Merge branch 'fix/hda' into for-linus
[pandora-kernel.git] / drivers / net / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |    */
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61 /*  NETIF_MSG_TX_QUEUED | */
62 /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = 0x00007fff;  /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
79         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
80         /* required last entry */
81         {0,}
82 };
83
84 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
85
86 /* This hardware semaphore causes exclusive access to
87  * resources shared between the NIC driver, MPI firmware,
88  * FCOE firmware and the FC driver.
89  */
90 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
91 {
92         u32 sem_bits = 0;
93
94         switch (sem_mask) {
95         case SEM_XGMAC0_MASK:
96                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
97                 break;
98         case SEM_XGMAC1_MASK:
99                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
100                 break;
101         case SEM_ICB_MASK:
102                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103                 break;
104         case SEM_MAC_ADDR_MASK:
105                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
106                 break;
107         case SEM_FLASH_MASK:
108                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
109                 break;
110         case SEM_PROBE_MASK:
111                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112                 break;
113         case SEM_RT_IDX_MASK:
114                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115                 break;
116         case SEM_PROC_REG_MASK:
117                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
118                 break;
119         default:
120                 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
121                 return -EINVAL;
122         }
123
124         ql_write32(qdev, SEM, sem_bits | sem_mask);
125         return !(ql_read32(qdev, SEM) & sem_bits);
126 }
127
128 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
129 {
130         unsigned int wait_count = 30;
131         do {
132                 if (!ql_sem_trylock(qdev, sem_mask))
133                         return 0;
134                 udelay(100);
135         } while (--wait_count);
136         return -ETIMEDOUT;
137 }
138
139 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
140 {
141         ql_write32(qdev, SEM, sem_mask);
142         ql_read32(qdev, SEM);   /* flush */
143 }
144
145 /* This function waits for a specific bit to come ready
146  * in a given register.  It is used mostly by the initialize
147  * process, but is also used in kernel thread API such as
148  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
149  */
150 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
151 {
152         u32 temp;
153         int count = UDELAY_COUNT;
154
155         while (count) {
156                 temp = ql_read32(qdev, reg);
157
158                 /* check for errors */
159                 if (temp & err_bit) {
160                         QPRINTK(qdev, PROBE, ALERT,
161                                 "register 0x%.08x access error, value = 0x%.08x!.\n",
162                                 reg, temp);
163                         return -EIO;
164                 } else if (temp & bit)
165                         return 0;
166                 udelay(UDELAY_DELAY);
167                 count--;
168         }
169         QPRINTK(qdev, PROBE, ALERT,
170                 "Timed out waiting for reg %x to come ready.\n", reg);
171         return -ETIMEDOUT;
172 }
173
174 /* The CFG register is used to download TX and RX control blocks
175  * to the chip. This function waits for an operation to complete.
176  */
177 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
178 {
179         int count = UDELAY_COUNT;
180         u32 temp;
181
182         while (count) {
183                 temp = ql_read32(qdev, CFG);
184                 if (temp & CFG_LE)
185                         return -EIO;
186                 if (!(temp & bit))
187                         return 0;
188                 udelay(UDELAY_DELAY);
189                 count--;
190         }
191         return -ETIMEDOUT;
192 }
193
194
195 /* Used to issue init control blocks to hw. Maps control block,
196  * sets address, triggers download, waits for completion.
197  */
198 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
199                  u16 q_id)
200 {
201         u64 map;
202         int status = 0;
203         int direction;
204         u32 mask;
205         u32 value;
206
207         direction =
208             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
209             PCI_DMA_FROMDEVICE;
210
211         map = pci_map_single(qdev->pdev, ptr, size, direction);
212         if (pci_dma_mapping_error(qdev->pdev, map)) {
213                 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
214                 return -ENOMEM;
215         }
216
217         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
218         if (status)
219                 return status;
220
221         status = ql_wait_cfg(qdev, bit);
222         if (status) {
223                 QPRINTK(qdev, IFUP, ERR,
224                         "Timed out waiting for CFG to come ready.\n");
225                 goto exit;
226         }
227
228         ql_write32(qdev, ICB_L, (u32) map);
229         ql_write32(qdev, ICB_H, (u32) (map >> 32));
230
231         mask = CFG_Q_MASK | (bit << 16);
232         value = bit | (q_id << CFG_Q_SHIFT);
233         ql_write32(qdev, CFG, (mask | value));
234
235         /*
236          * Wait for the bit to clear after signaling hw.
237          */
238         status = ql_wait_cfg(qdev, bit);
239 exit:
240         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
241         pci_unmap_single(qdev->pdev, map, size, direction);
242         return status;
243 }
244
245 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
246 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
247                         u32 *value)
248 {
249         u32 offset = 0;
250         int status;
251
252         switch (type) {
253         case MAC_ADDR_TYPE_MULTI_MAC:
254         case MAC_ADDR_TYPE_CAM_MAC:
255                 {
256                         status =
257                             ql_wait_reg_rdy(qdev,
258                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
259                         if (status)
260                                 goto exit;
261                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
262                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
263                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
264                         status =
265                             ql_wait_reg_rdy(qdev,
266                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
267                         if (status)
268                                 goto exit;
269                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
270                         status =
271                             ql_wait_reg_rdy(qdev,
272                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
273                         if (status)
274                                 goto exit;
275                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
276                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
277                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
278                         status =
279                             ql_wait_reg_rdy(qdev,
280                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
281                         if (status)
282                                 goto exit;
283                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
284                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
285                                 status =
286                                     ql_wait_reg_rdy(qdev,
287                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
288                                 if (status)
289                                         goto exit;
290                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
291                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
292                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
293                                 status =
294                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
295                                                     MAC_ADDR_MR, 0);
296                                 if (status)
297                                         goto exit;
298                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
299                         }
300                         break;
301                 }
302         case MAC_ADDR_TYPE_VLAN:
303         case MAC_ADDR_TYPE_MULTI_FLTR:
304         default:
305                 QPRINTK(qdev, IFUP, CRIT,
306                         "Address type %d not yet supported.\n", type);
307                 status = -EPERM;
308         }
309 exit:
310         return status;
311 }
312
313 /* Set up a MAC, multicast or VLAN address for the
314  * inbound frame matching.
315  */
316 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
317                                u16 index)
318 {
319         u32 offset = 0;
320         int status = 0;
321
322         switch (type) {
323         case MAC_ADDR_TYPE_MULTI_MAC:
324         case MAC_ADDR_TYPE_CAM_MAC:
325                 {
326                         u32 cam_output;
327                         u32 upper = (addr[0] << 8) | addr[1];
328                         u32 lower =
329                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
330                             (addr[5]);
331
332                         QPRINTK(qdev, IFUP, DEBUG,
333                                 "Adding %s address %pM"
334                                 " at index %d in the CAM.\n",
335                                 ((type ==
336                                   MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
337                                  "UNICAST"), addr, index);
338
339                         status =
340                             ql_wait_reg_rdy(qdev,
341                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
342                         if (status)
343                                 goto exit;
344                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
345                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
346                                    type);       /* type */
347                         ql_write32(qdev, MAC_ADDR_DATA, lower);
348                         status =
349                             ql_wait_reg_rdy(qdev,
350                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
351                         if (status)
352                                 goto exit;
353                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
354                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
355                                    type);       /* type */
356                         ql_write32(qdev, MAC_ADDR_DATA, upper);
357                         status =
358                             ql_wait_reg_rdy(qdev,
359                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
360                         if (status)
361                                 goto exit;
362                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
363                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
364                                    type);       /* type */
365                         /* This field should also include the queue id
366                            and possibly the function id.  Right now we hardcode
367                            the route field to NIC core.
368                          */
369                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
370                                 cam_output = (CAM_OUT_ROUTE_NIC |
371                                               (qdev->
372                                                func << CAM_OUT_FUNC_SHIFT) |
373                                               (qdev->
374                                                rss_ring_first_cq_id <<
375                                                CAM_OUT_CQ_ID_SHIFT));
376                                 if (qdev->vlgrp)
377                                         cam_output |= CAM_OUT_RV;
378                                 /* route to NIC core */
379                                 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
380                         }
381                         break;
382                 }
383         case MAC_ADDR_TYPE_VLAN:
384                 {
385                         u32 enable_bit = *((u32 *) &addr[0]);
386                         /* For VLAN, the addr actually holds a bit that
387                          * either enables or disables the vlan id we are
388                          * addressing. It's either MAC_ADDR_E on or off.
389                          * That's bit-27 we're talking about.
390                          */
391                         QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
392                                 (enable_bit ? "Adding" : "Removing"),
393                                 index, (enable_bit ? "to" : "from"));
394
395                         status =
396                             ql_wait_reg_rdy(qdev,
397                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
398                         if (status)
399                                 goto exit;
400                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
401                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
402                                    type |       /* type */
403                                    enable_bit); /* enable/disable */
404                         break;
405                 }
406         case MAC_ADDR_TYPE_MULTI_FLTR:
407         default:
408                 QPRINTK(qdev, IFUP, CRIT,
409                         "Address type %d not yet supported.\n", type);
410                 status = -EPERM;
411         }
412 exit:
413         return status;
414 }
415
416 /* Set or clear MAC address in hardware. We sometimes
417  * have to clear it to prevent wrong frame routing
418  * especially in a bonding environment.
419  */
420 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
421 {
422         int status;
423         char zero_mac_addr[ETH_ALEN];
424         char *addr;
425
426         if (set) {
427                 addr = &qdev->ndev->dev_addr[0];
428                 QPRINTK(qdev, IFUP, DEBUG,
429                         "Set Mac addr %02x:%02x:%02x:%02x:%02x:%02x\n",
430                         addr[0], addr[1], addr[2], addr[3],
431                         addr[4], addr[5]);
432         } else {
433                 memset(zero_mac_addr, 0, ETH_ALEN);
434                 addr = &zero_mac_addr[0];
435                 QPRINTK(qdev, IFUP, DEBUG,
436                                 "Clearing MAC address on %s\n",
437                                 qdev->ndev->name);
438         }
439         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
440         if (status)
441                 return status;
442         status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
443                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
444         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
445         if (status)
446                 QPRINTK(qdev, IFUP, ERR, "Failed to init mac "
447                         "address.\n");
448         return status;
449 }
450
451 void ql_link_on(struct ql_adapter *qdev)
452 {
453         QPRINTK(qdev, LINK, ERR, "%s: Link is up.\n",
454                                  qdev->ndev->name);
455         netif_carrier_on(qdev->ndev);
456         ql_set_mac_addr(qdev, 1);
457 }
458
459 void ql_link_off(struct ql_adapter *qdev)
460 {
461         QPRINTK(qdev, LINK, ERR, "%s: Link is down.\n",
462                                  qdev->ndev->name);
463         netif_carrier_off(qdev->ndev);
464         ql_set_mac_addr(qdev, 0);
465 }
466
467 /* Get a specific frame routing value from the CAM.
468  * Used for debug and reg dump.
469  */
470 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
471 {
472         int status = 0;
473
474         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
475         if (status)
476                 goto exit;
477
478         ql_write32(qdev, RT_IDX,
479                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
480         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
481         if (status)
482                 goto exit;
483         *value = ql_read32(qdev, RT_DATA);
484 exit:
485         return status;
486 }
487
488 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
489  * to route different frame types to various inbound queues.  We send broadcast/
490  * multicast/error frames to the default queue for slow handling,
491  * and CAM hit/RSS frames to the fast handling queues.
492  */
493 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
494                               int enable)
495 {
496         int status = -EINVAL; /* Return error if no mask match. */
497         u32 value = 0;
498
499         QPRINTK(qdev, IFUP, DEBUG,
500                 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
501                 (enable ? "Adding" : "Removing"),
502                 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
503                 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
504                 ((index ==
505                   RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
506                 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
507                 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
508                 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
509                 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
510                 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
511                 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
512                 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
513                 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
514                 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
515                 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
516                 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
517                 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
518                 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
519                 (enable ? "to" : "from"));
520
521         switch (mask) {
522         case RT_IDX_CAM_HIT:
523                 {
524                         value = RT_IDX_DST_CAM_Q |      /* dest */
525                             RT_IDX_TYPE_NICQ |  /* type */
526                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
527                         break;
528                 }
529         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
530                 {
531                         value = RT_IDX_DST_DFLT_Q |     /* dest */
532                             RT_IDX_TYPE_NICQ |  /* type */
533                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
534                         break;
535                 }
536         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
537                 {
538                         value = RT_IDX_DST_DFLT_Q |     /* dest */
539                             RT_IDX_TYPE_NICQ |  /* type */
540                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
541                         break;
542                 }
543         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
544                 {
545                         value = RT_IDX_DST_DFLT_Q |     /* dest */
546                             RT_IDX_TYPE_NICQ |  /* type */
547                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
548                         break;
549                 }
550         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
551                 {
552                         value = RT_IDX_DST_CAM_Q |      /* dest */
553                             RT_IDX_TYPE_NICQ |  /* type */
554                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
555                         break;
556                 }
557         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
558                 {
559                         value = RT_IDX_DST_CAM_Q |      /* dest */
560                             RT_IDX_TYPE_NICQ |  /* type */
561                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
562                         break;
563                 }
564         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
565                 {
566                         value = RT_IDX_DST_RSS |        /* dest */
567                             RT_IDX_TYPE_NICQ |  /* type */
568                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
569                         break;
570                 }
571         case 0:         /* Clear the E-bit on an entry. */
572                 {
573                         value = RT_IDX_DST_DFLT_Q |     /* dest */
574                             RT_IDX_TYPE_NICQ |  /* type */
575                             (index << RT_IDX_IDX_SHIFT);/* index */
576                         break;
577                 }
578         default:
579                 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
580                         mask);
581                 status = -EPERM;
582                 goto exit;
583         }
584
585         if (value) {
586                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
587                 if (status)
588                         goto exit;
589                 value |= (enable ? RT_IDX_E : 0);
590                 ql_write32(qdev, RT_IDX, value);
591                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
592         }
593 exit:
594         return status;
595 }
596
597 static void ql_enable_interrupts(struct ql_adapter *qdev)
598 {
599         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
600 }
601
602 static void ql_disable_interrupts(struct ql_adapter *qdev)
603 {
604         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
605 }
606
607 /* If we're running with multiple MSI-X vectors then we enable on the fly.
608  * Otherwise, we may have multiple outstanding workers and don't want to
609  * enable until the last one finishes. In this case, the irq_cnt gets
610  * incremented everytime we queue a worker and decremented everytime
611  * a worker finishes.  Once it hits zero we enable the interrupt.
612  */
613 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
614 {
615         u32 var = 0;
616         unsigned long hw_flags = 0;
617         struct intr_context *ctx = qdev->intr_context + intr;
618
619         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
620                 /* Always enable if we're MSIX multi interrupts and
621                  * it's not the default (zeroeth) interrupt.
622                  */
623                 ql_write32(qdev, INTR_EN,
624                            ctx->intr_en_mask);
625                 var = ql_read32(qdev, STS);
626                 return var;
627         }
628
629         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
630         if (atomic_dec_and_test(&ctx->irq_cnt)) {
631                 ql_write32(qdev, INTR_EN,
632                            ctx->intr_en_mask);
633                 var = ql_read32(qdev, STS);
634         }
635         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
636         return var;
637 }
638
639 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
640 {
641         u32 var = 0;
642         struct intr_context *ctx;
643
644         /* HW disables for us if we're MSIX multi interrupts and
645          * it's not the default (zeroeth) interrupt.
646          */
647         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
648                 return 0;
649
650         ctx = qdev->intr_context + intr;
651         spin_lock(&qdev->hw_lock);
652         if (!atomic_read(&ctx->irq_cnt)) {
653                 ql_write32(qdev, INTR_EN,
654                 ctx->intr_dis_mask);
655                 var = ql_read32(qdev, STS);
656         }
657         atomic_inc(&ctx->irq_cnt);
658         spin_unlock(&qdev->hw_lock);
659         return var;
660 }
661
662 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
663 {
664         int i;
665         for (i = 0; i < qdev->intr_count; i++) {
666                 /* The enable call does a atomic_dec_and_test
667                  * and enables only if the result is zero.
668                  * So we precharge it here.
