Merge branch 'omap-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tmlind...
[pandora-kernel.git] / drivers / net / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28
29 /******************************************************************************
30  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/netdevice.h>
36 #include <linux/vmalloc.h>
37 #include <linux/string.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47
48 #include "ixgbevf.h"
49
50 char ixgbevf_driver_name[] = "ixgbevf";
51 static const char ixgbevf_driver_string[] =
52         "Intel(R) 82599 Virtual Function";
53
54 #define DRV_VERSION "1.0.0-k0"
55 const char ixgbevf_driver_version[] = DRV_VERSION;
56 static char ixgbevf_copyright[] = "Copyright (c) 2009 Intel Corporation.";
57
58 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
59         [board_82599_vf] = &ixgbevf_vf_info,
60 };
61
62 /* ixgbevf_pci_tbl - PCI Device ID Table
63  *
64  * Wildcard entries (PCI_ANY_ID) should come last
65  * Last entry must be all 0s
66  *
67  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
68  *   Class, Class Mask, private data (not used) }
69  */
70 static struct pci_device_id ixgbevf_pci_tbl[] = {
71         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
72         board_82599_vf},
73
74         /* required last entry */
75         {0, }
76 };
77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
78
79 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
80 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
81 MODULE_LICENSE("GPL");
82 MODULE_VERSION(DRV_VERSION);
83
84 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
85
86 /* forward decls */
87 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
88 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
89                                u32 itr_reg);
90
91 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
92                                            struct ixgbevf_ring *rx_ring,
93                                            u32 val)
94 {
95         /*
96          * Force memory writes to complete before letting h/w
97          * know there are new descriptors to fetch.  (Only
98          * applicable for weak-ordered memory model archs,
99          * such as IA-64).
100          */
101         wmb();
102         IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
103 }
104
105 /*
106  * ixgbe_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
107  * @adapter: pointer to adapter struct
108  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
109  * @queue: queue to map the corresponding interrupt to
110  * @msix_vector: the vector to map to the corresponding queue
111  *
112  */
113 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
114                              u8 queue, u8 msix_vector)
115 {
116         u32 ivar, index;
117         struct ixgbe_hw *hw = &adapter->hw;
118         if (direction == -1) {
119                 /* other causes */
120                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
121                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
122                 ivar &= ~0xFF;
123                 ivar |= msix_vector;
124                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
125         } else {
126                 /* tx or rx causes */
127                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
128                 index = ((16 * (queue & 1)) + (8 * direction));
129                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
130                 ivar &= ~(0xFF << index);
131                 ivar |= (msix_vector << index);
132                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
133         }
134 }
135
136 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
137                                                struct ixgbevf_tx_buffer
138                                                *tx_buffer_info)
139 {
140         if (tx_buffer_info->dma) {
141                 if (tx_buffer_info->mapped_as_page)
142                         dma_unmap_page(&adapter->pdev->dev,
143                                        tx_buffer_info->dma,
144                                        tx_buffer_info->length,
145                                        DMA_TO_DEVICE);
146                 else
147                         dma_unmap_single(&adapter->pdev->dev,
148                                          tx_buffer_info->dma,
149                                          tx_buffer_info->length,
150                                          DMA_TO_DEVICE);
151                 tx_buffer_info->dma = 0;
152         }
153         if (tx_buffer_info->skb) {
154                 dev_kfree_skb_any(tx_buffer_info->skb);
155                 tx_buffer_info->skb = NULL;
156         }
157         tx_buffer_info->time_stamp = 0;
158         /* tx_buffer_info must be completely set up in the transmit path */
159 }
160
161 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_adapter *adapter,
162                                          struct ixgbevf_ring *tx_ring,
163                                          unsigned int eop)
164 {
165         struct ixgbe_hw *hw = &adapter->hw;
166         u32 head, tail;
167
168         /* Detect a transmit hang in hardware, this serializes the
169          * check with the clearing of time_stamp and movement of eop */
170         head = readl(hw->hw_addr + tx_ring->head);
171         tail = readl(hw->hw_addr + tx_ring->tail);
172         adapter->detect_tx_hung = false;
173         if ((head != tail) &&
174             tx_ring->tx_buffer_info[eop].time_stamp &&
175             time_after(jiffies, tx_ring->tx_buffer_info[eop].time_stamp + HZ)) {
176                 /* detected Tx unit hang */
177                 union ixgbe_adv_tx_desc *tx_desc;
178                 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
179                 printk(KERN_ERR "Detected Tx Unit Hang\n"
180                        "  Tx Queue             <%d>\n"
181                        "  TDH, TDT             <%x>, <%x>\n"
182                        "  next_to_use          <%x>\n"
183                        "  next_to_clean        <%x>\n"
184                        "tx_buffer_info[next_to_clean]\n"
185                        "  time_stamp           <%lx>\n"
186                        "  jiffies              <%lx>\n",
187                        tx_ring->queue_index,
188                        head, tail,
189                        tx_ring->next_to_use, eop,
190                        tx_ring->tx_buffer_info[eop].time_stamp, jiffies);
191                 return true;
192         }
193
194         return false;
195 }
196
197 #define IXGBE_MAX_TXD_PWR       14
198 #define IXGBE_MAX_DATA_PER_TXD  (1 << IXGBE_MAX_TXD_PWR)
199
200 /* Tx Descriptors needed, worst case */
201 #define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
202                          (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
203 #ifdef MAX_SKB_FRAGS
204 #define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
205         MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1)      /* for context */
206 #else
207 #define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
208 #endif
209
210 static void ixgbevf_tx_timeout(struct net_device *netdev);
211
212 /**
213  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
214  * @adapter: board private structure
215  * @tx_ring: tx ring to clean
216  **/
217 static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
218                                  struct ixgbevf_ring *tx_ring)
219 {
220         struct net_device *netdev = adapter->netdev;
221         struct ixgbe_hw *hw = &adapter->hw;
222         union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
223         struct ixgbevf_tx_buffer *tx_buffer_info;
224         unsigned int i, eop, count = 0;
225         unsigned int total_bytes = 0, total_packets = 0;
226
227         i = tx_ring->next_to_clean;
228         eop = tx_ring->tx_buffer_info[i].next_to_watch;
229         eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
230
231         while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
232                (count < tx_ring->work_limit)) {
233                 bool cleaned = false;
234                 for ( ; !cleaned; count++) {
235                         struct sk_buff *skb;
236                         tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
237                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
238                         cleaned = (i == eop);
239                         skb = tx_buffer_info->skb;
240
241                         if (cleaned && skb) {
242                                 unsigned int segs, bytecount;
243
244                                 /* gso_segs is currently only valid for tcp */
245                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
246                                 /* multiply data chunks by size of headers */
247                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
248                                             skb->len;
249                                 total_packets += segs;
250                                 total_bytes += bytecount;
251                         }
252
253                         ixgbevf_unmap_and_free_tx_resource(adapter,
254                                                            tx_buffer_info);
255
256                         tx_desc->wb.status = 0;
257
258                         i++;
259                         if (i == tx_ring->count)
260                                 i = 0;
261                 }
262
263                 eop = tx_ring->tx_buffer_info[i].next_to_watch;
264                 eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
265         }
266
267         tx_ring->next_to_clean = i;
268
269 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
270         if (unlikely(count && netif_carrier_ok(netdev) &&
271                      (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
272                 /* Make sure that anybody stopping the queue after this
273                  * sees the new next_to_clean.
274                  */
275                 smp_mb();
276 #ifdef HAVE_TX_MQ
277                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
278                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
279                         netif_wake_subqueue(netdev, tx_ring->queue_index);
280                         ++adapter->restart_queue;
281                 }
282 #else
283                 if (netif_queue_stopped(netdev) &&
284                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
285                         netif_wake_queue(netdev);
286                         ++adapter->restart_queue;
287                 }
288 #endif
289         }
290
291         if (adapter->detect_tx_hung) {
292                 if (ixgbevf_check_tx_hang(adapter, tx_ring, i)) {
293                         /* schedule immediate reset if we believe we hung */
294                         printk(KERN_INFO
295                                "tx hang %d detected, resetting adapter\n",
296                                adapter->tx_timeout_count + 1);
297                         ixgbevf_tx_timeout(adapter->netdev);
298                 }
299         }
300
301         /* re-arm the interrupt */
302         if ((count >= tx_ring->work_limit) &&
303             (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
304                 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
305         }
306
307         tx_ring->total_bytes += total_bytes;
308         tx_ring->total_packets += total_packets;
309
310         adapter->net_stats.tx_bytes += total_bytes;
311         adapter->net_stats.tx_packets += total_packets;
312
313         return (count < tx_ring->work_limit);
314 }
315
316 /**
317  * ixgbevf_receive_skb - Send a completed packet up the stack
318  * @q_vector: structure containing interrupt and ring information
319  * @skb: packet to send up
320  * @status: hardware indication of status of receive
321  * @rx_ring: rx descriptor ring (for a specific queue) to setup
322  * @rx_desc: rx descriptor
323  **/
324 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
325                                 struct sk_buff *skb, u8 status,
326                                 struct ixgbevf_ring *ring,
327                                 union ixgbe_adv_rx_desc *rx_desc)
328 {
329         struct ixgbevf_adapter *adapter = q_vector->adapter;
330         bool is_vlan = (status & IXGBE_RXD_STAT_VP);
331         u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
332         int ret;
333
334         if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL)) {
335                 if (adapter->vlgrp && is_vlan)
336                         vlan_gro_receive(&q_vector->napi,
337                                          adapter->vlgrp,
338                                          tag, skb);
339                 else
340                         napi_gro_receive(&q_vector->napi, skb);
341         } else {
342                 if (adapter->vlgrp && is_vlan)
343                         ret = vlan_hwaccel_rx(skb, adapter->vlgrp, tag);
344                 else
345                         ret = netif_rx(skb);
346         }
347 }
348
349 /**
350  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
351  * @adapter: address of board private structure
352  * @status_err: hardware indication of status of receive
353  * @skb: skb currently being received and modified
354  **/
355 static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
356                                        u32 status_err, struct sk_buff *skb)
357 {
358         skb->ip_summed = CHECKSUM_NONE;
359
360         /* Rx csum disabled */
361         if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
362                 return;
363
364         /* if IP and error */
365         if ((status_err & IXGBE_RXD_STAT_IPCS) &&
366             (status_err & IXGBE_RXDADV_ERR_IPE)) {
367                 adapter->hw_csum_rx_error++;
368                 return;
369         }
370
371         if (!(status_err & IXGBE_RXD_STAT_L4CS))
372                 return;
373
374         if (status_err & IXGBE_RXDADV_ERR_TCPE) {
375                 adapter->hw_csum_rx_error++;
376                 return;
377         }
378
379         /* It must be a TCP or UDP packet with a valid checksum */
380         skb->ip_summed = CHECKSUM_UNNECESSARY;
381         adapter->hw_csum_rx_good++;
382 }
383
384 /**
385  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
386  * @adapter: address of board private structure
387  **/
388 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
389                                      struct ixgbevf_ring *rx_ring,
390                                      int cleaned_count)
391 {
392         struct pci_dev *pdev = adapter->pdev;
393         union ixgbe_adv_rx_desc *rx_desc;
394         struct ixgbevf_rx_buffer *bi;
395         struct sk_buff *skb;
396         unsigned int i;
397         unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
398
399         i = rx_ring->next_to_use;
400         bi = &rx_ring->rx_buffer_info[i];
401
402         while (cleaned_count--) {
403                 rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
404
405                 if (!bi->page_dma &&
406                     (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
407                         if (!bi->page) {
408                                 bi->page = netdev_alloc_page(adapter->netdev);
409                                 if (!bi->page) {
410                                         adapter->alloc_rx_page_failed++;
411                                         goto no_buffers;
412                                 }
413                                 bi->page_offset = 0;
414                         } else {
415                                 /* use a half page if we're re-using */
416                                 bi->page_offset ^= (PAGE_SIZE / 2);
417                         }
418
419                         bi->page_dma = dma_map_page(&pdev->dev, bi->page,
420                                                     bi->page_offset,
421                                                     (PAGE_SIZE / 2),
422                                                     DMA_FROM_DEVICE);
423                 }
424
425                 skb = bi->skb;
426                 if (!skb) {
427                         skb = netdev_alloc_skb(adapter->netdev,
