_up) {
2637                                 rxdp3->Buffer0_ptr =
2638                                         pci_map_single(ring->pdev, ba->ba_0,
2639                                                        BUF0_LEN,
2640                                                        PCI_DMA_FROMDEVICE);
2641                                 if (pci_dma_mapping_error(nic->pdev,
2642                                                           rxdp3->Buffer0_ptr))
2643                                         goto pci_map_failed;
2644                         } else
2645                                 pci_dma_sync_single_for_device(ring->pdev,
2646                                                                (dma_addr_t)rxdp3->Buffer0_ptr,
2647                                                                BUF0_LEN,
2648                                                                PCI_DMA_FROMDEVICE);
2649
2650                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2651                         if (ring->rxd_mode == RXD_MODE_3B) {
2652                                 /* Two buffer mode */
2653
2654                                 /*
2655                                  * Buffer2 will have L3/L4 header plus
2656                                  * L4 payload
2657                                  */
2658                                 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2659                                                                     skb->data,
2660                                                                     ring->mtu + 4,
2661                                                                     PCI_DMA_FROMDEVICE);
2662
2663                                 if (pci_dma_mapping_error(nic->pdev,
2664                                                           rxdp3->Buffer2_ptr))
2665                                         goto pci_map_failed;
2666
2667                                 if (from_card_up) {
2668                                         rxdp3->Buffer1_ptr =
2669                                                 pci_map_single(ring->pdev,
2670                                                                ba->ba_1,
2671                                                                BUF1_LEN,
2672                                                                PCI_DMA_FROMDEVICE);
2673
2674                                         if (pci_dma_mapping_error(nic->pdev,
2675                                                                   rxdp3->Buffer1_ptr)) {
2676                                                 pci_unmap_single(ring->pdev,
2677                                                                  (dma_addr_t)(unsigned long)
2678                                                                  skb->data,
2679                                                                  ring->mtu + 4,
2680                                                                  PCI_DMA_FROMDEVICE);
2681                                                 goto pci_map_failed;
2682                                         }
2683                                 }
2684                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2685                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2686                                         (ring->mtu + 4);
2687                         }
2688                         rxdp->Control_2 |= s2BIT(0);
2689                         rxdp->Host_Control = (unsigned long) (skb);
2690                 }
2691                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2692                         rxdp->Control_1 |= RXD_OWN_XENA;
2693                 off++;
2694                 if (off == (ring->rxd_count + 1))
2695                         off = 0;
2696                 ring->rx_curr_put_info.offset = off;
2697
2698                 rxdp->Control_2 |= SET_RXD_MARKER;
2699                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2700                         if (first_rxdp) {
2701                                 wmb();
2702                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2703                         }
2704                         first_rxdp = rxdp;
2705                 }
2706                 ring->rx_bufs_left += 1;
2707                 alloc_tab++;
2708         }
2709
2710 end:
2711         /* Transfer ownership of first descriptor to adapter just before
2712          * exiting. Before that, use memory barrier so that ownership
2713          * and other fields are seen by adapter correctly.
2714          */
2715         if (first_rxdp) {
2716                 wmb();
2717                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2718         }
2719
2720         return SUCCESS;
2721
2722 pci_map_failed:
2723         swstats->pci_map_fail_cnt++;
2724         swstats->mem_freed += skb->truesize;
2725         dev_kfree_skb_irq(skb);
2726         return -ENOMEM;
2727 }
2728
2729 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2730 {
2731         struct net_device *dev = sp->dev;
2732         int j;
2733         struct sk_buff *skb;
2734         struct RxD_t *rxdp;
2735         struct buffAdd *ba;
2736         struct RxD1 *rxdp1;
2737         struct RxD3 *rxdp3;
2738         struct mac_info *mac_control = &sp->mac_control;
2739         struct stat_block *stats = mac_control->stats_info;
2740         struct swStat *swstats = &stats->sw_stat;
2741
2742         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2743                 rxdp = mac_control->rings[ring_no].
2744                         rx_blocks[blk].rxds[j].virt_addr;
2745                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2746                 if (!skb)
2747                         continue;
2748                 if (sp->rxd_mode == RXD_MODE_1) {
2749                         rxdp1 = (struct RxD1 *)rxdp;
2750                         pci_unmap_single(sp->pdev,
2751                                          (dma_addr_t)rxdp1->Buffer0_ptr,
2752                                          dev->mtu +
2753                                          HEADER_ETHERNET_II_802_3_SIZE +
2754                                          HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2755                                          PCI_DMA_FROMDEVICE);
2756                         memset(rxdp, 0, sizeof(struct RxD1));
2757                 } else if (sp->rxd_mode == RXD_MODE_3B) {
2758                         rxdp3 = (struct RxD3 *)rxdp;
2759                         ba = &mac_control->rings[ring_no].ba[blk][j];
2760                         pci_unmap_single(sp->pdev,
2761                                          (dma_addr_t)rxdp3->Buffer0_ptr,
2762                                          BUF0_LEN,
2763                                          PCI_DMA_FROMDEVICE);
2764                         pci_unmap_single(sp->pdev,
2765                                          (dma_addr_t)rxdp3->Buffer1_ptr,
2766                                          BUF1_LEN,
2767                                          PCI_DMA_FROMDEVICE);
2768                         pci_unmap_single(sp->pdev,
2769                                          (dma_addr_t)rxdp3->Buffer2_ptr,
2770                                          dev->mtu + 4,
2771                                          PCI_DMA_FROMDEVICE);
2772                         memset(rxdp, 0, sizeof(struct RxD3));
2773                 }
2774                 swstats->mem_freed += skb->truesize;
2775                 dev_kfree_skb(skb);
2776                 mac_control->rings[ring_no].rx_bufs_left -= 1;
2777         }
2778 }
2779
2780 /**
2781  *  free_rx_buffers - Frees all Rx buffers
2782  *  @sp: device private variable.
2783  *  Description:
2784  *  This function will free all Rx buffers allocated by host.
2785  *  Return Value:
2786  *  NONE.
2787  */
2788
2789 static void free_rx_buffers(struct s2io_nic *sp)
2790 {
2791         struct net_device *dev = sp->dev;
2792         int i, blk = 0, buf_cnt = 0;
2793         struct config_param *config = &sp->config;
2794         struct mac_info *mac_control = &sp->mac_control;
2795
2796         for (i = 0; i < config->rx_ring_num; i++) {
2797                 struct ring_info *ring = &mac_control->rings[i];
2798
2799                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2800                         free_rxd_blk(sp, i, blk);
2801
2802                 ring->rx_curr_put_info.block_index = 0;
2803                 ring->rx_curr_get_info.block_index = 0;
2804                 ring->rx_curr_put_info.offset = 0;
2805                 ring->rx_curr_get_info.offset = 0;
2806                 ring->rx_bufs_left = 0;
2807                 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2808                           dev->name, buf_cnt, i);
2809         }
2810 }
2811
2812 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2813 {
2814         if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2815                 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2816                           ring->dev->name);
2817         }
2818         return 0;
2819 }
2820
2821 /**
2822  * s2io_poll - Rx interrupt handler for NAPI support
2823  * @napi : pointer to the napi structure.
2824  * @budget : The number of packets that were budgeted to be processed
2825  * during  one pass through the 'Poll" function.
2826  * Description:
2827  * Comes into picture only if NAPI support has been incorporated. It does
2828  * the same thing that rx_intr_handler does, but not in a interrupt context
2829  * also It will process only a given number of packets.
2830  * Return value:
2831  * 0 on success and 1 if there are No Rx packets to be processed.
2832  */
2833
2834 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2835 {
2836         struct ring_info *ring = container_of(napi, struct ring_info, napi);
2837         struct net_device *dev = ring->dev;
2838         int pkts_processed = 0;
2839         u8 __iomem *addr = NULL;
2840         u8 val8 = 0;
2841         struct s2io_nic *nic = netdev_priv(dev);
2842         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2843         int budget_org = budget;
2844
2845         if (unlikely(!is_s2io_card_up(nic)))
2846                 return 0;
2847
2848         pkts_processed = rx_intr_handler(ring, budget);
2849         s2io_chk_rx_buffers(nic, ring);
2850
2851         if (pkts_processed < budget_org) {
2852                 napi_complete(napi);
2853                 /*Re Enable MSI-Rx Vector*/
2854                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2855                 addr += 7 - ring->ring_no;
2856                 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2857                 writeb(val8, addr);
2858                 val8 = readb(addr);
2859         }
2860         return pkts_processed;
2861 }
2862
2863 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2864 {
2865         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2866         int pkts_processed = 0;
2867         int ring_pkts_processed, i;
2868         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2869         int budget_org = budget;
2870         struct config_param *config = &nic->config;
2871         struct mac_info *mac_control = &nic->mac_control;
2872
2873         if (unlikely(!is_s2io_card_up(nic)))
2874                 return 0;
2875
2876         for (i = 0; i < config->rx_ring_num; i++) {
2877                 struct ring_info *ring = &mac_control->rings[i];
2878                 ring_pkts_processed = rx_intr_handler(ring, budget);
2879                 s2io_chk_rx_buffers(nic, ring);
2880                 pkts_processed += ring_pkts_processed;
2881                 budget -= ring_pkts_processed;
2882                 if (budget <= 0)
2883                         break;
2884         }
2885         if (pkts_processed < budget_org) {
2886                 napi_complete(napi);
2887                 /* Re enable the Rx interrupts for the ring */
2888                 writeq(0, &bar0->rx_traffic_mask);
2889                 readl(&bar0->rx_traffic_mask);
2890         }
2891         return pkts_processed;
2892 }
2893
2894 #ifdef CONFIG_NET_POLL_CONTROLLER
2895 /**
2896  * s2io_netpoll - netpoll event handler entry point
2897  * @dev : pointer to the device structure.
2898  * Description:
2899  *      This function will be called by upper layer to check for events on the
2900  * interface in situations where interrupts are disabled. It is used for
2901  * specific in-kernel networking tasks, such as remote consoles and kernel
2902  * debugging over the network (example netdump in RedHat).
2903  */
2904 static void s2io_netpoll(struct net_device *dev)
2905 {
2906         struct s2io_nic *nic = netdev_priv(dev);
2907         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2908         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2909         int i;
2910         struct config_param *config = &nic->config;
2911         struct mac_info *mac_control = &nic->mac_control;
2912
2913         if (pci_channel_offline(nic->pdev))
2914                 return;
2915
2916         disable_irq(dev->irq);
2917
2918         writeq(val64, &bar0->rx_traffic_int);
2919         writeq(val64, &bar0->tx_traffic_int);
2920
2921         /* we need to free up the transmitted skbufs or else netpoll will
2922          * run out of skbs and will fail and eventually netpoll application such
2923          * as netdump will fail.
2924          */
2925         for (i = 0; i < config->tx_fifo_num; i++)
2926                 tx_intr_handler(&mac_control->fifos[i]);
2927
2928         /* check for received packet and indicate up to network */
2929         for (i = 0; i < config->rx_ring_num; i++) {
2930                 struct ring_info *ring = &mac_control->rings[i];
2931
2932                 rx_intr_handler(ring, 0);
2933         }
2934
2935         for (i = 0; i < config->rx_ring_num; i++) {
2936                 struct ring_info *ring = &mac_control->rings[i];
2937
2938                 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2939                         DBG_PRINT(INFO_DBG,
2940                                   "%s: Out of memory in Rx Netpoll!!\n",
2941                                   dev->name);
2942                         break;
2943                 }
2944         }
2945         enable_irq(dev->irq);
2946 }
2947 #endif
2948
2949 /**
2950  *  rx_intr_handler - Rx interrupt handler
2951  *  @ring_info: per ring structure.
2952  *  @budget: budget for napi processing.
2953  *  Description:
2954  *  If the interrupt is because of a received frame or if the
2955  *  receive ring contains fresh as yet un-processed frames,this function is
2956  *  called. It picks out the RxD at which place the last Rx processing had
2957  *  stopped and sends the skb to the OSM's Rx handler and then increments
2958  *  the offset.
2959  *  Return Value:
2960  *  No. of napi packets processed.
2961  */
2962 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2963 {
2964         int get_block, put_block;
2965         struct rx_curr_get_info get_info, put_info;
2966         struct RxD_t *rxdp;
2967         struct sk_buff *skb;
2968         int pkt_cnt = 0, napi_pkts = 0;
2969         int i;
2970         struct RxD1 *rxdp1;
2971         struct RxD3 *rxdp3;
2972
2973         get_info = ring_data->rx_curr_get_info;
2974         get_block = get_info.block_index;
2975         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2976         put_block = put_info.block_index;
2977         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2978
2979         while (RXD_IS_UP2DT(rxdp)) {
2980                 /*
2981                  * If your are next to put index then it's
2982                  * FIFO full condition
2983                  */
2984                 if ((get_block == put_block) &&
2985                     (get_info.offset + 1) == put_info.offset) {
2986                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2987                                   ring_data->dev->name);
2988                         break;
2989                 }
2990                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2991                 if (skb == NULL) {
2992                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2993                                   ring_data->dev->name);
2994                         return 0;
2995                 }
2996                 if (ring_data->rxd_mode == RXD_MODE_1) {
2997                         rxdp1 = (struct RxD1 *)rxdp;
2998                         pci_unmap_single(ring_data->pdev, (dma_addr_t)
2999                                          rxdp1->Buffer0_ptr,
3000                                          ring_data->mtu +
3001                                          HEADER_ETHERNET_II_802_3_SIZE +
3002                                          HEADER_802_2_SIZE +
3003                                          HEADER_SNAP_SIZE,
3004                                          PCI_DMA_FROMDEVICE);
3005                 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3006                         rxdp3 = (struct RxD3 *)rxdp;
3007                         pci_dma_sync_single_for_cpu(ring_data->pdev,
3008                                                     (dma_addr_t)rxdp3->Buffer0_ptr,
3009                                                     BUF0_LEN,
3010                                                     PCI_DMA_FROMDEVICE);
3011                         pci_unmap_single(ring_data->pdev,
3012                                          (dma_addr_t)rxdp3->Buffer2_ptr,
3013                                          ring_data->mtu + 4,
3014                                          PCI_DMA_FROMDEVICE);
3015                 }
3016                 prefetch(skb->data);
3017                 rx_osm_handler(ring_data, rxdp);
3018                 get_info.offset++;
3019                 ring_data->rx_curr_get_info.offset = get_info.offset;
3020                 rxdp = ring_data->rx_blocks[get_block].
3021                         rxds[get_info.offset].virt_addr;
3022                 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3023                         get_info.offset = 0;
3024                         ring_data->rx_curr_get_info.offset = get_info.offset;
3025                         get_block++;
3026                         if (get_block == ring_data->block_count)
3027                                 get_block = 0;
3028                         ring_data->rx_curr_get_info.block_index = get_block;
3029                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3030                 }
3031
3032                 if (ring_data->nic->config.napi) {
3033                         budget--;
3034                         napi_pkts++;
3035                         if (!budget)
3036                                 break;
3037                 }
3038                 pkt_cnt++;
3039                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3040                         break;
3041         }
3042         if (ring_data->lro) {
3043                 /* Clear all LRO sessions before exiting */
3044                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
3045                         struct lro *lro = &ring_data->lro0_n[i];
3046                         if (lro->in_use) {
3047                                 update_L3L4_header(ring_data->nic, lro);
3048                                 queue_rx_frame(lro->parent, lro->vlan_tag);
3049                                 clear_lro_session(lro);
3050                         }
3051                 }
3052         }
3053         return napi_pkts;
3054 }
3055
3056 /**
3057  *  tx_intr_handler - Transmit interrupt handler
3058  *  @nic : device private variable
3059  *  Description:
3060  *  If an interrupt was raised to indicate DMA complete of the
3061  *  Tx packet, this function is called. It identifies the last TxD
3062  *  whose buffer was freed and frees all skbs whose data have already
3063  *  DMA'ed into the NICs internal memory.
3064  *  Return Value:
3065  *  NONE
3066  */
3067
3068 static void tx_intr_handler(struct fifo_info *fifo_data)
3069 {
3070         struct s2io_nic *nic = fifo_data->nic;
3071         struct tx_curr_get_info get_info, put_info;
3072         struct sk_buff *skb = NULL;
3073         struct TxD *txdlp;
3074         int pkt_cnt = 0;
3075         unsigned long flags = 0;
3076         u8 err_mask;
3077         struct stat_block *stats = nic->mac_control.stats_info;
3078         struct swStat *swstats = &stats->sw_stat;
3079
3080         if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3081                 return;
3082
3083         get_info = fifo_data->tx_curr_get_info;
3084         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3085         txdlp = (struct TxD *)
3086                 fifo_data->list_info[get_info.offset].list_virt_addr;
3087         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3088                (get_info.offset != put_info.offset) &&
3089                (txdlp->Host_Control)) {
3090                 /* Check for TxD errors */
3091                 if (txdlp->Control_1 & TXD_T_CODE) {
3092                         unsigned long long err;
3093                         err = txdlp->Control_1 & TXD_T_CODE;
3094                         if (err & 0x1) {
3095                                 swstats->parity_err_cnt++;
3096                         }
3097
3098                         /* update t_code statistics */
3099                         err_mask = err >> 48;
3100                         switch (err_mask) {
3101                         case 2:
3102                                 swstats->tx_buf_abort_cnt++;
3103                                 break;
3104
3105                         case 3:
3106                                 swstats->tx_desc_abort_cnt++;
3107                                 break;
3108
3109                         case 7:
3110                                 swstats->tx_parity_err_cnt++;
3111                                 break;
3112
3113                         case 10:
3114                                 swstats->tx_link_loss_cnt++;
3115                                 break;
3116
3117                         case 15:
3118                                 swstats->tx_list_proc_err_cnt++;
3119                                 break;
3120                         }
3121                 }
3122
3123                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3124                 if (skb == NULL) {
3125                         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3126                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3127                                   __func__);
3128                         return;
3129                 }
3130                 pkt_cnt++;
3131
3132                 /* Updating the statistics block */
3133                 nic->dev->stats.tx_bytes += skb->len;
3134                 swstats->mem_freed += skb->truesize;
3135                 dev_kfree_skb_irq(skb);
3136
3137                 get_info.offset++;
3138                 if (get_info.offset == get_info.fifo_len + 1)
3139                         get_info.offset = 0;
3140                 txdlp = (struct TxD *)
3141                         fifo_data->list_info[get_info.offset].list_virt_addr;
3142                 fifo_data->tx_curr_get_info.offset = get_info.offset;
3143         }
3144
3145         s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3146
3147         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3148 }
3149
3150 /**
3151  *  s2io_mdio_write - Function to write in to MDIO registers
3152  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3153  *  @addr     : address value
3154  *  @value    : data value
3155  *  @dev      : pointer to net_device structure
3156  *  Description:
3157  *  This function is used to write values to the MDIO registers
3158  *  NONE
3159  */
3160 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3161                             struct net_device *dev)
3162 {
3163         u64 val64;
3164         struct s2io_nic *sp = netdev_priv(dev);
3165         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3166
3167         /* address transaction */
3168         val64 = MDIO_MMD_INDX_ADDR(addr) |
3169                 MDIO_MMD_DEV_ADDR(mmd_type) |
3170                 MDIO_MMS_PRT_ADDR(0x0);
3171         writeq(val64, &bar0->mdio_control);
3172         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3173         writeq(val64, &bar0->mdio_control);
3174         udelay(100);
3175
3176         /* Data transaction */
3177         val64 = MDIO_MMD_INDX_ADDR(addr) |
3178                 MDIO_MMD_DEV_ADDR(mmd_type) |
3179                 MDIO_MMS_PRT_ADDR(0x0) |
3180                 MDIO_MDIO_DATA(value) |
3181                 MDIO_OP(MDIO_OP_WRITE_TRANS);
3182         writeq(val64, &bar0->mdio_control);
3183         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3184         writeq(val64, &bar0->mdio_control);
3185         udelay(100);
3186
3187         val64 = MDIO_MMD_INDX_ADDR(addr) |
3188                 MDIO_MMD_DEV_ADDR(mmd_type) |
3189                 MDIO_MMS_PRT_ADDR(0x0) |
3190                 MDIO_OP(MDIO_OP_READ_TRANS);
3191         writeq(val64, &bar0->mdio_control);
3192         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3193         writeq(val64, &bar0->mdio_control);
3194         udelay(100);
3195 }
3196
3197 /**
3198  *  s2io_mdio_read - Function to write in to MDIO registers
3199  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3200  *  @addr     : address value
3201  *  @dev      : pointer to net_device structure
3202  *  Description:
3203  *  This function is used to read values to the MDIO registers
3204  *  NONE
3205  */
3206 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3207 {
3208         u64 val64 = 0x0;
3209         u64 rval64 = 0x0;
3210         struct s2io_nic *sp = netdev_priv(dev);
3211         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3212
3213         /* address transaction */
3214         val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3215                          | MDIO_MMD_DEV_ADDR(mmd_type)
3216                          | MDIO_MMS_PRT_ADDR(0x0));
3217         writeq(val64, &bar0->mdio_control);
3218         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3219         writeq(val64, &bar0->mdio_control);
3220         udelay(100);
3221
3222         /* Data transaction */
3223         val64 = MDIO_MMD_INDX_ADDR(addr) |
3224                 MDIO_MMD_DEV_ADDR(mmd_type) |
3225                 MDIO_MMS_PRT_ADDR(0x0) |
3226                 MDIO_OP(MDIO_OP_READ_TRANS);
3227         writeq(val64, &bar0->mdio_control);
3228         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3229         writeq(val64, &bar0->mdio_control);
3230         udelay(100);
3231
3232         /* Read the value from regs */
3233         rval64 = readq(&bar0->mdio_control);
3234         rval64 = rval64 & 0xFFFF0000;
3235         rval64 = rval64 >> 16;
3236         return rval64;
3237 }
3238
3239 /**
3240  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3241  *  @counter      : counter value to be updated
3242  *  @flag         : flag to indicate the status
3243  *  @type         : counter type
3244  *  Description:
3245  *  This function is to check the status of the xpak counters value
3246  *  NONE
3247  */
3248
3249 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3250                                   u16 flag, u16 type)
3251 {
3252         u64 mask = 0x3;
3253         u64 val64;
3254         int i;
3255         for (i = 0; i < index; i++)
3256                 mask = mask << 0x2;
3257
3258         if (flag > 0) {
3259                 *counter = *counter + 1;
3260                 val64 = *regs_stat & mask;
3261                 val64 = val64 >> (index * 0x2);
3262                 val64 = val64 + 1;
3263                 if (val64 == 3) {
3264                         switch (type) {
3265                         case 1:
3266                                 DBG_PRINT(ERR_DBG,
3267                                           "Take Xframe NIC out of service.\n");
3268                                 DBG_PRINT(ERR_DBG,
3269 "Excessive temperatures may result in premature transceiver failure.\n");
3270                                 break;
3271                         case 2:
3272                                 DBG_PRINT(ERR_DBG,
3273                                           "Take Xframe NIC out of service.\n");
3274                                 DBG_PRINT(ERR_DBG,
3275 "Excessive bias currents may indicate imminent laser diode failure.\n");
3276                                 break;
3277                         case 3:
3278                                 DBG_PRINT(ERR_DBG,
3279                                           "Take Xframe NIC out of service.\n");
3280                                 DBG_PRINT(ERR_DBG,
3281 "Excessive laser output power may saturate far-end receiver.\n");
3282                                 break;
3283                         default:
3284                                 DBG_PRINT(ERR_DBG,
3285                                           "Incorrect XPAK Alarm type\n");
3286                         }
3287                         val64 = 0x0;
3288                 }
3289                 val64 = val64 << (index * 0x2);
3290                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3291
3292         } else {
3293                 *regs_stat = *regs_stat & (~mask);
3294         }
3295 }
3296
3297 /**
3298  *  s2io_updt_xpak_counter - Function to update the xpak counters
3299  *  @dev         : pointer to net_device struct
3300  *  Description:
3301  *  This function is to upate the status of the xpak counters value
3302  *  NONE
3303  */
3304 static void s2io_updt_xpak_counter(struct net_device *dev)
3305 {
3306         u16 flag  = 0x0;
3307         u16 type  = 0x0;
3308         u16 val16 = 0x0;
3309         u64 val64 = 0x0;
3310         u64 addr  = 0x0;
3311
3312         struct s2io_nic *sp = netdev_priv(dev);
3313         struct stat_block *stats = sp->mac_control.stats_info;
3314         struct xpakStat *xstats = &stats->xpak_stat;
3315
3316         /* Check the communication with the MDIO slave */
3317         addr = MDIO_CTRL1;
3318         val64 = 0x0;
3319         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3320         if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3321                 DBG_PRINT(ERR_DBG,
3322                           "ERR: MDIO slave access failed - Returned %llx\n",
3323                           (unsigned long long)val64);
3324                 return;
3325         }
3326
3327         /* Check for the expected value of control reg 1 */
3328         if (val64 != MDIO_CTRL1_SPEED10G) {
3329                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3330                           "Returned: %llx- Expected: 0x%x\n",
3331                           (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3332                 return;
3333         }
3334
3335         /* Loading the DOM register to MDIO register */
3336         addr = 0xA100;
3337         s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3338         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3339
3340         /* Reading the Alarm flags */
3341         addr = 0xA070;
3342         val64 = 0x0;
3343         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3344
3345         flag = CHECKBIT(val64, 0x7);
3346         type = 1;
3347         s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3348                               &xstats->xpak_regs_stat,
3349                               0x0, flag, type);
3350
3351         if (CHECKBIT(val64, 0x6))
3352                 xstats->alarm_transceiver_temp_low++;
3353
3354         flag = CHECKBIT(val64, 0x3);
3355         type = 2;
3356         s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3357                               &xstats->xpak_regs_stat,
3358                               0x2, flag, type);
3359
3360         if (CHECKBIT(val64, 0x2))
3361                 xstats->alarm_laser_bias_current_low++;
3362
3363         flag = CHECKBIT(val64, 0x1);
3364         type = 3;
3365         s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3366                               &xstats->xpak_regs_stat,
3367                               0x4, flag, type);
3368
3369         if (CHECKBIT(val64, 0x0))
3370                 xstats->alarm_laser_output_power_low++;
3371
3372         /* Reading the Warning flags */
3373         addr = 0xA074;
3374         val64 = 0x0;
3375         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3376
3377         if (CHECKBIT(val64, 0x7))
3378                 xstats->warn_transceiver_temp_high++;
3379
3380         if (CHECKBIT(val64, 0x6))
3381                 xstats->warn_transceiver_temp_low++;
3382
3383         if (CHECKBIT(val64, 0x3))
3384                 xstats->warn_laser_bias_current_high++;
3385
3386         if (CHECKBIT(val64, 0x2))
3387                 xstats->warn_laser_bias_current_low++;
3388
3389         if (CHECKBIT(val64, 0x1))
3390                 xstats->warn_laser_output_power_high++;
3391
3392         if (CHECKBIT(val64, 0x0))
3393                 xstats->warn_laser_output_power_low++;
3394 }
3395
3396 /**
3397  *  wait_for_cmd_complete - waits for a command to complete.
