s2io: add dynamic LRO disable support
[pandora-kernel.git] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  * multiq: This parameter used to enable/disable MULTIQUEUE support.
54  *      Possible values '1' for enable and '0' for disable. Default is '0'
55  ************************************************************************/
56
57 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58
59 #include <linux/module.h>
60 #include <linux/types.h>
61 #include <linux/errno.h>
62 #include <linux/ioport.h>
63 #include <linux/pci.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/kernel.h>
66 #include <linux/netdevice.h>
67 #include <linux/etherdevice.h>
68 #include <linux/mdio.h>
69 #include <linux/skbuff.h>
70 #include <linux/init.h>
71 #include <linux/delay.h>
72 #include <linux/stddef.h>
73 #include <linux/ioctl.h>
74 #include <linux/timex.h>
75 #include <linux/ethtool.h>
76 #include <linux/workqueue.h>
77 #include <linux/if_vlan.h>
78 #include <linux/ip.h>
79 #include <linux/tcp.h>
80 #include <linux/uaccess.h>
81 #include <linux/io.h>
82 #include <linux/slab.h>
83 #include <net/tcp.h>
84
85 #include <asm/system.h>
86 #include <asm/div64.h>
87 #include <asm/irq.h>
88
89 /* local include */
90 #include "s2io.h"
91 #include "s2io-regs.h"
92
93 #define DRV_VERSION "2.0.26.26"
94
95 /* S2io Driver name & version. */
96 static char s2io_driver_name[] = "Neterion";
97 static char s2io_driver_version[] = DRV_VERSION;
98
99 static int rxd_size[2] = {32, 48};
100 static int rxd_count[2] = {127, 85};
101
102 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
103 {
104         int ret;
105
106         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
107                (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
108
109         return ret;
110 }
111
112 /*
113  * Cards with following subsystem_id have a link state indication
114  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
115  * macro below identifies these cards given the subsystem_id.
116  */
117 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)              \
118         (dev_type == XFRAME_I_DEVICE) ?                                 \
119         ((((subid >= 0x600B) && (subid <= 0x600D)) ||                   \
120           ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
121
122 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
123                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
124
125 static inline int is_s2io_card_up(const struct s2io_nic *sp)
126 {
127         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
128 }
129
130 /* Ethtool related variables and Macros. */
131 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
132         "Register test\t(offline)",
133         "Eeprom test\t(offline)",
134         "Link test\t(online)",
135         "RLDRAM test\t(offline)",
136         "BIST Test\t(offline)"
137 };
138
139 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
140         {"tmac_frms"},
141         {"tmac_data_octets"},
142         {"tmac_drop_frms"},
143         {"tmac_mcst_frms"},
144         {"tmac_bcst_frms"},
145         {"tmac_pause_ctrl_frms"},
146         {"tmac_ttl_octets"},
147         {"tmac_ucst_frms"},
148         {"tmac_nucst_frms"},
149         {"tmac_any_err_frms"},
150         {"tmac_ttl_less_fb_octets"},
151         {"tmac_vld_ip_octets"},
152         {"tmac_vld_ip"},
153         {"tmac_drop_ip"},
154         {"tmac_icmp"},
155         {"tmac_rst_tcp"},
156         {"tmac_tcp"},
157         {"tmac_udp"},
158         {"rmac_vld_frms"},
159         {"rmac_data_octets"},
160         {"rmac_fcs_err_frms"},
161         {"rmac_drop_frms"},
162         {"rmac_vld_mcst_frms"},
163         {"rmac_vld_bcst_frms"},
164         {"rmac_in_rng_len_err_frms"},
165         {"rmac_out_rng_len_err_frms"},
166         {"rmac_long_frms"},
167         {"rmac_pause_ctrl_frms"},
168         {"rmac_unsup_ctrl_frms"},
169         {"rmac_ttl_octets"},
170         {"rmac_accepted_ucst_frms"},
171         {"rmac_accepted_nucst_frms"},
172         {"rmac_discarded_frms"},
173         {"rmac_drop_events"},
174         {"rmac_ttl_less_fb_octets"},
175         {"rmac_ttl_frms"},
176         {"rmac_usized_frms"},
177         {"rmac_osized_frms"},
178         {"rmac_frag_frms"},
179         {"rmac_jabber_frms"},
180         {"rmac_ttl_64_frms"},
181         {"rmac_ttl_65_127_frms"},
182         {"rmac_ttl_128_255_frms"},
183         {"rmac_ttl_256_511_frms"},
184         {"rmac_ttl_512_1023_frms"},
185         {"rmac_ttl_1024_1518_frms"},
186         {"rmac_ip"},
187         {"rmac_ip_octets"},
188         {"rmac_hdr_err_ip"},
189         {"rmac_drop_ip"},
190         {"rmac_icmp"},
191         {"rmac_tcp"},
192         {"rmac_udp"},
193         {"rmac_err_drp_udp"},
194         {"rmac_xgmii_err_sym"},
195         {"rmac_frms_q0"},
196         {"rmac_frms_q1"},
197         {"rmac_frms_q2"},
198         {"rmac_frms_q3"},
199         {"rmac_frms_q4"},
200         {"rmac_frms_q5"},
201         {"rmac_frms_q6"},
202         {"rmac_frms_q7"},
203         {"rmac_full_q0"},
204         {"rmac_full_q1"},
205         {"rmac_full_q2"},
206         {"rmac_full_q3"},
207         {"rmac_full_q4"},
208         {"rmac_full_q5"},
209         {"rmac_full_q6"},
210         {"rmac_full_q7"},
211         {"rmac_pause_cnt"},
212         {"rmac_xgmii_data_err_cnt"},
213         {"rmac_xgmii_ctrl_err_cnt"},
214         {"rmac_accepted_ip"},
215         {"rmac_err_tcp"},
216         {"rd_req_cnt"},
217         {"new_rd_req_cnt"},
218         {"new_rd_req_rtry_cnt"},
219         {"rd_rtry_cnt"},
220         {"wr_rtry_rd_ack_cnt"},
221         {"wr_req_cnt"},
222         {"new_wr_req_cnt"},
223         {"new_wr_req_rtry_cnt"},
224         {"wr_rtry_cnt"},
225         {"wr_disc_cnt"},
226         {"rd_rtry_wr_ack_cnt"},
227         {"txp_wr_cnt"},
228         {"txd_rd_cnt"},
229         {"txd_wr_cnt"},
230         {"rxd_rd_cnt"},
231         {"rxd_wr_cnt"},
232         {"txf_rd_cnt"},
233         {"rxf_wr_cnt"}
234 };
235
236 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
237         {"rmac_ttl_1519_4095_frms"},
238         {"rmac_ttl_4096_8191_frms"},
239         {"rmac_ttl_8192_max_frms"},
240         {"rmac_ttl_gt_max_frms"},
241         {"rmac_osized_alt_frms"},
242         {"rmac_jabber_alt_frms"},
243         {"rmac_gt_max_alt_frms"},
244         {"rmac_vlan_frms"},
245         {"rmac_len_discard"},
246         {"rmac_fcs_discard"},
247         {"rmac_pf_discard"},
248         {"rmac_da_discard"},
249         {"rmac_red_discard"},
250         {"rmac_rts_discard"},
251         {"rmac_ingm_full_discard"},
252         {"link_fault_cnt"}
253 };
254
255 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
256         {"\n DRIVER STATISTICS"},
257         {"single_bit_ecc_errs"},
258         {"double_bit_ecc_errs"},
259         {"parity_err_cnt"},
260         {"serious_err_cnt"},
261         {"soft_reset_cnt"},
262         {"fifo_full_cnt"},
263         {"ring_0_full_cnt"},
264         {"ring_1_full_cnt"},
265         {"ring_2_full_cnt"},
266         {"ring_3_full_cnt"},
267         {"ring_4_full_cnt"},
268         {"ring_5_full_cnt"},
269         {"ring_6_full_cnt"},
270         {"ring_7_full_cnt"},
271         {"alarm_transceiver_temp_high"},
272         {"alarm_transceiver_temp_low"},
273         {"alarm_laser_bias_current_high"},
274         {"alarm_laser_bias_current_low"},
275         {"alarm_laser_output_power_high"},
276         {"alarm_laser_output_power_low"},
277         {"warn_transceiver_temp_high"},
278         {"warn_transceiver_temp_low"},
279         {"warn_laser_bias_current_high"},
280         {"warn_laser_bias_current_low"},
281         {"warn_laser_output_power_high"},
282         {"warn_laser_output_power_low"},
283         {"lro_aggregated_pkts"},
284         {"lro_flush_both_count"},
285         {"lro_out_of_sequence_pkts"},
286         {"lro_flush_due_to_max_pkts"},
287         {"lro_avg_aggr_pkts"},
288         {"mem_alloc_fail_cnt"},
289         {"pci_map_fail_cnt"},
290         {"watchdog_timer_cnt"},
291         {"mem_allocated"},
292         {"mem_freed"},
293         {"link_up_cnt"},
294         {"link_down_cnt"},
295         {"link_up_time"},
296         {"link_down_time"},
297         {"tx_tcode_buf_abort_cnt"},
298         {"tx_tcode_desc_abort_cnt"},
299         {"tx_tcode_parity_err_cnt"},
300         {"tx_tcode_link_loss_cnt"},
301         {"tx_tcode_list_proc_err_cnt"},
302         {"rx_tcode_parity_err_cnt"},
303         {"rx_tcode_abort_cnt"},
304         {"rx_tcode_parity_abort_cnt"},
305         {"rx_tcode_rda_fail_cnt"},
306         {"rx_tcode_unkn_prot_cnt"},
307         {"rx_tcode_fcs_err_cnt"},
308         {"rx_tcode_buf_size_err_cnt"},
309         {"rx_tcode_rxd_corrupt_cnt"},
310         {"rx_tcode_unkn_err_cnt"},
311         {"tda_err_cnt"},
312         {"pfc_err_cnt"},
313         {"pcc_err_cnt"},
314         {"tti_err_cnt"},
315         {"tpa_err_cnt"},
316         {"sm_err_cnt"},
317         {"lso_err_cnt"},
318         {"mac_tmac_err_cnt"},
319         {"mac_rmac_err_cnt"},
320         {"xgxs_txgxs_err_cnt"},
321         {"xgxs_rxgxs_err_cnt"},
322         {"rc_err_cnt"},
323         {"prc_pcix_err_cnt"},
324         {"rpa_err_cnt"},
325         {"rda_err_cnt"},
326         {"rti_err_cnt"},
327         {"mc_err_cnt"}
328 };
329
330 #define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
331 #define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
332 #define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
333
334 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
335 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
336
337 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
338 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
339
340 #define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
341 #define S2IO_STRINGS_LEN        (S2IO_TEST_LEN * ETH_GSTRING_LEN)
342
343 #define S2IO_TIMER_CONF(timer, handle, arg, exp)        \
344         init_timer(&timer);                             \
345         timer.function = handle;                        \
346         timer.data = (unsigned long)arg;                \
347         mod_timer(&timer, (jiffies + exp))              \
348
349 /* copy mac addr to def_mac_addr array */
350 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
351 {
352         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
353         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
354         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
355         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
356         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
357         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
358 }
359
360 /* Add the vlan */
361 static void s2io_vlan_rx_register(struct net_device *dev,
362                                   struct vlan_group *grp)
363 {
364         int i;
365         struct s2io_nic *nic = netdev_priv(dev);
366         unsigned long flags[MAX_TX_FIFOS];
367         struct config_param *config = &nic->config;
368         struct mac_info *mac_control = &nic->mac_control;
369
370         for (i = 0; i < config->tx_fifo_num; i++) {
371                 struct fifo_info *fifo = &mac_control->fifos[i];
372
373                 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
374         }
375
376         nic->vlgrp = grp;
377
378         for (i = config->tx_fifo_num - 1; i >= 0; i--) {
379                 struct fifo_info *fifo = &mac_control->fifos[i];
380
381                 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
382         }
383 }
384
385 /* Unregister the vlan */
386 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
387 {
388         int i;
389         struct s2io_nic *nic = netdev_priv(dev);
390         unsigned long flags[MAX_TX_FIFOS];
391         struct config_param *config = &nic->config;
392         struct mac_info *mac_control = &nic->mac_control;
393
394         for (i = 0; i < config->tx_fifo_num; i++) {
395                 struct fifo_info *fifo = &mac_control->fifos[i];
396
397                 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
398         }
399
400         if (nic->vlgrp)
401                 vlan_group_set_device(nic->vlgrp, vid, NULL);
402
403         for (i = config->tx_fifo_num - 1; i >= 0; i--) {
404                 struct fifo_info *fifo = &mac_control->fifos[i];
405
406                 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
407         }
408 }
409
410 /*
411  * Constants to be programmed into the Xena's registers, to configure
412  * the XAUI.
413  */
414
415 #define END_SIGN        0x0
416 static const u64 herc_act_dtx_cfg[] = {
417         /* Set address */
418         0x8000051536750000ULL, 0x80000515367500E0ULL,
419         /* Write data */
420         0x8000051536750004ULL, 0x80000515367500E4ULL,
421         /* Set address */
422         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
423         /* Write data */
424         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
425         /* Set address */
426         0x801205150D440000ULL, 0x801205150D4400E0ULL,
427         /* Write data */
428         0x801205150D440004ULL, 0x801205150D4400E4ULL,
429         /* Set address */
430         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
431         /* Write data */
432         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
433         /* Done */
434         END_SIGN
435 };
436
437 static const u64 xena_dtx_cfg[] = {
438         /* Set address */
439         0x8000051500000000ULL, 0x80000515000000E0ULL,
440         /* Write data */
441         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
442         /* Set address */
443         0x8001051500000000ULL, 0x80010515000000E0ULL,
444         /* Write data */
445         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
446         /* Set address */
447         0x8002051500000000ULL, 0x80020515000000E0ULL,
448         /* Write data */
449         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
450         END_SIGN
451 };
452
453 /*
454  * Constants for Fixing the MacAddress problem seen mostly on
455  * Alpha machines.
456  */
457 static const u64 fix_mac[] = {
458         0x0060000000000000ULL, 0x0060600000000000ULL,
459         0x0040600000000000ULL, 0x0000600000000000ULL,
460         0x0020600000000000ULL, 0x0060600000000000ULL,
461         0x0020600000000000ULL, 0x0060600000000000ULL,
462         0x0020600000000000ULL, 0x0060600000000000ULL,
463         0x0020600000000000ULL, 0x0060600000000000ULL,
464         0x0020600000000000ULL, 0x0060600000000000ULL,
465         0x0020600000000000ULL, 0x0060600000000000ULL,
466         0x0020600000000000ULL, 0x0060600000000000ULL,
467         0x0020600000000000ULL, 0x0060600000000000ULL,
468         0x0020600000000000ULL, 0x0060600000000000ULL,
469         0x0020600000000000ULL, 0x0060600000000000ULL,
470         0x0020600000000000ULL, 0x0000600000000000ULL,
471         0x0040600000000000ULL, 0x0060600000000000ULL,
472         END_SIGN
473 };
474
475 MODULE_LICENSE("GPL");
476 MODULE_VERSION(DRV_VERSION);
477
478
479 /* Module Loadable parameters. */
480 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
481 S2IO_PARM_INT(rx_ring_num, 1);
482 S2IO_PARM_INT(multiq, 0);
483 S2IO_PARM_INT(rx_ring_mode, 1);
484 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
485 S2IO_PARM_INT(rmac_pause_time, 0x100);
486 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
487 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
488 S2IO_PARM_INT(shared_splits, 0);
489 S2IO_PARM_INT(tmac_util_period, 5);
490 S2IO_PARM_INT(rmac_util_period, 5);
491 S2IO_PARM_INT(l3l4hdr_size, 128);
492 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
493 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
494 /* Frequency of Rx desc syncs expressed as power of 2 */
495 S2IO_PARM_INT(rxsync_frequency, 3);
496 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
497 S2IO_PARM_INT(intr_type, 2);
498 /* Large receive offload feature */
499 static unsigned int lro_enable = 1;
500 module_param_named(lro, lro_enable, uint, 0);
501
502 /* Max pkts to be aggregated by LRO at one time. If not specified,
503  * aggregation happens until we hit max IP pkt size(64K)
504  */
505 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
506 S2IO_PARM_INT(indicate_max_pkts, 0);
507
508 S2IO_PARM_INT(napi, 1);
509 S2IO_PARM_INT(ufo, 0);
510 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
511
512 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
513 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
514 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
515 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
516 static unsigned int rts_frm_len[MAX_RX_RINGS] =
517 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
518
519 module_param_array(tx_fifo_len, uint, NULL, 0);
520 module_param_array(rx_ring_sz, uint, NULL, 0);
521 module_param_array(rts_frm_len, uint, NULL, 0);
522
523 /*
524  * S2IO device table.
525  * This table lists all the devices that this driver supports.
526  */
527 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
528         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
529          PCI_ANY_ID, PCI_ANY_ID},
530         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
531          PCI_ANY_ID, PCI_ANY_ID},
532         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
533          PCI_ANY_ID, PCI_ANY_ID},
534         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
535          PCI_ANY_ID, PCI_ANY_ID},
536         {0,}
537 };
538
539 MODULE_DEVICE_TABLE(pci, s2io_tbl);
540
541 static struct pci_error_handlers s2io_err_handler = {
542         .error_detected = s2io_io_error_detected,
543         .slot_reset = s2io_io_slot_reset,
544         .resume = s2io_io_resume,
545 };
546
547 static struct pci_driver s2io_driver = {
548         .name = "S2IO",
549         .id_table = s2io_tbl,
550         .probe = s2io_init_nic,
551         .remove = __devexit_p(s2io_rem_nic),
552         .err_handler = &s2io_err_handler,
553 };
554
555 /* A simplifier macro used both by init and free shared_mem Fns(). */
556 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
557
558 /* netqueue manipulation helper functions */
559 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
560 {
561         if (!sp->config.multiq) {
562                 int i;
563
564                 for (i = 0; i < sp->config.tx_fifo_num; i++)
565                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
566         }
567         netif_tx_stop_all_queues(sp->dev);
568 }
569
570 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
571 {
572         if (!sp->config.multiq)
573                 sp->mac_control.fifos[fifo_no].queue_state =
574                         FIFO_QUEUE_STOP;
575
576         netif_tx_stop_all_queues(sp->dev);
577 }
578
579 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
580 {
581         if (!sp->config.multiq) {
582                 int i;
583
584                 for (i = 0; i < sp->config.tx_fifo_num; i++)
585                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
586         }
587         netif_tx_start_all_queues(sp->dev);
588 }
589
590 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
591 {
592         if (!sp->config.multiq)
593                 sp->mac_control.fifos[fifo_no].queue_state =
594                         FIFO_QUEUE_START;
595
596         netif_tx_start_all_queues(sp->dev);
597 }
598
599 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
600 {
601         if (!sp->config.multiq) {
602                 int i;
603
604                 for (i = 0; i < sp->config.tx_fifo_num; i++)
605                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
606         }
607         netif_tx_wake_all_queues(sp->dev);
608 }
609
610 static inline void s2io_wake_tx_queue(
611         struct fifo_info *fifo, int cnt, u8 multiq)
612 {
613
614         if (multiq) {
615                 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
616                         netif_wake_subqueue(fifo->dev, fifo->fifo_no);
617         } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
618                 if (netif_queue_stopped(fifo->dev)) {
619                         fifo->queue_state = FIFO_QUEUE_START;
620                         netif_wake_queue(fifo->dev);
621                 }
622         }
623 }
624
625 /**
626  * init_shared_mem - Allocation and Initialization of Memory
627  * @nic: Device private variable.
628  * Description: The function allocates all the memory areas shared
629  * between the NIC and the driver. This includes Tx descriptors,
630  * Rx descriptors and the statistics block.
631  */
632
633 static int init_shared_mem(struct s2io_nic *nic)
634 {
635         u32 size;
636         void *tmp_v_addr, *tmp_v_addr_next;
637         dma_addr_t tmp_p_addr, tmp_p_addr_next;
638         struct RxD_block *pre_rxd_blk = NULL;
639         int i, j, blk_cnt;
640         int lst_size, lst_per_page;
641         struct net_device *dev = nic->dev;
642         unsigned long tmp;
643         struct buffAdd *ba;
644         struct config_param *config = &nic->config;
645         struct mac_info *mac_control = &nic->mac_control;
646         unsigned long long mem_allocated = 0;
647
648         /* Allocation and initialization of TXDLs in FIFOs */
649         size = 0;
650         for (i = 0; i < config->tx_fifo_num; i++) {
651                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
652
653                 size += tx_cfg->fifo_len;
654         }
655         if (size > MAX_AVAILABLE_TXDS) {
656                 DBG_PRINT(ERR_DBG,
657                           "Too many TxDs requested: %d, max supported: %d\n",
658                           size, MAX_AVAILABLE_TXDS);
659                 return -EINVAL;
660         }
661
662         size = 0;
663         for (i = 0; i < config->tx_fifo_num; i++) {
664                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
665
666                 size = tx_cfg->fifo_len;
667                 /*
668                  * Legal values are from 2 to 8192
669                  */
670                 if (size < 2) {
671                         DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
672                                   "Valid lengths are 2 through 8192\n",
673                                   i, size);
674                         return -EINVAL;
675                 }
676         }
677
678         lst_size = (sizeof(struct TxD) * config->max_txds);
679         lst_per_page = PAGE_SIZE / lst_size;
680
681         for (i = 0; i < config->tx_fifo_num; i++) {
682                 struct fifo_info *fifo = &mac_control->fifos[i];
683                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
684                 int fifo_len = tx_cfg->fifo_len;
685                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
686
687                 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
688                 if (!fifo->list_info) {
689                         DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
690                         return -ENOMEM;
691                 }
692                 mem_allocated += list_holder_size;
693         }
694         for (i = 0; i < config->tx_fifo_num; i++) {
695                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
696                                                 lst_per_page);
697                 struct fifo_info *fifo = &mac_control->fifos[i];
698                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
699
700                 fifo->tx_curr_put_info.offset = 0;
701                 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
702                 fifo->tx_curr_get_info.offset = 0;
703                 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
704                 fifo->fifo_no = i;
705                 fifo->nic = nic;
706                 fifo->max_txds = MAX_SKB_FRAGS + 2;
707                 fifo->dev = dev;
708
709                 for (j = 0; j < page_num; j++) {
710                         int k = 0;
711                         dma_addr_t tmp_p;
712                         void *tmp_v;
713                         tmp_v = pci_alloc_consistent(nic->pdev,
714                                                      PAGE_SIZE, &tmp_p);
715                         if (!tmp_v) {
716                                 DBG_PRINT(INFO_DBG,
717                                           "pci_alloc_consistent failed for TxDL\n");
718                                 return -ENOMEM;
719                         }
720                         /* If we got a zero DMA address(can happen on
721                          * certain platforms like PPC), reallocate.
722                          * Store virtual address of page we don't want,
723                          * to be freed later.
724                          */
725                         if (!tmp_p) {
726                                 mac_control->zerodma_virt_addr = tmp_v;
727                                 DBG_PRINT(INIT_DBG,
728                                           "%s: Zero DMA address for TxDL. "
729                                           "Virtual address %p\n",
730                                           dev->name, tmp_v);
731                                 tmp_v = pci_alloc_consistent(nic->pdev,
732                                                              PAGE_SIZE, &tmp_p);
733                                 if (!tmp_v) {
734                                         DBG_PRINT(INFO_DBG,
735                                                   "pci_alloc_consistent failed for TxDL\n");
736                                         return -ENOMEM;
737                                 }
738                                 mem_allocated += PAGE_SIZE;
739                         }
740                         while (k < lst_per_page) {
741                                 int l = (j * lst_per_page) + k;
742                                 if (l == tx_cfg->fifo_len)
743                                         break;
744                                 fifo->list_info[l].list_virt_addr =
745                                         tmp_v + (k * lst_size);
746                                 fifo->list_info[l].list_phy_addr =
747                                         tmp_p + (k * lst_size);
748                                 k++;
749                         }
750                 }
751         }
752
753         for (i = 0; i < config->tx_fifo_num; i++) {
754                 struct fifo_info *fifo = &mac_control->fifos[i];
755                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
756
757                 size = tx_cfg->fifo_len;
758                 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
759                 if (!fifo->ufo_in_band_v)
760                         return -ENOMEM;
761                 mem_allocated += (size * sizeof(u64));
762         }
763
764         /* Allocation and initialization of RXDs in Rings */
765         size = 0;
766         for (i = 0; i < config->rx_ring_num; i++) {
767                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
768                 struct ring_info *ring = &mac_control->rings[i];
769
770                 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
771                         DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
772                                   "multiple of RxDs per Block\n",
773                                   dev->name, i);
774                         return FAILURE;
775                 }
776                 size += rx_cfg->num_rxd;
777                 ring->block_count = rx_cfg->num_rxd /
778                         (rxd_count[nic->rxd_mode] + 1);
779                 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
780         }
781         if (nic->rxd_mode == RXD_MODE_1)
782                 size = (size * (sizeof(struct RxD1)));
783         else
784                 size = (size * (sizeof(struct RxD3)));
785
786         for (i = 0; i < config->rx_ring_num; i++) {
787                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
788                 struct ring_info *ring = &mac_control->rings[i];
789
790                 ring->rx_curr_get_info.block_index = 0;
791                 ring->rx_curr_get_info.offset = 0;
792                 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
793                 ring->rx_curr_put_info.block_index = 0;
794                 ring->rx_curr_put_info.offset = 0;
795                 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
796                 ring->nic = nic;
797                 ring->ring_no = i;
798
799                 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
800                 /*  Allocating all the Rx blocks */
801                 for (j = 0; j < blk_cnt; j++) {
802                         struct rx_block_info *rx_blocks;
803                         int l;
804
805                         rx_blocks = &ring->rx_blocks[j];
806                         size = SIZE_OF_BLOCK;   /* size is always page size */
807                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
808                                                           &tmp_p_addr);
809                         if (tmp_v_addr == NULL) {
810                                 /*
811                                  * In case of failure, free_shared_mem()
812                                  * is called, which should free any
813                                  * memory that was alloced till the
814                                  * failure happened.
815                                  */
816                                 rx_blocks->block_virt_addr = tmp_v_addr;
817                                 return -ENOMEM;
818                         }
819                         mem_allocated += size;
820                         memset(tmp_v_addr, 0, size);
821
822                         size = sizeof(struct rxd_info) *
823                                 rxd_count[nic->rxd_mode];
824                         rx_blocks->block_virt_addr = tmp_v_addr;
825                         rx_blocks->block_dma_addr = tmp_p_addr;
826                         rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
827                         if (!rx_blocks->rxds)
828                                 return -ENOMEM;
829                         mem_allocated += size;
830                         for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
831                                 rx_blocks->rxds[l].virt_addr =
832                                         rx_blocks->block_virt_addr +
833                                         (rxd_size[nic->rxd_mode] * l);
834                                 rx_blocks->rxds[l].dma_addr =
835                                         rx_blocks->block_dma_addr +
836                                         (rxd_size[nic->rxd_mode] * l);
837                         }
838                 }
839                 /* Interlinking all Rx Blocks */
840                 for (j = 0; j < blk_cnt; j++) {
841                         int next = (j + 1) % blk_cnt;
842                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
843                         tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
844                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
845                         tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
846
847                         pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
848                         pre_rxd_blk->reserved_2_pNext_RxD_block =
849                                 (unsigned long)tmp_v_addr_next;
850                         pre_rxd_blk->pNext_RxD_Blk_physical =
851                                 (u64)tmp_p_addr_next;
852                 }
853         }
854         if (nic->rxd_mode == RXD_MODE_3B) {
855                 /*
856                  * Allocation of Storages for buffer addresses in 2BUFF mode
857                  * and the buffers as well.
858                  */
859                 for (i = 0; i < config->rx_ring_num; i++) {
860                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
861                         struct ring_info *ring = &mac_control->rings[i];
862
863                         blk_cnt = rx_cfg->num_rxd /
864                                 (rxd_count[nic->rxd_mode] + 1);
865                         size = sizeof(struct buffAdd *) * blk_cnt;
866                         ring->ba = kmalloc(size, GFP_KERNEL);
867                         if (!ring->ba)
868                                 return -ENOMEM;
869                         mem_allocated += size;
870                         for (j = 0; j < blk_cnt; j++) {
871                                 int k = 0;
872
873                                 size = sizeof(struct buffAdd) *
874                                         (rxd_count[nic->rxd_mode] + 1);
875                                 ring->ba[j] = kmalloc(size, GFP_KERNEL);
876                                 if (!ring->ba[j])
877                                         return -ENOMEM;
878                                 mem_allocated += size;
879                                 while (k != rxd_count[nic->rxd_mode]) {
880                                         ba = &ring->ba[j][k];
881                                         size = BUF0_LEN + ALIGN_SIZE;
882                                         ba->ba_0_org = kmalloc(size, GFP_KERNEL);
883                                         if (!ba->ba_0_org)
884                                                 return -ENOMEM;
885                                         mem_allocated += size;
886                                         tmp = (unsigned long)ba->ba_0_org;
887                                         tmp += ALIGN_SIZE;
888                                         tmp &= ~((unsigned long)ALIGN_SIZE);
889                                         ba->ba_0 = (void *)tmp;
890
891                                         size = BUF1_LEN + ALIGN_SIZE;
892                                         ba->ba_1_org = kmalloc(size, GFP_KERNEL);
893                                         if (!ba->ba_1_org)
894                                                 return -ENOMEM;
895                                         mem_allocated += size;
896                                         tmp = (unsigned long)ba->ba_1_org;
897                                         tmp += ALIGN_SIZE;
898                                         tmp &= ~((unsigned long)ALIGN_SIZE);
899                                         ba->ba_1 = (void *)tmp;
900                                         k++;
901                                 }
902                         }
903                 }
904         }
905
906         /* Allocation and initialization of Statistics block */
907         size = sizeof(struct stat_block);
908         mac_control->stats_mem =
909                 pci_alloc_consistent(nic->pdev, size,
910                                      &mac_control->stats_mem_phy);
911
912         if (!mac_control->stats_mem) {
913                 /*
914                  * In case of failure, free_shared_mem() is called, which
915                  * should free any memory that was alloced till the
916                  * failure happened.
917                  */
918                 return -ENOMEM;
919         }
920         mem_allocated += size;
921         mac_control->stats_mem_sz = size;
922
923         tmp_v_addr = mac_control->stats_mem;
924         mac_control->stats_info = (struct stat_block *)tmp_v_addr;
925         memset(tmp_v_addr, 0, size);
926         DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
927                 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
928         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
929         return SUCCESS;
930 }
931
932 /**
933  * free_shared_mem - Free the allocated Memory
934  * @nic:  Device private variable.
935  * Description: This function is to free all memory locations allocated by
936  * the init_shared_mem() function and return it to the kernel.
937  */
938
939 static void free_shared_mem(struct s2io_nic *nic)
940 {
941         int i, j, blk_cnt, size;
942         void *tmp_v_addr;
943         dma_addr_t tmp_p_addr;
944         int lst_size, lst_per_page;
945         struct net_device *dev;
946         int page_num = 0;
947         struct config_param *config;
948         struct mac_info *mac_control;
949         struct stat_block *stats;
950         struct swStat *swstats;
951
952         if (!nic)
953                 return;
954
955         dev = nic->dev;
956
957         config = &nic->config;
958         mac_control = &nic->mac_control;
959         stats = mac_control->stats_info;
960         swstats = &stats->sw_stat;
961
962         lst_size = sizeof(struct TxD) * config->max_txds;
963         lst_per_page = PAGE_SIZE / lst_size;
964
965         for (i = 0; i < config->tx_fifo_num; i++) {
966                 struct fifo_info *fifo = &mac_control->fifos[i];
967                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
968
969                 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
970                 for (j = 0; j < page_num; j++) {
971                         int mem_blks = (j * lst_per_page);
972                         struct list_info_hold *fli;
973
974                         if (!fifo->list_info)
975                                 return;
976
977                         fli = &fifo->list_info[mem_blks];
978                         if (!fli->list_virt_addr)
979                                 break;
980                         pci_free_consistent(nic->pdev, PAGE_SIZE,
981                                             fli->list_virt_addr,
982                                             fli->list_phy_addr);
983                         swstats->mem_freed += PAGE_SIZE;
984                 }
985                 /* If we got a zero DMA address during allocation,
986                  * free the page now
987                  */
988                 if (mac_control->zerodma_virt_addr) {
989                         pci_free_consistent(nic->pdev, PAGE_SIZE,
990                                             mac_control->zerodma_virt_addr,
991                                             (dma_addr_t)0);
992                         DBG_PRINT(INIT_DBG,
993                                   "%s: Freeing TxDL with zero DMA address. "
994                                   "Virtual address %p\n",
995                                   dev->name, mac_control->zerodma_virt_addr);
996                         swstats->mem_freed += PAGE_SIZE;
997                 }
998                 kfree(fifo->list_info);
999                 swstats->mem_freed += tx_cfg->fifo_len *
1000                         sizeof(struct list_info_hold);
1001         }
1002
1003         size = SIZE_OF_BLOCK;
1004         for (i = 0; i < config->rx_ring_num; i++) {
1005                 struct ring_info *ring = &mac_control->rings[i];
1006
1007                 blk_cnt = ring->block_count;
1008                 for (j = 0; j < blk_cnt; j++) {
1009                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1010                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1011                         if (tmp_v_addr == NULL)
1012                                 break;
1013                         pci_free_consistent(nic->pdev, size,
1014                                             tmp_v_addr, tmp_p_addr);
1015                         swstats->mem_freed += size;
1016                         kfree(ring->rx_blocks[j].rxds);
1017                         swstats->mem_freed += sizeof(struct rxd_info) *
1018                                 rxd_count[nic->rxd_mode];
1019                 }
1020         }
1021
1022         if (nic->rxd_mode == RXD_MODE_3B) {
1023                 /* Freeing buffer storage addresses in 2BUFF mode. */
1024                 for (i = 0; i < config->rx_ring_num; i++) {
1025                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1026                         struct ring_info *ring = &mac_control->rings[i];
1027
1028                         blk_cnt = rx_cfg->num_rxd /
1029                                 (rxd_count[nic->rxd_mode] + 1);
1030                         for (j = 0; j < blk_cnt; j++) {
1031                                 int k = 0;
1032                                 if (!ring->ba[j])
1033                                         continue;
1034                                 while (k != rxd_count[nic->rxd_mode]) {
1035                                         struct buffAdd *ba = &ring->ba[j][k];
1036                                         kfree(ba->ba_0_org);
1037                                         swstats->mem_freed +=
1038                                                 BUF0_LEN + ALIGN_SIZE;
1039                                         kfree(ba->ba_1_org);
1040                                         swstats->mem_freed +=
1041                                                 BUF1_LEN + ALIGN_SIZE;
1042                                         k++;
1043                                 }
1044                                 kfree(ring->ba[j]);
1045                                 swstats->mem_freed += sizeof(struct buffAdd) *
1046                                         (rxd_count[nic->rxd_mode] + 1);
1047                         }
1048                         kfree(ring->ba);
1049                         swstats->mem_freed += sizeof(struct buffAdd *) *
1050                                 blk_cnt;
1051                 }
1052         }
1053
1054         for (i = 0; i < nic->config.tx_fifo_num; i++) {
1055                 struct fifo_info *fifo = &mac_control->fifos[i];
1056                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1057
1058                 if (fifo->ufo_in_band_v) {
1059                         swstats->mem_freed += tx_cfg->fifo_len *
1060                                 sizeof(u64);
1061                         kfree(fifo->ufo_in_band_v);
1062                 }
1063         }
1064
1065         if (mac_control->stats_mem) {
1066                 swstats->mem_freed += mac_control->stats_mem_sz;
1067                 pci_free_consistent(nic->pdev,
1068                                     mac_control->stats_mem_sz,
1069                                     mac_control->stats_mem,
1070                                     mac_control->stats_mem_phy);
1071         }
1072 }
1073
1074 /**
1075  * s2io_verify_pci_mode -
1076  */
1077
1078 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1079 {
1080         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1081         register u64 val64 = 0;
1082         int     mode;
1083
1084         val64 = readq(&bar0->pci_mode);
1085         mode = (u8)GET_PCI_MODE(val64);
1086
1087         if (val64 & PCI_MODE_UNKNOWN_MODE)
1088                 return -1;      /* Unknown PCI mode */
1089         return mode;
1090 }
1091
1092 #define NEC_VENID   0x1033
1093 #define NEC_DEVID   0x0125
1094 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1095 {
1096         struct pci_dev *tdev = NULL;
1097         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1098                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1099                         if (tdev->bus == s2io_pdev->bus->parent) {
1100                                 pci_dev_put(tdev);
1101                                 return 1;
1102                         }
1103                 }
1104         }
1105         return 0;
1106 }
1107
1108 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1109 /**
1110  * s2io_print_pci_mode -
1111  */
1112 static int s2io_print_pci_mode(struct s2io_nic *nic)
1113 {
1114         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1115         register u64 val64 = 0;
1116         int     mode;
1117         struct config_param *config = &nic->config;
1118         const char *pcimode;
1119
1120         val64 = readq(&bar0->pci_mode);
1121         mode = (u8)GET_PCI_MODE(val64);
1122
1123         if (val64 & PCI_MODE_UNKNOWN_MODE)
1124                 return -1;      /* Unknown PCI mode */
1125
1126         config->bus_speed = bus_speed[mode];
1127
1128         if (s2io_on_nec_bridge(nic->pdev)) {
1129                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1130                           nic->dev->name);
1131                 return mode;
1132         }
1133
1134         switch (mode) {
1135         case PCI_MODE_PCI_33:
1136                 pcimode = "33MHz PCI bus";
1137                 break;
1138         case PCI_MODE_PCI_66:
1139                 pcimode = "66MHz PCI bus";
1140                 break;
1141         case PCI_MODE_PCIX_M1_66:
1142                 pcimode = "66MHz PCIX(M1) bus";
1143                 break;
1144         case PCI_MODE_PCIX_M1_100:
1145                 pcimode = "100MHz PCIX(M1) bus";
1146                 break;
1147         case PCI_MODE_PCIX_M1_133:
1148                 pcimode = "133MHz PCIX(M1) bus";
1149                 break;
1150         case PCI_MODE_PCIX_M2_66:
1151                 pcimode = "133MHz PCIX(M2) bus";
1152                 break;
1153         case PCI_MODE_PCIX_M2_100:
1154                 pcimode = "200MHz PCIX(M2) bus";
1155                 break;
1156         case PCI_MODE_PCIX_M2_133:
1157                 pcimode = "266MHz PCIX(M2) bus";
1158                 break;
1159         default:
1160                 pcimode = "unsupported bus!";
1161                 mode = -1;
1162         }
1163
1164         DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1165                   nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1166
1167         return mode;
1168 }
1169
1170 /**
1171  *  init_tti - Initialization transmit traffic interrupt scheme
1172  *  @nic: device private variable
1173  *  @link: link status (UP/DOWN) used to enable/disable continuous
1174  *  transmit interrupts
1175  *  Description: The function configures transmit traffic interrupts
1176  *  Return Value:  SUCCESS on success and
1177  *  '-1' on failure
1178  */
1179
1180 static int init_tti(struct s2io_nic *nic, int link)
1181 {
1182         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1183         register u64 val64 = 0;
1184         int i;
1185         struct config_param *config = &nic->config;
1186
1187         for (i = 0; i < config->tx_fifo_num; i++) {
1188                 /*
1189                  * TTI Initialization. Default Tx timer gets us about
1190                  * 250 interrupts per sec. Continuous interrupts are enabled
1191                  * by default.