669                  */
670                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
671                         i == 0))
672                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
673                 ql_enable_completion_interrupt(qdev, i);
674         }
675
676 }
677
678 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
679 {
680         int status, i;
681         u16 csum = 0;
682         __le16 *flash = (__le16 *)&qdev->flash;
683
684         status = strncmp((char *)&qdev->flash, str, 4);
685         if (status) {
686                 QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
687                 return  status;
688         }
689
690         for (i = 0; i < size; i++)
691                 csum += le16_to_cpu(*flash++);
692
693         if (csum)
694                 QPRINTK(qdev, IFUP, ERR,
695                         "Invalid flash checksum, csum = 0x%.04x.\n", csum);
696
697         return csum;
698 }
699
700 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
701 {
702         int status = 0;
703         /* wait for reg to come ready */
704         status = ql_wait_reg_rdy(qdev,
705                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
706         if (status)
707                 goto exit;
708         /* set up for reg read */
709         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
710         /* wait for reg to come ready */
711         status = ql_wait_reg_rdy(qdev,
712                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
713         if (status)
714                 goto exit;
715          /* This data is stored on flash as an array of
716          * __le32.  Since ql_read32() returns cpu endian
717          * we need to swap it back.
718          */
719         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
720 exit:
721         return status;
722 }
723
724 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
725 {
726         u32 i, size;
727         int status;
728         __le32 *p = (__le32 *)&qdev->flash;
729         u32 offset;
730         u8 mac_addr[6];
731
732         /* Get flash offset for function and adjust
733          * for dword access.
734          */
735         if (!qdev->port)
736                 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
737         else
738                 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
739
740         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
741                 return -ETIMEDOUT;
742
743         size = sizeof(struct flash_params_8000) / sizeof(u32);
744         for (i = 0; i < size; i++, p++) {
745                 status = ql_read_flash_word(qdev, i+offset, p);
746                 if (status) {
747                         QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
748                         goto exit;
749                 }
750         }
751
752         status = ql_validate_flash(qdev,
753                         sizeof(struct flash_params_8000) / sizeof(u16),
754                         "8000");
755         if (status) {
756                 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
757                 status = -EINVAL;
758                 goto exit;
759         }
760
761         /* Extract either manufacturer or BOFM modified
762          * MAC address.
763          */
764         if (qdev->flash.flash_params_8000.data_type1 == 2)
765                 memcpy(mac_addr,
766                         qdev->flash.flash_params_8000.mac_addr1,
767                         qdev->ndev->addr_len);
768         else
769                 memcpy(mac_addr,
770                         qdev->flash.flash_params_8000.mac_addr,
771                         qdev->ndev->addr_len);
772
773         if (!is_valid_ether_addr(mac_addr)) {
774                 QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
775                 status = -EINVAL;
776                 goto exit;
777         }
778
779         memcpy(qdev->ndev->dev_addr,
780                 mac_addr,
781                 qdev->ndev->addr_len);
782
783 exit:
784         ql_sem_unlock(qdev, SEM_FLASH_MASK);
785         return status;
786 }
787
788 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
789 {
790         int i;
791         int status;
792         __le32 *p = (__le32 *)&qdev->flash;
793         u32 offset = 0;
794         u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
795
796         /* Second function's parameters follow the first
797          * function's.
798          */
799         if (qdev->port)
800                 offset = size;
801
802         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
803                 return -ETIMEDOUT;
804
805         for (i = 0; i < size; i++, p++) {
806                 status = ql_read_flash_word(qdev, i+offset, p);
807                 if (status) {
808                         QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
809                         goto exit;
810                 }
811
812         }
813
814         status = ql_validate_flash(qdev,
815                         sizeof(struct flash_params_8012) / sizeof(u16),
816                         "8012");
817         if (status) {
818                 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
819                 status = -EINVAL;
820                 goto exit;
821         }
822
823         if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
824                 status = -EINVAL;
825                 goto exit;
826         }
827
828         memcpy(qdev->ndev->dev_addr,
829                 qdev->flash.flash_params_8012.mac_addr,
830                 qdev->ndev->addr_len);
831
832 exit:
833         ql_sem_unlock(qdev, SEM_FLASH_MASK);
834         return status;
835 }
836
837 /* xgmac register are located behind the xgmac_addr and xgmac_data
838  * register pair.  Each read/write requires us to wait for the ready
839  * bit before reading/writing the data.
840  */
841 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
842 {
843         int status;
844         /* wait for reg to come ready */
845         status = ql_wait_reg_rdy(qdev,
846                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
847         if (status)
848                 return status;
849         /* write the data to the data reg */
850         ql_write32(qdev, XGMAC_DATA, data);
851         /* trigger the write */
852         ql_write32(qdev, XGMAC_ADDR, reg);
853         return status;
854 }
855
856 /* xgmac register are located behind the xgmac_addr and xgmac_data
857  * register pair.  Each read/write requires us to wait for the ready
858  * bit before reading/writing the data.
859  */
860 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
861 {
862         int status = 0;
863         /* wait for reg to come ready */
864         status = ql_wait_reg_rdy(qdev,
865                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
866         if (status)
867                 goto exit;
868         /* set up for reg read */
869         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
870         /* wait for reg to come ready */
871         status = ql_wait_reg_rdy(qdev,
872                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
873         if (status)
874                 goto exit;
875         /* get the data */
876         *data = ql_read32(qdev, XGMAC_DATA);
877 exit:
878         return status;
879 }
880
881 /* This is used for reading the 64-bit statistics regs. */
882 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
883 {
884         int status = 0;
885         u32 hi = 0;
886         u32 lo = 0;
887
888         status = ql_read_xgmac_reg(qdev, reg, &lo);
889         if (status)
890                 goto exit;
891
892         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
893         if (status)
894                 goto exit;
895
896         *data = (u64) lo | ((u64) hi << 32);
897
898 exit:
899         return status;
900 }
901
902 static int ql_8000_port_initialize(struct ql_adapter *qdev)
903 {
904         int status;
905         /*
906          * Get MPI firmware version for driver banner
907          * and ethool info.
908          */
909         status = ql_mb_about_fw(qdev);
910         if (status)
911                 goto exit;
912         status = ql_mb_get_fw_state(qdev);
913         if (status)
914                 goto exit;
915         /* Wake up a worker to get/set the TX/RX frame sizes. */
916         queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
917 exit:
918         return status;
919 }
920
921 /* Take the MAC Core out of reset.
922  * Enable statistics counting.
923  * Take the transmitter/receiver out of reset.
924  * This functionality may be done in the MPI firmware at a
925  * later date.
926  */
927 static int ql_8012_port_initialize(struct ql_adapter *qdev)
928 {
929         int status = 0;
930         u32 data;
931
932         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
933                 /* Another function has the semaphore, so
934                  * wait for the port init bit to come ready.
935                  */
936                 QPRINTK(qdev, LINK, INFO,
937                         "Another function has the semaphore, so wait for the port init bit to come ready.\n");
938                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
939                 if (status) {
940                         QPRINTK(qdev, LINK, CRIT,
941                                 "Port initialize timed out.\n");
942                 }
943                 return status;
944         }
945
946         QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
947         /* Set the core reset. */
948         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
949         if (status)
950                 goto end;
951         data |= GLOBAL_CFG_RESET;
952         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
953         if (status)
954                 goto end;
955
956         /* Clear the core reset and turn on jumbo for receiver. */
957         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
958         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
959         data |= GLOBAL_CFG_TX_STAT_EN;
960         data |= GLOBAL_CFG_RX_STAT_EN;
961         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
962         if (status)
963                 goto end;
964
965         /* Enable transmitter, and clear it's reset. */
966         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
967         if (status)
968                 goto end;
969         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
970         data |= TX_CFG_EN;      /* Enable the transmitter. */
971         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
972         if (status)
973                 goto end;
974
975         /* Enable receiver and clear it's reset. */
976         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
977         if (status)
978                 goto end;
979         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
980         data |= RX_CFG_EN;      /* Enable the receiver. */
981         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
982         if (status)
983                 goto end;
984
985         /* Turn on jumbo. */
986         status =
987             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
988         if (status)
989                 goto end;
990         status =
991             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
992         if (status)
993                 goto end;
994
995         /* Signal to the world that the port is enabled.        */
996         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
997 end:
998         ql_sem_unlock(qdev, qdev->xg_sem_mask);
999         return status;
1000 }
1001
1002 /* Get the next large buffer. */
1003 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1004 {
1005         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1006         rx_ring->lbq_curr_idx++;
1007         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1008                 rx_ring->lbq_curr_idx = 0;
1009         rx_ring->lbq_free_cnt++;
1010         return lbq_desc;
1011 }
1012
1013 /* Get the next small buffer. */
1014 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1015 {
1016         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1017         rx_ring->sbq_curr_idx++;
1018         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1019                 rx_ring->sbq_curr_idx = 0;
1020         rx_ring->sbq_free_cnt++;
1021         return sbq_desc;
1022 }
1023
1024 /* Update an rx ring index. */
1025 static void ql_update_cq(struct rx_ring *rx_ring)
1026 {
1027         rx_ring->cnsmr_idx++;
1028         rx_ring->curr_entry++;
1029         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1030                 rx_ring->cnsmr_idx = 0;
1031                 rx_ring->curr_entry = rx_ring->cq_base;
1032         }
1033 }
1034
1035 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1036 {
1037         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1038 }
1039
1040 /* Process (refill) a large buffer queue. */
1041 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1042 {
1043         u32 clean_idx = rx_ring->lbq_clean_idx;
1044         u32 start_idx = clean_idx;
1045         struct bq_desc *lbq_desc;
1046         u64 map;
1047         int i;
1048
1049         while (rx_ring->lbq_free_cnt > 16) {
1050                 for (i = 0; i < 16; i++) {
1051                         QPRINTK(qdev, RX_STATUS, DEBUG,
1052                                 "lbq: try cleaning clean_idx = %d.\n",
1053                                 clean_idx);
1054                         lbq_desc = &rx_ring->lbq[clean_idx];
1055                         if (lbq_desc->p.lbq_page == NULL) {
1056                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1057                                         "lbq: getting new page for index %d.\n",
1058                                         lbq_desc->index);
1059                                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
1060                                 if (lbq_desc->p.lbq_page == NULL) {
1061                                         rx_ring->lbq_clean_idx = clean_idx;
1062                                         QPRINTK(qdev, RX_STATUS, ERR,
1063                                                 "Couldn't get a page.\n");
1064                                         return;
1065                                 }
1066                                 map = pci_map_page(qdev->pdev,
1067                                                    lbq_desc->p.lbq_page,
1068                                                    0, PAGE_SIZE,
1069                                                    PCI_DMA_FROMDEVICE);
1070                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1071                                         rx_ring->lbq_clean_idx = clean_idx;
1072                                         put_page(lbq_desc->p.lbq_page);
1073                                         lbq_desc->p.lbq_page = NULL;
1074                                         QPRINTK(qdev, RX_STATUS, ERR,
1075                                                 "PCI mapping failed.\n");
1076                                         return;
1077                                 }
1078                                 pci_unmap_addr_set(lbq_desc, mapaddr, map);
1079                                 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
1080                                 *lbq_desc->addr = cpu_to_le64(map);
1081                         }
1082                         clean_idx++;
1083                         if (clean_idx == rx_ring->lbq_len)
1084                                 clean_idx = 0;
1085                 }
1086
1087                 rx_ring->lbq_clean_idx = clean_idx;
1088                 rx_ring->lbq_prod_idx += 16;
1089                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1090                         rx_ring->lbq_prod_idx = 0;
1091                 rx_ring->lbq_free_cnt -= 16;
1092         }
1093
1094         if (start_idx != clean_idx) {
1095                 QPRINTK(qdev, RX_STATUS, DEBUG,
1096                         "lbq: updating prod idx = %d.\n",
1097                         rx_ring->lbq_prod_idx);
1098                 ql_write_db_reg(rx_ring->lbq_prod_idx,
1099                                 rx_ring->lbq_prod_idx_db_reg);
1100         }
1101 }
1102
1103 /* Process (refill) a small buffer queue. */
1104 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1105 {
1106         u32 clean_idx = rx_ring->sbq_clean_idx;
1107         u32 start_idx = clean_idx;
1108         struct bq_desc *sbq_desc;
1109         u64 map;
1110         int i;
1111
1112         while (rx_ring->sbq_free_cnt > 16) {
1113                 for (i = 0; i < 16; i++) {
1114                         sbq_desc = &rx_ring->sbq[clean_idx];
1115                         QPRINTK(qdev, RX_STATUS, DEBUG,
1116                                 "sbq: try cleaning clean_idx = %d.\n",
1117                                 clean_idx);
1118                         if (sbq_desc->p.skb == NULL) {
1119                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1120                                         "sbq: getting new skb for index %d.\n",
1121                                         sbq_desc->index);
1122                                 sbq_desc->p.skb =
1123                                     netdev_alloc_skb(qdev->ndev,
1124                                                      rx_ring->sbq_buf_size);
1125                                 if (sbq_desc->p.skb == NULL) {
1126                                         QPRINTK(qdev, PROBE, ERR,
1127                                                 "Couldn't get an skb.\n");
1128                                         rx_ring->sbq_clean_idx = clean_idx;
1129                                         return;
1130                                 }
1131                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1132                                 map = pci_map_single(qdev->pdev,
1133                                                      sbq_desc->p.skb->data,
1134                                                      rx_ring->sbq_buf_size /
1135                                                      2, PCI_DMA_FROMDEVICE);
1136                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1137                                         QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
1138                                         rx_ring->sbq_clean_idx = clean_idx;
1139                                         dev_kfree_skb_any(sbq_desc->p.skb);
1140                                         sbq_desc->p.skb = NULL;
1141                                         return;
1142                                 }
1143                                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1144                                 pci_unmap_len_set(sbq_desc, maplen,
1145                                                   rx_ring->sbq_buf_size / 2);
1146                                 *sbq_desc->addr = cpu_to_le64(map);
1147                         }
1148
1149                         clean_idx++;
1150                         if (clean_idx == rx_ring->sbq_len)
1151                                 clean_idx = 0;
1152                 }
1153                 rx_ring->sbq_clean_idx = clean_idx;
1154                 rx_ring->sbq_prod_idx += 16;
1155                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1156                         rx_ring->sbq_prod_idx = 0;
1157                 rx_ring->sbq_free_cnt -= 16;
1158         }
1159
1160         if (start_idx != clean_idx) {
1161                 QPRINTK(qdev, RX_STATUS, DEBUG,
1162                         "sbq: updating prod idx = %d.\n",
1163                         rx_ring->sbq_prod_idx);
1164                 ql_write_db_reg(rx_ring->sbq_prod_idx,
1165                                 rx_ring->sbq_prod_idx_db_reg);
1166         }
1167 }
1168
1169 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1170                                     struct rx_ring *rx_ring)
1171 {
1172         ql_update_sbq(qdev, rx_ring);
1173         ql_update_lbq(qdev, rx_ring);
1174 }
1175
1176 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1177  * fails at some stage, or from the interrupt when a tx completes.
1178  */
1179 static void ql_unmap_send(struct ql_adapter *qdev,
1180                           struct tx_ring_desc *tx_ring_desc, int mapped)
1181 {
1182         int i;
1183         for (i = 0; i < mapped; i++) {
1184                 if (i == 0 || (i == 7 && mapped > 7)) {
1185                         /*
1186                          * Unmap the skb->data area, or the
1187                          * external sglist (AKA the Outbound
1188                          * Address List (OAL)).
1189                          * If its the zeroeth element, then it's
1190                          * the skb->data area.  If it's the 7th
1191                          * element and there is more than 6 frags,
1192                          * then its an OAL.