3398  *  @sp : private member of the device structure, which is a pointer to the
3399  *  s2io_nic structure.
3400  *  Description: Function that waits for a command to Write into RMAC
3401  *  ADDR DATA registers to be completed and returns either success or
3402  *  error depending on whether the command was complete or not.
3403  *  Return value:
3404  *   SUCCESS on success and FAILURE on failure.
3405  */
3406
3407 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3408                                  int bit_state)
3409 {
3410         int ret = FAILURE, cnt = 0, delay = 1;
3411         u64 val64;
3412
3413         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3414                 return FAILURE;
3415
3416         do {
3417                 val64 = readq(addr);
3418                 if (bit_state == S2IO_BIT_RESET) {
3419                         if (!(val64 & busy_bit)) {
3420                                 ret = SUCCESS;
3421                                 break;
3422                         }
3423                 } else {
3424                         if (val64 & busy_bit) {
3425                                 ret = SUCCESS;
3426                                 break;
3427                         }
3428                 }
3429
3430                 if (in_interrupt())
3431                         mdelay(delay);
3432                 else
3433                         msleep(delay);
3434
3435                 if (++cnt >= 10)
3436                         delay = 50;
3437         } while (cnt < 20);
3438         return ret;
3439 }
3440 /*
3441  * check_pci_device_id - Checks if the device id is supported
3442  * @id : device id
3443  * Description: Function to check if the pci device id is supported by driver.
3444  * Return value: Actual device id if supported else PCI_ANY_ID
3445  */
3446 static u16 check_pci_device_id(u16 id)
3447 {
3448         switch (id) {
3449         case PCI_DEVICE_ID_HERC_WIN:
3450         case PCI_DEVICE_ID_HERC_UNI:
3451                 return XFRAME_II_DEVICE;
3452         case PCI_DEVICE_ID_S2IO_UNI:
3453         case PCI_DEVICE_ID_S2IO_WIN:
3454                 return XFRAME_I_DEVICE;
3455         default:
3456                 return PCI_ANY_ID;
3457         }
3458 }
3459
3460 /**
3461  *  s2io_reset - Resets the card.
3462  *  @sp : private member of the device structure.
3463  *  Description: Function to Reset the card. This function then also
3464  *  restores the previously saved PCI configuration space registers as
3465  *  the card reset also resets the configuration space.
3466  *  Return value:
3467  *  void.
3468  */
3469
3470 static void s2io_reset(struct s2io_nic *sp)
3471 {
3472         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3473         u64 val64;
3474         u16 subid, pci_cmd;
3475         int i;
3476         u16 val16;
3477         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3478         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3479         struct stat_block *stats;
3480         struct swStat *swstats;
3481
3482         DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3483                   __func__, pci_name(sp->pdev));
3484
3485         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3486         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3487
3488         val64 = SW_RESET_ALL;
3489         writeq(val64, &bar0->sw_reset);
3490         if (strstr(sp->product_name, "CX4"))
3491                 msleep(750);
3492         msleep(250);
3493         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3494
3495                 /* Restore the PCI state saved during initialization. */
3496                 pci_restore_state(sp->pdev);
3497                 pci_save_state(sp->pdev);
3498                 pci_read_config_word(sp->pdev, 0x2, &val16);
3499                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3500                         break;
3501                 msleep(200);
3502         }
3503
3504         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3505                 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3506
3507         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3508
3509         s2io_init_pci(sp);
3510
3511         /* Set swapper to enable I/O register access */
3512         s2io_set_swapper(sp);
3513
3514         /* restore mac_addr entries */
3515         do_s2io_restore_unicast_mc(sp);
3516
3517         /* Restore the MSIX table entries from local variables */
3518         restore_xmsi_data(sp);
3519
3520         /* Clear certain PCI/PCI-X fields after reset */
3521         if (sp->device_type == XFRAME_II_DEVICE) {
3522                 /* Clear "detected parity error" bit */
3523                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3524
3525                 /* Clearing PCIX Ecc status register */
3526                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3527
3528                 /* Clearing PCI_STATUS error reflected here */
3529                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3530         }
3531
3532         /* Reset device statistics maintained by OS */
3533         memset(&sp->stats, 0, sizeof(struct net_device_stats));
3534
3535         stats = sp->mac_control.stats_info;
3536         swstats = &stats->sw_stat;
3537
3538         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3539         up_cnt = swstats->link_up_cnt;
3540         down_cnt = swstats->link_down_cnt;
3541         up_time = swstats->link_up_time;
3542         down_time = swstats->link_down_time;
3543         reset_cnt = swstats->soft_reset_cnt;
3544         mem_alloc_cnt = swstats->mem_allocated;
3545         mem_free_cnt = swstats->mem_freed;
3546         watchdog_cnt = swstats->watchdog_timer_cnt;
3547
3548         memset(stats, 0, sizeof(struct stat_block));
3549
3550         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3551         swstats->link_up_cnt = up_cnt;
3552         swstats->link_down_cnt = down_cnt;
3553         swstats->link_up_time = up_time;
3554         swstats->link_down_time = down_time;
3555         swstats->soft_reset_cnt = reset_cnt;
3556         swstats->mem_allocated = mem_alloc_cnt;
3557         swstats->mem_freed = mem_free_cnt;
3558         swstats->watchdog_timer_cnt = watchdog_cnt;
3559
3560         /* SXE-002: Configure link and activity LED to turn it off */
3561         subid = sp->pdev->subsystem_device;
3562         if (((subid & 0xFF) >= 0x07) &&
3563             (sp->device_type == XFRAME_I_DEVICE)) {
3564                 val64 = readq(&bar0->gpio_control);
3565                 val64 |= 0x0000800000000000ULL;
3566                 writeq(val64, &bar0->gpio_control);
3567                 val64 = 0x0411040400000000ULL;
3568                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3569         }
3570
3571         /*
3572          * Clear spurious ECC interrupts that would have occured on
3573          * XFRAME II cards after reset.
3574          */
3575         if (sp->device_type == XFRAME_II_DEVICE) {
3576                 val64 = readq(&bar0->pcc_err_reg);
3577                 writeq(val64, &bar0->pcc_err_reg);
3578         }
3579
3580         sp->device_enabled_once = false;
3581 }
3582
3583 /**
3584  *  s2io_set_swapper - to set the swapper controle on the card
3585  *  @sp : private member of the device structure,
3586  *  pointer to the s2io_nic structure.
3587  *  Description: Function to set the swapper control on the card
3588  *  correctly depending on the 'endianness' of the system.
3589  *  Return value:
3590  *  SUCCESS on success and FAILURE on failure.
3591  */
3592
3593 static int s2io_set_swapper(struct s2io_nic *sp)
3594 {
3595         struct net_device *dev = sp->dev;
3596         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3597         u64 val64, valt, valr;
3598
3599         /*
3600          * Set proper endian settings and verify the same by reading
3601          * the PIF Feed-back register.
3602          */
3603
3604         val64 = readq(&bar0->pif_rd_swapper_fb);
3605         if (val64 != 0x0123456789ABCDEFULL) {
3606                 int i = 0;
3607                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3608                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3609                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3610                                 0};                     /* FE=0, SE=0 */
3611
3612                 while (i < 4) {
3613                         writeq(value[i], &bar0->swapper_ctrl);
3614                         val64 = readq(&bar0->pif_rd_swapper_fb);
3615                         if (val64 == 0x0123456789ABCDEFULL)
3616                                 break;
3617                         i++;
3618                 }
3619                 if (i == 4) {
3620                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3621                                   "feedback read %llx\n",
3622                                   dev->name, (unsigned long long)val64);
3623                         return FAILURE;
3624                 }
3625                 valr = value[i];
3626         } else {
3627                 valr = readq(&bar0->swapper_ctrl);
3628         }
3629
3630         valt = 0x0123456789ABCDEFULL;
3631         writeq(valt, &bar0->xmsi_address);
3632         val64 = readq(&bar0->xmsi_address);
3633
3634         if (val64 != valt) {
3635                 int i = 0;
3636                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3637                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3638                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3639                                 0};                     /* FE=0, SE=0 */
3640
3641                 while (i < 4) {
3642                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3643                         writeq(valt, &bar0->xmsi_address);
3644                         val64 = readq(&bar0->xmsi_address);
3645                         if (val64 == valt)
3646                                 break;
3647                         i++;
3648                 }
3649                 if (i == 4) {
3650                         unsigned long long x = val64;
3651                         DBG_PRINT(ERR_DBG,
3652                                   "Write failed, Xmsi_addr reads:0x%llx\n", x);
3653                         return FAILURE;
3654                 }
3655         }
3656         val64 = readq(&bar0->swapper_ctrl);
3657         val64 &= 0xFFFF000000000000ULL;
3658
3659 #ifdef __BIG_ENDIAN
3660         /*
3661          * The device by default set to a big endian format, so a
3662          * big endian driver need not set anything.
3663          */
3664         val64 |= (SWAPPER_CTRL_TXP_FE |
3665                   SWAPPER_CTRL_TXP_SE |
3666                   SWAPPER_CTRL_TXD_R_FE |
3667                   SWAPPER_CTRL_TXD_W_FE |
3668                   SWAPPER_CTRL_TXF_R_FE |
3669                   SWAPPER_CTRL_RXD_R_FE |
3670                   SWAPPER_CTRL_RXD_W_FE |
3671                   SWAPPER_CTRL_RXF_W_FE |
3672                   SWAPPER_CTRL_XMSI_FE |
3673                   SWAPPER_CTRL_STATS_FE |
3674                   SWAPPER_CTRL_STATS_SE);
3675         if (sp->config.intr_type == INTA)
3676                 val64 |= SWAPPER_CTRL_XMSI_SE;
3677         writeq(val64, &bar0->swapper_ctrl);
3678 #else
3679         /*
3680          * Initially we enable all bits to make it accessible by the
3681          * driver, then we selectively enable only those bits that
3682          * we want to set.
3683          */
3684         val64 |= (SWAPPER_CTRL_TXP_FE |
3685                   SWAPPER_CTRL_TXP_SE |
3686                   SWAPPER_CTRL_TXD_R_FE |
3687                   SWAPPER_CTRL_TXD_R_SE |
3688                   SWAPPER_CTRL_TXD_W_FE |
3689                   SWAPPER_CTRL_TXD_W_SE |
3690                   SWAPPER_CTRL_TXF_R_FE |
3691                   SWAPPER_CTRL_RXD_R_FE |
3692                   SWAPPER_CTRL_RXD_R_SE |
3693                   SWAPPER_CTRL_RXD_W_FE |
3694                   SWAPPER_CTRL_RXD_W_SE |
3695                   SWAPPER_CTRL_RXF_W_FE |
3696                   SWAPPER_CTRL_XMSI_FE |
3697                   SWAPPER_CTRL_STATS_FE |
3698                   SWAPPER_CTRL_STATS_SE);
3699         if (sp->config.intr_type == INTA)
3700                 val64 |= SWAPPER_CTRL_XMSI_SE;
3701         writeq(val64, &bar0->swapper_ctrl);
3702 #endif
3703         val64 = readq(&bar0->swapper_ctrl);
3704
3705         /*
3706          * Verifying if endian settings are accurate by reading a
3707          * feedback register.
3708          */
3709         val64 = readq(&bar0->pif_rd_swapper_fb);
3710         if (val64 != 0x0123456789ABCDEFULL) {
3711                 /* Endian settings are incorrect, calls for another dekko. */
3712                 DBG_PRINT(ERR_DBG,
3713                           "%s: Endian settings are wrong, feedback read %llx\n",
3714                           dev->name, (unsigned long long)val64);
3715                 return FAILURE;
3716         }
3717
3718         return SUCCESS;
3719 }
3720
3721 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3722 {
3723         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3724         u64 val64;
3725         int ret = 0, cnt = 0;
3726
3727         do {
3728                 val64 = readq(&bar0->xmsi_access);
3729                 if (!(val64 & s2BIT(15)))
3730                         break;
3731                 mdelay(1);
3732                 cnt++;
3733         } while (cnt < 5);
3734         if (cnt == 5) {
3735                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3736                 ret = 1;
3737         }
3738
3739         return ret;
3740 }
3741
3742 static void restore_xmsi_data(struct s2io_nic *nic)
3743 {
3744         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3745         u64 val64;
3746         int i, msix_index;
3747
3748         if (nic->device_type == XFRAME_I_DEVICE)
3749                 return;
3750
3751         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3752                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3753                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3754                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3755                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3756                 writeq(val64, &bar0->xmsi_access);
3757                 if (wait_for_msix_trans(nic, msix_index)) {
3758                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3759                                   __func__, msix_index);
3760                         continue;
3761                 }
3762         }
3763 }
3764
3765 static void store_xmsi_data(struct s2io_nic *nic)
3766 {
3767         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3768         u64 val64, addr, data;
3769         int i, msix_index;
3770
3771         if (nic->device_type == XFRAME_I_DEVICE)
3772                 return;
3773
3774         /* Store and display */
3775         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3776                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3777                 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3778                 writeq(val64, &bar0->xmsi_access);
3779                 if (wait_for_msix_trans(nic, msix_index)) {
3780                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3781                                   __func__, msix_index);
3782                         continue;
3783                 }
3784                 addr = readq(&bar0->xmsi_address);
3785                 data = readq(&bar0->xmsi_data);
3786                 if (addr && data) {
3787                         nic->msix_info[i].addr = addr;
3788                         nic->msix_info[i].data = data;
3789                 }
3790         }
3791 }
3792
3793 static int s2io_enable_msi_x(struct s2io_nic *nic)
3794 {
3795         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3796         u64 rx_mat;
3797         u16 msi_control; /* Temp variable */
3798         int ret, i, j, msix_indx = 1;
3799         int size;
3800         struct stat_block *stats = nic->mac_control.stats_info;
3801         struct swStat *swstats = &stats->sw_stat;
3802
3803         size = nic->num_entries * sizeof(struct msix_entry);
3804         nic->entries = kzalloc(size, GFP_KERNEL);
3805         if (!nic->entries) {
3806                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3807                           __func__);
3808                 swstats->mem_alloc_fail_cnt++;
3809                 return -ENOMEM;
3810         }
3811         swstats->mem_allocated += size;
3812
3813         size = nic->num_entries * sizeof(struct s2io_msix_entry);
3814         nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3815         if (!nic->s2io_entries) {
3816                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3817                           __func__);
3818                 swstats->mem_alloc_fail_cnt++;
3819                 kfree(nic->entries);
3820                 swstats->mem_freed
3821                         += (nic->num_entries * sizeof(struct msix_entry));
3822                 return -ENOMEM;
3823         }
3824         swstats->mem_allocated += size;
3825
3826         nic->entries[0].entry = 0;
3827         nic->s2io_entries[0].entry = 0;
3828         nic->s2io_entries[0].in_use = MSIX_FLG;
3829         nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3830         nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3831
3832         for (i = 1; i < nic->num_entries; i++) {
3833                 nic->entries[i].entry = ((i - 1) * 8) + 1;
3834                 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3835                 nic->s2io_entries[i].arg = NULL;
3836                 nic->s2io_entries[i].in_use = 0;
3837         }
3838
3839         rx_mat = readq(&bar0->rx_mat);
3840         for (j = 0; j < nic->config.rx_ring_num; j++) {
3841                 rx_mat |= RX_MAT_SET(j, msix_indx);
3842                 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3843                 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3844                 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3845                 msix_indx += 8;
3846         }
3847         writeq(rx_mat, &bar0->rx_mat);
3848         readq(&bar0->rx_mat);
3849
3850         ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3851         /* We fail init if error or we get less vectors than min required */
3852         if (ret) {
3853                 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3854                 kfree(nic->entries);
3855                 swstats->mem_freed += nic->num_entries *
3856                         sizeof(struct msix_entry);
3857                 kfree(nic->s2io_entries);
3858                 swstats->mem_freed += nic->num_entries *
3859                         sizeof(struct s2io_msix_entry);
3860                 nic->entries = NULL;
3861                 nic->s2io_entries = NULL;
3862                 return -ENOMEM;
3863         }
3864
3865         /*
3866          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3867          * in the herc NIC. (Temp change, needs to be removed later)
3868          */
3869         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3870         msi_control |= 0x1; /* Enable MSI */
3871         pci_write_config_word(nic->pdev, 0x42, msi_control);
3872
3873         return 0;
3874 }
3875
3876 /* Handle software interrupt used during MSI(X) test */
3877 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3878 {
3879         struct s2io_nic *sp = dev_id;
3880
3881         sp->msi_detected = 1;
3882         wake_up(&sp->msi_wait);
3883
3884         return IRQ_HANDLED;
3885 }
3886
3887 /* Test interrupt path by forcing a a software IRQ */
3888 static int s2io_test_msi(struct s2io_nic *sp)
3889 {
3890         struct pci_dev *pdev = sp->pdev;
3891         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3892         int err;
3893         u64 val64, saved64;
3894
3895         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3896                           sp->name, sp);
3897         if (err) {
3898                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3899                           sp->dev->name, pci_name(pdev), pdev->irq);
3900                 return err;
3901         }
3902
3903         init_waitqueue_head(&sp->msi_wait);
3904         sp->msi_detected = 0;
3905
3906         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3907         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3908         val64 |= SCHED_INT_CTRL_TIMER_EN;
3909         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3910         writeq(val64, &bar0->scheduled_int_ctrl);
3911
3912         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3913
3914         if (!sp->msi_detected) {
3915                 /* MSI(X) test failed, go back to INTx mode */
3916                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3917                           "using MSI(X) during test\n",
3918                           sp->dev->name, pci_name(pdev));
3919
3920                 err = -EOPNOTSUPP;
3921         }
3922
3923         free_irq(sp->entries[1].vector, sp);
3924
3925         writeq(saved64, &bar0->scheduled_int_ctrl);
3926
3927         return err;
3928 }
3929
3930 static void remove_msix_isr(struct s2io_nic *sp)
3931 {
3932         int i;
3933         u16 msi_control;
3934
3935         for (i = 0; i < sp->num_entries; i++) {
3936                 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3937                         int vector = sp->entries[i].vector;
3938                         void *arg = sp->s2io_entries[i].arg;
3939                         free_irq(vector, arg);
3940                 }
3941         }
3942
3943         kfree(sp->entries);
3944         kfree(sp->s2io_entries);
3945         sp->entries = NULL;
3946         sp->s2io_entries = NULL;
3947
3948         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3949         msi_control &= 0xFFFE; /* Disable MSI */
3950         pci_write_config_word(sp->pdev, 0x42, msi_control);
3951
3952         pci_disable_msix(sp->pdev);
3953 }
3954
3955 static void remove_inta_isr(struct s2io_nic *sp)
3956 {
3957         struct net_device *dev = sp->dev;
3958
3959         free_irq(sp->pdev->irq, dev);
3960 }
3961
3962 /* ********************************************************* *
3963  * Functions defined below concern the OS part of the driver *
3964  * ********************************************************* */
3965
3966 /**
3967  *  s2io_open - open entry point of the driver
3968  *  @dev : pointer to the device structure.
3969  *  Description:
3970  *  This function is the open entry point of the driver. It mainly calls a
3971  *  function to allocate Rx buffers and inserts them into the buffer
3972  *  descriptors and then enables the Rx part of the NIC.
3973  *  Return value:
3974  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3975  *   file on failure.
3976  */
3977
3978 static int s2io_open(struct net_device *dev)
3979 {
3980         struct s2io_nic *sp = netdev_priv(dev);
3981         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3982         int err = 0;
3983
3984         /*
3985          * Make sure you have link off by default every time
3986          * Nic is initialized
3987          */
3988         netif_carrier_off(dev);
3989         sp->last_link_state = 0;
3990
3991         /* Initialize H/W and enable interrupts */
3992         err = s2io_card_up(sp);
3993         if (err) {
3994                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3995                           dev->name);
3996                 goto hw_init_failed;
3997         }
3998
3999         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4000                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4001                 s2io_card_down(sp);
4002                 err = -ENODEV;
4003                 goto hw_init_failed;
4004         }
4005         s2io_start_all_tx_queue(sp);
4006         return 0;
4007
4008 hw_init_failed:
4009         if (sp->config.intr_type == MSI_X) {
4010                 if (sp->entries) {
4011                         kfree(sp->entries);
4012                         swstats->mem_freed += sp->num_entries *
4013                                 sizeof(struct msix_entry);
4014                 }
4015                 if (sp->s2io_entries) {
4016                         kfree(sp->s2io_entries);
4017                         swstats->mem_freed += sp->num_entries *
4018                                 sizeof(struct s2io_msix_entry);
4019                 }
4020         }
4021         return err;
4022 }
4023
4024 /**
4025  *  s2io_close -close entry point of the driver
4026  *  @dev : device pointer.
4027  *  Description:
4028  *  This is the stop entry point of the driver. It needs to undo exactly
4029  *  whatever was done by the open entry point,thus it's usually referred to
4030  *  as the close function.Among other things this function mainly stops the
4031  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4032  *  Return value:
4033  *  0 on success and an appropriate (-)ve integer as defined in errno.h
4034  *  file on failure.
4035  */
4036
4037 static int s2io_close(struct net_device *dev)
4038 {
4039         struct s2io_nic *sp = netdev_priv(dev);
4040         struct config_param *config = &sp->config;
4041         u64 tmp64;
4042         int offset;
4043
4044         /* Return if the device is already closed               *
4045          *  Can happen when s2io_card_up failed in change_mtu    *
4046          */
4047         if (!is_s2io_card_up(sp))
4048                 return 0;
4049
4050         s2io_stop_all_tx_queue(sp);
4051         /* delete all populated mac entries */
4052         for (offset = 1; offset < config->max_mc_addr; offset++) {
4053                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4054                 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4055                         do_s2io_delete_unicast_mc(sp, tmp64);
4056         }
4057
4058         s2io_card_down(sp);
4059
4060         return 0;
4061 }
4062
4063 /**
4064  *  s2io_xmit - Tx entry point of te driver
4065  *  @skb : the socket buffer containing the Tx data.
4066  *  @dev : device pointer.
4067  *  Description :
4068  *  This function is the Tx entry point of the driver. S2IO NIC supports
4069  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4070  *  NOTE: when device cant queue the pkt,just the trans_start variable will
4071  *  not be upadted.
4072  *  Return value:
4073  *  0 on success & 1 on failure.