1192                  */
1193                 if (nic->device_type == XFRAME_II_DEVICE) {
1194                         int count = (nic->config.bus_speed * 125)/2;
1195                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1196                 } else
1197                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1198
1199                 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1200                         TTI_DATA1_MEM_TX_URNG_B(0x10) |
1201                         TTI_DATA1_MEM_TX_URNG_C(0x30) |
1202                         TTI_DATA1_MEM_TX_TIMER_AC_EN;
1203                 if (i == 0)
1204                         if (use_continuous_tx_intrs && (link == LINK_UP))
1205                                 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1206                 writeq(val64, &bar0->tti_data1_mem);
1207
1208                 if (nic->config.intr_type == MSI_X) {
1209                         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1210                                 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1211                                 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1212                                 TTI_DATA2_MEM_TX_UFC_D(0x300);
1213                 } else {
1214                         if ((nic->config.tx_steering_type ==
1215                              TX_DEFAULT_STEERING) &&
1216                             (config->tx_fifo_num > 1) &&
1217                             (i >= nic->udp_fifo_idx) &&
1218                             (i < (nic->udp_fifo_idx +
1219                                   nic->total_udp_fifos)))
1220                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1221                                         TTI_DATA2_MEM_TX_UFC_B(0x80) |
1222                                         TTI_DATA2_MEM_TX_UFC_C(0x100) |
1223                                         TTI_DATA2_MEM_TX_UFC_D(0x120);
1224                         else
1225                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1226                                         TTI_DATA2_MEM_TX_UFC_B(0x20) |
1227                                         TTI_DATA2_MEM_TX_UFC_C(0x40) |
1228                                         TTI_DATA2_MEM_TX_UFC_D(0x80);
1229                 }
1230
1231                 writeq(val64, &bar0->tti_data2_mem);
1232
1233                 val64 = TTI_CMD_MEM_WE |
1234                         TTI_CMD_MEM_STROBE_NEW_CMD |
1235                         TTI_CMD_MEM_OFFSET(i);
1236                 writeq(val64, &bar0->tti_command_mem);
1237
1238                 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1239                                           TTI_CMD_MEM_STROBE_NEW_CMD,
1240                                           S2IO_BIT_RESET) != SUCCESS)
1241                         return FAILURE;
1242         }
1243
1244         return SUCCESS;
1245 }
1246
1247 /**
1248  *  init_nic - Initialization of hardware
1249  *  @nic: device private variable
1250  *  Description: The function sequentially configures every block
1251  *  of the H/W from their reset values.
1252  *  Return Value:  SUCCESS on success and
1253  *  '-1' on failure (endian settings incorrect).
1254  */
1255
1256 static int init_nic(struct s2io_nic *nic)
1257 {
1258         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1259         struct net_device *dev = nic->dev;
1260         register u64 val64 = 0;
1261         void __iomem *add;
1262         u32 time;
1263         int i, j;
1264         int dtx_cnt = 0;
1265         unsigned long long mem_share;
1266         int mem_size;
1267         struct config_param *config = &nic->config;
1268         struct mac_info *mac_control = &nic->mac_control;
1269
1270         /* to set the swapper controle on the card */
1271         if (s2io_set_swapper(nic)) {
1272                 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1273                 return -EIO;
1274         }
1275
1276         /*
1277          * Herc requires EOI to be removed from reset before XGXS, so..
1278          */
1279         if (nic->device_type & XFRAME_II_DEVICE) {
1280                 val64 = 0xA500000000ULL;
1281                 writeq(val64, &bar0->sw_reset);
1282                 msleep(500);
1283                 val64 = readq(&bar0->sw_reset);
1284         }
1285
1286         /* Remove XGXS from reset state */
1287         val64 = 0;
1288         writeq(val64, &bar0->sw_reset);
1289         msleep(500);
1290         val64 = readq(&bar0->sw_reset);
1291
1292         /* Ensure that it's safe to access registers by checking
1293          * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1294          */
1295         if (nic->device_type == XFRAME_II_DEVICE) {
1296                 for (i = 0; i < 50; i++) {
1297                         val64 = readq(&bar0->adapter_status);
1298                         if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1299                                 break;
1300                         msleep(10);
1301                 }
1302                 if (i == 50)
1303                         return -ENODEV;
1304         }
1305
1306         /*  Enable Receiving broadcasts */
1307         add = &bar0->mac_cfg;
1308         val64 = readq(&bar0->mac_cfg);
1309         val64 |= MAC_RMAC_BCAST_ENABLE;
1310         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1311         writel((u32)val64, add);
1312         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1313         writel((u32) (val64 >> 32), (add + 4));
1314
1315         /* Read registers in all blocks */
1316         val64 = readq(&bar0->mac_int_mask);
1317         val64 = readq(&bar0->mc_int_mask);
1318         val64 = readq(&bar0->xgxs_int_mask);
1319
1320         /*  Set MTU */
1321         val64 = dev->mtu;
1322         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1323
1324         if (nic->device_type & XFRAME_II_DEVICE) {
1325                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1326                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1327                                           &bar0->dtx_control, UF);
1328                         if (dtx_cnt & 0x1)
1329                                 msleep(1); /* Necessary!! */
1330                         dtx_cnt++;
1331                 }
1332         } else {
1333                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1334                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1335                                           &bar0->dtx_control, UF);
1336                         val64 = readq(&bar0->dtx_control);
1337                         dtx_cnt++;
1338                 }
1339         }
1340
1341         /*  Tx DMA Initialization */
1342         val64 = 0;
1343         writeq(val64, &bar0->tx_fifo_partition_0);
1344         writeq(val64, &bar0->tx_fifo_partition_1);
1345         writeq(val64, &bar0->tx_fifo_partition_2);
1346         writeq(val64, &bar0->tx_fifo_partition_3);
1347
1348         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1349                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1350
1351                 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1352                         vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1353
1354                 if (i == (config->tx_fifo_num - 1)) {
1355                         if (i % 2 == 0)
1356                                 i++;
1357                 }
1358
1359                 switch (i) {
1360                 case 1:
1361                         writeq(val64, &bar0->tx_fifo_partition_0);
1362                         val64 = 0;
1363                         j = 0;
1364                         break;
1365                 case 3:
1366                         writeq(val64, &bar0->tx_fifo_partition_1);
1367                         val64 = 0;
1368                         j = 0;
1369                         break;
1370                 case 5:
1371                         writeq(val64, &bar0->tx_fifo_partition_2);
1372                         val64 = 0;
1373                         j = 0;
1374                         break;
1375                 case 7:
1376                         writeq(val64, &bar0->tx_fifo_partition_3);
1377                         val64 = 0;
1378                         j = 0;
1379                         break;
1380                 default:
1381                         j++;
1382                         break;
1383                 }
1384         }
1385
1386         /*
1387          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1388          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1389          */
1390         if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1391                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1392
1393         val64 = readq(&bar0->tx_fifo_partition_0);
1394         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1395                   &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1396
1397         /*
1398          * Initialization of Tx_PA_CONFIG register to ignore packet
1399          * integrity checking.
1400          */
1401         val64 = readq(&bar0->tx_pa_cfg);
1402         val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1403                 TX_PA_CFG_IGNORE_SNAP_OUI |
1404                 TX_PA_CFG_IGNORE_LLC_CTRL |
1405                 TX_PA_CFG_IGNORE_L2_ERR;
1406         writeq(val64, &bar0->tx_pa_cfg);
1407
1408         /* Rx DMA intialization. */
1409         val64 = 0;
1410         for (i = 0; i < config->rx_ring_num; i++) {
1411                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1412
1413                 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1414         }
1415         writeq(val64, &bar0->rx_queue_priority);
1416
1417         /*
1418          * Allocating equal share of memory to all the
1419          * configured Rings.
1420          */
1421         val64 = 0;
1422         if (nic->device_type & XFRAME_II_DEVICE)
1423                 mem_size = 32;
1424         else
1425                 mem_size = 64;
1426
1427         for (i = 0; i < config->rx_ring_num; i++) {
1428                 switch (i) {
1429                 case 0:
1430                         mem_share = (mem_size / config->rx_ring_num +
1431                                      mem_size % config->rx_ring_num);
1432                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1433                         continue;
1434                 case 1:
1435                         mem_share = (mem_size / config->rx_ring_num);
1436                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1437                         continue;
1438                 case 2:
1439                         mem_share = (mem_size / config->rx_ring_num);
1440                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1441                         continue;
1442                 case 3:
1443                         mem_share = (mem_size / config->rx_ring_num);
1444                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1445                         continue;
1446                 case 4:
1447                         mem_share = (mem_size / config->rx_ring_num);
1448                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1449                         continue;
1450                 case 5:
1451                         mem_share = (mem_size / config->rx_ring_num);
1452                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1453                         continue;
1454                 case 6:
1455                         mem_share = (mem_size / config->rx_ring_num);
1456                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1457                         continue;
1458                 case 7:
1459                         mem_share = (mem_size / config->rx_ring_num);
1460                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1461                         continue;
1462                 }
1463         }
1464         writeq(val64, &bar0->rx_queue_cfg);
1465
1466         /*
1467          * Filling Tx round robin registers
1468          * as per the number of FIFOs for equal scheduling priority
1469          */
1470         switch (config->tx_fifo_num) {
1471         case 1:
1472                 val64 = 0x0;
1473                 writeq(val64, &bar0->tx_w_round_robin_0);
1474                 writeq(val64, &bar0->tx_w_round_robin_1);
1475                 writeq(val64, &bar0->tx_w_round_robin_2);
1476                 writeq(val64, &bar0->tx_w_round_robin_3);
1477                 writeq(val64, &bar0->tx_w_round_robin_4);
1478                 break;
1479         case 2:
1480                 val64 = 0x0001000100010001ULL;
1481                 writeq(val64, &bar0->tx_w_round_robin_0);
1482                 writeq(val64, &bar0->tx_w_round_robin_1);
1483                 writeq(val64, &bar0->tx_w_round_robin_2);
1484                 writeq(val64, &bar0->tx_w_round_robin_3);
1485                 val64 = 0x0001000100000000ULL;
1486                 writeq(val64, &bar0->tx_w_round_robin_4);
1487                 break;
1488         case 3:
1489                 val64 = 0x0001020001020001ULL;
1490                 writeq(val64, &bar0->tx_w_round_robin_0);
1491                 val64 = 0x0200010200010200ULL;
1492                 writeq(val64, &bar0->tx_w_round_robin_1);
1493                 val64 = 0x0102000102000102ULL;
1494                 writeq(val64, &bar0->tx_w_round_robin_2);
1495                 val64 = 0x0001020001020001ULL;
1496                 writeq(val64, &bar0->tx_w_round_robin_3);
1497                 val64 = 0x0200010200000000ULL;
1498                 writeq(val64, &bar0->tx_w_round_robin_4);
1499                 break;
1500         case 4:
1501                 val64 = 0x0001020300010203ULL;
1502                 writeq(val64, &bar0->tx_w_round_robin_0);
1503                 writeq(val64, &bar0->tx_w_round_robin_1);
1504                 writeq(val64, &bar0->tx_w_round_robin_2);
1505                 writeq(val64, &bar0->tx_w_round_robin_3);
1506                 val64 = 0x0001020300000000ULL;
1507                 writeq(val64, &bar0->tx_w_round_robin_4);
1508                 break;
1509         case 5:
1510                 val64 = 0x0001020304000102ULL;
1511                 writeq(val64, &bar0->tx_w_round_robin_0);
1512                 val64 = 0x0304000102030400ULL;
1513                 writeq(val64, &bar0->tx_w_round_robin_1);
1514                 val64 = 0x0102030400010203ULL;
1515                 writeq(val64, &bar0->tx_w_round_robin_2);
1516                 val64 = 0x0400010203040001ULL;
1517                 writeq(val64, &bar0->tx_w_round_robin_3);
1518                 val64 = 0x0203040000000000ULL;
1519                 writeq(val64, &bar0->tx_w_round_robin_4);
1520                 break;
1521         case 6:
1522                 val64 = 0x0001020304050001ULL;
1523                 writeq(val64, &bar0->tx_w_round_robin_0);
1524                 val64 = 0x0203040500010203ULL;
1525                 writeq(val64, &bar0->tx_w_round_robin_1);
1526                 val64 = 0x0405000102030405ULL;
1527                 writeq(val64, &bar0->tx_w_round_robin_2);
1528                 val64 = 0x0001020304050001ULL;
1529                 writeq(val64, &bar0->tx_w_round_robin_3);
1530                 val64 = 0x0203040500000000ULL;
1531                 writeq(val64, &bar0->tx_w_round_robin_4);
1532                 break;
1533         case 7:
1534                 val64 = 0x0001020304050600ULL;
1535                 writeq(val64, &bar0->tx_w_round_robin_0);
1536                 val64 = 0x0102030405060001ULL;
1537                 writeq(val64, &bar0->tx_w_round_robin_1);
1538                 val64 = 0x0203040506000102ULL;
1539                 writeq(val64, &bar0->tx_w_round_robin_2);
1540                 val64 = 0x0304050600010203ULL;
1541                 writeq(val64, &bar0->tx_w_round_robin_3);
1542                 val64 = 0x0405060000000000ULL;
1543                 writeq(val64, &bar0->tx_w_round_robin_4);
1544                 break;
1545         case 8:
1546                 val64 = 0x0001020304050607ULL;
1547                 writeq(val64, &bar0->tx_w_round_robin_0);
1548                 writeq(val64, &bar0->tx_w_round_robin_1);
1549                 writeq(val64, &bar0->tx_w_round_robin_2);
1550                 writeq(val64, &bar0->tx_w_round_robin_3);
1551                 val64 = 0x0001020300000000ULL;
1552                 writeq(val64, &bar0->tx_w_round_robin_4);
1553                 break;
1554         }
1555
1556         /* Enable all configured Tx FIFO partitions */
1557         val64 = readq(&bar0->tx_fifo_partition_0);
1558         val64 |= (TX_FIFO_PARTITION_EN);
1559         writeq(val64, &bar0->tx_fifo_partition_0);
1560
1561         /* Filling the Rx round robin registers as per the
1562          * number of Rings and steering based on QoS with
1563          * equal priority.
1564          */
1565         switch (config->rx_ring_num) {
1566         case 1:
1567                 val64 = 0x0;
1568                 writeq(val64, &bar0->rx_w_round_robin_0);
1569                 writeq(val64, &bar0->rx_w_round_robin_1);
1570                 writeq(val64, &bar0->rx_w_round_robin_2);
1571                 writeq(val64, &bar0->rx_w_round_robin_3);
1572                 writeq(val64, &bar0->rx_w_round_robin_4);
1573
1574                 val64 = 0x8080808080808080ULL;
1575                 writeq(val64, &bar0->rts_qos_steering);
1576                 break;
1577         case 2:
1578                 val64 = 0x0001000100010001ULL;
1579                 writeq(val64, &bar0->rx_w_round_robin_0);
1580                 writeq(val64, &bar0->rx_w_round_robin_1);
1581                 writeq(val64, &bar0->rx_w_round_robin_2);
1582                 writeq(val64, &bar0->rx_w_round_robin_3);
1583                 val64 = 0x0001000100000000ULL;
1584                 writeq(val64, &bar0->rx_w_round_robin_4);
1585
1586                 val64 = 0x8080808040404040ULL;
1587                 writeq(val64, &bar0->rts_qos_steering);
1588                 break;
1589         case 3:
1590                 val64 = 0x0001020001020001ULL;
1591                 writeq(val64, &bar0->rx_w_round_robin_0);
1592                 val64 = 0x0200010200010200ULL;
1593                 writeq(val64, &bar0->rx_w_round_robin_1);
1594                 val64 = 0x0102000102000102ULL;
1595                 writeq(val64, &bar0->rx_w_round_robin_2);
1596                 val64 = 0x0001020001020001ULL;
1597                 writeq(val64, &bar0->rx_w_round_robin_3);
1598                 val64 = 0x0200010200000000ULL;
1599                 writeq(val64, &bar0->rx_w_round_robin_4);
1600
1601                 val64 = 0x8080804040402020ULL;
1602                 writeq(val64, &bar0->rts_qos_steering);
1603                 break;
1604         case 4:
1605                 val64 = 0x0001020300010203ULL;
1606                 writeq(val64, &bar0->rx_w_round_robin_0);
1607                 writeq(val64, &bar0->rx_w_round_robin_1);
1608                 writeq(val64, &bar0->rx_w_round_robin_2);
1609                 writeq(val64, &bar0->rx_w_round_robin_3);
1610                 val64 = 0x0001020300000000ULL;
1611                 writeq(val64, &bar0->rx_w_round_robin_4);
1612
1613                 val64 = 0x8080404020201010ULL;
1614                 writeq(val64, &bar0->rts_qos_steering);
1615                 break;
1616         case 5:
1617                 val64 = 0x0001020304000102ULL;
1618                 writeq(val64, &bar0->rx_w_round_robin_0);
1619                 val64 = 0x0304000102030400ULL;
1620                 writeq(val64, &bar0->rx_w_round_robin_1);
1621                 val64 = 0x0102030400010203ULL;
1622                 writeq(val64, &bar0->rx_w_round_robin_2);
1623                 val64 = 0x0400010203040001ULL;
1624                 writeq(val64, &bar0->rx_w_round_robin_3);
1625                 val64 = 0x0203040000000000ULL;
1626                 writeq(val64, &bar0->rx_w_round_robin_4);
1627
1628                 val64 = 0x8080404020201008ULL;
1629                 writeq(val64, &bar0->rts_qos_steering);
1630                 break;
1631         case 6:
1632                 val64 = 0x0001020304050001ULL;
1633                 writeq(val64, &bar0->rx_w_round_robin_0);
1634                 val64 = 0x0203040500010203ULL;
1635                 writeq(val64, &bar0->rx_w_round_robin_1);
1636                 val64 = 0x0405000102030405ULL;
1637                 writeq(val64, &bar0->rx_w_round_robin_2);
1638                 val64 = 0x0001020304050001ULL;
1639                 writeq(val64, &bar0->rx_w_round_robin_3);
1640                 val64 = 0x0203040500000000ULL;
1641                 writeq(val64, &bar0->rx_w_round_robin_4);
1642
1643                 val64 = 0x8080404020100804ULL;
1644                 writeq(val64, &bar0->rts_qos_steering);
1645                 break;
1646         case 7:
1647                 val64 = 0x0001020304050600ULL;
1648                 writeq(val64, &bar0->rx_w_round_robin_0);
1649                 val64 = 0x0102030405060001ULL;
1650                 writeq(val64, &bar0->rx_w_round_robin_1);
1651                 val64 = 0x0203040506000102ULL;
1652                 writeq(val64, &bar0->rx_w_round_robin_2);
1653                 val64 = 0x0304050600010203ULL;
1654                 writeq(val64, &bar0->rx_w_round_robin_3);
1655                 val64 = 0x0405060000000000ULL;
1656                 writeq(val64, &bar0->rx_w_round_robin_4);
1657
1658                 val64 = 0x8080402010080402ULL;
1659                 writeq(val64, &bar0->rts_qos_steering);
1660                 break;
1661         case 8:
1662                 val64 = 0x0001020304050607ULL;
1663                 writeq(val64, &bar0->rx_w_round_robin_0);
1664                 writeq(val64, &bar0->rx_w_round_robin_1);
1665                 writeq(val64, &bar0->rx_w_round_robin_2);
1666                 writeq(val64, &bar0->rx_w_round_robin_3);
1667                 val64 = 0x0001020300000000ULL;
1668                 writeq(val64, &bar0->rx_w_round_robin_4);
1669
1670                 val64 = 0x8040201008040201ULL;
1671                 writeq(val64, &bar0->rts_qos_steering);
1672                 break;
1673         }
1674
1675         /* UDP Fix */
1676         val64 = 0;
1677         for (i = 0; i < 8; i++)
1678                 writeq(val64, &bar0->rts_frm_len_n[i]);
1679
1680         /* Set the default rts frame length for the rings configured */
1681         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1682         for (i = 0 ; i < config->rx_ring_num ; i++)
1683                 writeq(val64, &bar0->rts_frm_len_n[i]);
1684
1685         /* Set the frame length for the configured rings
1686          * desired by the user
1687          */
1688         for (i = 0; i < config->rx_ring_num; i++) {
1689                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1690                  * specified frame length steering.
1691                  * If the user provides the frame length then program
1692                  * the rts_frm_len register for those values or else
1693                  * leave it as it is.
1694                  */
1695                 if (rts_frm_len[i] != 0) {
1696                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1697                                &bar0->rts_frm_len_n[i]);
1698                 }
1699         }
1700
1701         /* Disable differentiated services steering logic */
1702         for (i = 0; i < 64; i++) {
1703                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1704                         DBG_PRINT(ERR_DBG,
1705                                   "%s: rts_ds_steer failed on codepoint %d\n",
1706                                   dev->name, i);
1707                         return -ENODEV;
1708                 }
1709         }
1710
1711         /* Program statistics memory */
1712         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1713
1714         if (nic->device_type == XFRAME_II_DEVICE) {
1715                 val64 = STAT_BC(0x320);
1716                 writeq(val64, &bar0->stat_byte_cnt);
1717         }
1718
1719         /*
1720          * Initializing the sampling rate for the device to calculate the
1721          * bandwidth utilization.
1722          */
1723         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1724                 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1725         writeq(val64, &bar0->mac_link_util);
1726
1727         /*
1728          * Initializing the Transmit and Receive Traffic Interrupt
1729          * Scheme.
1730          */
1731
1732         /* Initialize TTI */
1733         if (SUCCESS != init_tti(nic, nic->last_link_state))
1734                 return -ENODEV;
1735
1736         /* RTI Initialization */
1737         if (nic->device_type == XFRAME_II_DEVICE) {
1738                 /*
1739                  * Programmed to generate Apprx 500 Intrs per
1740                  * second
1741                  */
1742                 int count = (nic->config.bus_speed * 125)/4;
1743                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1744         } else
1745                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1746         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1747                 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1748                 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1749                 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1750
1751         writeq(val64, &bar0->rti_data1_mem);
1752
1753         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1754                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1755         if (nic->config.intr_type == MSI_X)
1756                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1757                           RTI_DATA2_MEM_RX_UFC_D(0x40));
1758         else
1759                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1760                           RTI_DATA2_MEM_RX_UFC_D(0x80));
1761         writeq(val64, &bar0->rti_data2_mem);
1762
1763         for (i = 0; i < config->rx_ring_num; i++) {
1764                 val64 = RTI_CMD_MEM_WE |
1765                         RTI_CMD_MEM_STROBE_NEW_CMD |
1766                         RTI_CMD_MEM_OFFSET(i);
1767                 writeq(val64, &bar0->rti_command_mem);
1768
1769                 /*
1770                  * Once the operation completes, the Strobe bit of the
1771                  * command register will be reset. We poll for this
1772                  * particular condition. We wait for a maximum of 500ms
1773                  * for the operation to complete, if it's not complete
1774                  * by then we return error.
1775                  */
1776                 time = 0;
1777                 while (true) {
1778                         val64 = readq(&bar0->rti_command_mem);
1779                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1780                                 break;
1781
1782                         if (time > 10) {
1783                                 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1784                                           dev->name);
1785                                 return -ENODEV;
1786                         }
1787                         time++;
1788                         msleep(50);
1789                 }
1790         }
1791
1792         /*
1793          * Initializing proper values as Pause threshold into all
1794          * the 8 Queues on Rx side.
1795          */
1796         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1797         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1798
1799         /* Disable RMAC PAD STRIPPING */
1800         add = &bar0->mac_cfg;
1801         val64 = readq(&bar0->mac_cfg);
1802         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1803         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1804         writel((u32) (val64), add);
1805         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1806         writel((u32) (val64 >> 32), (add + 4));
1807         val64 = readq(&bar0->mac_cfg);
1808
1809         /* Enable FCS stripping by adapter */
1810         add = &bar0->mac_cfg;
1811         val64 = readq(&bar0->mac_cfg);
1812         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1813         if (nic->device_type == XFRAME_II_DEVICE)
1814                 writeq(val64, &bar0->mac_cfg);
1815         else {
1816                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1817                 writel((u32) (val64), add);
1818                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1819                 writel((u32) (val64 >> 32), (add + 4));
1820         }
1821
1822         /*
1823          * Set the time value to be inserted in the pause frame
1824          * generated by xena.
1825          */
1826         val64 = readq(&bar0->rmac_pause_cfg);
1827         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1828         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1829         writeq(val64, &bar0->rmac_pause_cfg);
1830
1831         /*
1832          * Set the Threshold Limit for Generating the pause frame
1833          * If the amount of data in any Queue exceeds ratio of
1834          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1835          * pause frame is generated
1836          */
1837         val64 = 0;
1838         for (i = 0; i < 4; i++) {
1839                 val64 |= (((u64)0xFF00 |
1840                            nic->mac_control.mc_pause_threshold_q0q3)
1841                           << (i * 2 * 8));
1842         }
1843         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1844
1845         val64 = 0;
1846         for (i = 0; i < 4; i++) {
1847                 val64 |= (((u64)0xFF00 |
1848                            nic->mac_control.mc_pause_threshold_q4q7)
1849                           << (i * 2 * 8));
1850         }
1851         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1852
1853         /*
1854          * TxDMA will stop Read request if the number of read split has
1855          * exceeded the limit pointed by shared_splits
1856          */
1857         val64 = readq(&bar0->pic_control);
1858         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1859         writeq(val64, &bar0->pic_control);
1860
1861         if (nic->config.bus_speed == 266) {
1862                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1863                 writeq(0x0, &bar0->read_retry_delay);
1864                 writeq(0x0, &bar0->write_retry_delay);
1865         }
1866
1867         /*
1868          * Programming the Herc to split every write transaction
1869          * that does not start on an ADB to reduce disconnects.
1870          */
1871         if (nic->device_type == XFRAME_II_DEVICE) {
1872                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1873                         MISC_LINK_STABILITY_PRD(3);
1874                 writeq(val64, &bar0->misc_control);
1875                 val64 = readq(&bar0->pic_control2);
1876                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1877                 writeq(val64, &bar0->pic_control2);
1878         }
1879         if (strstr(nic->product_name, "CX4")) {
1880                 val64 = TMAC_AVG_IPG(0x17);
1881                 writeq(val64, &bar0->tmac_avg_ipg);
1882         }
1883
1884         return SUCCESS;
1885 }
1886 #define LINK_UP_DOWN_INTERRUPT          1
1887 #define MAC_RMAC_ERR_TIMER              2
1888
1889 static int s2io_link_fault_indication(struct s2io_nic *nic)
1890 {
1891         if (nic->device_type == XFRAME_II_DEVICE)
1892                 return LINK_UP_DOWN_INTERRUPT;
1893         else
1894                 return MAC_RMAC_ERR_TIMER;
1895 }
1896
1897 /**
1898  *  do_s2io_write_bits -  update alarm bits in alarm register
1899  *  @value: alarm bits
1900  *  @flag: interrupt status
1901  *  @addr: address value
1902  *  Description: update alarm bits in alarm register
1903  *  Return Value:
1904  *  NONE.
1905  */
1906 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1907 {
1908         u64 temp64;
1909
1910         temp64 = readq(addr);
1911
1912         if (flag == ENABLE_INTRS)
1913                 temp64 &= ~((u64)value);
1914         else
1915                 temp64 |= ((u64)value);
1916         writeq(temp64, addr);
1917 }
1918
1919 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1920 {
1921         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1922         register u64 gen_int_mask = 0;
1923         u64 interruptible;
1924
1925         writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1926         if (mask & TX_DMA_INTR) {
1927                 gen_int_mask |= TXDMA_INT_M;
1928
1929                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1930                                    TXDMA_PCC_INT | TXDMA_TTI_INT |
1931                                    TXDMA_LSO_INT | TXDMA_TPA_INT |
1932                                    TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1933
1934                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1935                                    PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1936                                    PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1937                                    &bar0->pfc_err_mask);
1938
1939                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1940                                    TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1941                                    TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1942
1943                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1944                                    PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1945                                    PCC_N_SERR | PCC_6_COF_OV_ERR |
1946                                    PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1947                                    PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1948                                    PCC_TXB_ECC_SG_ERR,
1949                                    flag, &bar0->pcc_err_mask);
1950
1951                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1952                                    TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1953
1954                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1955                                    LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1956                                    LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1957                                    flag, &bar0->lso_err_mask);
1958
1959                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1960                                    flag, &bar0->tpa_err_mask);
1961
1962                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1963         }
1964
1965         if (mask & TX_MAC_INTR) {
1966                 gen_int_mask |= TXMAC_INT_M;
1967                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1968                                    &bar0->mac_int_mask);
1969                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1970                                    TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1971                                    TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1972                                    flag, &bar0->mac_tmac_err_mask);
1973         }
1974
1975         if (mask & TX_XGXS_INTR) {
1976                 gen_int_mask |= TXXGXS_INT_M;
1977                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1978                                    &bar0->xgxs_int_mask);
1979                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1980                                    TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1981                                    flag, &bar0->xgxs_txgxs_err_mask);
1982         }
1983
1984         if (mask & RX_DMA_INTR) {
1985                 gen_int_mask |= RXDMA_INT_M;
1986                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1987                                    RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1988                                    flag, &bar0->rxdma_int_mask);
1989                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1990                                    RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1991                                    RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1992                                    RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1993                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1994                                    PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1995                                    PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1996                                    &bar0->prc_pcix_err_mask);
1997                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1998                                    RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1999                                    &bar0->rpa_err_mask);
2000                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
2001                                    RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
2002                                    RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
2003                                    RDA_FRM_ECC_SG_ERR |
2004                                    RDA_MISC_ERR|RDA_PCIX_ERR,
2005                                    flag, &bar0->rda_err_mask);
2006                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2007                                    RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2008                                    flag, &bar0->rti_err_mask);
2009         }
2010
2011         if (mask & RX_MAC_INTR) {
2012                 gen_int_mask |= RXMAC_INT_M;
2013                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2014                                    &bar0->mac_int_mask);
2015                 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2016                                  RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2017                                  RMAC_DOUBLE_ECC_ERR);
2018                 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2019                         interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2020                 do_s2io_write_bits(interruptible,
2021                                    flag, &bar0->mac_rmac_err_mask);
2022         }
2023
2024         if (mask & RX_XGXS_INTR) {
2025                 gen_int_mask |= RXXGXS_INT_M;
2026                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2027                                    &bar0->xgxs_int_mask);
2028                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2029                                    &bar0->xgxs_rxgxs_err_mask);
2030         }
2031
2032         if (mask & MC_INTR) {
2033                 gen_int_mask |= MC_INT_M;
2034                 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2035                                    flag, &bar0->mc_int_mask);
2036                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2037                                    MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2038                                    &bar0->mc_err_mask);
2039         }
2040         nic->general_int_mask = gen_int_mask;
2041
2042         /* Remove this line when alarm interrupts are enabled */
2043         nic->general_int_mask = 0;
2044 }
2045
2046 /**
2047  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
2048  *  @nic: device private variable,
2049  *  @mask: A mask indicating which Intr block must be modified and,
2050  *  @flag: A flag indicating whether to enable or disable the Intrs.
2051  *  Description: This function will either disable or enable the interrupts
2052  *  depending on the flag argument. The mask argument can be used to
2053  *  enable/disable any Intr block.
2054  *  Return Value: NONE.
2055  */
2056
2057 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2058 {
2059         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2060         register u64 temp64 = 0, intr_mask = 0;
2061
2062         intr_mask = nic->general_int_mask;
2063
2064         /*  Top level interrupt classification */
2065         /*  PIC Interrupts */
2066         if (mask & TX_PIC_INTR) {
2067                 /*  Enable PIC Intrs in the general intr mask register */
2068                 intr_mask |= TXPIC_INT_M;
2069                 if (flag == ENABLE_INTRS) {
2070                         /*
2071                          * If Hercules adapter enable GPIO otherwise
2072                          * disable all PCIX, Flash, MDIO, IIC and GPIO
2073                          * interrupts for now.
2074                          * TODO
2075                          */
2076                         if (s2io_link_fault_indication(nic) ==
2077                             LINK_UP_DOWN_INTERRUPT) {
2078                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
2079                                                    &bar0->pic_int_mask);
2080                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2081                                                    &bar0->gpio_int_mask);
2082                         } else
2083                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2084                 } else if (flag == DISABLE_INTRS) {
2085                         /*
2086                          * Disable PIC Intrs in the general
2087                          * intr mask register
2088                          */
2089                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2090                 }
2091         }
2092
2093         /*  Tx traffic interrupts */
2094         if (mask & TX_TRAFFIC_INTR) {
2095                 intr_mask |= TXTRAFFIC_INT_M;
2096                 if (flag == ENABLE_INTRS) {
2097                         /*
2098                          * Enable all the Tx side interrupts
2099                          * writing 0 Enables all 64 TX interrupt levels
2100                          */
2101                         writeq(0x0, &bar0->tx_traffic_mask);
2102                 } else if (flag == DISABLE_INTRS) {
2103                         /*
2104                          * Disable Tx Traffic Intrs in the general intr mask
2105                          * register.