428                                                                bufsz);
429
430                         if (!skb) {
431                                 adapter->alloc_rx_buff_failed++;
432                                 goto no_buffers;
433                         }
434
435                         /*
436                          * Make buffer alignment 2 beyond a 16 byte boundary
437                          * this will result in a 16 byte aligned IP header after
438                          * the 14 byte MAC header is removed
439                          */
440                         skb_reserve(skb, NET_IP_ALIGN);
441
442                         bi->skb = skb;
443                 }
444                 if (!bi->dma) {
445                         bi->dma = dma_map_single(&pdev->dev, skb->data,
446                                                  rx_ring->rx_buf_len,
447                                                  DMA_FROM_DEVICE);
448                 }
449                 /* Refresh the desc even if buffer_addrs didn't change because
450                  * each write-back erases this info. */
451                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
452                         rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
453                         rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
454                 } else {
455                         rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
456                 }
457
458                 i++;
459                 if (i == rx_ring->count)
460                         i = 0;
461                 bi = &rx_ring->rx_buffer_info[i];
462         }
463
464 no_buffers:
465         if (rx_ring->next_to_use != i) {
466                 rx_ring->next_to_use = i;
467                 if (i-- == 0)
468                         i = (rx_ring->count - 1);
469
470                 ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
471         }
472 }
473
474 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
475                                              u64 qmask)
476 {
477         u32 mask;
478         struct ixgbe_hw *hw = &adapter->hw;
479
480         mask = (qmask & 0xFFFFFFFF);
481         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
482 }
483
484 static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
485 {
486         return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
487 }
488
489 static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
490 {
491         return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
492 }
493
494 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
495                                  struct ixgbevf_ring *rx_ring,
496                                  int *work_done, int work_to_do)
497 {
498         struct ixgbevf_adapter *adapter = q_vector->adapter;
499         struct pci_dev *pdev = adapter->pdev;
500         union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
501         struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
502         struct sk_buff *skb;
503         unsigned int i;
504         u32 len, staterr;
505         u16 hdr_info;
506         bool cleaned = false;
507         int cleaned_count = 0;
508         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
509
510         i = rx_ring->next_to_clean;
511         rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
512         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
513         rx_buffer_info = &rx_ring->rx_buffer_info[i];
514
515         while (staterr & IXGBE_RXD_STAT_DD) {
516                 u32 upper_len = 0;
517                 if (*work_done >= work_to_do)
518                         break;
519                 (*work_done)++;
520
521                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
522                         hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
523                         len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
524                                IXGBE_RXDADV_HDRBUFLEN_SHIFT;
525                         if (hdr_info & IXGBE_RXDADV_SPH)
526                                 adapter->rx_hdr_split++;
527                         if (len > IXGBEVF_RX_HDR_SIZE)
528                                 len = IXGBEVF_RX_HDR_SIZE;
529                         upper_len = le16_to_cpu(rx_desc->wb.upper.length);
530                 } else {
531                         len = le16_to_cpu(rx_desc->wb.upper.length);
532                 }
533                 cleaned = true;
534                 skb = rx_buffer_info->skb;
535                 prefetch(skb->data - NET_IP_ALIGN);
536                 rx_buffer_info->skb = NULL;
537
538                 if (rx_buffer_info->dma) {
539                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
540                                          rx_ring->rx_buf_len,
541                                          DMA_FROM_DEVICE);
542                         rx_buffer_info->dma = 0;
543                         skb_put(skb, len);
544                 }
545
546                 if (upper_len) {
547                         dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
548                                        PAGE_SIZE / 2, DMA_FROM_DEVICE);
549                         rx_buffer_info->page_dma = 0;
550                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
551                                            rx_buffer_info->page,
552                                            rx_buffer_info->page_offset,
553                                            upper_len);
554
555                         if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
556                             (page_count(rx_buffer_info->page) != 1))
557                                 rx_buffer_info->page = NULL;
558                         else
559                                 get_page(rx_buffer_info->page);
560
561                         skb->len += upper_len;
562                         skb->data_len += upper_len;
563                         skb->truesize += upper_len;
564                 }
565
566                 i++;
567                 if (i == rx_ring->count)
568                         i = 0;
569
570                 next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
571                 prefetch(next_rxd);
572                 cleaned_count++;
573
574                 next_buffer = &rx_ring->rx_buffer_info[i];
575
576                 if (!(staterr & IXGBE_RXD_STAT_EOP)) {
577                         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
578                                 rx_buffer_info->skb = next_buffer->skb;
579                                 rx_buffer_info->dma = next_buffer->dma;
580                                 next_buffer->skb = skb;
581                                 next_buffer->dma = 0;
582                         } else {
583                                 skb->next = next_buffer->skb;
584                                 skb->next->prev = skb;
585                         }
586                         adapter->non_eop_descs++;
587                         goto next_desc;
588                 }
589
590                 /* ERR_MASK will only have valid bits if EOP set */
591                 if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
592                         dev_kfree_skb_irq(skb);
593                         goto next_desc;
594                 }
595
596                 ixgbevf_rx_checksum(adapter, staterr, skb);
597
598                 /* probably a little skewed due to removing CRC */
599                 total_rx_bytes += skb->len;
600                 total_rx_packets++;
601
602                 /*
603                  * Work around issue of some types of VM to VM loop back
604                  * packets not getting split correctly
605                  */
606                 if (staterr & IXGBE_RXD_STAT_LB) {
607                         u32 header_fixup_len = skb_headlen(skb);
608                         if (header_fixup_len < 14)
609                                 skb_push(skb, header_fixup_len);
610                 }
611                 skb->protocol = eth_type_trans(skb, adapter->netdev);
612
613                 ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
614
615 next_desc:
616                 rx_desc->wb.upper.status_error = 0;
617
618                 /* return some buffers to hardware, one at a time is too slow */
619                 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
620                         ixgbevf_alloc_rx_buffers(adapter, rx_ring,
621                                                  cleaned_count);
622                         cleaned_count = 0;
623                 }
624
625                 /* use prefetched values */
626                 rx_desc = next_rxd;
627                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
628
629                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
630         }
631
632         rx_ring->next_to_clean = i;
633         cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
634
635         if (cleaned_count)
636                 ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
637
638         rx_ring->total_packets += total_rx_packets;
639         rx_ring->total_bytes += total_rx_bytes;
640         adapter->net_stats.rx_bytes += total_rx_bytes;
641         adapter->net_stats.rx_packets += total_rx_packets;
642
643         return cleaned;
644 }
645
646 /**
647  * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
648  * @napi: napi struct with our devices info in it
649  * @budget: amount of work driver is allowed to do this pass, in packets
650  *
651  * This function is optimized for cleaning one queue only on a single
652  * q_vector!!!
653  **/
654 static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
655 {
656         struct ixgbevf_q_vector *q_vector =
657                 container_of(napi, struct ixgbevf_q_vector, napi);
658         struct ixgbevf_adapter *adapter = q_vector->adapter;
659         struct ixgbevf_ring *rx_ring = NULL;
660         int work_done = 0;
661         long r_idx;
662
663         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
664         rx_ring = &(adapter->rx_ring[r_idx]);
665
666         ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
667
668         /* If all Rx work done, exit the polling mode */
669         if (work_done < budget) {
670                 napi_complete(napi);
671                 if (adapter->itr_setting & 1)
672                         ixgbevf_set_itr_msix(q_vector);
673                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
674                         ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
675         }
676
677         return work_done;
678 }
679
680 /**
681  * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
682  * @napi: napi struct with our devices info in it
683  * @budget: amount of work driver is allowed to do this pass, in packets
684  *
685  * This function will clean more than one rx queue associated with a
686  * q_vector.
687  **/
688 static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
689 {
690         struct ixgbevf_q_vector *q_vector =
691                 container_of(napi, struct ixgbevf_q_vector, napi);
692         struct ixgbevf_adapter *adapter = q_vector->adapter;
693         struct ixgbevf_ring *rx_ring = NULL;
694         int work_done = 0, i;
695         long r_idx;
696         u64 enable_mask = 0;
697
698         /* attempt to distribute budget to each queue fairly, but don't allow
699          * the budget to go below 1 because we'll exit polling */
700         budget /= (q_vector->rxr_count ?: 1);
701         budget = max(budget, 1);
702         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
703         for (i = 0; i < q_vector->rxr_count; i++) {
704                 rx_ring = &(adapter->rx_ring[r_idx]);
705                 ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
706                 enable_mask |= rx_ring->v_idx;
707                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
708                                       r_idx + 1);
709         }
710
711 #ifndef HAVE_NETDEV_NAPI_LIST
712         if (!netif_running(adapter->netdev))
713                 work_done = 0;
714
715 #endif
716         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
717         rx_ring = &(adapter->rx_ring[r_idx]);
718
719         /* If all Rx work done, exit the polling mode */
720         if (work_done < budget) {
721                 napi_complete(napi);
722                 if (adapter->itr_setting & 1)
723                         ixgbevf_set_itr_msix(q_vector);
724                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
725                         ixgbevf_irq_enable_queues(adapter, enable_mask);
726         }
727
728         return work_done;
729 }
730
731
732 /**
733  * ixgbevf_configure_msix - Configure MSI-X hardware
734  * @adapter: board private structure
735  *
736  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
737  * interrupts.
738  **/
739 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
740 {
741         struct ixgbevf_q_vector *q_vector;
742         struct ixgbe_hw *hw = &adapter->hw;
743         int i, j, q_vectors, v_idx, r_idx;
744         u32 mask;
745
746         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
747
748         /*
749          * Populate the IVAR table and set the ITR values to the
750          * corresponding register.
751          */
752         for (v_idx = 0; v_idx < q_vectors; v_idx++) {
753                 q_vector = adapter->q_vector[v_idx];
754                 /* XXX for_each_set_bit(...) */
755                 r_idx = find_first_bit(q_vector->rxr_idx,
756                                        adapter->num_rx_queues);
757
758                 for (i = 0; i < q_vector->rxr_count; i++) {
759                         j = adapter->rx_ring[r_idx].reg_idx;
760                         ixgbevf_set_ivar(adapter, 0, j, v_idx);
761                         r_idx = find_next_bit(q_vector->rxr_idx,
762                                               adapter->num_rx_queues,
763                                               r_idx + 1);
764                 }
765                 r_idx = find_first_bit(q_vector->txr_idx,
766                                        adapter->num_tx_queues);
767
768                 for (i = 0; i < q_vector->txr_count; i++) {
769                         j = adapter->tx_ring[r_idx].reg_idx;
770                         ixgbevf_set_ivar(adapter, 1, j, v_idx);
771                         r_idx = find_next_bit(q_vector->txr_idx,
772                                               adapter->num_tx_queues,
773                                               r_idx + 1);
774                 }
775
776                 /* if this is a tx only vector halve the interrupt rate */
777                 if (q_vector->txr_count && !q_vector->rxr_count)
778                         q_vector->eitr = (adapter->eitr_param >> 1);
779                 else if (q_vector->rxr_count)
780                         /* rx only */
781                         q_vector->eitr = adapter->eitr_param;
782
783                 ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
784         }
785
786         ixgbevf_set_ivar(adapter, -1, 1, v_idx);
787
788         /* set up to autoclear timer, and the vectors */
789         mask = IXGBE_EIMS_ENABLE_MASK;
790         mask &= ~IXGBE_EIMS_OTHER;
791         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
792 }
793
794 enum latency_range {
795         lowest_latency = 0,
796         low_latency = 1,
797         bulk_latency = 2,
798         latency_invalid = 255
799 };
800
801 /**
802  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
803  * @adapter: pointer to adapter
804  * @eitr: eitr setting (ints per sec) to give last timeslice
805  * @itr_setting: current throttle rate in ints/second
806  * @packets: the number of packets during this measurement interval
807  * @bytes: the number of bytes during this measurement interval
808  *
809  *      Stores a new ITR value based on packets and byte
810  *      counts during the last interrupt.  The advantage of per interrupt
811  *      computation is faster updates and more accurate ITR for the current
812  *      traffic pattern.  Constants in this function were computed
813  *      based on theoretical maximum wire speed and thresholds were set based
814  *      on testing data as well as attempting to minimize response time
815  *      while increasing bulk throughput.