4074  */
4075
4076 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4077 {
4078         struct s2io_nic *sp = netdev_priv(dev);
4079         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4080         register u64 val64;
4081         struct TxD *txdp;
4082         struct TxFIFO_element __iomem *tx_fifo;
4083         unsigned long flags = 0;
4084         u16 vlan_tag = 0;
4085         struct fifo_info *fifo = NULL;
4086         int do_spin_lock = 1;
4087         int offload_type;
4088         int enable_per_list_interrupt = 0;
4089         struct config_param *config = &sp->config;
4090         struct mac_info *mac_control = &sp->mac_control;
4091         struct stat_block *stats = mac_control->stats_info;
4092         struct swStat *swstats = &stats->sw_stat;
4093
4094         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4095
4096         if (unlikely(skb->len <= 0)) {
4097                 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4098                 dev_kfree_skb_any(skb);
4099                 return NETDEV_TX_OK;
4100         }
4101
4102         if (!is_s2io_card_up(sp)) {
4103                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4104                           dev->name);
4105                 dev_kfree_skb(skb);
4106                 return NETDEV_TX_OK;
4107         }
4108
4109         queue = 0;
4110         if (sp->vlgrp && vlan_tx_tag_present(skb))
4111                 vlan_tag = vlan_tx_tag_get(skb);
4112         if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4113                 if (skb->protocol == htons(ETH_P_IP)) {
4114                         struct iphdr *ip;
4115                         struct tcphdr *th;
4116                         ip = ip_hdr(skb);
4117
4118                         if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4119                                 th = (struct tcphdr *)(((unsigned char *)ip) +
4120                                                        ip->ihl*4);
4121
4122                                 if (ip->protocol == IPPROTO_TCP) {
4123                                         queue_len = sp->total_tcp_fifos;
4124                                         queue = (ntohs(th->source) +
4125                                                  ntohs(th->dest)) &
4126                                                 sp->fifo_selector[queue_len - 1];
4127                                         if (queue >= queue_len)
4128                                                 queue = queue_len - 1;
4129                                 } else if (ip->protocol == IPPROTO_UDP) {
4130                                         queue_len = sp->total_udp_fifos;
4131                                         queue = (ntohs(th->source) +
4132                                                  ntohs(th->dest)) &
4133                                                 sp->fifo_selector[queue_len - 1];
4134                                         if (queue >= queue_len)
4135                                                 queue = queue_len - 1;
4136                                         queue += sp->udp_fifo_idx;
4137                                         if (skb->len > 1024)
4138                                                 enable_per_list_interrupt = 1;
4139                                         do_spin_lock = 0;
4140                                 }
4141                         }
4142                 }
4143         } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4144                 /* get fifo number based on skb->priority value */
4145                 queue = config->fifo_mapping
4146                         [skb->priority & (MAX_TX_FIFOS - 1)];
4147         fifo = &mac_control->fifos[queue];
4148
4149         if (do_spin_lock)
4150                 spin_lock_irqsave(&fifo->tx_lock, flags);
4151         else {
4152                 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4153                         return NETDEV_TX_LOCKED;
4154         }
4155
4156         if (sp->config.multiq) {
4157                 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4158                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4159                         return NETDEV_TX_BUSY;
4160                 }
4161         } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4162                 if (netif_queue_stopped(dev)) {
4163                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4164                         return NETDEV_TX_BUSY;
4165                 }
4166         }
4167
4168         put_off = (u16)fifo->tx_curr_put_info.offset;
4169         get_off = (u16)fifo->tx_curr_get_info.offset;
4170         txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
4171
4172         queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4173         /* Avoid "put" pointer going beyond "get" pointer */
4174         if (txdp->Host_Control ||
4175             ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4176                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4177                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4178                 dev_kfree_skb(skb);
4179                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4180                 return NETDEV_TX_OK;
4181         }
4182
4183         offload_type = s2io_offload_type(skb);
4184         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4185                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4186                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4187         }
4188         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4189                 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4190                                     TXD_TX_CKO_TCP_EN |
4191                                     TXD_TX_CKO_UDP_EN);
4192         }
4193         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4194         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4195         txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4196         if (enable_per_list_interrupt)
4197                 if (put_off & (queue_len >> 5))
4198                         txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4199         if (vlan_tag) {
4200                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4201                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4202         }
4203
4204         frg_len = skb_headlen(skb);
4205         if (offload_type == SKB_GSO_UDP) {
4206                 int ufo_size;
4207
4208                 ufo_size = s2io_udp_mss(skb);
4209                 ufo_size &= ~7;
4210                 txdp->Control_1 |= TXD_UFO_EN;
4211                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4212                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4213 #ifdef __BIG_ENDIAN
4214                 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4215                 fifo->ufo_in_band_v[put_off] =
4216                         (__force u64)skb_shinfo(skb)->ip6_frag_id;
4217 #else
4218                 fifo->ufo_in_band_v[put_off] =
4219                         (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4220 #endif
4221                 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4222                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4223                                                       fifo->ufo_in_band_v,
4224                                                       sizeof(u64),
4225                                                       PCI_DMA_TODEVICE);
4226                 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4227                         goto pci_map_failed;
4228                 txdp++;
4229         }
4230
4231         txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4232                                               frg_len, PCI_DMA_TODEVICE);
4233         if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4234                 goto pci_map_failed;
4235
4236         txdp->Host_Control = (unsigned long)skb;
4237         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4238         if (offload_type == SKB_GSO_UDP)
4239                 txdp->Control_1 |= TXD_UFO_EN;
4240
4241         frg_cnt = skb_shinfo(skb)->nr_frags;
4242         /* For fragmented SKB. */
4243         for (i = 0; i < frg_cnt; i++) {
4244                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4245                 /* A '0' length fragment will be ignored */
4246                 if (!frag->size)
4247                         continue;
4248                 txdp++;
4249                 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4250                                                          frag->page_offset,
4251                                                          frag->size,
4252                                                          PCI_DMA_TODEVICE);
4253                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4254                 if (offload_type == SKB_GSO_UDP)
4255                         txdp->Control_1 |= TXD_UFO_EN;
4256         }
4257         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4258
4259         if (offload_type == SKB_GSO_UDP)
4260                 frg_cnt++; /* as Txd0 was used for inband header */
4261
4262         tx_fifo = mac_control->tx_FIFO_start[queue];
4263         val64 = fifo->list_info[put_off].list_phy_addr;
4264         writeq(val64, &tx_fifo->TxDL_Pointer);
4265
4266         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4267                  TX_FIFO_LAST_LIST);
4268         if (offload_type)
4269                 val64 |= TX_FIFO_SPECIAL_FUNC;
4270
4271         writeq(val64, &tx_fifo->List_Control);
4272
4273         mmiowb();
4274
4275         put_off++;
4276         if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4277                 put_off = 0;
4278         fifo->tx_curr_put_info.offset = put_off;
4279
4280         /* Avoid "put" pointer going beyond "get" pointer */
4281         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4282                 swstats->fifo_full_cnt++;
4283                 DBG_PRINT(TX_DBG,
4284                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4285                           put_off, get_off);
4286                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4287         }
4288         swstats->mem_allocated += skb->truesize;
4289         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4290
4291         if (sp->config.intr_type == MSI_X)
4292                 tx_intr_handler(fifo);
4293
4294         return NETDEV_TX_OK;
4295
4296 pci_map_failed:
4297         swstats->pci_map_fail_cnt++;
4298         s2io_stop_tx_queue(sp, fifo->fifo_no);
4299         swstats->mem_freed += skb->truesize;
4300         dev_kfree_skb(skb);
4301         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4302         return NETDEV_TX_OK;
4303 }
4304
4305 static void
4306 s2io_alarm_handle(unsigned long data)
4307 {
4308         struct s2io_nic *sp = (struct s2io_nic *)data;
4309         struct net_device *dev = sp->dev;
4310
4311         s2io_handle_errors(dev);
4312         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4313 }
4314
4315 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4316 {
4317         struct ring_info *ring = (struct ring_info *)dev_id;
4318         struct s2io_nic *sp = ring->nic;
4319         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4320
4321         if (unlikely(!is_s2io_card_up(sp)))
4322                 return IRQ_HANDLED;
4323
4324         if (sp->config.napi) {
4325                 u8 __iomem *addr = NULL;
4326                 u8 val8 = 0;
4327
4328                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4329                 addr += (7 - ring->ring_no);
4330                 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4331                 writeb(val8, addr);
4332                 val8 = readb(addr);
4333                 napi_schedule(&ring->napi);
4334         } else {
4335                 rx_intr_handler(ring, 0);
4336                 s2io_chk_rx_buffers(sp, ring);
4337         }
4338
4339         return IRQ_HANDLED;
4340 }
4341
4342 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4343 {
4344         int i;
4345         struct fifo_info *fifos = (struct fifo_info *)dev_id;
4346         struct s2io_nic *sp = fifos->nic;
4347         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4348         struct config_param *config  = &sp->config;
4349         u64 reason;
4350
4351         if (unlikely(!is_s2io_card_up(sp)))
4352                 return IRQ_NONE;
4353
4354         reason = readq(&bar0->general_int_status);
4355         if (unlikely(reason == S2IO_MINUS_ONE))
4356                 /* Nothing much can be done. Get out */
4357                 return IRQ_HANDLED;
4358
4359         if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4360                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4361
4362                 if (reason & GEN_INTR_TXPIC)
4363                         s2io_txpic_intr_handle(sp);
4364
4365                 if (reason & GEN_INTR_TXTRAFFIC)
4366                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4367
4368                 for (i = 0; i < config->tx_fifo_num; i++)
4369                         tx_intr_handler(&fifos[i]);
4370
4371                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4372                 readl(&bar0->general_int_status);
4373                 return IRQ_HANDLED;
4374         }
4375         /* The interrupt was not raised by us */
4376         return IRQ_NONE;
4377 }
4378
4379 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4380 {
4381         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4382         u64 val64;
4383
4384         val64 = readq(&bar0->pic_int_status);
4385         if (val64 & PIC_INT_GPIO) {
4386                 val64 = readq(&bar0->gpio_int_reg);
4387                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4388                     (val64 & GPIO_INT_REG_LINK_UP)) {
4389                         /*
4390                          * This is unstable state so clear both up/down
4391                          * interrupt and adapter to re-evaluate the link state.
4392                          */
4393                         val64 |= GPIO_INT_REG_LINK_DOWN;
4394                         val64 |= GPIO_INT_REG_LINK_UP;
4395                         writeq(val64, &bar0->gpio_int_reg);
4396                         val64 = readq(&bar0->gpio_int_mask);
4397                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4398                                    GPIO_INT_MASK_LINK_DOWN);
4399                         writeq(val64, &bar0->gpio_int_mask);
4400                 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4401                         val64 = readq(&bar0->adapter_status);
4402                         /* Enable Adapter */
4403                         val64 = readq(&bar0->adapter_control);
4404                         val64 |= ADAPTER_CNTL_EN;
4405                         writeq(val64, &bar0->adapter_control);
4406                         val64 |= ADAPTER_LED_ON;
4407                         writeq(val64, &bar0->adapter_control);
4408                         if (!sp->device_enabled_once)
4409                                 sp->device_enabled_once = 1;
4410
4411                         s2io_link(sp, LINK_UP);
4412                         /*
4413                          * unmask link down interrupt and mask link-up
4414                          * intr
4415                          */
4416                         val64 = readq(&bar0->gpio_int_mask);
4417                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4418                         val64 |= GPIO_INT_MASK_LINK_UP;
4419                         writeq(val64, &bar0->gpio_int_mask);
4420
4421                 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4422                         val64 = readq(&bar0->adapter_status);
4423                         s2io_link(sp, LINK_DOWN);
4424                         /* Link is down so unmaks link up interrupt */
4425                         val64 = readq(&bar0->gpio_int_mask);
4426                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4427                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4428                         writeq(val64, &bar0->gpio_int_mask);
4429
4430                         /* turn off LED */
4431                         val64 = readq(&bar0->adapter_control);
4432                         val64 = val64 & (~ADAPTER_LED_ON);
4433                         writeq(val64, &bar0->adapter_control);
4434                 }
4435         }
4436         val64 = readq(&bar0->gpio_int_mask);
4437 }
4438
4439 /**
4440  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4441  *  @value: alarm bits
4442  *  @addr: address value
4443  *  @cnt: counter variable
4444  *  Description: Check for alarm and increment the counter
4445  *  Return Value:
4446  *  1 - if alarm bit set
4447  *  0 - if alarm bit is not set
4448  */
4449 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4450                                  unsigned long long *cnt)
4451 {
4452         u64 val64;
4453         val64 = readq(addr);
4454         if (val64 & value) {
4455                 writeq(val64, addr);
4456                 (*cnt)++;
4457                 return 1;
4458         }
4459         return 0;
4460
4461 }
4462
4463 /**
4464  *  s2io_handle_errors - Xframe error indication handler
4465  *  @nic: device private variable
4466  *  Description: Handle alarms such as loss of link, single or
4467  *  double ECC errors, critical and serious errors.
4468  *  Return Value:
4469  *  NONE
4470  */
4471 static void s2io_handle_errors(void *dev_id)
4472 {
4473         struct net_device *dev = (struct net_device *)dev_id;
4474         struct s2io_nic *sp = netdev_priv(dev);
4475         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4476         u64 temp64 = 0, val64 = 0;
4477         int i = 0;
4478
4479         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4480         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4481
4482         if (!is_s2io_card_up(sp))
4483                 return;
4484
4485         if (pci_channel_offline(sp->pdev))
4486                 return;
4487
4488         memset(&sw_stat->ring_full_cnt, 0,
4489                sizeof(sw_stat->ring_full_cnt));
4490
4491         /* Handling the XPAK counters update */
4492         if (stats->xpak_timer_count < 72000) {
4493                 /* waiting for an hour */
4494                 stats->xpak_timer_count++;
4495         } else {
4496                 s2io_updt_xpak_counter(dev);
4497                 /* reset the count to zero */
4498                 stats->xpak_timer_count = 0;
4499         }
4500
4501         /* Handling link status change error Intr */
4502         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4503                 val64 = readq(&bar0->mac_rmac_err_reg);
4504                 writeq(val64, &bar0->mac_rmac_err_reg);
4505                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4506                         schedule_work(&sp->set_link_task);
4507         }
4508
4509         /* In case of a serious error, the device will be Reset. */
4510         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4511                                   &sw_stat->serious_err_cnt))
4512                 goto reset;
4513
4514         /* Check for data parity error */
4515         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4516                                   &sw_stat->parity_err_cnt))
4517                 goto reset;
4518
4519         /* Check for ring full counter */
4520         if (sp->device_type == XFRAME_II_DEVICE) {
4521                 val64 = readq(&bar0->ring_bump_counter1);
4522                 for (i = 0; i < 4; i++) {
4523                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4524                         temp64 >>= 64 - ((i+1)*16);
4525                         sw_stat->ring_full_cnt[i] += temp64;
4526                 }
4527
4528                 val64 = readq(&bar0->ring_bump_counter2);
4529                 for (i = 0; i < 4; i++) {
4530                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4531                         temp64 >>= 64 - ((i+1)*16);
4532                         sw_stat->ring_full_cnt[i+4] += temp64;
4533                 }
4534         }
4535
4536         val64 = readq(&bar0->txdma_int_status);
4537         /*check for pfc_err*/
4538         if (val64 & TXDMA_PFC_INT) {
4539                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4540                                           PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4541                                           PFC_PCIX_ERR,
4542                                           &bar0->pfc_err_reg,
4543                                           &sw_stat->pfc_err_cnt))
4544                         goto reset;
4545                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4546                                       &bar0->pfc_err_reg,
4547                                       &sw_stat->pfc_err_cnt);
4548         }
4549
4550         /*check for tda_err*/
4551         if (val64 & TXDMA_TDA_INT) {
4552                 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4553                                           TDA_SM0_ERR_ALARM |
4554                                           TDA_SM1_ERR_ALARM,
4555                                           &bar0->tda_err_reg,
4556                                           &sw_stat->tda_err_cnt))
4557                         goto reset;
4558                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4559                                       &bar0->tda_err_reg,
4560                                       &sw_stat->tda_err_cnt);
4561         }
4562         /*check for pcc_err*/
4563         if (val64 & TXDMA_PCC_INT) {
4564                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4565                                           PCC_N_SERR | PCC_6_COF_OV_ERR |
4566                                           PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4567                                           PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4568                                           PCC_TXB_ECC_DB_ERR,
4569                                           &bar0->pcc_err_reg,
4570                                           &sw_stat->pcc_err_cnt))
4571                         goto reset;
4572                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4573                                       &bar0->pcc_err_reg,
4574                                       &sw_stat->pcc_err_cnt);
4575         }
4576
4577         /*check for tti_err*/
4578         if (val64 & TXDMA_TTI_INT) {
4579                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4580                                           &bar0->tti_err_reg,
4581                                           &sw_stat->tti_err_cnt))
4582                         goto reset;
4583                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4584                                       &bar0->tti_err_reg,
4585                                       &sw_stat->tti_err_cnt);
4586         }
4587
4588         /*check for lso_err*/
4589         if (val64 & TXDMA_LSO_INT) {
4590                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4591                                           LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4592                                           &bar0->lso_err_reg,
4593                                           &sw_stat->lso_err_cnt))
4594                         goto reset;
4595                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4596                                       &bar0->lso_err_reg,
4597                                       &sw_stat->lso_err_cnt);
4598         }
4599
4600         /*check for tpa_err*/
4601         if (val64 & TXDMA_TPA_INT) {
4602                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4603                                           &bar0->tpa_err_reg,
4604                                           &sw_stat->tpa_err_cnt))
4605                         goto reset;
4606                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4607                                       &bar0->tpa_err_reg,
4608                                       &sw_stat->tpa_err_cnt);
4609         }
4610
4611         /*check for sm_err*/
4612         if (val64 & TXDMA_SM_INT) {
4613                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4614                                           &bar0->sm_err_reg,
4615                                           &sw_stat->sm_err_cnt))
4616                         goto reset;
4617         }
4618
4619         val64 = readq(&bar0->mac_int_status);
4620         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4621                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4622                                           &bar0->mac_tmac_err_reg,
4623                                           &sw_stat->mac_tmac_err_cnt))
4624                         goto reset;
4625                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4626                                       TMAC_DESC_ECC_SG_ERR |
4627                                       TMAC_DESC_ECC_DB_ERR,
4628                                       &bar0->mac_tmac_err_reg,
4629                                       &sw_stat->mac_tmac_err_cnt);
4630         }
4631
4632         val64 = readq(&bar0->xgxs_int_status);
4633         if (val64 & XGXS_INT_STATUS_TXGXS) {
4634                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4635                                           &bar0->xgxs_txgxs_err_reg,
4636                                           &sw_stat->xgxs_txgxs_err_cnt))
4637                         goto reset;
4638                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4639                                       &bar0->xgxs_txgxs_err_reg,
4640                                       &sw_stat->xgxs_txgxs_err_cnt);
4641         }
4642
4643         val64 = readq(&bar0->rxdma_int_status);
4644         if (val64 & RXDMA_INT_RC_INT_M) {
4645                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4646                                           RC_FTC_ECC_DB_ERR |
4647                                           RC_PRCn_SM_ERR_ALARM |
4648                                           RC_FTC_SM_ERR_ALARM,
4649                                           &bar0->rc_err_reg,
4650                                           &sw_stat->rc_err_cnt))
4651                         goto reset;
4652                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4653                                       RC_FTC_ECC_SG_ERR |
4654                                       RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4655                                       &sw_stat->rc_err_cnt);
4656                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4657                                           PRC_PCI_AB_WR_Rn |
4658                                           PRC_PCI_AB_F_WR_Rn,
4659                                           &bar0->prc_pcix_err_reg,
4660                                           &sw_stat->prc_pcix_err_cnt))
4661                         goto reset;
4662                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4663                                       PRC_PCI_DP_WR_Rn |
4664                                       PRC_PCI_DP_F_WR_Rn,
4665                                       &bar0->prc_pcix_err_reg,
4666                                       &sw_stat->prc_pcix_err_cnt);
4667         }
4668
4669         if (val64 & RXDMA_INT_RPA_INT_M) {
4670                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4671                                           &bar0->rpa_err_reg,
4672                                           &sw_stat->rpa_err_cnt))
4673                         goto reset;
4674                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4675                                       &bar0->rpa_err_reg,
4676                                       &sw_stat->rpa_err_cnt);
4677         }
4678
4679         if (val64 & RXDMA_INT_RDA_INT_M) {
4680                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4681                                           RDA_FRM_ECC_DB_N_AERR |
4682                                           RDA_SM1_ERR_ALARM |
4683                                           RDA_SM0_ERR_ALARM |
4684                                           RDA_RXD_ECC_DB_SERR,
4685                                           &bar0->rda_err_reg,
4686                                           &sw_stat->rda_err_cnt))
4687                         goto reset;
4688                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4689                                       RDA_FRM_ECC_SG_ERR |
4690                                       RDA_MISC_ERR |
4691                                       RDA_PCIX_ERR,
4692                                       &bar0->rda_err_reg,
4693                                       &sw_stat->rda_err_cnt);
4694         }
4695
4696         if (val64 & RXDMA_INT_RTI_INT_M) {
4697                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4698                                           &bar0->rti_err_reg,
4699                                           &sw_stat->rti_err_cnt))
4700                         goto reset;
4701                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4702                                       &bar0->rti_err_reg,
4703                                       &sw_stat->rti_err_cnt);
4704         }
4705
4706         val64 = readq(&bar0->mac_int_status);
4707         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4708                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4709                                           &bar0->mac_rmac_err_reg,
4710                                           &sw_stat->mac_rmac_err_cnt))
4711                         goto reset;
4712                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4713                                       RMAC_SINGLE_ECC_ERR |
4714                                       RMAC_DOUBLE_ECC_ERR,
4715                                       &bar0->mac_rmac_err_reg,
4716                                       &sw_stat->mac_rmac_err_cnt);
4717         }
4718
4719         val64 = readq(&bar0->xgxs_int_status);
4720         if (val64 & XGXS_INT_STATUS_RXGXS) {
4721                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4722                                           &bar0->xgxs_rxgxs_err_reg,
4723                                           &sw_stat->xgxs_rxgxs_err_cnt))
4724                         goto reset;
4725         }
4726
4727         val64 = readq(&bar0->mc_int_status);
4728         if (val64 & MC_INT_STATUS_MC_INT) {
4729                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4730                                           &bar0->mc_err_reg,
4731                                           &sw_stat->mc_err_cnt))
4732                         goto reset;
4733
4734                 /* Handling Ecc errors */
4735                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4736                         writeq(val64, &bar0->mc_err_reg);
4737                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4738                                 sw_stat->double_ecc_errs++;
4739                                 if (sp->device_type != XFRAME_II_DEVICE) {
4740                                         /*
4741                                          * Reset XframeI only if critical error
4742                                          */
4743                                         if (val64 &
4744                                             (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4745                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4746                                                 goto reset;
4747                                 }
4748                         } else
4749                                 sw_stat->single_ecc_errs++;
4750                 }
4751         }
4752         return;
4753
4754 reset:
4755         s2io_stop_all_tx_queue(sp);
4756         schedule_work(&sp->rst_timer_task);
4757         sw_stat->soft_reset_cnt++;
4758 }
4759
4760 /**
4761  *  s2io_isr - ISR handler of the device .
4762  *  @irq: the irq of the device.
4763  *  @dev_id: a void pointer to the dev structure of the NIC.
4764  *  Description:  This function is the ISR handler of the device. It
4765  *  identifies the reason for the interrupt and calls the relevant
4766  *  service routines. As a contongency measure, this ISR allocates the
4767  *  recv buffers, if their numbers are below the panic value which is
4768  *  presently set to 25% of the original number of rcv buffers allocated.
4769  *  Return value:
4770  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4771  *   IRQ_NONE: will be returned if interrupt is not from our device
4772  */
4773 static irqreturn_t s2io_isr(int irq, void *dev_id)
4774 {
4775         struct net_device *dev = (struct net_device *)dev_id;
4776         struct s2io_nic *sp = netdev_priv(dev);
4777         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4778         int i;
4779         u64 reason = 0;
4780         struct mac_info *mac_control;
4781         struct config_param *config;
4782
4783         /* Pretend we handled any irq's from a disconnected card */
4784         if (pci_channel_offline(sp->pdev))
4785                 return IRQ_NONE;
4786
4787         if (!is_s2io_card_up(sp))
4788                 return IRQ_NONE;
4789
4790         config = &sp->config;
4791         mac_control = &sp->mac_control;
4792
4793         /*
4794          * Identify the cause for interrupt and call the appropriate
4795          * interrupt handler. Causes for the interrupt could be;
4796          * 1. Rx of packet.
4797          * 2. Tx complete.
4798          * 3. Link down.
4799          */
4800         reason = readq(&bar0->general_int_status);
4801
4802         if (unlikely(reason == S2IO_MINUS_ONE))
4803                 return IRQ_HANDLED;     /* Nothing much can be done. Get out */
4804
4805         if (reason &
4806             (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4807                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4808
4809                 if (config->napi) {
4810                         if (reason & GEN_INTR_RXTRAFFIC) {
4811                                 napi_schedule(&sp->napi);
4812                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4813                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4814                                 readl(&bar0->rx_traffic_int);
4815                         }
4816                 } else {
4817                         /*
4818                          * rx_traffic_int reg is an R1 register, writing all 1's
4819                          * will ensure that the actual interrupt causing bit
4820                          * get's cleared and hence a read can be avoided.