2106                          */
2107                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2108                 }
2109         }
2110
2111         /*  Rx traffic interrupts */
2112         if (mask & RX_TRAFFIC_INTR) {
2113                 intr_mask |= RXTRAFFIC_INT_M;
2114                 if (flag == ENABLE_INTRS) {
2115                         /* writing 0 Enables all 8 RX interrupt levels */
2116                         writeq(0x0, &bar0->rx_traffic_mask);
2117                 } else if (flag == DISABLE_INTRS) {
2118                         /*
2119                          * Disable Rx Traffic Intrs in the general intr mask
2120                          * register.
2121                          */
2122                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2123                 }
2124         }
2125
2126         temp64 = readq(&bar0->general_int_mask);
2127         if (flag == ENABLE_INTRS)
2128                 temp64 &= ~((u64)intr_mask);
2129         else
2130                 temp64 = DISABLE_ALL_INTRS;
2131         writeq(temp64, &bar0->general_int_mask);
2132
2133         nic->general_int_mask = readq(&bar0->general_int_mask);
2134 }
2135
2136 /**
2137  *  verify_pcc_quiescent- Checks for PCC quiescent state
2138  *  Return: 1 If PCC is quiescence
2139  *          0 If PCC is not quiescence
2140  */
2141 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2142 {
2143         int ret = 0, herc;
2144         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2145         u64 val64 = readq(&bar0->adapter_status);
2146
2147         herc = (sp->device_type == XFRAME_II_DEVICE);
2148
2149         if (flag == false) {
2150                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2151                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2152                                 ret = 1;
2153                 } else {
2154                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2155                                 ret = 1;
2156                 }
2157         } else {
2158                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2159                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2160                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2161                                 ret = 1;
2162                 } else {
2163                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2164                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2165                                 ret = 1;
2166                 }
2167         }
2168
2169         return ret;
2170 }
2171 /**
2172  *  verify_xena_quiescence - Checks whether the H/W is ready
2173  *  Description: Returns whether the H/W is ready to go or not. Depending
2174  *  on whether adapter enable bit was written or not the comparison
2175  *  differs and the calling function passes the input argument flag to
2176  *  indicate this.
2177  *  Return: 1 If xena is quiescence
2178  *          0 If Xena is not quiescence
2179  */
2180
2181 static int verify_xena_quiescence(struct s2io_nic *sp)
2182 {
2183         int  mode;
2184         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2185         u64 val64 = readq(&bar0->adapter_status);
2186         mode = s2io_verify_pci_mode(sp);
2187
2188         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2189                 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2190                 return 0;
2191         }
2192         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2193                 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2194                 return 0;
2195         }
2196         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2197                 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2198                 return 0;
2199         }
2200         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2201                 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2202                 return 0;
2203         }
2204         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2205                 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2206                 return 0;
2207         }
2208         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2209                 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2210                 return 0;
2211         }
2212         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2213                 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2214                 return 0;
2215         }
2216         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2217                 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2218                 return 0;
2219         }
2220
2221         /*
2222          * In PCI 33 mode, the P_PLL is not used, and therefore,
2223          * the the P_PLL_LOCK bit in the adapter_status register will
2224          * not be asserted.
2225          */
2226         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2227             sp->device_type == XFRAME_II_DEVICE &&
2228             mode != PCI_MODE_PCI_33) {
2229                 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2230                 return 0;
2231         }
2232         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2233               ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2234                 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2235                 return 0;
2236         }
2237         return 1;
2238 }
2239
2240 /**
2241  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2242  * @sp: Pointer to device specifc structure
2243  * Description :
2244  * New procedure to clear mac address reading  problems on Alpha platforms
2245  *
2246  */
2247
2248 static void fix_mac_address(struct s2io_nic *sp)
2249 {
2250         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2251         u64 val64;
2252         int i = 0;
2253
2254         while (fix_mac[i] != END_SIGN) {
2255                 writeq(fix_mac[i++], &bar0->gpio_control);
2256                 udelay(10);
2257                 val64 = readq(&bar0->gpio_control);
2258         }
2259 }
2260
2261 /**
2262  *  start_nic - Turns the device on
2263  *  @nic : device private variable.
2264  *  Description:
2265  *  This function actually turns the device on. Before this  function is
2266  *  called,all Registers are configured from their reset states
2267  *  and shared memory is allocated but the NIC is still quiescent. On
2268  *  calling this function, the device interrupts are cleared and the NIC is
2269  *  literally switched on by writing into the adapter control register.
2270  *  Return Value:
2271  *  SUCCESS on success and -1 on failure.
2272  */
2273
2274 static int start_nic(struct s2io_nic *nic)
2275 {
2276         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2277         struct net_device *dev = nic->dev;
2278         register u64 val64 = 0;
2279         u16 subid, i;
2280         struct config_param *config = &nic->config;
2281         struct mac_info *mac_control = &nic->mac_control;
2282
2283         /*  PRC Initialization and configuration */
2284         for (i = 0; i < config->rx_ring_num; i++) {
2285                 struct ring_info *ring = &mac_control->rings[i];
2286
2287                 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2288                        &bar0->prc_rxd0_n[i]);
2289
2290                 val64 = readq(&bar0->prc_ctrl_n[i]);
2291                 if (nic->rxd_mode == RXD_MODE_1)
2292                         val64 |= PRC_CTRL_RC_ENABLED;
2293                 else
2294                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2295                 if (nic->device_type == XFRAME_II_DEVICE)
2296                         val64 |= PRC_CTRL_GROUP_READS;
2297                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2298                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2299                 writeq(val64, &bar0->prc_ctrl_n[i]);
2300         }
2301
2302         if (nic->rxd_mode == RXD_MODE_3B) {
2303                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2304                 val64 = readq(&bar0->rx_pa_cfg);
2305                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2306                 writeq(val64, &bar0->rx_pa_cfg);
2307         }
2308
2309         if (vlan_tag_strip == 0) {
2310                 val64 = readq(&bar0->rx_pa_cfg);
2311                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2312                 writeq(val64, &bar0->rx_pa_cfg);
2313                 nic->vlan_strip_flag = 0;
2314         }
2315
2316         /*
2317          * Enabling MC-RLDRAM. After enabling the device, we timeout
2318          * for around 100ms, which is approximately the time required
2319          * for the device to be ready for operation.
2320          */
2321         val64 = readq(&bar0->mc_rldram_mrs);
2322         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2323         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2324         val64 = readq(&bar0->mc_rldram_mrs);
2325
2326         msleep(100);    /* Delay by around 100 ms. */
2327
2328         /* Enabling ECC Protection. */
2329         val64 = readq(&bar0->adapter_control);
2330         val64 &= ~ADAPTER_ECC_EN;
2331         writeq(val64, &bar0->adapter_control);
2332
2333         /*
2334          * Verify if the device is ready to be enabled, if so enable
2335          * it.
2336          */
2337         val64 = readq(&bar0->adapter_status);
2338         if (!verify_xena_quiescence(nic)) {
2339                 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2340                           "Adapter status reads: 0x%llx\n",
2341                           dev->name, (unsigned long long)val64);
2342                 return FAILURE;
2343         }
2344
2345         /*
2346          * With some switches, link might be already up at this point.
2347          * Because of this weird behavior, when we enable laser,
2348          * we may not get link. We need to handle this. We cannot
2349          * figure out which switch is misbehaving. So we are forced to
2350          * make a global change.
2351          */
2352
2353         /* Enabling Laser. */
2354         val64 = readq(&bar0->adapter_control);
2355         val64 |= ADAPTER_EOI_TX_ON;
2356         writeq(val64, &bar0->adapter_control);
2357
2358         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2359                 /*
2360                  * Dont see link state interrupts initally on some switches,
2361                  * so directly scheduling the link state task here.
2362                  */
2363                 schedule_work(&nic->set_link_task);
2364         }
2365         /* SXE-002: Initialize link and activity LED */
2366         subid = nic->pdev->subsystem_device;
2367         if (((subid & 0xFF) >= 0x07) &&
2368             (nic->device_type == XFRAME_I_DEVICE)) {
2369                 val64 = readq(&bar0->gpio_control);
2370                 val64 |= 0x0000800000000000ULL;
2371                 writeq(val64, &bar0->gpio_control);
2372                 val64 = 0x0411040400000000ULL;
2373                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2374         }
2375
2376         return SUCCESS;
2377 }
2378 /**
2379  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2380  */
2381 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2382                                         struct TxD *txdlp, int get_off)
2383 {
2384         struct s2io_nic *nic = fifo_data->nic;
2385         struct sk_buff *skb;
2386         struct TxD *txds;
2387         u16 j, frg_cnt;
2388
2389         txds = txdlp;
2390         if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2391                 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2392                                  sizeof(u64), PCI_DMA_TODEVICE);
2393                 txds++;
2394         }
2395
2396         skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2397         if (!skb) {
2398                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2399                 return NULL;
2400         }
2401         pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2402                          skb_headlen(skb), PCI_DMA_TODEVICE);
2403         frg_cnt = skb_shinfo(skb)->nr_frags;
2404         if (frg_cnt) {
2405                 txds++;
2406                 for (j = 0; j < frg_cnt; j++, txds++) {
2407                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2408                         if (!txds->Buffer_Pointer)
2409                                 break;
2410                         pci_unmap_page(nic->pdev,
2411                                        (dma_addr_t)txds->Buffer_Pointer,
2412                                        frag->size, PCI_DMA_TODEVICE);
2413                 }
2414         }
2415         memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2416         return skb;
2417 }
2418
2419 /**
2420  *  free_tx_buffers - Free all queued Tx buffers
2421  *  @nic : device private variable.
2422  *  Description:
2423  *  Free all queued Tx buffers.
2424  *  Return Value: void
2425  */
2426
2427 static void free_tx_buffers(struct s2io_nic *nic)
2428 {
2429         struct net_device *dev = nic->dev;
2430         struct sk_buff *skb;
2431         struct TxD *txdp;
2432         int i, j;
2433         int cnt = 0;
2434         struct config_param *config = &nic->config;
2435         struct mac_info *mac_control = &nic->mac_control;
2436         struct stat_block *stats = mac_control->stats_info;
2437         struct swStat *swstats = &stats->sw_stat;
2438
2439         for (i = 0; i < config->tx_fifo_num; i++) {
2440                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2441                 struct fifo_info *fifo = &mac_control->fifos[i];
2442                 unsigned long flags;
2443
2444                 spin_lock_irqsave(&fifo->tx_lock, flags);
2445                 for (j = 0; j < tx_cfg->fifo_len; j++) {
2446                         txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
2447                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2448                         if (skb) {
2449                                 swstats->mem_freed += skb->truesize;
2450                                 dev_kfree_skb(skb);
2451                                 cnt++;
2452                         }
2453                 }
2454                 DBG_PRINT(INTR_DBG,
2455                           "%s: forcibly freeing %d skbs on FIFO%d\n",
2456                           dev->name, cnt, i);
2457                 fifo->tx_curr_get_info.offset = 0;
2458                 fifo->tx_curr_put_info.offset = 0;
2459                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2460         }
2461 }
2462
2463 /**
2464  *   stop_nic -  To stop the nic
2465  *   @nic ; device private variable.
2466  *   Description:
2467  *   This function does exactly the opposite of what the start_nic()
2468  *   function does. This function is called to stop the device.
2469  *   Return Value:
2470  *   void.
2471  */
2472
2473 static void stop_nic(struct s2io_nic *nic)
2474 {
2475         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2476         register u64 val64 = 0;
2477         u16 interruptible;
2478
2479         /*  Disable all interrupts */
2480         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2481         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2482         interruptible |= TX_PIC_INTR;
2483         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2484
2485         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2486         val64 = readq(&bar0->adapter_control);
2487         val64 &= ~(ADAPTER_CNTL_EN);
2488         writeq(val64, &bar0->adapter_control);
2489 }
2490
2491 /**
2492  *  fill_rx_buffers - Allocates the Rx side skbs
2493  *  @ring_info: per ring structure
2494  *  @from_card_up: If this is true, we will map the buffer to get
2495  *     the dma address for buf0 and buf1 to give it to the card.
2496  *     Else we will sync the already mapped buffer to give it to the card.
2497  *  Description:
2498  *  The function allocates Rx side skbs and puts the physical
2499  *  address of these buffers into the RxD buffer pointers, so that the NIC
2500  *  can DMA the received frame into these locations.
2501  *  The NIC supports 3 receive modes, viz
2502  *  1. single buffer,
2503  *  2. three buffer and
2504  *  3. Five buffer modes.
2505  *  Each mode defines how many fragments the received frame will be split
2506  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2507  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2508  *  is split into 3 fragments. As of now only single buffer mode is
2509  *  supported.
2510  *   Return Value:
2511  *  SUCCESS on success or an appropriate -ve value on failure.
2512  */
2513 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2514                            int from_card_up)
2515 {
2516         struct sk_buff *skb;
2517         struct RxD_t *rxdp;
2518         int off, size, block_no, block_no1;
2519         u32 alloc_tab = 0;
2520         u32 alloc_cnt;
2521         u64 tmp;
2522         struct buffAdd *ba;
2523         struct RxD_t *first_rxdp = NULL;
2524         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2525         int rxd_index = 0;
2526         struct RxD1 *rxdp1;
2527         struct RxD3 *rxdp3;
2528         struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2529
2530         alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2531
2532         block_no1 = ring->rx_curr_get_info.block_index;
2533         while (alloc_tab < alloc_cnt) {
2534                 block_no = ring->rx_curr_put_info.block_index;
2535
2536                 off = ring->rx_curr_put_info.offset;
2537
2538                 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2539
2540                 rxd_index = off + 1;
2541                 if (block_no)
2542                         rxd_index += (block_no * ring->rxd_count);
2543
2544                 if ((block_no == block_no1) &&
2545                     (off == ring->rx_curr_get_info.offset) &&
2546                     (rxdp->Host_Control)) {
2547                         DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2548                                   ring->dev->name);
2549                         goto end;
2550                 }
2551                 if (off && (off == ring->rxd_count)) {
2552                         ring->rx_curr_put_info.block_index++;
2553                         if (ring->rx_curr_put_info.block_index ==
2554                             ring->block_count)
2555                                 ring->rx_curr_put_info.block_index = 0;
2556                         block_no = ring->rx_curr_put_info.block_index;
2557                         off = 0;
2558                         ring->rx_curr_put_info.offset = off;
2559                         rxdp = ring->rx_blocks[block_no].block_virt_addr;
2560                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2561                                   ring->dev->name, rxdp);
2562
2563                 }
2564
2565                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2566                     ((ring->rxd_mode == RXD_MODE_3B) &&
2567                      (rxdp->Control_2 & s2BIT(0)))) {
2568                         ring->rx_curr_put_info.offset = off;
2569                         goto end;
2570                 }
2571                 /* calculate size of skb based on ring mode */
2572                 size = ring->mtu +
2573                         HEADER_ETHERNET_II_802_3_SIZE +
2574                         HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2575                 if (ring->rxd_mode == RXD_MODE_1)
2576                         size += NET_IP_ALIGN;
2577                 else
2578                         size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2579
2580                 /* allocate skb */
2581                 skb = dev_alloc_skb(size);
2582                 if (!skb) {
2583                         DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2584                                   ring->dev->name);
2585                         if (first_rxdp) {
2586                                 wmb();
2587                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2588                         }
2589                         swstats->mem_alloc_fail_cnt++;
2590
2591                         return -ENOMEM ;
2592                 }
2593                 swstats->mem_allocated += skb->truesize;
2594
2595                 if (ring->rxd_mode == RXD_MODE_1) {
2596                         /* 1 buffer mode - normal operation mode */
2597                         rxdp1 = (struct RxD1 *)rxdp;
2598                         memset(rxdp, 0, sizeof(struct RxD1));
2599                         skb_reserve(skb, NET_IP_ALIGN);
2600                         rxdp1->Buffer0_ptr =
2601                                 pci_map_single(ring->pdev, skb->data,
2602                                                size - NET_IP_ALIGN,
2603                                                PCI_DMA_FROMDEVICE);
2604                         if (pci_dma_mapping_error(nic->pdev,
2605                                                   rxdp1->Buffer0_ptr))
2606                                 goto pci_map_failed;
2607
2608                         rxdp->Control_2 =
2609                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2610                         rxdp->Host_Control = (unsigned long)skb;
2611                 } else if (ring->rxd_mode == RXD_MODE_3B) {
2612                         /*
2613                          * 2 buffer mode -
2614                          * 2 buffer mode provides 128
2615                          * byte aligned receive buffers.
2616                          */
2617
2618                         rxdp3 = (struct RxD3 *)rxdp;
2619                         /* save buffer pointers to avoid frequent dma mapping */
2620                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2621                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2622                         memset(rxdp, 0, sizeof(struct RxD3));
2623                         /* restore the buffer pointers for dma sync*/
2624                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2625                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2626
2627                         ba = &ring->ba[block_no][off];
2628                         skb_reserve(skb, BUF0_LEN);
2629                         tmp = (u64)(unsigned long)skb->data;
2630                         tmp += ALIGN_SIZE;
2631                         tmp &= ~ALIGN_SIZE;
2632                         skb->data = (void *) (unsigned long)tmp;
2633                         skb_reset_tail_pointer(skb);
2634
2635                         if (from_card_up) {
2636                                 rxdp3->Buffer0_ptr =
2637                                         pci_map_single(ring->pdev, ba->ba_0,
2638                                                        BUF0_LEN,
2639                                                        PCI_DMA_FROMDEVICE);
2640                                 if (pci_dma_mapping_error(nic->pdev,
2641                                                           rxdp3->Buffer0_ptr))
2642                                         goto pci_map_failed;
2643                         } else
2644                                 pci_dma_sync_single_for_device(ring->pdev,
2645                                                                (dma_addr_t)rxdp3->Buffer0_ptr,
2646                                                                BUF0_LEN,
2647                                                                PCI_DMA_FROMDEVICE);
2648
2649                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2650                         if (ring->rxd_mode == RXD_MODE_3B) {
2651                                 /* Two buffer mode */
2652
2653                                 /*
2654                                  * Buffer2 will have L3/L4 header plus
2655                                  * L4 payload
2656                                  */
2657                                 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2658                                                                     skb->data,
2659                                                                     ring->mtu + 4,
2660                                                                     PCI_DMA_FROMDEVICE);
2661
2662                                 if (pci_dma_mapping_error(nic->pdev,
2663                                                           rxdp3->Buffer2_ptr))
2664                                         goto pci_map_failed;
2665
2666                                 if (from_card_up) {
2667                                         rxdp3->Buffer1_ptr =
2668                                                 pci_map_single(ring->pdev,
2669                                                                ba->ba_1,
2670                                                                BUF1_LEN,
2671                                                                PCI_DMA_FROMDEVICE);
2672
2673                                         if (pci_dma_mapping_error(nic->pdev,
2674                                                                   rxdp3->Buffer1_ptr)) {
2675                                                 pci_unmap_single(ring->pdev,
2676                                                                  (dma_addr_t)(unsigned long)
2677                                                                  skb->data,
2678                                                                  ring->mtu + 4,
2679                                                                  PCI_DMA_FROMDEVICE);
2680                                                 goto pci_map_failed;
2681                                         }
2682                                 }
2683                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2684                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2685                                         (ring->mtu + 4);
2686                         }
2687                         rxdp->Control_2 |= s2BIT(0);
2688                         rxdp->Host_Control = (unsigned long) (skb);
2689                 }
2690                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2691                         rxdp->Control_1 |= RXD_OWN_XENA;
2692                 off++;
2693                 if (off == (ring->rxd_count + 1))
2694                         off = 0;
2695                 ring->rx_curr_put_info.offset = off;
2696
2697                 rxdp->Control_2 |= SET_RXD_MARKER;
2698                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2699                         if (first_rxdp) {
2700                                 wmb();
2701                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2702                         }
2703                         first_rxdp = rxdp;
2704                 }
2705                 ring->rx_bufs_left += 1;
2706                 alloc_tab++;
2707         }
2708
2709 end:
2710         /* Transfer ownership of first descriptor to adapter just before
2711          * exiting. Before that, use memory barrier so that ownership
2712          * and other fields are seen by adapter correctly.
2713          */
2714         if (first_rxdp) {
2715                 wmb();
2716                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2717         }
2718
2719         return SUCCESS;
2720
2721 pci_map_failed:
2722         swstats->pci_map_fail_cnt++;
2723         swstats->mem_freed += skb->truesize;
2724         dev_kfree_skb_irq(skb);
2725         return -ENOMEM;
2726 }
2727
2728 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2729 {
2730         struct net_device *dev = sp->dev;
2731         int j;
2732         struct sk_buff *skb;
2733         struct RxD_t *rxdp;
2734         struct buffAdd *ba;
2735         struct RxD1 *rxdp1;
2736         struct RxD3 *rxdp3;
2737         struct mac_info *mac_control = &sp->mac_control;
2738         struct stat_block *stats = mac_control->stats_info;
2739         struct swStat *swstats = &stats->sw_stat;
2740
2741         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2742                 rxdp = mac_control->rings[ring_no].
2743                         rx_blocks[blk].rxds[j].virt_addr;
2744                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2745                 if (!skb)
2746                         continue;
2747                 if (sp->rxd_mode == RXD_MODE_1) {
2748                         rxdp1 = (struct RxD1 *)rxdp;
2749                         pci_unmap_single(sp->pdev,
2750                                          (dma_addr_t)rxdp1->Buffer0_ptr,
2751                                          dev->mtu +
2752                                          HEADER_ETHERNET_II_802_3_SIZE +
2753                                          HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2754                                          PCI_DMA_FROMDEVICE);
2755                         memset(rxdp, 0, sizeof(struct RxD1));
2756                 } else if (sp->rxd_mode == RXD_MODE_3B) {
2757                         rxdp3 = (struct RxD3 *)rxdp;
2758                         ba = &mac_control->rings[ring_no].ba[blk][j];
2759                         pci_unmap_single(sp->pdev,
2760                                          (dma_addr_t)rxdp3->Buffer0_ptr,
2761                                          BUF0_LEN,
2762                                          PCI_DMA_FROMDEVICE);
2763                         pci_unmap_single(sp->pdev,
2764                                          (dma_addr_t)rxdp3->Buffer1_ptr,
2765                                          BUF1_LEN,
2766                                          PCI_DMA_FROMDEVICE);
2767                         pci_unmap_single(sp->pdev,
2768                                          (dma_addr_t)rxdp3->Buffer2_ptr,
2769                                          dev->mtu + 4,
2770                                          PCI_DMA_FROMDEVICE);
2771                         memset(rxdp, 0, sizeof(struct RxD3));
2772                 }
2773                 swstats->mem_freed += skb->truesize;
2774                 dev_kfree_skb(skb);
2775                 mac_control->rings[ring_no].rx_bufs_left -= 1;
2776         }
2777 }
2778
2779 /**
2780  *  free_rx_buffers - Frees all Rx buffers
2781  *  @sp: device private variable.
2782  *  Description:
2783  *  This function will free all Rx buffers allocated by host.
2784  *  Return Value:
2785  *  NONE.
2786  */
2787
2788 static void free_rx_buffers(struct s2io_nic *sp)
2789 {
2790         struct net_device *dev = sp->dev;
2791         int i, blk = 0, buf_cnt = 0;
2792         struct config_param *config = &sp->config;
2793         struct mac_info *mac_control = &sp->mac_control;
2794
2795         for (i = 0; i < config->rx_ring_num; i++) {
2796                 struct ring_info *ring = &mac_control->rings[i];
2797
2798                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2799                         free_rxd_blk(sp, i, blk);
2800
2801                 ring->rx_curr_put_info.block_index = 0;
2802                 ring->rx_curr_get_info.block_index = 0;
2803                 ring->rx_curr_put_info.offset = 0;
2804                 ring->rx_curr_get_info.offset = 0;
2805                 ring->rx_bufs_left = 0;
2806                 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2807                           dev->name, buf_cnt, i);
2808         }
2809 }
2810
2811 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2812 {
2813         if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2814                 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2815                           ring->dev->name);
2816         }
2817         return 0;
2818 }
2819
2820 /**
2821  * s2io_poll - Rx interrupt handler for NAPI support
2822  * @napi : pointer to the napi structure.
2823  * @budget : The number of packets that were budgeted to be processed
2824  * during  one pass through the 'Poll" function.
2825  * Description:
2826  * Comes into picture only if NAPI support has been incorporated. It does
2827  * the same thing that rx_intr_handler does, but not in a interrupt context
2828  * also It will process only a given number of packets.
2829  * Return value:
2830  * 0 on success and 1 if there are No Rx packets to be processed.
2831  */
2832
2833 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2834 {
2835         struct ring_info *ring = container_of(napi, struct ring_info, napi);
2836         struct net_device *dev = ring->dev;
2837         int pkts_processed = 0;
2838         u8 __iomem *addr = NULL;
2839         u8 val8 = 0;
2840         struct s2io_nic *nic = netdev_priv(dev);
2841         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2842         int budget_org = budget;
2843
2844         if (unlikely(!is_s2io_card_up(nic)))
2845                 return 0;
2846
2847         pkts_processed = rx_intr_handler(ring, budget);
2848         s2io_chk_rx_buffers(nic, ring);
2849
2850         if (pkts_processed < budget_org) {
2851                 napi_complete(napi);
2852                 /*Re Enable MSI-Rx Vector*/
2853                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2854                 addr += 7 - ring->ring_no;
2855                 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2856                 writeb(val8, addr);
2857                 val8 = readb(addr);
2858         }
2859         return pkts_processed;
2860 }
2861
2862 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2863 {
2864         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2865         int pkts_processed = 0;
2866         int ring_pkts_processed, i;
2867         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2868         int budget_org = budget;
2869         struct config_param *config = &nic->config;
2870         struct mac_info *mac_control = &nic->mac_control;
2871
2872         if (unlikely(!is_s2io_card_up(nic)))
2873                 return 0;
2874
2875         for (i = 0; i < config->rx_ring_num; i++) {
2876                 struct ring_info *ring = &mac_control->rings[i];
2877                 ring_pkts_processed = rx_intr_handler(ring, budget);
2878                 s2io_chk_rx_buffers(nic, ring);
2879                 pkts_processed += ring_pkts_processed;
2880                 budget -= ring_pkts_processed;
2881                 if (budget <= 0)
2882                         break;
2883         }
2884         if (pkts_processed < budget_org) {
2885                 napi_complete(napi);
2886                 /* Re enable the Rx interrupts for the ring */
2887                 writeq(0, &bar0->rx_traffic_mask);
2888                 readl(&bar0->rx_traffic_mask);
2889         }
2890         return pkts_processed;
2891 }
2892
2893 #ifdef CONFIG_NET_POLL_CONTROLLER
2894 /**
2895  * s2io_netpoll - netpoll event handler entry point
2896  * @dev : pointer to the device structure.
2897  * Description:
2898  *      This function will be called by upper layer to check for events on the
2899  * interface in situations where interrupts are disabled. It is used for
2900  * specific in-kernel networking tasks, such as remote consoles and kernel
2901  * debugging over the network (example netdump in RedHat).
2902  */
2903 static void s2io_netpoll(struct net_device *dev)
2904 {
2905         struct s2io_nic *nic = netdev_priv(dev);
2906         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2907         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2908         int i;
2909         struct config_param *config = &nic->config;
2910         struct mac_info *mac_control = &nic->mac_control;
2911
2912         if (pci_channel_offline(nic->pdev))
2913                 return;
2914
2915         disable_irq(dev->irq);
2916
2917         writeq(val64, &bar0->rx_traffic_int);
2918         writeq(val64, &bar0->tx_traffic_int);
2919
2920         /* we need to free up the transmitted skbufs or else netpoll will
2921          * run out of skbs and will fail and eventually netpoll application such
2922          * as netdump will fail.
2923          */
2924         for (i = 0; i < config->tx_fifo_num; i++)
2925                 tx_intr_handler(&mac_control->fifos[i]);
2926
2927         /* check for received packet and indicate up to network */
2928         for (i = 0; i < config->rx_ring_num; i++) {
2929                 struct ring_info *ring = &mac_control->rings[i];
2930
2931                 rx_intr_handler(ring, 0);
2932         }
2933
2934         for (i = 0; i < config->rx_ring_num; i++) {
2935                 struct ring_info *ring = &mac_control->rings[i];
2936
2937                 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2938                         DBG_PRINT(INFO_DBG,
2939                                   "%s: Out of memory in Rx Netpoll!!\n",
2940                                   dev->name);
2941                         break;
2942                 }
2943         }
2944         enable_irq(dev->irq);
2945 }
2946 #endif
2947
2948 /**
2949  *  rx_intr_handler - Rx interrupt handler
2950  *  @ring_info: per ring structure.
2951  *  @budget: budget for napi processing.
2952  *  Description:
2953  *  If the interrupt is because of a received frame or if the
2954  *  receive ring contains fresh as yet un-processed frames,this function is
2955  *  called. It picks out the RxD at which place the last Rx processing had
2956  *  stopped and sends the skb to the OSM's Rx handler and then increments
2957  *  the offset.
2958  *  Return Value:
2959  *  No. of napi packets processed.
2960  */
2961 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2962 {
2963         int get_block, put_block;
2964         struct rx_curr_get_info get_info, put_info;
2965         struct RxD_t *rxdp;
2966         struct sk_buff *skb;
2967         int pkt_cnt = 0, napi_pkts = 0;
2968         int i;
2969         struct RxD1 *rxdp1;
2970         struct RxD3 *rxdp3;
2971
2972         get_info = ring_data->rx_curr_get_info;
2973         get_block = get_info.block_index;
2974         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2975         put_block = put_info.block_index;
2976         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2977
2978         while (RXD_IS_UP2DT(rxdp)) {
2979                 /*
2980                  * If your are next to put index then it's
2981                  * FIFO full condition
2982                  */
2983                 if ((get_block == put_block) &&
2984                     (get_info.offset + 1) == put_info.offset) {
2985                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2986                                   ring_data->dev->name);
2987                         break;
2988                 }
2989                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2990                 if (skb == NULL) {
2991                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2992                                   ring_data->dev->name);
2993                         return 0;
2994                 }
2995                 if (ring_data->rxd_mode == RXD_MODE_1) {
2996                         rxdp1 = (struct RxD1 *)rxdp;
2997                         pci_unmap_single(ring_data->pdev, (dma_addr_t)
2998                                          rxdp1->Buffer0_ptr,
2999                                          ring_data->mtu +
3000                                          HEADER_ETHERNET_II_802_3_SIZE +
3001                                          HEADER_802_2_SIZE +
3002                                          HEADER_SNAP_SIZE,
3003                                          PCI_DMA_FROMDEVICE);
3004                 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3005                         rxdp3 = (struct RxD3 *)rxdp;
3006                         pci_dma_sync_single_for_cpu(ring_data->pdev,
3007                                                     (dma_addr_t)rxdp3->Buffer0_ptr,
3008                                                     BUF0_LEN,
3009                                                     PCI_DMA_FROMDEVICE);
3010                         pci_unmap_single(ring_data->pdev,
3011                                          (dma_addr_t)rxdp3->Buffer2_ptr,
3012                                          ring_data->mtu + 4,
3013                                          PCI_DMA_FROMDEVICE);
3014                 }
3015                 prefetch(skb->data);
3016                 rx_osm_handler(ring_data, rxdp);
3017                 get_info.offset++;
3018                 ring_data->rx_curr_get_info.offset = get_info.offset;
3019                 rxdp = ring_data->rx_blocks[get_block].
3020                         rxds[get_info.offset].virt_addr;
3021                 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3022                         get_info.offset = 0;
3023                         ring_data->rx_curr_get_info.offset = get_info.offset;
3024                         get_block++;
3025                         if (get_block == ring_data->block_count)
3026                                 get_block = 0;
3027                         ring_data->rx_curr_get_info.block_index = get_block;
3028                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3029                 }
3030
3031                 if (ring_data->nic->config.napi) {
3032                         budget--;
3033                         napi_pkts++;
3034                         if (!budget)
3035                                 break;
3036                 }
3037                 pkt_cnt++;
3038                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3039                         break;
3040         }
3041         if (ring_data->lro) {
3042                 /* Clear all LRO sessions before exiting */
3043                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
3044                         struct lro *lro = &ring_data->lro0_n[i];
3045                         if (lro->in_use) {
3046                                 update_L3L4_header(ring_data->nic, lro);
3047                                 queue_rx_frame(lro->parent, lro->vlan_tag);
3048                                 clear_lro_session(lro);
3049                         }
3050                 }
3051         }
3052         return napi_pkts;
3053 }
3054
3055 /**
3056  *  tx_intr_handler - Transmit interrupt handler
3057  *  @nic : device private variable
3058  *  Description:
3059  *  If an interrupt was raised to indicate DMA complete of the
3060  *  Tx packet, this function is called. It identifies the last TxD
3061  *  whose buffer was freed and frees all skbs whose data have already
3062  *  DMA'ed into the NICs internal memory.