1193                          */
1194                         if (i == 7) {
1195                                 QPRINTK(qdev, TX_DONE, DEBUG,
1196                                         "unmapping OAL area.\n");
1197                         }
1198                         pci_unmap_single(qdev->pdev,
1199                                          pci_unmap_addr(&tx_ring_desc->map[i],
1200                                                         mapaddr),
1201                                          pci_unmap_len(&tx_ring_desc->map[i],
1202                                                        maplen),
1203                                          PCI_DMA_TODEVICE);
1204                 } else {
1205                         QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1206                                 i);
1207                         pci_unmap_page(qdev->pdev,
1208                                        pci_unmap_addr(&tx_ring_desc->map[i],
1209                                                       mapaddr),
1210                                        pci_unmap_len(&tx_ring_desc->map[i],
1211                                                      maplen), PCI_DMA_TODEVICE);
1212                 }
1213         }
1214
1215 }
1216
1217 /* Map the buffers for this transmit.  This will return
1218  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1219  */
1220 static int ql_map_send(struct ql_adapter *qdev,
1221                        struct ob_mac_iocb_req *mac_iocb_ptr,
1222                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1223 {
1224         int len = skb_headlen(skb);
1225         dma_addr_t map;
1226         int frag_idx, err, map_idx = 0;
1227         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1228         int frag_cnt = skb_shinfo(skb)->nr_frags;
1229
1230         if (frag_cnt) {
1231                 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1232         }
1233         /*
1234          * Map the skb buffer first.
1235          */
1236         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1237
1238         err = pci_dma_mapping_error(qdev->pdev, map);
1239         if (err) {
1240                 QPRINTK(qdev, TX_QUEUED, ERR,
1241                         "PCI mapping failed with error: %d\n", err);
1242
1243                 return NETDEV_TX_BUSY;
1244         }
1245
1246         tbd->len = cpu_to_le32(len);
1247         tbd->addr = cpu_to_le64(map);
1248         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1249         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1250         map_idx++;
1251
1252         /*
1253          * This loop fills the remainder of the 8 address descriptors
1254          * in the IOCB.  If there are more than 7 fragments, then the
1255          * eighth address desc will point to an external list (OAL).
1256          * When this happens, the remainder of the frags will be stored
1257          * in this list.
1258          */
1259         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1260                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1261                 tbd++;
1262                 if (frag_idx == 6 && frag_cnt > 7) {
1263                         /* Let's tack on an sglist.
1264                          * Our control block will now
1265                          * look like this:
1266                          * iocb->seg[0] = skb->data
1267                          * iocb->seg[1] = frag[0]
1268                          * iocb->seg[2] = frag[1]
1269                          * iocb->seg[3] = frag[2]
1270                          * iocb->seg[4] = frag[3]
1271                          * iocb->seg[5] = frag[4]
1272                          * iocb->seg[6] = frag[5]
1273                          * iocb->seg[7] = ptr to OAL (external sglist)
1274                          * oal->seg[0] = frag[6]
1275                          * oal->seg[1] = frag[7]
1276                          * oal->seg[2] = frag[8]
1277                          * oal->seg[3] = frag[9]
1278                          * oal->seg[4] = frag[10]
1279                          *      etc...
1280                          */
1281                         /* Tack on the OAL in the eighth segment of IOCB. */
1282                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1283                                              sizeof(struct oal),
1284                                              PCI_DMA_TODEVICE);
1285                         err = pci_dma_mapping_error(qdev->pdev, map);
1286                         if (err) {
1287                                 QPRINTK(qdev, TX_QUEUED, ERR,
1288                                         "PCI mapping outbound address list with error: %d\n",
1289                                         err);
1290                                 goto map_error;
1291                         }
1292
1293                         tbd->addr = cpu_to_le64(map);
1294                         /*
1295                          * The length is the number of fragments
1296                          * that remain to be mapped times the length
1297                          * of our sglist (OAL).
1298                          */
1299                         tbd->len =
1300                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1301                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1302                         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1303                                            map);
1304                         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1305                                           sizeof(struct oal));
1306                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1307                         map_idx++;
1308                 }
1309
1310                 map =
1311                     pci_map_page(qdev->pdev, frag->page,
1312                                  frag->page_offset, frag->size,
1313                                  PCI_DMA_TODEVICE);
1314
1315                 err = pci_dma_mapping_error(qdev->pdev, map);
1316                 if (err) {
1317                         QPRINTK(qdev, TX_QUEUED, ERR,
1318                                 "PCI mapping frags failed with error: %d.\n",
1319                                 err);
1320                         goto map_error;
1321                 }
1322
1323                 tbd->addr = cpu_to_le64(map);
1324                 tbd->len = cpu_to_le32(frag->size);
1325                 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1326                 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1327                                   frag->size);
1328
1329         }
1330         /* Save the number of segments we've mapped. */
1331         tx_ring_desc->map_cnt = map_idx;
1332         /* Terminate the last segment. */
1333         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1334         return NETDEV_TX_OK;
1335
1336 map_error:
1337         /*
1338          * If the first frag mapping failed, then i will be zero.
1339          * This causes the unmap of the skb->data area.  Otherwise
1340          * we pass in the number of frags that mapped successfully
1341          * so they can be umapped.
1342          */
1343         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1344         return NETDEV_TX_BUSY;
1345 }
1346
1347 static void ql_realign_skb(struct sk_buff *skb, int len)
1348 {
1349         void *temp_addr = skb->data;
1350
1351         /* Undo the skb_reserve(skb,32) we did before
1352          * giving to hardware, and realign data on
1353          * a 2-byte boundary.
1354          */
1355         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1356         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1357         skb_copy_to_linear_data(skb, temp_addr,
1358                 (unsigned int)len);
1359 }
1360
1361 /*
1362  * This function builds an skb for the given inbound
1363  * completion.  It will be rewritten for readability in the near
1364  * future, but for not it works well.
1365  */
1366 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1367                                        struct rx_ring *rx_ring,
1368                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1369 {
1370         struct bq_desc *lbq_desc;
1371         struct bq_desc *sbq_desc;
1372         struct sk_buff *skb = NULL;
1373         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1374        u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1375
1376         /*
1377          * Handle the header buffer if present.
1378          */
1379         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1380             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1381                 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1382                 /*
1383                  * Headers fit nicely into a small buffer.
1384                  */
1385                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1386                 pci_unmap_single(qdev->pdev,
1387                                 pci_unmap_addr(sbq_desc, mapaddr),
1388                                 pci_unmap_len(sbq_desc, maplen),
1389                                 PCI_DMA_FROMDEVICE);
1390                 skb = sbq_desc->p.skb;
1391                 ql_realign_skb(skb, hdr_len);
1392                 skb_put(skb, hdr_len);
1393                 sbq_desc->p.skb = NULL;
1394         }
1395
1396         /*
1397          * Handle the data buffer(s).
1398          */
1399         if (unlikely(!length)) {        /* Is there data too? */
1400                 QPRINTK(qdev, RX_STATUS, DEBUG,
1401                         "No Data buffer in this packet.\n");
1402                 return skb;
1403         }
1404
1405         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1406                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1407                         QPRINTK(qdev, RX_STATUS, DEBUG,
1408                                 "Headers in small, data of %d bytes in small, combine them.\n", length);
1409                         /*
1410                          * Data is less than small buffer size so it's
1411                          * stuffed in a small buffer.
1412                          * For this case we append the data
1413                          * from the "data" small buffer to the "header" small
1414                          * buffer.
1415                          */
1416                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1417                         pci_dma_sync_single_for_cpu(qdev->pdev,
1418                                                     pci_unmap_addr
1419                                                     (sbq_desc, mapaddr),
1420                                                     pci_unmap_len
1421                                                     (sbq_desc, maplen),
1422                                                     PCI_DMA_FROMDEVICE);
1423                         memcpy(skb_put(skb, length),
1424                                sbq_desc->p.skb->data, length);
1425                         pci_dma_sync_single_for_device(qdev->pdev,
1426                                                        pci_unmap_addr
1427                                                        (sbq_desc,
1428                                                         mapaddr),
1429                                                        pci_unmap_len
1430                                                        (sbq_desc,
1431                                                         maplen),
1432                                                        PCI_DMA_FROMDEVICE);
1433                 } else {
1434                         QPRINTK(qdev, RX_STATUS, DEBUG,
1435                                 "%d bytes in a single small buffer.\n", length);
1436                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1437                         skb = sbq_desc->p.skb;
1438                         ql_realign_skb(skb, length);
1439                         skb_put(skb, length);
1440                         pci_unmap_single(qdev->pdev,
1441                                          pci_unmap_addr(sbq_desc,
1442                                                         mapaddr),
1443                                          pci_unmap_len(sbq_desc,
1444                                                        maplen),
1445                                          PCI_DMA_FROMDEVICE);
1446                         sbq_desc->p.skb = NULL;
1447                 }
1448         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1449                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1450                         QPRINTK(qdev, RX_STATUS, DEBUG,
1451                                 "Header in small, %d bytes in large. Chain large to small!\n", length);
1452                         /*
1453                          * The data is in a single large buffer.  We
1454                          * chain it to the header buffer's skb and let
1455                          * it rip.
1456                          */
1457                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1458                         pci_unmap_page(qdev->pdev,
1459                                        pci_unmap_addr(lbq_desc,
1460                                                       mapaddr),
1461                                        pci_unmap_len(lbq_desc, maplen),
1462                                        PCI_DMA_FROMDEVICE);
1463                         QPRINTK(qdev, RX_STATUS, DEBUG,
1464                                 "Chaining page to skb.\n");
1465                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1466                                            0, length);
1467                         skb->len += length;
1468                         skb->data_len += length;
1469                         skb->truesize += length;
1470                         lbq_desc->p.lbq_page = NULL;
1471                 } else {
1472                         /*
1473                          * The headers and data are in a single large buffer. We
1474                          * copy it to a new skb and let it go. This can happen with
1475                          * jumbo mtu on a non-TCP/UDP frame.
1476                          */
1477                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1478                         skb = netdev_alloc_skb(qdev->ndev, length);
1479                         if (skb == NULL) {
1480                                 QPRINTK(qdev, PROBE, DEBUG,
1481                                         "No skb available, drop the packet.\n");
1482                                 return NULL;
1483                         }
1484                         pci_unmap_page(qdev->pdev,
1485                                        pci_unmap_addr(lbq_desc,
1486                                                       mapaddr),
1487                                        pci_unmap_len(lbq_desc, maplen),
1488                                        PCI_DMA_FROMDEVICE);
1489                         skb_reserve(skb, NET_IP_ALIGN);
1490                         QPRINTK(qdev, RX_STATUS, DEBUG,
1491                                 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1492                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1493                                            0, length);
1494                         skb->len += length;
1495                         skb->data_len += length;
1496                         skb->truesize += length;
1497                         length -= length;
1498                         lbq_desc->p.lbq_page = NULL;
1499                         __pskb_pull_tail(skb,
1500                                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1501                                 VLAN_ETH_HLEN : ETH_HLEN);
1502                 }
1503         } else {
1504                 /*
1505                  * The data is in a chain of large buffers
1506                  * pointed to by a small buffer.  We loop
1507                  * thru and chain them to the our small header
1508                  * buffer's skb.
1509                  * frags:  There are 18 max frags and our small
1510                  *         buffer will hold 32 of them. The thing is,
1511                  *         we'll use 3 max for our 9000 byte jumbo
1512                  *         frames.  If the MTU goes up we could
1513                  *          eventually be in trouble.
1514                  */
1515                 int size, offset, i = 0;
1516                 __le64 *bq, bq_array[8];
1517                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1518                 pci_unmap_single(qdev->pdev,
1519                                  pci_unmap_addr(sbq_desc, mapaddr),
1520                                  pci_unmap_len(sbq_desc, maplen),
1521                                  PCI_DMA_FROMDEVICE);
1522                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1523                         /*
1524                          * This is an non TCP/UDP IP frame, so
1525                          * the headers aren't split into a small
1526                          * buffer.  We have to use the small buffer
1527                          * that contains our sg list as our skb to
1528                          * send upstairs. Copy the sg list here to
1529                          * a local buffer and use it to find the
1530                          * pages to chain.
1531                          */
1532                         QPRINTK(qdev, RX_STATUS, DEBUG,
1533                                 "%d bytes of headers & data in chain of large.\n", length);
1534                         skb = sbq_desc->p.skb;
1535                         bq = &bq_array[0];
1536                         memcpy(bq, skb->data, sizeof(bq_array));
1537                         sbq_desc->p.skb = NULL;
1538                         skb_reserve(skb, NET_IP_ALIGN);
1539                 } else {
1540                         QPRINTK(qdev, RX_STATUS, DEBUG,
1541                                 "Headers in small, %d bytes of data in chain of large.\n", length);
1542                         bq = (__le64 *)sbq_desc->p.skb->data;
1543                 }
1544                 while (length > 0) {
1545                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1546                         pci_unmap_page(qdev->pdev,
1547                                        pci_unmap_addr(lbq_desc,
1548                                                       mapaddr),
1549                                        pci_unmap_len(lbq_desc,
1550                                                      maplen),
1551                                        PCI_DMA_FROMDEVICE);
1552                         size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1553                         offset = 0;
1554
1555                         QPRINTK(qdev, RX_STATUS, DEBUG,
1556                                 "Adding page %d to skb for %d bytes.\n",
1557                                 i, size);
1558                         skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1559                                            offset, size);
1560                         skb->len += size;
1561                         skb->data_len += size;
1562                         skb->truesize += size;
1563                         length -= size;
1564                         lbq_desc->p.lbq_page = NULL;
1565                         bq++;
1566                         i++;
1567                 }
1568                 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1569                                 VLAN_ETH_HLEN : ETH_HLEN);
1570         }
1571         return skb;
1572 }
1573
1574 /* Process an inbound completion from an rx ring. */
1575 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1576                                    struct rx_ring *rx_ring,
1577                                    struct ib_mac_iocb_rsp *ib_mac_rsp)
1578 {
1579         struct net_device *ndev = qdev->ndev;
1580         struct sk_buff *skb = NULL;
1581         u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
1582                         IB_MAC_IOCB_RSP_VLAN_MASK)
1583
1584         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1585
1586         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1587         if (unlikely(!skb)) {
1588                 QPRINTK(qdev, RX_STATUS, DEBUG,
1589                         "No skb available, drop packet.\n");
1590                 return;
1591         }
1592
1593         /* Frame error, so drop the packet. */
1594         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1595                 QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
1596                                         ib_mac_rsp->flags2);
1597                 dev_kfree_skb_any(skb);
1598                 return;
1599         }
1600
1601         /* The max framesize filter on this chip is set higher than
1602          * MTU since FCoE uses 2k frames.
1603          */
1604         if (skb->len > ndev->mtu + ETH_HLEN) {
1605                 dev_kfree_skb_any(skb);
1606                 return;
1607         }
1608
1609         prefetch(skb->data);
1610         skb->dev = ndev;
1611         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1612                 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1613                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1614                         IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1615                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1616                         IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1617                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1618                         IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1619         }
1620         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1621                 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1622         }
1623
1624         skb->protocol = eth_type_trans(skb, ndev);
1625         skb->ip_summed = CHECKSUM_NONE;
1626
1627         /* If rx checksum is on, and there are no
1628          * csum or frame errors.