4821                          */
4822                         if (reason & GEN_INTR_RXTRAFFIC)
4823                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4824
4825                         for (i = 0; i < config->rx_ring_num; i++) {
4826                                 struct ring_info *ring = &mac_control->rings[i];
4827
4828                                 rx_intr_handler(ring, 0);
4829                         }
4830                 }
4831
4832                 /*
4833                  * tx_traffic_int reg is an R1 register, writing all 1's
4834                  * will ensure that the actual interrupt causing bit get's
4835                  * cleared and hence a read can be avoided.
4836                  */
4837                 if (reason & GEN_INTR_TXTRAFFIC)
4838                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4839
4840                 for (i = 0; i < config->tx_fifo_num; i++)
4841                         tx_intr_handler(&mac_control->fifos[i]);
4842
4843                 if (reason & GEN_INTR_TXPIC)
4844                         s2io_txpic_intr_handle(sp);
4845
4846                 /*
4847                  * Reallocate the buffers from the interrupt handler itself.
4848                  */
4849                 if (!config->napi) {
4850                         for (i = 0; i < config->rx_ring_num; i++) {
4851                                 struct ring_info *ring = &mac_control->rings[i];
4852
4853                                 s2io_chk_rx_buffers(sp, ring);
4854                         }
4855                 }
4856                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4857                 readl(&bar0->general_int_status);
4858
4859                 return IRQ_HANDLED;
4860
4861         } else if (!reason) {
4862                 /* The interrupt was not raised by us */
4863                 return IRQ_NONE;
4864         }
4865
4866         return IRQ_HANDLED;
4867 }
4868
4869 /**
4870  * s2io_updt_stats -
4871  */
4872 static void s2io_updt_stats(struct s2io_nic *sp)
4873 {
4874         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4875         u64 val64;
4876         int cnt = 0;
4877
4878         if (is_s2io_card_up(sp)) {
4879                 /* Apprx 30us on a 133 MHz bus */
4880                 val64 = SET_UPDT_CLICKS(10) |
4881                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4882                 writeq(val64, &bar0->stat_cfg);
4883                 do {
4884                         udelay(100);
4885                         val64 = readq(&bar0->stat_cfg);
4886                         if (!(val64 & s2BIT(0)))
4887                                 break;
4888                         cnt++;
4889                         if (cnt == 5)
4890                                 break; /* Updt failed */
4891                 } while (1);
4892         }
4893 }
4894
4895 /**
4896  *  s2io_get_stats - Updates the device statistics structure.
4897  *  @dev : pointer to the device structure.
4898  *  Description:
4899  *  This function updates the device statistics structure in the s2io_nic
4900  *  structure and returns a pointer to the same.
4901  *  Return value:
4902  *  pointer to the updated net_device_stats structure.
4903  */
4904
4905 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4906 {
4907         struct s2io_nic *sp = netdev_priv(dev);
4908         struct config_param *config = &sp->config;
4909         struct mac_info *mac_control = &sp->mac_control;
4910         struct stat_block *stats = mac_control->stats_info;
4911         int i;
4912
4913         /* Configure Stats for immediate updt */
4914         s2io_updt_stats(sp);
4915
4916         /* Using sp->stats as a staging area, because reset (due to mtu
4917            change, for example) will clear some hardware counters */
4918         dev->stats.tx_packets += le32_to_cpu(stats->tmac_frms) -
4919                 sp->stats.tx_packets;
4920         sp->stats.tx_packets = le32_to_cpu(stats->tmac_frms);
4921
4922         dev->stats.tx_errors += le32_to_cpu(stats->tmac_any_err_frms) -
4923                 sp->stats.tx_errors;
4924         sp->stats.tx_errors = le32_to_cpu(stats->tmac_any_err_frms);
4925
4926         dev->stats.rx_errors += le64_to_cpu(stats->rmac_drop_frms) -
4927                 sp->stats.rx_errors;
4928         sp->stats.rx_errors = le64_to_cpu(stats->rmac_drop_frms);
4929
4930         dev->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms) -
4931                 sp->stats.multicast;
4932         sp->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms);
4933
4934         dev->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms) -
4935                 sp->stats.rx_length_errors;
4936         sp->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms);
4937
4938         /* collect per-ring rx_packets and rx_bytes */
4939         dev->stats.rx_packets = dev->stats.rx_bytes = 0;
4940         for (i = 0; i < config->rx_ring_num; i++) {
4941                 struct ring_info *ring = &mac_control->rings[i];
4942
4943                 dev->stats.rx_packets += ring->rx_packets;
4944                 dev->stats.rx_bytes += ring->rx_bytes;
4945         }
4946
4947         return &dev->stats;
4948 }
4949
4950 /**
4951  *  s2io_set_multicast - entry point for multicast address enable/disable.
4952  *  @dev : pointer to the device structure
4953  *  Description:
4954  *  This function is a driver entry point which gets called by the kernel
4955  *  whenever multicast addresses must be enabled/disabled. This also gets
4956  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4957  *  determine, if multicast address must be enabled or if promiscuous mode
4958  *  is to be disabled etc.
4959  *  Return value:
4960  *  void.
4961  */
4962
4963 static void s2io_set_multicast(struct net_device *dev)
4964 {
4965         int i, j, prev_cnt;
4966         struct netdev_hw_addr *ha;
4967         struct s2io_nic *sp = netdev_priv(dev);
4968         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4969         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4970                 0xfeffffffffffULL;
4971         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4972         void __iomem *add;
4973         struct config_param *config = &sp->config;
4974
4975         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4976                 /*  Enable all Multicast addresses */
4977                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4978                        &bar0->rmac_addr_data0_mem);
4979                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4980                        &bar0->rmac_addr_data1_mem);
4981                 val64 = RMAC_ADDR_CMD_MEM_WE |
4982                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4983                         RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4984                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4985                 /* Wait till command completes */
4986                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4987                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4988                                       S2IO_BIT_RESET);
4989
4990                 sp->m_cast_flg = 1;
4991                 sp->all_multi_pos = config->max_mc_addr - 1;
4992         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4993                 /*  Disable all Multicast addresses */
4994                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4995                        &bar0->rmac_addr_data0_mem);
4996                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4997                        &bar0->rmac_addr_data1_mem);
4998                 val64 = RMAC_ADDR_CMD_MEM_WE |
4999                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5000                         RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
5001                 writeq(val64, &bar0->rmac_addr_cmd_mem);
5002                 /* Wait till command completes */
5003                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5004                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5005                                       S2IO_BIT_RESET);
5006
5007                 sp->m_cast_flg = 0;
5008                 sp->all_multi_pos = 0;
5009         }
5010
5011         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5012                 /*  Put the NIC into promiscuous mode */
5013                 add = &bar0->mac_cfg;
5014                 val64 = readq(&bar0->mac_cfg);
5015                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5016
5017                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5018                 writel((u32)val64, add);
5019                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5020                 writel((u32) (val64 >> 32), (add + 4));
5021
5022                 if (vlan_tag_strip != 1) {
5023                         val64 = readq(&bar0->rx_pa_cfg);
5024                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5025                         writeq(val64, &bar0->rx_pa_cfg);
5026                         sp->vlan_strip_flag = 0;
5027                 }
5028
5029                 val64 = readq(&bar0->mac_cfg);
5030                 sp->promisc_flg = 1;
5031                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5032                           dev->name);
5033         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5034                 /*  Remove the NIC from promiscuous mode */
5035                 add = &bar0->mac_cfg;
5036                 val64 = readq(&bar0->mac_cfg);
5037                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5038
5039                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5040                 writel((u32)val64, add);
5041                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5042                 writel((u32) (val64 >> 32), (add + 4));
5043
5044                 if (vlan_tag_strip != 0) {
5045                         val64 = readq(&bar0->rx_pa_cfg);
5046                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5047                         writeq(val64, &bar0->rx_pa_cfg);
5048                         sp->vlan_strip_flag = 1;
5049                 }
5050
5051                 val64 = readq(&bar0->mac_cfg);
5052                 sp->promisc_flg = 0;
5053                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5054         }
5055
5056         /*  Update individual M_CAST address list */
5057         if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5058                 if (netdev_mc_count(dev) >
5059                     (config->max_mc_addr - config->max_mac_addr)) {
5060                         DBG_PRINT(ERR_DBG,
5061                                   "%s: No more Rx filters can be added - "
5062                                   "please enable ALL_MULTI instead\n",
5063                                   dev->name);
5064                         return;
5065                 }
5066
5067                 prev_cnt = sp->mc_addr_count;
5068                 sp->mc_addr_count = netdev_mc_count(dev);
5069
5070                 /* Clear out the previous list of Mc in the H/W. */
5071                 for (i = 0; i < prev_cnt; i++) {
5072                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5073                                &bar0->rmac_addr_data0_mem);
5074                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5075                                &bar0->rmac_addr_data1_mem);
5076                         val64 = RMAC_ADDR_CMD_MEM_WE |
5077                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5078                                 RMAC_ADDR_CMD_MEM_OFFSET
5079                                 (config->mc_start_offset + i);
5080                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5081
5082                         /* Wait for command completes */
5083                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5084                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5085                                                   S2IO_BIT_RESET)) {
5086                                 DBG_PRINT(ERR_DBG,
5087                                           "%s: Adding Multicasts failed\n",
5088                                           dev->name);
5089                                 return;
5090                         }
5091                 }
5092
5093                 /* Create the new Rx filter list and update the same in H/W. */
5094                 i = 0;
5095                 netdev_for_each_mc_addr(ha, dev) {
5096                         memcpy(sp->usr_addrs[i].addr, ha->addr,
5097                                ETH_ALEN);
5098                         mac_addr = 0;
5099                         for (j = 0; j < ETH_ALEN; j++) {
5100                                 mac_addr |= ha->addr[j];
5101                                 mac_addr <<= 8;
5102                         }
5103                         mac_addr >>= 8;
5104                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5105                                &bar0->rmac_addr_data0_mem);
5106                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5107                                &bar0->rmac_addr_data1_mem);
5108                         val64 = RMAC_ADDR_CMD_MEM_WE |
5109                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5110                                 RMAC_ADDR_CMD_MEM_OFFSET
5111                                 (i + config->mc_start_offset);
5112                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5113
5114                         /* Wait for command completes */
5115                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5116                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5117                                                   S2IO_BIT_RESET)) {
5118                                 DBG_PRINT(ERR_DBG,
5119                                           "%s: Adding Multicasts failed\n",
5120                                           dev->name);
5121                                 return;
5122                         }
5123                         i++;
5124                 }
5125         }
5126 }
5127
5128 /* read from CAM unicast & multicast addresses and store it in
5129  * def_mac_addr structure
5130  */
5131 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5132 {
5133         int offset;
5134         u64 mac_addr = 0x0;
5135         struct config_param *config = &sp->config;
5136
5137         /* store unicast & multicast mac addresses */
5138         for (offset = 0; offset < config->max_mc_addr; offset++) {
5139                 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5140                 /* if read fails disable the entry */
5141                 if (mac_addr == FAILURE)
5142                         mac_addr = S2IO_DISABLE_MAC_ENTRY;
5143                 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5144         }
5145 }
5146
5147 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5148 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5149 {
5150         int offset;
5151         struct config_param *config = &sp->config;
5152         /* restore unicast mac address */
5153         for (offset = 0; offset < config->max_mac_addr; offset++)
5154                 do_s2io_prog_unicast(sp->dev,
5155                                      sp->def_mac_addr[offset].mac_addr);
5156
5157         /* restore multicast mac address */
5158         for (offset = config->mc_start_offset;
5159              offset < config->max_mc_addr; offset++)
5160                 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5161 }
5162
5163 /* add a multicast MAC address to CAM */
5164 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5165 {
5166         int i;
5167         u64 mac_addr = 0;
5168         struct config_param *config = &sp->config;
5169
5170         for (i = 0; i < ETH_ALEN; i++) {
5171                 mac_addr <<= 8;
5172                 mac_addr |= addr[i];
5173         }
5174         if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5175                 return SUCCESS;
5176
5177         /* check if the multicast mac already preset in CAM */
5178         for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5179                 u64 tmp64;
5180                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5181                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5182                         break;
5183
5184                 if (tmp64 == mac_addr)
5185                         return SUCCESS;
5186         }
5187         if (i == config->max_mc_addr) {
5188                 DBG_PRINT(ERR_DBG,
5189                           "CAM full no space left for multicast MAC\n");
5190                 return FAILURE;
5191         }
5192         /* Update the internal structure with this new mac address */
5193         do_s2io_copy_mac_addr(sp, i, mac_addr);
5194
5195         return do_s2io_add_mac(sp, mac_addr, i);
5196 }
5197
5198 /* add MAC address to CAM */
5199 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5200 {
5201         u64 val64;
5202         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5203
5204         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5205                &bar0->rmac_addr_data0_mem);
5206
5207         val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5208                 RMAC_ADDR_CMD_MEM_OFFSET(off);
5209         writeq(val64, &bar0->rmac_addr_cmd_mem);
5210
5211         /* Wait till command completes */
5212         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5213                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5214                                   S2IO_BIT_RESET)) {
5215                 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5216                 return FAILURE;
5217         }
5218         return SUCCESS;
5219 }
5220 /* deletes a specified unicast/multicast mac entry from CAM */
5221 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5222 {
5223         int offset;
5224         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5225         struct config_param *config = &sp->config;
5226
5227         for (offset = 1;
5228              offset < config->max_mc_addr; offset++) {
5229                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5230                 if (tmp64 == addr) {
5231                         /* disable the entry by writing  0xffffffffffffULL */
5232                         if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5233                                 return FAILURE;
5234                         /* store the new mac list from CAM */
5235                         do_s2io_store_unicast_mc(sp);
5236                         return SUCCESS;
5237                 }
5238         }
5239         DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5240                   (unsigned long long)addr);
5241         return FAILURE;
5242 }
5243
5244 /* read mac entries from CAM */
5245 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5246 {
5247         u64 tmp64 = 0xffffffffffff0000ULL, val64;
5248         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5249
5250         /* read mac addr */
5251         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5252                 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5253         writeq(val64, &bar0->rmac_addr_cmd_mem);
5254
5255         /* Wait till command completes */
5256         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5257                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5258                                   S2IO_BIT_RESET)) {
5259                 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5260                 return FAILURE;
5261         }
5262         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5263
5264         return tmp64 >> 16;
5265 }
5266
5267 /**
5268  * s2io_set_mac_addr driver entry point
5269  */
5270
5271 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5272 {
5273         struct sockaddr *addr = p;
5274
5275         if (!is_valid_ether_addr(addr->sa_data))
5276                 return -EINVAL;
5277
5278         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5279
5280         /* store the MAC address in CAM */
5281         return do_s2io_prog_unicast(dev, dev->dev_addr);
5282 }
5283 /**
5284  *  do_s2io_prog_unicast - Programs the Xframe mac address
5285  *  @dev : pointer to the device structure.
5286  *  @addr: a uchar pointer to the new mac address which is to be set.
5287  *  Description : This procedure will program the Xframe to receive
5288  *  frames with new Mac Address
5289  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5290  *  as defined in errno.h file on failure.
5291  */
5292
5293 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5294 {
5295         struct s2io_nic *sp = netdev_priv(dev);
5296         register u64 mac_addr = 0, perm_addr = 0;
5297         int i;
5298         u64 tmp64;
5299         struct config_param *config = &sp->config;
5300
5301         /*
5302          * Set the new MAC address as the new unicast filter and reflect this
5303          * change on the device address registered with the OS. It will be
5304          * at offset 0.
5305          */
5306         for (i = 0; i < ETH_ALEN; i++) {
5307                 mac_addr <<= 8;
5308                 mac_addr |= addr[i];
5309                 perm_addr <<= 8;
5310                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5311         }
5312
5313         /* check if the dev_addr is different than perm_addr */
5314         if (mac_addr == perm_addr)
5315                 return SUCCESS;
5316
5317         /* check if the mac already preset in CAM */
5318         for (i = 1; i < config->max_mac_addr; i++) {
5319                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5320                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5321                         break;
5322
5323                 if (tmp64 == mac_addr) {
5324                         DBG_PRINT(INFO_DBG,
5325                                   "MAC addr:0x%llx already present in CAM\n",
5326                                   (unsigned long long)mac_addr);
5327                         return SUCCESS;
5328                 }
5329         }
5330         if (i == config->max_mac_addr) {
5331                 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5332                 return FAILURE;
5333         }
5334         /* Update the internal structure with this new mac address */
5335         do_s2io_copy_mac_addr(sp, i, mac_addr);
5336
5337         return do_s2io_add_mac(sp, mac_addr, i);
5338 }
5339
5340 /**
5341  * s2io_ethtool_sset - Sets different link parameters.
5342  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5343  * @info: pointer to the structure with parameters given by ethtool to set
5344  * link information.
5345  * Description:
5346  * The function sets different link parameters provided by the user onto
5347  * the NIC.
5348  * Return value:
5349  * 0 on success.
5350  */
5351
5352 static int s2io_ethtool_sset(struct net_device *dev,
5353                              struct ethtool_cmd *info)
5354 {
5355         struct s2io_nic *sp = netdev_priv(dev);
5356         if ((info->autoneg == AUTONEG_ENABLE) ||
5357             (info->speed != SPEED_10000) ||
5358             (info->duplex != DUPLEX_FULL))
5359                 return -EINVAL;
5360         else {
5361                 s2io_close(sp->dev);
5362                 s2io_open(sp->dev);
5363         }
5364
5365         return 0;
5366 }
5367
5368 /**
5369  * s2io_ethtol_gset - Return link specific information.
5370  * @sp : private member of the device structure, pointer to the
5371  *      s2io_nic structure.
5372  * @info : pointer to the structure with parameters given by ethtool
5373  * to return link information.
5374  * Description:
5375  * Returns link specific information like speed, duplex etc.. to ethtool.
5376  * Return value :
5377  * return 0 on success.
5378  */
5379
5380 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5381 {
5382         struct s2io_nic *sp = netdev_priv(dev);
5383         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5384         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5385         info->port = PORT_FIBRE;
5386
5387         /* info->transceiver */
5388         info->transceiver = XCVR_EXTERNAL;
5389
5390         if (netif_carrier_ok(sp->dev)) {
5391                 info->speed = 10000;
5392                 info->duplex = DUPLEX_FULL;
5393         } else {
5394                 info->speed = -1;
5395                 info->duplex = -1;
5396         }
5397
5398         info->autoneg = AUTONEG_DISABLE;
5399         return 0;
5400 }
5401
5402 /**
5403  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5404  * @sp : private member of the device structure, which is a pointer to the
5405  * s2io_nic structure.
5406  * @info : pointer to the structure with parameters given by ethtool to
5407  * return driver information.
5408  * Description:
5409  * Returns driver specefic information like name, version etc.. to ethtool.
5410  * Return value:
5411  *  void
5412  */
5413
5414 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5415                                   struct ethtool_drvinfo *info)
5416 {
5417         struct s2io_nic *sp = netdev_priv(dev);
5418
5419         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5420         strncpy(info->version, s2io_driver_version, sizeof(info->version));
5421         strncpy(info->fw_version, "", sizeof(info->fw_version));
5422         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5423         info->regdump_len = XENA_REG_SPACE;
5424         info->eedump_len = XENA_EEPROM_SPACE;
5425 }
5426
5427 /**
5428  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5429  *  @sp: private member of the device structure, which is a pointer to the
5430  *  s2io_nic structure.
5431  *  @regs : pointer to the structure with parameters given by ethtool for
5432  *  dumping the registers.
5433  *  @reg_space: The input argumnet into which all the registers are dumped.
5434  *  Description:
5435  *  Dumps the entire register space of xFrame NIC into the user given
5436  *  buffer area.
5437  * Return value :
5438  * void .
5439  */
5440
5441 static void s2io_ethtool_gregs(struct net_device *dev,
5442                                struct ethtool_regs *regs, void *space)
5443 {
5444         int i;
5445         u64 reg;
5446         u8 *reg_space = (u8 *)space;
5447         struct s2io_nic *sp = netdev_priv(dev);
5448
5449         regs->len = XENA_REG_SPACE;
5450         regs->version = sp->pdev->subsystem_device;
5451
5452         for (i = 0; i < regs->len; i += 8) {
5453                 reg = readq(sp->bar0 + i);
5454                 memcpy((reg_space + i), &reg, 8);
5455         }
5456 }
5457
5458 /**
5459  *  s2io_phy_id  - timer function that alternates adapter LED.
5460  *  @data : address of the private member of the device structure, which
5461  *  is a pointer to the s2io_nic structure, provided as an u32.
5462  * Description: This is actually the timer function that alternates the
5463  * adapter LED bit of the adapter control bit to set/reset every time on
5464  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5465  *  once every second.
5466  */
5467 static void s2io_phy_id(unsigned long data)
5468 {
5469         struct s2io_nic *sp = (struct s2io_nic *)data;
5470         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5471         u64 val64 = 0;
5472         u16 subid;
5473
5474         subid = sp->pdev->subsystem_device;
5475         if ((sp->device_type == XFRAME_II_DEVICE) ||
5476             ((subid & 0xFF) >= 0x07)) {
5477                 val64 = readq(&bar0->gpio_control);
5478                 val64 ^= GPIO_CTRL_GPIO_0;
5479                 writeq(val64, &bar0->gpio_control);
5480         } else {
5481                 val64 = readq(&bar0->adapter_control);
5482                 val64 ^= ADAPTER_LED_ON;
5483                 writeq(val64, &bar0->adapter_control);
5484         }
5485
5486         mod_timer(&sp->id_timer, jiffies + HZ / 2);
5487 }
5488
5489 /**
5490  * s2io_ethtool_idnic - To physically identify the nic on the system.
5491  * @sp : private member of the device structure, which is a pointer to the
5492  * s2io_nic structure.
5493  * @id : pointer to the structure with identification parameters given by
5494  * ethtool.
5495  * Description: Used to physically identify the NIC on the system.
5496  * The Link LED will blink for a time specified by the user for
5497  * identification.
5498  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5499  * identification is possible only if it's link is up.
5500  * Return value:
5501  * int , returns 0 on success
5502  */
5503
5504 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5505 {
5506         u64 val64 = 0, last_gpio_ctrl_val;
5507         struct s2io_nic *sp = netdev_priv(dev);
5508         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5509         u16 subid;
5510
5511         subid = sp->pdev->subsystem_device;
5512         last_gpio_ctrl_val = readq(&bar0->gpio_control);
5513         if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5514                 val64 = readq(&bar0->adapter_control);
5515                 if (!(val64 & ADAPTER_CNTL_EN)) {
5516                         pr_err("Adapter Link down, cannot blink LED\n");
5517                         return -EFAULT;
5518                 }
5519         }
5520         if (sp->id_timer.function == NULL) {
5521                 init_timer(&sp->id_timer);
5522                 sp->id_timer.function = s2io_phy_id;
5523                 sp->id_timer.data = (unsigned long)sp;
5524         }
5525         mod_timer(&sp->id_timer, jiffies);
5526         if (data)
5527                 msleep_interruptible(data * HZ);
5528         else
5529                 msleep_interruptible(MAX_FLICKER_TIME);
5530         del_timer_sync(&sp->id_timer);
5531
5532         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5533                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5534                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5535         }
5536
5537         return 0;
5538 }
5539
5540 static void s2io_ethtool_gringparam(struct net_device *dev,
5541                                     struct ethtool_ringparam *ering)
5542 {
5543         struct s2io_nic *sp = netdev_priv(dev);
5544         int i, tx_desc_count = 0, rx_desc_count = 0;
5545
5546         if (sp->rxd_mode == RXD_MODE_1)
5547                 ering->rx_max_pending = MAX_RX_DESC_1;
5548         else if (sp->rxd_mode == RXD_MODE_3B)
5549                 ering->rx_max_pending = MAX_RX_DESC_2;
5550
5551         ering->tx_max_pending = MAX_TX_DESC;
5552         for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5553                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5554
5555         DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5556         ering->tx_pending = tx_desc_count;
5557         rx_desc_count = 0;
5558         for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5559                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5560
5561         ering->rx_pending = rx_desc_count;
5562
5563         ering->rx_mini_max_pending = 0;
5564         ering->rx_mini_pending = 0;
5565         if (sp->rxd_mode == RXD_MODE_1)
5566                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5567         else if (sp->rxd_mode == RXD_MODE_3B)
5568                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5569         ering->rx_jumbo_pending = rx_desc_count;
5570 }
5571
5572 /**
5573  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5574  * @sp : private member of the device structure, which is a pointer to the
5575  *      s2io_nic structure.
5576  * @ep : pointer to the structure with pause parameters given by ethtool.
5577  * Description:
5578  * Returns the Pause frame generation and reception capability of the NIC.