3063  *  Return Value:
3064  *  NONE
3065  */
3066
3067 static void tx_intr_handler(struct fifo_info *fifo_data)
3068 {
3069         struct s2io_nic *nic = fifo_data->nic;
3070         struct tx_curr_get_info get_info, put_info;
3071         struct sk_buff *skb = NULL;
3072         struct TxD *txdlp;
3073         int pkt_cnt = 0;
3074         unsigned long flags = 0;
3075         u8 err_mask;
3076         struct stat_block *stats = nic->mac_control.stats_info;
3077         struct swStat *swstats = &stats->sw_stat;
3078
3079         if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3080                 return;
3081
3082         get_info = fifo_data->tx_curr_get_info;
3083         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3084         txdlp = (struct TxD *)
3085                 fifo_data->list_info[get_info.offset].list_virt_addr;
3086         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3087                (get_info.offset != put_info.offset) &&
3088                (txdlp->Host_Control)) {
3089                 /* Check for TxD errors */
3090                 if (txdlp->Control_1 & TXD_T_CODE) {
3091                         unsigned long long err;
3092                         err = txdlp->Control_1 & TXD_T_CODE;
3093                         if (err & 0x1) {
3094                                 swstats->parity_err_cnt++;
3095                         }
3096
3097                         /* update t_code statistics */
3098                         err_mask = err >> 48;
3099                         switch (err_mask) {
3100                         case 2:
3101                                 swstats->tx_buf_abort_cnt++;
3102                                 break;
3103
3104                         case 3:
3105                                 swstats->tx_desc_abort_cnt++;
3106                                 break;
3107
3108                         case 7:
3109                                 swstats->tx_parity_err_cnt++;
3110                                 break;
3111
3112                         case 10:
3113                                 swstats->tx_link_loss_cnt++;
3114                                 break;
3115
3116                         case 15:
3117                                 swstats->tx_list_proc_err_cnt++;
3118                                 break;
3119                         }
3120                 }
3121
3122                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3123                 if (skb == NULL) {
3124                         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3125                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3126                                   __func__);
3127                         return;
3128                 }
3129                 pkt_cnt++;
3130
3131                 /* Updating the statistics block */
3132                 nic->dev->stats.tx_bytes += skb->len;
3133                 swstats->mem_freed += skb->truesize;
3134                 dev_kfree_skb_irq(skb);
3135
3136                 get_info.offset++;
3137                 if (get_info.offset == get_info.fifo_len + 1)
3138                         get_info.offset = 0;
3139                 txdlp = (struct TxD *)
3140                         fifo_data->list_info[get_info.offset].list_virt_addr;
3141                 fifo_data->tx_curr_get_info.offset = get_info.offset;
3142         }
3143
3144         s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3145
3146         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3147 }
3148
3149 /**
3150  *  s2io_mdio_write - Function to write in to MDIO registers
3151  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3152  *  @addr     : address value
3153  *  @value    : data value
3154  *  @dev      : pointer to net_device structure
3155  *  Description:
3156  *  This function is used to write values to the MDIO registers
3157  *  NONE
3158  */
3159 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3160                             struct net_device *dev)
3161 {
3162         u64 val64;
3163         struct s2io_nic *sp = netdev_priv(dev);
3164         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3165
3166         /* address transaction */
3167         val64 = MDIO_MMD_INDX_ADDR(addr) |
3168                 MDIO_MMD_DEV_ADDR(mmd_type) |
3169                 MDIO_MMS_PRT_ADDR(0x0);
3170         writeq(val64, &bar0->mdio_control);
3171         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3172         writeq(val64, &bar0->mdio_control);
3173         udelay(100);
3174
3175         /* Data transaction */
3176         val64 = MDIO_MMD_INDX_ADDR(addr) |
3177                 MDIO_MMD_DEV_ADDR(mmd_type) |
3178                 MDIO_MMS_PRT_ADDR(0x0) |
3179                 MDIO_MDIO_DATA(value) |
3180                 MDIO_OP(MDIO_OP_WRITE_TRANS);
3181         writeq(val64, &bar0->mdio_control);
3182         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3183         writeq(val64, &bar0->mdio_control);
3184         udelay(100);
3185
3186         val64 = MDIO_MMD_INDX_ADDR(addr) |
3187                 MDIO_MMD_DEV_ADDR(mmd_type) |
3188                 MDIO_MMS_PRT_ADDR(0x0) |
3189                 MDIO_OP(MDIO_OP_READ_TRANS);
3190         writeq(val64, &bar0->mdio_control);
3191         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3192         writeq(val64, &bar0->mdio_control);
3193         udelay(100);
3194 }
3195
3196 /**
3197  *  s2io_mdio_read - Function to write in to MDIO registers
3198  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3199  *  @addr     : address value
3200  *  @dev      : pointer to net_device structure
3201  *  Description:
3202  *  This function is used to read values to the MDIO registers
3203  *  NONE
3204  */
3205 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3206 {
3207         u64 val64 = 0x0;
3208         u64 rval64 = 0x0;
3209         struct s2io_nic *sp = netdev_priv(dev);
3210         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3211
3212         /* address transaction */
3213         val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3214                          | MDIO_MMD_DEV_ADDR(mmd_type)
3215                          | MDIO_MMS_PRT_ADDR(0x0));
3216         writeq(val64, &bar0->mdio_control);
3217         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3218         writeq(val64, &bar0->mdio_control);
3219         udelay(100);
3220
3221         /* Data transaction */
3222         val64 = MDIO_MMD_INDX_ADDR(addr) |
3223                 MDIO_MMD_DEV_ADDR(mmd_type) |
3224                 MDIO_MMS_PRT_ADDR(0x0) |
3225                 MDIO_OP(MDIO_OP_READ_TRANS);
3226         writeq(val64, &bar0->mdio_control);
3227         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3228         writeq(val64, &bar0->mdio_control);
3229         udelay(100);
3230
3231         /* Read the value from regs */
3232         rval64 = readq(&bar0->mdio_control);
3233         rval64 = rval64 & 0xFFFF0000;
3234         rval64 = rval64 >> 16;
3235         return rval64;
3236 }
3237
3238 /**
3239  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3240  *  @counter      : counter value to be updated
3241  *  @flag         : flag to indicate the status
3242  *  @type         : counter type
3243  *  Description:
3244  *  This function is to check the status of the xpak counters value
3245  *  NONE
3246  */
3247
3248 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3249                                   u16 flag, u16 type)
3250 {
3251         u64 mask = 0x3;
3252         u64 val64;
3253         int i;
3254         for (i = 0; i < index; i++)
3255                 mask = mask << 0x2;
3256
3257         if (flag > 0) {
3258                 *counter = *counter + 1;
3259                 val64 = *regs_stat & mask;
3260                 val64 = val64 >> (index * 0x2);
3261                 val64 = val64 + 1;
3262                 if (val64 == 3) {
3263                         switch (type) {
3264                         case 1:
3265                                 DBG_PRINT(ERR_DBG,
3266                                           "Take Xframe NIC out of service.\n");
3267                                 DBG_PRINT(ERR_DBG,
3268 "Excessive temperatures may result in premature transceiver failure.\n");
3269                                 break;
3270                         case 2:
3271                                 DBG_PRINT(ERR_DBG,
3272                                           "Take Xframe NIC out of service.\n");
3273                                 DBG_PRINT(ERR_DBG,
3274 "Excessive bias currents may indicate imminent laser diode failure.\n");
3275                                 break;
3276                         case 3:
3277                                 DBG_PRINT(ERR_DBG,
3278                                           "Take Xframe NIC out of service.\n");
3279                                 DBG_PRINT(ERR_DBG,
3280 "Excessive laser output power may saturate far-end receiver.\n");
3281                                 break;
3282                         default:
3283                                 DBG_PRINT(ERR_DBG,
3284                                           "Incorrect XPAK Alarm type\n");
3285                         }
3286                         val64 = 0x0;
3287                 }
3288                 val64 = val64 << (index * 0x2);
3289                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3290
3291         } else {
3292                 *regs_stat = *regs_stat & (~mask);
3293         }
3294 }
3295
3296 /**
3297  *  s2io_updt_xpak_counter - Function to update the xpak counters
3298  *  @dev         : pointer to net_device struct
3299  *  Description:
3300  *  This function is to upate the status of the xpak counters value
3301  *  NONE
3302  */
3303 static void s2io_updt_xpak_counter(struct net_device *dev)
3304 {
3305         u16 flag  = 0x0;
3306         u16 type  = 0x0;
3307         u16 val16 = 0x0;
3308         u64 val64 = 0x0;
3309         u64 addr  = 0x0;
3310
3311         struct s2io_nic *sp = netdev_priv(dev);
3312         struct stat_block *stats = sp->mac_control.stats_info;
3313         struct xpakStat *xstats = &stats->xpak_stat;
3314
3315         /* Check the communication with the MDIO slave */
3316         addr = MDIO_CTRL1;
3317         val64 = 0x0;
3318         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3319         if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3320                 DBG_PRINT(ERR_DBG,
3321                           "ERR: MDIO slave access failed - Returned %llx\n",
3322                           (unsigned long long)val64);
3323                 return;
3324         }
3325
3326         /* Check for the expected value of control reg 1 */
3327         if (val64 != MDIO_CTRL1_SPEED10G) {
3328                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3329                           "Returned: %llx- Expected: 0x%x\n",
3330                           (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3331                 return;
3332         }
3333
3334         /* Loading the DOM register to MDIO register */
3335         addr = 0xA100;
3336         s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3337         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3338
3339         /* Reading the Alarm flags */
3340         addr = 0xA070;
3341         val64 = 0x0;
3342         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3343
3344         flag = CHECKBIT(val64, 0x7);
3345         type = 1;
3346         s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3347                               &xstats->xpak_regs_stat,
3348                               0x0, flag, type);
3349
3350         if (CHECKBIT(val64, 0x6))
3351                 xstats->alarm_transceiver_temp_low++;
3352
3353         flag = CHECKBIT(val64, 0x3);
3354         type = 2;
3355         s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3356                               &xstats->xpak_regs_stat,
3357                               0x2, flag, type);
3358
3359         if (CHECKBIT(val64, 0x2))
3360                 xstats->alarm_laser_bias_current_low++;
3361
3362         flag = CHECKBIT(val64, 0x1);
3363         type = 3;
3364         s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3365                               &xstats->xpak_regs_stat,
3366                               0x4, flag, type);
3367
3368         if (CHECKBIT(val64, 0x0))
3369                 xstats->alarm_laser_output_power_low++;
3370
3371         /* Reading the Warning flags */
3372         addr = 0xA074;
3373         val64 = 0x0;
3374         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3375
3376         if (CHECKBIT(val64, 0x7))
3377                 xstats->warn_transceiver_temp_high++;
3378
3379         if (CHECKBIT(val64, 0x6))
3380                 xstats->warn_transceiver_temp_low++;
3381
3382         if (CHECKBIT(val64, 0x3))
3383                 xstats->warn_laser_bias_current_high++;
3384
3385         if (CHECKBIT(val64, 0x2))
3386                 xstats->warn_laser_bias_current_low++;
3387
3388         if (CHECKBIT(val64, 0x1))
3389                 xstats->warn_laser_output_power_high++;
3390
3391         if (CHECKBIT(val64, 0x0))
3392                 xstats->warn_laser_output_power_low++;
3393 }
3394
3395 /**
3396  *  wait_for_cmd_complete - waits for a command to complete.
3397  *  @sp : private member of the device structure, which is a pointer to the
3398  *  s2io_nic structure.
3399  *  Description: Function that waits for a command to Write into RMAC
3400  *  ADDR DATA registers to be completed and returns either success or
3401  *  error depending on whether the command was complete or not.
3402  *  Return value:
3403  *   SUCCESS on success and FAILURE on failure.
3404  */
3405
3406 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3407                                  int bit_state)
3408 {
3409         int ret = FAILURE, cnt = 0, delay = 1;
3410         u64 val64;
3411
3412         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3413                 return FAILURE;
3414
3415         do {
3416                 val64 = readq(addr);
3417                 if (bit_state == S2IO_BIT_RESET) {
3418                         if (!(val64 & busy_bit)) {
3419                                 ret = SUCCESS;
3420                                 break;
3421                         }
3422                 } else {
3423                         if (val64 & busy_bit) {
3424                                 ret = SUCCESS;
3425                                 break;
3426                         }
3427                 }
3428
3429                 if (in_interrupt())
3430                         mdelay(delay);
3431                 else
3432                         msleep(delay);
3433
3434                 if (++cnt >= 10)
3435                         delay = 50;
3436         } while (cnt < 20);
3437         return ret;
3438 }
3439 /*
3440  * check_pci_device_id - Checks if the device id is supported
3441  * @id : device id
3442  * Description: Function to check if the pci device id is supported by driver.
3443  * Return value: Actual device id if supported else PCI_ANY_ID
3444  */
3445 static u16 check_pci_device_id(u16 id)
3446 {
3447         switch (id) {
3448         case PCI_DEVICE_ID_HERC_WIN:
3449         case PCI_DEVICE_ID_HERC_UNI:
3450                 return XFRAME_II_DEVICE;
3451         case PCI_DEVICE_ID_S2IO_UNI:
3452         case PCI_DEVICE_ID_S2IO_WIN:
3453                 return XFRAME_I_DEVICE;
3454         default:
3455                 return PCI_ANY_ID;
3456         }
3457 }
3458
3459 /**
3460  *  s2io_reset - Resets the card.
3461  *  @sp : private member of the device structure.
3462  *  Description: Function to Reset the card. This function then also
3463  *  restores the previously saved PCI configuration space registers as
3464  *  the card reset also resets the configuration space.
3465  *  Return value:
3466  *  void.
3467  */
3468
3469 static void s2io_reset(struct s2io_nic *sp)
3470 {
3471         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3472         u64 val64;
3473         u16 subid, pci_cmd;
3474         int i;
3475         u16 val16;
3476         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3477         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3478         struct stat_block *stats;
3479         struct swStat *swstats;
3480
3481         DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3482                   __func__, pci_name(sp->pdev));
3483
3484         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3485         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3486
3487         val64 = SW_RESET_ALL;
3488         writeq(val64, &bar0->sw_reset);
3489         if (strstr(sp->product_name, "CX4"))
3490                 msleep(750);
3491         msleep(250);
3492         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3493
3494                 /* Restore the PCI state saved during initialization. */
3495                 pci_restore_state(sp->pdev);
3496                 pci_save_state(sp->pdev);
3497                 pci_read_config_word(sp->pdev, 0x2, &val16);
3498                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3499                         break;
3500                 msleep(200);
3501         }
3502
3503         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3504                 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3505
3506         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3507
3508         s2io_init_pci(sp);
3509
3510         /* Set swapper to enable I/O register access */
3511         s2io_set_swapper(sp);
3512
3513         /* restore mac_addr entries */
3514         do_s2io_restore_unicast_mc(sp);
3515
3516         /* Restore the MSIX table entries from local variables */
3517         restore_xmsi_data(sp);
3518
3519         /* Clear certain PCI/PCI-X fields after reset */
3520         if (sp->device_type == XFRAME_II_DEVICE) {
3521                 /* Clear "detected parity error" bit */
3522                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3523
3524                 /* Clearing PCIX Ecc status register */
3525                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3526
3527                 /* Clearing PCI_STATUS error reflected here */
3528                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3529         }
3530
3531         /* Reset device statistics maintained by OS */
3532         memset(&sp->stats, 0, sizeof(struct net_device_stats));
3533
3534         stats = sp->mac_control.stats_info;
3535         swstats = &stats->sw_stat;
3536
3537         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3538         up_cnt = swstats->link_up_cnt;
3539         down_cnt = swstats->link_down_cnt;
3540         up_time = swstats->link_up_time;
3541         down_time = swstats->link_down_time;
3542         reset_cnt = swstats->soft_reset_cnt;
3543         mem_alloc_cnt = swstats->mem_allocated;
3544         mem_free_cnt = swstats->mem_freed;
3545         watchdog_cnt = swstats->watchdog_timer_cnt;
3546
3547         memset(stats, 0, sizeof(struct stat_block));
3548
3549         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3550         swstats->link_up_cnt = up_cnt;
3551         swstats->link_down_cnt = down_cnt;
3552         swstats->link_up_time = up_time;
3553         swstats->link_down_time = down_time;
3554         swstats->soft_reset_cnt = reset_cnt;
3555         swstats->mem_allocated = mem_alloc_cnt;
3556         swstats->mem_freed = mem_free_cnt;
3557         swstats->watchdog_timer_cnt = watchdog_cnt;
3558
3559         /* SXE-002: Configure link and activity LED to turn it off */
3560         subid = sp->pdev->subsystem_device;
3561         if (((subid & 0xFF) >= 0x07) &&
3562             (sp->device_type == XFRAME_I_DEVICE)) {
3563                 val64 = readq(&bar0->gpio_control);
3564                 val64 |= 0x0000800000000000ULL;
3565                 writeq(val64, &bar0->gpio_control);
3566                 val64 = 0x0411040400000000ULL;
3567                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3568         }
3569
3570         /*
3571          * Clear spurious ECC interrupts that would have occured on
3572          * XFRAME II cards after reset.
3573          */
3574         if (sp->device_type == XFRAME_II_DEVICE) {
3575                 val64 = readq(&bar0->pcc_err_reg);
3576                 writeq(val64, &bar0->pcc_err_reg);
3577         }
3578
3579         sp->device_enabled_once = false;
3580 }
3581
3582 /**
3583  *  s2io_set_swapper - to set the swapper controle on the card
3584  *  @sp : private member of the device structure,
3585  *  pointer to the s2io_nic structure.
3586  *  Description: Function to set the swapper control on the card
3587  *  correctly depending on the 'endianness' of the system.
3588  *  Return value:
3589  *  SUCCESS on success and FAILURE on failure.
3590  */
3591
3592 static int s2io_set_swapper(struct s2io_nic *sp)
3593 {
3594         struct net_device *dev = sp->dev;
3595         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3596         u64 val64, valt, valr;
3597
3598         /*
3599          * Set proper endian settings and verify the same by reading
3600          * the PIF Feed-back register.
3601          */
3602
3603         val64 = readq(&bar0->pif_rd_swapper_fb);
3604         if (val64 != 0x0123456789ABCDEFULL) {
3605                 int i = 0;
3606                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3607                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3608                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3609                                 0};                     /* FE=0, SE=0 */
3610
3611                 while (i < 4) {
3612                         writeq(value[i], &bar0->swapper_ctrl);
3613                         val64 = readq(&bar0->pif_rd_swapper_fb);
3614                         if (val64 == 0x0123456789ABCDEFULL)
3615                                 break;
3616                         i++;
3617                 }
3618                 if (i == 4) {
3619                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3620                                   "feedback read %llx\n",
3621                                   dev->name, (unsigned long long)val64);
3622                         return FAILURE;
3623                 }
3624                 valr = value[i];
3625         } else {
3626                 valr = readq(&bar0->swapper_ctrl);
3627         }
3628
3629         valt = 0x0123456789ABCDEFULL;
3630         writeq(valt, &bar0->xmsi_address);
3631         val64 = readq(&bar0->xmsi_address);
3632
3633         if (val64 != valt) {
3634                 int i = 0;
3635                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3636                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3637                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3638                                 0};                     /* FE=0, SE=0 */
3639
3640                 while (i < 4) {
3641                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3642                         writeq(valt, &bar0->xmsi_address);
3643                         val64 = readq(&bar0->xmsi_address);
3644                         if (val64 == valt)
3645                                 break;
3646                         i++;
3647                 }
3648                 if (i == 4) {
3649                         unsigned long long x = val64;
3650                         DBG_PRINT(ERR_DBG,
3651                                   "Write failed, Xmsi_addr reads:0x%llx\n", x);
3652                         return FAILURE;
3653                 }
3654         }
3655         val64 = readq(&bar0->swapper_ctrl);
3656         val64 &= 0xFFFF000000000000ULL;
3657
3658 #ifdef __BIG_ENDIAN
3659         /*
3660          * The device by default set to a big endian format, so a
3661          * big endian driver need not set anything.
3662          */
3663         val64 |= (SWAPPER_CTRL_TXP_FE |
3664                   SWAPPER_CTRL_TXP_SE |
3665                   SWAPPER_CTRL_TXD_R_FE |
3666                   SWAPPER_CTRL_TXD_W_FE |
3667                   SWAPPER_CTRL_TXF_R_FE |
3668                   SWAPPER_CTRL_RXD_R_FE |
3669                   SWAPPER_CTRL_RXD_W_FE |
3670                   SWAPPER_CTRL_RXF_W_FE |
3671                   SWAPPER_CTRL_XMSI_FE |
3672                   SWAPPER_CTRL_STATS_FE |
3673                   SWAPPER_CTRL_STATS_SE);
3674         if (sp->config.intr_type == INTA)
3675                 val64 |= SWAPPER_CTRL_XMSI_SE;
3676         writeq(val64, &bar0->swapper_ctrl);
3677 #else
3678         /*
3679          * Initially we enable all bits to make it accessible by the
3680          * driver, then we selectively enable only those bits that
3681          * we want to set.
3682          */
3683         val64 |= (SWAPPER_CTRL_TXP_FE |
3684                   SWAPPER_CTRL_TXP_SE |
3685                   SWAPPER_CTRL_TXD_R_FE |
3686                   SWAPPER_CTRL_TXD_R_SE |
3687                   SWAPPER_CTRL_TXD_W_FE |
3688                   SWAPPER_CTRL_TXD_W_SE |
3689                   SWAPPER_CTRL_TXF_R_FE |
3690                   SWAPPER_CTRL_RXD_R_FE |
3691                   SWAPPER_CTRL_RXD_R_SE |
3692                   SWAPPER_CTRL_RXD_W_FE |
3693                   SWAPPER_CTRL_RXD_W_SE |
3694                   SWAPPER_CTRL_RXF_W_FE |
3695                   SWAPPER_CTRL_XMSI_FE |
3696                   SWAPPER_CTRL_STATS_FE |
3697                   SWAPPER_CTRL_STATS_SE);
3698         if (sp->config.intr_type == INTA)
3699                 val64 |= SWAPPER_CTRL_XMSI_SE;
3700         writeq(val64, &bar0->swapper_ctrl);
3701 #endif
3702         val64 = readq(&bar0->swapper_ctrl);
3703
3704         /*
3705          * Verifying if endian settings are accurate by reading a
3706          * feedback register.
3707          */
3708         val64 = readq(&bar0->pif_rd_swapper_fb);
3709         if (val64 != 0x0123456789ABCDEFULL) {
3710                 /* Endian settings are incorrect, calls for another dekko. */
3711                 DBG_PRINT(ERR_DBG,
3712                           "%s: Endian settings are wrong, feedback read %llx\n",
3713                           dev->name, (unsigned long long)val64);
3714                 return FAILURE;
3715         }
3716
3717         return SUCCESS;
3718 }
3719
3720 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3721 {
3722         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3723         u64 val64;
3724         int ret = 0, cnt = 0;
3725
3726         do {
3727                 val64 = readq(&bar0->xmsi_access);
3728                 if (!(val64 & s2BIT(15)))
3729                         break;
3730                 mdelay(1);
3731                 cnt++;
3732         } while (cnt < 5);
3733         if (cnt == 5) {
3734                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3735                 ret = 1;
3736         }
3737
3738         return ret;
3739 }
3740
3741 static void restore_xmsi_data(struct s2io_nic *nic)
3742 {
3743         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3744         u64 val64;
3745         int i, msix_index;
3746
3747         if (nic->device_type == XFRAME_I_DEVICE)
3748                 return;
3749
3750         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3751                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3752                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3753                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3754                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3755                 writeq(val64, &bar0->xmsi_access);
3756                 if (wait_for_msix_trans(nic, msix_index)) {
3757                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3758                                   __func__, msix_index);
3759                         continue;
3760                 }
3761         }
3762 }
3763
3764 static void store_xmsi_data(struct s2io_nic *nic)
3765 {
3766         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3767         u64 val64, addr, data;
3768         int i, msix_index;
3769
3770         if (nic->device_type == XFRAME_I_DEVICE)
3771                 return;
3772
3773         /* Store and display */
3774         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3775                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3776                 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3777                 writeq(val64, &bar0->xmsi_access);
3778                 if (wait_for_msix_trans(nic, msix_index)) {
3779                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3780                                   __func__, msix_index);
3781                         continue;
3782                 }
3783                 addr = readq(&bar0->xmsi_address);
3784                 data = readq(&bar0->xmsi_data);
3785                 if (addr && data) {
3786                         nic->msix_info[i].addr = addr;
3787                         nic->msix_info[i].data = data;
3788                 }
3789         }
3790 }
3791
3792 static int s2io_enable_msi_x(struct s2io_nic *nic)
3793 {
3794         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3795         u64 rx_mat;
3796         u16 msi_control; /* Temp variable */
3797         int ret, i, j, msix_indx = 1;
3798         int size;
3799         struct stat_block *stats = nic->mac_control.stats_info;
3800         struct swStat *swstats = &stats->sw_stat;
3801
3802         size = nic->num_entries * sizeof(struct msix_entry);
3803         nic->entries = kzalloc(size, GFP_KERNEL);
3804         if (!nic->entries) {
3805                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3806                           __func__);
3807                 swstats->mem_alloc_fail_cnt++;
3808                 return -ENOMEM;
3809         }
3810         swstats->mem_allocated += size;
3811
3812         size = nic->num_entries * sizeof(struct s2io_msix_entry);
3813         nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3814         if (!nic->s2io_entries) {
3815                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3816                           __func__);
3817                 swstats->mem_alloc_fail_cnt++;
3818                 kfree(nic->entries);
3819                 swstats->mem_freed
3820                         += (nic->num_entries * sizeof(struct msix_entry));
3821                 return -ENOMEM;
3822         }
3823         swstats->mem_allocated += size;
3824
3825         nic->entries[0].entry = 0;
3826         nic->s2io_entries[0].entry = 0;
3827         nic->s2io_entries[0].in_use = MSIX_FLG;
3828         nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3829         nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3830
3831         for (i = 1; i < nic->num_entries; i++) {
3832                 nic->entries[i].entry = ((i - 1) * 8) + 1;
3833                 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3834                 nic->s2io_entries[i].arg = NULL;
3835                 nic->s2io_entries[i].in_use = 0;
3836         }
3837
3838         rx_mat = readq(&bar0->rx_mat);
3839         for (j = 0; j < nic->config.rx_ring_num; j++) {
3840                 rx_mat |= RX_MAT_SET(j, msix_indx);
3841                 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3842                 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3843                 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3844                 msix_indx += 8;
3845         }
3846         writeq(rx_mat, &bar0->rx_mat);
3847         readq(&bar0->rx_mat);
3848
3849         ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3850         /* We fail init if error or we get less vectors than min required */
3851         if (ret) {
3852                 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3853                 kfree(nic->entries);
3854                 swstats->mem_freed += nic->num_entries *
3855                         sizeof(struct msix_entry);
3856                 kfree(nic->s2io_entries);
3857                 swstats->mem_freed += nic->num_entries *
3858                         sizeof(struct s2io_msix_entry);
3859                 nic->entries = NULL;
3860                 nic->s2io_entries = NULL;
3861                 return -ENOMEM;
3862         }
3863
3864         /*
3865          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3866          * in the herc NIC. (Temp change, needs to be removed later)
3867          */
3868         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3869         msi_control |= 0x1; /* Enable MSI */
3870         pci_write_config_word(nic->pdev, 0x42, msi_control);
3871
3872         return 0;
3873 }
3874
3875 /* Handle software interrupt used during MSI(X) test */
3876 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3877 {
3878         struct s2io_nic *sp = dev_id;
3879
3880         sp->msi_detected = 1;
3881         wake_up(&sp->msi_wait);
3882
3883         return IRQ_HANDLED;
3884 }
3885
3886 /* Test interrupt path by forcing a a software IRQ */
3887 static int s2io_test_msi(struct s2io_nic *sp)
3888 {
3889         struct pci_dev *pdev = sp->pdev;
3890         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3891         int err;
3892         u64 val64, saved64;
3893
3894         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3895                           sp->name, sp);
3896         if (err) {
3897                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3898                           sp->dev->name, pci_name(pdev), pdev->irq);
3899                 return err;
3900         }
3901
3902         init_waitqueue_head(&sp->msi_wait);
3903         sp->msi_detected = 0;
3904
3905         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3906         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3907         val64 |= SCHED_INT_CTRL_TIMER_EN;
3908         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3909         writeq(val64, &bar0->scheduled_int_ctrl);
3910
3911         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3912
3913         if (!sp->msi_detected) {
3914                 /* MSI(X) test failed, go back to INTx mode */
3915                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3916                           "using MSI(X) during test\n",
3917                           sp->dev->name, pci_name(pdev));
3918
3919                 err = -EOPNOTSUPP;
3920         }
3921
3922         free_irq(sp->entries[1].vector, sp);
3923
3924         writeq(saved64, &bar0->scheduled_int_ctrl);
3925
3926         return err;
3927 }
3928
3929 static void remove_msix_isr(struct s2io_nic *sp)
3930 {
3931         int i;
3932         u16 msi_control;
3933
3934         for (i = 0; i < sp->num_entries; i++) {
3935                 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3936                         int vector = sp->entries[i].vector;
3937                         void *arg = sp->s2io_entries[i].arg;
3938                         free_irq(vector, arg);
3939                 }
3940         }
3941
3942         kfree(sp->entries);
3943         kfree(sp->s2io_entries);
3944         sp->entries = NULL;
3945         sp->s2io_entries = NULL;
3946
3947         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3948         msi_control &= 0xFFFE; /* Disable MSI */
3949         pci_write_config_word(sp->pdev, 0x42, msi_control);
3950
3951         pci_disable_msix(sp->pdev);
3952 }
3953
3954 static void remove_inta_isr(struct s2io_nic *sp)
3955 {
3956         struct net_device *dev = sp->dev;
3957
3958         free_irq(sp->pdev->irq, dev);
3959 }
3960
3961 /* ********************************************************* *
3962  * Functions defined below concern the OS part of the driver *
3963  * ********************************************************* */
3964
3965 /**
3966  *  s2io_open - open entry point of the driver
3967  *  @dev : pointer to the device structure.
3968  *  Description:
3969  *  This function is the open entry point of the driver. It mainly calls a
3970  *  function to allocate Rx buffers and inserts them into the buffer
3971  *  descriptors and then enables the Rx part of the NIC.
3972  *  Return value:
3973  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3974  *   file on failure.
3975  */
3976
3977 static int s2io_open(struct net_device *dev)
3978 {
3979         struct s2io_nic *sp = netdev_priv(dev);
3980         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3981         int err = 0;
3982
3983         /*
3984          * Make sure you have link off by default every time
3985          * Nic is initialized
3986          */
3987         netif_carrier_off(dev);
3988         sp->last_link_state = 0;
3989
3990         /* Initialize H/W and enable interrupts */
3991         err = s2io_card_up(sp);
3992         if (err) {
3993                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3994                           dev->name);
3995                 goto hw_init_failed;
3996         }
3997
3998         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3999                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4000                 s2io_card_down(sp);
4001                 err = -ENODEV;
4002                 goto hw_init_failed;
4003         }
4004         s2io_start_all_tx_queue(sp);
4005         return 0;
4006
4007 hw_init_failed:
4008         if (sp->config.intr_type == MSI_X) {
4009                 if (sp->entries) {
4010                         kfree(sp->entries);
4011                         swstats->mem_freed += sp->num_entries *
4012                                 sizeof(struct msix_entry);
4013                 }
4014                 if (sp->s2io_entries) {
4015                         kfree(sp->s2io_entries);
4016                         swstats->mem_freed += sp->num_entries *
4017                                 sizeof(struct s2io_msix_entry);
4018                 }
4019         }
4020         return err;
4021 }
4022
4023 /**
4024  *  s2io_close -close entry point of the driver
4025  *  @dev : device pointer.
4026  *  Description:
4027  *  This is the stop entry point of the driver. It needs to undo exactly
4028  *  whatever was done by the open entry point,thus it's usually referred to
4029  *  as the close function.Among other things this function mainly stops the
4030  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4031  *  Return value:
4032  *  0 on success and an appropriate (-)ve integer as defined in errno.h
4033  *  file on failure.
4034  */
4035
4036 static int s2io_close(struct net_device *dev)
4037 {
4038         struct s2io_nic *sp = netdev_priv(dev);
4039         struct config_param *config = &sp->config;
4040         u64 tmp64;
4041         int offset;
4042
4043         /* Return if the device is already closed               *
4044          *  Can happen when s2io_card_up failed in change_mtu    *
4045          */
4046         if (!is_s2io_card_up(sp))
4047                 return 0;
4048
4049         s2io_stop_all_tx_queue(sp);
4050         /* delete all populated mac entries */
4051         for (offset = 1; offset < config->max_mc_addr; offset++) {
4052                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4053                 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4054                         do_s2io_delete_unicast_mc(sp, tmp64);
4055         }
4056
4057         s2io_card_down(sp);
4058
4059         return 0;
4060 }
4061
4062 /**
4063  *  s2io_xmit - Tx entry point of te driver
4064  *  @skb : the socket buffer containing the Tx data.
4065  *  @dev : device pointer.
4066  *  Description :
4067  *  This function is the Tx entry point of the driver. S2IO NIC supports
4068  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4069  *  NOTE: when device cant queue the pkt,just the trans_start variable will
4070  *  not be upadted.
4071  *  Return value:
4072  *  0 on success & 1 on failure.
4073  */
4074
4075 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4076 {
4077         struct s2io_nic *sp = netdev_priv(dev);
4078         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4079         register u64 val64;
4080         struct TxD *txdp;
4081         struct TxFIFO_element __iomem *tx_fifo;
4082         unsigned long flags = 0;
4083         u16 vlan_tag = 0;
4084         struct fifo_info *fifo = NULL;
4085         int do_spin_lock = 1;
4086         int offload_type;
4087         int enable_per_list_interrupt = 0;
4088         struct config_param *config = &sp->config;
4089         struct mac_info *mac_control = &sp->mac_control;
4090         struct stat_block *stats = mac_control->stats_info;
4091         struct swStat *swstats = &stats->sw_stat;
4092
4093         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4094
4095         if (unlikely(skb->len <= 0)) {
4096                 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4097                 dev_kfree_skb_any(skb);
4098                 return NETDEV_TX_OK;
4099         }
4100
4101         if (!is_s2io_card_up(sp)) {
4102                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4103                           dev->name);
4104                 dev_kfree_skb(skb);
4105                 return NETDEV_TX_OK;
4106         }
4107
4108         queue = 0;
4109         if (sp->vlgrp && vlan_tx_tag_present(skb))
4110                 vlan_tag = vlan_tx_tag_get(skb);
4111         if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4112                 if (skb->protocol == htons(ETH_P_IP)) {
4113                         struct iphdr *ip;
4114                         struct tcphdr *th;
4115                         ip = ip_hdr(skb);
4116
4117                         if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4118                                 th = (struct tcphdr *)(((unsigned char *)ip) +
4119                                                        ip->ihl*4);
4120
4121                                 if (ip->protocol == IPPROTO_TCP) {
4122                                         queue_len = sp->total_tcp_fifos;
4123                                         queue = (ntohs(th->source) +
4124                                                  ntohs(th->dest)) &
4125                                                 sp->fifo_selector[queue_len - 1];
4126                                         if (queue >= queue_len)
4127                                                 queue = queue_len - 1;
4128                                 } else if (ip->protocol == IPPROTO_UDP) {
4129                                         queue_len = sp->total_udp_fifos;
4130                                         queue = (ntohs(th->source) +
4131                                                  ntohs(th->dest)) &
4132                                                 sp->fifo_selector[queue_len - 1];
4133                                         if (queue >= queue_len)
4134                                                 queue = queue_len - 1;
4135                                         queue += sp->udp_fifo_idx;
4136                                         if (skb->len > 1024)
4137                                                 enable_per_list_interrupt = 1;
4138                                         do_spin_lock = 0;
4139                                 }
4140                         }
4141                 }
4142         } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4143                 /* get fifo number based on skb->priority value */
4144                 queue = config->fifo_mapping
4145                         [skb->priority & (MAX_TX_FIFOS - 1)];
4146         fifo = &mac_control->fifos[queue];
4147
4148         if (do_spin_lock)
4149                 spin_lock_irqsave(&fifo->tx_lock, flags);
4150         else {
4151                 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4152                         return NETDEV_TX_LOCKED;
4153         }
4154
4155         if (sp->config.multiq) {
4156                 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4157                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4158                         return NETDEV_TX_BUSY;
4159                 }
4160         } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4161                 if (netif_queue_stopped(dev)) {
4162                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4163                         return NETDEV_TX_BUSY;
4164                 }
4165         }
4166
4167         put_off = (u16)fifo->tx_curr_put_info.offset;
4168         get_off = (u16)fifo->tx_curr_get_info.offset;
4169         txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
4170
4171         queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4172         /* Avoid "put" pointer going beyond "get" pointer */
4173         if (txdp->Host_Control ||
4174             ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4175                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4176                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4177                 dev_kfree_skb(skb);
4178                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4179                 return NETDEV_TX_OK;
4180         }
4181
4182         offload_type = s2io_offload_type(skb);
4183         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4184                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4185                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4186         }
4187         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4188                 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4189                                     TXD_TX_CKO_TCP_EN |
4190                                     TXD_TX_CKO_UDP_EN);
4191         }
4192         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4193         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4194         txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4195         if (enable_per_list_interrupt)
4196                 if (put_off & (queue_len >> 5))
4197                         txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4198         if (vlan_tag) {
4199                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4200                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4201         }
4202
4203         frg_len = skb_headlen(skb);
4204         if (offload_type == SKB_GSO_UDP) {
4205                 int ufo_size;
4206
4207                 ufo_size = s2io_udp_mss(skb);
4208                 ufo_size &= ~7;
4209                 txdp->Control_1 |= TXD_UFO_EN;
4210                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4211                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4212 #ifdef __BIG_ENDIAN
4213                 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4214                 fifo->ufo_in_band_v[put_off] =
4215                         (__force u64)skb_shinfo(skb)->ip6_frag_id;
4216 #else
4217                 fifo->ufo_in_band_v[put_off] =
4218                         (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4219 #endif
4220                 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4221                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4222                                                       fifo->ufo_in_band_v,
4223                                                       sizeof(u64),
4224                                                       PCI_DMA_TODEVICE);
4225                 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4226                         goto pci_map_failed;
4227                 txdp++;
4228         }
4229
4230         txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4231                                               frg_len, PCI_DMA_TODEVICE);
4232         if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4233                 goto pci_map_failed;
4234
4235         txdp->Host_Control = (unsigned long)skb;
4236         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4237         if (offload_type == SKB_GSO_UDP)
4238                 txdp->Control_1 |= TXD_UFO_EN;
4239
4240         frg_cnt = skb_shinfo(skb)->nr_frags;
4241         /* For fragmented SKB. */
4242         for (i = 0; i < frg_cnt; i++) {
4243                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4244                 /* A '0' length fragment will be ignored */
4245                 if (!frag->size)
4246                         continue;
4247                 txdp++;
4248                 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4249                                                          frag->page_offset,
4250                                                          frag->size,
4251                                                          PCI_DMA_TODEVICE);
4252                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4253                 if (offload_type == SKB_GSO_UDP)
4254                         txdp->Control_1 |= TXD_UFO_EN;
4255         }
4256         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4257
4258         if (offload_type == SKB_GSO_UDP)
4259                 frg_cnt++; /* as Txd0 was used for inband header */
4260
4261         tx_fifo = mac_control->tx_FIFO_start[queue];
4262         val64 = fifo->list_info[put_off].list_phy_addr;
4263         writeq(val64, &tx_fifo->TxDL_Pointer);
4264
4265         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4266                  TX_FIFO_LAST_LIST);
4267         if (offload_type)
4268                 val64 |= TX_FIFO_SPECIAL_FUNC;
4269
4270         writeq(val64, &tx_fifo->List_Control);
4271
4272         mmiowb();
4273
4274         put_off++;
4275         if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4276                 put_off = 0;
4277         fifo->tx_curr_put_info.offset = put_off;
4278
4279         /* Avoid "put" pointer going beyond "get" pointer */
4280         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4281                 swstats->fifo_full_cnt++;
4282                 DBG_PRINT(TX_DBG,
4283                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4284                           put_off, get_off);
4285                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4286         }
4287         swstats->mem_allocated += skb->truesize;
4288         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4289
4290         if (sp->config.intr_type == MSI_X)
4291                 tx_intr_handler(fifo);
4292
4293         return NETDEV_TX_OK;
4294
4295 pci_map_failed:
4296         swstats->pci_map_fail_cnt++;
4297         s2io_stop_tx_queue(sp, fifo->fifo_no);
4298         swstats->mem_freed += skb->truesize;
4299         dev_kfree_skb(skb);
4300         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4301         return NETDEV_TX_OK;
4302 }
4303
4304 static void
4305 s2io_alarm_handle(unsigned long data)
4306 {
4307         struct s2io_nic *sp = (struct s2io_nic *)data;
4308         struct net_device *dev = sp->dev;
4309
4310         s2io_handle_errors(dev);
4311         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4312 }
4313
4314 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4315 {
4316         struct ring_info *ring = (struct ring_info *)dev_id;
4317         struct s2io_nic *sp = ring->nic;
4318         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4319
4320         if (unlikely(!is_s2io_card_up(sp)))
4321                 return IRQ_HANDLED;
4322
4323         if (sp->config.napi) {
4324                 u8 __iomem *addr = NULL;
4325                 u8 val8 = 0;
4326
4327                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4328                 addr += (7 - ring->ring_no);
4329                 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4330                 writeb(val8, addr);
4331                 val8 = readb(addr);
4332                 napi_schedule(&ring->napi);
4333         } else {
4334                 rx_intr_handler(ring, 0);
4335                 s2io_chk_rx_buffers(sp, ring);
4336         }
4337
4338         return IRQ_HANDLED;
4339 }
4340
4341 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4342 {
4343         int i;
4344         struct fifo_info *fifos = (struct fifo_info *)dev_id;
4345         struct s2io_nic *sp = fifos->nic;
4346         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4347         struct config_param *config  = &sp->config;
4348         u64 reason;
4349
4350         if (unlikely(!is_s2io_card_up(sp)))
4351                 return IRQ_NONE;
4352
4353         reason = readq(&bar0->general_int_status);
4354         if (unlikely(reason == S2IO_MINUS_ONE))
4355                 /* Nothing much can be done. Get out */
4356                 return IRQ_HANDLED;
4357
4358         if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4359                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4360
4361                 if (reason & GEN_INTR_TXPIC)
4362                         s2io_txpic_intr_handle(sp);
4363
4364                 if (reason & GEN_INTR_TXTRAFFIC)
4365                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4366
4367                 for (i = 0; i < config->tx_fifo_num; i++)
4368                         tx_intr_handler(&fifos[i]);
4369
4370                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4371                 readl(&bar0->general_int_status);
4372                 return IRQ_HANDLED;
4373         }
4374         /* The interrupt was not raised by us */
4375         return IRQ_NONE;
4376 }
4377
4378 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4379 {
4380         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4381         u64 val64;
4382
4383         val64 = readq(&bar0->pic_int_status);
4384         if (val64 & PIC_INT_GPIO) {
4385                 val64 = readq(&bar0->gpio_int_reg);
4386                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4387                     (val64 & GPIO_INT_REG_LINK_UP)) {
4388                         /*
4389                          * This is unstable state so clear both up/down
4390                          * interrupt and adapter to re-evaluate the link state.