1629          */
1630         if (qdev->rx_csum &&
1631                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1632                 /* TCP frame. */
1633                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1634                         QPRINTK(qdev, RX_STATUS, DEBUG,
1635                                         "TCP checksum done!\n");
1636                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1637                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1638                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1639                 /* Unfragmented ipv4 UDP frame. */
1640                         struct iphdr *iph = (struct iphdr *) skb->data;
1641                         if (!(iph->frag_off &
1642                                 cpu_to_be16(IP_MF|IP_OFFSET))) {
1643                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1644                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1645                                                 "TCP checksum done!\n");
1646                         }
1647                 }
1648         }
1649
1650         qdev->stats.rx_packets++;
1651         qdev->stats.rx_bytes += skb->len;
1652         skb_record_rx_queue(skb,
1653                 rx_ring->cq_id - qdev->rss_ring_first_cq_id);
1654         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1655                 if (qdev->vlgrp &&
1656                         (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1657                         (vlan_id != 0))
1658                         vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1659                                 vlan_id, skb);
1660                 else
1661                         napi_gro_receive(&rx_ring->napi, skb);
1662         } else {
1663                 if (qdev->vlgrp &&
1664                         (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1665                         (vlan_id != 0))
1666                         vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1667                 else
1668                         netif_receive_skb(skb);
1669         }
1670 }
1671
1672 /* Process an outbound completion from an rx ring. */
1673 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1674                                    struct ob_mac_iocb_rsp *mac_rsp)
1675 {
1676         struct tx_ring *tx_ring;
1677         struct tx_ring_desc *tx_ring_desc;
1678
1679         QL_DUMP_OB_MAC_RSP(mac_rsp);
1680         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1681         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1682         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1683         qdev->stats.tx_bytes += (tx_ring_desc->skb)->len;
1684         qdev->stats.tx_packets++;
1685         dev_kfree_skb(tx_ring_desc->skb);
1686         tx_ring_desc->skb = NULL;
1687
1688         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1689                                         OB_MAC_IOCB_RSP_S |
1690                                         OB_MAC_IOCB_RSP_L |
1691                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1692                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1693                         QPRINTK(qdev, TX_DONE, WARNING,
1694                                 "Total descriptor length did not match transfer length.\n");
1695                 }
1696                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1697                         QPRINTK(qdev, TX_DONE, WARNING,
1698                                 "Frame too short to be legal, not sent.\n");
1699                 }
1700                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1701                         QPRINTK(qdev, TX_DONE, WARNING,
1702                                 "Frame too long, but sent anyway.\n");
1703                 }
1704                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1705                         QPRINTK(qdev, TX_DONE, WARNING,
1706                                 "PCI backplane error. Frame not sent.\n");
1707                 }
1708         }
1709         atomic_inc(&tx_ring->tx_count);
1710 }
1711
1712 /* Fire up a handler to reset the MPI processor. */
1713 void ql_queue_fw_error(struct ql_adapter *qdev)
1714 {
1715         ql_link_off(qdev);
1716         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1717 }
1718
1719 void ql_queue_asic_error(struct ql_adapter *qdev)
1720 {
1721         ql_link_off(qdev);
1722         ql_disable_interrupts(qdev);
1723         /* Clear adapter up bit to signal the recovery
1724          * process that it shouldn't kill the reset worker
1725          * thread
1726          */
1727         clear_bit(QL_ADAPTER_UP, &qdev->flags);
1728         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1729 }
1730
1731 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1732                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
1733 {
1734         switch (ib_ae_rsp->event) {
1735         case MGMT_ERR_EVENT:
1736                 QPRINTK(qdev, RX_ERR, ERR,
1737                         "Management Processor Fatal Error.\n");
1738                 ql_queue_fw_error(qdev);
1739                 return;
1740
1741         case CAM_LOOKUP_ERR_EVENT:
1742                 QPRINTK(qdev, LINK, ERR,
1743                         "Multiple CAM hits lookup occurred.\n");
1744                 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1745                 ql_queue_asic_error(qdev);
1746                 return;
1747
1748         case SOFT_ECC_ERROR_EVENT:
1749                 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1750                 ql_queue_asic_error(qdev);
1751                 break;
1752
1753         case PCI_ERR_ANON_BUF_RD:
1754                 QPRINTK(qdev, RX_ERR, ERR,
1755                         "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1756                         ib_ae_rsp->q_id);
1757                 ql_queue_asic_error(qdev);
1758                 break;
1759
1760         default:
1761                 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1762                         ib_ae_rsp->event);
1763                 ql_queue_asic_error(qdev);
1764                 break;
1765         }
1766 }
1767
1768 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1769 {
1770         struct ql_adapter *qdev = rx_ring->qdev;
1771         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1772         struct ob_mac_iocb_rsp *net_rsp = NULL;
1773         int count = 0;
1774
1775         struct tx_ring *tx_ring;
1776         /* While there are entries in the completion queue. */
1777         while (prod != rx_ring->cnsmr_idx) {
1778
1779                 QPRINTK(qdev, RX_STATUS, DEBUG,
1780                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1781                         prod, rx_ring->cnsmr_idx);
1782
1783                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1784                 rmb();
1785                 switch (net_rsp->opcode) {
1786
1787                 case OPCODE_OB_MAC_TSO_IOCB:
1788                 case OPCODE_OB_MAC_IOCB:
1789                         ql_process_mac_tx_intr(qdev, net_rsp);
1790                         break;
1791                 default:
1792                         QPRINTK(qdev, RX_STATUS, DEBUG,
1793                                 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1794                                 net_rsp->opcode);
1795                 }
1796                 count++;
1797                 ql_update_cq(rx_ring);
1798                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1799         }
1800         ql_write_cq_idx(rx_ring);
1801         tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1802         if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
1803                                         net_rsp != NULL) {
1804                 if (atomic_read(&tx_ring->queue_stopped) &&
1805                     (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1806                         /*
1807                          * The queue got stopped because the tx_ring was full.
1808                          * Wake it up, because it's now at least 25% empty.
1809                          */
1810                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
1811         }
1812
1813         return count;
1814 }
1815
1816 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1817 {
1818         struct ql_adapter *qdev = rx_ring->qdev;
1819         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1820         struct ql_net_rsp_iocb *net_rsp;
1821         int count = 0;
1822
1823         /* While there are entries in the completion queue. */
1824         while (prod != rx_ring->cnsmr_idx) {
1825
1826                 QPRINTK(qdev, RX_STATUS, DEBUG,
1827                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1828                         prod, rx_ring->cnsmr_idx);
1829
1830                 net_rsp = rx_ring->curr_entry;
1831                 rmb();
1832                 switch (net_rsp->opcode) {
1833                 case OPCODE_IB_MAC_IOCB:
1834                         ql_process_mac_rx_intr(qdev, rx_ring,
1835                                                (struct ib_mac_iocb_rsp *)
1836                                                net_rsp);
1837                         break;
1838
1839                 case OPCODE_IB_AE_IOCB:
1840                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1841                                                 net_rsp);
1842                         break;
1843                 default:
1844                         {
1845                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1846                                         "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1847                                         net_rsp->opcode);
1848                         }
1849                 }
1850                 count++;
1851                 ql_update_cq(rx_ring);
1852                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1853                 if (count == budget)
1854                         break;
1855         }
1856         ql_update_buffer_queues(qdev, rx_ring);
1857         ql_write_cq_idx(rx_ring);
1858         return count;
1859 }
1860
1861 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1862 {
1863         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1864         struct ql_adapter *qdev = rx_ring->qdev;
1865         int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1866
1867         QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1868                 rx_ring->cq_id);
1869
1870         if (work_done < budget) {
1871                 napi_complete(napi);
1872                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1873         }
1874         return work_done;
1875 }
1876
1877 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1878 {
1879         struct ql_adapter *qdev = netdev_priv(ndev);
1880
1881         qdev->vlgrp = grp;
1882         if (grp) {
1883                 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1884                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1885                            NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1886         } else {
1887                 QPRINTK(qdev, IFUP, DEBUG,
1888                         "Turning off VLAN in NIC_RCV_CFG.\n");
1889                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1890         }
1891 }
1892
1893 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1894 {
1895         struct ql_adapter *qdev = netdev_priv(ndev);
1896         u32 enable_bit = MAC_ADDR_E;
1897         int status;
1898
1899         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1900         if (status)
1901                 return;
1902         spin_lock(&qdev->hw_lock);
1903         if (ql_set_mac_addr_reg
1904             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1905                 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1906         }
1907         spin_unlock(&qdev->hw_lock);
1908         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1909 }
1910
1911 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1912 {
1913         struct ql_adapter *qdev = netdev_priv(ndev);
1914         u32 enable_bit = 0;
1915         int status;
1916
1917         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1918         if (status)
1919                 return;
1920
1921         spin_lock(&qdev->hw_lock);
1922         if (ql_set_mac_addr_reg
1923             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1924                 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1925         }
1926         spin_unlock(&qdev->hw_lock);
1927         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1928
1929 }
1930
1931 /* Worker thread to process a given rx_ring that is dedicated
1932  * to outbound completions.
1933  */
1934 static void ql_tx_clean(struct work_struct *work)
1935 {
1936         struct rx_ring *rx_ring =
1937             container_of(work, struct rx_ring, rx_work.work);
1938         ql_clean_outbound_rx_ring(rx_ring);
1939         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1940
1941 }
1942
1943 /* Worker thread to process a given rx_ring that is dedicated
1944  * to inbound completions.
1945  */
1946 static void ql_rx_clean(struct work_struct *work)
1947 {
1948         struct rx_ring *rx_ring =
1949             container_of(work, struct rx_ring, rx_work.work);
1950         ql_clean_inbound_rx_ring(rx_ring, 64);
1951         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1952 }
1953
1954 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1955 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1956 {
1957         struct rx_ring *rx_ring = dev_id;
1958         queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1959                               &rx_ring->rx_work, 0);
1960         return IRQ_HANDLED;
1961 }
1962
1963 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1964 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1965 {
1966         struct rx_ring *rx_ring = dev_id;
1967         napi_schedule(&rx_ring->napi);
1968         return IRQ_HANDLED;
1969 }
1970
1971 /* This handles a fatal error, MPI activity, and the default
1972  * rx_ring in an MSI-X multiple vector environment.
1973  * In MSI/Legacy environment it also process the rest of
1974  * the rx_rings.
1975  */
1976 static irqreturn_t qlge_isr(int irq, void *dev_id)
1977 {
1978         struct rx_ring *rx_ring = dev_id;
1979         struct ql_adapter *qdev = rx_ring->qdev;
1980         struct intr_context *intr_context = &qdev->intr_context[0];
1981         u32 var;
1982         int i;
1983         int work_done = 0;
1984
1985         spin_lock(&qdev->hw_lock);
1986         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1987                 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1988                 spin_unlock(&qdev->hw_lock);
1989                 return IRQ_NONE;
1990         }
1991         spin_unlock(&qdev->hw_lock);
1992
1993         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1994
1995         /*
1996          * Check for fatal error.
1997          */
1998         if (var & STS_FE) {
1999                 ql_queue_asic_error(qdev);
2000                 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
2001                 var = ql_read32(qdev, ERR_STS);
2002                 QPRINTK(qdev, INTR, ERR,
2003                         "Resetting chip. Error Status Register = 0x%x\n", var);
2004                 return IRQ_HANDLED;
2005         }
2006
2007         /*
2008          * Check MPI processor activity.
2009          */
2010         if (var & STS_PI) {
2011                 /*
2012                  * We've got an async event or mailbox completion.
2013                  * Handle it and clear the source of the interrupt.
2014                  */
2015                 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
2016                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2017                 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
2018                                       &qdev->mpi_work, 0);
2019                 work_done++;
2020         }
2021
2022         /*
2023          * Check the default queue and wake handler if active.
2024          */
2025         rx_ring = &qdev->rx_ring[0];
2026         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
2027                 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
2028                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2029                 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
2030                                       &rx_ring->rx_work, 0);
2031                 work_done++;
2032         }
2033
2034         if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2035                 /*
2036                  * Start the DPC for each active queue.
2037                  */
2038                 for (i = 1; i < qdev->rx_ring_count; i++) {
2039                         rx_ring = &qdev->rx_ring[i];
2040                         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2041                             rx_ring->cnsmr_idx) {
2042                                 QPRINTK(qdev, INTR, INFO,
2043                                         "Waking handler for rx_ring[%d].\n", i);
2044                                 ql_disable_completion_interrupt(qdev,
2045                                                                 intr_context->
2046                                                                 intr);
2047                                 if (i < qdev->rss_ring_first_cq_id)
2048                                         queue_delayed_work_on(rx_ring->cpu,
2049                                                               qdev->q_workqueue,
2050                                                               &rx_ring->rx_work,
2051                                                               0);
2052                                 else
2053                                         napi_schedule(&rx_ring->napi);
2054                                 work_done++;
2055                         }
2056                 }
2057         }
2058         ql_enable_completion_interrupt(qdev, intr_context->intr);
2059         return work_done ? IRQ_HANDLED : IRQ_NONE;
2060 }
2061
2062 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2063 {
2064
2065         if (skb_is_gso(skb)) {
2066                 int err;
2067                 if (skb_header_cloned(skb)) {
2068                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2069                         if (err)
2070                                 return err;
2071                 }
2072
2073                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2074                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2075                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2076                 mac_iocb_ptr->total_hdrs_len =
2077                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2078                 mac_iocb_ptr->net_trans_offset =
2079                     cpu_to_le16(skb_network_offset(skb) |
2080                                 skb_transport_offset(skb)
2081                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
2082                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2083                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2084                 if (likely(skb->protocol == htons(ETH_P_IP))) {
2085                         struct iphdr *iph = ip_hdr(skb);
2086                         iph->check = 0;
2087                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2088                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2089                                                                  iph->daddr, 0,
2090                                                                  IPPROTO_TCP,
2091                                                                  0);
2092                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2093                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2094                         tcp_hdr(skb)->check =
2095                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2096                                              &ipv6_hdr(skb)->daddr,
2097                                              0, IPPROTO_TCP, 0);
2098                 }
2099                 return 1;
2100         }
2101         return 0;
2102 }
2103
2104 static void ql_hw_csum_setup(struct sk_buff *skb,
2105                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2106 {
2107         int len;
2108         struct iphdr *iph = ip_hdr(skb);
2109         __sum16 *check;
2110         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2111         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2112         mac_iocb_ptr->net_trans_offset =
2113                 cpu_to_le16(skb_network_offset(skb) |
2114                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2115
2116         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2117         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2118         if (likely(iph->protocol == IPPROTO_TCP)) {
2119                 check = &(tcp_hdr(skb)->check);
2120                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2121                 mac_iocb_ptr->total_hdrs_len =
2122                     cpu_to_le16(skb_transport_offset(skb) +
2123                                 (tcp_hdr(skb)->doff << 2));
2124         } else {
2125                 check = &(udp_hdr(skb)->check);
2126                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2127                 mac_iocb_ptr->total_hdrs_len =
2128                     cpu_to_le16(skb_transport_offset(skb) +
2129                                 sizeof(struct udphdr));
2130         }
2131         *check = ~csum_tcpudp_magic(iph->saddr,
2132                                     iph->daddr, len, iph->protocol, 0);
2133 }
2134
2135 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
2136 {
2137         struct tx_ring_desc *tx_ring_desc;
2138         struct ob_mac_iocb_req *mac_iocb_ptr;
2139         struct ql_adapter *qdev = netdev_priv(ndev);
2140         int tso;
2141         struct tx_ring *tx_ring;
2142         u32 tx_ring_idx = (u32) skb->queue_mapping;
2143
2144         tx_ring = &qdev->tx_ring[tx_ring_idx];
2145
2146         if (skb_padto(skb, ETH_ZLEN))
2147                 return NETDEV_TX_OK;
2148
2149         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2150                 QPRINTK(qdev, TX_QUEUED, INFO,
2151                         "%s: shutting down tx queue %d du to lack of resources.\n",
2152                         __func__, tx_ring_idx);
2153                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2154                 atomic_inc(&tx_ring->queue_stopped);
2155                 return NETDEV_TX_BUSY;
2156         }
2157         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2158         mac_iocb_ptr = tx_ring_desc->queue_entry;
2159         memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2160
2161         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2162         mac_iocb_ptr->tid = tx_ring_desc->index;
2163         /* We use the upper 32-bits to store the tx queue for this IO.
2164          * When we get the completion we can use it to establish the context.