816  **/
817 static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
818                              u32 eitr, u8 itr_setting,
819                              int packets, int bytes)
820 {
821         unsigned int retval = itr_setting;
822         u32 timepassed_us;
823         u64 bytes_perint;
824
825         if (packets == 0)
826                 goto update_itr_done;
827
828
829         /* simple throttlerate management
830          *    0-20MB/s lowest (100000 ints/s)
831          *   20-100MB/s low   (20000 ints/s)
832          *  100-1249MB/s bulk (8000 ints/s)
833          */
834         /* what was last interrupt timeslice? */
835         timepassed_us = 1000000/eitr;
836         bytes_perint = bytes / timepassed_us; /* bytes/usec */
837
838         switch (itr_setting) {
839         case lowest_latency:
840                 if (bytes_perint > adapter->eitr_low)
841                         retval = low_latency;
842                 break;
843         case low_latency:
844                 if (bytes_perint > adapter->eitr_high)
845                         retval = bulk_latency;
846                 else if (bytes_perint <= adapter->eitr_low)
847                         retval = lowest_latency;
848                 break;
849         case bulk_latency:
850                 if (bytes_perint <= adapter->eitr_high)
851                         retval = low_latency;
852                 break;
853         }
854
855 update_itr_done:
856         return retval;
857 }
858
859 /**
860  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
861  * @adapter: pointer to adapter struct
862  * @v_idx: vector index into q_vector array
863  * @itr_reg: new value to be written in *register* format, not ints/s
864  *
865  * This function is made to be called by ethtool and by the driver
866  * when it needs to update VTEITR registers at runtime.  Hardware
867  * specific quirks/differences are taken care of here.
868  */
869 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
870                                u32 itr_reg)
871 {
872         struct ixgbe_hw *hw = &adapter->hw;
873
874         itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
875
876         /*
877          * set the WDIS bit to not clear the timer bits and cause an
878          * immediate assertion of the interrupt
879          */
880         itr_reg |= IXGBE_EITR_CNT_WDIS;
881
882         IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
883 }
884
885 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
886 {
887         struct ixgbevf_adapter *adapter = q_vector->adapter;
888         u32 new_itr;
889         u8 current_itr, ret_itr;
890         int i, r_idx, v_idx = q_vector->v_idx;
891         struct ixgbevf_ring *rx_ring, *tx_ring;
892
893         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
894         for (i = 0; i < q_vector->txr_count; i++) {
895                 tx_ring = &(adapter->tx_ring[r_idx]);
896                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
897                                              q_vector->tx_itr,
898                                              tx_ring->total_packets,
899                                              tx_ring->total_bytes);
900                 /* if the result for this queue would decrease interrupt
901                  * rate for this vector then use that result */
902                 q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
903                                     q_vector->tx_itr - 1 : ret_itr);
904                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
905                                       r_idx + 1);
906         }
907
908         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
909         for (i = 0; i < q_vector->rxr_count; i++) {
910                 rx_ring = &(adapter->rx_ring[r_idx]);
911                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
912                                              q_vector->rx_itr,
913                                              rx_ring->total_packets,
914                                              rx_ring->total_bytes);
915                 /* if the result for this queue would decrease interrupt
916                  * rate for this vector then use that result */
917                 q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
918                                     q_vector->rx_itr - 1 : ret_itr);
919                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
920                                       r_idx + 1);
921         }
922
923         current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
924
925         switch (current_itr) {
926         /* counts and packets in update_itr are dependent on these numbers */
927         case lowest_latency:
928                 new_itr = 100000;
929                 break;
930         case low_latency:
931                 new_itr = 20000; /* aka hwitr = ~200 */
932                 break;
933         case bulk_latency:
934         default:
935                 new_itr = 8000;
936                 break;
937         }
938
939         if (new_itr != q_vector->eitr) {
940                 u32 itr_reg;
941
942                 /* save the algorithm value here, not the smoothed one */
943                 q_vector->eitr = new_itr;
944                 /* do an exponential smoothing */
945                 new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
946                 itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
947                 ixgbevf_write_eitr(adapter, v_idx, itr_reg);
948         }
949 }
950
951 static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
952 {
953         struct net_device *netdev = data;
954         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
955         struct ixgbe_hw *hw = &adapter->hw;
956         u32 eicr;
957         u32 msg;
958
959         eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
960         IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
961
962         if (!hw->mbx.ops.check_for_ack(hw)) {
963                 /*
964                  * checking for the ack clears the PFACK bit.  Place
965                  * it back in the v2p_mailbox cache so that anyone
966                  * polling for an ack will not miss it.  Also
967                  * avoid the read below because the code to read
968                  * the mailbox will also clear the ack bit.  This was
969                  * causing lost acks.  Just cache the bit and exit
970                  * the IRQ handler.
971                  */
972                 hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
973                 goto out;
974         }
975
976         /* Not an ack interrupt, go ahead and read the message */
977         hw->mbx.ops.read(hw, &msg, 1);
978
979         if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
980                 mod_timer(&adapter->watchdog_timer,
981                           round_jiffies(jiffies + 1));
982
983 out:
984         return IRQ_HANDLED;
985 }
986
987 static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
988 {
989         struct ixgbevf_q_vector *q_vector = data;
990         struct ixgbevf_adapter  *adapter = q_vector->adapter;
991         struct ixgbevf_ring     *tx_ring;
992         int i, r_idx;
993
994         if (!q_vector->txr_count)
995                 return IRQ_HANDLED;
996
997         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
998         for (i = 0; i < q_vector->txr_count; i++) {
999                 tx_ring = &(adapter->tx_ring[r_idx]);
1000                 tx_ring->total_bytes = 0;
1001                 tx_ring->total_packets = 0;
1002                 ixgbevf_clean_tx_irq(adapter, tx_ring);
1003                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
1004                                       r_idx + 1);
1005         }
1006
1007         if (adapter->itr_setting & 1)
1008                 ixgbevf_set_itr_msix(q_vector);
1009
1010         return IRQ_HANDLED;
1011 }
1012
1013 /**
1014  * ixgbe_msix_clean_rx - single unshared vector rx clean (all queues)
1015  * @irq: unused
1016  * @data: pointer to our q_vector struct for this interrupt vector
1017  **/
1018 static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
1019 {
1020         struct ixgbevf_q_vector *q_vector = data;
1021         struct ixgbevf_adapter  *adapter = q_vector->adapter;
1022         struct ixgbe_hw *hw = &adapter->hw;
1023         struct ixgbevf_ring  *rx_ring;
1024         int r_idx;
1025         int i;
1026
1027         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1028         for (i = 0; i < q_vector->rxr_count; i++) {
1029                 rx_ring = &(adapter->rx_ring[r_idx]);
1030                 rx_ring->total_bytes = 0;
1031                 rx_ring->total_packets = 0;
1032                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
1033                                       r_idx + 1);
1034         }
1035
1036         if (!q_vector->rxr_count)
1037                 return IRQ_HANDLED;
1038
1039         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1040         rx_ring = &(adapter->rx_ring[r_idx]);
1041         /* disable interrupts on this vector only */
1042         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1043         napi_schedule(&q_vector->napi);
1044
1045
1046         return IRQ_HANDLED;
1047 }
1048
1049 static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1050 {
1051         ixgbevf_msix_clean_rx(irq, data);
1052         ixgbevf_msix_clean_tx(irq, data);
1053
1054         return IRQ_HANDLED;
1055 }
1056
1057 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1058                                      int r_idx)
1059 {
1060         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1061
1062         set_bit(r_idx, q_vector->rxr_idx);
1063         q_vector->rxr_count++;
1064         a->rx_ring[r_idx].v_idx = 1 << v_idx;
1065 }
1066
1067 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1068                                      int t_idx)
1069 {
1070         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1071
1072         set_bit(t_idx, q_vector->txr_idx);
1073         q_vector->txr_count++;
1074         a->tx_ring[t_idx].v_idx = 1 << v_idx;
1075 }
1076
1077 /**
1078  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1079  * @adapter: board private structure to initialize
1080  *
1081  * This function maps descriptor rings to the queue-specific vectors
1082  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1083  * one vector per ring/queue, but on a constrained vector budget, we
1084  * group the rings as "efficiently" as possible.  You would add new
1085  * mapping configurations in here.
1086  **/
1087 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1088 {
1089         int q_vectors;
1090         int v_start = 0;
1091         int rxr_idx = 0, txr_idx = 0;
1092         int rxr_remaining = adapter->num_rx_queues;
1093         int txr_remaining = adapter->num_tx_queues;
1094         int i, j;
1095         int rqpv, tqpv;
1096         int err = 0;
1097
1098         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1099
1100         /*
1101          * The ideal configuration...
1102          * We have enough vectors to map one per queue.
1103          */
1104         if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1105                 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1106                         map_vector_to_rxq(adapter, v_start, rxr_idx);
1107
1108                 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1109                         map_vector_to_txq(adapter, v_start, txr_idx);
1110                 goto out;
1111         }
1112
1113         /*
1114          * If we don't have enough vectors for a 1-to-1
1115          * mapping, we'll have to group them so there are
1116          * multiple queues per vector.
1117          */
1118         /* Re-adjusting *qpv takes care of the remainder. */
1119         for (i = v_start; i < q_vectors; i++) {
1120                 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1121                 for (j = 0; j < rqpv; j++) {
1122                         map_vector_to_rxq(adapter, i, rxr_idx);
1123                         rxr_idx++;
1124                         rxr_remaining--;
1125                 }
1126         }
1127         for (i = v_start; i < q_vectors; i++) {
1128                 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1129                 for (j = 0; j < tqpv; j++) {
1130                         map_vector_to_txq(adapter, i, txr_idx);
1131                         txr_idx++;
1132                         txr_remaining--;
1133                 }
1134         }
1135
1136 out:
1137         return err;
1138 }
1139
1140 /**
1141  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1142  * @adapter: board private structure
1143  *
1144  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1145  * interrupts from the kernel.
1146  **/
1147 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1148 {
1149         struct net_device *netdev = adapter->netdev;
1150         irqreturn_t (*handler)(int, void *);
1151         int i, vector, q_vectors, err;
1152         int ri = 0, ti = 0;
1153
1154         /* Decrement for Other and TCP Timer vectors */
1155         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1156
1157 #define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count)          \
1158                                           ? &ixgbevf_msix_clean_many : \
1159                           (_v)->rxr_count ? &ixgbevf_msix_clean_rx   : \
1160                           (_v)->txr_count ? &ixgbevf_msix_clean_tx   : \
1161                           NULL)
1162         for (vector = 0; vector < q_vectors; vector++) {
1163                 handler = SET_HANDLER(adapter->q_vector[vector]);
1164
1165                 if (handler == &ixgbevf_msix_clean_rx) {
1166                         sprintf(adapter->name[vector], "%s-%s-%d",
1167                                 netdev->name, "rx", ri++);
1168                 } else if (handler == &ixgbevf_msix_clean_tx) {
1169                         sprintf(adapter->name[vector], "%s-%s-%d",
1170                                 netdev->name, "tx", ti++);
1171                 } else if (handler == &ixgbevf_msix_clean_many) {
1172                         sprintf(adapter->name[vector], "%s-%s-%d",
1173                                 netdev->name, "TxRx", vector);
1174                 } else {
1175                         /* skip this unused q_vector */
1176                         continue;
1177                 }
1178                 err = request_irq(adapter->msix_entries[vector].vector,
1179                                   handler, 0, adapter->name[vector],
1180                                   adapter->q_vector[vector]);
1181                 if (err) {
1182                         hw_dbg(&adapter->hw,
1183                                "request_irq failed for MSIX interrupt "
1184                                "Error: %d\n", err);
1185                         goto free_queue_irqs;
1186                 }
1187         }
1188
1189         sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1190         err = request_irq(adapter->msix_entries[vector].vector,
1191                           &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1192         if (err) {
1193                 hw_dbg(&adapter->hw,
1194                        "request_irq for msix_mbx failed: %d\n", err);
1195                 goto free_queue_irqs;
1196         }
1197
1198         return 0;
1199
1200 free_queue_irqs:
1201         for (i = vector - 1; i >= 0; i--)
1202                 free_irq(adapter->msix_entries[--vector].vector,
1203                          &(adapter->q_vector[i]));
1204         pci_disable_msix(adapter->pdev);
1205         kfree(adapter->msix_entries);
1206         adapter->msix_entries = NULL;
1207         return err;
1208 }
1209
1210 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1211 {
1212         int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1213
1214         for (i = 0; i < q_vectors; i++) {
1215                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1216                 bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1217                 bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1218                 q_vector->rxr_count = 0;
1219                 q_vector->txr_count = 0;
1220                 q_vector->eitr = adapter->eitr_param;
1221         }
1222 }
1223
1224 /**
1225  * ixgbevf_request_irq - initialize interrupts
1226  * @adapter: board private structure
1227  *
1228  * Attempts to configure interrupts using the best available
1229  * capabilities of the hardware and kernel.