4391                          */
4392                         val64 |= GPIO_INT_REG_LINK_DOWN;
4393                         val64 |= GPIO_INT_REG_LINK_UP;
4394                         writeq(val64, &bar0->gpio_int_reg);
4395                         val64 = readq(&bar0->gpio_int_mask);
4396                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4397                                    GPIO_INT_MASK_LINK_DOWN);
4398                         writeq(val64, &bar0->gpio_int_mask);
4399                 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4400                         val64 = readq(&bar0->adapter_status);
4401                         /* Enable Adapter */
4402                         val64 = readq(&bar0->adapter_control);
4403                         val64 |= ADAPTER_CNTL_EN;
4404                         writeq(val64, &bar0->adapter_control);
4405                         val64 |= ADAPTER_LED_ON;
4406                         writeq(val64, &bar0->adapter_control);
4407                         if (!sp->device_enabled_once)
4408                                 sp->device_enabled_once = 1;
4409
4410                         s2io_link(sp, LINK_UP);
4411                         /*
4412                          * unmask link down interrupt and mask link-up
4413                          * intr
4414                          */
4415                         val64 = readq(&bar0->gpio_int_mask);
4416                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4417                         val64 |= GPIO_INT_MASK_LINK_UP;
4418                         writeq(val64, &bar0->gpio_int_mask);
4419
4420                 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4421                         val64 = readq(&bar0->adapter_status);
4422                         s2io_link(sp, LINK_DOWN);
4423                         /* Link is down so unmaks link up interrupt */
4424                         val64 = readq(&bar0->gpio_int_mask);
4425                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4426                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4427                         writeq(val64, &bar0->gpio_int_mask);
4428
4429                         /* turn off LED */
4430                         val64 = readq(&bar0->adapter_control);
4431                         val64 = val64 & (~ADAPTER_LED_ON);
4432                         writeq(val64, &bar0->adapter_control);
4433                 }
4434         }
4435         val64 = readq(&bar0->gpio_int_mask);
4436 }
4437
4438 /**
4439  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4440  *  @value: alarm bits
4441  *  @addr: address value
4442  *  @cnt: counter variable
4443  *  Description: Check for alarm and increment the counter
4444  *  Return Value:
4445  *  1 - if alarm bit set
4446  *  0 - if alarm bit is not set
4447  */
4448 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4449                                  unsigned long long *cnt)
4450 {
4451         u64 val64;
4452         val64 = readq(addr);
4453         if (val64 & value) {
4454                 writeq(val64, addr);
4455                 (*cnt)++;
4456                 return 1;
4457         }
4458         return 0;
4459
4460 }
4461
4462 /**
4463  *  s2io_handle_errors - Xframe error indication handler
4464  *  @nic: device private variable
4465  *  Description: Handle alarms such as loss of link, single or
4466  *  double ECC errors, critical and serious errors.
4467  *  Return Value:
4468  *  NONE
4469  */
4470 static void s2io_handle_errors(void *dev_id)
4471 {
4472         struct net_device *dev = (struct net_device *)dev_id;
4473         struct s2io_nic *sp = netdev_priv(dev);
4474         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4475         u64 temp64 = 0, val64 = 0;
4476         int i = 0;
4477
4478         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4479         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4480
4481         if (!is_s2io_card_up(sp))
4482                 return;
4483
4484         if (pci_channel_offline(sp->pdev))
4485                 return;
4486
4487         memset(&sw_stat->ring_full_cnt, 0,
4488                sizeof(sw_stat->ring_full_cnt));
4489
4490         /* Handling the XPAK counters update */
4491         if (stats->xpak_timer_count < 72000) {
4492                 /* waiting for an hour */
4493                 stats->xpak_timer_count++;
4494         } else {
4495                 s2io_updt_xpak_counter(dev);
4496                 /* reset the count to zero */
4497                 stats->xpak_timer_count = 0;
4498         }
4499
4500         /* Handling link status change error Intr */
4501         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4502                 val64 = readq(&bar0->mac_rmac_err_reg);
4503                 writeq(val64, &bar0->mac_rmac_err_reg);
4504                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4505                         schedule_work(&sp->set_link_task);
4506         }
4507
4508         /* In case of a serious error, the device will be Reset. */
4509         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4510                                   &sw_stat->serious_err_cnt))
4511                 goto reset;
4512
4513         /* Check for data parity error */
4514         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4515                                   &sw_stat->parity_err_cnt))
4516                 goto reset;
4517
4518         /* Check for ring full counter */
4519         if (sp->device_type == XFRAME_II_DEVICE) {
4520                 val64 = readq(&bar0->ring_bump_counter1);
4521                 for (i = 0; i < 4; i++) {
4522                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4523                         temp64 >>= 64 - ((i+1)*16);
4524                         sw_stat->ring_full_cnt[i] += temp64;
4525                 }
4526
4527                 val64 = readq(&bar0->ring_bump_counter2);
4528                 for (i = 0; i < 4; i++) {
4529                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4530                         temp64 >>= 64 - ((i+1)*16);
4531                         sw_stat->ring_full_cnt[i+4] += temp64;
4532                 }
4533         }
4534
4535         val64 = readq(&bar0->txdma_int_status);
4536         /*check for pfc_err*/
4537         if (val64 & TXDMA_PFC_INT) {
4538                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4539                                           PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4540                                           PFC_PCIX_ERR,
4541                                           &bar0->pfc_err_reg,
4542                                           &sw_stat->pfc_err_cnt))
4543                         goto reset;
4544                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4545                                       &bar0->pfc_err_reg,
4546                                       &sw_stat->pfc_err_cnt);
4547         }
4548
4549         /*check for tda_err*/
4550         if (val64 & TXDMA_TDA_INT) {
4551                 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4552                                           TDA_SM0_ERR_ALARM |
4553                                           TDA_SM1_ERR_ALARM,
4554                                           &bar0->tda_err_reg,
4555                                           &sw_stat->tda_err_cnt))
4556                         goto reset;
4557                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4558                                       &bar0->tda_err_reg,
4559                                       &sw_stat->tda_err_cnt);
4560         }
4561         /*check for pcc_err*/
4562         if (val64 & TXDMA_PCC_INT) {
4563                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4564                                           PCC_N_SERR | PCC_6_COF_OV_ERR |
4565                                           PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4566                                           PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4567                                           PCC_TXB_ECC_DB_ERR,
4568                                           &bar0->pcc_err_reg,
4569                                           &sw_stat->pcc_err_cnt))
4570                         goto reset;
4571                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4572                                       &bar0->pcc_err_reg,
4573                                       &sw_stat->pcc_err_cnt);
4574         }
4575
4576         /*check for tti_err*/
4577         if (val64 & TXDMA_TTI_INT) {
4578                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4579                                           &bar0->tti_err_reg,
4580                                           &sw_stat->tti_err_cnt))
4581                         goto reset;
4582                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4583                                       &bar0->tti_err_reg,
4584                                       &sw_stat->tti_err_cnt);
4585         }
4586
4587         /*check for lso_err*/
4588         if (val64 & TXDMA_LSO_INT) {
4589                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4590                                           LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4591                                           &bar0->lso_err_reg,
4592                                           &sw_stat->lso_err_cnt))
4593                         goto reset;
4594                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4595                                       &bar0->lso_err_reg,
4596                                       &sw_stat->lso_err_cnt);
4597         }
4598
4599         /*check for tpa_err*/
4600         if (val64 & TXDMA_TPA_INT) {
4601                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4602                                           &bar0->tpa_err_reg,
4603                                           &sw_stat->tpa_err_cnt))
4604                         goto reset;
4605                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4606                                       &bar0->tpa_err_reg,
4607                                       &sw_stat->tpa_err_cnt);
4608         }
4609
4610         /*check for sm_err*/
4611         if (val64 & TXDMA_SM_INT) {
4612                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4613                                           &bar0->sm_err_reg,
4614                                           &sw_stat->sm_err_cnt))
4615                         goto reset;
4616         }
4617
4618         val64 = readq(&bar0->mac_int_status);
4619         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4620                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4621                                           &bar0->mac_tmac_err_reg,
4622                                           &sw_stat->mac_tmac_err_cnt))
4623                         goto reset;
4624                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4625                                       TMAC_DESC_ECC_SG_ERR |
4626                                       TMAC_DESC_ECC_DB_ERR,
4627                                       &bar0->mac_tmac_err_reg,
4628                                       &sw_stat->mac_tmac_err_cnt);
4629         }
4630
4631         val64 = readq(&bar0->xgxs_int_status);
4632         if (val64 & XGXS_INT_STATUS_TXGXS) {
4633                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4634                                           &bar0->xgxs_txgxs_err_reg,
4635                                           &sw_stat->xgxs_txgxs_err_cnt))
4636                         goto reset;
4637                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4638                                       &bar0->xgxs_txgxs_err_reg,
4639                                       &sw_stat->xgxs_txgxs_err_cnt);
4640         }
4641
4642         val64 = readq(&bar0->rxdma_int_status);
4643         if (val64 & RXDMA_INT_RC_INT_M) {
4644                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4645                                           RC_FTC_ECC_DB_ERR |
4646                                           RC_PRCn_SM_ERR_ALARM |
4647                                           RC_FTC_SM_ERR_ALARM,
4648                                           &bar0->rc_err_reg,
4649                                           &sw_stat->rc_err_cnt))
4650                         goto reset;
4651                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4652                                       RC_FTC_ECC_SG_ERR |
4653                                       RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4654                                       &sw_stat->rc_err_cnt);
4655                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4656                                           PRC_PCI_AB_WR_Rn |
4657                                           PRC_PCI_AB_F_WR_Rn,
4658                                           &bar0->prc_pcix_err_reg,
4659                                           &sw_stat->prc_pcix_err_cnt))
4660                         goto reset;
4661                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4662                                       PRC_PCI_DP_WR_Rn |
4663                                       PRC_PCI_DP_F_WR_Rn,
4664                                       &bar0->prc_pcix_err_reg,
4665                                       &sw_stat->prc_pcix_err_cnt);
4666         }
4667
4668         if (val64 & RXDMA_INT_RPA_INT_M) {
4669                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4670                                           &bar0->rpa_err_reg,
4671                                           &sw_stat->rpa_err_cnt))
4672                         goto reset;
4673                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4674                                       &bar0->rpa_err_reg,
4675                                       &sw_stat->rpa_err_cnt);
4676         }
4677
4678         if (val64 & RXDMA_INT_RDA_INT_M) {
4679                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4680                                           RDA_FRM_ECC_DB_N_AERR |
4681                                           RDA_SM1_ERR_ALARM |
4682                                           RDA_SM0_ERR_ALARM |
4683                                           RDA_RXD_ECC_DB_SERR,
4684                                           &bar0->rda_err_reg,
4685                                           &sw_stat->rda_err_cnt))
4686                         goto reset;
4687                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4688                                       RDA_FRM_ECC_SG_ERR |
4689                                       RDA_MISC_ERR |
4690                                       RDA_PCIX_ERR,
4691                                       &bar0->rda_err_reg,
4692                                       &sw_stat->rda_err_cnt);
4693         }
4694
4695         if (val64 & RXDMA_INT_RTI_INT_M) {
4696                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4697                                           &bar0->rti_err_reg,
4698                                           &sw_stat->rti_err_cnt))
4699                         goto reset;
4700                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4701                                       &bar0->rti_err_reg,
4702                                       &sw_stat->rti_err_cnt);
4703         }
4704
4705         val64 = readq(&bar0->mac_int_status);
4706         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4707                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4708                                           &bar0->mac_rmac_err_reg,
4709                                           &sw_stat->mac_rmac_err_cnt))
4710                         goto reset;
4711                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4712                                       RMAC_SINGLE_ECC_ERR |
4713                                       RMAC_DOUBLE_ECC_ERR,
4714                                       &bar0->mac_rmac_err_reg,
4715                                       &sw_stat->mac_rmac_err_cnt);
4716         }
4717
4718         val64 = readq(&bar0->xgxs_int_status);
4719         if (val64 & XGXS_INT_STATUS_RXGXS) {
4720                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4721                                           &bar0->xgxs_rxgxs_err_reg,
4722                                           &sw_stat->xgxs_rxgxs_err_cnt))
4723                         goto reset;
4724         }
4725
4726         val64 = readq(&bar0->mc_int_status);
4727         if (val64 & MC_INT_STATUS_MC_INT) {
4728                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4729                                           &bar0->mc_err_reg,
4730                                           &sw_stat->mc_err_cnt))
4731                         goto reset;
4732
4733                 /* Handling Ecc errors */
4734                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4735                         writeq(val64, &bar0->mc_err_reg);
4736                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4737                                 sw_stat->double_ecc_errs++;
4738                                 if (sp->device_type != XFRAME_II_DEVICE) {
4739                                         /*
4740                                          * Reset XframeI only if critical error
4741                                          */
4742                                         if (val64 &
4743                                             (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4744                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4745                                                 goto reset;
4746                                 }
4747                         } else
4748                                 sw_stat->single_ecc_errs++;
4749                 }
4750         }
4751         return;
4752
4753 reset:
4754         s2io_stop_all_tx_queue(sp);
4755         schedule_work(&sp->rst_timer_task);
4756         sw_stat->soft_reset_cnt++;
4757 }
4758
4759 /**
4760  *  s2io_isr - ISR handler of the device .
4761  *  @irq: the irq of the device.
4762  *  @dev_id: a void pointer to the dev structure of the NIC.
4763  *  Description:  This function is the ISR handler of the device. It
4764  *  identifies the reason for the interrupt and calls the relevant
4765  *  service routines. As a contongency measure, this ISR allocates the
4766  *  recv buffers, if their numbers are below the panic value which is
4767  *  presently set to 25% of the original number of rcv buffers allocated.
4768  *  Return value:
4769  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4770  *   IRQ_NONE: will be returned if interrupt is not from our device
4771  */
4772 static irqreturn_t s2io_isr(int irq, void *dev_id)
4773 {
4774         struct net_device *dev = (struct net_device *)dev_id;
4775         struct s2io_nic *sp = netdev_priv(dev);
4776         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4777         int i;
4778         u64 reason = 0;
4779         struct mac_info *mac_control;
4780         struct config_param *config;
4781
4782         /* Pretend we handled any irq's from a disconnected card */
4783         if (pci_channel_offline(sp->pdev))
4784                 return IRQ_NONE;
4785
4786         if (!is_s2io_card_up(sp))
4787                 return IRQ_NONE;
4788
4789         config = &sp->config;
4790         mac_control = &sp->mac_control;
4791
4792         /*
4793          * Identify the cause for interrupt and call the appropriate
4794          * interrupt handler. Causes for the interrupt could be;
4795          * 1. Rx of packet.
4796          * 2. Tx complete.
4797          * 3. Link down.
4798          */
4799         reason = readq(&bar0->general_int_status);
4800
4801         if (unlikely(reason == S2IO_MINUS_ONE))
4802                 return IRQ_HANDLED;     /* Nothing much can be done. Get out */
4803
4804         if (reason &
4805             (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4806                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4807
4808                 if (config->napi) {
4809                         if (reason & GEN_INTR_RXTRAFFIC) {
4810                                 napi_schedule(&sp->napi);
4811                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4812                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4813                                 readl(&bar0->rx_traffic_int);
4814                         }
4815                 } else {
4816                         /*
4817                          * rx_traffic_int reg is an R1 register, writing all 1's
4818                          * will ensure that the actual interrupt causing bit
4819                          * get's cleared and hence a read can be avoided.
4820                          */
4821                         if (reason & GEN_INTR_RXTRAFFIC)
4822                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4823
4824                         for (i = 0; i < config->rx_ring_num; i++) {
4825                                 struct ring_info *ring = &mac_control->rings[i];
4826
4827                                 rx_intr_handler(ring, 0);
4828                         }
4829                 }
4830
4831                 /*
4832                  * tx_traffic_int reg is an R1 register, writing all 1's
4833                  * will ensure that the actual interrupt causing bit get's
4834                  * cleared and hence a read can be avoided.
4835                  */
4836                 if (reason & GEN_INTR_TXTRAFFIC)
4837                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4838
4839                 for (i = 0; i < config->tx_fifo_num; i++)
4840                         tx_intr_handler(&mac_control->fifos[i]);
4841
4842                 if (reason & GEN_INTR_TXPIC)
4843                         s2io_txpic_intr_handle(sp);
4844
4845                 /*
4846                  * Reallocate the buffers from the interrupt handler itself.
4847                  */
4848                 if (!config->napi) {
4849                         for (i = 0; i < config->rx_ring_num; i++) {
4850                                 struct ring_info *ring = &mac_control->rings[i];
4851
4852                                 s2io_chk_rx_buffers(sp, ring);
4853                         }
4854                 }
4855                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4856                 readl(&bar0->general_int_status);
4857
4858                 return IRQ_HANDLED;
4859
4860         } else if (!reason) {
4861                 /* The interrupt was not raised by us */
4862                 return IRQ_NONE;
4863         }
4864
4865         return IRQ_HANDLED;
4866 }
4867
4868 /**
4869  * s2io_updt_stats -
4870  */
4871 static void s2io_updt_stats(struct s2io_nic *sp)
4872 {
4873         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4874         u64 val64;
4875         int cnt = 0;
4876
4877         if (is_s2io_card_up(sp)) {
4878                 /* Apprx 30us on a 133 MHz bus */
4879                 val64 = SET_UPDT_CLICKS(10) |
4880                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4881                 writeq(val64, &bar0->stat_cfg);
4882                 do {
4883                         udelay(100);
4884                         val64 = readq(&bar0->stat_cfg);
4885                         if (!(val64 & s2BIT(0)))
4886                                 break;
4887                         cnt++;
4888                         if (cnt == 5)
4889                                 break; /* Updt failed */
4890                 } while (1);
4891         }
4892 }
4893
4894 /**
4895  *  s2io_get_stats - Updates the device statistics structure.
4896  *  @dev : pointer to the device structure.
4897  *  Description:
4898  *  This function updates the device statistics structure in the s2io_nic
4899  *  structure and returns a pointer to the same.
4900  *  Return value:
4901  *  pointer to the updated net_device_stats structure.
4902  */
4903
4904 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4905 {
4906         struct s2io_nic *sp = netdev_priv(dev);
4907         struct config_param *config = &sp->config;
4908         struct mac_info *mac_control = &sp->mac_control;
4909         struct stat_block *stats = mac_control->stats_info;
4910         int i;
4911
4912         /* Configure Stats for immediate updt */
4913         s2io_updt_stats(sp);
4914
4915         /* Using sp->stats as a staging area, because reset (due to mtu
4916            change, for example) will clear some hardware counters */
4917         dev->stats.tx_packets += le32_to_cpu(stats->tmac_frms) -
4918                 sp->stats.tx_packets;
4919         sp->stats.tx_packets = le32_to_cpu(stats->tmac_frms);
4920
4921         dev->stats.tx_errors += le32_to_cpu(stats->tmac_any_err_frms) -
4922                 sp->stats.tx_errors;
4923         sp->stats.tx_errors = le32_to_cpu(stats->tmac_any_err_frms);
4924
4925         dev->stats.rx_errors += le64_to_cpu(stats->rmac_drop_frms) -
4926                 sp->stats.rx_errors;
4927         sp->stats.rx_errors = le64_to_cpu(stats->rmac_drop_frms);
4928
4929         dev->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms) -
4930                 sp->stats.multicast;
4931         sp->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms);
4932
4933         dev->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms) -
4934                 sp->stats.rx_length_errors;
4935         sp->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms);
4936
4937         /* collect per-ring rx_packets and rx_bytes */
4938         dev->stats.rx_packets = dev->stats.rx_bytes = 0;
4939         for (i = 0; i < config->rx_ring_num; i++) {
4940                 struct ring_info *ring = &mac_control->rings[i];
4941
4942                 dev->stats.rx_packets += ring->rx_packets;
4943                 dev->stats.rx_bytes += ring->rx_bytes;
4944         }
4945
4946         return &dev->stats;
4947 }
4948
4949 /**
4950  *  s2io_set_multicast - entry point for multicast address enable/disable.
4951  *  @dev : pointer to the device structure
4952  *  Description:
4953  *  This function is a driver entry point which gets called by the kernel
4954  *  whenever multicast addresses must be enabled/disabled. This also gets
4955  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4956  *  determine, if multicast address must be enabled or if promiscuous mode
4957  *  is to be disabled etc.
4958  *  Return value:
4959  *  void.
4960  */
4961
4962 static void s2io_set_multicast(struct net_device *dev)
4963 {
4964         int i, j, prev_cnt;
4965         struct netdev_hw_addr *ha;
4966         struct s2io_nic *sp = netdev_priv(dev);
4967         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4968         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4969                 0xfeffffffffffULL;
4970         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4971         void __iomem *add;
4972         struct config_param *config = &sp->config;
4973
4974         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4975                 /*  Enable all Multicast addresses */
4976                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4977                        &bar0->rmac_addr_data0_mem);
4978                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4979                        &bar0->rmac_addr_data1_mem);
4980                 val64 = RMAC_ADDR_CMD_MEM_WE |
4981                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4982                         RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4983                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4984                 /* Wait till command completes */
4985                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4986                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4987                                       S2IO_BIT_RESET);
4988
4989                 sp->m_cast_flg = 1;
4990                 sp->all_multi_pos = config->max_mc_addr - 1;
4991         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4992                 /*  Disable all Multicast addresses */
4993                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4994                        &bar0->rmac_addr_data0_mem);
4995                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4996                        &bar0->rmac_addr_data1_mem);
4997                 val64 = RMAC_ADDR_CMD_MEM_WE |
4998                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4999                         RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
5000                 writeq(val64, &bar0->rmac_addr_cmd_mem);
5001                 /* Wait till command completes */
5002                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5003                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5004                                       S2IO_BIT_RESET);
5005
5006                 sp->m_cast_flg = 0;
5007                 sp->all_multi_pos = 0;
5008         }
5009
5010         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5011                 /*  Put the NIC into promiscuous mode */
5012                 add = &bar0->mac_cfg;
5013                 val64 = readq(&bar0->mac_cfg);
5014                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5015
5016                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5017                 writel((u32)val64, add);
5018                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5019                 writel((u32) (val64 >> 32), (add + 4));
5020
5021                 if (vlan_tag_strip != 1) {
5022                         val64 = readq(&bar0->rx_pa_cfg);
5023                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5024                         writeq(val64, &bar0->rx_pa_cfg);
5025                         sp->vlan_strip_flag = 0;
5026                 }
5027
5028                 val64 = readq(&bar0->mac_cfg);
5029                 sp->promisc_flg = 1;
5030                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5031                           dev->name);
5032         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5033                 /*  Remove the NIC from promiscuous mode */
5034                 add = &bar0->mac_cfg;
5035                 val64 = readq(&bar0->mac_cfg);
5036                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5037
5038                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5039                 writel((u32)val64, add);
5040                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5041                 writel((u32) (val64 >> 32), (add + 4));
5042
5043                 if (vlan_tag_strip != 0) {
5044                         val64 = readq(&bar0->rx_pa_cfg);
5045                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5046                         writeq(val64, &bar0->rx_pa_cfg);
5047                         sp->vlan_strip_flag = 1;
5048                 }
5049
5050                 val64 = readq(&bar0->mac_cfg);
5051                 sp->promisc_flg = 0;
5052                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5053         }
5054
5055         /*  Update individual M_CAST address list */
5056         if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5057                 if (netdev_mc_count(dev) >
5058                     (config->max_mc_addr - config->max_mac_addr)) {
5059                         DBG_PRINT(ERR_DBG,
5060                                   "%s: No more Rx filters can be added - "
5061                                   "please enable ALL_MULTI instead\n",
5062                                   dev->name);
5063                         return;
5064                 }
5065
5066                 prev_cnt = sp->mc_addr_count;
5067                 sp->mc_addr_count = netdev_mc_count(dev);
5068
5069                 /* Clear out the previous list of Mc in the H/W. */
5070                 for (i = 0; i < prev_cnt; i++) {
5071                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5072                                &bar0->rmac_addr_data0_mem);
5073                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5074                                &bar0->rmac_addr_data1_mem);
5075                         val64 = RMAC_ADDR_CMD_MEM_WE |
5076                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5077                                 RMAC_ADDR_CMD_MEM_OFFSET
5078                                 (config->mc_start_offset + i);
5079                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5080
5081                         /* Wait for command completes */
5082                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5083                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5084                                                   S2IO_BIT_RESET)) {
5085                                 DBG_PRINT(ERR_DBG,
5086                                           "%s: Adding Multicasts failed\n",
5087                                           dev->name);
5088                                 return;
5089                         }
5090                 }
5091
5092                 /* Create the new Rx filter list and update the same in H/W. */
5093                 i = 0;
5094                 netdev_for_each_mc_addr(ha, dev) {
5095                         memcpy(sp->usr_addrs[i].addr, ha->addr,
5096                                ETH_ALEN);
5097                         mac_addr = 0;
5098                         for (j = 0; j < ETH_ALEN; j++) {
5099                                 mac_addr |= ha->addr[j];
5100                                 mac_addr <<= 8;
5101                         }
5102                         mac_addr >>= 8;
5103                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5104                                &bar0->rmac_addr_data0_mem);
5105                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5106                                &bar0->rmac_addr_data1_mem);
5107                         val64 = RMAC_ADDR_CMD_MEM_WE |
5108                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5109                                 RMAC_ADDR_CMD_MEM_OFFSET
5110                                 (i + config->mc_start_offset);
5111                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5112
5113                         /* Wait for command completes */
5114                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5115                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5116                                                   S2IO_BIT_RESET)) {
5117                                 DBG_PRINT(ERR_DBG,
5118                                           "%s: Adding Multicasts failed\n",
5119                                           dev->name);
5120                                 return;
5121                         }
5122                         i++;
5123                 }
5124         }
5125 }
5126
5127 /* read from CAM unicast & multicast addresses and store it in
5128  * def_mac_addr structure
5129  */
5130 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5131 {
5132         int offset;
5133         u64 mac_addr = 0x0;
5134         struct config_param *config = &sp->config;
5135
5136         /* store unicast & multicast mac addresses */
5137         for (offset = 0; offset < config->max_mc_addr; offset++) {
5138                 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5139                 /* if read fails disable the entry */
5140                 if (mac_addr == FAILURE)
5141                         mac_addr = S2IO_DISABLE_MAC_ENTRY;
5142                 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5143         }
5144 }
5145
5146 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5147 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5148 {
5149         int offset;
5150         struct config_param *config = &sp->config;
5151         /* restore unicast mac address */
5152         for (offset = 0; offset < config->max_mac_addr; offset++)
5153                 do_s2io_prog_unicast(sp->dev,
5154                                      sp->def_mac_addr[offset].mac_addr);
5155
5156         /* restore multicast mac address */
5157         for (offset = config->mc_start_offset;
5158              offset < config->max_mc_addr; offset++)
5159                 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5160 }
5161
5162 /* add a multicast MAC address to CAM */
5163 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5164 {
5165         int i;
5166         u64 mac_addr = 0;
5167         struct config_param *config = &sp->config;
5168
5169         for (i = 0; i < ETH_ALEN; i++) {
5170                 mac_addr <<= 8;
5171                 mac_addr |= addr[i];
5172         }
5173         if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5174                 return SUCCESS;
5175
5176         /* check if the multicast mac already preset in CAM */
5177         for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5178                 u64 tmp64;
5179                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5180                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5181                         break;
5182
5183                 if (tmp64 == mac_addr)
5184                         return SUCCESS;
5185         }
5186         if (i == config->max_mc_addr) {
5187                 DBG_PRINT(ERR_DBG,
5188                           "CAM full no space left for multicast MAC\n");
5189                 return FAILURE;
5190         }
5191         /* Update the internal structure with this new mac address */
5192         do_s2io_copy_mac_addr(sp, i, mac_addr);
5193
5194         return do_s2io_add_mac(sp, mac_addr, i);
5195 }
5196
5197 /* add MAC address to CAM */
5198 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5199 {
5200         u64 val64;
5201         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5202
5203         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5204                &bar0->rmac_addr_data0_mem);
5205
5206         val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5207                 RMAC_ADDR_CMD_MEM_OFFSET(off);
5208         writeq(val64, &bar0->rmac_addr_cmd_mem);
5209
5210         /* Wait till command completes */
5211         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5212                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5213                                   S2IO_BIT_RESET)) {
5214                 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5215                 return FAILURE;
5216         }
5217         return SUCCESS;
5218 }
5219 /* deletes a specified unicast/multicast mac entry from CAM */
5220 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5221 {
5222         int offset;
5223         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5224         struct config_param *config = &sp->config;
5225
5226         for (offset = 1;
5227              offset < config->max_mc_addr; offset++) {
5228                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5229                 if (tmp64 == addr) {
5230                         /* disable the entry by writing  0xffffffffffffULL */
5231                         if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5232                                 return FAILURE;
5233                         /* store the new mac list from CAM */
5234                         do_s2io_store_unicast_mc(sp);
5235                         return SUCCESS;
5236                 }
5237         }
5238         DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5239                   (unsigned long long)addr);
5240         return FAILURE;
5241 }
5242
5243 /* read mac entries from CAM */
5244 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5245 {
5246         u64 tmp64 = 0xffffffffffff0000ULL, val64;
5247         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5248
5249         /* read mac addr */
5250         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5251                 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5252         writeq(val64, &bar0->rmac_addr_cmd_mem);
5253
5254         /* Wait till command completes */
5255         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5256                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5257                                   S2IO_BIT_RESET)) {
5258                 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5259                 return FAILURE;
5260         }
5261         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5262
5263         return tmp64 >> 16;
5264 }
5265
5266 /**
5267  * s2io_set_mac_addr driver entry point
5268  */
5269
5270 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5271 {
5272         struct sockaddr *addr = p;
5273
5274         if (!is_valid_ether_addr(addr->sa_data))
5275                 return -EINVAL;
5276
5277         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5278
5279         /* store the MAC address in CAM */
5280         return do_s2io_prog_unicast(dev, dev->dev_addr);
5281 }
5282 /**
5283  *  do_s2io_prog_unicast - Programs the Xframe mac address
5284  *  @dev : pointer to the device structure.
5285  *  @addr: a uchar pointer to the new mac address which is to be set.
5286  *  Description : This procedure will program the Xframe to receive
5287  *  frames with new Mac Address
5288  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5289  *  as defined in errno.h file on failure.
5290  */
5291
5292 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5293 {
5294         struct s2io_nic *sp = netdev_priv(dev);
5295         register u64 mac_addr = 0, perm_addr = 0;
5296         int i;
5297         u64 tmp64;
5298         struct config_param *config = &sp->config;
5299
5300         /*
5301          * Set the new MAC address as the new unicast filter and reflect this
5302          * change on the device address registered with the OS. It will be
5303          * at offset 0.
5304          */
5305         for (i = 0; i < ETH_ALEN; i++) {
5306                 mac_addr <<= 8;
5307                 mac_addr |= addr[i];
5308                 perm_addr <<= 8;
5309                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5310         }
5311
5312         /* check if the dev_addr is different than perm_addr */
5313         if (mac_addr == perm_addr)
5314                 return SUCCESS;
5315
5316         /* check if the mac already preset in CAM */
5317         for (i = 1; i < config->max_mac_addr; i++) {
5318                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5319                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5320                         break;
5321
5322                 if (tmp64 == mac_addr) {
5323                         DBG_PRINT(INFO_DBG,
5324                                   "MAC addr:0x%llx already present in CAM\n",
5325                                   (unsigned long long)mac_addr);
5326                         return SUCCESS;
5327                 }
5328         }
5329         if (i == config->max_mac_addr) {
5330                 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5331                 return FAILURE;
5332         }
5333         /* Update the internal structure with this new mac address */
5334         do_s2io_copy_mac_addr(sp, i, mac_addr);
5335
5336         return do_s2io_add_mac(sp, mac_addr, i);
5337 }
5338
5339 /**
5340  * s2io_ethtool_sset - Sets different link parameters.
5341  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5342  * @info: pointer to the structure with parameters given by ethtool to set
5343  * link information.
5344  * Description:
5345  * The function sets different link parameters provided by the user onto
5346  * the NIC.
5347  * Return value:
5348  * 0 on success.