2165          */
2166         mac_iocb_ptr->txq_idx = tx_ring_idx;
2167         tx_ring_desc->skb = skb;
2168
2169         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2170
2171         if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
2172                 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
2173                         vlan_tx_tag_get(skb));
2174                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2175                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2176         }
2177         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2178         if (tso < 0) {
2179                 dev_kfree_skb_any(skb);
2180                 return NETDEV_TX_OK;
2181         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2182                 ql_hw_csum_setup(skb,
2183                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2184         }
2185         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2186                         NETDEV_TX_OK) {
2187                 QPRINTK(qdev, TX_QUEUED, ERR,
2188                                 "Could not map the segments.\n");
2189                 return NETDEV_TX_BUSY;
2190         }
2191         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2192         tx_ring->prod_idx++;
2193         if (tx_ring->prod_idx == tx_ring->wq_len)
2194                 tx_ring->prod_idx = 0;
2195         wmb();
2196
2197         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2198         QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
2199                 tx_ring->prod_idx, skb->len);
2200
2201         atomic_dec(&tx_ring->tx_count);
2202         return NETDEV_TX_OK;
2203 }
2204
2205 static void ql_free_shadow_space(struct ql_adapter *qdev)
2206 {
2207         if (qdev->rx_ring_shadow_reg_area) {
2208                 pci_free_consistent(qdev->pdev,
2209                                     PAGE_SIZE,
2210                                     qdev->rx_ring_shadow_reg_area,
2211                                     qdev->rx_ring_shadow_reg_dma);
2212                 qdev->rx_ring_shadow_reg_area = NULL;
2213         }
2214         if (qdev->tx_ring_shadow_reg_area) {
2215                 pci_free_consistent(qdev->pdev,
2216                                     PAGE_SIZE,
2217                                     qdev->tx_ring_shadow_reg_area,
2218                                     qdev->tx_ring_shadow_reg_dma);
2219                 qdev->tx_ring_shadow_reg_area = NULL;
2220         }
2221 }
2222
2223 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2224 {
2225         qdev->rx_ring_shadow_reg_area =
2226             pci_alloc_consistent(qdev->pdev,
2227                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2228         if (qdev->rx_ring_shadow_reg_area == NULL) {
2229                 QPRINTK(qdev, IFUP, ERR,
2230                         "Allocation of RX shadow space failed.\n");
2231                 return -ENOMEM;
2232         }
2233         memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2234         qdev->tx_ring_shadow_reg_area =
2235             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2236                                  &qdev->tx_ring_shadow_reg_dma);
2237         if (qdev->tx_ring_shadow_reg_area == NULL) {
2238                 QPRINTK(qdev, IFUP, ERR,
2239                         "Allocation of TX shadow space failed.\n");
2240                 goto err_wqp_sh_area;
2241         }
2242         memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2243         return 0;
2244
2245 err_wqp_sh_area:
2246         pci_free_consistent(qdev->pdev,
2247                             PAGE_SIZE,
2248                             qdev->rx_ring_shadow_reg_area,
2249                             qdev->rx_ring_shadow_reg_dma);
2250         return -ENOMEM;
2251 }
2252
2253 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2254 {
2255         struct tx_ring_desc *tx_ring_desc;
2256         int i;
2257         struct ob_mac_iocb_req *mac_iocb_ptr;
2258
2259         mac_iocb_ptr = tx_ring->wq_base;
2260         tx_ring_desc = tx_ring->q;
2261         for (i = 0; i < tx_ring->wq_len; i++) {
2262                 tx_ring_desc->index = i;
2263                 tx_ring_desc->skb = NULL;
2264                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2265                 mac_iocb_ptr++;
2266                 tx_ring_desc++;
2267         }
2268         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2269         atomic_set(&tx_ring->queue_stopped, 0);
2270 }
2271
2272 static void ql_free_tx_resources(struct ql_adapter *qdev,
2273                                  struct tx_ring *tx_ring)
2274 {
2275         if (tx_ring->wq_base) {
2276                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2277                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2278                 tx_ring->wq_base = NULL;
2279         }
2280         kfree(tx_ring->q);
2281         tx_ring->q = NULL;
2282 }
2283
2284 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2285                                  struct tx_ring *tx_ring)
2286 {
2287         tx_ring->wq_base =
2288             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2289                                  &tx_ring->wq_base_dma);
2290
2291         if ((tx_ring->wq_base == NULL)
2292                 || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
2293                 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2294                 return -ENOMEM;
2295         }
2296         tx_ring->q =
2297             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2298         if (tx_ring->q == NULL)
2299                 goto err;
2300
2301         return 0;
2302 err:
2303         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2304                             tx_ring->wq_base, tx_ring->wq_base_dma);
2305         return -ENOMEM;
2306 }
2307
2308 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2309 {
2310         int i;
2311         struct bq_desc *lbq_desc;
2312
2313         for (i = 0; i < rx_ring->lbq_len; i++) {
2314                 lbq_desc = &rx_ring->lbq[i];
2315                 if (lbq_desc->p.lbq_page) {
2316                         pci_unmap_page(qdev->pdev,
2317                                        pci_unmap_addr(lbq_desc, mapaddr),
2318                                        pci_unmap_len(lbq_desc, maplen),
2319                                        PCI_DMA_FROMDEVICE);
2320
2321                         put_page(lbq_desc->p.lbq_page);
2322                         lbq_desc->p.lbq_page = NULL;
2323                 }
2324         }
2325 }
2326
2327 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2328 {
2329         int i;
2330         struct bq_desc *sbq_desc;
2331
2332         for (i = 0; i < rx_ring->sbq_len; i++) {
2333                 sbq_desc = &rx_ring->sbq[i];
2334                 if (sbq_desc == NULL) {
2335                         QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2336                         return;
2337                 }
2338                 if (sbq_desc->p.skb) {
2339                         pci_unmap_single(qdev->pdev,
2340                                          pci_unmap_addr(sbq_desc, mapaddr),
2341                                          pci_unmap_len(sbq_desc, maplen),
2342                                          PCI_DMA_FROMDEVICE);
2343                         dev_kfree_skb(sbq_desc->p.skb);
2344                         sbq_desc->p.skb = NULL;
2345                 }
2346         }
2347 }
2348
2349 /* Free all large and small rx buffers associated
2350  * with the completion queues for this device.
2351  */
2352 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2353 {
2354         int i;
2355         struct rx_ring *rx_ring;
2356
2357         for (i = 0; i < qdev->rx_ring_count; i++) {
2358                 rx_ring = &qdev->rx_ring[i];
2359                 if (rx_ring->lbq)
2360                         ql_free_lbq_buffers(qdev, rx_ring);
2361                 if (rx_ring->sbq)
2362                         ql_free_sbq_buffers(qdev, rx_ring);
2363         }
2364 }
2365
2366 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2367 {
2368         struct rx_ring *rx_ring;
2369         int i;
2370
2371         for (i = 0; i < qdev->rx_ring_count; i++) {
2372                 rx_ring = &qdev->rx_ring[i];
2373                 if (rx_ring->type != TX_Q)
2374                         ql_update_buffer_queues(qdev, rx_ring);
2375         }
2376 }
2377
2378 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2379                                 struct rx_ring *rx_ring)
2380 {
2381         int i;
2382         struct bq_desc *lbq_desc;
2383         __le64 *bq = rx_ring->lbq_base;
2384
2385         memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2386         for (i = 0; i < rx_ring->lbq_len; i++) {
2387                 lbq_desc = &rx_ring->lbq[i];
2388                 memset(lbq_desc, 0, sizeof(*lbq_desc));
2389                 lbq_desc->index = i;
2390                 lbq_desc->addr = bq;
2391                 bq++;
2392         }
2393 }
2394
2395 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2396                                 struct rx_ring *rx_ring)
2397 {
2398         int i;
2399         struct bq_desc *sbq_desc;
2400         __le64 *bq = rx_ring->sbq_base;
2401
2402         memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2403         for (i = 0; i < rx_ring->sbq_len; i++) {
2404                 sbq_desc = &rx_ring->sbq[i];
2405                 memset(sbq_desc, 0, sizeof(*sbq_desc));
2406                 sbq_desc->index = i;
2407                 sbq_desc->addr = bq;
2408                 bq++;
2409         }
2410 }
2411
2412 static void ql_free_rx_resources(struct ql_adapter *qdev,
2413                                  struct rx_ring *rx_ring)
2414 {
2415         /* Free the small buffer queue. */
2416         if (rx_ring->sbq_base) {
2417                 pci_free_consistent(qdev->pdev,
2418                                     rx_ring->sbq_size,
2419                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2420                 rx_ring->sbq_base = NULL;
2421         }
2422
2423         /* Free the small buffer queue control blocks. */
2424         kfree(rx_ring->sbq);
2425         rx_ring->sbq = NULL;
2426
2427         /* Free the large buffer queue. */
2428         if (rx_ring->lbq_base) {
2429                 pci_free_consistent(qdev->pdev,
2430                                     rx_ring->lbq_size,
2431                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2432                 rx_ring->lbq_base = NULL;
2433         }
2434
2435         /* Free the large buffer queue control blocks. */
2436         kfree(rx_ring->lbq);
2437         rx_ring->lbq = NULL;
2438
2439         /* Free the rx queue. */
2440         if (rx_ring->cq_base) {
2441                 pci_free_consistent(qdev->pdev,
2442                                     rx_ring->cq_size,
2443                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2444                 rx_ring->cq_base = NULL;
2445         }
2446 }
2447
2448 /* Allocate queues and buffers for this completions queue based
2449  * on the values in the parameter structure. */
2450 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2451                                  struct rx_ring *rx_ring)
2452 {
2453
2454         /*
2455          * Allocate the completion queue for this rx_ring.
2456          */
2457         rx_ring->cq_base =
2458             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2459                                  &rx_ring->cq_base_dma);
2460
2461         if (rx_ring->cq_base == NULL) {
2462                 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2463                 return -ENOMEM;
2464         }
2465
2466         if (rx_ring->sbq_len) {
2467                 /*
2468                  * Allocate small buffer queue.
2469                  */
2470                 rx_ring->sbq_base =
2471                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2472                                          &rx_ring->sbq_base_dma);
2473
2474                 if (rx_ring->sbq_base == NULL) {
2475                         QPRINTK(qdev, IFUP, ERR,
2476                                 "Small buffer queue allocation failed.\n");
2477                         goto err_mem;
2478                 }
2479
2480                 /*
2481                  * Allocate small buffer queue control blocks.
2482                  */
2483                 rx_ring->sbq =
2484                     kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2485                             GFP_KERNEL);
2486                 if (rx_ring->sbq == NULL) {
2487                         QPRINTK(qdev, IFUP, ERR,
2488                                 "Small buffer queue control block allocation failed.\n");
2489                         goto err_mem;
2490                 }
2491
2492                 ql_init_sbq_ring(qdev, rx_ring);
2493         }
2494
2495         if (rx_ring->lbq_len) {
2496                 /*
2497                  * Allocate large buffer queue.
2498                  */
2499                 rx_ring->lbq_base =
2500                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2501                                          &rx_ring->lbq_base_dma);
2502
2503                 if (rx_ring->lbq_base == NULL) {
2504                         QPRINTK(qdev, IFUP, ERR,
2505                                 "Large buffer queue allocation failed.\n");
2506                         goto err_mem;
2507                 }
2508                 /*
2509                  * Allocate large buffer queue control blocks.
2510                  */
2511                 rx_ring->lbq =
2512                     kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2513                             GFP_KERNEL);
2514                 if (rx_ring->lbq == NULL) {
2515                         QPRINTK(qdev, IFUP, ERR,
2516                                 "Large buffer queue control block allocation failed.\n");
2517                         goto err_mem;
2518                 }
2519
2520                 ql_init_lbq_ring(qdev, rx_ring);
2521         }
2522
2523         return 0;
2524
2525 err_mem:
2526         ql_free_rx_resources(qdev, rx_ring);
2527         return -ENOMEM;
2528 }
2529
2530 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2531 {
2532         struct tx_ring *tx_ring;
2533         struct tx_ring_desc *tx_ring_desc;
2534         int i, j;
2535
2536         /*
2537          * Loop through all queues and free
2538          * any resources.
2539          */
2540         for (j = 0; j < qdev->tx_ring_count; j++) {
2541                 tx_ring = &qdev->tx_ring[j];
2542                 for (i = 0; i < tx_ring->wq_len; i++) {
2543                         tx_ring_desc = &tx_ring->q[i];
2544                         if (tx_ring_desc && tx_ring_desc->skb) {
2545                                 QPRINTK(qdev, IFDOWN, ERR,
2546                                 "Freeing lost SKB %p, from queue %d, index %d.\n",
2547                                         tx_ring_desc->skb, j,
2548                                         tx_ring_desc->index);
2549                                 ql_unmap_send(qdev, tx_ring_desc,
2550                                               tx_ring_desc->map_cnt);
2551                                 dev_kfree_skb(tx_ring_desc->skb);
2552                                 tx_ring_desc->skb = NULL;
2553                         }
2554                 }
2555         }
2556 }
2557
2558 static void ql_free_mem_resources(struct ql_adapter *qdev)
2559 {
2560         int i;
2561
2562         for (i = 0; i < qdev->tx_ring_count; i++)
2563                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2564         for (i = 0; i < qdev->rx_ring_count; i++)
2565                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2566         ql_free_shadow_space(qdev);
2567 }
2568
2569 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2570 {
2571         int i;
2572
2573         /* Allocate space for our shadow registers and such. */
2574         if (ql_alloc_shadow_space(qdev))
2575                 return -ENOMEM;
2576
2577         for (i = 0; i < qdev->rx_ring_count; i++) {
2578                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2579                         QPRINTK(qdev, IFUP, ERR,
2580                                 "RX resource allocation failed.\n");
2581                         goto err_mem;
2582                 }
2583         }
2584         /* Allocate tx queue resources */
2585         for (i = 0; i < qdev->tx_ring_count; i++) {
2586                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2587                         QPRINTK(qdev, IFUP, ERR,
2588                                 "TX resource allocation failed.\n");
2589                         goto err_mem;
2590                 }
2591         }
2592         return 0;
2593
2594 err_mem:
2595         ql_free_mem_resources(qdev);
2596         return -ENOMEM;
2597 }
2598
2599 /* Set up the rx ring control block and pass it to the chip.
2600  * The control block is defined as
2601  * "Completion Queue Initialization Control Block", or cqicb.
2602  */
2603 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2604 {
2605         struct cqicb *cqicb = &rx_ring->cqicb;
2606         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2607                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
2608         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2609                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
2610         void __iomem *doorbell_area =
2611             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2612         int err = 0;
2613         u16 bq_len;
2614         u64 tmp;
2615         __le64 *base_indirect_ptr;
2616         int page_entries;
2617
2618         /* Set up the shadow registers for this ring. */
2619         rx_ring->prod_idx_sh_reg = shadow_reg;
2620         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2621         shadow_reg += sizeof(u64);
2622         shadow_reg_dma += sizeof(u64);
2623         rx_ring->lbq_base_indirect = shadow_reg;
2624         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2625         shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2626         shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2627         rx_ring->sbq_base_indirect = shadow_reg;
2628         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2629
2630         /* PCI doorbell mem area + 0x00 for consumer index register */
2631         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2632         rx_ring->cnsmr_idx = 0;
2633         rx_ring->curr_entry = rx_ring->cq_base;
2634
2635         /* PCI doorbell mem area + 0x04 for valid register */
2636         rx_ring->valid_db_reg = doorbell_area + 0x04;
2637
2638         /* PCI doorbell mem area + 0x18 for large buffer consumer */
2639         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2640
2641         /* PCI doorbell mem area + 0x1c */
2642         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2643
2644         memset((void *)cqicb, 0, sizeof(struct cqicb));
2645         cqicb->msix_vect = rx_ring->irq;
2646
2647         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2648         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2649
2650         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2651
2652         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2653
2654         /*
2655          * Set up the control block load flags.