5579  * Return value:
5580  *  void
5581  */
5582 static void s2io_ethtool_getpause_data(struct net_device *dev,
5583                                        struct ethtool_pauseparam *ep)
5584 {
5585         u64 val64;
5586         struct s2io_nic *sp = netdev_priv(dev);
5587         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5588
5589         val64 = readq(&bar0->rmac_pause_cfg);
5590         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5591                 ep->tx_pause = true;
5592         if (val64 & RMAC_PAUSE_RX_ENABLE)
5593                 ep->rx_pause = true;
5594         ep->autoneg = false;
5595 }
5596
5597 /**
5598  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5599  * @sp : private member of the device structure, which is a pointer to the
5600  *      s2io_nic structure.
5601  * @ep : pointer to the structure with pause parameters given by ethtool.
5602  * Description:
5603  * It can be used to set or reset Pause frame generation or reception
5604  * support of the NIC.
5605  * Return value:
5606  * int, returns 0 on Success
5607  */
5608
5609 static int s2io_ethtool_setpause_data(struct net_device *dev,
5610                                       struct ethtool_pauseparam *ep)
5611 {
5612         u64 val64;
5613         struct s2io_nic *sp = netdev_priv(dev);
5614         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5615
5616         val64 = readq(&bar0->rmac_pause_cfg);
5617         if (ep->tx_pause)
5618                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5619         else
5620                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5621         if (ep->rx_pause)
5622                 val64 |= RMAC_PAUSE_RX_ENABLE;
5623         else
5624                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5625         writeq(val64, &bar0->rmac_pause_cfg);
5626         return 0;
5627 }
5628
5629 /**
5630  * read_eeprom - reads 4 bytes of data from user given offset.
5631  * @sp : private member of the device structure, which is a pointer to the
5632  *      s2io_nic structure.
5633  * @off : offset at which the data must be written
5634  * @data : Its an output parameter where the data read at the given
5635  *      offset is stored.
5636  * Description:
5637  * Will read 4 bytes of data from the user given offset and return the
5638  * read data.
5639  * NOTE: Will allow to read only part of the EEPROM visible through the
5640  *   I2C bus.
5641  * Return value:
5642  *  -1 on failure and 0 on success.
5643  */
5644
5645 #define S2IO_DEV_ID             5
5646 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5647 {
5648         int ret = -1;
5649         u32 exit_cnt = 0;
5650         u64 val64;
5651         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5652
5653         if (sp->device_type == XFRAME_I_DEVICE) {
5654                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5655                         I2C_CONTROL_ADDR(off) |
5656                         I2C_CONTROL_BYTE_CNT(0x3) |
5657                         I2C_CONTROL_READ |
5658                         I2C_CONTROL_CNTL_START;
5659                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5660
5661                 while (exit_cnt < 5) {
5662                         val64 = readq(&bar0->i2c_control);
5663                         if (I2C_CONTROL_CNTL_END(val64)) {
5664                                 *data = I2C_CONTROL_GET_DATA(val64);
5665                                 ret = 0;
5666                                 break;
5667                         }
5668                         msleep(50);
5669                         exit_cnt++;
5670                 }
5671         }
5672
5673         if (sp->device_type == XFRAME_II_DEVICE) {
5674                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5675                         SPI_CONTROL_BYTECNT(0x3) |
5676                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5677                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5678                 val64 |= SPI_CONTROL_REQ;
5679                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5680                 while (exit_cnt < 5) {
5681                         val64 = readq(&bar0->spi_control);
5682                         if (val64 & SPI_CONTROL_NACK) {
5683                                 ret = 1;
5684                                 break;
5685                         } else if (val64 & SPI_CONTROL_DONE) {
5686                                 *data = readq(&bar0->spi_data);
5687                                 *data &= 0xffffff;
5688                                 ret = 0;
5689                                 break;
5690                         }
5691                         msleep(50);
5692                         exit_cnt++;
5693                 }
5694         }
5695         return ret;
5696 }
5697
5698 /**
5699  *  write_eeprom - actually writes the relevant part of the data value.
5700  *  @sp : private member of the device structure, which is a pointer to the
5701  *       s2io_nic structure.
5702  *  @off : offset at which the data must be written
5703  *  @data : The data that is to be written
5704  *  @cnt : Number of bytes of the data that are actually to be written into
5705  *  the Eeprom. (max of 3)
5706  * Description:
5707  *  Actually writes the relevant part of the data value into the Eeprom
5708  *  through the I2C bus.
5709  * Return value:
5710  *  0 on success, -1 on failure.
5711  */
5712
5713 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5714 {
5715         int exit_cnt = 0, ret = -1;
5716         u64 val64;
5717         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5718
5719         if (sp->device_type == XFRAME_I_DEVICE) {
5720                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5721                         I2C_CONTROL_ADDR(off) |
5722                         I2C_CONTROL_BYTE_CNT(cnt) |
5723                         I2C_CONTROL_SET_DATA((u32)data) |
5724                         I2C_CONTROL_CNTL_START;
5725                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5726
5727                 while (exit_cnt < 5) {
5728                         val64 = readq(&bar0->i2c_control);
5729                         if (I2C_CONTROL_CNTL_END(val64)) {
5730                                 if (!(val64 & I2C_CONTROL_NACK))
5731                                         ret = 0;
5732                                 break;
5733                         }
5734                         msleep(50);
5735                         exit_cnt++;
5736                 }
5737         }
5738
5739         if (sp->device_type == XFRAME_II_DEVICE) {
5740                 int write_cnt = (cnt == 8) ? 0 : cnt;
5741                 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5742
5743                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5744                         SPI_CONTROL_BYTECNT(write_cnt) |
5745                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5746                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5747                 val64 |= SPI_CONTROL_REQ;
5748                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5749                 while (exit_cnt < 5) {
5750                         val64 = readq(&bar0->spi_control);
5751                         if (val64 & SPI_CONTROL_NACK) {
5752                                 ret = 1;
5753                                 break;
5754                         } else if (val64 & SPI_CONTROL_DONE) {
5755                                 ret = 0;
5756                                 break;
5757                         }
5758                         msleep(50);
5759                         exit_cnt++;
5760                 }
5761         }
5762         return ret;
5763 }
5764 static void s2io_vpd_read(struct s2io_nic *nic)
5765 {
5766         u8 *vpd_data;
5767         u8 data;
5768         int i = 0, cnt, fail = 0;
5769         int vpd_addr = 0x80;
5770         struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5771
5772         if (nic->device_type == XFRAME_II_DEVICE) {
5773                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5774                 vpd_addr = 0x80;
5775         } else {
5776                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5777                 vpd_addr = 0x50;
5778         }
5779         strcpy(nic->serial_num, "NOT AVAILABLE");
5780
5781         vpd_data = kmalloc(256, GFP_KERNEL);
5782         if (!vpd_data) {
5783                 swstats->mem_alloc_fail_cnt++;
5784                 return;
5785         }
5786         swstats->mem_allocated += 256;
5787
5788         for (i = 0; i < 256; i += 4) {
5789                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5790                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5791                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5792                 for (cnt = 0; cnt < 5; cnt++) {
5793                         msleep(2);
5794                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5795                         if (data == 0x80)
5796                                 break;
5797                 }
5798                 if (cnt >= 5) {
5799                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5800                         fail = 1;
5801                         break;
5802                 }
5803                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5804                                       (u32 *)&vpd_data[i]);
5805         }
5806
5807         if (!fail) {
5808                 /* read serial number of adapter */
5809                 for (cnt = 0; cnt < 256; cnt++) {
5810                         if ((vpd_data[cnt] == 'S') &&
5811                             (vpd_data[cnt+1] == 'N') &&
5812                             (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5813                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5814                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5815                                        vpd_data[cnt+2]);
5816                                 break;
5817                         }
5818                 }
5819         }
5820
5821         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN))
5822                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5823         kfree(vpd_data);
5824         swstats->mem_freed += 256;
5825 }
5826
5827 /**
5828  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5829  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5830  *  @eeprom : pointer to the user level structure provided by ethtool,
5831  *  containing all relevant information.
5832  *  @data_buf : user defined value to be written into Eeprom.
5833  *  Description: Reads the values stored in the Eeprom at given offset
5834  *  for a given length. Stores these values int the input argument data
5835  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5836  *  Return value:
5837  *  int  0 on success
5838  */
5839
5840 static int s2io_ethtool_geeprom(struct net_device *dev,
5841                                 struct ethtool_eeprom *eeprom, u8 * data_buf)
5842 {
5843         u32 i, valid;
5844         u64 data;
5845         struct s2io_nic *sp = netdev_priv(dev);
5846
5847         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5848
5849         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5850                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5851
5852         for (i = 0; i < eeprom->len; i += 4) {
5853                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5854                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5855                         return -EFAULT;
5856                 }
5857                 valid = INV(data);
5858                 memcpy((data_buf + i), &valid, 4);
5859         }
5860         return 0;
5861 }
5862
5863 /**
5864  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5865  *  @sp : private member of the device structure, which is a pointer to the
5866  *  s2io_nic structure.
5867  *  @eeprom : pointer to the user level structure provided by ethtool,
5868  *  containing all relevant information.
5869  *  @data_buf ; user defined value to be written into Eeprom.
5870  *  Description:
5871  *  Tries to write the user provided value in the Eeprom, at the offset
5872  *  given by the user.
5873  *  Return value:
5874  *  0 on success, -EFAULT on failure.
5875  */
5876
5877 static int s2io_ethtool_seeprom(struct net_device *dev,
5878                                 struct ethtool_eeprom *eeprom,
5879                                 u8 *data_buf)
5880 {
5881         int len = eeprom->len, cnt = 0;
5882         u64 valid = 0, data;
5883         struct s2io_nic *sp = netdev_priv(dev);
5884
5885         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5886                 DBG_PRINT(ERR_DBG,
5887                           "ETHTOOL_WRITE_EEPROM Err: "
5888                           "Magic value is wrong, it is 0x%x should be 0x%x\n",
5889                           (sp->pdev->vendor | (sp->pdev->device << 16)),
5890                           eeprom->magic);
5891                 return -EFAULT;
5892         }
5893
5894         while (len) {
5895                 data = (u32)data_buf[cnt] & 0x000000FF;
5896                 if (data)
5897                         valid = (u32)(data << 24);
5898                 else
5899                         valid = data;
5900
5901                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5902                         DBG_PRINT(ERR_DBG,
5903                                   "ETHTOOL_WRITE_EEPROM Err: "
5904                                   "Cannot write into the specified offset\n");
5905                         return -EFAULT;
5906                 }
5907                 cnt++;
5908                 len--;
5909         }
5910
5911         return 0;
5912 }
5913
5914 /**
5915  * s2io_register_test - reads and writes into all clock domains.
5916  * @sp : private member of the device structure, which is a pointer to the
5917  * s2io_nic structure.
5918  * @data : variable that returns the result of each of the test conducted b
5919  * by the driver.
5920  * Description:
5921  * Read and write into all clock domains. The NIC has 3 clock domains,
5922  * see that registers in all the three regions are accessible.
5923  * Return value:
5924  * 0 on success.
5925  */
5926
5927 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5928 {
5929         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5930         u64 val64 = 0, exp_val;
5931         int fail = 0;
5932
5933         val64 = readq(&bar0->pif_rd_swapper_fb);
5934         if (val64 != 0x123456789abcdefULL) {
5935                 fail = 1;
5936                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5937         }
5938
5939         val64 = readq(&bar0->rmac_pause_cfg);
5940         if (val64 != 0xc000ffff00000000ULL) {
5941                 fail = 1;
5942                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5943         }
5944
5945         val64 = readq(&bar0->rx_queue_cfg);
5946         if (sp->device_type == XFRAME_II_DEVICE)
5947                 exp_val = 0x0404040404040404ULL;
5948         else
5949                 exp_val = 0x0808080808080808ULL;
5950         if (val64 != exp_val) {
5951                 fail = 1;
5952                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5953         }
5954
5955         val64 = readq(&bar0->xgxs_efifo_cfg);
5956         if (val64 != 0x000000001923141EULL) {
5957                 fail = 1;
5958                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5959         }
5960
5961         val64 = 0x5A5A5A5A5A5A5A5AULL;
5962         writeq(val64, &bar0->xmsi_data);
5963         val64 = readq(&bar0->xmsi_data);
5964         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5965                 fail = 1;
5966                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5967         }
5968
5969         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5970         writeq(val64, &bar0->xmsi_data);
5971         val64 = readq(&bar0->xmsi_data);
5972         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5973                 fail = 1;
5974                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5975         }
5976
5977         *data = fail;
5978         return fail;
5979 }
5980
5981 /**
5982  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5983  * @sp : private member of the device structure, which is a pointer to the
5984  * s2io_nic structure.
5985  * @data:variable that returns the result of each of the test conducted by
5986  * the driver.
5987  * Description:
5988  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5989  * register.
5990  * Return value:
5991  * 0 on success.
5992  */
5993
5994 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5995 {
5996         int fail = 0;
5997         u64 ret_data, org_4F0, org_7F0;
5998         u8 saved_4F0 = 0, saved_7F0 = 0;
5999         struct net_device *dev = sp->dev;
6000
6001         /* Test Write Error at offset 0 */
6002         /* Note that SPI interface allows write access to all areas
6003          * of EEPROM. Hence doing all negative testing only for Xframe I.
6004          */
6005         if (sp->device_type == XFRAME_I_DEVICE)
6006                 if (!write_eeprom(sp, 0, 0, 3))
6007                         fail = 1;
6008
6009         /* Save current values at offsets 0x4F0 and 0x7F0 */
6010         if (!read_eeprom(sp, 0x4F0, &org_4F0))
6011                 saved_4F0 = 1;
6012         if (!read_eeprom(sp, 0x7F0, &org_7F0))
6013                 saved_7F0 = 1;
6014
6015         /* Test Write at offset 4f0 */
6016         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6017                 fail = 1;
6018         if (read_eeprom(sp, 0x4F0, &ret_data))
6019                 fail = 1;
6020
6021         if (ret_data != 0x012345) {
6022                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6023                           "Data written %llx Data read %llx\n",
6024                           dev->name, (unsigned long long)0x12345,
6025                           (unsigned long long)ret_data);
6026                 fail = 1;
6027         }
6028
6029         /* Reset the EEPROM data go FFFF */
6030         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6031
6032         /* Test Write Request Error at offset 0x7c */
6033         if (sp->device_type == XFRAME_I_DEVICE)
6034                 if (!write_eeprom(sp, 0x07C, 0, 3))
6035                         fail = 1;
6036
6037         /* Test Write Request at offset 0x7f0 */
6038         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6039                 fail = 1;
6040         if (read_eeprom(sp, 0x7F0, &ret_data))
6041                 fail = 1;
6042
6043         if (ret_data != 0x012345) {
6044                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6045                           "Data written %llx Data read %llx\n",
6046                           dev->name, (unsigned long long)0x12345,
6047                           (unsigned long long)ret_data);
6048                 fail = 1;
6049         }
6050
6051         /* Reset the EEPROM data go FFFF */
6052         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6053
6054         if (sp->device_type == XFRAME_I_DEVICE) {
6055                 /* Test Write Error at offset 0x80 */
6056                 if (!write_eeprom(sp, 0x080, 0, 3))
6057                         fail = 1;
6058
6059                 /* Test Write Error at offset 0xfc */
6060                 if (!write_eeprom(sp, 0x0FC, 0, 3))
6061                         fail = 1;
6062
6063                 /* Test Write Error at offset 0x100 */
6064                 if (!write_eeprom(sp, 0x100, 0, 3))
6065                         fail = 1;
6066
6067                 /* Test Write Error at offset 4ec */
6068                 if (!write_eeprom(sp, 0x4EC, 0, 3))
6069                         fail = 1;
6070         }
6071
6072         /* Restore values at offsets 0x4F0 and 0x7F0 */
6073         if (saved_4F0)
6074                 write_eeprom(sp, 0x4F0, org_4F0, 3);
6075         if (saved_7F0)
6076                 write_eeprom(sp, 0x7F0, org_7F0, 3);
6077
6078         *data = fail;
6079         return fail;
6080 }
6081
6082 /**
6083  * s2io_bist_test - invokes the MemBist test of the card .
6084  * @sp : private member of the device structure, which is a pointer to the
6085  * s2io_nic structure.
6086  * @data:variable that returns the result of each of the test conducted by
6087  * the driver.
6088  * Description:
6089  * This invokes the MemBist test of the card. We give around
6090  * 2 secs time for the Test to complete. If it's still not complete
6091  * within this peiod, we consider that the test failed.
6092  * Return value:
6093  * 0 on success and -1 on failure.
6094  */
6095
6096 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6097 {
6098         u8 bist = 0;
6099         int cnt = 0, ret = -1;
6100
6101         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6102         bist |= PCI_BIST_START;
6103         pci_write_config_word(sp->pdev, PCI_BIST, bist);
6104
6105         while (cnt < 20) {
6106                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6107                 if (!(bist & PCI_BIST_START)) {
6108                         *data = (bist & PCI_BIST_CODE_MASK);
6109                         ret = 0;
6110                         break;
6111                 }
6112                 msleep(100);
6113                 cnt++;
6114         }
6115
6116         return ret;
6117 }
6118
6119 /**
6120  * s2io-link_test - verifies the link state of the nic
6121  * @sp ; private member of the device structure, which is a pointer to the
6122  * s2io_nic structure.
6123  * @data: variable that returns the result of each of the test conducted by
6124  * the driver.
6125  * Description:
6126  * The function verifies the link state of the NIC and updates the input
6127  * argument 'data' appropriately.
6128  * Return value:
6129  * 0 on success.
6130  */
6131
6132 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6133 {
6134         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6135         u64 val64;
6136
6137         val64 = readq(&bar0->adapter_status);
6138         if (!(LINK_IS_UP(val64)))
6139                 *data = 1;
6140         else
6141                 *data = 0;
6142
6143         return *data;
6144 }
6145
6146 /**
6147  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6148  * @sp - private member of the device structure, which is a pointer to the
6149  * s2io_nic structure.
6150  * @data - variable that returns the result of each of the test
6151  * conducted by the driver.
6152  * Description:
6153  *  This is one of the offline test that tests the read and write
6154  *  access to the RldRam chip on the NIC.
6155  * Return value:
6156  *  0 on success.
6157  */
6158
6159 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6160 {
6161         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6162         u64 val64;
6163         int cnt, iteration = 0, test_fail = 0;
6164
6165         val64 = readq(&bar0->adapter_control);
6166         val64 &= ~ADAPTER_ECC_EN;
6167         writeq(val64, &bar0->adapter_control);
6168
6169         val64 = readq(&bar0->mc_rldram_test_ctrl);
6170         val64 |= MC_RLDRAM_TEST_MODE;
6171         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6172
6173         val64 = readq(&bar0->mc_rldram_mrs);
6174         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6175         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6176
6177         val64 |= MC_RLDRAM_MRS_ENABLE;
6178         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6179
6180         while (iteration < 2) {
6181                 val64 = 0x55555555aaaa0000ULL;
6182                 if (iteration == 1)
6183                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6184                 writeq(val64, &bar0->mc_rldram_test_d0);
6185
6186                 val64 = 0xaaaa5a5555550000ULL;
6187                 if (iteration == 1)
6188                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6189                 writeq(val64, &bar0->mc_rldram_test_d1);
6190
6191                 val64 = 0x55aaaaaaaa5a0000ULL;
6192                 if (iteration == 1)
6193                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6194                 writeq(val64, &bar0->mc_rldram_test_d2);
6195
6196                 val64 = (u64) (0x0000003ffffe0100ULL);
6197                 writeq(val64, &bar0->mc_rldram_test_add);
6198
6199                 val64 = MC_RLDRAM_TEST_MODE |
6200                         MC_RLDRAM_TEST_WRITE |
6201                         MC_RLDRAM_TEST_GO;
6202                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6203
6204                 for (cnt = 0; cnt < 5; cnt++) {
6205                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6206                         if (val64 & MC_RLDRAM_TEST_DONE)
6207                                 break;
6208                         msleep(200);
6209                 }
6210
6211                 if (cnt == 5)
6212                         break;
6213
6214                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6215                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6216
6217                 for (cnt = 0; cnt < 5; cnt++) {
6218                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6219                         if (val64 & MC_RLDRAM_TEST_DONE)
6220                                 break;
6221                         msleep(500);
6222                 }
6223
6224                 if (cnt == 5)
6225                         break;
6226
6227                 val64 = readq(&bar0->mc_rldram_test_ctrl);
6228                 if (!(val64 & MC_RLDRAM_TEST_PASS))
6229                         test_fail = 1;
6230
6231                 iteration++;
6232         }
6233
6234         *data = test_fail;
6235
6236         /* Bring the adapter out of test mode */
6237         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6238
6239         return test_fail;
6240 }
6241
6242 /**
6243  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6244  *  @sp : private member of the device structure, which is a pointer to the
6245  *  s2io_nic structure.
6246  *  @ethtest : pointer to a ethtool command specific structure that will be
6247  *  returned to the user.
6248  *  @data : variable that returns the result of each of the test
6249  * conducted by the driver.
6250  * Description:
6251  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6252  *  the health of the card.