5349  */
5350
5351 static int s2io_ethtool_sset(struct net_device *dev,
5352                              struct ethtool_cmd *info)
5353 {
5354         struct s2io_nic *sp = netdev_priv(dev);
5355         if ((info->autoneg == AUTONEG_ENABLE) ||
5356             (info->speed != SPEED_10000) ||
5357             (info->duplex != DUPLEX_FULL))
5358                 return -EINVAL;
5359         else {
5360                 s2io_close(sp->dev);
5361                 s2io_open(sp->dev);
5362         }
5363
5364         return 0;
5365 }
5366
5367 /**
5368  * s2io_ethtol_gset - Return link specific information.
5369  * @sp : private member of the device structure, pointer to the
5370  *      s2io_nic structure.
5371  * @info : pointer to the structure with parameters given by ethtool
5372  * to return link information.
5373  * Description:
5374  * Returns link specific information like speed, duplex etc.. to ethtool.
5375  * Return value :
5376  * return 0 on success.
5377  */
5378
5379 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5380 {
5381         struct s2io_nic *sp = netdev_priv(dev);
5382         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5383         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5384         info->port = PORT_FIBRE;
5385
5386         /* info->transceiver */
5387         info->transceiver = XCVR_EXTERNAL;
5388
5389         if (netif_carrier_ok(sp->dev)) {
5390                 info->speed = 10000;
5391                 info->duplex = DUPLEX_FULL;
5392         } else {
5393                 info->speed = -1;
5394                 info->duplex = -1;
5395         }
5396
5397         info->autoneg = AUTONEG_DISABLE;
5398         return 0;
5399 }
5400
5401 /**
5402  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5403  * @sp : private member of the device structure, which is a pointer to the
5404  * s2io_nic structure.
5405  * @info : pointer to the structure with parameters given by ethtool to
5406  * return driver information.
5407  * Description:
5408  * Returns driver specefic information like name, version etc.. to ethtool.
5409  * Return value:
5410  *  void
5411  */
5412
5413 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5414                                   struct ethtool_drvinfo *info)
5415 {
5416         struct s2io_nic *sp = netdev_priv(dev);
5417
5418         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5419         strncpy(info->version, s2io_driver_version, sizeof(info->version));
5420         strncpy(info->fw_version, "", sizeof(info->fw_version));
5421         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5422         info->regdump_len = XENA_REG_SPACE;
5423         info->eedump_len = XENA_EEPROM_SPACE;
5424 }
5425
5426 /**
5427  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5428  *  @sp: private member of the device structure, which is a pointer to the
5429  *  s2io_nic structure.
5430  *  @regs : pointer to the structure with parameters given by ethtool for
5431  *  dumping the registers.
5432  *  @reg_space: The input argumnet into which all the registers are dumped.
5433  *  Description:
5434  *  Dumps the entire register space of xFrame NIC into the user given
5435  *  buffer area.
5436  * Return value :
5437  * void .
5438  */
5439
5440 static void s2io_ethtool_gregs(struct net_device *dev,
5441                                struct ethtool_regs *regs, void *space)
5442 {
5443         int i;
5444         u64 reg;
5445         u8 *reg_space = (u8 *)space;
5446         struct s2io_nic *sp = netdev_priv(dev);
5447
5448         regs->len = XENA_REG_SPACE;
5449         regs->version = sp->pdev->subsystem_device;
5450
5451         for (i = 0; i < regs->len; i += 8) {
5452                 reg = readq(sp->bar0 + i);
5453                 memcpy((reg_space + i), &reg, 8);
5454         }
5455 }
5456
5457 /**
5458  *  s2io_phy_id  - timer function that alternates adapter LED.
5459  *  @data : address of the private member of the device structure, which
5460  *  is a pointer to the s2io_nic structure, provided as an u32.
5461  * Description: This is actually the timer function that alternates the
5462  * adapter LED bit of the adapter control bit to set/reset every time on
5463  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5464  *  once every second.
5465  */
5466 static void s2io_phy_id(unsigned long data)
5467 {
5468         struct s2io_nic *sp = (struct s2io_nic *)data;
5469         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5470         u64 val64 = 0;
5471         u16 subid;
5472
5473         subid = sp->pdev->subsystem_device;
5474         if ((sp->device_type == XFRAME_II_DEVICE) ||
5475             ((subid & 0xFF) >= 0x07)) {
5476                 val64 = readq(&bar0->gpio_control);
5477                 val64 ^= GPIO_CTRL_GPIO_0;
5478                 writeq(val64, &bar0->gpio_control);
5479         } else {
5480                 val64 = readq(&bar0->adapter_control);
5481                 val64 ^= ADAPTER_LED_ON;
5482                 writeq(val64, &bar0->adapter_control);
5483         }
5484
5485         mod_timer(&sp->id_timer, jiffies + HZ / 2);
5486 }
5487
5488 /**
5489  * s2io_ethtool_idnic - To physically identify the nic on the system.
5490  * @sp : private member of the device structure, which is a pointer to the
5491  * s2io_nic structure.
5492  * @id : pointer to the structure with identification parameters given by
5493  * ethtool.
5494  * Description: Used to physically identify the NIC on the system.
5495  * The Link LED will blink for a time specified by the user for
5496  * identification.
5497  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5498  * identification is possible only if it's link is up.
5499  * Return value:
5500  * int , returns 0 on success
5501  */
5502
5503 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5504 {
5505         u64 val64 = 0, last_gpio_ctrl_val;
5506         struct s2io_nic *sp = netdev_priv(dev);
5507         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5508         u16 subid;
5509
5510         subid = sp->pdev->subsystem_device;
5511         last_gpio_ctrl_val = readq(&bar0->gpio_control);
5512         if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5513                 val64 = readq(&bar0->adapter_control);
5514                 if (!(val64 & ADAPTER_CNTL_EN)) {
5515                         pr_err("Adapter Link down, cannot blink LED\n");
5516                         return -EFAULT;
5517                 }
5518         }
5519         if (sp->id_timer.function == NULL) {
5520                 init_timer(&sp->id_timer);
5521                 sp->id_timer.function = s2io_phy_id;
5522                 sp->id_timer.data = (unsigned long)sp;
5523         }
5524         mod_timer(&sp->id_timer, jiffies);
5525         if (data)
5526                 msleep_interruptible(data * HZ);
5527         else
5528                 msleep_interruptible(MAX_FLICKER_TIME);
5529         del_timer_sync(&sp->id_timer);
5530
5531         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5532                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5533                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5534         }
5535
5536         return 0;
5537 }
5538
5539 static void s2io_ethtool_gringparam(struct net_device *dev,
5540                                     struct ethtool_ringparam *ering)
5541 {
5542         struct s2io_nic *sp = netdev_priv(dev);
5543         int i, tx_desc_count = 0, rx_desc_count = 0;
5544
5545         if (sp->rxd_mode == RXD_MODE_1)
5546                 ering->rx_max_pending = MAX_RX_DESC_1;
5547         else if (sp->rxd_mode == RXD_MODE_3B)
5548                 ering->rx_max_pending = MAX_RX_DESC_2;
5549
5550         ering->tx_max_pending = MAX_TX_DESC;
5551         for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5552                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5553
5554         DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5555         ering->tx_pending = tx_desc_count;
5556         rx_desc_count = 0;
5557         for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5558                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5559
5560         ering->rx_pending = rx_desc_count;
5561
5562         ering->rx_mini_max_pending = 0;
5563         ering->rx_mini_pending = 0;
5564         if (sp->rxd_mode == RXD_MODE_1)
5565                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5566         else if (sp->rxd_mode == RXD_MODE_3B)
5567                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5568         ering->rx_jumbo_pending = rx_desc_count;
5569 }
5570
5571 /**
5572  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5573  * @sp : private member of the device structure, which is a pointer to the
5574  *      s2io_nic structure.
5575  * @ep : pointer to the structure with pause parameters given by ethtool.
5576  * Description:
5577  * Returns the Pause frame generation and reception capability of the NIC.
5578  * Return value:
5579  *  void
5580  */
5581 static void s2io_ethtool_getpause_data(struct net_device *dev,
5582                                        struct ethtool_pauseparam *ep)
5583 {
5584         u64 val64;
5585         struct s2io_nic *sp = netdev_priv(dev);
5586         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5587
5588         val64 = readq(&bar0->rmac_pause_cfg);
5589         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5590                 ep->tx_pause = true;
5591         if (val64 & RMAC_PAUSE_RX_ENABLE)
5592                 ep->rx_pause = true;
5593         ep->autoneg = false;
5594 }
5595
5596 /**
5597  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5598  * @sp : private member of the device structure, which is a pointer to the
5599  *      s2io_nic structure.
5600  * @ep : pointer to the structure with pause parameters given by ethtool.
5601  * Description:
5602  * It can be used to set or reset Pause frame generation or reception
5603  * support of the NIC.
5604  * Return value:
5605  * int, returns 0 on Success
5606  */
5607
5608 static int s2io_ethtool_setpause_data(struct net_device *dev,
5609                                       struct ethtool_pauseparam *ep)
5610 {
5611         u64 val64;
5612         struct s2io_nic *sp = netdev_priv(dev);
5613         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5614
5615         val64 = readq(&bar0->rmac_pause_cfg);
5616         if (ep->tx_pause)
5617                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5618         else
5619                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5620         if (ep->rx_pause)
5621                 val64 |= RMAC_PAUSE_RX_ENABLE;
5622         else
5623                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5624         writeq(val64, &bar0->rmac_pause_cfg);
5625         return 0;
5626 }
5627
5628 /**
5629  * read_eeprom - reads 4 bytes of data from user given offset.
5630  * @sp : private member of the device structure, which is a pointer to the
5631  *      s2io_nic structure.
5632  * @off : offset at which the data must be written
5633  * @data : Its an output parameter where the data read at the given
5634  *      offset is stored.
5635  * Description:
5636  * Will read 4 bytes of data from the user given offset and return the
5637  * read data.
5638  * NOTE: Will allow to read only part of the EEPROM visible through the
5639  *   I2C bus.
5640  * Return value:
5641  *  -1 on failure and 0 on success.
5642  */
5643
5644 #define S2IO_DEV_ID             5
5645 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5646 {
5647         int ret = -1;
5648         u32 exit_cnt = 0;
5649         u64 val64;
5650         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5651
5652         if (sp->device_type == XFRAME_I_DEVICE) {
5653                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5654                         I2C_CONTROL_ADDR(off) |
5655                         I2C_CONTROL_BYTE_CNT(0x3) |
5656                         I2C_CONTROL_READ |
5657                         I2C_CONTROL_CNTL_START;
5658                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5659
5660                 while (exit_cnt < 5) {
5661                         val64 = readq(&bar0->i2c_control);
5662                         if (I2C_CONTROL_CNTL_END(val64)) {
5663                                 *data = I2C_CONTROL_GET_DATA(val64);
5664                                 ret = 0;
5665                                 break;
5666                         }
5667                         msleep(50);
5668                         exit_cnt++;
5669                 }
5670         }
5671
5672         if (sp->device_type == XFRAME_II_DEVICE) {
5673                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5674                         SPI_CONTROL_BYTECNT(0x3) |
5675                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5676                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5677                 val64 |= SPI_CONTROL_REQ;
5678                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5679                 while (exit_cnt < 5) {
5680                         val64 = readq(&bar0->spi_control);
5681                         if (val64 & SPI_CONTROL_NACK) {
5682                                 ret = 1;
5683                                 break;
5684                         } else if (val64 & SPI_CONTROL_DONE) {
5685                                 *data = readq(&bar0->spi_data);
5686                                 *data &= 0xffffff;
5687                                 ret = 0;
5688                                 break;
5689                         }
5690                         msleep(50);
5691                         exit_cnt++;
5692                 }
5693         }
5694         return ret;
5695 }
5696
5697 /**
5698  *  write_eeprom - actually writes the relevant part of the data value.
5699  *  @sp : private member of the device structure, which is a pointer to the
5700  *       s2io_nic structure.
5701  *  @off : offset at which the data must be written
5702  *  @data : The data that is to be written
5703  *  @cnt : Number of bytes of the data that are actually to be written into
5704  *  the Eeprom. (max of 3)
5705  * Description:
5706  *  Actually writes the relevant part of the data value into the Eeprom
5707  *  through the I2C bus.
5708  * Return value:
5709  *  0 on success, -1 on failure.
5710  */
5711
5712 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5713 {
5714         int exit_cnt = 0, ret = -1;
5715         u64 val64;
5716         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5717
5718         if (sp->device_type == XFRAME_I_DEVICE) {
5719                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5720                         I2C_CONTROL_ADDR(off) |
5721                         I2C_CONTROL_BYTE_CNT(cnt) |
5722                         I2C_CONTROL_SET_DATA((u32)data) |
5723                         I2C_CONTROL_CNTL_START;
5724                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5725
5726                 while (exit_cnt < 5) {
5727                         val64 = readq(&bar0->i2c_control);
5728                         if (I2C_CONTROL_CNTL_END(val64)) {
5729                                 if (!(val64 & I2C_CONTROL_NACK))
5730                                         ret = 0;
5731                                 break;
5732                         }
5733                         msleep(50);
5734                         exit_cnt++;
5735                 }
5736         }
5737
5738         if (sp->device_type == XFRAME_II_DEVICE) {
5739                 int write_cnt = (cnt == 8) ? 0 : cnt;
5740                 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5741
5742                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5743                         SPI_CONTROL_BYTECNT(write_cnt) |
5744                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5745                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5746                 val64 |= SPI_CONTROL_REQ;
5747                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5748                 while (exit_cnt < 5) {
5749                         val64 = readq(&bar0->spi_control);
5750                         if (val64 & SPI_CONTROL_NACK) {
5751                                 ret = 1;
5752                                 break;
5753                         } else if (val64 & SPI_CONTROL_DONE) {
5754                                 ret = 0;
5755                                 break;
5756                         }
5757                         msleep(50);
5758                         exit_cnt++;
5759                 }
5760         }
5761         return ret;
5762 }
5763 static void s2io_vpd_read(struct s2io_nic *nic)
5764 {
5765         u8 *vpd_data;
5766         u8 data;
5767         int i = 0, cnt, fail = 0;
5768         int vpd_addr = 0x80;
5769         struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5770
5771         if (nic->device_type == XFRAME_II_DEVICE) {
5772                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5773                 vpd_addr = 0x80;
5774         } else {
5775                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5776                 vpd_addr = 0x50;
5777         }
5778         strcpy(nic->serial_num, "NOT AVAILABLE");
5779
5780         vpd_data = kmalloc(256, GFP_KERNEL);
5781         if (!vpd_data) {
5782                 swstats->mem_alloc_fail_cnt++;
5783                 return;
5784         }
5785         swstats->mem_allocated += 256;
5786
5787         for (i = 0; i < 256; i += 4) {
5788                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5789                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5790                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5791                 for (cnt = 0; cnt < 5; cnt++) {
5792                         msleep(2);
5793                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5794                         if (data == 0x80)
5795                                 break;
5796                 }
5797                 if (cnt >= 5) {
5798                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5799                         fail = 1;
5800                         break;
5801                 }
5802                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5803                                       (u32 *)&vpd_data[i]);
5804         }
5805
5806         if (!fail) {
5807                 /* read serial number of adapter */
5808                 for (cnt = 0; cnt < 256; cnt++) {
5809                         if ((vpd_data[cnt] == 'S') &&
5810                             (vpd_data[cnt+1] == 'N') &&
5811                             (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5812                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5813                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5814                                        vpd_data[cnt+2]);
5815                                 break;
5816                         }
5817                 }
5818         }
5819
5820         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN))
5821                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5822         kfree(vpd_data);
5823         swstats->mem_freed += 256;
5824 }
5825
5826 /**
5827  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5828  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5829  *  @eeprom : pointer to the user level structure provided by ethtool,
5830  *  containing all relevant information.
5831  *  @data_buf : user defined value to be written into Eeprom.
5832  *  Description: Reads the values stored in the Eeprom at given offset
5833  *  for a given length. Stores these values int the input argument data
5834  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5835  *  Return value:
5836  *  int  0 on success
5837  */
5838
5839 static int s2io_ethtool_geeprom(struct net_device *dev,
5840                                 struct ethtool_eeprom *eeprom, u8 * data_buf)
5841 {
5842         u32 i, valid;
5843         u64 data;
5844         struct s2io_nic *sp = netdev_priv(dev);
5845
5846         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5847
5848         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5849                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5850
5851         for (i = 0; i < eeprom->len; i += 4) {
5852                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5853                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5854                         return -EFAULT;
5855                 }
5856                 valid = INV(data);
5857                 memcpy((data_buf + i), &valid, 4);
5858         }
5859         return 0;
5860 }
5861
5862 /**
5863  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5864  *  @sp : private member of the device structure, which is a pointer to the
5865  *  s2io_nic structure.
5866  *  @eeprom : pointer to the user level structure provided by ethtool,
5867  *  containing all relevant information.
5868  *  @data_buf ; user defined value to be written into Eeprom.
5869  *  Description:
5870  *  Tries to write the user provided value in the Eeprom, at the offset
5871  *  given by the user.
5872  *  Return value:
5873  *  0 on success, -EFAULT on failure.
5874  */
5875
5876 static int s2io_ethtool_seeprom(struct net_device *dev,
5877                                 struct ethtool_eeprom *eeprom,
5878                                 u8 *data_buf)
5879 {
5880         int len = eeprom->len, cnt = 0;
5881         u64 valid = 0, data;
5882         struct s2io_nic *sp = netdev_priv(dev);
5883
5884         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5885                 DBG_PRINT(ERR_DBG,
5886                           "ETHTOOL_WRITE_EEPROM Err: "
5887                           "Magic value is wrong, it is 0x%x should be 0x%x\n",
5888                           (sp->pdev->vendor | (sp->pdev->device << 16)),
5889                           eeprom->magic);
5890                 return -EFAULT;
5891         }
5892
5893         while (len) {
5894                 data = (u32)data_buf[cnt] & 0x000000FF;
5895                 if (data)
5896                         valid = (u32)(data << 24);
5897                 else
5898                         valid = data;
5899
5900                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5901                         DBG_PRINT(ERR_DBG,
5902                                   "ETHTOOL_WRITE_EEPROM Err: "
5903                                   "Cannot write into the specified offset\n");
5904                         return -EFAULT;
5905                 }
5906                 cnt++;
5907                 len--;
5908         }
5909
5910         return 0;
5911 }
5912
5913 /**
5914  * s2io_register_test - reads and writes into all clock domains.
5915  * @sp : private member of the device structure, which is a pointer to the
5916  * s2io_nic structure.
5917  * @data : variable that returns the result of each of the test conducted b
5918  * by the driver.
5919  * Description:
5920  * Read and write into all clock domains. The NIC has 3 clock domains,
5921  * see that registers in all the three regions are accessible.
5922  * Return value:
5923  * 0 on success.
5924  */
5925
5926 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5927 {
5928         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5929         u64 val64 = 0, exp_val;
5930         int fail = 0;
5931
5932         val64 = readq(&bar0->pif_rd_swapper_fb);
5933         if (val64 != 0x123456789abcdefULL) {
5934                 fail = 1;
5935                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5936         }
5937
5938         val64 = readq(&bar0->rmac_pause_cfg);
5939         if (val64 != 0xc000ffff00000000ULL) {
5940                 fail = 1;
5941                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5942         }
5943
5944         val64 = readq(&bar0->rx_queue_cfg);
5945         if (sp->device_type == XFRAME_II_DEVICE)
5946                 exp_val = 0x0404040404040404ULL;
5947         else
5948                 exp_val = 0x0808080808080808ULL;
5949         if (val64 != exp_val) {
5950                 fail = 1;
5951                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5952         }
5953
5954         val64 = readq(&bar0->xgxs_efifo_cfg);
5955         if (val64 != 0x000000001923141EULL) {
5956                 fail = 1;
5957                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5958         }
5959
5960         val64 = 0x5A5A5A5A5A5A5A5AULL;
5961         writeq(val64, &bar0->xmsi_data);
5962         val64 = readq(&bar0->xmsi_data);
5963         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5964                 fail = 1;
5965                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5966         }
5967
5968         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5969         writeq(val64, &bar0->xmsi_data);
5970         val64 = readq(&bar0->xmsi_data);
5971         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5972                 fail = 1;
5973                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5974         }
5975
5976         *data = fail;
5977         return fail;
5978 }
5979
5980 /**
5981  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5982  * @sp : private member of the device structure, which is a pointer to the
5983  * s2io_nic structure.
5984  * @data:variable that returns the result of each of the test conducted by
5985  * the driver.
5986  * Description:
5987  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5988  * register.
5989  * Return value:
5990  * 0 on success.
5991  */
5992
5993 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5994 {
5995         int fail = 0;
5996         u64 ret_data, org_4F0, org_7F0;
5997         u8 saved_4F0 = 0, saved_7F0 = 0;
5998         struct net_device *dev = sp->dev;
5999
6000         /* Test Write Error at offset 0 */
6001         /* Note that SPI interface allows write access to all areas
6002          * of EEPROM. Hence doing all negative testing only for Xframe I.
6003          */
6004         if (sp->device_type == XFRAME_I_DEVICE)
6005                 if (!write_eeprom(sp, 0, 0, 3))
6006                         fail = 1;
6007
6008         /* Save current values at offsets 0x4F0 and 0x7F0 */
6009         if (!read_eeprom(sp, 0x4F0, &org_4F0))
6010                 saved_4F0 = 1;
6011         if (!read_eeprom(sp, 0x7F0, &org_7F0))
6012                 saved_7F0 = 1;
6013
6014         /* Test Write at offset 4f0 */
6015         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6016                 fail = 1;
6017         if (read_eeprom(sp, 0x4F0, &ret_data))
6018                 fail = 1;
6019
6020         if (ret_data != 0x012345) {
6021                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6022                           "Data written %llx Data read %llx\n",
6023                           dev->name, (unsigned long long)0x12345,
6024                           (unsigned long long)ret_data);
6025                 fail = 1;
6026         }
6027
6028         /* Reset the EEPROM data go FFFF */
6029         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6030
6031         /* Test Write Request Error at offset 0x7c */
6032         if (sp->device_type == XFRAME_I_DEVICE)
6033                 if (!write_eeprom(sp, 0x07C, 0, 3))
6034                         fail = 1;
6035
6036         /* Test Write Request at offset 0x7f0 */
6037         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6038                 fail = 1;
6039         if (read_eeprom(sp, 0x7F0, &ret_data))
6040                 fail = 1;
6041
6042         if (ret_data != 0x012345) {
6043                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6044                           "Data written %llx Data read %llx\n",
6045                           dev->name, (unsigned long long)0x12345,
6046                           (unsigned long long)ret_data);
6047                 fail = 1;
6048         }
6049
6050         /* Reset the EEPROM data go FFFF */
6051         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6052
6053         if (sp->device_type == XFRAME_I_DEVICE) {
6054                 /* Test Write Error at offset 0x80 */
6055                 if (!write_eeprom(sp, 0x080, 0, 3))
6056                         fail = 1;
6057
6058                 /* Test Write Error at offset 0xfc */
6059                 if (!write_eeprom(sp, 0x0FC, 0, 3))
6060                         fail = 1;
6061
6062                 /* Test Write Error at offset 0x100 */
6063                 if (!write_eeprom(sp, 0x100, 0, 3))
6064                         fail = 1;
6065
6066                 /* Test Write Error at offset 4ec */
6067                 if (!write_eeprom(sp, 0x4EC, 0, 3))
6068                         fail = 1;
6069         }
6070
6071         /* Restore values at offsets 0x4F0 and 0x7F0 */
6072         if (saved_4F0)
6073                 write_eeprom(sp, 0x4F0, org_4F0, 3);
6074         if (saved_7F0)
6075                 write_eeprom(sp, 0x7F0, org_7F0, 3);
6076
6077         *data = fail;
6078         return fail;
6079 }
6080
6081 /**
6082  * s2io_bist_test - invokes the MemBist test of the card .
6083  * @sp : private member of the device structure, which is a pointer to the
6084  * s2io_nic structure.
6085  * @data:variable that returns the result of each of the test conducted by
6086  * the driver.
6087  * Description:
6088  * This invokes the MemBist test of the card. We give around
6089  * 2 secs time for the Test to complete. If it's still not complete
6090  * within this peiod, we consider that the test failed.
6091  * Return value:
6092  * 0 on success and -1 on failure.
6093  */
6094
6095 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6096 {
6097         u8 bist = 0;
6098         int cnt = 0, ret = -1;
6099
6100         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6101         bist |= PCI_BIST_START;
6102         pci_write_config_word(sp->pdev, PCI_BIST, bist);
6103
6104         while (cnt < 20) {
6105                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6106                 if (!(bist & PCI_BIST_START)) {
6107                         *data = (bist & PCI_BIST_CODE_MASK);
6108                         ret = 0;
6109                         break;
6110                 }
6111                 msleep(100);
6112                 cnt++;
6113         }
6114
6115         return ret;
6116 }
6117
6118 /**
6119  * s2io-link_test - verifies the link state of the nic
6120  * @sp ; private member of the device structure, which is a pointer to the
6121  * s2io_nic structure.
6122  * @data: variable that returns the result of each of the test conducted by
6123  * the driver.
6124  * Description:
6125  * The function verifies the link state of the NIC and updates the input
6126  * argument 'data' appropriately.
6127  * Return value:
6128  * 0 on success.
6129  */
6130
6131 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6132 {
6133         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6134         u64 val64;
6135
6136         val64 = readq(&bar0->adapter_status);
6137         if (!(LINK_IS_UP(val64)))
6138                 *data = 1;
6139         else
6140                 *data = 0;
6141
6142         return *data;
6143 }
6144
6145 /**
6146  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6147  * @sp - private member of the device structure, which is a pointer to the
6148  * s2io_nic structure.
6149  * @data - variable that returns the result of each of the test
6150  * conducted by the driver.
6151  * Description:
6152  *  This is one of the offline test that tests the read and write
6153  *  access to the RldRam chip on the NIC.
6154  * Return value:
6155  *  0 on success.
6156  */
6157
6158 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6159 {
6160         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6161         u64 val64;
6162         int cnt, iteration = 0, test_fail = 0;
6163
6164         val64 = readq(&bar0->adapter_control);
6165         val64 &= ~ADAPTER_ECC_EN;
6166         writeq(val64, &bar0->adapter_control);
6167
6168         val64 = readq(&bar0->mc_rldram_test_ctrl);
6169         val64 |= MC_RLDRAM_TEST_MODE;
6170         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6171
6172         val64 = readq(&bar0->mc_rldram_mrs);
6173         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6174         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6175
6176         val64 |= MC_RLDRAM_MRS_ENABLE;
6177         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6178
6179         while (iteration < 2) {
6180                 val64 = 0x55555555aaaa0000ULL;
6181                 if (iteration == 1)
6182                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6183                 writeq(val64, &bar0->mc_rldram_test_d0);
6184
6185                 val64 = 0xaaaa5a5555550000ULL;
6186                 if (iteration == 1)
6187                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6188                 writeq(val64, &bar0->mc_rldram_test_d1);
6189
6190                 val64 = 0x55aaaaaaaa5a0000ULL;
6191                 if (iteration == 1)
6192                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6193                 writeq(val64, &bar0->mc_rldram_test_d2);
6194
6195                 val64 = (u64) (0x0000003ffffe0100ULL);
6196                 writeq(val64, &bar0->mc_rldram_test_add);
6197
6198                 val64 = MC_RLDRAM_TEST_MODE |
6199                         MC_RLDRAM_TEST_WRITE |
6200                         MC_RLDRAM_TEST_GO;
6201                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6202
6203                 for (cnt = 0; cnt < 5; cnt++) {
6204                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6205                         if (val64 & MC_RLDRAM_TEST_DONE)
6206                                 break;
6207                         msleep(200);
6208                 }
6209
6210                 if (cnt == 5)
6211                         break;
6212
6213                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6214                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6215
6216                 for (cnt = 0; cnt < 5; cnt++) {
6217                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6218                         if (val64 & MC_RLDRAM_TEST_DONE)
6219                                 break;
6220                         msleep(500);
6221                 }
6222
6223                 if (cnt == 5)
6224                         break;
6225
6226                 val64 = readq(&bar0->mc_rldram_test_ctrl);
6227                 if (!(val64 & MC_RLDRAM_TEST_PASS))
6228                         test_fail = 1;
6229
6230                 iteration++;
6231         }
6232
6233         *data = test_fail;
6234
6235         /* Bring the adapter out of test mode */
6236         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6237
6238         return test_fail;
6239 }
6240
6241 /**
6242  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6243  *  @sp : private member of the device structure, which is a pointer to the
6244  *  s2io_nic structure.
6245  *  @ethtest : pointer to a ethtool command specific structure that will be
6246  *  returned to the user.
6247  *  @data : variable that returns the result of each of the test
6248  * conducted by the driver.
6249  * Description:
6250  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6251  *  the health of the card.
6252  * Return value:
6253  *  void
6254  */
6255
6256 static void s2io_ethtool_test(struct net_device *dev,
6257                               struct ethtool_test *ethtest,
6258                               uint64_t *data)
6259 {
6260         struct s2io_nic *sp = netdev_priv(dev);
6261         int orig_state = netif_running(sp->dev);
6262
6263         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6264                 /* Offline Tests. */
6265                 if (orig_state)
6266                         s2io_close(sp->dev);
6267
6268                 if (s2io_register_test(sp, &data[0]))
6269                         ethtest->flags |= ETH_TEST_FL_FAILED;
6270
6271                 s2io_reset(sp);
6272
6273                 if (s2io_rldram_test(sp, &data[3]))
6274                         ethtest->flags |= ETH_TEST_FL_FAILED;
6275
6276                 s2io_reset(sp);
6277
6278                 if (s2io_eeprom_test(sp, &data[1]))
6279                         ethtest->flags |= ETH_TEST_FL_FAILED;
6280
6281                 if (s2io_bist_test(sp, &data[4]))
6282                         ethtest->flags |= ETH_TEST_FL_FAILED;
6283
6284                 if (orig_state)
6285                         s2io_open(sp->dev);
6286
6287                 data[2] = 0;
6288         } else {
6289                 /* Online Tests. */
6290                 if (!orig_state) {
6291                         DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6292                                   dev->name);
6293                         data[0] = -1;
6294                         data[1] = -1;
6295                         data[2] = -1;
6296                         data[3] = -1;
6297                         data[4] = -1;
6298                 }
6299
6300                 if (s2io_link_test(sp, &data[2]))
6301                         ethtest->flags |= ETH_TEST_FL_FAILED;
6302
6303                 data[0] = 0;
6304                 data[1] = 0;
6305                 data[3] = 0;
6306                 data[4] = 0;
6307         }
6308 }
6309
6310 static void s2io_get_ethtool_stats(struct net_device *dev,
6311                                    struct ethtool_stats *estats,
6312                                    u64 *tmp_stats)
6313 {
6314         int i = 0, k;
6315         struct s2io_nic *sp = netdev_priv(dev);
6316         struct stat_block *stats = sp->mac_control.stats_info;
6317         struct swStat *swstats = &stats->sw_stat;
6318         struct xpakStat *xstats = &stats->xpak_stat;
6319
6320         s2io_updt_stats(sp);
6321         tmp_stats[i++] =
6322                 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6323                 le32_to_cpu(stats->tmac_frms);
6324         tmp_stats[i++] =
6325                 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6326                 le32_to_cpu(stats->tmac_data_octets);
6327         tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6328         tmp_stats[i++] =
6329                 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6330                 le32_to_cpu(stats->tmac_mcst_frms);
6331         tmp_stats[i++] =
6332                 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6333                 le32_to_cpu(stats->tmac_bcst_frms);
6334         tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6335         tmp_stats[i++] =
6336                 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6337                 le32_to_cpu(stats->tmac_ttl_octets);
6338         tmp_stats[i++] =
6339                 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6340                 le32_to_cpu(stats->tmac_ucst_frms);
6341         tmp_stats[i++] =
6342                 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6343                 le32_to_cpu(stats->tmac_nucst_frms);
6344         tmp_stats[i++] =
6345                 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6346                 le32_to_cpu(stats->tmac_any_err_frms);
6347         tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6348         tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6349         tmp_stats[i++] =
6350                 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6351                 le32_to_cpu(stats->tmac_vld_ip);
6352         tmp_stats[i++] =
6353                 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6354                 le32_to_cpu(stats->tmac_drop_ip);
6355         tmp_stats[i++] =
6356                 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6357                 le32_to_cpu(stats->tmac_icmp);
6358         tmp_stats[i++] =
6359                 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6360                 le32_to_cpu(stats->tmac_rst_tcp);
6361         tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6362         tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6363                 le32_to_cpu(stats->tmac_udp);
6364         tmp_stats[i++] =
6365                 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6366                 le32_to_cpu(stats->rmac_vld_frms);
6367         tmp_stats[i++] =
6368                 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6369                 le32_to_cpu(stats->rmac_data_octets);
6370         tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6371         tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6372         tmp_stats[i++] =
6373                 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6374                 le32_to_cpu(stats->rmac_vld_mcst_frms);
6375         tmp_stats[i++] =
6376                 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6377                 le32_to_cpu(stats->rmac_vld_bcst_frms);
6378         tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6379         tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6380         tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6381         tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6382         tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6383         tmp_stats[i++] =
6384                 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6385                 le32_to_cpu(stats->rmac_ttl_octets);
6386         tmp_stats[i++] =
6387                 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6388                 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6389         tmp_stats[i++] =
6390                 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6391                 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6392         tmp_stats[i++] =
6393                 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6394                 le32_to_cpu(stats->rmac_discarded_frms);
6395         tmp_stats[i++] =
6396                 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6397                 << 32 | le32_to_cpu(stats->rmac_drop_events);
6398         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6399         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6400         tmp_stats[i++] =
6401                 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6402                 le32_to_cpu(stats->rmac_usized_frms);
6403         tmp_stats[i++] =
6404                 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6405                 le32_to_cpu(stats->rmac_osized_frms);
6406         tmp_stats[i++] =
6407                 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6408                 le32_to_cpu(stats->rmac_frag_frms);
6409         tmp_stats[i++] =
6410                 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6411                 le32_to_cpu(stats->rmac_jabber_frms);
6412         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6413         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6414         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6415         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6416         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6417         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6418         tmp_stats[i++] =
6419                 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6420                 le32_to_cpu(stats->rmac_ip);
6421         tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6422         tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6423         tmp_stats[i++] =
6424                 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6425                 le32_to_cpu(stats->rmac_drop_ip);
6426         tmp_stats[i++] =
6427                 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6428                 le32_to_cpu(stats->rmac_icmp);
6429         tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6430         tmp_stats[i++] =
6431                 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6432                 le32_to_cpu(stats->rmac_udp);
6433         tmp_stats[i++] =
6434                 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6435                 le32_to_cpu(stats->rmac_err_drp_udp);
6436         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6437         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6438         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6439         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6440         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6441         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6442         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6443         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6444         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6445         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6446         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6447         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6448         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6449         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6450         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6451         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6452         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6453         tmp_stats[i++] =
6454                 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6455                 le32_to_cpu(stats->rmac_pause_cnt);
6456         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6457         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6458         tmp_stats[i++] =
6459                 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6460                 le32_to_cpu(stats->rmac_accepted_ip);
6461         tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6462         tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6463         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6464         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6465         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6466         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6467         tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6468         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6469         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6470         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6471         tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6472         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6473         tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6474         tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6475         tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6476         tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6477         tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6478         tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6479         tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6480
6481         /* Enhanced statistics exist only for Hercules */
6482         if (sp->device_type == XFRAME_II_DEVICE) {
6483                 tmp_stats[i++] =
6484                         le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6485                 tmp_stats[i++] =
6486                         le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6487                 tmp_stats[i++] =
6488                         le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6489                 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6490                 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6491                 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6492                 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6493                 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6494                 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6495                 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6496                 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6497                 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6498                 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6499                 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6500                 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6501                 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6502         }
6503
6504         tmp_stats[i++] = 0;
6505         tmp_stats[i++] = swstats->single_ecc_errs;
6506         tmp_stats[i++] = swstats->double_ecc_errs;
6507         tmp_stats[i++] = swstats->parity_err_cnt;
6508         tmp_stats[i++] = swstats->serious_err_cnt;
6509         tmp_stats[i++] = swstats->soft_reset_cnt;
6510         tmp_stats[i++] = swstats->fifo_full_cnt;
6511         for (k = 0; k < MAX_RX_RINGS; k++)
6512                 tmp_stats[i++] = swstats->ring_full_cnt[k];
6513         tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6514         tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6515         tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6516         tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6517         tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6518         tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6519         tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6520         tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6521         tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6522         tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6523         tmp_stats[i++] = xstats->warn_laser_output_power_high;
6524         tmp_stats[i++] = xstats->warn_laser_output_power_low;
6525         tmp_stats[i++] = swstats->clubbed_frms_cnt;
6526         tmp_stats[i++] = swstats->sending_both;
6527         tmp_stats[i++] = swstats->outof_sequence_pkts;
6528         tmp_stats[i++] = swstats->flush_max_pkts;
6529         if (swstats->num_aggregations) {
6530                 u64 tmp = swstats->sum_avg_pkts_aggregated;
6531                 int count = 0;
6532                 /*
6533                  * Since 64-bit divide does not work on all platforms,
6534                  * do repeated subtraction.