2656          */
2657         cqicb->flags = FLAGS_LC |       /* Load queue base address */
2658             FLAGS_LV |          /* Load MSI-X vector */
2659             FLAGS_LI;           /* Load irq delay values */
2660         if (rx_ring->lbq_len) {
2661                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
2662                 tmp = (u64)rx_ring->lbq_base_dma;;
2663                 base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
2664                 page_entries = 0;
2665                 do {
2666                         *base_indirect_ptr = cpu_to_le64(tmp);
2667                         tmp += DB_PAGE_SIZE;
2668                         base_indirect_ptr++;
2669                         page_entries++;
2670                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2671                 cqicb->lbq_addr =
2672                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2673                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2674                         (u16) rx_ring->lbq_buf_size;
2675                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2676                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2677                         (u16) rx_ring->lbq_len;
2678                 cqicb->lbq_len = cpu_to_le16(bq_len);
2679                 rx_ring->lbq_prod_idx = 0;
2680                 rx_ring->lbq_curr_idx = 0;
2681                 rx_ring->lbq_clean_idx = 0;
2682                 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
2683         }
2684         if (rx_ring->sbq_len) {
2685                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
2686                 tmp = (u64)rx_ring->sbq_base_dma;;
2687                 base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
2688                 page_entries = 0;
2689                 do {
2690                         *base_indirect_ptr = cpu_to_le64(tmp);
2691                         tmp += DB_PAGE_SIZE;
2692                         base_indirect_ptr++;
2693                         page_entries++;
2694                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
2695                 cqicb->sbq_addr =
2696                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2697                 cqicb->sbq_buf_size =
2698                     cpu_to_le16((u16)(rx_ring->sbq_buf_size/2));
2699                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2700                         (u16) rx_ring->sbq_len;
2701                 cqicb->sbq_len = cpu_to_le16(bq_len);
2702                 rx_ring->sbq_prod_idx = 0;
2703                 rx_ring->sbq_curr_idx = 0;
2704                 rx_ring->sbq_clean_idx = 0;
2705                 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
2706         }
2707         switch (rx_ring->type) {
2708         case TX_Q:
2709                 /* If there's only one interrupt, then we use
2710                  * worker threads to process the outbound
2711                  * completion handling rx_rings. We do this so
2712                  * they can be run on multiple CPUs. There is
2713                  * room to play with this more where we would only
2714                  * run in a worker if there are more than x number
2715                  * of outbound completions on the queue and more
2716                  * than one queue active.  Some threshold that
2717                  * would indicate a benefit in spite of the cost
2718                  * of a context switch.
2719                  * If there's more than one interrupt, then the
2720                  * outbound completions are processed in the ISR.
2721                  */
2722                 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2723                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2724                 else {
2725                         /* With all debug warnings on we see a WARN_ON message
2726                          * when we free the skb in the interrupt context.
2727                          */
2728                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2729                 }
2730                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2731                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2732                 break;
2733         case DEFAULT_Q:
2734                 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2735                 cqicb->irq_delay = 0;
2736                 cqicb->pkt_delay = 0;
2737                 break;
2738         case RX_Q:
2739                 /* Inbound completion handling rx_rings run in
2740                  * separate NAPI contexts.
2741                  */
2742                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2743                                64);
2744                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2745                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2746                 break;
2747         default:
2748                 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2749                         rx_ring->type);
2750         }
2751         QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
2752         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2753                            CFG_LCQ, rx_ring->cq_id);
2754         if (err) {
2755                 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2756                 return err;
2757         }
2758         return err;
2759 }
2760
2761 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2762 {
2763         struct wqicb *wqicb = (struct wqicb *)tx_ring;
2764         void __iomem *doorbell_area =
2765             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2766         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2767             (tx_ring->wq_id * sizeof(u64));
2768         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2769             (tx_ring->wq_id * sizeof(u64));
2770         int err = 0;
2771
2772         /*
2773          * Assign doorbell registers for this tx_ring.
2774          */
2775         /* TX PCI doorbell mem area for tx producer index */
2776         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2777         tx_ring->prod_idx = 0;
2778         /* TX PCI doorbell mem area + 0x04 */
2779         tx_ring->valid_db_reg = doorbell_area + 0x04;
2780
2781         /*
2782          * Assign shadow registers for this tx_ring.
2783          */
2784         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2785         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2786
2787         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2788         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2789                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2790         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2791         wqicb->rid = 0;
2792         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2793
2794         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2795
2796         ql_init_tx_ring(qdev, tx_ring);
2797
2798         err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
2799                            (u16) tx_ring->wq_id);
2800         if (err) {
2801                 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2802                 return err;
2803         }
2804         QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
2805         return err;
2806 }
2807
2808 static void ql_disable_msix(struct ql_adapter *qdev)
2809 {
2810         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2811                 pci_disable_msix(qdev->pdev);
2812                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2813                 kfree(qdev->msi_x_entry);
2814                 qdev->msi_x_entry = NULL;
2815         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2816                 pci_disable_msi(qdev->pdev);
2817                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2818         }
2819 }
2820
2821 static void ql_enable_msix(struct ql_adapter *qdev)
2822 {
2823         int i;
2824
2825         qdev->intr_count = 1;
2826         /* Get the MSIX vectors. */
2827         if (irq_type == MSIX_IRQ) {
2828                 /* Try to alloc space for the msix struct,
2829                  * if it fails then go to MSI/legacy.
2830                  */
2831                 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2832                                             sizeof(struct msix_entry),
2833                                             GFP_KERNEL);
2834                 if (!qdev->msi_x_entry) {
2835                         irq_type = MSI_IRQ;
2836                         goto msi;
2837                 }
2838
2839                 for (i = 0; i < qdev->rx_ring_count; i++)
2840                         qdev->msi_x_entry[i].entry = i;
2841
2842                 if (!pci_enable_msix
2843                     (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2844                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
2845                         qdev->intr_count = qdev->rx_ring_count;
2846                         QPRINTK(qdev, IFUP, DEBUG,
2847                                 "MSI-X Enabled, got %d vectors.\n",
2848                                 qdev->intr_count);
2849                         return;
2850                 } else {
2851                         kfree(qdev->msi_x_entry);
2852                         qdev->msi_x_entry = NULL;
2853                         QPRINTK(qdev, IFUP, WARNING,
2854                                 "MSI-X Enable failed, trying MSI.\n");
2855                         irq_type = MSI_IRQ;
2856                 }
2857         }
2858 msi:
2859         if (irq_type == MSI_IRQ) {
2860                 if (!pci_enable_msi(qdev->pdev)) {
2861                         set_bit(QL_MSI_ENABLED, &qdev->flags);
2862                         QPRINTK(qdev, IFUP, INFO,
2863                                 "Running with MSI interrupts.\n");
2864                         return;
2865                 }
2866         }
2867         irq_type = LEG_IRQ;
2868         QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2869 }
2870
2871 /*
2872  * Here we build the intr_context structures based on
2873  * our rx_ring count and intr vector count.
2874  * The intr_context structure is used to hook each vector
2875  * to possibly different handlers.
2876  */
2877 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2878 {
2879         int i = 0;
2880         struct intr_context *intr_context = &qdev->intr_context[0];
2881
2882         ql_enable_msix(qdev);
2883
2884         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2885                 /* Each rx_ring has it's
2886                  * own intr_context since we have separate
2887                  * vectors for each queue.
2888                  * This only true when MSI-X is enabled.
2889                  */
2890                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2891                         qdev->rx_ring[i].irq = i;
2892                         intr_context->intr = i;
2893                         intr_context->qdev = qdev;
2894                         /*
2895                          * We set up each vectors enable/disable/read bits so
2896                          * there's no bit/mask calculations in the critical path.
2897                          */
2898                         intr_context->intr_en_mask =
2899                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2900                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2901                             | i;
2902                         intr_context->intr_dis_mask =
2903                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2904                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2905                             INTR_EN_IHD | i;
2906                         intr_context->intr_read_mask =
2907                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2908                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2909                             i;
2910
2911                         if (i == 0) {
2912                                 /*
2913                                  * Default queue handles bcast/mcast plus
2914                                  * async events.  Needs buffers.
2915                                  */
2916                                 intr_context->handler = qlge_isr;
2917                                 sprintf(intr_context->name, "%s-default-queue",
2918                                         qdev->ndev->name);
2919                         } else if (i < qdev->rss_ring_first_cq_id) {
2920                                 /*
2921                                  * Outbound queue is for outbound completions only.
2922                                  */
2923                                 intr_context->handler = qlge_msix_tx_isr;
2924                                 sprintf(intr_context->name, "%s-tx-%d",
2925                                         qdev->ndev->name, i);
2926                         } else {
2927                                 /*
2928                                  * Inbound queues handle unicast frames only.
2929                                  */
2930                                 intr_context->handler = qlge_msix_rx_isr;
2931                                 sprintf(intr_context->name, "%s-rx-%d",
2932                                         qdev->ndev->name, i);
2933                         }
2934                 }
2935         } else {
2936                 /*
2937                  * All rx_rings use the same intr_context since
2938                  * there is only one vector.
2939                  */
2940                 intr_context->intr = 0;
2941                 intr_context->qdev = qdev;
2942                 /*
2943                  * We set up each vectors enable/disable/read bits so
2944                  * there's no bit/mask calculations in the critical path.
2945                  */
2946                 intr_context->intr_en_mask =
2947                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2948                 intr_context->intr_dis_mask =
2949                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2950                     INTR_EN_TYPE_DISABLE;
2951                 intr_context->intr_read_mask =
2952                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2953                 /*
2954                  * Single interrupt means one handler for all rings.
2955                  */
2956                 intr_context->handler = qlge_isr;
2957                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2958                 for (i = 0; i < qdev->rx_ring_count; i++)
2959                         qdev->rx_ring[i].irq = 0;
2960         }
2961 }
2962
2963 static void ql_free_irq(struct ql_adapter *qdev)
2964 {
2965         int i;
2966         struct intr_context *intr_context = &qdev->intr_context[0];
2967
2968         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2969                 if (intr_context->hooked) {
2970                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2971                                 free_irq(qdev->msi_x_entry[i].vector,
2972                                          &qdev->rx_ring[i]);
2973                                 QPRINTK(qdev, IFDOWN, DEBUG,
2974                                         "freeing msix interrupt %d.\n", i);
2975                         } else {
2976                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2977                                 QPRINTK(qdev, IFDOWN, DEBUG,
2978                                         "freeing msi interrupt %d.\n", i);
2979                         }
2980                 }
2981         }
2982         ql_disable_msix(qdev);
2983 }
2984
2985 static int ql_request_irq(struct ql_adapter *qdev)
2986 {
2987         int i;
2988         int status = 0;
2989         struct pci_dev *pdev = qdev->pdev;
2990         struct intr_context *intr_context = &qdev->intr_context[0];
2991
2992         ql_resolve_queues_to_irqs(qdev);
2993
2994         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2995                 atomic_set(&intr_context->irq_cnt, 0);
2996                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2997                         status = request_irq(qdev->msi_x_entry[i].vector,
2998                                              intr_context->handler,
2999                                              0,
3000                                              intr_context->name,
3001                                              &qdev->rx_ring[i]);
3002                         if (status) {
3003                                 QPRINTK(qdev, IFUP, ERR,
3004                                         "Failed request for MSIX interrupt %d.\n",
3005                                         i);
3006                                 goto err_irq;
3007                         } else {
3008                                 QPRINTK(qdev, IFUP, DEBUG,
3009                                         "Hooked intr %d, queue type %s%s%s, with name %s.\n",
3010                                         i,
3011                                         qdev->rx_ring[i].type ==
3012                                         DEFAULT_Q ? "DEFAULT_Q" : "",
3013                                         qdev->rx_ring[i].type ==
3014                                         TX_Q ? "TX_Q" : "",
3015                                         qdev->rx_ring[i].type ==
3016                                         RX_Q ? "RX_Q" : "", intr_context->name);
3017                         }
3018                 } else {
3019                         QPRINTK(qdev, IFUP, DEBUG,
3020                                 "trying msi or legacy interrupts.\n");
3021                         QPRINTK(qdev, IFUP, DEBUG,
3022                                 "%s: irq = %d.\n", __func__, pdev->irq);
3023                         QPRINTK(qdev, IFUP, DEBUG,
3024                                 "%s: context->name = %s.\n", __func__,
3025                                intr_context->name);
3026                         QPRINTK(qdev, IFUP, DEBUG,
3027                                 "%s: dev_id = 0x%p.\n", __func__,
3028                                &qdev->rx_ring[0]);
3029                         status =
3030                             request_irq(pdev->irq, qlge_isr,
3031                                         test_bit(QL_MSI_ENABLED,
3032                                                  &qdev->
3033                                                  flags) ? 0 : IRQF_SHARED,
3034                                         intr_context->name, &qdev->rx_ring[0]);
3035                         if (status)
3036                                 goto err_irq;
3037
3038                         QPRINTK(qdev, IFUP, ERR,
3039                                 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
3040                                 i,
3041                                 qdev->rx_ring[0].type ==
3042                                 DEFAULT_Q ? "DEFAULT_Q" : "",
3043                                 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
3044                                 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3045                                 intr_context->name);
3046                 }
3047                 intr_context->hooked = 1;
3048         }
3049         return status;
3050 err_irq:
3051         QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
3052         ql_free_irq(qdev);
3053         return status;
3054 }
3055
3056 static int ql_start_rss(struct ql_adapter *qdev)
3057 {
3058         struct ricb *ricb = &qdev->ricb;
3059         int status = 0;
3060         int i;
3061         u8 *hash_id = (u8 *) ricb->hash_cq_id;
3062
3063         memset((void *)ricb, 0, sizeof(*ricb));
3064
3065         ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
3066         ricb->flags =
3067             (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
3068              RSS_RT6);
3069         ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
3070
3071         /*
3072          * Fill out the Indirection Table.
3073          */
3074         for (i = 0; i < 256; i++)
3075                 hash_id[i] = i & (qdev->rss_ring_count - 1);
3076
3077         /*
3078          * Random values for the IPv6 and IPv4 Hash Keys.
3079          */
3080         get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
3081         get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
3082
3083         QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
3084
3085         status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3086         if (status) {
3087                 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
3088                 return status;
3089         }
3090         QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
3091         return status;
3092 }
3093
3094 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3095 {
3096         int i, status = 0;
3097
3098         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3099         if (status)
3100                 return status;
3101         /* Clear all the entries in the routing table. */
3102         for (i = 0; i < 16; i++) {
3103                 status = ql_set_routing_reg(qdev, i, 0, 0);
3104                 if (status) {
3105                         QPRINTK(qdev, IFUP, ERR,
3106                                 "Failed to init routing register for CAM "
3107                                 "packets.\n");
3108                         break;
3109                 }
3110         }
3111         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3112         return status;
3113 }
3114
3115 /* Initialize the frame-to-queue routing. */
3116 static int ql_route_initialize(struct ql_adapter *qdev)
3117 {
3118         int status = 0;
3119
3120         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3121         if (status)
3122                 return status;
3123
3124         /* Clear all the entries in the routing table. */
3125         status = ql_clear_routing_entries(qdev);
3126         if (status)
3127                 goto exit;
3128
3129         status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
3130         if (status) {
3131                 QPRINTK(qdev, IFUP, ERR,
3132                         "Failed to init routing register for error packets.\n");
3133                 goto exit;
3134         }
3135         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3136         if (status) {
3137                 QPRINTK(qdev, IFUP, ERR,
3138                         "Failed to init routing register for broadcast packets.\n");
3139                 goto exit;
3140         }
3141         /* If we have more than one inbound queue, then turn on RSS in the
3142          * routing block.
3143          */
3144         if (qdev->rss_ring_count > 1) {
3145                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3146                                         RT_IDX_RSS_MATCH, 1);
3147                 if (status) {
3148                         QPRINTK(qdev, IFUP, ERR,
3149                                 "Failed to init routing register for MATCH RSS packets.\n");
3150                         goto exit;
3151                 }
3152         }
3153
3154         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3155                                     RT_IDX_CAM_HIT, 1);
3156         if (status)
3157                 QPRINTK(qdev, IFUP, ERR,
3158                         "Failed to init routing register for CAM packets.\n");
3159 exit:
3160         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3161         return status;
3162 }
3163
3164 int ql_cam_route_initialize(struct ql_adapter *qdev)
3165 {
3166         int status, set;
3167
3168         /* If check if the link is up and use to
3169          * determine if we are setting or clearing
3170          * the MAC address in the CAM.
3171          */
3172         set = ql_read32(qdev, STS);
3173         set &= qdev->port_link_up;
3174         status = ql_set_mac_addr(qdev, set);
3175         if (status) {
3176                 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3177                 return status;
3178         }
3179
3180         status = ql_route_initialize(qdev);
3181         if (status)
3182                 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3183
3184         return status;
3185 }
3186
3187 static int ql_adapter_initialize(struct ql_adapter *qdev)
3188 {
3189         u32 value, mask;
3190         int i;
3191         int status = 0;
3192
3193         /*
3194          * Set up the System register to halt on errors.