6253  * Return value:
6254  *  void
6255  */
6256
6257 static void s2io_ethtool_test(struct net_device *dev,
6258                               struct ethtool_test *ethtest,
6259                               uint64_t *data)
6260 {
6261         struct s2io_nic *sp = netdev_priv(dev);
6262         int orig_state = netif_running(sp->dev);
6263
6264         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6265                 /* Offline Tests. */
6266                 if (orig_state)
6267                         s2io_close(sp->dev);
6268
6269                 if (s2io_register_test(sp, &data[0]))
6270                         ethtest->flags |= ETH_TEST_FL_FAILED;
6271
6272                 s2io_reset(sp);
6273
6274                 if (s2io_rldram_test(sp, &data[3]))
6275                         ethtest->flags |= ETH_TEST_FL_FAILED;
6276
6277                 s2io_reset(sp);
6278
6279                 if (s2io_eeprom_test(sp, &data[1]))
6280                         ethtest->flags |= ETH_TEST_FL_FAILED;
6281
6282                 if (s2io_bist_test(sp, &data[4]))
6283                         ethtest->flags |= ETH_TEST_FL_FAILED;
6284
6285                 if (orig_state)
6286                         s2io_open(sp->dev);
6287
6288                 data[2] = 0;
6289         } else {
6290                 /* Online Tests. */
6291                 if (!orig_state) {
6292                         DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6293                                   dev->name);
6294                         data[0] = -1;
6295                         data[1] = -1;
6296                         data[2] = -1;
6297                         data[3] = -1;
6298                         data[4] = -1;
6299                 }
6300
6301                 if (s2io_link_test(sp, &data[2]))
6302                         ethtest->flags |= ETH_TEST_FL_FAILED;
6303
6304                 data[0] = 0;
6305                 data[1] = 0;
6306                 data[3] = 0;
6307                 data[4] = 0;
6308         }
6309 }
6310
6311 static void s2io_get_ethtool_stats(struct net_device *dev,
6312                                    struct ethtool_stats *estats,
6313                                    u64 *tmp_stats)
6314 {
6315         int i = 0, k;
6316         struct s2io_nic *sp = netdev_priv(dev);
6317         struct stat_block *stats = sp->mac_control.stats_info;
6318         struct swStat *swstats = &stats->sw_stat;
6319         struct xpakStat *xstats = &stats->xpak_stat;
6320
6321         s2io_updt_stats(sp);
6322         tmp_stats[i++] =
6323                 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6324                 le32_to_cpu(stats->tmac_frms);
6325         tmp_stats[i++] =
6326                 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6327                 le32_to_cpu(stats->tmac_data_octets);
6328         tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6329         tmp_stats[i++] =
6330                 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6331                 le32_to_cpu(stats->tmac_mcst_frms);
6332         tmp_stats[i++] =
6333                 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6334                 le32_to_cpu(stats->tmac_bcst_frms);
6335         tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6336         tmp_stats[i++] =
6337                 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6338                 le32_to_cpu(stats->tmac_ttl_octets);
6339         tmp_stats[i++] =
6340                 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6341                 le32_to_cpu(stats->tmac_ucst_frms);
6342         tmp_stats[i++] =
6343                 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6344                 le32_to_cpu(stats->tmac_nucst_frms);
6345         tmp_stats[i++] =
6346                 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6347                 le32_to_cpu(stats->tmac_any_err_frms);
6348         tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6349         tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6350         tmp_stats[i++] =
6351                 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6352                 le32_to_cpu(stats->tmac_vld_ip);
6353         tmp_stats[i++] =
6354                 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6355                 le32_to_cpu(stats->tmac_drop_ip);
6356         tmp_stats[i++] =
6357                 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6358                 le32_to_cpu(stats->tmac_icmp);
6359         tmp_stats[i++] =
6360                 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6361                 le32_to_cpu(stats->tmac_rst_tcp);
6362         tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6363         tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6364                 le32_to_cpu(stats->tmac_udp);
6365         tmp_stats[i++] =
6366                 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6367                 le32_to_cpu(stats->rmac_vld_frms);
6368         tmp_stats[i++] =
6369                 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6370                 le32_to_cpu(stats->rmac_data_octets);
6371         tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6372         tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6373         tmp_stats[i++] =
6374                 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6375                 le32_to_cpu(stats->rmac_vld_mcst_frms);
6376         tmp_stats[i++] =
6377                 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6378                 le32_to_cpu(stats->rmac_vld_bcst_frms);
6379         tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6380         tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6381         tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6382         tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6383         tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6384         tmp_stats[i++] =
6385                 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6386                 le32_to_cpu(stats->rmac_ttl_octets);
6387         tmp_stats[i++] =
6388                 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6389                 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6390         tmp_stats[i++] =
6391                 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6392                 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6393         tmp_stats[i++] =
6394                 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6395                 le32_to_cpu(stats->rmac_discarded_frms);
6396         tmp_stats[i++] =
6397                 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6398                 << 32 | le32_to_cpu(stats->rmac_drop_events);
6399         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6400         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6401         tmp_stats[i++] =
6402                 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6403                 le32_to_cpu(stats->rmac_usized_frms);
6404         tmp_stats[i++] =
6405                 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6406                 le32_to_cpu(stats->rmac_osized_frms);
6407         tmp_stats[i++] =
6408                 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6409                 le32_to_cpu(stats->rmac_frag_frms);
6410         tmp_stats[i++] =
6411                 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6412                 le32_to_cpu(stats->rmac_jabber_frms);
6413         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6414         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6415         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6416         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6417         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6418         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6419         tmp_stats[i++] =
6420                 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6421                 le32_to_cpu(stats->rmac_ip);
6422         tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6423         tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6424         tmp_stats[i++] =
6425                 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6426                 le32_to_cpu(stats->rmac_drop_ip);
6427         tmp_stats[i++] =
6428                 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6429                 le32_to_cpu(stats->rmac_icmp);
6430         tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6431         tmp_stats[i++] =
6432                 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6433                 le32_to_cpu(stats->rmac_udp);
6434         tmp_stats[i++] =
6435                 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6436                 le32_to_cpu(stats->rmac_err_drp_udp);
6437         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6438         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6439         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6440         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6441         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6442         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6443         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6444         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6445         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6446         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6447         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6448         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6449         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6450         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6451         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6452         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6453         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6454         tmp_stats[i++] =
6455                 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6456                 le32_to_cpu(stats->rmac_pause_cnt);
6457         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6458         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6459         tmp_stats[i++] =
6460                 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6461                 le32_to_cpu(stats->rmac_accepted_ip);
6462         tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6463         tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6464         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6465         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6466         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6467         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6468         tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6469         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6470         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6471         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6472         tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6473         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6474         tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6475         tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6476         tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6477         tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6478         tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6479         tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6480         tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6481
6482         /* Enhanced statistics exist only for Hercules */
6483         if (sp->device_type == XFRAME_II_DEVICE) {
6484                 tmp_stats[i++] =
6485                         le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6486                 tmp_stats[i++] =
6487                         le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6488                 tmp_stats[i++] =
6489                         le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6490                 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6491                 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6492                 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6493                 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6494                 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6495                 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6496                 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6497                 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6498                 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6499                 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6500                 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6501                 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6502                 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6503         }
6504
6505         tmp_stats[i++] = 0;
6506         tmp_stats[i++] = swstats->single_ecc_errs;
6507         tmp_stats[i++] = swstats->double_ecc_errs;
6508         tmp_stats[i++] = swstats->parity_err_cnt;
6509         tmp_stats[i++] = swstats->serious_err_cnt;
6510         tmp_stats[i++] = swstats->soft_reset_cnt;
6511         tmp_stats[i++] = swstats->fifo_full_cnt;
6512         for (k = 0; k < MAX_RX_RINGS; k++)
6513                 tmp_stats[i++] = swstats->ring_full_cnt[k];
6514         tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6515         tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6516         tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6517         tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6518         tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6519         tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6520         tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6521         tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6522         tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6523         tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6524         tmp_stats[i++] = xstats->warn_laser_output_power_high;
6525         tmp_stats[i++] = xstats->warn_laser_output_power_low;
6526         tmp_stats[i++] = swstats->clubbed_frms_cnt;
6527         tmp_stats[i++] = swstats->sending_both;
6528         tmp_stats[i++] = swstats->outof_sequence_pkts;
6529         tmp_stats[i++] = swstats->flush_max_pkts;
6530         if (swstats->num_aggregations) {
6531                 u64 tmp = swstats->sum_avg_pkts_aggregated;
6532                 int count = 0;
6533                 /*
6534                  * Since 64-bit divide does not work on all platforms,
6535                  * do repeated subtraction.
6536                  */
6537                 while (tmp >= swstats->num_aggregations) {
6538                         tmp -= swstats->num_aggregations;
6539                         count++;
6540                 }
6541                 tmp_stats[i++] = count;
6542         } else
6543                 tmp_stats[i++] = 0;
6544         tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6545         tmp_stats[i++] = swstats->pci_map_fail_cnt;
6546         tmp_stats[i++] = swstats->watchdog_timer_cnt;
6547         tmp_stats[i++] = swstats->mem_allocated;
6548         tmp_stats[i++] = swstats->mem_freed;
6549         tmp_stats[i++] = swstats->link_up_cnt;
6550         tmp_stats[i++] = swstats->link_down_cnt;
6551         tmp_stats[i++] = swstats->link_up_time;
6552         tmp_stats[i++] = swstats->link_down_time;
6553
6554         tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6555         tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6556         tmp_stats[i++] = swstats->tx_parity_err_cnt;
6557         tmp_stats[i++] = swstats->tx_link_loss_cnt;
6558         tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6559
6560         tmp_stats[i++] = swstats->rx_parity_err_cnt;
6561         tmp_stats[i++] = swstats->rx_abort_cnt;
6562         tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6563         tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6564         tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6565         tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6566         tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6567         tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6568         tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6569         tmp_stats[i++] = swstats->tda_err_cnt;
6570         tmp_stats[i++] = swstats->pfc_err_cnt;
6571         tmp_stats[i++] = swstats->pcc_err_cnt;
6572         tmp_stats[i++] = swstats->tti_err_cnt;
6573         tmp_stats[i++] = swstats->tpa_err_cnt;
6574         tmp_stats[i++] = swstats->sm_err_cnt;
6575         tmp_stats[i++] = swstats->lso_err_cnt;
6576         tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6577         tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6578         tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6579         tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6580         tmp_stats[i++] = swstats->rc_err_cnt;
6581         tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6582         tmp_stats[i++] = swstats->rpa_err_cnt;
6583         tmp_stats[i++] = swstats->rda_err_cnt;
6584         tmp_stats[i++] = swstats->rti_err_cnt;
6585         tmp_stats[i++] = swstats->mc_err_cnt;
6586 }
6587
6588 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6589 {
6590         return XENA_REG_SPACE;
6591 }
6592
6593
6594 static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
6595 {
6596         struct s2io_nic *sp = netdev_priv(dev);
6597
6598         return sp->rx_csum;
6599 }
6600
6601 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6602 {
6603         struct s2io_nic *sp = netdev_priv(dev);
6604
6605         if (data)
6606                 sp->rx_csum = 1;
6607         else
6608                 sp->rx_csum = 0;
6609
6610         return 0;
6611 }
6612
6613 static int s2io_get_eeprom_len(struct net_device *dev)
6614 {
6615         return XENA_EEPROM_SPACE;
6616 }
6617
6618 static int s2io_get_sset_count(struct net_device *dev, int sset)
6619 {
6620         struct s2io_nic *sp = netdev_priv(dev);
6621
6622         switch (sset) {
6623         case ETH_SS_TEST:
6624                 return S2IO_TEST_LEN;
6625         case ETH_SS_STATS:
6626                 switch (sp->device_type) {
6627                 case XFRAME_I_DEVICE:
6628                         return XFRAME_I_STAT_LEN;
6629                 case XFRAME_II_DEVICE:
6630                         return XFRAME_II_STAT_LEN;
6631                 default:
6632                         return 0;
6633                 }
6634         default:
6635                 return -EOPNOTSUPP;
6636         }
6637 }
6638
6639 static void s2io_ethtool_get_strings(struct net_device *dev,
6640                                      u32 stringset, u8 *data)
6641 {
6642         int stat_size = 0;
6643         struct s2io_nic *sp = netdev_priv(dev);
6644
6645         switch (stringset) {
6646         case ETH_SS_TEST:
6647                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6648                 break;
6649         case ETH_SS_STATS:
6650                 stat_size = sizeof(ethtool_xena_stats_keys);
6651                 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6652                 if (sp->device_type == XFRAME_II_DEVICE) {
6653                         memcpy(data + stat_size,
6654                                &ethtool_enhanced_stats_keys,
6655                                sizeof(ethtool_enhanced_stats_keys));
6656                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6657                 }
6658
6659                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6660                        sizeof(ethtool_driver_stats_keys));
6661         }
6662 }
6663
6664 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6665 {
6666         if (data)
6667                 dev->features |= NETIF_F_IP_CSUM;
6668         else
6669                 dev->features &= ~NETIF_F_IP_CSUM;
6670
6671         return 0;
6672 }
6673
6674 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6675 {
6676         return (dev->features & NETIF_F_TSO) != 0;
6677 }
6678 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6679 {
6680         if (data)
6681                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6682         else
6683                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6684
6685         return 0;
6686 }
6687
6688 static const struct ethtool_ops netdev_ethtool_ops = {
6689         .get_settings = s2io_ethtool_gset,
6690         .set_settings = s2io_ethtool_sset,
6691         .get_drvinfo = s2io_ethtool_gdrvinfo,
6692         .get_regs_len = s2io_ethtool_get_regs_len,
6693         .get_regs = s2io_ethtool_gregs,
6694         .get_link = ethtool_op_get_link,
6695         .get_eeprom_len = s2io_get_eeprom_len,
6696         .get_eeprom = s2io_ethtool_geeprom,
6697         .set_eeprom = s2io_ethtool_seeprom,
6698         .get_ringparam = s2io_ethtool_gringparam,
6699         .get_pauseparam = s2io_ethtool_getpause_data,
6700         .set_pauseparam = s2io_ethtool_setpause_data,
6701         .get_rx_csum = s2io_ethtool_get_rx_csum,
6702         .set_rx_csum = s2io_ethtool_set_rx_csum,
6703         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6704         .set_sg = ethtool_op_set_sg,
6705         .get_tso = s2io_ethtool_op_get_tso,
6706         .set_tso = s2io_ethtool_op_set_tso,
6707         .set_ufo = ethtool_op_set_ufo,
6708         .self_test = s2io_ethtool_test,
6709         .get_strings = s2io_ethtool_get_strings,
6710         .phys_id = s2io_ethtool_idnic,
6711         .get_ethtool_stats = s2io_get_ethtool_stats,
6712         .get_sset_count = s2io_get_sset_count,
6713 };
6714
6715 /**
6716  *  s2io_ioctl - Entry point for the Ioctl
6717  *  @dev :  Device pointer.
6718  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6719  *  a proprietary structure used to pass information to the driver.
6720  *  @cmd :  This is used to distinguish between the different commands that
6721  *  can be passed to the IOCTL functions.
6722  *  Description:
6723  *  Currently there are no special functionality supported in IOCTL, hence
6724  *  function always return EOPNOTSUPPORTED
6725  */
6726
6727 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6728 {
6729         return -EOPNOTSUPP;
6730 }
6731
6732 /**
6733  *  s2io_change_mtu - entry point to change MTU size for the device.
6734  *   @dev : device pointer.
6735  *   @new_mtu : the new MTU size for the device.
6736  *   Description: A driver entry point to change MTU size for the device.
6737  *   Before changing the MTU the device must be stopped.
6738  *  Return value:
6739  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6740  *   file on failure.
6741  */
6742
6743 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6744 {
6745         struct s2io_nic *sp = netdev_priv(dev);
6746         int ret = 0;
6747
6748         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6749                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6750                 return -EPERM;
6751         }
6752
6753         dev->mtu = new_mtu;
6754         if (netif_running(dev)) {
6755                 s2io_stop_all_tx_queue(sp);
6756                 s2io_card_down(sp);
6757                 ret = s2io_card_up(sp);
6758                 if (ret) {
6759                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6760                                   __func__);
6761                         return ret;
6762                 }
6763                 s2io_wake_all_tx_queue(sp);
6764         } else { /* Device is down */
6765                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6766                 u64 val64 = new_mtu;
6767
6768                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6769         }
6770
6771         return ret;
6772 }
6773
6774 /**
6775  * s2io_set_link - Set the LInk status
6776  * @data: long pointer to device private structue
6777  * Description: Sets the link status for the adapter
6778  */
6779
6780 static void s2io_set_link(struct work_struct *work)
6781 {
6782         struct s2io_nic *nic = container_of(work, struct s2io_nic,
6783                                             set_link_task);
6784         struct net_device *dev = nic->dev;
6785         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6786         register u64 val64;
6787         u16 subid;
6788
6789         rtnl_lock();
6790
6791         if (!netif_running(dev))
6792                 goto out_unlock;
6793
6794         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6795                 /* The card is being reset, no point doing anything */
6796                 goto out_unlock;
6797         }
6798
6799         subid = nic->pdev->subsystem_device;
6800         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6801                 /*
6802                  * Allow a small delay for the NICs self initiated
6803                  * cleanup to complete.
6804                  */
6805                 msleep(100);
6806         }
6807
6808         val64 = readq(&bar0->adapter_status);
6809         if (LINK_IS_UP(val64)) {
6810                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6811                         if (verify_xena_quiescence(nic)) {
6812                                 val64 = readq(&bar0->adapter_control);
6813                                 val64 |= ADAPTER_CNTL_EN;
6814                                 writeq(val64, &bar0->adapter_control);
6815                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6816                                             nic->device_type, subid)) {
6817                                         val64 = readq(&bar0->gpio_control);
6818                                         val64 |= GPIO_CTRL_GPIO_0;
6819                                         writeq(val64, &bar0->gpio_control);
6820                                         val64 = readq(&bar0->gpio_control);
6821                                 } else {
6822                                         val64 |= ADAPTER_LED_ON;
6823                                         writeq(val64, &bar0->adapter_control);
6824                                 }
6825                                 nic->device_enabled_once = true;
6826                         } else {
6827                                 DBG_PRINT(ERR_DBG,
6828                                           "%s: Error: device is not Quiescent\n",
6829                                           dev->name);
6830                                 s2io_stop_all_tx_queue(nic);
6831                         }
6832                 }
6833                 val64 = readq(&bar0->adapter_control);
6834                 val64 |= ADAPTER_LED_ON;
6835                 writeq(val64, &bar0->adapter_control);
6836                 s2io_link(nic, LINK_UP);
6837         } else {
6838                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6839                                                       subid)) {
6840                         val64 = readq(&bar0->gpio_control);
6841                         val64 &= ~GPIO_CTRL_GPIO_0;
6842                         writeq(val64, &bar0->gpio_control);
6843                         val64 = readq(&bar0->gpio_control);
6844                 }
6845                 /* turn off LED */
6846                 val64 = readq(&bar0->adapter_control);
6847                 val64 = val64 & (~ADAPTER_LED_ON);
6848                 writeq(val64, &bar0->adapter_control);
6849                 s2io_link(nic, LINK_DOWN);
6850         }
6851         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6852
6853 out_unlock:
6854         rtnl_unlock();
6855 }
6856
6857 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6858                                   struct buffAdd *ba,
6859                                   struct sk_buff **skb, u64 *temp0, u64 *temp1,
6860                                   u64 *temp2, int size)
6861 {
6862         struct net_device *dev = sp->dev;
6863         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6864
6865         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6866                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6867                 /* allocate skb */
6868                 if (*skb) {
6869                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6870                         /*
6871                          * As Rx frame are not going to be processed,
6872                          * using same mapped address for the Rxd
6873                          * buffer pointer
6874                          */
6875                         rxdp1->Buffer0_ptr = *temp0;
6876                 } else {
6877                         *skb = dev_alloc_skb(size);
6878                         if (!(*skb)) {
6879                                 DBG_PRINT(INFO_DBG,
6880                                           "%s: Out of memory to allocate %s\n",
6881                                           dev->name, "1 buf mode SKBs");
6882                                 stats->mem_alloc_fail_cnt++;
6883                                 return -ENOMEM ;
6884                         }
6885                         stats->mem_allocated += (*skb)->truesize;
6886                         /* storing the mapped addr in a temp variable
6887                          * such it will be used for next rxd whose
6888                          * Host Control is NULL
6889                          */
6890                         rxdp1->Buffer0_ptr = *temp0 =
6891                                 pci_map_single(sp->pdev, (*skb)->data,
6892                                                size - NET_IP_ALIGN,
6893                                                PCI_DMA_FROMDEVICE);
6894                         if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6895                                 goto memalloc_failed;
6896                         rxdp->Host_Control = (unsigned long) (*skb);
6897                 }
6898         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6899                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6900                 /* Two buffer Mode */
6901                 if (*skb) {
6902                         rxdp3->Buffer2_ptr = *temp2;
6903                         rxdp3->Buffer0_ptr = *temp0;
6904                         rxdp3->Buffer1_ptr = *temp1;
6905                 } else {
6906                         *skb = dev_alloc_skb(size);
6907                         if (!(*skb)) {
6908                                 DBG_PRINT(INFO_DBG,
6909                                           "%s: Out of memory to allocate %s\n",
6910                                           dev->name,
6911                                           "2 buf mode SKBs");
6912                                 stats->mem_alloc_fail_cnt++;
6913                                 return -ENOMEM;
6914                         }
6915                         stats->mem_allocated += (*skb)->truesize;
6916                         rxdp3->Buffer2_ptr = *temp2 =
6917                                 pci_map_single(sp->pdev, (*skb)->data,
6918                                                dev->mtu + 4,
6919                                                PCI_DMA_FROMDEVICE);
6920                         if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6921                                 goto memalloc_failed;
6922                         rxdp3->Buffer0_ptr = *temp0 =
6923                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6924                                                PCI_DMA_FROMDEVICE);
6925                         if (pci_dma_mapping_error(sp->pdev,
6926                                                   rxdp3->Buffer0_ptr)) {
6927                                 pci_unmap_single(sp->pdev,
6928                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6929                                                  dev->mtu + 4,
6930                                                  PCI_DMA_FROMDEVICE);
6931                                 goto memalloc_failed;
6932                         }
6933                         rxdp->Host_Control = (unsigned long) (*skb);
6934
6935                         /* Buffer-1 will be dummy buffer not used */
6936                         rxdp3->Buffer1_ptr = *temp1 =
6937                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6938                                                PCI_DMA_FROMDEVICE);
6939                         if (pci_dma_mapping_error(sp->pdev,
6940                                                   rxdp3->Buffer1_ptr)) {
6941                                 pci_unmap_single(sp->pdev,
6942                                                  (dma_addr_t)rxdp3->Buffer0_ptr,
6943                                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
6944                                 pci_unmap_single(sp->pdev,
6945                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6946                                                  dev->mtu + 4,
6947                                                  PCI_DMA_FROMDEVICE);
6948                                 goto memalloc_failed;
6949                         }
6950                 }
6951         }
6952         return 0;
6953
6954 memalloc_failed:
6955         stats->pci_map_fail_cnt++;
6956         stats->mem_freed += (*skb)->truesize;
6957         dev_kfree_skb(*skb);
6958         return -ENOMEM;
6959 }
6960
6961 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6962                                 int size)
6963 {
6964         struct net_device *dev = sp->dev;
6965         if (sp->rxd_mode == RXD_MODE_1) {
6966                 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6967         } else if (sp->rxd_mode == RXD_MODE_3B) {
6968                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6969                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6970                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6971         }
6972 }
6973
6974 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6975 {
6976         int i, j, k, blk_cnt = 0, size;
6977         struct config_param *config = &sp->config;
6978         struct mac_info *mac_control = &sp->mac_control;
6979         struct net_device *dev = sp->dev;
6980         struct RxD_t *rxdp = NULL;
6981         struct sk_buff *skb = NULL;
6982         struct buffAdd *ba = NULL;
6983         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6984
6985         /* Calculate the size based on ring mode */
6986         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6987                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6988         if (sp->rxd_mode == RXD_MODE_1)
6989                 size += NET_IP_ALIGN;
6990         else if (sp->rxd_mode == RXD_MODE_3B)
6991                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6992
6993         for (i = 0; i < config->rx_ring_num; i++) {
6994                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6995                 struct ring_info *ring = &mac_control->rings[i];
6996
6997                 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6998
6999                 for (j = 0; j < blk_cnt; j++) {
7000                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7001                                 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7002                                 if (sp->rxd_mode == RXD_MODE_3B)
7003                                         ba = &ring->ba[j][k];
7004                                 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7005                                                            (u64 *)&temp0_64,
7006                                                            (u64 *)&temp1_64,
7007                                                            (u64 *)&temp2_64,
7008                                                            size) == -ENOMEM) {
7009                                         return 0;
7010                                 }
7011
7012                                 set_rxd_buffer_size(sp, rxdp, size);
7013                                 wmb();
7014                                 /* flip the Ownership bit to Hardware */
7015                                 rxdp->Control_1 |= RXD_OWN_XENA;
7016                         }
7017                 }
7018         }
7019         return 0;
7020
7021 }
7022
7023 static int s2io_add_isr(struct s2io_nic *sp)
7024 {
7025         int ret = 0;
7026         struct net_device *dev = sp->dev;
7027         int err = 0;
7028
7029         if (sp->config.intr_type == MSI_X)
7030                 ret = s2io_enable_msi_x(sp);
7031         if (ret) {
7032                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7033                 sp->config.intr_type = INTA;
7034         }
7035
7036         /*
7037          * Store the values of the MSIX table in
7038          * the struct s2io_nic structure
7039          */
7040         store_xmsi_data(sp);
7041
7042         /* After proper initialization of H/W, register ISR */
7043         if (sp->config.intr_type == MSI_X) {
7044                 int i, msix_rx_cnt = 0;
7045
7046                 for (i = 0; i < sp->num_entries; i++) {
7047                         if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7048                                 if (sp->s2io_entries[i].type ==
7049                                     MSIX_RING_TYPE) {
7050                                         sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7051                                                 dev->name, i);
7052                                         err = request_irq(sp->entries[i].vector,
7053                                                           s2io_msix_ring_handle,
7054                                                           0,
7055                                                           sp->desc[i],
7056                                                           sp->s2io_entries[i].arg);
7057                                 } else if (sp->s2io_entries[i].type ==
7058                                            MSIX_ALARM_TYPE) {
7059                                         sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7060                                                 dev->name, i);
7061                                         err = request_irq(sp->entries[i].vector,
7062                                                           s2io_msix_fifo_handle,
7063                                                           0,
7064                                                           sp->desc[i],
7065                                                           sp->s2io_entries[i].arg);
7066
7067                                 }
7068                                 /* if either data or addr is zero print it. */
7069                                 if (!(sp->msix_info[i].addr &&
7070                                       sp->msix_info[i].data)) {
7071                                         DBG_PRINT(ERR_DBG,
7072                                                   "%s @Addr:0x%llx Data:0x%llx\n",
7073                                                   sp->desc[i],
7074                                                   (unsigned long long)
7075                                                   sp->msix_info[i].addr,
7076                                                   (unsigned long long)
7077                                                   ntohl(sp->msix_info[i].data));
7078                                 } else
7079                                         msix_rx_cnt++;
7080                                 if (err) {
7081                                         remove_msix_isr(sp);
7082
7083                                         DBG_PRINT(ERR_DBG,
7084                                                   "%s:MSI-X-%d registration "
7085                                                   "failed\n", dev->name, i);
7086
7087                                         DBG_PRINT(ERR_DBG,
7088                                                   "%s: Defaulting to INTA\n",
7089                                                   dev->name);
7090                                         sp->config.intr_type = INTA;
7091                                         break;
7092                                 }
7093                                 sp->s2io_entries[i].in_use =
7094                                         MSIX_REGISTERED_SUCCESS;
7095                         }
7096                 }
7097                 if (!err) {
7098                         pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7099                         DBG_PRINT(INFO_DBG,
7100                                   "MSI-X-TX entries enabled through alarm vector\n");
7101                 }
7102         }
7103         if (sp->config.intr_type == INTA) {
7104                 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7105                                   sp->name, dev);
7106                 if (err) {
7107                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7108                                   dev->name);
7109                         return -1;
7110                 }
7111         }
7112         return 0;
7113 }
7114
7115 static void s2io_rem_isr(struct s2io_nic *sp)
7116 {
7117         if (sp->config.intr_type == MSI_X)
7118                 remove_msix_isr(sp);
7119         else
7120                 remove_inta_isr(sp);
7121 }
7122
7123 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7124 {
7125         int cnt = 0;
7126         struct XENA_dev_config __iomem *bar0 = sp->bar0;
7127         register u64 val64 = 0;
7128         struct config_param *config;
7129         config = &sp->config;
7130
7131         if (!is_s2io_card_up(sp))
7132                 return;
7133
7134         del_timer_sync(&sp->alarm_timer);
7135         /* If s2io_set_link task is executing, wait till it completes. */
7136         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7137                 msleep(50);
7138         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7139
7140         /* Disable napi */
7141         if (sp->config.napi) {
7142                 int off = 0;
7143                 if (config->intr_type ==  MSI_X) {
7144                         for (; off < sp->config.rx_ring_num; off++)
7145                                 napi_disable(&sp->mac_control.rings[off].napi);
7146                 }
7147                 else
7148                         napi_disable(&sp->napi);
7149         }
7150
7151         /* disable Tx and Rx traffic on the NIC */
7152         if (do_io)
7153                 stop_nic(sp);
7154
7155         s2io_rem_isr(sp);
7156
7157         /* stop the tx queue, indicate link down */
7158         s2io_link(sp, LINK_DOWN);
7159
7160         /* Check if the device is Quiescent and then Reset the NIC */
7161         while (do_io) {
7162                 /* As per the HW requirement we need to replenish the
7163                  * receive buffer to avoid the ring bump. Since there is
7164                  * no intention of processing the Rx frame at this pointwe are
7165                  * just settting the ownership bit of rxd in Each Rx
7166                  * ring to HW and set the appropriate buffer size
7167                  * based on the ring mode
7168                  */
7169                 rxd_owner_bit_reset(sp);
7170
7171                 val64 = readq(&bar0->adapter_status);
7172                 if (verify_xena_quiescence(sp)) {
7173                         if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7174                                 break;
7175                 }
7176
7177                 msleep(50);
7178                 cnt++;
7179                 if (cnt == 10) {
7180                         DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7181                                   "adapter status reads 0x%llx\n",
7182                                   (unsigned long long)val64);
7183                         break;
7184                 }
7185         }
7186         if (do_io)
7187                 s2io_reset(sp);
7188
7189         /* Free all Tx buffers */
7190         free_tx_buffers(sp);
7191
7192         /* Free all Rx buffers */
7193         free_rx_buffers(sp);
7194
7195         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7196 }
7197
7198 static void s2io_card_down(struct s2io_nic *sp)
7199 {
7200         do_s2io_card_down(sp, 1);
7201 }
7202
7203 static int s2io_card_up(struct s2io_nic *sp)
7204 {
7205         int i, ret = 0;
7206         struct config_param *config;
7207         struct mac_info *mac_control;
7208         struct net_device *dev = (struct net_device *)sp->dev;
7209         u16 interruptible;
7210
7211         /* Initialize the H/W I/O registers */
7212         ret = init_nic(sp);
7213         if (ret != 0) {
7214                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7215                           dev->name);
7216                 if (ret != -EIO)
7217                         s2io_reset(sp);
7218                 return ret;
7219         }
7220
7221         /*
7222          * Initializing the Rx buffers. For now we are considering only 1
7223          * Rx ring and initializing buffers into 30 Rx blocks
7224          */
7225         config = &sp->config;
7226         mac_control = &sp->mac_control;
7227
7228         for (i = 0; i < config->rx_ring_num; i++) {
7229                 struct ring_info *ring = &mac_control->rings[i];
7230
7231                 ring->mtu = dev->mtu;
7232                 ret = fill_rx_buffers(sp, ring, 1);
7233                 if (ret) {
7234                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7235                                   dev->name);
7236                         s2io_reset(sp);
7237                         free_rx_buffers(sp);
7238                         return -ENOMEM;
7239                 }
7240                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7241                           ring->rx_bufs_left);
7242         }
7243
7244         /* Initialise napi */
7245         if (config->napi) {
7246                 if (config->intr_type ==  MSI_X) {
7247                         for (i = 0; i < sp->config.rx_ring_num; i++)
7248                                 napi_enable(&sp->mac_control.rings[i].napi);
7249                 } else {
7250                         napi_enable(&sp->napi);
7251                 }
7252         }
7253
7254         /* Maintain the state prior to the open */
7255         if (sp->promisc_flg)
7256                 sp->promisc_flg = 0;
7257         if (sp->m_cast_flg) {
7258                 sp->m_cast_flg = 0;
7259                 sp->all_multi_pos = 0;
7260         }
7261
7262         /* Setting its receive mode */
7263         s2io_set_multicast(dev);
7264
7265         if (sp->lro) {
7266                 /* Initialize max aggregatable pkts per session based on MTU */
7267                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7268                 /* Check if we can use (if specified) user provided value */
7269                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7270                         sp->lro_max_aggr_per_sess = lro_max_pkts;
7271         }
7272
7273         /* Enable Rx Traffic and interrupts on the NIC */
7274         if (start_nic(sp)) {
7275                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7276                 s2io_reset(sp);
7277                 free_rx_buffers(sp);
7278                 return -ENODEV;
7279         }
7280
7281         /* Add interrupt service routine */
7282         if (s2io_add_isr(sp) != 0) {
7283                 if (sp->config.intr_type == MSI_X)
7284                         s2io_rem_isr(sp);
7285                 s2io_reset(sp);
7286                 free_rx_buffers(sp);
7287                 return -ENODEV;
7288         }
7289
7290         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7291
7292         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7293
7294         /*  Enable select interrupts */
7295         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7296         if (sp->config.intr_type != INTA) {
7297                 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7298                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7299         } else {
7300                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7301                 interruptible |= TX_PIC_INTR;
7302                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7303         }
7304
7305         return 0;
7306 }
7307
7308 /**
7309  * s2io_restart_nic - Resets the NIC.