1230  **/
1231 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1232 {
1233         int err = 0;
1234
1235         err = ixgbevf_request_msix_irqs(adapter);
1236
1237         if (err)
1238                 hw_dbg(&adapter->hw,
1239                        "request_irq failed, Error %d\n", err);
1240
1241         return err;
1242 }
1243
1244 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1245 {
1246         struct net_device *netdev = adapter->netdev;
1247         int i, q_vectors;
1248
1249         q_vectors = adapter->num_msix_vectors;
1250
1251         i = q_vectors - 1;
1252
1253         free_irq(adapter->msix_entries[i].vector, netdev);
1254         i--;
1255
1256         for (; i >= 0; i--) {
1257                 free_irq(adapter->msix_entries[i].vector,
1258                          adapter->q_vector[i]);
1259         }
1260
1261         ixgbevf_reset_q_vectors(adapter);
1262 }
1263
1264 /**
1265  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1266  * @adapter: board private structure
1267  **/
1268 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1269 {
1270         int i;
1271         struct ixgbe_hw *hw = &adapter->hw;
1272
1273         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1274
1275         IXGBE_WRITE_FLUSH(hw);
1276
1277         for (i = 0; i < adapter->num_msix_vectors; i++)
1278                 synchronize_irq(adapter->msix_entries[i].vector);
1279 }
1280
1281 /**
1282  * ixgbevf_irq_enable - Enable default interrupt generation settings
1283  * @adapter: board private structure
1284  **/
1285 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1286                                       bool queues, bool flush)
1287 {
1288         struct ixgbe_hw *hw = &adapter->hw;
1289         u32 mask;
1290         u64 qmask;
1291
1292         mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1293         qmask = ~0;
1294
1295         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1296
1297         if (queues)
1298                 ixgbevf_irq_enable_queues(adapter, qmask);
1299
1300         if (flush)
1301                 IXGBE_WRITE_FLUSH(hw);
1302 }
1303
1304 /**
1305  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1306  * @adapter: board private structure
1307  *
1308  * Configure the Tx unit of the MAC after a reset.
1309  **/
1310 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1311 {
1312         u64 tdba;
1313         struct ixgbe_hw *hw = &adapter->hw;
1314         u32 i, j, tdlen, txctrl;
1315
1316         /* Setup the HW Tx Head and Tail descriptor pointers */
1317         for (i = 0; i < adapter->num_tx_queues; i++) {
1318                 struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1319                 j = ring->reg_idx;
1320                 tdba = ring->dma;
1321                 tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1322                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1323                                 (tdba & DMA_BIT_MASK(32)));
1324                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1325                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1326                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1327                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1328                 adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1329                 adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1330                 /* Disable Tx Head Writeback RO bit, since this hoses
1331                  * bookkeeping if things aren't delivered in order.
1332                  */
1333                 txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1334                 txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1335                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1336         }
1337 }
1338
1339 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1340
1341 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1342 {
1343         struct ixgbevf_ring *rx_ring;
1344         struct ixgbe_hw *hw = &adapter->hw;
1345         u32 srrctl;
1346
1347         rx_ring = &adapter->rx_ring[index];
1348
1349         srrctl = IXGBE_SRRCTL_DROP_EN;
1350
1351         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1352                 u16 bufsz = IXGBEVF_RXBUFFER_2048;
1353                 /* grow the amount we can receive on large page machines */
1354                 if (bufsz < (PAGE_SIZE / 2))
1355                         bufsz = (PAGE_SIZE / 2);
1356                 /* cap the bufsz at our largest descriptor size */
1357                 bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1358
1359                 srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1360                 srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1361                 srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1362                            IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1363                            IXGBE_SRRCTL_BSIZEHDR_MASK);
1364         } else {
1365                 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1366
1367                 if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1368                         srrctl |= IXGBEVF_RXBUFFER_2048 >>
1369                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1370                 else
1371                         srrctl |= rx_ring->rx_buf_len >>
1372                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1373         }
1374         IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1375 }
1376
1377 /**
1378  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1379  * @adapter: board private structure
1380  *
1381  * Configure the Rx unit of the MAC after a reset.
1382  **/
1383 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1384 {
1385         u64 rdba;
1386         struct ixgbe_hw *hw = &adapter->hw;
1387         struct net_device *netdev = adapter->netdev;
1388         int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1389         int i, j;
1390         u32 rdlen;
1391         int rx_buf_len;
1392
1393         /* Decide whether to use packet split mode or not */
1394         if (netdev->mtu > ETH_DATA_LEN) {
1395                 if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1396                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1397                 else
1398                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1399         } else {
1400                 if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1401                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1402                 else
1403                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1404         }
1405
1406         /* Set the RX buffer length according to the mode */
1407         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1408                 /* PSRTYPE must be initialized in 82599 */
1409                 u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1410                         IXGBE_PSRTYPE_UDPHDR |
1411                         IXGBE_PSRTYPE_IPV4HDR |
1412                         IXGBE_PSRTYPE_IPV6HDR |
1413                         IXGBE_PSRTYPE_L2HDR;
1414                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1415                 rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1416         } else {
1417                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1418                 if (netdev->mtu <= ETH_DATA_LEN)
1419                         rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1420                 else
1421                         rx_buf_len = ALIGN(max_frame, 1024);
1422         }
1423
1424         rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1425         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1426          * the Base and Length of the Rx Descriptor Ring */
1427         for (i = 0; i < adapter->num_rx_queues; i++) {
1428                 rdba = adapter->rx_ring[i].dma;
1429                 j = adapter->rx_ring[i].reg_idx;
1430                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1431                                 (rdba & DMA_BIT_MASK(32)));
1432                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1433                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1434                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1435                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1436                 adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1437                 adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1438                 adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1439
1440                 ixgbevf_configure_srrctl(adapter, j);
1441         }
1442 }
1443
1444 static void ixgbevf_vlan_rx_register(struct net_device *netdev,
1445                                      struct vlan_group *grp)
1446 {
1447         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1448         struct ixgbe_hw *hw = &adapter->hw;
1449         int i, j;
1450         u32 ctrl;
1451
1452         adapter->vlgrp = grp;
1453
1454         for (i = 0; i < adapter->num_rx_queues; i++) {
1455                 j = adapter->rx_ring[i].reg_idx;
1456                 ctrl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1457                 ctrl |= IXGBE_RXDCTL_VME;
1458                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), ctrl);
1459         }
1460 }
1461
1462 static void ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1463 {
1464         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1465         struct ixgbe_hw *hw = &adapter->hw;
1466         struct net_device *v_netdev;
1467
1468         /* add VID to filter table */
1469         if (hw->mac.ops.set_vfta)
1470                 hw->mac.ops.set_vfta(hw, vid, 0, true);
1471         /*
1472          * Copy feature flags from netdev to the vlan netdev for this vid.
1473          * This allows things like TSO to bubble down to our vlan device.
1474          */
1475         v_netdev = vlan_group_get_device(adapter->vlgrp, vid);
1476         v_netdev->features |= adapter->netdev->features;
1477         vlan_group_set_device(adapter->vlgrp, vid, v_netdev);
1478 }
1479
1480 static void ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1481 {
1482         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1483         struct ixgbe_hw *hw = &adapter->hw;
1484
1485         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1486                 ixgbevf_irq_disable(adapter);
1487
1488         vlan_group_set_device(adapter->vlgrp, vid, NULL);
1489
1490         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1491                 ixgbevf_irq_enable(adapter, true, true);
1492
1493         /* remove VID from filter table */
1494         if (hw->mac.ops.set_vfta)
1495                 hw->mac.ops.set_vfta(hw, vid, 0, false);
1496 }
1497
1498 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1499 {
1500         ixgbevf_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1501
1502         if (adapter->vlgrp) {
1503                 u16 vid;
1504                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1505                         if (!vlan_group_get_device(adapter->vlgrp, vid))
1506                                 continue;
1507                         ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1508                 }
1509         }
1510 }
1511
1512 /**
1513  * ixgbevf_set_rx_mode - Multicast set
1514  * @netdev: network interface device structure
1515  *
1516  * The set_rx_method entry point is called whenever the multicast address
1517  * list or the network interface flags are updated.  This routine is
1518  * responsible for configuring the hardware for proper multicast mode.
1519  **/
1520 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1521 {
1522         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1523         struct ixgbe_hw *hw = &adapter->hw;
1524
1525         /* reprogram multicast list */
1526         if (hw->mac.ops.update_mc_addr_list)
1527                 hw->mac.ops.update_mc_addr_list(hw, netdev);
1528 }
1529
1530 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1531 {
1532         int q_idx;
1533         struct ixgbevf_q_vector *q_vector;
1534         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1535
1536         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1537                 struct napi_struct *napi;
1538                 q_vector = adapter->q_vector[q_idx];
1539                 if (!q_vector->rxr_count)
1540                         continue;
1541                 napi = &q_vector->napi;
1542                 if (q_vector->rxr_count > 1)
1543                         napi->poll = &ixgbevf_clean_rxonly_many;
1544
1545                 napi_enable(napi);
1546         }
1547 }
1548
1549 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1550 {
1551         int q_idx;
1552         struct ixgbevf_q_vector *q_vector;
1553         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1554
1555         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1556                 q_vector = adapter->q_vector[q_idx];
1557                 if (!q_vector->rxr_count)
1558                         continue;
1559                 napi_disable(&q_vector->napi);
1560         }
1561 }
1562
1563 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1564 {
1565         struct net_device *netdev = adapter->netdev;
1566         int i;
1567
1568         ixgbevf_set_rx_mode(netdev);
1569
1570         ixgbevf_restore_vlan(adapter);
1571
1572         ixgbevf_configure_tx(adapter);
1573         ixgbevf_configure_rx(adapter);
1574         for (i = 0; i < adapter->num_rx_queues; i++) {
1575                 struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1576                 ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1577                 ring->next_to_use = ring->count - 1;
1578                 writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1579         }
1580 }
1581
1582 #define IXGBE_MAX_RX_DESC_POLL 10
1583 static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1584                                                 int rxr)
1585 {
1586         struct ixgbe_hw *hw = &adapter->hw;
1587         int j = adapter->rx_ring[rxr].reg_idx;
1588         int k;
1589
1590         for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1591                 if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1592                         break;
1593                 else
1594                         msleep(1);
1595         }
1596         if (k >= IXGBE_MAX_RX_DESC_POLL) {
1597                 hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1598                        "not set within the polling period\n", rxr);
1599         }
1600
1601         ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1602                                 (adapter->rx_ring[rxr].count - 1));
1603 }
1604
1605 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1606 {
1607         /* Only save pre-reset stats if there are some */
1608         if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1609                 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1610                         adapter->stats.base_vfgprc;
1611                 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1612                         adapter->stats.base_vfgptc;
1613                 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1614                         adapter->stats.base_vfgorc;
1615                 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1616                         adapter->stats.base_vfgotc;
1617                 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1618                         adapter->stats.base_vfmprc;
1619         }
1620 }
1621
1622 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1623 {
1624         struct ixgbe_hw *hw = &adapter->hw;
1625
1626         adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1627         adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1628         adapter->stats.last_vfgorc |=
1629                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1630         adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1631         adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1632         adapter->stats.last_vfgotc |=