3195          */
3196         value = SYS_EFE | SYS_FAE;
3197         mask = value << 16;
3198         ql_write32(qdev, SYS, mask | value);
3199
3200         /* Set the default queue, and VLAN behavior. */
3201         value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3202         mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3203         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3204
3205         /* Set the MPI interrupt to enabled. */
3206         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3207
3208         /* Enable the function, set pagesize, enable error checking. */
3209         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3210             FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3211
3212         /* Set/clear header splitting. */
3213         mask = FSC_VM_PAGESIZE_MASK |
3214             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3215         ql_write32(qdev, FSC, mask | value);
3216
3217         ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3218                 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3219
3220         /* Start up the rx queues. */
3221         for (i = 0; i < qdev->rx_ring_count; i++) {
3222                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3223                 if (status) {
3224                         QPRINTK(qdev, IFUP, ERR,
3225                                 "Failed to start rx ring[%d].\n", i);
3226                         return status;
3227                 }
3228         }
3229
3230         /* If there is more than one inbound completion queue
3231          * then download a RICB to configure RSS.
3232          */
3233         if (qdev->rss_ring_count > 1) {
3234                 status = ql_start_rss(qdev);
3235                 if (status) {
3236                         QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3237                         return status;
3238                 }
3239         }
3240
3241         /* Start up the tx queues. */
3242         for (i = 0; i < qdev->tx_ring_count; i++) {
3243                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3244                 if (status) {
3245                         QPRINTK(qdev, IFUP, ERR,
3246                                 "Failed to start tx ring[%d].\n", i);
3247                         return status;
3248                 }
3249         }
3250
3251         /* Initialize the port and set the max framesize. */
3252         status = qdev->nic_ops->port_initialize(qdev);
3253        if (status) {
3254               QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3255               return status;
3256        }
3257
3258         /* Set up the MAC address and frame routing filter. */
3259         status = ql_cam_route_initialize(qdev);
3260         if (status) {
3261                 QPRINTK(qdev, IFUP, ERR,
3262                                 "Failed to init CAM/Routing tables.\n");
3263                 return status;
3264         }
3265
3266         /* Start NAPI for the RSS queues. */
3267         for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3268                 QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
3269                         i);
3270                 napi_enable(&qdev->rx_ring[i].napi);
3271         }
3272
3273         return status;
3274 }
3275
3276 /* Issue soft reset to chip. */
3277 static int ql_adapter_reset(struct ql_adapter *qdev)
3278 {
3279         u32 value;
3280         int status = 0;
3281         unsigned long end_jiffies;
3282
3283         /* Clear all the entries in the routing table. */
3284         status = ql_clear_routing_entries(qdev);
3285         if (status) {
3286                 QPRINTK(qdev, IFUP, ERR, "Failed to clear routing bits.\n");
3287                 return status;
3288         }
3289
3290         end_jiffies = jiffies +
3291                 max((unsigned long)1, usecs_to_jiffies(30));
3292         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3293
3294         do {
3295                 value = ql_read32(qdev, RST_FO);
3296                 if ((value & RST_FO_FR) == 0)
3297                         break;
3298                 cpu_relax();
3299         } while (time_before(jiffies, end_jiffies));
3300
3301         if (value & RST_FO_FR) {
3302                 QPRINTK(qdev, IFDOWN, ERR,
3303                         "ETIMEDOUT!!! errored out of resetting the chip!\n");
3304                 status = -ETIMEDOUT;
3305         }
3306
3307         return status;
3308 }
3309
3310 static void ql_display_dev_info(struct net_device *ndev)
3311 {
3312         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3313
3314         QPRINTK(qdev, PROBE, INFO,
3315                 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3316                 "XG Roll = %d, XG Rev = %d.\n",
3317                 qdev->func,
3318                 qdev->port,
3319                 qdev->chip_rev_id & 0x0000000f,
3320                 qdev->chip_rev_id >> 4 & 0x0000000f,
3321                 qdev->chip_rev_id >> 8 & 0x0000000f,
3322                 qdev->chip_rev_id >> 12 & 0x0000000f);
3323         QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3324 }
3325
3326 static int ql_adapter_down(struct ql_adapter *qdev)
3327 {
3328         int i, status = 0;
3329         struct rx_ring *rx_ring;
3330
3331         ql_link_off(qdev);
3332
3333         /* Don't kill the reset worker thread if we
3334          * are in the process of recovery.
3335          */
3336         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3337                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3338         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3339         cancel_delayed_work_sync(&qdev->mpi_work);
3340         cancel_delayed_work_sync(&qdev->mpi_idc_work);
3341         cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3342
3343         /* The default queue at index 0 is always processed in
3344          * a workqueue.
3345          */
3346         cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3347
3348         /* The rest of the rx_rings are processed in
3349          * a workqueue only if it's a single interrupt
3350          * environment (MSI/Legacy).
3351          */
3352         for (i = 1; i < qdev->rx_ring_count; i++) {
3353                 rx_ring = &qdev->rx_ring[i];
3354                 /* Only the RSS rings use NAPI on multi irq
3355                  * environment.  Outbound completion processing
3356                  * is done in interrupt context.
3357                  */
3358                 if (i >= qdev->rss_ring_first_cq_id) {
3359                         napi_disable(&rx_ring->napi);
3360                 } else {
3361                         cancel_delayed_work_sync(&rx_ring->rx_work);
3362                 }
3363         }
3364
3365         clear_bit(QL_ADAPTER_UP, &qdev->flags);
3366
3367         ql_disable_interrupts(qdev);
3368
3369         ql_tx_ring_clean(qdev);
3370
3371         /* Call netif_napi_del() from common point.
3372          */
3373         for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3374                 netif_napi_del(&qdev->rx_ring[i].napi);
3375
3376         ql_free_rx_buffers(qdev);
3377
3378         spin_lock(&qdev->hw_lock);
3379         status = ql_adapter_reset(qdev);
3380         if (status)
3381                 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3382                         qdev->func);
3383         spin_unlock(&qdev->hw_lock);
3384         return status;
3385 }
3386
3387 static int ql_adapter_up(struct ql_adapter *qdev)
3388 {
3389         int err = 0;
3390
3391         err = ql_adapter_initialize(qdev);
3392         if (err) {
3393                 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3394                 goto err_init;
3395         }
3396         set_bit(QL_ADAPTER_UP, &qdev->flags);
3397         ql_alloc_rx_buffers(qdev);
3398         /* If the port is initialized and the
3399          * link is up the turn on the carrier.
3400          */
3401         if ((ql_read32(qdev, STS) & qdev->port_init) &&
3402                         (ql_read32(qdev, STS) & qdev->port_link_up))
3403                 ql_link_on(qdev);
3404         ql_enable_interrupts(qdev);
3405         ql_enable_all_completion_interrupts(qdev);
3406         netif_tx_start_all_queues(qdev->ndev);
3407
3408         return 0;
3409 err_init:
3410         ql_adapter_reset(qdev);
3411         return err;
3412 }
3413
3414 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3415 {
3416         ql_free_mem_resources(qdev);
3417         ql_free_irq(qdev);
3418 }
3419
3420 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3421 {
3422         int status = 0;
3423
3424         if (ql_alloc_mem_resources(qdev)) {
3425                 QPRINTK(qdev, IFUP, ERR, "Unable to  allocate memory.\n");
3426                 return -ENOMEM;
3427         }
3428         status = ql_request_irq(qdev);
3429         return status;
3430 }
3431
3432 static int qlge_close(struct net_device *ndev)
3433 {
3434         struct ql_adapter *qdev = netdev_priv(ndev);
3435
3436         /*
3437          * Wait for device to recover from a reset.
3438          * (Rarely happens, but possible.)
3439          */
3440         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3441                 msleep(1);
3442         ql_adapter_down(qdev);
3443         ql_release_adapter_resources(qdev);
3444         return 0;
3445 }
3446
3447 static int ql_configure_rings(struct ql_adapter *qdev)
3448 {
3449         int i;
3450         struct rx_ring *rx_ring;
3451         struct tx_ring *tx_ring;
3452         int cpu_cnt = num_online_cpus();
3453
3454         /*
3455          * For each processor present we allocate one
3456          * rx_ring for outbound completions, and one
3457          * rx_ring for inbound completions.  Plus there is
3458          * always the one default queue.  For the CPU
3459          * counts we end up with the following rx_rings:
3460          * rx_ring count =
3461          *  one default queue +
3462          *  (CPU count * outbound completion rx_ring) +
3463          *  (CPU count * inbound (RSS) completion rx_ring)
3464          * To keep it simple we limit the total number of
3465          * queues to < 32, so we truncate CPU to 8.
3466          * This limitation can be removed when requested.
3467          */
3468
3469         if (cpu_cnt > MAX_CPUS)
3470                 cpu_cnt = MAX_CPUS;
3471
3472         /*
3473          * rx_ring[0] is always the default queue.
3474          */
3475         /* Allocate outbound completion ring for each CPU. */
3476         qdev->tx_ring_count = cpu_cnt;
3477         /* Allocate inbound completion (RSS) ring for each CPU. */
3478         qdev->rss_ring_count = cpu_cnt;
3479         /* cq_id for the first inbound ring handler. */
3480         qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3481         /*
3482          * qdev->rx_ring_count:
3483          * Total number of rx_rings.  This includes the one
3484          * default queue, a number of outbound completion
3485          * handler rx_rings, and the number of inbound
3486          * completion handler rx_rings.
3487          */
3488         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3489
3490         for (i = 0; i < qdev->tx_ring_count; i++) {
3491                 tx_ring = &qdev->tx_ring[i];
3492                 memset((void *)tx_ring, 0, sizeof(*tx_ring));
3493                 tx_ring->qdev = qdev;
3494                 tx_ring->wq_id = i;
3495                 tx_ring->wq_len = qdev->tx_ring_size;
3496                 tx_ring->wq_size =
3497                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3498
3499                 /*
3500                  * The completion queue ID for the tx rings start
3501                  * immediately after the default Q ID, which is zero.
3502                  */
3503                 tx_ring->cq_id = i + 1;
3504         }
3505
3506         for (i = 0; i < qdev->rx_ring_count; i++) {
3507                 rx_ring = &qdev->rx_ring[i];
3508                 memset((void *)rx_ring, 0, sizeof(*rx_ring));
3509                 rx_ring->qdev = qdev;
3510                 rx_ring->cq_id = i;
3511                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
3512                 if (i == 0) {   /* Default queue at index 0. */
3513                         /*
3514                          * Default queue handles bcast/mcast plus
3515                          * async events.  Needs buffers.
3516                          */
3517                         rx_ring->cq_len = qdev->rx_ring_size;
3518                         rx_ring->cq_size =
3519                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3520                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3521                         rx_ring->lbq_size =
3522                             rx_ring->lbq_len * sizeof(__le64);
3523                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3524                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3525                         rx_ring->sbq_size =
3526                             rx_ring->sbq_len * sizeof(__le64);
3527                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3528                         rx_ring->type = DEFAULT_Q;
3529                 } else if (i < qdev->rss_ring_first_cq_id) {
3530                         /*
3531                          * Outbound queue handles outbound completions only.
3532                          */
3533                         /* outbound cq is same size as tx_ring it services. */
3534                         rx_ring->cq_len = qdev->tx_ring_size;
3535                         rx_ring->cq_size =
3536                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3537                         rx_ring->lbq_len = 0;
3538                         rx_ring->lbq_size = 0;
3539                         rx_ring->lbq_buf_size = 0;
3540                         rx_ring->sbq_len = 0;
3541                         rx_ring->sbq_size = 0;
3542                         rx_ring->sbq_buf_size = 0;
3543                         rx_ring->type = TX_Q;
3544                 } else {        /* Inbound completions (RSS) queues */
3545                         /*
3546                          * Inbound queues handle unicast frames only.
3547                          */
3548                         rx_ring->cq_len = qdev->rx_ring_size;
3549                         rx_ring->cq_size =
3550                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3551                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3552                         rx_ring->lbq_size =
3553                             rx_ring->lbq_len * sizeof(__le64);
3554                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3555                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3556                         rx_ring->sbq_size =
3557                             rx_ring->sbq_len * sizeof(__le64);
3558                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3559                         rx_ring->type = RX_Q;
3560                 }
3561         }
3562         return 0;
3563 }
3564
3565 static int qlge_open(struct net_device *ndev)
3566 {
3567         int err = 0;
3568         struct ql_adapter *qdev = netdev_priv(ndev);
3569
3570         err = ql_configure_rings(qdev);
3571         if (err)
3572                 return err;
3573
3574         err = ql_get_adapter_resources(qdev);
3575         if (err)
3576                 goto error_up;
3577
3578         err = ql_adapter_up(qdev);
3579         if (err)
3580                 goto error_up;
3581
3582         return err;
3583
3584 error_up:
3585         ql_release_adapter_resources(qdev);
3586         return err;
3587 }
3588
3589 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3590 {
3591         struct ql_adapter *qdev = netdev_priv(ndev);
3592
3593         if (ndev->mtu == 1500 && new_mtu == 9000) {
3594                 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3595                 queue_delayed_work(qdev->workqueue,
3596                                 &qdev->mpi_port_cfg_work, 0);
3597         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3598                 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3599         } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3600                    (ndev->mtu == 9000 && new_mtu == 9000)) {
3601                 return 0;
3602         } else
3603                 return -EINVAL;
3604         ndev->mtu = new_mtu;
3605         return 0;
3606 }
3607
3608 static struct net_device_stats *qlge_get_stats(struct net_device
3609                                                *ndev)
3610 {
3611         struct ql_adapter *qdev = netdev_priv(ndev);
3612         return &qdev->stats;
3613 }
3614
3615 static void qlge_set_multicast_list(struct net_device *ndev)
3616 {
3617         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3618         struct dev_mc_list *mc_ptr;
3619         int i, status;
3620
3621         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3622         if (status)
3623                 return;
3624         spin_lock(&qdev->hw_lock);
3625         /*
3626          * Set or clear promiscuous mode if a
3627          * transition is taking place.
3628          */
3629         if (ndev->flags & IFF_PROMISC) {
3630                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3631                         if (ql_set_routing_reg
3632                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3633                                 QPRINTK(qdev, HW, ERR,
3634                                         "Failed to set promiscous mode.\n");
3635                         } else {
3636                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
3637                         }
3638                 }
3639         } else {
3640                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3641                         if (ql_set_routing_reg
3642                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3643                                 QPRINTK(qdev, HW, ERR,
3644                                         "Failed to clear promiscous mode.\n");
3645                         } else {
3646                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3647                         }
3648                 }
3649         }
3650
3651         /*
3652          * Set or clear all multicast mode if a
3653          * transition is taking place.
3654          */
3655         if ((ndev->flags & IFF_ALLMULTI) ||
3656             (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3657                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3658                         if (ql_set_routing_reg
3659                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3660                                 QPRINTK(qdev, HW, ERR,
3661                                         "Failed to set all-multi mode.\n");
3662                         } else {
3663                                 set_bit(QL_ALLMULTI, &qdev->flags);
3664                         }
3665                 }
3666         } else {
3667                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3668                         if (ql_set_routing_reg
3669                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3670                                 QPRINTK(qdev, HW, ERR,
3671                                         "Failed to clear all-multi mode.\n");
3672                         } else {
3673                                 clear_bit(QL_ALLMULTI, &qdev->flags);
3674                         }
3675                 }
3676         }
3677
3678         if (ndev->mc_count) {
3679                 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3680                 if (status)
3681                         goto exit;
3682                 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3683                      i++, mc_ptr = mc_ptr->next)
3684                         if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3685                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3686                                 QPRINTK(qdev, HW, ERR,
3687                                         "Failed to loadmulticast address.\n");
3688                                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3689                                 goto exit;
3690                         }
3691                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3692                 if (ql_set_routing_reg
3693                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3694                         QPRINTK(qdev, HW, ERR,
3695                                 "Failed to set multicast match mode.\n");
3696                 } else {
3697                         set_bit(QL_ALLMULTI, &qdev->flags);
3698                 }
3699         }
3700 exit:
3701         spin_unlock(&qdev->hw_lock);
3702         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3703 }
3704
3705 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3706 {
3707         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3708         struct sockaddr *addr = p;
3709         int status;
3710
3711         if (netif_running(ndev))
3712                 return -EBUSY;
3713
3714         if (!is_valid_ether_addr(addr->sa_data))
3715                 return -EADDRNOTAVAIL;
3716         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3717
3718         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3719         if (status)
3720                 return status;
3721         spin_lock(&qdev->hw_lock);
3722         status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3723                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
3724         spin_unlock(&qdev->hw_lock);
3725         if (status)
3726                 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3727         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3728         return status;
3729 }
3730
3731 static void qlge_tx_timeout(struct net_device *ndev)
3732 {
3733         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3734         ql_queue_asic_error(qdev);
3735 }
3736
3737 static void ql_asic_reset_work(struct work_struct *work)
3738 {
3739         struct ql_adapter *qdev =
3740             container_of(work, struct ql_adapter, asic_reset_work.work);
3741         int status;
3742
3743         status = ql_adapter_down(qdev);
3744         if (status)
3745                 goto error;
3746
3747         status = ql_adapter_up(qdev);
3748         if (status)
3749                 goto error;
3750
3751         return;
3752 error:
3753         QPRINTK(qdev, IFUP, ALERT,
3754                 "Driver up/down cycle failed, closing device\n");
3755         rtnl_lock();
3756         set_bit(QL_ADAPTER_UP, &qdev->flags);
3757         dev_close(qdev->ndev);
3758         rtnl_unlock();
3759 }
3760
3761 static struct nic_operations qla8012_nic_ops = {
3762         .get_flash              = ql_get_8012_flash_params,
3763         .port_initialize        = ql_8012_port_initialize,
3764 };
3765
3766 static struct nic_operations qla8000_nic_ops = {
3767         .get_flash              = ql_get_8000_flash_params,
3768         .port_initialize        = ql_8000_port_initialize,
3769 };
3770
3771 /* Find the pcie function number for the other NIC
3772  * on this chip.  Since both NIC functions share a
3773  * common firmware we have the lowest enabled function
3774  * do any common work.  Examples would be resetting
3775  * after a fatal firmware error, or doing a firmware
3776  * coredump.