7310  * @data : long pointer to the device private structure
7311  * Description:
7312  * This function is scheduled to be run by the s2io_tx_watchdog
7313  * function after 0.5 secs to reset the NIC. The idea is to reduce
7314  * the run time of the watch dog routine which is run holding a
7315  * spin lock.
7316  */
7317
7318 static void s2io_restart_nic(struct work_struct *work)
7319 {
7320         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7321         struct net_device *dev = sp->dev;
7322
7323         rtnl_lock();
7324
7325         if (!netif_running(dev))
7326                 goto out_unlock;
7327
7328         s2io_card_down(sp);
7329         if (s2io_card_up(sp)) {
7330                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7331         }
7332         s2io_wake_all_tx_queue(sp);
7333         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7334 out_unlock:
7335         rtnl_unlock();
7336 }
7337
7338 /**
7339  *  s2io_tx_watchdog - Watchdog for transmit side.
7340  *  @dev : Pointer to net device structure
7341  *  Description:
7342  *  This function is triggered if the Tx Queue is stopped
7343  *  for a pre-defined amount of time when the Interface is still up.
7344  *  If the Interface is jammed in such a situation, the hardware is
7345  *  reset (by s2io_close) and restarted again (by s2io_open) to
7346  *  overcome any problem that might have been caused in the hardware.
7347  *  Return value:
7348  *  void
7349  */
7350
7351 static void s2io_tx_watchdog(struct net_device *dev)
7352 {
7353         struct s2io_nic *sp = netdev_priv(dev);
7354         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7355
7356         if (netif_carrier_ok(dev)) {
7357                 swstats->watchdog_timer_cnt++;
7358                 schedule_work(&sp->rst_timer_task);
7359                 swstats->soft_reset_cnt++;
7360         }
7361 }
7362
7363 /**
7364  *   rx_osm_handler - To perform some OS related operations on SKB.
7365  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7366  *   @skb : the socket buffer pointer.
7367  *   @len : length of the packet
7368  *   @cksum : FCS checksum of the frame.
7369  *   @ring_no : the ring from which this RxD was extracted.
7370  *   Description:
7371  *   This function is called by the Rx interrupt serivce routine to perform
7372  *   some OS related operations on the SKB before passing it to the upper
7373  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7374  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7375  *   to the upper layer. If the checksum is wrong, it increments the Rx
7376  *   packet error count, frees the SKB and returns error.
7377  *   Return value:
7378  *   SUCCESS on success and -1 on failure.
7379  */
7380 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7381 {
7382         struct s2io_nic *sp = ring_data->nic;
7383         struct net_device *dev = (struct net_device *)ring_data->dev;
7384         struct sk_buff *skb = (struct sk_buff *)
7385                 ((unsigned long)rxdp->Host_Control);
7386         int ring_no = ring_data->ring_no;
7387         u16 l3_csum, l4_csum;
7388         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7389         struct lro *uninitialized_var(lro);
7390         u8 err_mask;
7391         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7392
7393         skb->dev = dev;
7394
7395         if (err) {
7396                 /* Check for parity error */
7397                 if (err & 0x1)
7398                         swstats->parity_err_cnt++;
7399
7400                 err_mask = err >> 48;
7401                 switch (err_mask) {
7402                 case 1:
7403                         swstats->rx_parity_err_cnt++;
7404                         break;
7405
7406                 case 2:
7407                         swstats->rx_abort_cnt++;
7408                         break;
7409
7410                 case 3:
7411                         swstats->rx_parity_abort_cnt++;
7412                         break;
7413
7414                 case 4:
7415                         swstats->rx_rda_fail_cnt++;
7416                         break;
7417
7418                 case 5:
7419                         swstats->rx_unkn_prot_cnt++;
7420                         break;
7421
7422                 case 6:
7423                         swstats->rx_fcs_err_cnt++;
7424                         break;
7425
7426                 case 7:
7427                         swstats->rx_buf_size_err_cnt++;
7428                         break;
7429
7430                 case 8:
7431                         swstats->rx_rxd_corrupt_cnt++;
7432                         break;
7433
7434                 case 15:
7435                         swstats->rx_unkn_err_cnt++;
7436                         break;
7437                 }
7438                 /*
7439                  * Drop the packet if bad transfer code. Exception being
7440                  * 0x5, which could be due to unsupported IPv6 extension header.
7441                  * In this case, we let stack handle the packet.
7442                  * Note that in this case, since checksum will be incorrect,
7443                  * stack will validate the same.
7444                  */
7445                 if (err_mask != 0x5) {
7446                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7447                                   dev->name, err_mask);
7448                         dev->stats.rx_crc_errors++;
7449                         swstats->mem_freed
7450                                 += skb->truesize;
7451                         dev_kfree_skb(skb);
7452                         ring_data->rx_bufs_left -= 1;
7453                         rxdp->Host_Control = 0;
7454                         return 0;
7455                 }
7456         }
7457
7458         /* Updating statistics */
7459         ring_data->rx_packets++;
7460         rxdp->Host_Control = 0;
7461         if (sp->rxd_mode == RXD_MODE_1) {
7462                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7463
7464                 ring_data->rx_bytes += len;
7465                 skb_put(skb, len);
7466
7467         } else if (sp->rxd_mode == RXD_MODE_3B) {
7468                 int get_block = ring_data->rx_curr_get_info.block_index;
7469                 int get_off = ring_data->rx_curr_get_info.offset;
7470                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7471                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7472                 unsigned char *buff = skb_push(skb, buf0_len);
7473
7474                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7475                 ring_data->rx_bytes += buf0_len + buf2_len;
7476                 memcpy(buff, ba->ba_0, buf0_len);
7477                 skb_put(skb, buf2_len);
7478         }
7479
7480         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7481             ((!ring_data->lro) ||
7482              (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7483             (sp->rx_csum)) {
7484                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7485                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7486                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7487                         /*
7488                          * NIC verifies if the Checksum of the received
7489                          * frame is Ok or not and accordingly returns
7490                          * a flag in the RxD.
7491                          */
7492                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7493                         if (ring_data->lro) {
7494                                 u32 tcp_len;
7495                                 u8 *tcp;
7496                                 int ret = 0;
7497
7498                                 ret = s2io_club_tcp_session(ring_data,
7499                                                             skb->data, &tcp,
7500                                                             &tcp_len, &lro,
7501                                                             rxdp, sp);
7502                                 switch (ret) {
7503                                 case 3: /* Begin anew */
7504                                         lro->parent = skb;
7505                                         goto aggregate;
7506                                 case 1: /* Aggregate */
7507                                         lro_append_pkt(sp, lro, skb, tcp_len);
7508                                         goto aggregate;
7509                                 case 4: /* Flush session */
7510                                         lro_append_pkt(sp, lro, skb, tcp_len);
7511                                         queue_rx_frame(lro->parent,
7512                                                        lro->vlan_tag);
7513                                         clear_lro_session(lro);
7514                                         swstats->flush_max_pkts++;
7515                                         goto aggregate;
7516                                 case 2: /* Flush both */
7517                                         lro->parent->data_len = lro->frags_len;
7518                                         swstats->sending_both++;
7519                                         queue_rx_frame(lro->parent,
7520                                                        lro->vlan_tag);
7521                                         clear_lro_session(lro);
7522                                         goto send_up;
7523                                 case 0: /* sessions exceeded */
7524                                 case -1: /* non-TCP or not L2 aggregatable */
7525                                 case 5: /*
7526                                          * First pkt in session not
7527                                          * L3/L4 aggregatable
7528                                          */
7529                                         break;
7530                                 default:
7531                                         DBG_PRINT(ERR_DBG,
7532                                                   "%s: Samadhana!!\n",
7533                                                   __func__);
7534                                         BUG();
7535                                 }
7536                         }
7537                 } else {
7538                         /*
7539                          * Packet with erroneous checksum, let the
7540                          * upper layers deal with it.
7541                          */
7542                         skb->ip_summed = CHECKSUM_NONE;
7543                 }
7544         } else
7545                 skb->ip_summed = CHECKSUM_NONE;
7546
7547         swstats->mem_freed += skb->truesize;
7548 send_up:
7549         skb_record_rx_queue(skb, ring_no);
7550         queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7551 aggregate:
7552         sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7553         return SUCCESS;
7554 }
7555
7556 /**
7557  *  s2io_link - stops/starts the Tx queue.
7558  *  @sp : private member of the device structure, which is a pointer to the
7559  *  s2io_nic structure.
7560  *  @link : inidicates whether link is UP/DOWN.
7561  *  Description:
7562  *  This function stops/starts the Tx queue depending on whether the link
7563  *  status of the NIC is is down or up. This is called by the Alarm
7564  *  interrupt handler whenever a link change interrupt comes up.
7565  *  Return value:
7566  *  void.
7567  */
7568
7569 static void s2io_link(struct s2io_nic *sp, int link)
7570 {
7571         struct net_device *dev = (struct net_device *)sp->dev;
7572         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7573
7574         if (link != sp->last_link_state) {
7575                 init_tti(sp, link);
7576                 if (link == LINK_DOWN) {
7577                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7578                         s2io_stop_all_tx_queue(sp);
7579                         netif_carrier_off(dev);
7580                         if (swstats->link_up_cnt)
7581                                 swstats->link_up_time =
7582                                         jiffies - sp->start_time;
7583                         swstats->link_down_cnt++;
7584                 } else {
7585                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7586                         if (swstats->link_down_cnt)
7587                                 swstats->link_down_time =
7588                                         jiffies - sp->start_time;
7589                         swstats->link_up_cnt++;
7590                         netif_carrier_on(dev);
7591                         s2io_wake_all_tx_queue(sp);
7592                 }
7593         }
7594         sp->last_link_state = link;
7595         sp->start_time = jiffies;
7596 }
7597
7598 /**
7599  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7600  *  @sp : private member of the device structure, which is a pointer to the
7601  *  s2io_nic structure.
7602  *  Description:
7603  *  This function initializes a few of the PCI and PCI-X configuration registers
7604  *  with recommended values.
7605  *  Return value:
7606  *  void
7607  */
7608
7609 static void s2io_init_pci(struct s2io_nic *sp)
7610 {
7611         u16 pci_cmd = 0, pcix_cmd = 0;
7612
7613         /* Enable Data Parity Error Recovery in PCI-X command register. */
7614         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7615                              &(pcix_cmd));
7616         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7617                               (pcix_cmd | 1));
7618         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7619                              &(pcix_cmd));
7620
7621         /* Set the PErr Response bit in PCI command register. */
7622         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7623         pci_write_config_word(sp->pdev, PCI_COMMAND,
7624                               (pci_cmd | PCI_COMMAND_PARITY));
7625         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7626 }
7627
7628 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7629                             u8 *dev_multiq)
7630 {
7631         if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7632                 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7633                           "(%d) not supported\n", tx_fifo_num);
7634
7635                 if (tx_fifo_num < 1)
7636                         tx_fifo_num = 1;
7637                 else
7638                         tx_fifo_num = MAX_TX_FIFOS;
7639
7640                 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7641         }
7642
7643         if (multiq)
7644                 *dev_multiq = multiq;
7645
7646         if (tx_steering_type && (1 == tx_fifo_num)) {
7647                 if (tx_steering_type != TX_DEFAULT_STEERING)
7648                         DBG_PRINT(ERR_DBG,
7649                                   "Tx steering is not supported with "
7650                                   "one fifo. Disabling Tx steering.\n");
7651                 tx_steering_type = NO_STEERING;
7652         }
7653
7654         if ((tx_steering_type < NO_STEERING) ||
7655             (tx_steering_type > TX_DEFAULT_STEERING)) {
7656                 DBG_PRINT(ERR_DBG,
7657                           "Requested transmit steering not supported\n");
7658                 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7659                 tx_steering_type = NO_STEERING;
7660         }
7661
7662         if (rx_ring_num > MAX_RX_RINGS) {
7663                 DBG_PRINT(ERR_DBG,
7664                           "Requested number of rx rings not supported\n");
7665                 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7666                           MAX_RX_RINGS);
7667                 rx_ring_num = MAX_RX_RINGS;
7668         }
7669
7670         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7671                 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7672                           "Defaulting to INTA\n");
7673                 *dev_intr_type = INTA;
7674         }
7675
7676         if ((*dev_intr_type == MSI_X) &&
7677             ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7678              (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7679                 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7680                           "Defaulting to INTA\n");
7681                 *dev_intr_type = INTA;
7682         }
7683
7684         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7685                 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7686                 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7687                 rx_ring_mode = 1;
7688         }
7689         return SUCCESS;
7690 }
7691
7692 /**
7693  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7694  * or Traffic class respectively.
7695  * @nic: device private variable
7696  * Description: The function configures the receive steering to
7697  * desired receive ring.
7698  * Return Value:  SUCCESS on success and
7699  * '-1' on failure (endian settings incorrect).
7700  */
7701 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7702 {
7703         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7704         register u64 val64 = 0;
7705
7706         if (ds_codepoint > 63)
7707                 return FAILURE;
7708
7709         val64 = RTS_DS_MEM_DATA(ring);
7710         writeq(val64, &bar0->rts_ds_mem_data);
7711
7712         val64 = RTS_DS_MEM_CTRL_WE |
7713                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7714                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7715
7716         writeq(val64, &bar0->rts_ds_mem_ctrl);
7717
7718         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7719                                      RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7720                                      S2IO_BIT_RESET);
7721 }
7722
7723 static const struct net_device_ops s2io_netdev_ops = {
7724         .ndo_open               = s2io_open,
7725         .ndo_stop               = s2io_close,
7726         .ndo_get_stats          = s2io_get_stats,
7727         .ndo_start_xmit         = s2io_xmit,
7728         .ndo_validate_addr      = eth_validate_addr,
7729         .ndo_set_multicast_list = s2io_set_multicast,
7730         .ndo_do_ioctl           = s2io_ioctl,
7731         .ndo_set_mac_address    = s2io_set_mac_addr,
7732         .ndo_change_mtu         = s2io_change_mtu,
7733         .ndo_vlan_rx_register   = s2io_vlan_rx_register,
7734         .ndo_vlan_rx_kill_vid   = s2io_vlan_rx_kill_vid,
7735         .ndo_tx_timeout         = s2io_tx_watchdog,
7736 #ifdef CONFIG_NET_POLL_CONTROLLER
7737         .ndo_poll_controller    = s2io_netpoll,
7738 #endif
7739 };
7740
7741 /**
7742  *  s2io_init_nic - Initialization of the adapter .
7743  *  @pdev : structure containing the PCI related information of the device.
7744  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7745  *  Description:
7746  *  The function initializes an adapter identified by the pci_dec structure.
7747  *  All OS related initialization including memory and device structure and
7748  *  initlaization of the device private variable is done. Also the swapper
7749  *  control register is initialized to enable read and write into the I/O
7750  *  registers of the device.
7751  *  Return value:
7752  *  returns 0 on success and negative on failure.
7753  */
7754
7755 static int __devinit
7756 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7757 {
7758         struct s2io_nic *sp;
7759         struct net_device *dev;
7760         int i, j, ret;
7761         int dma_flag = false;
7762         u32 mac_up, mac_down;
7763         u64 val64 = 0, tmp64 = 0;
7764         struct XENA_dev_config __iomem *bar0 = NULL;
7765         u16 subid;
7766         struct config_param *config;
7767         struct mac_info *mac_control;
7768         int mode;
7769         u8 dev_intr_type = intr_type;
7770         u8 dev_multiq = 0;
7771
7772         ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7773         if (ret)
7774                 return ret;
7775
7776         ret = pci_enable_device(pdev);
7777         if (ret) {
7778                 DBG_PRINT(ERR_DBG,
7779                           "%s: pci_enable_device failed\n", __func__);
7780                 return ret;
7781         }
7782
7783         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7784                 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7785                 dma_flag = true;
7786                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7787                         DBG_PRINT(ERR_DBG,
7788                                   "Unable to obtain 64bit DMA "
7789                                   "for consistent allocations\n");
7790                         pci_disable_device(pdev);
7791                         return -ENOMEM;
7792                 }
7793         } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7794                 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7795         } else {
7796                 pci_disable_device(pdev);
7797                 return -ENOMEM;
7798         }
7799         ret = pci_request_regions(pdev, s2io_driver_name);
7800         if (ret) {
7801                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7802                           __func__, ret);
7803                 pci_disable_device(pdev);
7804                 return -ENODEV;
7805         }
7806         if (dev_multiq)
7807                 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7808         else
7809                 dev = alloc_etherdev(sizeof(struct s2io_nic));
7810         if (dev == NULL) {
7811                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7812                 pci_disable_device(pdev);
7813                 pci_release_regions(pdev);
7814                 return -ENODEV;
7815         }
7816
7817         pci_set_master(pdev);
7818         pci_set_drvdata(pdev, dev);
7819         SET_NETDEV_DEV(dev, &pdev->dev);
7820
7821         /*  Private member variable initialized to s2io NIC structure */
7822         sp = netdev_priv(dev);
7823         memset(sp, 0, sizeof(struct s2io_nic));
7824         sp->dev = dev;
7825         sp->pdev = pdev;
7826         sp->high_dma_flag = dma_flag;
7827         sp->device_enabled_once = false;
7828         if (rx_ring_mode == 1)
7829                 sp->rxd_mode = RXD_MODE_1;
7830         if (rx_ring_mode == 2)
7831                 sp->rxd_mode = RXD_MODE_3B;
7832
7833         sp->config.intr_type = dev_intr_type;
7834
7835         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7836             (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7837                 sp->device_type = XFRAME_II_DEVICE;
7838         else
7839                 sp->device_type = XFRAME_I_DEVICE;
7840
7841         sp->lro = lro_enable;
7842
7843         /* Initialize some PCI/PCI-X fields of the NIC. */
7844         s2io_init_pci(sp);
7845
7846         /*
7847          * Setting the device configuration parameters.
7848          * Most of these parameters can be specified by the user during
7849          * module insertion as they are module loadable parameters. If
7850          * these parameters are not not specified during load time, they
7851          * are initialized with default values.