1633                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1634         adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1635
1636         adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1637         adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1638         adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1639         adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1640         adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1641 }
1642
1643 static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1644 {
1645         struct net_device *netdev = adapter->netdev;
1646         struct ixgbe_hw *hw = &adapter->hw;
1647         int i, j = 0;
1648         int num_rx_rings = adapter->num_rx_queues;
1649         u32 txdctl, rxdctl;
1650
1651         for (i = 0; i < adapter->num_tx_queues; i++) {
1652                 j = adapter->tx_ring[i].reg_idx;
1653                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1654                 /* enable WTHRESH=8 descriptors, to encourage burst writeback */
1655                 txdctl |= (8 << 16);
1656                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1657         }
1658
1659         for (i = 0; i < adapter->num_tx_queues; i++) {
1660                 j = adapter->tx_ring[i].reg_idx;
1661                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1662                 txdctl |= IXGBE_TXDCTL_ENABLE;
1663                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1664         }
1665
1666         for (i = 0; i < num_rx_rings; i++) {
1667                 j = adapter->rx_ring[i].reg_idx;
1668                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1669                 rxdctl |= IXGBE_RXDCTL_ENABLE;
1670                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1671                 ixgbevf_rx_desc_queue_enable(adapter, i);
1672         }
1673
1674         ixgbevf_configure_msix(adapter);
1675
1676         if (hw->mac.ops.set_rar) {
1677                 if (is_valid_ether_addr(hw->mac.addr))
1678                         hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1679                 else
1680                         hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1681         }
1682
1683         clear_bit(__IXGBEVF_DOWN, &adapter->state);
1684         ixgbevf_napi_enable_all(adapter);
1685
1686         /* enable transmits */
1687         netif_tx_start_all_queues(netdev);
1688
1689         ixgbevf_save_reset_stats(adapter);
1690         ixgbevf_init_last_counter_stats(adapter);
1691
1692         /* bring the link up in the watchdog, this could race with our first
1693          * link up interrupt but shouldn't be a problem */
1694         adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1695         adapter->link_check_timeout = jiffies;
1696         mod_timer(&adapter->watchdog_timer, jiffies);
1697         return 0;
1698 }
1699
1700 int ixgbevf_up(struct ixgbevf_adapter *adapter)
1701 {
1702         int err;
1703         struct ixgbe_hw *hw = &adapter->hw;
1704
1705         ixgbevf_configure(adapter);
1706
1707         err = ixgbevf_up_complete(adapter);
1708
1709         /* clear any pending interrupts, may auto mask */
1710         IXGBE_READ_REG(hw, IXGBE_VTEICR);
1711
1712         ixgbevf_irq_enable(adapter, true, true);
1713
1714         return err;
1715 }
1716
1717 /**
1718  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1719  * @adapter: board private structure
1720  * @rx_ring: ring to free buffers from
1721  **/
1722 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1723                                   struct ixgbevf_ring *rx_ring)
1724 {
1725         struct pci_dev *pdev = adapter->pdev;
1726         unsigned long size;
1727         unsigned int i;
1728
1729         if (!rx_ring->rx_buffer_info)
1730                 return;
1731
1732         /* Free all the Rx ring sk_buffs */
1733         for (i = 0; i < rx_ring->count; i++) {
1734                 struct ixgbevf_rx_buffer *rx_buffer_info;
1735
1736                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
1737                 if (rx_buffer_info->dma) {
1738                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1739                                          rx_ring->rx_buf_len,
1740                                          DMA_FROM_DEVICE);
1741                         rx_buffer_info->dma = 0;
1742                 }
1743                 if (rx_buffer_info->skb) {
1744                         struct sk_buff *skb = rx_buffer_info->skb;
1745                         rx_buffer_info->skb = NULL;
1746                         do {
1747                                 struct sk_buff *this = skb;
1748                                 skb = skb->prev;
1749                                 dev_kfree_skb(this);
1750                         } while (skb);
1751                 }
1752                 if (!rx_buffer_info->page)
1753                         continue;
1754                 dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
1755                                PAGE_SIZE / 2, DMA_FROM_DEVICE);
1756                 rx_buffer_info->page_dma = 0;
1757                 put_page(rx_buffer_info->page);
1758                 rx_buffer_info->page = NULL;
1759                 rx_buffer_info->page_offset = 0;
1760         }
1761
1762         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1763         memset(rx_ring->rx_buffer_info, 0, size);
1764
1765         /* Zero out the descriptor ring */
1766         memset(rx_ring->desc, 0, rx_ring->size);
1767
1768         rx_ring->next_to_clean = 0;
1769         rx_ring->next_to_use = 0;
1770
1771         if (rx_ring->head)
1772                 writel(0, adapter->hw.hw_addr + rx_ring->head);
1773         if (rx_ring->tail)
1774                 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1775 }
1776
1777 /**
1778  * ixgbevf_clean_tx_ring - Free Tx Buffers
1779  * @adapter: board private structure
1780  * @tx_ring: ring to be cleaned
1781  **/
1782 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1783                                   struct ixgbevf_ring *tx_ring)
1784 {
1785         struct ixgbevf_tx_buffer *tx_buffer_info;
1786         unsigned long size;
1787         unsigned int i;
1788
1789         if (!tx_ring->tx_buffer_info)
1790                 return;
1791
1792         /* Free all the Tx ring sk_buffs */
1793
1794         for (i = 0; i < tx_ring->count; i++) {
1795                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
1796                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1797         }
1798
1799         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1800         memset(tx_ring->tx_buffer_info, 0, size);
1801
1802         memset(tx_ring->desc, 0, tx_ring->size);
1803
1804         tx_ring->next_to_use = 0;
1805         tx_ring->next_to_clean = 0;
1806
1807         if (tx_ring->head)
1808                 writel(0, adapter->hw.hw_addr + tx_ring->head);
1809         if (tx_ring->tail)
1810                 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1811 }
1812
1813 /**
1814  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1815  * @adapter: board private structure
1816  **/
1817 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1818 {
1819         int i;
1820
1821         for (i = 0; i < adapter->num_rx_queues; i++)
1822                 ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1823 }
1824
1825 /**
1826  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1827  * @adapter: board private structure
1828  **/
1829 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1830 {
1831         int i;
1832
1833         for (i = 0; i < adapter->num_tx_queues; i++)
1834                 ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1835 }
1836
1837 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1838 {
1839         struct net_device *netdev = adapter->netdev;
1840         struct ixgbe_hw *hw = &adapter->hw;
1841         u32 txdctl;
1842         int i, j;
1843
1844         /* signal that we are down to the interrupt handler */
1845         set_bit(__IXGBEVF_DOWN, &adapter->state);
1846         /* disable receives */
1847
1848         netif_tx_disable(netdev);
1849
1850         msleep(10);
1851
1852         netif_tx_stop_all_queues(netdev);
1853
1854         ixgbevf_irq_disable(adapter);
1855
1856         ixgbevf_napi_disable_all(adapter);
1857
1858         del_timer_sync(&adapter->watchdog_timer);
1859         /* can't call flush scheduled work here because it can deadlock
1860          * if linkwatch_event tries to acquire the rtnl_lock which we are
1861          * holding */
1862         while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1863                 msleep(1);
1864
1865         /* disable transmits in the hardware now that interrupts are off */
1866         for (i = 0; i < adapter->num_tx_queues; i++) {
1867                 j = adapter->tx_ring[i].reg_idx;
1868                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1869                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1870                                 (txdctl & ~IXGBE_TXDCTL_ENABLE));
1871         }
1872
1873         netif_carrier_off(netdev);
1874
1875         if (!pci_channel_offline(adapter->pdev))
1876                 ixgbevf_reset(adapter);
1877
1878         ixgbevf_clean_all_tx_rings(adapter);
1879         ixgbevf_clean_all_rx_rings(adapter);
1880 }
1881
1882 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1883 {
1884         struct ixgbe_hw *hw = &adapter->hw;
1885
1886         WARN_ON(in_interrupt());
1887
1888         while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1889                 msleep(1);
1890
1891         /*
1892          * Check if PF is up before re-init.  If not then skip until
1893          * later when the PF is up and ready to service requests from
1894          * the VF via mailbox.  If the VF is up and running then the
1895          * watchdog task will continue to schedule reset tasks until
1896          * the PF is up and running.
1897          */
1898         if (!hw->mac.ops.reset_hw(hw)) {
1899                 ixgbevf_down(adapter);
1900                 ixgbevf_up(adapter);
1901         }
1902
1903         clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1904 }
1905
1906 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1907 {
1908         struct ixgbe_hw *hw = &adapter->hw;
1909         struct net_device *netdev = adapter->netdev;
1910
1911         if (hw->mac.ops.reset_hw(hw))
1912                 hw_dbg(hw, "PF still resetting\n");
1913         else
1914                 hw->mac.ops.init_hw(hw);
1915
1916         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1917                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1918                        netdev->addr_len);
1919                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1920                        netdev->addr_len);
1921         }
1922 }
1923
1924 static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1925                                          int vectors)
1926 {
1927         int err, vector_threshold;
1928
1929         /* We'll want at least 3 (vector_threshold):
1930          * 1) TxQ[0] Cleanup
1931          * 2) RxQ[0] Cleanup
1932          * 3) Other (Link Status Change, etc.)
1933          */
1934         vector_threshold = MIN_MSIX_COUNT;
1935
1936         /* The more we get, the more we will assign to Tx/Rx Cleanup
1937          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1938          * Right now, we simply care about how many we'll get; we'll
1939          * set them up later while requesting irq's.
1940          */
1941         while (vectors >= vector_threshold) {
1942                 err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1943                                       vectors);
1944                 if (!err) /* Success in acquiring all requested vectors. */
1945                         break;
1946                 else if (err < 0)
1947                         vectors = 0; /* Nasty failure, quit now */
1948                 else /* err == number of vectors we should try again with */
1949                         vectors = err;
1950         }
1951
1952         if (vectors < vector_threshold) {
1953                 /* Can't allocate enough MSI-X interrupts?  Oh well.
1954                  * This just means we'll go with either a single MSI
1955                  * vector or fall back to legacy interrupts.
1956                  */
1957                 hw_dbg(&adapter->hw,
1958                        "Unable to allocate MSI-X interrupts\n");
1959                 kfree(adapter->msix_entries);
1960                 adapter->msix_entries = NULL;
1961         } else {
1962                 /*
1963                  * Adjust for only the vectors we'll use, which is minimum
1964                  * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1965                  * vectors we were allocated.
1966                  */
1967                 adapter->num_msix_vectors = vectors;
1968         }
1969 }
1970
1971 /*
1972  * ixgbe_set_num_queues: Allocate queues for device, feature dependant
1973  * @adapter: board private structure to initialize
1974  *
1975  * This is the top level queue allocation routine.  The order here is very
1976  * important, starting with the "most" number of features turned on at once,
1977  * and ending with the smallest set of features.  This way large combinations
1978  * can be allocated if they're turned on, and smaller combinations are the
1979  * fallthrough conditions.
1980  *
1981  **/
1982 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1983 {
1984         /* Start with base case */
1985         adapter->num_rx_queues = 1;
1986         adapter->num_tx_queues = 1;
1987         adapter->num_rx_pools = adapter->num_rx_queues;
1988         adapter->num_rx_queues_per_pool = 1;
1989 }
1990
1991 /**
1992  * ixgbevf_alloc_queues - Allocate memory for all rings
1993  * @adapter: board private structure to initialize
1994  *
1995  * We allocate one ring per queue at run-time since we don't know the
1996  * number of queues at compile-time.  The polling_netdev array is
1997  * intended for Multiqueue, but should work fine with a single queue.
1998  **/
1999 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
2000 {
2001         int i;
2002
2003         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
2004                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
2005         if (!adapter->tx_ring)
2006                 goto err_tx_ring_allocation;
2007
2008         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
2009                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
2010         if (!adapter->rx_ring)
2011                 goto err_rx_ring_allocation;
2012
2013         for (i = 0; i < adapter->num_tx_queues; i++) {
2014                 adapter->tx_ring[i].count = adapter->tx_ring_count;
2015                 adapter->tx_ring[i].queue_index = i;
2016                 adapter->tx_ring[i].reg_idx = i;
2017         }
2018
2019         for (i = 0; i < adapter->num_rx_queues; i++) {
2020                 adapter->rx_ring[i].count = adapter->rx_ring_count;
2021                 adapter->rx_ring[i].queue_index = i;
2022                 adapter->rx_ring[i].reg_idx = i;
2023         }
2024
2025         return 0;
2026
2027 err_rx_ring_allocation:
2028         kfree(adapter->tx_ring);
2029 err_tx_ring_allocation:
2030         return -ENOMEM;
2031 }
2032
2033 /**
2034  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2035  * @adapter: board private structure to initialize
2036  *
2037  * Attempt to configure the interrupts using the best available
2038  * capabilities of the hardware and the kernel.
2039  **/
2040 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2041 {
2042         int err = 0;
2043         int vector, v_budget;
2044
2045         /*
2046          * It's easy to be greedy for MSI-X vectors, but it really
2047          * doesn't do us much good if we have a lot more vectors
2048          * than CPU's.  So let's be conservative and only ask for
2049          * (roughly) twice the number of vectors as there are CPU's.