3777  */
3778 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
3779 {
3780         int status = 0;
3781         u32 temp;
3782         u32 nic_func1, nic_func2;
3783
3784         status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
3785                         &temp);
3786         if (status)
3787                 return status;
3788
3789         nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
3790                         MPI_TEST_NIC_FUNC_MASK);
3791         nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
3792                         MPI_TEST_NIC_FUNC_MASK);
3793
3794         if (qdev->func == nic_func1)
3795                 qdev->alt_func = nic_func2;
3796         else if (qdev->func == nic_func2)
3797                 qdev->alt_func = nic_func1;
3798         else
3799                 status = -EIO;
3800
3801         return status;
3802 }
3803
3804 static int ql_get_board_info(struct ql_adapter *qdev)
3805 {
3806         int status;
3807         qdev->func =
3808             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3809         if (qdev->func > 3)
3810                 return -EIO;
3811
3812         status = ql_get_alt_pcie_func(qdev);
3813         if (status)
3814                 return status;
3815
3816         qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
3817         if (qdev->port) {
3818                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3819                 qdev->port_link_up = STS_PL1;
3820                 qdev->port_init = STS_PI1;
3821                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3822                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3823         } else {
3824                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3825                 qdev->port_link_up = STS_PL0;
3826                 qdev->port_init = STS_PI0;
3827                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3828                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3829         }
3830         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3831         qdev->device_id = qdev->pdev->device;
3832         if (qdev->device_id == QLGE_DEVICE_ID_8012)
3833                 qdev->nic_ops = &qla8012_nic_ops;
3834         else if (qdev->device_id == QLGE_DEVICE_ID_8000)
3835                 qdev->nic_ops = &qla8000_nic_ops;
3836         return status;
3837 }
3838
3839 static void ql_release_all(struct pci_dev *pdev)
3840 {
3841         struct net_device *ndev = pci_get_drvdata(pdev);
3842         struct ql_adapter *qdev = netdev_priv(ndev);
3843
3844         if (qdev->workqueue) {
3845                 destroy_workqueue(qdev->workqueue);
3846                 qdev->workqueue = NULL;
3847         }
3848         if (qdev->q_workqueue) {
3849                 destroy_workqueue(qdev->q_workqueue);
3850                 qdev->q_workqueue = NULL;
3851         }
3852         if (qdev->reg_base)
3853                 iounmap(qdev->reg_base);
3854         if (qdev->doorbell_area)
3855                 iounmap(qdev->doorbell_area);
3856         pci_release_regions(pdev);
3857         pci_set_drvdata(pdev, NULL);
3858 }
3859
3860 static int __devinit ql_init_device(struct pci_dev *pdev,
3861                                     struct net_device *ndev, int cards_found)
3862 {
3863         struct ql_adapter *qdev = netdev_priv(ndev);
3864         int pos, err = 0;
3865         u16 val16;
3866
3867         memset((void *)qdev, 0, sizeof(*qdev));
3868         err = pci_enable_device(pdev);
3869         if (err) {
3870                 dev_err(&pdev->dev, "PCI device enable failed.\n");
3871                 return err;
3872         }
3873
3874         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3875         if (pos <= 0) {
3876                 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3877                         "aborting.\n");
3878                 goto err_out;
3879         } else {
3880                 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3881                 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3882                 val16 |= (PCI_EXP_DEVCTL_CERE |
3883                           PCI_EXP_DEVCTL_NFERE |
3884                           PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3885                 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3886         }
3887
3888         err = pci_request_regions(pdev, DRV_NAME);
3889         if (err) {
3890                 dev_err(&pdev->dev, "PCI region request failed.\n");
3891                 goto err_out;
3892         }
3893
3894         pci_set_master(pdev);
3895         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3896                 set_bit(QL_DMA64, &qdev->flags);
3897                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3898         } else {
3899                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3900                 if (!err)
3901                        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3902         }
3903
3904         if (err) {
3905                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3906                 goto err_out;
3907         }
3908
3909         pci_set_drvdata(pdev, ndev);
3910         qdev->reg_base =
3911             ioremap_nocache(pci_resource_start(pdev, 1),
3912                             pci_resource_len(pdev, 1));
3913         if (!qdev->reg_base) {
3914                 dev_err(&pdev->dev, "Register mapping failed.\n");
3915                 err = -ENOMEM;
3916                 goto err_out;
3917         }
3918
3919         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3920         qdev->doorbell_area =
3921             ioremap_nocache(pci_resource_start(pdev, 3),
3922                             pci_resource_len(pdev, 3));
3923         if (!qdev->doorbell_area) {
3924                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3925                 err = -ENOMEM;
3926                 goto err_out;
3927         }
3928
3929         qdev->ndev = ndev;
3930         qdev->pdev = pdev;
3931         err = ql_get_board_info(qdev);
3932         if (err) {
3933                 dev_err(&pdev->dev, "Register access failed.\n");
3934                 err = -EIO;
3935                 goto err_out;
3936         }
3937         qdev->msg_enable = netif_msg_init(debug, default_msg);
3938         spin_lock_init(&qdev->hw_lock);
3939         spin_lock_init(&qdev->stats_lock);
3940
3941         /* make sure the EEPROM is good */
3942         err = qdev->nic_ops->get_flash(qdev);
3943         if (err) {
3944                 dev_err(&pdev->dev, "Invalid FLASH.\n");
3945                 goto err_out;
3946         }
3947
3948         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3949
3950         /* Set up the default ring sizes. */
3951         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3952         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3953
3954         /* Set up the coalescing parameters. */
3955         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3956         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3957         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3958         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3959
3960         /*
3961          * Set up the operating parameters.
3962          */
3963         qdev->rx_csum = 1;
3964
3965         qdev->q_workqueue = create_workqueue(ndev->name);
3966         qdev->workqueue = create_singlethread_workqueue(ndev->name);
3967         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3968         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3969         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3970         INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
3971         INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
3972         mutex_init(&qdev->mpi_mutex);
3973         init_completion(&qdev->ide_completion);
3974
3975         if (!cards_found) {
3976                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3977                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3978                          DRV_NAME, DRV_VERSION);
3979         }
3980         return 0;
3981 err_out:
3982         ql_release_all(pdev);
3983         pci_disable_device(pdev);
3984         return err;
3985 }
3986
3987
3988 static const struct net_device_ops qlge_netdev_ops = {
3989         .ndo_open               = qlge_open,
3990         .ndo_stop               = qlge_close,
3991         .ndo_start_xmit         = qlge_send,
3992         .ndo_change_mtu         = qlge_change_mtu,
3993         .ndo_get_stats          = qlge_get_stats,
3994         .ndo_set_multicast_list = qlge_set_multicast_list,
3995         .ndo_set_mac_address    = qlge_set_mac_address,
3996         .ndo_validate_addr      = eth_validate_addr,
3997         .ndo_tx_timeout         = qlge_tx_timeout,
3998         .ndo_vlan_rx_register   = ql_vlan_rx_register,
3999         .ndo_vlan_rx_add_vid    = ql_vlan_rx_add_vid,
4000         .ndo_vlan_rx_kill_vid   = ql_vlan_rx_kill_vid,
4001 };
4002
4003 static int __devinit qlge_probe(struct pci_dev *pdev,
4004                                 const struct pci_device_id *pci_entry)
4005 {
4006         struct net_device *ndev = NULL;
4007         struct ql_adapter *qdev = NULL;
4008         static int cards_found = 0;
4009         int err = 0;
4010
4011         ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4012                         min(MAX_CPUS, (int)num_online_cpus()));
4013         if (!ndev)
4014                 return -ENOMEM;
4015
4016         err = ql_init_device(pdev, ndev, cards_found);
4017         if (err < 0) {
4018                 free_netdev(ndev);
4019                 return err;
4020         }
4021
4022         qdev = netdev_priv(ndev);
4023         SET_NETDEV_DEV(ndev, &pdev->dev);
4024         ndev->features = (0
4025                           | NETIF_F_IP_CSUM
4026                           | NETIF_F_SG
4027                           | NETIF_F_TSO
4028                           | NETIF_F_TSO6
4029                           | NETIF_F_TSO_ECN
4030                           | NETIF_F_HW_VLAN_TX
4031                           | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
4032         ndev->features |= NETIF_F_GRO;
4033
4034         if (test_bit(QL_DMA64, &qdev->flags))
4035                 ndev->features |= NETIF_F_HIGHDMA;
4036
4037         /*
4038          * Set up net_device structure.
4039          */
4040         ndev->tx_queue_len = qdev->tx_ring_size;
4041         ndev->irq = pdev->irq;
4042
4043         ndev->netdev_ops = &qlge_netdev_ops;
4044         SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4045         ndev->watchdog_timeo = 10 * HZ;
4046
4047         err = register_netdev(ndev);
4048         if (err) {
4049                 dev_err(&pdev->dev, "net device registration failed.\n");
4050                 ql_release_all(pdev);
4051                 pci_disable_device(pdev);
4052                 return err;
4053         }
4054         ql_link_off(qdev);
4055         ql_display_dev_info(ndev);
4056         cards_found++;
4057         return 0;
4058 }
4059
4060 static void __devexit qlge_remove(struct pci_dev *pdev)
4061 {
4062         struct net_device *ndev = pci_get_drvdata(pdev);
4063         unregister_netdev(ndev);
4064         ql_release_all(pdev);
4065         pci_disable_device(pdev);
4066         free_netdev(ndev);
4067 }
4068
4069 /*
4070  * This callback is called by the PCI subsystem whenever
4071  * a PCI bus error is detected.
4072  */
4073 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4074                                                enum pci_channel_state state)
4075 {
4076         struct net_device *ndev = pci_get_drvdata(pdev);
4077         struct ql_adapter *qdev = netdev_priv(ndev);
4078
4079         if (netif_running(ndev))
4080                 ql_adapter_down(qdev);
4081
4082         pci_disable_device(pdev);
4083
4084         /* Request a slot reset. */
4085         return PCI_ERS_RESULT_NEED_RESET;
4086 }
4087
4088 /*
4089  * This callback is called after the PCI buss has been reset.
4090  * Basically, this tries to restart the card from scratch.
4091  * This is a shortened version of the device probe/discovery code,
4092  * it resembles the first-half of the () routine.
4093  */
4094 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4095 {
4096         struct net_device *ndev = pci_get_drvdata(pdev);
4097         struct ql_adapter *qdev = netdev_priv(ndev);
4098
4099         if (pci_enable_device(pdev)) {
4100                 QPRINTK(qdev, IFUP, ERR,
4101                         "Cannot re-enable PCI device after reset.\n");
4102                 return PCI_ERS_RESULT_DISCONNECT;
4103         }
4104
4105         pci_set_master(pdev);
4106
4107         netif_carrier_off(ndev);
4108         ql_adapter_reset(qdev);
4109
4110         /* Make sure the EEPROM is good */
4111         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4112
4113         if (!is_valid_ether_addr(ndev->perm_addr)) {
4114                 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
4115                 return PCI_ERS_RESULT_DISCONNECT;
4116         }
4117
4118         return PCI_ERS_RESULT_RECOVERED;
4119 }
4120
4121 static void qlge_io_resume(struct pci_dev *pdev)
4122 {
4123         struct net_device *ndev = pci_get_drvdata(pdev);
4124         struct ql_adapter *qdev = netdev_priv(ndev);
4125
4126         pci_set_master(pdev);
4127
4128         if (netif_running(ndev)) {
4129                 if (ql_adapter_up(qdev)) {
4130                         QPRINTK(qdev, IFUP, ERR,
4131                                 "Device initialization failed after reset.\n");
4132                         return;
4133                 }
4134         }
4135
4136         netif_device_attach(ndev);
4137 }
4138
4139 static struct pci_error_handlers qlge_err_handler = {
4140         .error_detected = qlge_io_error_detected,
4141         .slot_reset = qlge_io_slot_reset,
4142         .resume = qlge_io_resume,
4143 };
4144
4145 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4146 {
4147         struct net_device *ndev = pci_get_drvdata(pdev);
4148         struct ql_adapter *qdev = netdev_priv(ndev);
4149         int err;
4150
4151         netif_device_detach(ndev);
4152
4153         if (netif_running(ndev)) {
4154                 err = ql_adapter_down(qdev);
4155                 if (!err)
4156                         return err;
4157         }
4158
4159         err = pci_save_state(pdev);
4160         if (err)
4161                 return err;
4162
4163         pci_disable_device(pdev);
4164
4165         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4166
4167         return 0;
4168 }
4169
4170 #ifdef CONFIG_PM
4171 static int qlge_resume(struct pci_dev *pdev)
4172 {
4173         struct net_device *ndev = pci_get_drvdata(pdev);
4174         struct ql_adapter *qdev = netdev_priv(ndev);
4175         int err;
4176
4177         pci_set_power_state(pdev, PCI_D0);
4178         pci_restore_state(pdev);
4179         err = pci_enable_device(pdev);
4180         if (err) {
4181                 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
4182                 return err;
4183         }
4184         pci_set_master(pdev);
4185
4186         pci_enable_wake(pdev, PCI_D3hot, 0);
4187         pci_enable_wake(pdev, PCI_D3cold, 0);
4188
4189         if (netif_running(ndev)) {
4190                 err = ql_adapter_up(qdev);
4191                 if (err)
4192                         return err;
4193         }
4194
4195         netif_device_attach(ndev);
4196
4197         return 0;
4198 }
4199 #endif /* CONFIG_PM */
4200
4201 static void qlge_shutdown(struct pci_dev *pdev)
4202 {
4203         qlge_suspend(pdev, PMSG_SUSPEND);
4204 }
4205
4206 static struct pci_driver qlge_driver = {
4207         .name = DRV_NAME,
4208         .id_table = qlge_pci_tbl,
4209         .probe = qlge_probe,
4210         .remove = __devexit_p(qlge_remove),
4211 #ifdef CONFIG_PM
4212         .suspend = qlge_suspend,
4213         .resume = qlge_resume,
4214 #endif
4215         .shutdown = qlge_shutdown,
4216         .err_handler = &qlge_err_handler
4217 };
4218
4219 static int __init qlge_init_module(void)
4220 {
4221         return pci_register_driver(&qlge_driver);
4222 }
4223
4224 static void __exit qlge_exit(void)
4225 {
4226         pci_unregister_driver(&qlge_driver);
4227 }
4228
4229 module_init(qlge_init_module);
4230 module_exit(qlge_exit);