7852          */
7853         config = &sp->config;
7854         mac_control = &sp->mac_control;
7855
7856         config->napi = napi;
7857         config->tx_steering_type = tx_steering_type;
7858
7859         /* Tx side parameters. */
7860         if (config->tx_steering_type == TX_PRIORITY_STEERING)
7861                 config->tx_fifo_num = MAX_TX_FIFOS;
7862         else
7863                 config->tx_fifo_num = tx_fifo_num;
7864
7865         /* Initialize the fifos used for tx steering */
7866         if (config->tx_fifo_num < 5) {
7867                 if (config->tx_fifo_num  == 1)
7868                         sp->total_tcp_fifos = 1;
7869                 else
7870                         sp->total_tcp_fifos = config->tx_fifo_num - 1;
7871                 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7872                 sp->total_udp_fifos = 1;
7873                 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7874         } else {
7875                 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7876                                        FIFO_OTHER_MAX_NUM);
7877                 sp->udp_fifo_idx = sp->total_tcp_fifos;
7878                 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7879                 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7880         }
7881
7882         config->multiq = dev_multiq;
7883         for (i = 0; i < config->tx_fifo_num; i++) {
7884                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7885
7886                 tx_cfg->fifo_len = tx_fifo_len[i];
7887                 tx_cfg->fifo_priority = i;
7888         }
7889
7890         /* mapping the QoS priority to the configured fifos */
7891         for (i = 0; i < MAX_TX_FIFOS; i++)
7892                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7893
7894         /* map the hashing selector table to the configured fifos */
7895         for (i = 0; i < config->tx_fifo_num; i++)
7896                 sp->fifo_selector[i] = fifo_selector[i];
7897
7898
7899         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7900         for (i = 0; i < config->tx_fifo_num; i++) {
7901                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7902
7903                 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7904                 if (tx_cfg->fifo_len < 65) {
7905                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7906                         break;
7907                 }
7908         }
7909         /* + 2 because one Txd for skb->data and one Txd for UFO */
7910         config->max_txds = MAX_SKB_FRAGS + 2;
7911
7912         /* Rx side parameters. */
7913         config->rx_ring_num = rx_ring_num;
7914         for (i = 0; i < config->rx_ring_num; i++) {
7915                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7916                 struct ring_info *ring = &mac_control->rings[i];
7917
7918                 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7919                 rx_cfg->ring_priority = i;
7920                 ring->rx_bufs_left = 0;
7921                 ring->rxd_mode = sp->rxd_mode;
7922                 ring->rxd_count = rxd_count[sp->rxd_mode];
7923                 ring->pdev = sp->pdev;
7924                 ring->dev = sp->dev;
7925         }
7926
7927         for (i = 0; i < rx_ring_num; i++) {
7928                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7929
7930                 rx_cfg->ring_org = RING_ORG_BUFF1;
7931                 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7932         }
7933
7934         /*  Setting Mac Control parameters */
7935         mac_control->rmac_pause_time = rmac_pause_time;
7936         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7937         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7938
7939
7940         /*  initialize the shared memory used by the NIC and the host */
7941         if (init_shared_mem(sp)) {
7942                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7943                 ret = -ENOMEM;
7944                 goto mem_alloc_failed;
7945         }
7946
7947         sp->bar0 = pci_ioremap_bar(pdev, 0);
7948         if (!sp->bar0) {
7949                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7950                           dev->name);
7951                 ret = -ENOMEM;
7952                 goto bar0_remap_failed;
7953         }
7954
7955         sp->bar1 = pci_ioremap_bar(pdev, 2);
7956         if (!sp->bar1) {
7957                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7958                           dev->name);
7959                 ret = -ENOMEM;
7960                 goto bar1_remap_failed;
7961         }
7962
7963         dev->irq = pdev->irq;
7964         dev->base_addr = (unsigned long)sp->bar0;
7965
7966         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7967         for (j = 0; j < MAX_TX_FIFOS; j++) {
7968                 mac_control->tx_FIFO_start[j] =
7969                         (struct TxFIFO_element __iomem *)
7970                         (sp->bar1 + (j * 0x00020000));
7971         }
7972
7973         /*  Driver entry points */
7974         dev->netdev_ops = &s2io_netdev_ops;
7975         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7976         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7977
7978         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7979         if (sp->high_dma_flag == true)
7980                 dev->features |= NETIF_F_HIGHDMA;
7981         dev->features |= NETIF_F_TSO;
7982         dev->features |= NETIF_F_TSO6;
7983         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7984                 dev->features |= NETIF_F_UFO;
7985                 dev->features |= NETIF_F_HW_CSUM;
7986         }
7987         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7988         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7989         INIT_WORK(&sp->set_link_task, s2io_set_link);
7990
7991         pci_save_state(sp->pdev);
7992
7993         /* Setting swapper control on the NIC, for proper reset operation */
7994         if (s2io_set_swapper(sp)) {
7995                 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7996                           dev->name);
7997                 ret = -EAGAIN;
7998                 goto set_swap_failed;
7999         }
8000
8001         /* Verify if the Herc works on the slot its placed into */
8002         if (sp->device_type & XFRAME_II_DEVICE) {
8003                 mode = s2io_verify_pci_mode(sp);
8004                 if (mode < 0) {
8005                         DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8006                                   __func__);
8007                         ret = -EBADSLT;
8008                         goto set_swap_failed;
8009                 }
8010         }
8011
8012         if (sp->config.intr_type == MSI_X) {
8013                 sp->num_entries = config->rx_ring_num + 1;
8014                 ret = s2io_enable_msi_x(sp);
8015
8016                 if (!ret) {
8017                         ret = s2io_test_msi(sp);
8018                         /* rollback MSI-X, will re-enable during add_isr() */
8019                         remove_msix_isr(sp);
8020                 }
8021                 if (ret) {
8022
8023                         DBG_PRINT(ERR_DBG,
8024                                   "MSI-X requested but failed to enable\n");
8025                         sp->config.intr_type = INTA;
8026                 }
8027         }
8028
8029         if (config->intr_type ==  MSI_X) {
8030                 for (i = 0; i < config->rx_ring_num ; i++) {
8031                         struct ring_info *ring = &mac_control->rings[i];
8032
8033                         netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8034                 }
8035         } else {
8036                 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8037         }
8038
8039         /* Not needed for Herc */
8040         if (sp->device_type & XFRAME_I_DEVICE) {
8041                 /*
8042                  * Fix for all "FFs" MAC address problems observed on
8043                  * Alpha platforms
8044                  */
8045                 fix_mac_address(sp);
8046                 s2io_reset(sp);
8047         }
8048
8049         /*
8050          * MAC address initialization.
8051          * For now only one mac address will be read and used.
8052          */
8053         bar0 = sp->bar0;
8054         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8055                 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8056         writeq(val64, &bar0->rmac_addr_cmd_mem);
8057         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8058                               RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8059                               S2IO_BIT_RESET);
8060         tmp64 = readq(&bar0->rmac_addr_data0_mem);
8061         mac_down = (u32)tmp64;
8062         mac_up = (u32) (tmp64 >> 32);
8063
8064         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8065         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8066         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8067         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8068         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8069         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8070
8071         /*  Set the factory defined MAC address initially   */
8072         dev->addr_len = ETH_ALEN;
8073         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8074         memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8075
8076         /* initialize number of multicast & unicast MAC entries variables */
8077         if (sp->device_type == XFRAME_I_DEVICE) {
8078                 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8079                 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8080                 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8081         } else if (sp->device_type == XFRAME_II_DEVICE) {
8082                 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8083                 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8084                 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8085         }
8086
8087         /* store mac addresses from CAM to s2io_nic structure */
8088         do_s2io_store_unicast_mc(sp);
8089
8090         /* Configure MSIX vector for number of rings configured plus one */
8091         if ((sp->device_type == XFRAME_II_DEVICE) &&
8092             (config->intr_type == MSI_X))
8093                 sp->num_entries = config->rx_ring_num + 1;
8094
8095         /* Store the values of the MSIX table in the s2io_nic structure */
8096         store_xmsi_data(sp);
8097         /* reset Nic and bring it to known state */
8098         s2io_reset(sp);
8099
8100         /*
8101          * Initialize link state flags
8102          * and the card state parameter
8103          */
8104         sp->state = 0;
8105
8106         /* Initialize spinlocks */
8107         for (i = 0; i < sp->config.tx_fifo_num; i++) {
8108                 struct fifo_info *fifo = &mac_control->fifos[i];
8109
8110                 spin_lock_init(&fifo->tx_lock);
8111         }
8112
8113         /*
8114          * SXE-002: Configure link and activity LED to init state
8115          * on driver load.
8116          */
8117         subid = sp->pdev->subsystem_device;
8118         if ((subid & 0xFF) >= 0x07) {
8119                 val64 = readq(&bar0->gpio_control);
8120                 val64 |= 0x0000800000000000ULL;
8121                 writeq(val64, &bar0->gpio_control);
8122                 val64 = 0x0411040400000000ULL;
8123                 writeq(val64, (void __iomem *)bar0 + 0x2700);
8124                 val64 = readq(&bar0->gpio_control);
8125         }
8126
8127         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
8128
8129         if (register_netdev(dev)) {
8130                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8131                 ret = -ENODEV;
8132                 goto register_failed;
8133         }
8134         s2io_vpd_read(sp);
8135         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8136         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8137                   sp->product_name, pdev->revision);
8138         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8139                   s2io_driver_version);
8140         DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8141         DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8142         if (sp->device_type & XFRAME_II_DEVICE) {
8143                 mode = s2io_print_pci_mode(sp);
8144                 if (mode < 0) {
8145                         ret = -EBADSLT;
8146                         unregister_netdev(dev);
8147                         goto set_swap_failed;
8148                 }
8149         }
8150         switch (sp->rxd_mode) {
8151         case RXD_MODE_1:
8152                 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8153                           dev->name);
8154                 break;
8155         case RXD_MODE_3B:
8156                 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8157                           dev->name);
8158                 break;
8159         }
8160
8161         switch (sp->config.napi) {
8162         case 0:
8163                 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8164                 break;
8165         case 1:
8166                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8167                 break;
8168         }
8169
8170         DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8171                   sp->config.tx_fifo_num);
8172
8173         DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8174                   sp->config.rx_ring_num);
8175
8176         switch (sp->config.intr_type) {
8177         case INTA:
8178                 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8179                 break;
8180         case MSI_X:
8181                 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8182                 break;
8183         }
8184         if (sp->config.multiq) {
8185                 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8186                         struct fifo_info *fifo = &mac_control->fifos[i];
8187
8188                         fifo->multiq = config->multiq;
8189                 }
8190                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8191                           dev->name);
8192         } else
8193                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8194                           dev->name);
8195
8196         switch (sp->config.tx_steering_type) {
8197         case NO_STEERING:
8198                 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8199                           dev->name);
8200                 break;
8201         case TX_PRIORITY_STEERING:
8202                 DBG_PRINT(ERR_DBG,
8203                           "%s: Priority steering enabled for transmit\n",
8204                           dev->name);
8205                 break;
8206         case TX_DEFAULT_STEERING:
8207                 DBG_PRINT(ERR_DBG,
8208                           "%s: Default steering enabled for transmit\n",
8209                           dev->name);
8210         }
8211
8212         if (sp->lro)
8213                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8214                           dev->name);
8215         if (ufo)
8216                 DBG_PRINT(ERR_DBG,
8217                           "%s: UDP Fragmentation Offload(UFO) enabled\n",
8218                           dev->name);
8219         /* Initialize device name */
8220         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8221
8222         if (vlan_tag_strip)
8223                 sp->vlan_strip_flag = 1;
8224         else
8225                 sp->vlan_strip_flag = 0;
8226
8227         /*
8228          * Make Link state as off at this point, when the Link change
8229          * interrupt comes the state will be automatically changed to
8230          * the right state.
8231          */
8232         netif_carrier_off(dev);
8233
8234         return 0;
8235
8236 register_failed:
8237 set_swap_failed:
8238         iounmap(sp->bar1);
8239 bar1_remap_failed:
8240         iounmap(sp->bar0);
8241 bar0_remap_failed:
8242 mem_alloc_failed:
8243         free_shared_mem(sp);
8244         pci_disable_device(pdev);
8245         pci_release_regions(pdev);
8246         pci_set_drvdata(pdev, NULL);
8247         free_netdev(dev);
8248
8249         return ret;
8250 }
8251
8252 /**
8253  * s2io_rem_nic - Free the PCI device
8254  * @pdev: structure containing the PCI related information of the device.
8255  * Description: This function is called by the Pci subsystem to release a
8256  * PCI device and free up all resource held up by the device. This could
8257  * be in response to a Hot plug event or when the driver is to be removed
8258  * from memory.
8259  */
8260
8261 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8262 {
8263         struct net_device *dev =
8264                 (struct net_device *)pci_get_drvdata(pdev);
8265         struct s2io_nic *sp;
8266
8267         if (dev == NULL) {
8268                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8269                 return;
8270         }
8271
8272         flush_scheduled_work();
8273
8274         sp = netdev_priv(dev);
8275         unregister_netdev(dev);
8276
8277         free_shared_mem(sp);
8278         iounmap(sp->bar0);
8279         iounmap(sp->bar1);
8280         pci_release_regions(pdev);
8281         pci_set_drvdata(pdev, NULL);
8282         free_netdev(dev);
8283         pci_disable_device(pdev);
8284 }
8285
8286 /**
8287  * s2io_starter - Entry point for the driver
8288  * Description: This function is the entry point for the driver. It verifies
8289  * the module loadable parameters and initializes PCI configuration space.
8290  */
8291
8292 static int __init s2io_starter(void)
8293 {
8294         return pci_register_driver(&s2io_driver);
8295 }
8296
8297 /**
8298  * s2io_closer - Cleanup routine for the driver
8299  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8300  */
8301
8302 static __exit void s2io_closer(void)
8303 {
8304         pci_unregister_driver(&s2io_driver);
8305         DBG_PRINT(INIT_DBG, "cleanup done\n");
8306 }
8307
8308 module_init(s2io_starter);
8309 module_exit(s2io_closer);
8310
8311 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8312                                 struct tcphdr **tcp, struct RxD_t *rxdp,
8313                                 struct s2io_nic *sp)
8314 {
8315         int ip_off;
8316         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8317
8318         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8319                 DBG_PRINT(INIT_DBG,
8320                           "%s: Non-TCP frames not supported for LRO\n",
8321                           __func__);
8322                 return -1;
8323         }
8324
8325         /* Checking for DIX type or DIX type with VLAN */
8326         if ((l2_type == 0) || (l2_type == 4)) {
8327                 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8328                 /*
8329                  * If vlan stripping is disabled and the frame is VLAN tagged,
8330                  * shift the offset by the VLAN header size bytes.
8331                  */
8332                 if ((!sp->vlan_strip_flag) &&
8333                     (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8334                         ip_off += HEADER_VLAN_SIZE;
8335         } else {
8336                 /* LLC, SNAP etc are considered non-mergeable */
8337                 return -1;
8338         }
8339
8340         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8341         ip_len = (u8)((*ip)->ihl);
8342         ip_len <<= 2;
8343         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8344
8345         return 0;
8346 }
8347
8348 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8349                                   struct tcphdr *tcp)
8350 {
8351         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8352         if ((lro->iph->saddr != ip->saddr) ||
8353             (lro->iph->daddr != ip->daddr) ||
8354             (lro->tcph->source != tcp->source) ||
8355             (lro->tcph->dest != tcp->dest))
8356                 return -1;
8357         return 0;
8358 }
8359
8360 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8361 {
8362         return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8363 }
8364
8365 static void initiate_new_session(struct lro *lro, u8 *l2h,
8366                                  struct iphdr *ip, struct tcphdr *tcp,
8367                                  u32 tcp_pyld_len, u16 vlan_tag)
8368 {
8369         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8370         lro->l2h = l2h;
8371         lro->iph = ip;
8372         lro->tcph = tcp;
8373         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8374         lro->tcp_ack = tcp->ack_seq;
8375         lro->sg_num = 1;
8376         lro->total_len = ntohs(ip->tot_len);
8377         lro->frags_len = 0;
8378         lro->vlan_tag = vlan_tag;
8379         /*
8380          * Check if we saw TCP timestamp.
8381          * Other consistency checks have already been done.
8382          */
8383         if (tcp->doff == 8) {
8384                 __be32 *ptr;
8385                 ptr = (__be32 *)(tcp+1);
8386                 lro->saw_ts = 1;
8387                 lro->cur_tsval = ntohl(*(ptr+1));
8388                 lro->cur_tsecr = *(ptr+2);
8389         }
8390         lro->in_use = 1;
8391 }
8392
8393 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8394 {
8395         struct iphdr *ip = lro->iph;
8396         struct tcphdr *tcp = lro->tcph;
8397         __sum16 nchk;
8398         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8399
8400         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8401
8402         /* Update L3 header */
8403         ip->tot_len = htons(lro->total_len);
8404         ip->check = 0;
8405         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8406         ip->check = nchk;
8407
8408         /* Update L4 header */
8409         tcp->ack_seq = lro->tcp_ack;
8410         tcp->window = lro->window;
8411
8412         /* Update tsecr field if this session has timestamps enabled */
8413         if (lro->saw_ts) {
8414                 __be32 *ptr = (__be32 *)(tcp + 1);
8415                 *(ptr+2) = lro->cur_tsecr;
8416         }
8417
8418         /* Update counters required for calculation of
8419          * average no. of packets aggregated.
8420          */
8421         swstats->sum_avg_pkts_aggregated += lro->sg_num;
8422         swstats->num_aggregations++;
8423 }
8424
8425 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8426                              struct tcphdr *tcp, u32 l4_pyld)
8427 {
8428         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8429         lro->total_len += l4_pyld;
8430         lro->frags_len += l4_pyld;
8431         lro->tcp_next_seq += l4_pyld;
8432         lro->sg_num++;
8433
8434         /* Update ack seq no. and window ad(from this pkt) in LRO object */
8435         lro->tcp_ack = tcp->ack_seq;
8436         lro->window = tcp->window;
8437
8438         if (lro->saw_ts) {
8439                 __be32 *ptr;
8440                 /* Update tsecr and tsval from this packet */
8441                 ptr = (__be32 *)(tcp+1);
8442                 lro->cur_tsval = ntohl(*(ptr+1));
8443                 lro->cur_tsecr = *(ptr + 2);
8444         }
8445 }
8446
8447 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8448                                     struct tcphdr *tcp, u32 tcp_pyld_len)
8449 {
8450         u8 *ptr;
8451
8452         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8453
8454         if (!tcp_pyld_len) {
8455                 /* Runt frame or a pure ack */
8456                 return -1;
8457         }
8458
8459         if (ip->ihl != 5) /* IP has options */
8460                 return -1;
8461
8462         /* If we see CE codepoint in IP header, packet is not mergeable */
8463         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8464                 return -1;
8465
8466         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8467         if (tcp->urg || tcp->psh || tcp->rst ||
8468             tcp->syn || tcp->fin ||
8469             tcp->ece || tcp->cwr || !tcp->ack) {
8470                 /*
8471                  * Currently recognize only the ack control word and
8472                  * any other control field being set would result in
8473                  * flushing the LRO session
8474                  */
8475                 return -1;
8476         }
8477
8478         /*
8479          * Allow only one TCP timestamp option. Don't aggregate if
8480          * any other options are detected.
8481          */
8482         if (tcp->doff != 5 && tcp->doff != 8)
8483                 return -1;
8484
8485         if (tcp->doff == 8) {
8486                 ptr = (u8 *)(tcp + 1);
8487                 while (*ptr == TCPOPT_NOP)
8488                         ptr++;
8489                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8490                         return -1;
8491
8492                 /* Ensure timestamp value increases monotonically */
8493                 if (l_lro)
8494                         if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8495                                 return -1;
8496
8497                 /* timestamp echo reply should be non-zero */
8498                 if (*((__be32 *)(ptr+6)) == 0)
8499                         return -1;
8500         }
8501
8502         return 0;
8503 }
8504
8505 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8506                                  u8 **tcp, u32 *tcp_len, struct lro **lro,
8507                                  struct RxD_t *rxdp, struct s2io_nic *sp)
8508 {
8509         struct iphdr *ip;
8510         struct tcphdr *tcph;
8511         int ret = 0, i;
8512         u16 vlan_tag = 0;
8513         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8514
8515         ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8516                                    rxdp, sp);
8517         if (ret)
8518                 return ret;
8519
8520         DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8521
8522         vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8523         tcph = (struct tcphdr *)*tcp;
8524         *tcp_len = get_l4_pyld_length(ip, tcph);
8525         for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8526                 struct lro *l_lro = &ring_data->lro0_n[i];
8527                 if (l_lro->in_use) {
8528                         if (check_for_socket_match(l_lro, ip, tcph))
8529                                 continue;
8530                         /* Sock pair matched */
8531                         *lro = l_lro;
8532
8533                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8534                                 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8535                                           "expected 0x%x, actual 0x%x\n",
8536                                           __func__,
8537                                           (*lro)->tcp_next_seq,
8538                                           ntohl(tcph->seq));
8539
8540                                 swstats->outof_sequence_pkts++;
8541                                 ret = 2;
8542                                 break;
8543                         }
8544
8545                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8546                                                       *tcp_len))
8547                                 ret = 1; /* Aggregate */
8548                         else
8549                                 ret = 2; /* Flush both */
8550                         break;
8551                 }
8552         }
8553
8554         if (ret == 0) {
8555                 /* Before searching for available LRO objects,
8556                  * check if the pkt is L3/L4 aggregatable. If not
8557                  * don't create new LRO session. Just send this
8558                  * packet up.
8559                  */
8560                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8561                         return 5;
8562
8563                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8564                         struct lro *l_lro = &ring_data->lro0_n[i];
8565                         if (!(l_lro->in_use)) {
8566                                 *lro = l_lro;
8567                                 ret = 3; /* Begin anew */
8568                                 break;
8569                         }
8570                 }
8571         }
8572
8573         if (ret == 0) { /* sessions exceeded */
8574                 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8575                           __func__);
8576                 *lro = NULL;
8577                 return ret;
8578         }
8579
8580         switch (ret) {
8581         case 3:
8582                 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8583                                      vlan_tag);
8584                 break;
8585         case 2:
8586                 update_L3L4_header(sp, *lro);
8587                 break;
8588         case 1:
8589                 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8590                 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8591                         update_L3L4_header(sp, *lro);
8592                         ret = 4; /* Flush the LRO */
8593                 }
8594                 break;
8595         default:
8596                 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8597                 break;
8598         }
8599
8600         return ret;
8601 }
8602
8603 static void clear_lro_session(struct lro *lro)
8604 {
8605         static u16 lro_struct_size = sizeof(struct lro);
8606
8607         memset(lro, 0, lro_struct_size);
8608 }
8609
8610 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8611 {
8612         struct net_device *dev = skb->dev;
8613         struct s2io_nic *sp = netdev_priv(dev);
8614
8615         skb->protocol = eth_type_trans(skb, dev);
8616         if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
8617                 /* Queueing the vlan frame to the upper layer */
8618                 if (sp->config.napi)
8619                         vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8620                 else
8621                         vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8622         } else {
8623                 if (sp->config.napi)
8624                         netif_receive_skb(skb);
8625                 else
8626                         netif_rx(skb);
8627         }
8628 }
8629
8630 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8631                            struct sk_buff *skb, u32 tcp_len)
8632 {
8633         struct sk_buff *first = lro->parent;
8634         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8635
8636         first->len += tcp_len;
8637         first->data_len = lro->frags_len;
8638         skb_pull(skb, (skb->len - tcp_len));
8639         if (skb_shinfo(first)->frag_list)
8640                 lro->last_frag->next = skb;
8641         else
8642                 skb_shinfo(first)->frag_list = skb;
8643         first->truesize += skb->truesize;
8644         lro->last_frag = skb;
8645         swstats->clubbed_frms_cnt++;
8646 }
8647
8648 /**
8649  * s2io_io_error_detected - called when PCI error is detected
8650  * @pdev: Pointer to PCI device
8651  * @state: The current pci connection state
8652  *
8653  * This function is called after a PCI bus error affecting
8654  * this device has been detected.
8655  */
8656 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8657                                                pci_channel_state_t state)
8658 {
8659         struct net_device *netdev = pci_get_drvdata(pdev);
8660         struct s2io_nic *sp = netdev_priv(netdev);
8661
8662         netif_device_detach(netdev);
8663
8664         if (state == pci_channel_io_perm_failure)
8665                 return PCI_ERS_RESULT_DISCONNECT;
8666
8667         if (netif_running(netdev)) {
8668                 /* Bring down the card, while avoiding PCI I/O */
8669                 do_s2io_card_down(sp, 0);
8670         }
8671         pci_disable_device(pdev);
8672
8673         return PCI_ERS_RESULT_NEED_RESET;
8674 }
8675
8676 /**
8677  * s2io_io_slot_reset - called after the pci bus has been reset.
8678  * @pdev: Pointer to PCI device
8679  *
8680  * Restart the card from scratch, as if from a cold-boot.
8681  * At this point, the card has exprienced a hard reset,
8682  * followed by fixups by BIOS, and has its config space
8683  * set up identically to what it was at cold boot.
8684  */
8685 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8686 {
8687         struct net_device *netdev = pci_get_drvdata(pdev);
8688         struct s2io_nic *sp = netdev_priv(netdev);
8689
8690         if (pci_enable_device(pdev)) {
8691                 pr_err("Cannot re-enable PCI device after reset.\n");
8692                 return PCI_ERS_RESULT_DISCONNECT;
8693         }
8694
8695         pci_set_master(pdev);
8696         s2io_reset(sp);
8697
8698         return PCI_ERS_RESULT_RECOVERED;
8699 }
8700
8701 /**
8702  * s2io_io_resume - called when traffic can start flowing again.
8703  * @pdev: Pointer to PCI device
8704  *
8705  * This callback is called when the error recovery driver tells
8706  * us that its OK to resume normal operation.
8707  */
8708 static void s2io_io_resume(struct pci_dev *pdev)
8709 {
8710         struct net_device *netdev = pci_get_drvdata(pdev);
8711         struct s2io_nic *sp = netdev_priv(netdev);
8712
8713         if (netif_running(netdev)) {
8714                 if (s2io_card_up(sp)) {
8715                         pr_err("Can't bring device back up after reset.\n");
8716                         return;
8717                 }
8718
8719                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8720                         s2io_card_down(sp);
8721                         pr_err("Can't restore mac addr after reset.\n");
8722                         return;
8723                 }
8724         }
8725
8726         netif_device_attach(netdev);
8727         netif_tx_wake_all_queues(netdev);
8728 }