6535                  */
6536                 while (tmp >= swstats->num_aggregations) {
6537                         tmp -= swstats->num_aggregations;
6538                         count++;
6539                 }
6540                 tmp_stats[i++] = count;
6541         } else
6542                 tmp_stats[i++] = 0;
6543         tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6544         tmp_stats[i++] = swstats->pci_map_fail_cnt;
6545         tmp_stats[i++] = swstats->watchdog_timer_cnt;
6546         tmp_stats[i++] = swstats->mem_allocated;
6547         tmp_stats[i++] = swstats->mem_freed;
6548         tmp_stats[i++] = swstats->link_up_cnt;
6549         tmp_stats[i++] = swstats->link_down_cnt;
6550         tmp_stats[i++] = swstats->link_up_time;
6551         tmp_stats[i++] = swstats->link_down_time;
6552
6553         tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6554         tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6555         tmp_stats[i++] = swstats->tx_parity_err_cnt;
6556         tmp_stats[i++] = swstats->tx_link_loss_cnt;
6557         tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6558
6559         tmp_stats[i++] = swstats->rx_parity_err_cnt;
6560         tmp_stats[i++] = swstats->rx_abort_cnt;
6561         tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6562         tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6563         tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6564         tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6565         tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6566         tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6567         tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6568         tmp_stats[i++] = swstats->tda_err_cnt;
6569         tmp_stats[i++] = swstats->pfc_err_cnt;
6570         tmp_stats[i++] = swstats->pcc_err_cnt;
6571         tmp_stats[i++] = swstats->tti_err_cnt;
6572         tmp_stats[i++] = swstats->tpa_err_cnt;
6573         tmp_stats[i++] = swstats->sm_err_cnt;
6574         tmp_stats[i++] = swstats->lso_err_cnt;
6575         tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6576         tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6577         tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6578         tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6579         tmp_stats[i++] = swstats->rc_err_cnt;
6580         tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6581         tmp_stats[i++] = swstats->rpa_err_cnt;
6582         tmp_stats[i++] = swstats->rda_err_cnt;
6583         tmp_stats[i++] = swstats->rti_err_cnt;
6584         tmp_stats[i++] = swstats->mc_err_cnt;
6585 }
6586
6587 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6588 {
6589         return XENA_REG_SPACE;
6590 }
6591
6592
6593 static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
6594 {
6595         struct s2io_nic *sp = netdev_priv(dev);
6596
6597         return sp->rx_csum;
6598 }
6599
6600 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6601 {
6602         struct s2io_nic *sp = netdev_priv(dev);
6603
6604         if (data)
6605                 sp->rx_csum = 1;
6606         else
6607                 sp->rx_csum = 0;
6608
6609         return 0;
6610 }
6611
6612 static int s2io_get_eeprom_len(struct net_device *dev)
6613 {
6614         return XENA_EEPROM_SPACE;
6615 }
6616
6617 static int s2io_get_sset_count(struct net_device *dev, int sset)
6618 {
6619         struct s2io_nic *sp = netdev_priv(dev);
6620
6621         switch (sset) {
6622         case ETH_SS_TEST:
6623                 return S2IO_TEST_LEN;
6624         case ETH_SS_STATS:
6625                 switch (sp->device_type) {
6626                 case XFRAME_I_DEVICE:
6627                         return XFRAME_I_STAT_LEN;
6628                 case XFRAME_II_DEVICE:
6629                         return XFRAME_II_STAT_LEN;
6630                 default:
6631                         return 0;
6632                 }
6633         default:
6634                 return -EOPNOTSUPP;
6635         }
6636 }
6637
6638 static void s2io_ethtool_get_strings(struct net_device *dev,
6639                                      u32 stringset, u8 *data)
6640 {
6641         int stat_size = 0;
6642         struct s2io_nic *sp = netdev_priv(dev);
6643
6644         switch (stringset) {
6645         case ETH_SS_TEST:
6646                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6647                 break;
6648         case ETH_SS_STATS:
6649                 stat_size = sizeof(ethtool_xena_stats_keys);
6650                 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6651                 if (sp->device_type == XFRAME_II_DEVICE) {
6652                         memcpy(data + stat_size,
6653                                &ethtool_enhanced_stats_keys,
6654                                sizeof(ethtool_enhanced_stats_keys));
6655                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6656                 }
6657
6658                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6659                        sizeof(ethtool_driver_stats_keys));
6660         }
6661 }
6662
6663 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6664 {
6665         if (data)
6666                 dev->features |= NETIF_F_IP_CSUM;
6667         else
6668                 dev->features &= ~NETIF_F_IP_CSUM;
6669
6670         return 0;
6671 }
6672
6673 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6674 {
6675         return (dev->features & NETIF_F_TSO) != 0;
6676 }
6677
6678 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6679 {
6680         if (data)
6681                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6682         else
6683                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6684
6685         return 0;
6686 }
6687
6688 static int s2io_ethtool_set_flags(struct net_device *dev, u32 data)
6689 {
6690         struct s2io_nic *sp = netdev_priv(dev);
6691         int rc = 0;
6692         int changed = 0;
6693
6694         if (data & ~ETH_FLAG_LRO)
6695                 return -EOPNOTSUPP;
6696
6697         if (data & ETH_FLAG_LRO) {
6698                 if (lro_enable) {
6699                         if (!(dev->features & NETIF_F_LRO)) {
6700                                 dev->features |= NETIF_F_LRO;
6701                                 changed = 1;
6702                         }
6703                 } else
6704                         rc = -EINVAL;
6705         } else if (dev->features & NETIF_F_LRO) {
6706                 dev->features &= ~NETIF_F_LRO;
6707                 changed = 1;
6708         }
6709
6710         if (changed && netif_running(dev)) {
6711                 s2io_stop_all_tx_queue(sp);
6712                 s2io_card_down(sp);
6713                 sp->lro = !!(dev->features & NETIF_F_LRO);
6714                 rc = s2io_card_up(sp);
6715                 if (rc)
6716                         s2io_reset(sp);
6717                 else
6718                         s2io_start_all_tx_queue(sp);
6719         }
6720
6721         return rc;
6722 }
6723
6724 static const struct ethtool_ops netdev_ethtool_ops = {
6725         .get_settings = s2io_ethtool_gset,
6726         .set_settings = s2io_ethtool_sset,
6727         .get_drvinfo = s2io_ethtool_gdrvinfo,
6728         .get_regs_len = s2io_ethtool_get_regs_len,
6729         .get_regs = s2io_ethtool_gregs,
6730         .get_link = ethtool_op_get_link,
6731         .get_eeprom_len = s2io_get_eeprom_len,
6732         .get_eeprom = s2io_ethtool_geeprom,
6733         .set_eeprom = s2io_ethtool_seeprom,
6734         .get_ringparam = s2io_ethtool_gringparam,
6735         .get_pauseparam = s2io_ethtool_getpause_data,
6736         .set_pauseparam = s2io_ethtool_setpause_data,
6737         .get_rx_csum = s2io_ethtool_get_rx_csum,
6738         .set_rx_csum = s2io_ethtool_set_rx_csum,
6739         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6740         .set_flags = s2io_ethtool_set_flags,
6741         .get_flags = ethtool_op_get_flags,
6742         .set_sg = ethtool_op_set_sg,
6743         .get_tso = s2io_ethtool_op_get_tso,
6744         .set_tso = s2io_ethtool_op_set_tso,
6745         .set_ufo = ethtool_op_set_ufo,
6746         .self_test = s2io_ethtool_test,
6747         .get_strings = s2io_ethtool_get_strings,
6748         .phys_id = s2io_ethtool_idnic,
6749         .get_ethtool_stats = s2io_get_ethtool_stats,
6750         .get_sset_count = s2io_get_sset_count,
6751 };
6752
6753 /**
6754  *  s2io_ioctl - Entry point for the Ioctl
6755  *  @dev :  Device pointer.
6756  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6757  *  a proprietary structure used to pass information to the driver.
6758  *  @cmd :  This is used to distinguish between the different commands that
6759  *  can be passed to the IOCTL functions.
6760  *  Description:
6761  *  Currently there are no special functionality supported in IOCTL, hence
6762  *  function always return EOPNOTSUPPORTED
6763  */
6764
6765 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6766 {
6767         return -EOPNOTSUPP;
6768 }
6769
6770 /**
6771  *  s2io_change_mtu - entry point to change MTU size for the device.
6772  *   @dev : device pointer.
6773  *   @new_mtu : the new MTU size for the device.
6774  *   Description: A driver entry point to change MTU size for the device.
6775  *   Before changing the MTU the device must be stopped.
6776  *  Return value:
6777  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6778  *   file on failure.
6779  */
6780
6781 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6782 {
6783         struct s2io_nic *sp = netdev_priv(dev);
6784         int ret = 0;
6785
6786         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6787                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6788                 return -EPERM;
6789         }
6790
6791         dev->mtu = new_mtu;
6792         if (netif_running(dev)) {
6793                 s2io_stop_all_tx_queue(sp);
6794                 s2io_card_down(sp);
6795                 ret = s2io_card_up(sp);
6796                 if (ret) {
6797                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6798                                   __func__);
6799                         return ret;
6800                 }
6801                 s2io_wake_all_tx_queue(sp);
6802         } else { /* Device is down */
6803                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6804                 u64 val64 = new_mtu;
6805
6806                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6807         }
6808
6809         return ret;
6810 }
6811
6812 /**
6813  * s2io_set_link - Set the LInk status
6814  * @data: long pointer to device private structue
6815  * Description: Sets the link status for the adapter
6816  */
6817
6818 static void s2io_set_link(struct work_struct *work)
6819 {
6820         struct s2io_nic *nic = container_of(work, struct s2io_nic,
6821                                             set_link_task);
6822         struct net_device *dev = nic->dev;
6823         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6824         register u64 val64;
6825         u16 subid;
6826
6827         rtnl_lock();
6828
6829         if (!netif_running(dev))
6830                 goto out_unlock;
6831
6832         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6833                 /* The card is being reset, no point doing anything */
6834                 goto out_unlock;
6835         }
6836
6837         subid = nic->pdev->subsystem_device;
6838         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6839                 /*
6840                  * Allow a small delay for the NICs self initiated
6841                  * cleanup to complete.
6842                  */
6843                 msleep(100);
6844         }
6845
6846         val64 = readq(&bar0->adapter_status);
6847         if (LINK_IS_UP(val64)) {
6848                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6849                         if (verify_xena_quiescence(nic)) {
6850                                 val64 = readq(&bar0->adapter_control);
6851                                 val64 |= ADAPTER_CNTL_EN;
6852                                 writeq(val64, &bar0->adapter_control);
6853                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6854                                             nic->device_type, subid)) {
6855                                         val64 = readq(&bar0->gpio_control);
6856                                         val64 |= GPIO_CTRL_GPIO_0;
6857                                         writeq(val64, &bar0->gpio_control);
6858                                         val64 = readq(&bar0->gpio_control);
6859                                 } else {
6860                                         val64 |= ADAPTER_LED_ON;
6861                                         writeq(val64, &bar0->adapter_control);
6862                                 }
6863                                 nic->device_enabled_once = true;
6864                         } else {
6865                                 DBG_PRINT(ERR_DBG,
6866                                           "%s: Error: device is not Quiescent\n",
6867                                           dev->name);
6868                                 s2io_stop_all_tx_queue(nic);
6869                         }
6870                 }
6871                 val64 = readq(&bar0->adapter_control);
6872                 val64 |= ADAPTER_LED_ON;
6873                 writeq(val64, &bar0->adapter_control);
6874                 s2io_link(nic, LINK_UP);
6875         } else {
6876                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6877                                                       subid)) {
6878                         val64 = readq(&bar0->gpio_control);
6879                         val64 &= ~GPIO_CTRL_GPIO_0;
6880                         writeq(val64, &bar0->gpio_control);
6881                         val64 = readq(&bar0->gpio_control);
6882                 }
6883                 /* turn off LED */
6884                 val64 = readq(&bar0->adapter_control);
6885                 val64 = val64 & (~ADAPTER_LED_ON);
6886                 writeq(val64, &bar0->adapter_control);
6887                 s2io_link(nic, LINK_DOWN);
6888         }
6889         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6890
6891 out_unlock:
6892         rtnl_unlock();
6893 }
6894
6895 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6896                                   struct buffAdd *ba,
6897                                   struct sk_buff **skb, u64 *temp0, u64 *temp1,
6898                                   u64 *temp2, int size)
6899 {
6900         struct net_device *dev = sp->dev;
6901         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6902
6903         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6904                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6905                 /* allocate skb */
6906                 if (*skb) {
6907                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6908                         /*
6909                          * As Rx frame are not going to be processed,
6910                          * using same mapped address for the Rxd
6911                          * buffer pointer
6912                          */
6913                         rxdp1->Buffer0_ptr = *temp0;
6914                 } else {
6915                         *skb = dev_alloc_skb(size);
6916                         if (!(*skb)) {
6917                                 DBG_PRINT(INFO_DBG,
6918                                           "%s: Out of memory to allocate %s\n",
6919                                           dev->name, "1 buf mode SKBs");
6920                                 stats->mem_alloc_fail_cnt++;
6921                                 return -ENOMEM ;
6922                         }
6923                         stats->mem_allocated += (*skb)->truesize;
6924                         /* storing the mapped addr in a temp variable
6925                          * such it will be used for next rxd whose
6926                          * Host Control is NULL
6927                          */
6928                         rxdp1->Buffer0_ptr = *temp0 =
6929                                 pci_map_single(sp->pdev, (*skb)->data,
6930                                                size - NET_IP_ALIGN,
6931                                                PCI_DMA_FROMDEVICE);
6932                         if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6933                                 goto memalloc_failed;
6934                         rxdp->Host_Control = (unsigned long) (*skb);
6935                 }
6936         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6937                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6938                 /* Two buffer Mode */
6939                 if (*skb) {
6940                         rxdp3->Buffer2_ptr = *temp2;
6941                         rxdp3->Buffer0_ptr = *temp0;
6942                         rxdp3->Buffer1_ptr = *temp1;
6943                 } else {
6944                         *skb = dev_alloc_skb(size);
6945                         if (!(*skb)) {
6946                                 DBG_PRINT(INFO_DBG,
6947                                           "%s: Out of memory to allocate %s\n",
6948                                           dev->name,
6949                                           "2 buf mode SKBs");
6950                                 stats->mem_alloc_fail_cnt++;
6951                                 return -ENOMEM;
6952                         }
6953                         stats->mem_allocated += (*skb)->truesize;
6954                         rxdp3->Buffer2_ptr = *temp2 =
6955                                 pci_map_single(sp->pdev, (*skb)->data,
6956                                                dev->mtu + 4,
6957                                                PCI_DMA_FROMDEVICE);
6958                         if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6959                                 goto memalloc_failed;
6960                         rxdp3->Buffer0_ptr = *temp0 =
6961                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6962                                                PCI_DMA_FROMDEVICE);
6963                         if (pci_dma_mapping_error(sp->pdev,
6964                                                   rxdp3->Buffer0_ptr)) {
6965                                 pci_unmap_single(sp->pdev,
6966                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6967                                                  dev->mtu + 4,
6968                                                  PCI_DMA_FROMDEVICE);
6969                                 goto memalloc_failed;
6970                         }
6971                         rxdp->Host_Control = (unsigned long) (*skb);
6972
6973                         /* Buffer-1 will be dummy buffer not used */
6974                         rxdp3->Buffer1_ptr = *temp1 =
6975                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6976                                                PCI_DMA_FROMDEVICE);
6977                         if (pci_dma_mapping_error(sp->pdev,
6978                                                   rxdp3->Buffer1_ptr)) {
6979                                 pci_unmap_single(sp->pdev,
6980                                                  (dma_addr_t)rxdp3->Buffer0_ptr,
6981                                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
6982                                 pci_unmap_single(sp->pdev,
6983                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6984                                                  dev->mtu + 4,
6985                                                  PCI_DMA_FROMDEVICE);
6986                                 goto memalloc_failed;
6987                         }
6988                 }
6989         }
6990         return 0;
6991
6992 memalloc_failed:
6993         stats->pci_map_fail_cnt++;
6994         stats->mem_freed += (*skb)->truesize;
6995         dev_kfree_skb(*skb);
6996         return -ENOMEM;
6997 }
6998
6999 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
7000                                 int size)
7001 {
7002         struct net_device *dev = sp->dev;
7003         if (sp->rxd_mode == RXD_MODE_1) {
7004                 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
7005         } else if (sp->rxd_mode == RXD_MODE_3B) {
7006                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
7007                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
7008                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
7009         }
7010 }
7011
7012 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
7013 {
7014         int i, j, k, blk_cnt = 0, size;
7015         struct config_param *config = &sp->config;
7016         struct mac_info *mac_control = &sp->mac_control;
7017         struct net_device *dev = sp->dev;
7018         struct RxD_t *rxdp = NULL;
7019         struct sk_buff *skb = NULL;
7020         struct buffAdd *ba = NULL;
7021         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
7022
7023         /* Calculate the size based on ring mode */
7024         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
7025                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
7026         if (sp->rxd_mode == RXD_MODE_1)
7027                 size += NET_IP_ALIGN;
7028         else if (sp->rxd_mode == RXD_MODE_3B)
7029                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
7030
7031         for (i = 0; i < config->rx_ring_num; i++) {
7032                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7033                 struct ring_info *ring = &mac_control->rings[i];
7034
7035                 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
7036
7037                 for (j = 0; j < blk_cnt; j++) {
7038                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7039                                 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7040                                 if (sp->rxd_mode == RXD_MODE_3B)
7041                                         ba = &ring->ba[j][k];
7042                                 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7043                                                            (u64 *)&temp0_64,
7044                                                            (u64 *)&temp1_64,
7045                                                            (u64 *)&temp2_64,
7046                                                            size) == -ENOMEM) {
7047                                         return 0;
7048                                 }
7049
7050                                 set_rxd_buffer_size(sp, rxdp, size);
7051                                 wmb();
7052                                 /* flip the Ownership bit to Hardware */
7053                                 rxdp->Control_1 |= RXD_OWN_XENA;
7054                         }
7055                 }
7056         }
7057         return 0;
7058
7059 }
7060
7061 static int s2io_add_isr(struct s2io_nic *sp)
7062 {
7063         int ret = 0;
7064         struct net_device *dev = sp->dev;
7065         int err = 0;
7066
7067         if (sp->config.intr_type == MSI_X)
7068                 ret = s2io_enable_msi_x(sp);
7069         if (ret) {
7070                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7071                 sp->config.intr_type = INTA;
7072         }
7073
7074         /*
7075          * Store the values of the MSIX table in
7076          * the struct s2io_nic structure
7077          */
7078         store_xmsi_data(sp);
7079
7080         /* After proper initialization of H/W, register ISR */
7081         if (sp->config.intr_type == MSI_X) {
7082                 int i, msix_rx_cnt = 0;
7083
7084                 for (i = 0; i < sp->num_entries; i++) {
7085                         if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7086                                 if (sp->s2io_entries[i].type ==
7087                                     MSIX_RING_TYPE) {
7088                                         sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7089                                                 dev->name, i);
7090                                         err = request_irq(sp->entries[i].vector,
7091                                                           s2io_msix_ring_handle,
7092                                                           0,
7093                                                           sp->desc[i],
7094                                                           sp->s2io_entries[i].arg);
7095                                 } else if (sp->s2io_entries[i].type ==
7096                                            MSIX_ALARM_TYPE) {
7097                                         sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7098                                                 dev->name, i);
7099                                         err = request_irq(sp->entries[i].vector,
7100                                                           s2io_msix_fifo_handle,
7101                                                           0,
7102                                                           sp->desc[i],
7103                                                           sp->s2io_entries[i].arg);
7104
7105                                 }
7106                                 /* if either data or addr is zero print it. */
7107                                 if (!(sp->msix_info[i].addr &&
7108                                       sp->msix_info[i].data)) {
7109                                         DBG_PRINT(ERR_DBG,
7110                                                   "%s @Addr:0x%llx Data:0x%llx\n",
7111                                                   sp->desc[i],
7112                                                   (unsigned long long)
7113                                                   sp->msix_info[i].addr,
7114                                                   (unsigned long long)
7115                                                   ntohl(sp->msix_info[i].data));
7116                                 } else
7117                                         msix_rx_cnt++;
7118                                 if (err) {
7119                                         remove_msix_isr(sp);
7120
7121                                         DBG_PRINT(ERR_DBG,
7122                                                   "%s:MSI-X-%d registration "
7123                                                   "failed\n", dev->name, i);
7124
7125                                         DBG_PRINT(ERR_DBG,
7126                                                   "%s: Defaulting to INTA\n",
7127                                                   dev->name);
7128                                         sp->config.intr_type = INTA;
7129                                         break;
7130                                 }
7131                                 sp->s2io_entries[i].in_use =
7132                                         MSIX_REGISTERED_SUCCESS;
7133                         }
7134                 }
7135                 if (!err) {
7136                         pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7137                         DBG_PRINT(INFO_DBG,
7138                                   "MSI-X-TX entries enabled through alarm vector\n");
7139                 }
7140         }
7141         if (sp->config.intr_type == INTA) {
7142                 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7143                                   sp->name, dev);
7144                 if (err) {
7145                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7146                                   dev->name);
7147                         return -1;
7148                 }
7149         }
7150         return 0;
7151 }
7152
7153 static void s2io_rem_isr(struct s2io_nic *sp)
7154 {
7155         if (sp->config.intr_type == MSI_X)
7156                 remove_msix_isr(sp);
7157         else
7158                 remove_inta_isr(sp);
7159 }
7160
7161 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7162 {
7163         int cnt = 0;
7164         struct XENA_dev_config __iomem *bar0 = sp->bar0;
7165         register u64 val64 = 0;
7166         struct config_param *config;
7167         config = &sp->config;
7168
7169         if (!is_s2io_card_up(sp))
7170                 return;
7171
7172         del_timer_sync(&sp->alarm_timer);
7173         /* If s2io_set_link task is executing, wait till it completes. */
7174         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7175                 msleep(50);
7176         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7177
7178         /* Disable napi */
7179         if (sp->config.napi) {
7180                 int off = 0;
7181                 if (config->intr_type ==  MSI_X) {
7182                         for (; off < sp->config.rx_ring_num; off++)
7183                                 napi_disable(&sp->mac_control.rings[off].napi);
7184                 }
7185                 else
7186                         napi_disable(&sp->napi);
7187         }
7188
7189         /* disable Tx and Rx traffic on the NIC */
7190         if (do_io)
7191                 stop_nic(sp);
7192
7193         s2io_rem_isr(sp);
7194
7195         /* stop the tx queue, indicate link down */
7196         s2io_link(sp, LINK_DOWN);
7197
7198         /* Check if the device is Quiescent and then Reset the NIC */
7199         while (do_io) {
7200                 /* As per the HW requirement we need to replenish the
7201                  * receive buffer to avoid the ring bump. Since there is
7202                  * no intention of processing the Rx frame at this pointwe are
7203                  * just settting the ownership bit of rxd in Each Rx
7204                  * ring to HW and set the appropriate buffer size
7205                  * based on the ring mode
7206                  */
7207                 rxd_owner_bit_reset(sp);
7208
7209                 val64 = readq(&bar0->adapter_status);
7210                 if (verify_xena_quiescence(sp)) {
7211                         if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7212                                 break;
7213                 }
7214
7215                 msleep(50);
7216                 cnt++;
7217                 if (cnt == 10) {
7218                         DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7219                                   "adapter status reads 0x%llx\n",
7220                                   (unsigned long long)val64);
7221                         break;
7222                 }
7223         }
7224         if (do_io)
7225                 s2io_reset(sp);
7226
7227         /* Free all Tx buffers */
7228         free_tx_buffers(sp);
7229
7230         /* Free all Rx buffers */
7231         free_rx_buffers(sp);
7232
7233         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7234 }
7235
7236 static void s2io_card_down(struct s2io_nic *sp)
7237 {
7238         do_s2io_card_down(sp, 1);
7239 }
7240
7241 static int s2io_card_up(struct s2io_nic *sp)
7242 {
7243         int i, ret = 0;
7244         struct config_param *config;
7245         struct mac_info *mac_control;
7246         struct net_device *dev = (struct net_device *)sp->dev;
7247         u16 interruptible;
7248
7249         /* Initialize the H/W I/O registers */
7250         ret = init_nic(sp);
7251         if (ret != 0) {
7252                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7253                           dev->name);
7254                 if (ret != -EIO)
7255                         s2io_reset(sp);
7256                 return ret;
7257         }
7258
7259         /*
7260          * Initializing the Rx buffers. For now we are considering only 1
7261          * Rx ring and initializing buffers into 30 Rx blocks
7262          */
7263         config = &sp->config;
7264         mac_control = &sp->mac_control;
7265
7266         for (i = 0; i < config->rx_ring_num; i++) {
7267                 struct ring_info *ring = &mac_control->rings[i];
7268
7269                 ring->mtu = dev->mtu;
7270                 ring->lro = sp->lro;
7271                 ret = fill_rx_buffers(sp, ring, 1);
7272                 if (ret) {
7273                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7274                                   dev->name);
7275                         s2io_reset(sp);
7276                         free_rx_buffers(sp);
7277                         return -ENOMEM;
7278                 }
7279                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7280                           ring->rx_bufs_left);
7281         }
7282
7283         /* Initialise napi */
7284         if (config->napi) {
7285                 if (config->intr_type ==  MSI_X) {
7286                         for (i = 0; i < sp->config.rx_ring_num; i++)
7287                                 napi_enable(&sp->mac_control.rings[i].napi);
7288                 } else {
7289                         napi_enable(&sp->napi);
7290                 }
7291         }
7292
7293         /* Maintain the state prior to the open */
7294         if (sp->promisc_flg)
7295                 sp->promisc_flg = 0;
7296         if (sp->m_cast_flg) {
7297                 sp->m_cast_flg = 0;
7298                 sp->all_multi_pos = 0;
7299         }
7300
7301         /* Setting its receive mode */
7302         s2io_set_multicast(dev);
7303
7304         if (sp->lro) {
7305                 /* Initialize max aggregatable pkts per session based on MTU */
7306                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7307                 /* Check if we can use (if specified) user provided value */
7308                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7309                         sp->lro_max_aggr_per_sess = lro_max_pkts;
7310         }
7311
7312         /* Enable Rx Traffic and interrupts on the NIC */
7313         if (start_nic(sp)) {
7314                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7315                 s2io_reset(sp);
7316                 free_rx_buffers(sp);
7317                 return -ENODEV;
7318         }
7319
7320         /* Add interrupt service routine */
7321         if (s2io_add_isr(sp) != 0) {
7322                 if (sp->config.intr_type == MSI_X)
7323                         s2io_rem_isr(sp);
7324                 s2io_reset(sp);
7325                 free_rx_buffers(sp);
7326                 return -ENODEV;
7327         }
7328
7329         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7330
7331         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7332
7333         /*  Enable select interrupts */
7334         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7335         if (sp->config.intr_type != INTA) {
7336                 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7337                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7338         } else {
7339                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7340                 interruptible |= TX_PIC_INTR;
7341                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7342         }
7343
7344         return 0;
7345 }
7346
7347 /**
7348  * s2io_restart_nic - Resets the NIC.
7349  * @data : long pointer to the device private structure
7350  * Description:
7351  * This function is scheduled to be run by the s2io_tx_watchdog
7352  * function after 0.5 secs to reset the NIC. The idea is to reduce
7353  * the run time of the watch dog routine which is run holding a
7354  * spin lock.
7355  */
7356
7357 static void s2io_restart_nic(struct work_struct *work)
7358 {
7359         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7360         struct net_device *dev = sp->dev;
7361
7362         rtnl_lock();
7363
7364         if (!netif_running(dev))
7365                 goto out_unlock;
7366
7367         s2io_card_down(sp);
7368         if (s2io_card_up(sp)) {
7369                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7370         }
7371         s2io_wake_all_tx_queue(sp);
7372         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7373 out_unlock:
7374         rtnl_unlock();
7375 }
7376
7377 /**
7378  *  s2io_tx_watchdog - Watchdog for transmit side.
7379  *  @dev : Pointer to net device structure
7380  *  Description:
7381  *  This function is triggered if the Tx Queue is stopped
7382  *  for a pre-defined amount of time when the Interface is still up.
7383  *  If the Interface is jammed in such a situation, the hardware is
7384  *  reset (by s2io_close) and restarted again (by s2io_open) to
7385  *  overcome any problem that might have been caused in the hardware.
7386  *  Return value:
7387  *  void
7388  */
7389
7390 static void s2io_tx_watchdog(struct net_device *dev)
7391 {
7392         struct s2io_nic *sp = netdev_priv(dev);
7393         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7394
7395         if (netif_carrier_ok(dev)) {
7396                 swstats->watchdog_timer_cnt++;
7397                 schedule_work(&sp->rst_timer_task);
7398                 swstats->soft_reset_cnt++;
7399         }
7400 }
7401
7402 /**
7403  *   rx_osm_handler - To perform some OS related operations on SKB.
7404  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7405  *   @skb : the socket buffer pointer.
7406  *   @len : length of the packet
7407  *   @cksum : FCS checksum of the frame.
7408  *   @ring_no : the ring from which this RxD was extracted.
7409  *   Description:
7410  *   This function is called by the Rx interrupt serivce routine to perform
7411  *   some OS related operations on the SKB before passing it to the upper
7412  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7413  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7414  *   to the upper layer. If the checksum is wrong, it increments the Rx
7415  *   packet error count, frees the SKB and returns error.
7416  *   Return value:
7417  *   SUCCESS on success and -1 on failure.
7418  */
7419 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7420 {
7421         struct s2io_nic *sp = ring_data->nic;
7422         struct net_device *dev = (struct net_device *)ring_data->dev;
7423         struct sk_buff *skb = (struct sk_buff *)
7424                 ((unsigned long)rxdp->Host_Control);
7425         int ring_no = ring_data->ring_no;
7426         u16 l3_csum, l4_csum;
7427         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7428         struct lro *uninitialized_var(lro);
7429         u8 err_mask;
7430         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7431
7432         skb->dev = dev;
7433
7434         if (err) {
7435                 /* Check for parity error */
7436                 if (err & 0x1)
7437                         swstats->parity_err_cnt++;
7438
7439                 err_mask = err >> 48;
7440                 switch (err_mask) {
7441                 case 1:
7442                         swstats->rx_parity_err_cnt++;
7443                         break;
7444
7445                 case 2:
7446                         swstats->rx_abort_cnt++;
7447                         break;
7448
7449                 case 3:
7450                         swstats->rx_parity_abort_cnt++;
7451                         break;
7452
7453                 case 4:
7454                         swstats->rx_rda_fail_cnt++;
7455                         break;
7456
7457                 case 5:
7458                         swstats->rx_unkn_prot_cnt++;
7459                         break;
7460
7461                 case 6:
7462                         swstats->rx_fcs_err_cnt++;
7463                         break;
7464
7465                 case 7:
7466                         swstats->rx_buf_size_err_cnt++;
7467                         break;
7468
7469                 case 8:
7470                         swstats->rx_rxd_corrupt_cnt++;
7471                         break;
7472
7473                 case 15:
7474                         swstats->rx_unkn_err_cnt++;
7475                         break;
7476                 }
7477                 /*
7478                  * Drop the packet if bad transfer code. Exception being
7479                  * 0x5, which could be due to unsupported IPv6 extension header.
7480                  * In this case, we let stack handle the packet.
7481                  * Note that in this case, since checksum will be incorrect,
7482                  * stack will validate the same.
7483                  */
7484                 if (err_mask != 0x5) {
7485                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7486                                   dev->name, err_mask);
7487                         dev->stats.rx_crc_errors++;
7488                         swstats->mem_freed
7489                                 += skb->truesize;
7490                         dev_kfree_skb(skb);
7491                         ring_data->rx_bufs_left -= 1;
7492                         rxdp->Host_Control = 0;
7493                         return 0;
7494                 }
7495         }
7496
7497         /* Updating statistics */
7498         ring_data->rx_packets++;
7499         rxdp->Host_Control = 0;
7500         if (sp->rxd_mode == RXD_MODE_1) {
7501                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7502
7503                 ring_data->rx_bytes += len;
7504                 skb_put(skb, len);
7505
7506         } else if (sp->rxd_mode == RXD_MODE_3B) {
7507                 int get_block = ring_data->rx_curr_get_info.block_index;
7508                 int get_off = ring_data->rx_curr_get_info.offset;
7509                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7510                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7511                 unsigned char *buff = skb_push(skb, buf0_len);
7512
7513                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7514                 ring_data->rx_bytes += buf0_len + buf2_len;
7515                 memcpy(buff, ba->ba_0, buf0_len);
7516                 skb_put(skb, buf2_len);
7517         }
7518
7519         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7520             ((!ring_data->lro) ||
7521              (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7522             (sp->rx_csum)) {
7523                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7524                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7525                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7526                         /*
7527                          * NIC verifies if the Checksum of the received
7528                          * frame is Ok or not and accordingly returns
7529                          * a flag in the RxD.
7530                          */
7531                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7532                         if (ring_data->lro) {
7533                                 u32 tcp_len;
7534                                 u8 *tcp;
7535                                 int ret = 0;
7536
7537                                 ret = s2io_club_tcp_session(ring_data,
7538                                                             skb->data, &tcp,
7539                                                             &tcp_len, &lro,
7540                                                             rxdp, sp);
7541                                 switch (ret) {
7542                                 case 3: /* Begin anew */
7543                                         lro->parent = skb;
7544                                         goto aggregate;
7545                                 case 1: /* Aggregate */
7546                                         lro_append_pkt(sp, lro, skb, tcp_len);
7547                                         goto aggregate;
7548                                 case 4: /* Flush session */
7549                                         lro_append_pkt(sp, lro, skb, tcp_len);
7550                                         queue_rx_frame(lro->parent,
7551                                                        lro->vlan_tag);
7552                                         clear_lro_session(lro);
7553                                         swstats->flush_max_pkts++;
7554                                         goto aggregate;
7555                                 case 2: /* Flush both */
7556                                         lro->parent->data_len = lro->frags_len;
7557                                         swstats->sending_both++;
7558                                         queue_rx_frame(lro->parent,
7559                                                        lro->vlan_tag);
7560                                         clear_lro_session(lro);
7561                                         goto send_up;
7562                                 case 0: /* sessions exceeded */
7563                                 case -1: /* non-TCP or not L2 aggregatable */
7564                                 case 5: /*
7565                                          * First pkt in session not
7566                                          * L3/L4 aggregatable
7567                                          */
7568                                         break;
7569                                 default:
7570                                         DBG_PRINT(ERR_DBG,
7571                                                   "%s: Samadhana!!\n",
7572                                                   __func__);
7573                                         BUG();
7574                                 }
7575                         }
7576                 } else {
7577                         /*
7578                          * Packet with erroneous checksum, let the
7579                          * upper layers deal with it.
7580                          */
7581                         skb->ip_summed = CHECKSUM_NONE;
7582                 }
7583         } else
7584                 skb->ip_summed = CHECKSUM_NONE;
7585
7586         swstats->mem_freed += skb->truesize;
7587 send_up:
7588         skb_record_rx_queue(skb, ring_no);
7589         queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7590 aggregate:
7591         sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7592         return SUCCESS;
7593 }
7594
7595 /**
7596  *  s2io_link - stops/starts the Tx queue.
7597  *  @sp : private member of the device structure, which is a pointer to the
7598  *  s2io_nic structure.