2050          */
2051         v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2052                        (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2053
2054         /* A failure in MSI-X entry allocation isn't fatal, but it does
2055          * mean we disable MSI-X capabilities of the adapter. */
2056         adapter->msix_entries = kcalloc(v_budget,
2057                                         sizeof(struct msix_entry), GFP_KERNEL);
2058         if (!adapter->msix_entries) {
2059                 err = -ENOMEM;
2060                 goto out;
2061         }
2062
2063         for (vector = 0; vector < v_budget; vector++)
2064                 adapter->msix_entries[vector].entry = vector;
2065
2066         ixgbevf_acquire_msix_vectors(adapter, v_budget);
2067
2068 out:
2069         return err;
2070 }
2071
2072 /**
2073  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2074  * @adapter: board private structure to initialize
2075  *
2076  * We allocate one q_vector per queue interrupt.  If allocation fails we
2077  * return -ENOMEM.
2078  **/
2079 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2080 {
2081         int q_idx, num_q_vectors;
2082         struct ixgbevf_q_vector *q_vector;
2083         int napi_vectors;
2084         int (*poll)(struct napi_struct *, int);
2085
2086         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2087         napi_vectors = adapter->num_rx_queues;
2088         poll = &ixgbevf_clean_rxonly;
2089
2090         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2091                 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2092                 if (!q_vector)
2093                         goto err_out;
2094                 q_vector->adapter = adapter;
2095                 q_vector->v_idx = q_idx;
2096                 q_vector->eitr = adapter->eitr_param;
2097                 if (q_idx < napi_vectors)
2098                         netif_napi_add(adapter->netdev, &q_vector->napi,
2099                                        (*poll), 64);
2100                 adapter->q_vector[q_idx] = q_vector;
2101         }
2102
2103         return 0;
2104
2105 err_out:
2106         while (q_idx) {
2107                 q_idx--;
2108                 q_vector = adapter->q_vector[q_idx];
2109                 netif_napi_del(&q_vector->napi);
2110                 kfree(q_vector);
2111                 adapter->q_vector[q_idx] = NULL;
2112         }
2113         return -ENOMEM;
2114 }
2115
2116 /**
2117  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2118  * @adapter: board private structure to initialize
2119  *
2120  * This function frees the memory allocated to the q_vectors.  In addition if
2121  * NAPI is enabled it will delete any references to the NAPI struct prior
2122  * to freeing the q_vector.
2123  **/
2124 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2125 {
2126         int q_idx, num_q_vectors;
2127         int napi_vectors;
2128
2129         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2130         napi_vectors = adapter->num_rx_queues;
2131
2132         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2133                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2134
2135                 adapter->q_vector[q_idx] = NULL;
2136                 if (q_idx < napi_vectors)
2137                         netif_napi_del(&q_vector->napi);
2138                 kfree(q_vector);
2139         }
2140 }
2141
2142 /**
2143  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2144  * @adapter: board private structure
2145  *
2146  **/
2147 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2148 {
2149         pci_disable_msix(adapter->pdev);
2150         kfree(adapter->msix_entries);
2151         adapter->msix_entries = NULL;
2152 }
2153
2154 /**
2155  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2156  * @adapter: board private structure to initialize
2157  *
2158  **/
2159 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2160 {
2161         int err;
2162
2163         /* Number of supported queues */
2164         ixgbevf_set_num_queues(adapter);
2165
2166         err = ixgbevf_set_interrupt_capability(adapter);
2167         if (err) {
2168                 hw_dbg(&adapter->hw,
2169                        "Unable to setup interrupt capabilities\n");
2170                 goto err_set_interrupt;
2171         }
2172
2173         err = ixgbevf_alloc_q_vectors(adapter);
2174         if (err) {
2175                 hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2176                        "vectors\n");
2177                 goto err_alloc_q_vectors;
2178         }
2179
2180         err = ixgbevf_alloc_queues(adapter);
2181         if (err) {
2182                 printk(KERN_ERR "Unable to allocate memory for queues\n");
2183                 goto err_alloc_queues;
2184         }
2185
2186         hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2187                "Tx Queue count = %u\n",
2188                (adapter->num_rx_queues > 1) ? "Enabled" :
2189                "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2190
2191         set_bit(__IXGBEVF_DOWN, &adapter->state);
2192
2193         return 0;
2194 err_alloc_queues:
2195         ixgbevf_free_q_vectors(adapter);
2196 err_alloc_q_vectors:
2197         ixgbevf_reset_interrupt_capability(adapter);
2198 err_set_interrupt:
2199         return err;
2200 }
2201
2202 /**
2203  * ixgbevf_sw_init - Initialize general software structures
2204  * (struct ixgbevf_adapter)
2205  * @adapter: board private structure to initialize
2206  *
2207  * ixgbevf_sw_init initializes the Adapter private data structure.
2208  * Fields are initialized based on PCI device information and
2209  * OS network device settings (MTU size).
2210  **/
2211 static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2212 {
2213         struct ixgbe_hw *hw = &adapter->hw;
2214         struct pci_dev *pdev = adapter->pdev;
2215         int err;
2216
2217         /* PCI config space info */
2218
2219         hw->vendor_id = pdev->vendor;
2220         hw->device_id = pdev->device;
2221         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2222         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2223         hw->subsystem_device_id = pdev->subsystem_device;
2224
2225         hw->mbx.ops.init_params(hw);
2226         hw->mac.max_tx_queues = MAX_TX_QUEUES;
2227         hw->mac.max_rx_queues = MAX_RX_QUEUES;
2228         err = hw->mac.ops.reset_hw(hw);
2229         if (err) {
2230                 dev_info(&pdev->dev,
2231                          "PF still in reset state, assigning new address\n");
2232                 random_ether_addr(hw->mac.addr);
2233         } else {
2234                 err = hw->mac.ops.init_hw(hw);
2235                 if (err) {
2236                         printk(KERN_ERR "init_shared_code failed: %d\n", err);
2237                         goto out;
2238                 }
2239         }
2240
2241         /* Enable dynamic interrupt throttling rates */
2242         adapter->eitr_param = 20000;
2243         adapter->itr_setting = 1;
2244
2245         /* set defaults for eitr in MegaBytes */
2246         adapter->eitr_low = 10;
2247         adapter->eitr_high = 20;
2248
2249         /* set default ring sizes */
2250         adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2251         adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2252
2253         /* enable rx csum by default */
2254         adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2255
2256         set_bit(__IXGBEVF_DOWN, &adapter->state);
2257
2258 out:
2259         return err;
2260 }
2261
2262 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)     \
2263         {                                                       \
2264                 u32 current_counter = IXGBE_READ_REG(hw, reg);  \
2265                 if (current_counter < last_counter)             \
2266                         counter += 0x100000000LL;               \
2267                 last_counter = current_counter;                 \
2268                 counter &= 0xFFFFFFFF00000000LL;                \
2269                 counter |= current_counter;                     \
2270         }
2271
2272 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2273         {                                                                \
2274                 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);   \
2275                 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);   \
2276                 u64 current_counter = (current_counter_msb << 32) |      \
2277                         current_counter_lsb;                             \
2278                 if (current_counter < last_counter)                      \
2279                         counter += 0x1000000000LL;                       \
2280                 last_counter = current_counter;                          \
2281                 counter &= 0xFFFFFFF000000000LL;                         \
2282                 counter |= current_counter;                              \
2283         }
2284 /**
2285  * ixgbevf_update_stats - Update the board statistics counters.
2286  * @adapter: board private structure
2287  **/
2288 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2289 {
2290         struct ixgbe_hw *hw = &adapter->hw;
2291
2292         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2293                                 adapter->stats.vfgprc);
2294         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2295                                 adapter->stats.vfgptc);
2296         UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2297                                 adapter->stats.last_vfgorc,
2298                                 adapter->stats.vfgorc);
2299         UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2300                                 adapter->stats.last_vfgotc,
2301                                 adapter->stats.vfgotc);
2302         UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2303                                 adapter->stats.vfmprc);
2304
2305         /* Fill out the OS statistics structure */
2306         adapter->net_stats.multicast = adapter->stats.vfmprc -
2307                 adapter->stats.base_vfmprc;
2308 }
2309
2310 /**
2311  * ixgbevf_watchdog - Timer Call-back
2312  * @data: pointer to adapter cast into an unsigned long
2313  **/
2314 static void ixgbevf_watchdog(unsigned long data)
2315 {
2316         struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2317         struct ixgbe_hw *hw = &adapter->hw;
2318         u64 eics = 0;
2319         int i;
2320
2321         /*
2322          * Do the watchdog outside of interrupt context due to the lovely
2323          * delays that some of the newer hardware requires
2324          */
2325
2326         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2327                 goto watchdog_short_circuit;
2328
2329         /* get one bit for every active tx/rx interrupt vector */
2330         for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2331                 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2332                 if (qv->rxr_count || qv->txr_count)
2333                         eics |= (1 << i);
2334         }
2335
2336         IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2337
2338 watchdog_short_circuit:
2339         schedule_work(&adapter->watchdog_task);
2340 }
2341
2342 /**
2343  * ixgbevf_tx_timeout - Respond to a Tx Hang
2344  * @netdev: network interface device structure
2345  **/
2346 static void ixgbevf_tx_timeout(struct net_device *netdev)
2347 {
2348         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2349
2350         /* Do the reset outside of interrupt context */
2351         schedule_work(&adapter->reset_task);
2352 }
2353
2354 static void ixgbevf_reset_task(struct work_struct *work)
2355 {
2356         struct ixgbevf_adapter *adapter;
2357         adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2358
2359         /* If we're already down or resetting, just bail */
2360         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2361             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2362                 return;
2363
2364         adapter->tx_timeout_count++;
2365
2366         ixgbevf_reinit_locked(adapter);
2367 }
2368
2369 /**
2370  * ixgbevf_watchdog_task - worker thread to bring link up
2371  * @work: pointer to work_struct containing our data
2372  **/
2373 static void ixgbevf_watchdog_task(struct work_struct *work)
2374 {
2375         struct ixgbevf_adapter *adapter = container_of(work,
2376                                                        struct ixgbevf_adapter,
2377                                                        watchdog_task);
2378         struct net_device *netdev = adapter->netdev;
2379         struct ixgbe_hw *hw = &adapter->hw;
2380         u32 link_speed = adapter->link_speed;
2381         bool link_up = adapter->link_up;
2382
2383         adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2384
2385         /*
2386          * Always check the link on the watchdog because we have
2387          * no LSC interrupt
2388          */
2389         if (hw->mac.ops.check_link) {
2390                 if ((hw->mac.ops.check_link(hw, &link_speed,
2391                                             &link_up, false)) != 0) {
2392                         adapter->link_up = link_up;
2393                         adapter->link_speed = link_speed;
2394                         netif_carrier_off(netdev);
2395                         netif_tx_stop_all_queues(netdev);
2396                         schedule_work(&adapter->reset_task);
2397                         goto pf_has_reset;
2398                 }
2399         } else {
2400                 /* always assume link is up, if no check link
2401                  * function */
2402                 link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2403                 link_up = true;
2404         }
2405         adapter->link_up = link_up;
2406         adapter->link_speed = link_speed;
2407
2408         if (link_up) {
2409                 if (!netif_carrier_ok(netdev)) {
2410                         hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2411                                (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2412                                10 : 1);
2413                         netif_carrier_on(netdev);
2414                         netif_tx_wake_all_queues(netdev);
2415                 } else {
2416                         /* Force detection of hung controller */
2417                         adapter->detect_tx_hung = true;
2418                 }
2419         } else {
2420                 adapter->link_up = false;
2421                 adapter->link_speed = 0;
2422                 if (netif_carrier_ok(netdev)) {
2423                         hw_dbg(&adapter->hw, "NIC Link is Down\n");
2424                         netif_carrier_off(netdev);
2425                         netif_tx_stop_all_queues(netdev);
2426                 }
2427         }
2428
2429         ixgbevf_update_stats(adapter);
2430
2431 pf_has_reset:
2432         /* Force detection of hung controller every watchdog period */
2433         adapter->detect_tx_hung = true;
2434
2435         /* Reset the timer */
2436         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2437                 mod_timer(&adapter->watchdog_timer,
2438                           round_jiffies(jiffies + (2 * HZ)));
2439
2440         adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2441 }
2442
2443 /**
2444  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2445  * @adapter: board private structure
2446  * @tx_ring: Tx descriptor ring for a specific queue
2447  *
2448  * Free all transmit software resources
2449  **/
2450 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2451                                struct ixgbevf_ring *tx_ring)
2452 {
2453         struct pci_dev *pdev = adapter->pdev;
2454
2455         ixgbevf_clean_tx_ring(adapter, tx_ring);
2456
2457         vfree(tx_ring->tx_buffer_info);
2458         tx_ring->tx_buffer_info = NULL;
2459
2460         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2461                           tx_ring->dma);
2462
2463         tx_ring->desc = NULL;
2464 }
2465
2466 /**
2467  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2468  * @adapter: board private structure
2469  *
2470  * Free all transmit software resources
2471  **/
2472 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2473 {
2474         int i;
2475
2476         for (i = 0; i < adapter->num_tx_queues; i++)
2477                 if (adapter->tx_ring[i].desc)
2478                         ixgbevf_free_tx_resources(adapter,
2479                                                   &adapter->tx_ring[i]);
2480
2481 }
2482
2483 /**
2484  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2485  * @adapter: board private structure
2486  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2487  *
2488  * Return 0 on success, negative on failure
2489  **/
2490 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2491                                struct ixgbevf_ring *tx_ring)
2492 {
2493         struct pci_dev *pdev = adapter->pdev;
2494         int size;
2495
2496         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2497         tx_ring->tx_buffer_info = vmalloc(size);
2498         if (!tx_ring->tx_buffer_info)
2499                 goto err;
2500         memset(tx_ring->tx_buffer_info, 0, size);
2501
2502         /* round up to nearest 4K */
2503         tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2504         tx_ring->size = ALIGN(tx_ring->size, 4096);
2505
2506         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2507                                            &tx_ring->dma, GFP_KERNEL);
2508         if (!tx_ring->desc)
2509                 goto err;
2510
2511         tx_ring->next_to_use = 0;
2512         tx_ring->next_to_clean = 0;
2513         tx_ring->work_limit = tx_ring->count;
2514         return 0;
2515
2516 err:
2517         vfree(tx_ring->tx_buffer_info);
2518         tx_ring->tx_buffer_info = NULL;
2519         hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2520                "descriptor ring\n");
2521         return -ENOMEM;
2522 }
2523
2524 /**
2525  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2526  * @adapter: board private structure
2527  *
2528  * If this function returns with an error, then it's possible one or
2529  * more of the rings is populated (while the rest are not).  It is the
2530  * callers duty to clean those orphaned rings.
2531  *
2532  * Return 0 on success, negative on failure
2533  **/
2534 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2535 {
2536         int i, err = 0;
2537
2538         for (i = 0; i < adapter->num_tx_queues; i++) {
2539                 err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2540                 if (!err)
2541                         continue;
2542                 hw_dbg(&adapter->hw,
2543                        "Allocation for Tx Queue %u failed\n", i);
2544                 break;
2545         }
2546
2547         return err;
2548 }
2549
2550 /**
2551  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2552  * @adapter: board private structure
2553  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2554  *
2555  * Returns 0 on success, negative on failure
2556  **/
2557 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2558                                struct ixgbevf_ring *rx_ring)
2559 {
2560         struct pci_dev *pdev = adapter->pdev;
2561         int size;
2562
2563         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2564         rx_ring->rx_buffer_info = vmalloc(size);
2565         if (!rx_ring->rx_buffer_info) {
2566                 hw_dbg(&adapter->hw,
2567                        "Unable to vmalloc buffer memory for "
2568                        "the receive descriptor ring\n");
2569                 goto alloc_failed;
2570         }
2571         memset(rx_ring->rx_buffer_info, 0, size);
2572
2573         /* Round up to nearest 4K */
2574         rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2575         rx_ring->size = ALIGN(rx_ring->size, 4096);
2576
2577         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2578                                            &rx_ring->dma, GFP_KERNEL);
2579
2580         if (!rx_ring->desc) {
2581                 hw_dbg(&adapter->hw,
2582                        "Unable to allocate memory for "
2583                        "the receive descriptor ring\n");
2584                 vfree(rx_ring->rx_buffer_info);
2585                 rx_ring->rx_buffer_info = NULL;
2586                 goto alloc_failed;
2587         }
2588
2589         rx_ring->next_to_clean = 0;
2590         rx_ring->next_to_use = 0;
2591
2592         return 0;
2593 alloc_failed:
2594         return -ENOMEM;
2595 }
2596
2597 /**
2598  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2599  * @adapter: board private structure
2600  *
2601  * If this function returns with an error, then it's possible one or
2602  * more of the rings is populated (while the rest are not).  It is the
2603  * callers duty to clean those orphaned rings.
2604  *
2605  * Return 0 on success, negative on failure
2606  **/
2607 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2608 {
2609         int i, err = 0;
2610
2611         for (i = 0; i < adapter->num_rx_queues; i++) {
2612                 err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2613                 if (!err)
2614                         continue;
2615                 hw_dbg(&adapter->hw,
2616                        "Allocation for Rx Queue %u failed\n", i);
2617                 break;
2618         }
2619         return err;
2620 }
2621
2622 /**
2623  * ixgbevf_free_rx_resources - Free Rx Resources
2624  * @adapter: board private structure
2625  * @rx_ring: ring to clean the resources from
2626  *
2627  * Free all receive software resources
2628  **/
2629 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2630                                struct ixgbevf_ring *rx_ring)
2631 {
2632         struct pci_dev *pdev = adapter->pdev;
2633
2634         ixgbevf_clean_rx_ring(adapter, rx_ring);
2635
2636         vfree(rx_ring->rx_buffer_info);
2637         rx_ring->rx_buffer_info = NULL;
2638
2639         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2640                           rx_ring->dma);
2641
2642         rx_ring->desc = NULL;
2643 }
2644
2645 /**
2646  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2647  * @adapter: board private structure
2648  *
2649  * Free all receive software resources
2650  **/
2651 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2652 {
2653         int i;
2654
2655         for (i = 0; i < adapter->num_rx_queues; i++)
2656                 if (adapter->rx_ring[i].desc)
2657                         ixgbevf_free_rx_resources(adapter,
2658                                                   &adapter->rx_ring[i]);
2659 }
2660
2661 /**
2662  * ixgbevf_open - Called when a network interface is made active
2663  * @netdev: network interface device structure
2664  *
2665  * Returns 0 on success, negative value on failure
2666  *
2667  * The open entry point is called when a network interface is made
2668  * active by the system (IFF_UP).  At this point all resources needed
2669  * for transmit and receive operations are allocated, the interrupt
2670  * handler is registered with the OS, the watchdog timer is started,
2671  * and the stack is notified that the interface is ready.
2672  **/
2673 static int ixgbevf_open(struct net_device *netdev)
2674 {
2675         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2676         struct ixgbe_hw *hw = &adapter->hw;
2677         int err;
2678
2679         /* disallow open during test */
2680         if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2681                 return -EBUSY;
2682
2683         if (hw->adapter_stopped) {
2684                 ixgbevf_reset(adapter);
2685                 /* if adapter is still stopped then PF isn't up and
2686                  * the vf can't start. */
2687                 if (hw->adapter_stopped) {
2688                         err = IXGBE_ERR_MBX;
2689                         printk(KERN_ERR "Unable to start - perhaps the PF"
2690                                " Driver isn't up yet\n");
2691                         goto err_setup_reset;
2692                 }
2693         }
2694
2695         /* allocate transmit descriptors */
2696         err = ixgbevf_setup_all_tx_resources(adapter);
2697         if (err)
2698                 goto err_setup_tx;
2699
2700         /* allocate receive descriptors */
2701         err = ixgbevf_setup_all_rx_resources(adapter);
2702         if (err)
2703                 goto err_setup_rx;
2704
2705         ixgbevf_configure(adapter);
2706
2707         /*
2708          * Map the Tx/Rx rings to the vectors we were allotted.
2709          * if request_irq will be called in this function map_rings
2710          * must be called *before* up_complete
2711          */
2712         ixgbevf_map_rings_to_vectors(adapter);
2713
2714         err = ixgbevf_up_complete(adapter);
2715         if (err)
2716                 goto err_up;
2717
2718         /* clear any pending interrupts, may auto mask */
2719         IXGBE_READ_REG(hw, IXGBE_VTEICR);
2720         err = ixgbevf_request_irq(adapter);
2721         if (err)
2722                 goto err_req_irq;
2723
2724         ixgbevf_irq_enable(adapter, true, true);
2725
2726         return 0;
2727
2728 err_req_irq:
2729         ixgbevf_down(adapter);
2730 err_up:
2731         ixgbevf_free_irq(adapter);
2732 err_setup_rx:
2733         ixgbevf_free_all_rx_resources(adapter);
2734 err_setup_tx:
2735         ixgbevf_free_all_tx_resources(adapter);
2736         ixgbevf_reset(adapter);
2737
2738 err_setup_reset:
2739
2740         return err;
2741 }
2742
2743 /**
2744  * ixgbevf_close - Disables a network interface
2745  * @netdev: network interface device structure
2746  *
2747  * Returns 0, this is not allowed to fail
2748  *
2749  * The close entry point is called when an interface is de-activated
2750  * by the OS.  The hardware is still under the drivers control, but
2751  * needs to be disabled.  A global MAC reset is issued to stop the
2752  * hardware, and all transmit and receive resources are freed.