7599  *  @link : inidicates whether link is UP/DOWN.
7600  *  Description:
7601  *  This function stops/starts the Tx queue depending on whether the link
7602  *  status of the NIC is is down or up. This is called by the Alarm
7603  *  interrupt handler whenever a link change interrupt comes up.
7604  *  Return value:
7605  *  void.
7606  */
7607
7608 static void s2io_link(struct s2io_nic *sp, int link)
7609 {
7610         struct net_device *dev = (struct net_device *)sp->dev;
7611         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7612
7613         if (link != sp->last_link_state) {
7614                 init_tti(sp, link);
7615                 if (link == LINK_DOWN) {
7616                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7617                         s2io_stop_all_tx_queue(sp);
7618                         netif_carrier_off(dev);
7619                         if (swstats->link_up_cnt)
7620                                 swstats->link_up_time =
7621                                         jiffies - sp->start_time;
7622                         swstats->link_down_cnt++;
7623                 } else {
7624                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7625                         if (swstats->link_down_cnt)
7626                                 swstats->link_down_time =
7627                                         jiffies - sp->start_time;
7628                         swstats->link_up_cnt++;
7629                         netif_carrier_on(dev);
7630                         s2io_wake_all_tx_queue(sp);
7631                 }
7632         }
7633         sp->last_link_state = link;
7634         sp->start_time = jiffies;
7635 }
7636
7637 /**
7638  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7639  *  @sp : private member of the device structure, which is a pointer to the
7640  *  s2io_nic structure.
7641  *  Description:
7642  *  This function initializes a few of the PCI and PCI-X configuration registers
7643  *  with recommended values.
7644  *  Return value:
7645  *  void
7646  */
7647
7648 static void s2io_init_pci(struct s2io_nic *sp)
7649 {
7650         u16 pci_cmd = 0, pcix_cmd = 0;
7651
7652         /* Enable Data Parity Error Recovery in PCI-X command register. */
7653         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7654                              &(pcix_cmd));
7655         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7656                               (pcix_cmd | 1));
7657         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7658                              &(pcix_cmd));
7659
7660         /* Set the PErr Response bit in PCI command register. */
7661         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7662         pci_write_config_word(sp->pdev, PCI_COMMAND,
7663                               (pci_cmd | PCI_COMMAND_PARITY));
7664         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7665 }
7666
7667 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7668                             u8 *dev_multiq)
7669 {
7670         if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7671                 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7672                           "(%d) not supported\n", tx_fifo_num);
7673
7674                 if (tx_fifo_num < 1)
7675                         tx_fifo_num = 1;
7676                 else
7677                         tx_fifo_num = MAX_TX_FIFOS;
7678
7679                 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7680         }
7681
7682         if (multiq)
7683                 *dev_multiq = multiq;
7684
7685         if (tx_steering_type && (1 == tx_fifo_num)) {
7686                 if (tx_steering_type != TX_DEFAULT_STEERING)
7687                         DBG_PRINT(ERR_DBG,
7688                                   "Tx steering is not supported with "
7689                                   "one fifo. Disabling Tx steering.\n");
7690                 tx_steering_type = NO_STEERING;
7691         }
7692
7693         if ((tx_steering_type < NO_STEERING) ||
7694             (tx_steering_type > TX_DEFAULT_STEERING)) {
7695                 DBG_PRINT(ERR_DBG,
7696                           "Requested transmit steering not supported\n");
7697                 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7698                 tx_steering_type = NO_STEERING;
7699         }
7700
7701         if (rx_ring_num > MAX_RX_RINGS) {
7702                 DBG_PRINT(ERR_DBG,
7703                           "Requested number of rx rings not supported\n");
7704                 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7705                           MAX_RX_RINGS);
7706                 rx_ring_num = MAX_RX_RINGS;
7707         }
7708
7709         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7710                 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7711                           "Defaulting to INTA\n");
7712                 *dev_intr_type = INTA;
7713         }
7714
7715         if ((*dev_intr_type == MSI_X) &&
7716             ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7717              (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7718                 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7719                           "Defaulting to INTA\n");
7720                 *dev_intr_type = INTA;
7721         }
7722
7723         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7724                 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7725                 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7726                 rx_ring_mode = 1;
7727         }
7728         return SUCCESS;
7729 }
7730
7731 /**
7732  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7733  * or Traffic class respectively.
7734  * @nic: device private variable
7735  * Description: The function configures the receive steering to
7736  * desired receive ring.
7737  * Return Value:  SUCCESS on success and
7738  * '-1' on failure (endian settings incorrect).
7739  */
7740 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7741 {
7742         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7743         register u64 val64 = 0;
7744
7745         if (ds_codepoint > 63)
7746                 return FAILURE;
7747
7748         val64 = RTS_DS_MEM_DATA(ring);
7749         writeq(val64, &bar0->rts_ds_mem_data);
7750
7751         val64 = RTS_DS_MEM_CTRL_WE |
7752                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7753                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7754
7755         writeq(val64, &bar0->rts_ds_mem_ctrl);
7756
7757         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7758                                      RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7759                                      S2IO_BIT_RESET);
7760 }
7761
7762 static const struct net_device_ops s2io_netdev_ops = {
7763         .ndo_open               = s2io_open,
7764         .ndo_stop               = s2io_close,
7765         .ndo_get_stats          = s2io_get_stats,
7766         .ndo_start_xmit         = s2io_xmit,
7767         .ndo_validate_addr      = eth_validate_addr,
7768         .ndo_set_multicast_list = s2io_set_multicast,
7769         .ndo_do_ioctl           = s2io_ioctl,
7770         .ndo_set_mac_address    = s2io_set_mac_addr,
7771         .ndo_change_mtu         = s2io_change_mtu,
7772         .ndo_vlan_rx_register   = s2io_vlan_rx_register,
7773         .ndo_vlan_rx_kill_vid   = s2io_vlan_rx_kill_vid,
7774         .ndo_tx_timeout         = s2io_tx_watchdog,
7775 #ifdef CONFIG_NET_POLL_CONTROLLER
7776         .ndo_poll_controller    = s2io_netpoll,
7777 #endif
7778 };
7779
7780 /**
7781  *  s2io_init_nic - Initialization of the adapter .
7782  *  @pdev : structure containing the PCI related information of the device.
7783  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7784  *  Description:
7785  *  The function initializes an adapter identified by the pci_dec structure.
7786  *  All OS related initialization including memory and device structure and
7787  *  initlaization of the device private variable is done. Also the swapper
7788  *  control register is initialized to enable read and write into the I/O
7789  *  registers of the device.
7790  *  Return value:
7791  *  returns 0 on success and negative on failure.
7792  */
7793
7794 static int __devinit
7795 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7796 {
7797         struct s2io_nic *sp;
7798         struct net_device *dev;
7799         int i, j, ret;
7800         int dma_flag = false;
7801         u32 mac_up, mac_down;
7802         u64 val64 = 0, tmp64 = 0;
7803         struct XENA_dev_config __iomem *bar0 = NULL;
7804         u16 subid;
7805         struct config_param *config;
7806         struct mac_info *mac_control;
7807         int mode;
7808         u8 dev_intr_type = intr_type;
7809         u8 dev_multiq = 0;
7810
7811         ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7812         if (ret)
7813                 return ret;
7814
7815         ret = pci_enable_device(pdev);
7816         if (ret) {
7817                 DBG_PRINT(ERR_DBG,
7818                           "%s: pci_enable_device failed\n", __func__);
7819                 return ret;
7820         }
7821
7822         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7823                 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7824                 dma_flag = true;
7825                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7826                         DBG_PRINT(ERR_DBG,
7827                                   "Unable to obtain 64bit DMA "
7828                                   "for consistent allocations\n");
7829                         pci_disable_device(pdev);
7830                         return -ENOMEM;
7831                 }
7832         } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7833                 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7834         } else {
7835                 pci_disable_device(pdev);
7836                 return -ENOMEM;
7837         }
7838         ret = pci_request_regions(pdev, s2io_driver_name);
7839         if (ret) {
7840                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7841                           __func__, ret);
7842                 pci_disable_device(pdev);
7843                 return -ENODEV;
7844         }
7845         if (dev_multiq)
7846                 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7847         else
7848                 dev = alloc_etherdev(sizeof(struct s2io_nic));
7849         if (dev == NULL) {
7850                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7851                 pci_disable_device(pdev);
7852                 pci_release_regions(pdev);
7853                 return -ENODEV;
7854         }
7855
7856         pci_set_master(pdev);
7857         pci_set_drvdata(pdev, dev);
7858         SET_NETDEV_DEV(dev, &pdev->dev);
7859
7860         /*  Private member variable initialized to s2io NIC structure */
7861         sp = netdev_priv(dev);
7862         memset(sp, 0, sizeof(struct s2io_nic));
7863         sp->dev = dev;
7864         sp->pdev = pdev;
7865         sp->high_dma_flag = dma_flag;
7866         sp->device_enabled_once = false;
7867         if (rx_ring_mode == 1)
7868                 sp->rxd_mode = RXD_MODE_1;
7869         if (rx_ring_mode == 2)
7870                 sp->rxd_mode = RXD_MODE_3B;
7871
7872         sp->config.intr_type = dev_intr_type;
7873
7874         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7875             (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7876                 sp->device_type = XFRAME_II_DEVICE;
7877         else
7878                 sp->device_type = XFRAME_I_DEVICE;
7879
7880         sp->lro = lro_enable;
7881
7882         /* Initialize some PCI/PCI-X fields of the NIC. */
7883         s2io_init_pci(sp);
7884
7885         /*
7886          * Setting the device configuration parameters.
7887          * Most of these parameters can be specified by the user during
7888          * module insertion as they are module loadable parameters. If
7889          * these parameters are not not specified during load time, they
7890          * are initialized with default values.
7891          */
7892         config = &sp->config;
7893         mac_control = &sp->mac_control;
7894
7895         config->napi = napi;
7896         config->tx_steering_type = tx_steering_type;
7897
7898         /* Tx side parameters. */
7899         if (config->tx_steering_type == TX_PRIORITY_STEERING)
7900                 config->tx_fifo_num = MAX_TX_FIFOS;
7901         else
7902                 config->tx_fifo_num = tx_fifo_num;
7903
7904         /* Initialize the fifos used for tx steering */
7905         if (config->tx_fifo_num < 5) {
7906                 if (config->tx_fifo_num  == 1)
7907                         sp->total_tcp_fifos = 1;
7908                 else
7909                         sp->total_tcp_fifos = config->tx_fifo_num - 1;
7910                 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7911                 sp->total_udp_fifos = 1;
7912                 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7913         } else {
7914                 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7915                                        FIFO_OTHER_MAX_NUM);
7916                 sp->udp_fifo_idx = sp->total_tcp_fifos;
7917                 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7918                 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7919         }
7920
7921         config->multiq = dev_multiq;
7922         for (i = 0; i < config->tx_fifo_num; i++) {
7923                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7924
7925                 tx_cfg->fifo_len = tx_fifo_len[i];
7926                 tx_cfg->fifo_priority = i;
7927         }
7928
7929         /* mapping the QoS priority to the configured fifos */
7930         for (i = 0; i < MAX_TX_FIFOS; i++)
7931                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7932
7933         /* map the hashing selector table to the configured fifos */
7934         for (i = 0; i < config->tx_fifo_num; i++)
7935                 sp->fifo_selector[i] = fifo_selector[i];
7936
7937
7938         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7939         for (i = 0; i < config->tx_fifo_num; i++) {
7940                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7941
7942                 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7943                 if (tx_cfg->fifo_len < 65) {
7944                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7945                         break;
7946                 }
7947         }
7948         /* + 2 because one Txd for skb->data and one Txd for UFO */
7949         config->max_txds = MAX_SKB_FRAGS + 2;
7950
7951         /* Rx side parameters. */
7952         config->rx_ring_num = rx_ring_num;
7953         for (i = 0; i < config->rx_ring_num; i++) {
7954                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7955                 struct ring_info *ring = &mac_control->rings[i];
7956
7957                 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7958                 rx_cfg->ring_priority = i;
7959                 ring->rx_bufs_left = 0;
7960                 ring->rxd_mode = sp->rxd_mode;
7961                 ring->rxd_count = rxd_count[sp->rxd_mode];
7962                 ring->pdev = sp->pdev;
7963                 ring->dev = sp->dev;
7964         }
7965
7966         for (i = 0; i < rx_ring_num; i++) {
7967                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7968
7969                 rx_cfg->ring_org = RING_ORG_BUFF1;
7970                 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7971         }
7972
7973         /*  Setting Mac Control parameters */
7974         mac_control->rmac_pause_time = rmac_pause_time;
7975         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7976         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7977
7978
7979         /*  initialize the shared memory used by the NIC and the host */
7980         if (init_shared_mem(sp)) {
7981                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7982                 ret = -ENOMEM;
7983                 goto mem_alloc_failed;
7984         }
7985
7986         sp->bar0 = pci_ioremap_bar(pdev, 0);
7987         if (!sp->bar0) {
7988                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7989                           dev->name);
7990                 ret = -ENOMEM;
7991                 goto bar0_remap_failed;
7992         }
7993
7994         sp->bar1 = pci_ioremap_bar(pdev, 2);
7995         if (!sp->bar1) {
7996                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7997                           dev->name);
7998                 ret = -ENOMEM;
7999                 goto bar1_remap_failed;
8000         }
8001
8002         dev->irq = pdev->irq;
8003         dev->base_addr = (unsigned long)sp->bar0;
8004
8005         /* Initializing the BAR1 address as the start of the FIFO pointer. */
8006         for (j = 0; j < MAX_TX_FIFOS; j++) {
8007                 mac_control->tx_FIFO_start[j] =
8008                         (struct TxFIFO_element __iomem *)
8009                         (sp->bar1 + (j * 0x00020000));
8010         }
8011
8012         /*  Driver entry points */
8013         dev->netdev_ops = &s2io_netdev_ops;
8014         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
8015         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
8016         if (lro_enable)
8017                 dev->features |= NETIF_F_LRO;
8018         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
8019         if (sp->high_dma_flag == true)
8020                 dev->features |= NETIF_F_HIGHDMA;
8021         dev->features |= NETIF_F_TSO;
8022         dev->features |= NETIF_F_TSO6;
8023         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
8024                 dev->features |= NETIF_F_UFO;
8025                 dev->features |= NETIF_F_HW_CSUM;
8026         }
8027         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
8028         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
8029         INIT_WORK(&sp->set_link_task, s2io_set_link);
8030
8031         pci_save_state(sp->pdev);
8032
8033         /* Setting swapper control on the NIC, for proper reset operation */
8034         if (s2io_set_swapper(sp)) {
8035                 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
8036                           dev->name);
8037                 ret = -EAGAIN;
8038                 goto set_swap_failed;
8039         }
8040
8041         /* Verify if the Herc works on the slot its placed into */
8042         if (sp->device_type & XFRAME_II_DEVICE) {
8043                 mode = s2io_verify_pci_mode(sp);
8044                 if (mode < 0) {
8045                         DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8046                                   __func__);
8047                         ret = -EBADSLT;
8048                         goto set_swap_failed;
8049                 }
8050         }
8051
8052         if (sp->config.intr_type == MSI_X) {
8053                 sp->num_entries = config->rx_ring_num + 1;
8054                 ret = s2io_enable_msi_x(sp);
8055
8056                 if (!ret) {
8057                         ret = s2io_test_msi(sp);
8058                         /* rollback MSI-X, will re-enable during add_isr() */
8059                         remove_msix_isr(sp);
8060                 }
8061                 if (ret) {
8062
8063                         DBG_PRINT(ERR_DBG,
8064                                   "MSI-X requested but failed to enable\n");
8065                         sp->config.intr_type = INTA;
8066                 }
8067         }
8068
8069         if (config->intr_type ==  MSI_X) {
8070                 for (i = 0; i < config->rx_ring_num ; i++) {
8071                         struct ring_info *ring = &mac_control->rings[i];
8072
8073                         netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8074                 }
8075         } else {
8076                 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8077         }
8078
8079         /* Not needed for Herc */
8080         if (sp->device_type & XFRAME_I_DEVICE) {
8081                 /*
8082                  * Fix for all "FFs" MAC address problems observed on
8083                  * Alpha platforms
8084                  */
8085                 fix_mac_address(sp);
8086                 s2io_reset(sp);
8087         }
8088
8089         /*
8090          * MAC address initialization.
8091          * For now only one mac address will be read and used.
8092          */
8093         bar0 = sp->bar0;
8094         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8095                 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8096         writeq(val64, &bar0->rmac_addr_cmd_mem);
8097         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8098                               RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8099                               S2IO_BIT_RESET);
8100         tmp64 = readq(&bar0->rmac_addr_data0_mem);
8101         mac_down = (u32)tmp64;
8102         mac_up = (u32) (tmp64 >> 32);
8103
8104         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8105         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8106         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8107         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8108         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8109         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8110
8111         /*  Set the factory defined MAC address initially   */
8112         dev->addr_len = ETH_ALEN;
8113         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8114         memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8115
8116         /* initialize number of multicast & unicast MAC entries variables */
8117         if (sp->device_type == XFRAME_I_DEVICE) {
8118                 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8119                 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8120                 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8121         } else if (sp->device_type == XFRAME_II_DEVICE) {
8122                 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8123                 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8124                 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8125         }
8126
8127         /* store mac addresses from CAM to s2io_nic structure */
8128         do_s2io_store_unicast_mc(sp);
8129
8130         /* Configure MSIX vector for number of rings configured plus one */
8131         if ((sp->device_type == XFRAME_II_DEVICE) &&
8132             (config->intr_type == MSI_X))
8133                 sp->num_entries = config->rx_ring_num + 1;
8134
8135         /* Store the values of the MSIX table in the s2io_nic structure */
8136         store_xmsi_data(sp);
8137         /* reset Nic and bring it to known state */
8138         s2io_reset(sp);
8139
8140         /*
8141          * Initialize link state flags
8142          * and the card state parameter
8143          */
8144         sp->state = 0;
8145
8146         /* Initialize spinlocks */
8147         for (i = 0; i < sp->config.tx_fifo_num; i++) {
8148                 struct fifo_info *fifo = &mac_control->fifos[i];
8149
8150                 spin_lock_init(&fifo->tx_lock);
8151         }
8152
8153         /*
8154          * SXE-002: Configure link and activity LED to init state
8155          * on driver load.
8156          */
8157         subid = sp->pdev->subsystem_device;
8158         if ((subid & 0xFF) >= 0x07) {
8159                 val64 = readq(&bar0->gpio_control);
8160                 val64 |= 0x0000800000000000ULL;
8161                 writeq(val64, &bar0->gpio_control);
8162                 val64 = 0x0411040400000000ULL;
8163                 writeq(val64, (void __iomem *)bar0 + 0x2700);
8164                 val64 = readq(&bar0->gpio_control);
8165         }
8166
8167         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
8168
8169         if (register_netdev(dev)) {
8170                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8171                 ret = -ENODEV;
8172                 goto register_failed;
8173         }
8174         s2io_vpd_read(sp);
8175         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8176         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8177                   sp->product_name, pdev->revision);
8178         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8179                   s2io_driver_version);
8180         DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8181         DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8182         if (sp->device_type & XFRAME_II_DEVICE) {
8183                 mode = s2io_print_pci_mode(sp);
8184                 if (mode < 0) {
8185                         ret = -EBADSLT;
8186                         unregister_netdev(dev);
8187                         goto set_swap_failed;
8188                 }
8189         }
8190         switch (sp->rxd_mode) {
8191         case RXD_MODE_1:
8192                 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8193                           dev->name);
8194                 break;
8195         case RXD_MODE_3B:
8196                 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8197                           dev->name);
8198                 break;
8199         }
8200
8201         switch (sp->config.napi) {
8202         case 0:
8203                 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8204                 break;
8205         case 1:
8206                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8207                 break;
8208         }
8209
8210         DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8211                   sp->config.tx_fifo_num);
8212
8213         DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8214                   sp->config.rx_ring_num);
8215
8216         switch (sp->config.intr_type) {
8217         case INTA:
8218                 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8219                 break;
8220         case MSI_X:
8221                 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8222                 break;
8223         }
8224         if (sp->config.multiq) {
8225                 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8226                         struct fifo_info *fifo = &mac_control->fifos[i];
8227
8228                         fifo->multiq = config->multiq;
8229                 }
8230                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8231                           dev->name);
8232         } else
8233                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8234                           dev->name);
8235
8236         switch (sp->config.tx_steering_type) {
8237         case NO_STEERING:
8238                 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8239                           dev->name);
8240                 break;
8241         case TX_PRIORITY_STEERING:
8242                 DBG_PRINT(ERR_DBG,
8243                           "%s: Priority steering enabled for transmit\n",
8244                           dev->name);
8245                 break;
8246         case TX_DEFAULT_STEERING:
8247                 DBG_PRINT(ERR_DBG,
8248                           "%s: Default steering enabled for transmit\n",
8249                           dev->name);
8250         }
8251
8252         if (sp->lro)
8253                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8254                           dev->name);
8255         if (ufo)
8256                 DBG_PRINT(ERR_DBG,
8257                           "%s: UDP Fragmentation Offload(UFO) enabled\n",
8258                           dev->name);
8259         /* Initialize device name */
8260         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8261
8262         if (vlan_tag_strip)
8263                 sp->vlan_strip_flag = 1;
8264         else
8265                 sp->vlan_strip_flag = 0;
8266
8267         /*
8268          * Make Link state as off at this point, when the Link change
8269          * interrupt comes the state will be automatically changed to
8270          * the right state.
8271          */
8272         netif_carrier_off(dev);
8273
8274         return 0;
8275
8276 register_failed:
8277 set_swap_failed:
8278         iounmap(sp->bar1);
8279 bar1_remap_failed:
8280         iounmap(sp->bar0);
8281 bar0_remap_failed:
8282 mem_alloc_failed:
8283         free_shared_mem(sp);
8284         pci_disable_device(pdev);
8285         pci_release_regions(pdev);
8286         pci_set_drvdata(pdev, NULL);
8287         free_netdev(dev);
8288
8289         return ret;
8290 }
8291
8292 /**
8293  * s2io_rem_nic - Free the PCI device
8294  * @pdev: structure containing the PCI related information of the device.
8295  * Description: This function is called by the Pci subsystem to release a
8296  * PCI device and free up all resource held up by the device. This could
8297  * be in response to a Hot plug event or when the driver is to be removed
8298  * from memory.
8299  */
8300
8301 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8302 {
8303         struct net_device *dev =
8304                 (struct net_device *)pci_get_drvdata(pdev);
8305         struct s2io_nic *sp;
8306
8307         if (dev == NULL) {
8308                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8309                 return;
8310         }
8311
8312         flush_scheduled_work();
8313
8314         sp = netdev_priv(dev);
8315         unregister_netdev(dev);
8316
8317         free_shared_mem(sp);
8318         iounmap(sp->bar0);
8319         iounmap(sp->bar1);
8320         pci_release_regions(pdev);
8321         pci_set_drvdata(pdev, NULL);
8322         free_netdev(dev);
8323         pci_disable_device(pdev);
8324 }
8325
8326 /**
8327  * s2io_starter - Entry point for the driver
8328  * Description: This function is the entry point for the driver. It verifies
8329  * the module loadable parameters and initializes PCI configuration space.
8330  */
8331
8332 static int __init s2io_starter(void)
8333 {
8334         return pci_register_driver(&s2io_driver);
8335 }
8336
8337 /**
8338  * s2io_closer - Cleanup routine for the driver
8339  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8340  */
8341
8342 static __exit void s2io_closer(void)
8343 {
8344         pci_unregister_driver(&s2io_driver);
8345         DBG_PRINT(INIT_DBG, "cleanup done\n");
8346 }
8347
8348 module_init(s2io_starter);
8349 module_exit(s2io_closer);
8350
8351 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8352                                 struct tcphdr **tcp, struct RxD_t *rxdp,
8353                                 struct s2io_nic *sp)
8354 {
8355         int ip_off;
8356         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8357
8358         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8359                 DBG_PRINT(INIT_DBG,
8360                           "%s: Non-TCP frames not supported for LRO\n",
8361                           __func__);
8362                 return -1;
8363         }
8364
8365         /* Checking for DIX type or DIX type with VLAN */
8366         if ((l2_type == 0) || (l2_type == 4)) {
8367                 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8368                 /*
8369                  * If vlan stripping is disabled and the frame is VLAN tagged,
8370                  * shift the offset by the VLAN header size bytes.
8371                  */
8372                 if ((!sp->vlan_strip_flag) &&
8373                     (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8374                         ip_off += HEADER_VLAN_SIZE;
8375         } else {
8376                 /* LLC, SNAP etc are considered non-mergeable */
8377                 return -1;
8378         }
8379
8380         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8381         ip_len = (u8)((*ip)->ihl);
8382         ip_len <<= 2;
8383         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8384
8385         return 0;
8386 }
8387
8388 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8389                                   struct tcphdr *tcp)
8390 {
8391         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8392         if ((lro->iph->saddr != ip->saddr) ||
8393             (lro->iph->daddr != ip->daddr) ||
8394             (lro->tcph->source != tcp->source) ||
8395             (lro->tcph->dest != tcp->dest))
8396                 return -1;
8397         return 0;
8398 }
8399
8400 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8401 {
8402         return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8403 }
8404
8405 static void initiate_new_session(struct lro *lro, u8 *l2h,
8406                                  struct iphdr *ip, struct tcphdr *tcp,
8407                                  u32 tcp_pyld_len, u16 vlan_tag)
8408 {
8409         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8410         lro->l2h = l2h;
8411         lro->iph = ip;
8412         lro->tcph = tcp;
8413         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8414         lro->tcp_ack = tcp->ack_seq;
8415         lro->sg_num = 1;
8416         lro->total_len = ntohs(ip->tot_len);
8417         lro->frags_len = 0;
8418         lro->vlan_tag = vlan_tag;
8419         /*
8420          * Check if we saw TCP timestamp.
8421          * Other consistency checks have already been done.
8422          */
8423         if (tcp->doff == 8) {
8424                 __be32 *ptr;
8425                 ptr = (__be32 *)(tcp+1);
8426                 lro->saw_ts = 1;
8427                 lro->cur_tsval = ntohl(*(ptr+1));
8428                 lro->cur_tsecr = *(ptr+2);
8429         }
8430         lro->in_use = 1;
8431 }
8432
8433 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8434 {
8435         struct iphdr *ip = lro->iph;
8436         struct tcphdr *tcp = lro->tcph;
8437         __sum16 nchk;
8438         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8439
8440         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8441
8442         /* Update L3 header */
8443         ip->tot_len = htons(lro->total_len);
8444         ip->check = 0;
8445         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8446         ip->check = nchk;
8447
8448         /* Update L4 header */
8449         tcp->ack_seq = lro->tcp_ack;
8450         tcp->window = lro->window;
8451
8452         /* Update tsecr field if this session has timestamps enabled */
8453         if (lro->saw_ts) {
8454                 __be32 *ptr = (__be32 *)(tcp + 1);
8455                 *(ptr+2) = lro->cur_tsecr;
8456         }
8457
8458         /* Update counters required for calculation of
8459          * average no. of packets aggregated.
8460          */
8461         swstats->sum_avg_pkts_aggregated += lro->sg_num;
8462         swstats->num_aggregations++;
8463 }
8464
8465 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8466                              struct tcphdr *tcp, u32 l4_pyld)
8467 {
8468         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8469         lro->total_len += l4_pyld;
8470         lro->frags_len += l4_pyld;
8471         lro->tcp_next_seq += l4_pyld;
8472         lro->sg_num++;
8473
8474         /* Update ack seq no. and window ad(from this pkt) in LRO object */
8475         lro->tcp_ack = tcp->ack_seq;
8476         lro->window = tcp->window;
8477
8478         if (lro->saw_ts) {
8479                 __be32 *ptr;
8480                 /* Update tsecr and tsval from this packet */
8481                 ptr = (__be32 *)(tcp+1);
8482                 lro->cur_tsval = ntohl(*(ptr+1));
8483                 lro->cur_tsecr = *(ptr + 2);
8484         }
8485 }
8486
8487 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8488                                     struct tcphdr *tcp, u32 tcp_pyld_len)
8489 {
8490         u8 *ptr;
8491
8492         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8493
8494         if (!tcp_pyld_len) {
8495                 /* Runt frame or a pure ack */
8496                 return -1;
8497         }
8498
8499         if (ip->ihl != 5) /* IP has options */
8500                 return -1;
8501
8502         /* If we see CE codepoint in IP header, packet is not mergeable */
8503         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8504                 return -1;
8505
8506         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8507         if (tcp->urg || tcp->psh || tcp->rst ||
8508             tcp->syn || tcp->fin ||
8509             tcp->ece || tcp->cwr || !tcp->ack) {
8510                 /*
8511                  * Currently recognize only the ack control word and
8512                  * any other control field being set would result in
8513                  * flushing the LRO session
8514                  */
8515                 return -1;
8516         }
8517
8518         /*
8519          * Allow only one TCP timestamp option. Don't aggregate if
8520          * any other options are detected.
8521          */
8522         if (tcp->doff != 5 && tcp->doff != 8)
8523                 return -1;
8524
8525         if (tcp->doff == 8) {
8526                 ptr = (u8 *)(tcp + 1);
8527                 while (*ptr == TCPOPT_NOP)
8528                         ptr++;
8529                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8530                         return -1;
8531
8532                 /* Ensure timestamp value increases monotonically */
8533                 if (l_lro)
8534                         if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8535                                 return -1;
8536
8537                 /* timestamp echo reply should be non-zero */
8538                 if (*((__be32 *)(ptr+6)) == 0)
8539                         return -1;
8540         }
8541
8542         return 0;
8543 }
8544
8545 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8546                                  u8 **tcp, u32 *tcp_len, struct lro **lro,
8547                                  struct RxD_t *rxdp, struct s2io_nic *sp)
8548 {
8549         struct iphdr *ip;
8550         struct tcphdr *tcph;
8551         int ret = 0, i;
8552         u16 vlan_tag = 0;
8553         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8554
8555         ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8556                                    rxdp, sp);
8557         if (ret)
8558                 return ret;
8559
8560         DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8561
8562         vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8563         tcph = (struct tcphdr *)*tcp;
8564         *tcp_len = get_l4_pyld_length(ip, tcph);
8565         for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8566                 struct lro *l_lro = &ring_data->lro0_n[i];
8567                 if (l_lro->in_use) {
8568                         if (check_for_socket_match(l_lro, ip, tcph))
8569                                 continue;
8570                         /* Sock pair matched */
8571                         *lro = l_lro;
8572
8573                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8574                                 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8575                                           "expected 0x%x, actual 0x%x\n",
8576                                           __func__,
8577                                           (*lro)->tcp_next_seq,
8578                                           ntohl(tcph->seq));
8579
8580                                 swstats->outof_sequence_pkts++;
8581                                 ret = 2;
8582                                 break;
8583                         }
8584
8585                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8586                                                       *tcp_len))
8587                                 ret = 1; /* Aggregate */
8588                         else
8589                                 ret = 2; /* Flush both */
8590                         break;
8591                 }
8592         }
8593
8594         if (ret == 0) {
8595                 /* Before searching for available LRO objects,
8596                  * check if the pkt is L3/L4 aggregatable. If not
8597                  * don't create new LRO session. Just send this
8598                  * packet up.
8599                  */
8600                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8601                         return 5;
8602
8603                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8604                         struct lro *l_lro = &ring_data->lro0_n[i];
8605                         if (!(l_lro->in_use)) {
8606                                 *lro = l_lro;
8607                                 ret = 3; /* Begin anew */
8608                                 break;
8609                         }
8610                 }
8611         }
8612
8613         if (ret == 0) { /* sessions exceeded */
8614                 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8615                           __func__);
8616                 *lro = NULL;
8617                 return ret;
8618         }
8619
8620         switch (ret) {
8621         case 3:
8622                 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8623                                      vlan_tag);
8624                 break;
8625         case 2:
8626                 update_L3L4_header(sp, *lro);
8627                 break;
8628         case 1:
8629                 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8630                 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8631                         update_L3L4_header(sp, *lro);
8632                         ret = 4; /* Flush the LRO */
8633                 }
8634                 break;
8635         default:
8636                 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8637                 break;
8638         }
8639
8640         return ret;
8641 }
8642
8643 static void clear_lro_session(struct lro *lro)
8644 {
8645         static u16 lro_struct_size = sizeof(struct lro);
8646
8647         memset(lro, 0, lro_struct_size);
8648 }
8649
8650 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8651 {
8652         struct net_device *dev = skb->dev;
8653         struct s2io_nic *sp = netdev_priv(dev);
8654
8655         skb->protocol = eth_type_trans(skb, dev);
8656         if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
8657                 /* Queueing the vlan frame to the upper layer */
8658                 if (sp->config.napi)
8659                         vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8660                 else
8661                         vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8662         } else {
8663                 if (sp->config.napi)
8664                         netif_receive_skb(skb);
8665                 else
8666                         netif_rx(skb);
8667         }
8668 }
8669
8670 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8671                            struct sk_buff *skb, u32 tcp_len)
8672 {
8673         struct sk_buff *first = lro->parent;
8674         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8675
8676         first->len += tcp_len;
8677         first->data_len = lro->frags_len;
8678         skb_pull(skb, (skb->len - tcp_len));
8679         if (skb_shinfo(first)->frag_list)
8680                 lro->last_frag->next = skb;
8681         else
8682                 skb_shinfo(first)->frag_list = skb;
8683         first->truesize += skb->truesize;
8684         lro->last_frag = skb;
8685         swstats->clubbed_frms_cnt++;
8686 }
8687
8688 /**
8689  * s2io_io_error_detected - called when PCI error is detected
8690  * @pdev: Pointer to PCI device
8691  * @state: The current pci connection state
8692  *
8693  * This function is called after a PCI bus error affecting
8694  * this device has been detected.
8695  */
8696 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8697                                                pci_channel_state_t state)
8698 {
8699         struct net_device *netdev = pci_get_drvdata(pdev);
8700         struct s2io_nic *sp = netdev_priv(netdev);
8701
8702         netif_device_detach(netdev);
8703
8704         if (state == pci_channel_io_perm_failure)
8705                 return PCI_ERS_RESULT_DISCONNECT;
8706
8707         if (netif_running(netdev)) {
8708                 /* Bring down the card, while avoiding PCI I/O */
8709                 do_s2io_card_down(sp, 0);
8710         }
8711         pci_disable_device(pdev);
8712
8713         return PCI_ERS_RESULT_NEED_RESET;
8714 }
8715
8716 /**
8717  * s2io_io_slot_reset - called after the pci bus has been reset.
8718  * @pdev: Pointer to PCI device
8719  *
8720  * Restart the card from scratch, as if from a cold-boot.
8721  * At this point, the card has exprienced a hard reset,
8722  * followed by fixups by BIOS, and has its config space
8723  * set up identically to what it was at cold boot.
8724  */
8725 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8726 {
8727         struct net_device *netdev = pci_get_drvdata(pdev);
8728         struct s2io_nic *sp = netdev_priv(netdev);
8729
8730         if (pci_enable_device(pdev)) {
8731                 pr_err("Cannot re-enable PCI device after reset.\n");
8732                 return PCI_ERS_RESULT_DISCONNECT;
8733         }
8734
8735         pci_set_master(pdev);
8736         s2io_reset(sp);
8737
8738         return PCI_ERS_RESULT_RECOVERED;
8739 }
8740
8741 /**
8742  * s2io_io_resume - called when traffic can start flowing again.
8743  * @pdev: Pointer to PCI device
8744  *
8745  * This callback is called when the error recovery driver tells
8746  * us that its OK to resume normal operation.
8747  */
8748 static void s2io_io_resume(struct pci_dev *pdev)
8749 {
8750         struct net_device *netdev = pci_get_drvdata(pdev);
8751         struct s2io_nic *sp = netdev_priv(netdev);
8752
8753         if (netif_running(netdev)) {
8754                 if (s2io_card_up(sp)) {
8755                         pr_err("Can't bring device back up after reset.\n");
8756                         return;
8757                 }
8758
8759                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8760                         s2io_card_down(sp);
8761                         pr_err("Can't restore mac addr after reset.\n");
8762                         return;
8763                 }
8764         }
8765
8766         netif_device_attach(netdev);
8767         netif_tx_wake_all_queues(netdev);
8768 }