2753  **/
2754 static int ixgbevf_close(struct net_device *netdev)
2755 {
2756         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2757
2758         ixgbevf_down(adapter);
2759         ixgbevf_free_irq(adapter);
2760
2761         ixgbevf_free_all_tx_resources(adapter);
2762         ixgbevf_free_all_rx_resources(adapter);
2763
2764         return 0;
2765 }
2766
2767 static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2768                        struct ixgbevf_ring *tx_ring,
2769                        struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2770 {
2771         struct ixgbe_adv_tx_context_desc *context_desc;
2772         unsigned int i;
2773         int err;
2774         struct ixgbevf_tx_buffer *tx_buffer_info;
2775         u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2776         u32 mss_l4len_idx, l4len;
2777
2778         if (skb_is_gso(skb)) {
2779                 if (skb_header_cloned(skb)) {
2780                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2781                         if (err)
2782                                 return err;
2783                 }
2784                 l4len = tcp_hdrlen(skb);
2785                 *hdr_len += l4len;
2786
2787                 if (skb->protocol == htons(ETH_P_IP)) {
2788                         struct iphdr *iph = ip_hdr(skb);
2789                         iph->tot_len = 0;
2790                         iph->check = 0;
2791                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2792                                                                  iph->daddr, 0,
2793                                                                  IPPROTO_TCP,
2794                                                                  0);
2795                         adapter->hw_tso_ctxt++;
2796                 } else if (skb_is_gso_v6(skb)) {
2797                         ipv6_hdr(skb)->payload_len = 0;
2798                         tcp_hdr(skb)->check =
2799                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2800                                              &ipv6_hdr(skb)->daddr,
2801                                              0, IPPROTO_TCP, 0);
2802                         adapter->hw_tso6_ctxt++;
2803                 }
2804
2805                 i = tx_ring->next_to_use;
2806
2807                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2808                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2809
2810                 /* VLAN MACLEN IPLEN */
2811                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2812                         vlan_macip_lens |=
2813                                 (tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2814                 vlan_macip_lens |= ((skb_network_offset(skb)) <<
2815                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2816                 *hdr_len += skb_network_offset(skb);
2817                 vlan_macip_lens |=
2818                         (skb_transport_header(skb) - skb_network_header(skb));
2819                 *hdr_len +=
2820                         (skb_transport_header(skb) - skb_network_header(skb));
2821                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2822                 context_desc->seqnum_seed = 0;
2823
2824                 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2825                 type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2826                                     IXGBE_ADVTXD_DTYP_CTXT);
2827
2828                 if (skb->protocol == htons(ETH_P_IP))
2829                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2830                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2831                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2832
2833                 /* MSS L4LEN IDX */
2834                 mss_l4len_idx =
2835                         (skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2836                 mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2837                 /* use index 1 for TSO */
2838                 mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2839                 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2840
2841                 tx_buffer_info->time_stamp = jiffies;
2842                 tx_buffer_info->next_to_watch = i;
2843
2844                 i++;
2845                 if (i == tx_ring->count)
2846                         i = 0;
2847                 tx_ring->next_to_use = i;
2848
2849                 return true;
2850         }
2851
2852         return false;
2853 }
2854
2855 static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2856                             struct ixgbevf_ring *tx_ring,
2857                             struct sk_buff *skb, u32 tx_flags)
2858 {
2859         struct ixgbe_adv_tx_context_desc *context_desc;
2860         unsigned int i;
2861         struct ixgbevf_tx_buffer *tx_buffer_info;
2862         u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2863
2864         if (skb->ip_summed == CHECKSUM_PARTIAL ||
2865             (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2866                 i = tx_ring->next_to_use;
2867                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2868                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2869
2870                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2871                         vlan_macip_lens |= (tx_flags &
2872                                             IXGBE_TX_FLAGS_VLAN_MASK);
2873                 vlan_macip_lens |= (skb_network_offset(skb) <<
2874                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2875                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2876                         vlan_macip_lens |= (skb_transport_header(skb) -
2877                                             skb_network_header(skb));
2878
2879                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2880                 context_desc->seqnum_seed = 0;
2881
2882                 type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2883                                     IXGBE_ADVTXD_DTYP_CTXT);
2884
2885                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2886                         switch (skb->protocol) {
2887                         case __constant_htons(ETH_P_IP):
2888                                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2889                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2890                                         type_tucmd_mlhl |=
2891                                             IXGBE_ADVTXD_TUCMD_L4T_TCP;
2892                                 break;
2893                         case __constant_htons(ETH_P_IPV6):
2894                                 /* XXX what about other V6 headers?? */
2895                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2896                                         type_tucmd_mlhl |=
2897                                                 IXGBE_ADVTXD_TUCMD_L4T_TCP;
2898                                 break;
2899                         default:
2900                                 if (unlikely(net_ratelimit())) {
2901                                         printk(KERN_WARNING
2902                                                "partial checksum but "
2903                                                "proto=%x!\n",
2904                                                skb->protocol);
2905                                 }
2906                                 break;
2907                         }
2908                 }
2909
2910                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2911                 /* use index zero for tx checksum offload */
2912                 context_desc->mss_l4len_idx = 0;
2913
2914                 tx_buffer_info->time_stamp = jiffies;
2915                 tx_buffer_info->next_to_watch = i;
2916
2917                 adapter->hw_csum_tx_good++;
2918                 i++;
2919                 if (i == tx_ring->count)
2920                         i = 0;
2921                 tx_ring->next_to_use = i;
2922
2923                 return true;
2924         }
2925
2926         return false;
2927 }
2928
2929 static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2930                           struct ixgbevf_ring *tx_ring,
2931                           struct sk_buff *skb, u32 tx_flags,
2932                           unsigned int first)
2933 {
2934         struct pci_dev *pdev = adapter->pdev;
2935         struct ixgbevf_tx_buffer *tx_buffer_info;
2936         unsigned int len;
2937         unsigned int total = skb->len;
2938         unsigned int offset = 0, size, count = 0;
2939         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2940         unsigned int f;
2941         int i;
2942
2943         i = tx_ring->next_to_use;
2944
2945         len = min(skb_headlen(skb), total);
2946         while (len) {
2947                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2948                 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2949
2950                 tx_buffer_info->length = size;
2951                 tx_buffer_info->mapped_as_page = false;
2952                 tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
2953                                                      skb->data + offset,
2954                                                      size, DMA_TO_DEVICE);
2955                 if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2956                         goto dma_error;
2957                 tx_buffer_info->time_stamp = jiffies;
2958                 tx_buffer_info->next_to_watch = i;
2959
2960                 len -= size;
2961                 total -= size;
2962                 offset += size;
2963                 count++;
2964                 i++;
2965                 if (i == tx_ring->count)
2966                         i = 0;
2967         }
2968
2969         for (f = 0; f < nr_frags; f++) {
2970                 struct skb_frag_struct *frag;
2971
2972                 frag = &skb_shinfo(skb)->frags[f];
2973                 len = min((unsigned int)frag->size, total);
2974                 offset = frag->page_offset;
2975
2976                 while (len) {
2977                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
2978                         size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2979
2980                         tx_buffer_info->length = size;
2981                         tx_buffer_info->dma = dma_map_page(&adapter->pdev->dev,
2982                                                            frag->page,
2983                                                            offset,
2984                                                            size,
2985                                                            DMA_TO_DEVICE);
2986                         tx_buffer_info->mapped_as_page = true;
2987                         if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2988                                 goto dma_error;
2989                         tx_buffer_info->time_stamp = jiffies;
2990                         tx_buffer_info->next_to_watch = i;
2991
2992                         len -= size;
2993                         total -= size;
2994                         offset += size;
2995                         count++;
2996                         i++;
2997                         if (i == tx_ring->count)
2998                                 i = 0;
2999                 }
3000                 if (total == 0)
3001                         break;
3002         }
3003
3004         if (i == 0)
3005                 i = tx_ring->count - 1;
3006         else
3007                 i = i - 1;
3008         tx_ring->tx_buffer_info[i].skb = skb;
3009         tx_ring->tx_buffer_info[first].next_to_watch = i;
3010
3011         return count;
3012
3013 dma_error:
3014         dev_err(&pdev->dev, "TX DMA map failed\n");
3015
3016         /* clear timestamp and dma mappings for failed tx_buffer_info map */
3017         tx_buffer_info->dma = 0;
3018         tx_buffer_info->time_stamp = 0;
3019         tx_buffer_info->next_to_watch = 0;
3020         count--;
3021
3022         /* clear timestamp and dma mappings for remaining portion of packet */
3023         while (count >= 0) {
3024                 count--;
3025                 i--;
3026                 if (i < 0)
3027                         i += tx_ring->count;
3028                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3029                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
3030         }
3031
3032         return count;
3033 }
3034
3035 static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
3036                              struct ixgbevf_ring *tx_ring, int tx_flags,
3037                              int count, u32 paylen, u8 hdr_len)
3038 {
3039         union ixgbe_adv_tx_desc *tx_desc = NULL;
3040         struct ixgbevf_tx_buffer *tx_buffer_info;
3041         u32 olinfo_status = 0, cmd_type_len = 0;
3042         unsigned int i;
3043
3044         u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
3045
3046         cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
3047
3048         cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
3049
3050         if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3051                 cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
3052
3053         if (tx_flags & IXGBE_TX_FLAGS_TSO) {
3054                 cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
3055
3056                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3057                         IXGBE_ADVTXD_POPTS_SHIFT;
3058
3059                 /* use index 1 context for tso */
3060                 olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3061                 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3062                         olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3063                                 IXGBE_ADVTXD_POPTS_SHIFT;
3064
3065         } else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3066                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3067                         IXGBE_ADVTXD_POPTS_SHIFT;
3068
3069         olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3070
3071         i = tx_ring->next_to_use;
3072         while (count--) {
3073                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3074                 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3075                 tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3076                 tx_desc->read.cmd_type_len =
3077                         cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3078                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3079                 i++;
3080                 if (i == tx_ring->count)
3081                         i = 0;
3082         }
3083
3084         tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3085
3086         /*
3087          * Force memory writes to complete before letting h/w
3088          * know there are new descriptors to fetch.  (Only
3089          * applicable for weak-ordered memory model archs,
3090          * such as IA-64).
3091          */
3092         wmb();
3093
3094         tx_ring->next_to_use = i;
3095         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3096 }
3097
3098 static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3099                                    struct ixgbevf_ring *tx_ring, int size)
3100 {
3101         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3102
3103         netif_stop_subqueue(netdev, tx_ring->queue_index);
3104         /* Herbert's original patch had:
3105          *  smp_mb__after_netif_stop_queue();
3106          * but since that doesn't exist yet, just open code it. */
3107         smp_mb();
3108
3109         /* We need to check again in a case another CPU has just
3110          * made room available. */
3111         if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3112                 return -EBUSY;
3113
3114         /* A reprieve! - use start_queue because it doesn't call schedule */
3115         netif_start_subqueue(netdev, tx_ring->queue_index);
3116         ++adapter->restart_queue;
3117         return 0;
3118 }
3119
3120 static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3121                                  struct ixgbevf_ring *tx_ring, int size)
3122 {
3123         if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3124                 return 0;
3125         return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3126 }
3127
3128 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3129 {
3130         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3131         struct ixgbevf_ring *tx_ring;
3132         unsigned int first;
3133         unsigned int tx_flags = 0;
3134         u8 hdr_len = 0;
3135         int r_idx = 0, tso;
3136         int count = 0;
3137
3138         unsigned int f;
3139
3140         tx_ring = &adapter->tx_ring[r_idx];
3141
3142         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3143                 tx_flags |= vlan_tx_tag_get(skb);
3144                 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3145                 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3146         }
3147
3148         /* four things can cause us to need a context descriptor */
3149         if (skb_is_gso(skb) ||
3150             (skb->ip_summed == CHECKSUM_PARTIAL) ||
3151             (tx_flags & IXGBE_TX_FLAGS_VLAN))
3152                 count++;
3153
3154         count += TXD_USE_COUNT(skb_headlen(skb));
3155         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3156                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3157
3158         if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3159                 adapter->tx_busy++;
3160                 return NETDEV_TX_BUSY;
3161         }
3162
3163         first = tx_ring->next_to_use;
3164
3165         if (skb->protocol == htons(ETH_P_IP))
3166                 tx_flags |= IXGBE_TX_FLAGS_IPV4;
3167         tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3168         if (tso < 0) {
3169                 dev_kfree_skb_any(skb);
3170                 return NETDEV_TX_OK;
3171         }
3172
3173         if (tso)
3174                 tx_flags |= IXGBE_TX_FLAGS_TSO;
3175         else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3176                  (skb->ip_summed == CHECKSUM_PARTIAL))
3177                 tx_flags |= IXGBE_TX_FLAGS_CSUM;
3178
3179         ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3180                          ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3181                          skb->len, hdr_len);
3182
3183         ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3184
3185         return NETDEV_TX_OK;
3186 }
3187
3188 /**
3189  * ixgbevf_get_stats - Get System Network Statistics
3190  * @netdev: network interface device structure
3191  *
3192  * Returns the address of the device statistics structure.
3193  * The statistics are actually updated from the timer callback.
3194  **/
3195 static struct net_device_stats *ixgbevf_get_stats(struct net_device *netdev)
3196 {
3197         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3198
3199         /* only return the current stats */
3200         return &adapter->net_stats;
3201 }
3202
3203 /**
3204  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3205  * @netdev: network interface device structure
3206  * @p: pointer to an address structure
3207  *
3208  * Returns 0 on success, negative on failure
3209  **/
3210 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3211 {
3212         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3213         struct ixgbe_hw *hw = &adapter->hw;
3214         struct sockaddr *addr = p;
3215
3216         if (!is_valid_ether_addr(addr->sa_data))
3217                 return -EADDRNOTAVAIL;
3218
3219         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3220         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3221
3222         if (hw->mac.ops.set_rar)
3223                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3224
3225         return 0;
3226 }
3227
3228 /**
3229  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3230  * @netdev: network interface device structure
3231  * @new_mtu: new value for maximum frame size
3232  *
3233  * Returns 0 on success, negative on failure
3234  **/
3235 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3236 {
3237         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3238         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3239
3240         /* MTU < 68 is an error and causes problems on some kernels */
3241         if ((new_mtu < 68) || (max_frame > MAXIMUM_ETHERNET_VLAN_SIZE))
3242                 return -EINVAL;
3243
3244         hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3245                netdev->mtu, new_mtu);
3246         /* must set new MTU before calling down or up */
3247         netdev->mtu = new_mtu;
3248
3249         if (netif_running(netdev))
3250                 ixgbevf_reinit_locked(adapter);
3251
3252         return 0;
3253 }
3254
3255 static void ixgbevf_shutdown(struct pci_dev *pdev)
3256 {
3257         struct net_device *netdev = pci_get_drvdata(pdev);
3258         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3259
3260         netif_device_detach(netdev);
3261
3262         if (netif_running(netdev)) {
3263                 ixgbevf_down(adapter);
3264                 ixgbevf_free_irq(adapter);
3265                 ixgbevf_free_all_tx_resources(adapter);
3266                 ixgbevf_free_all_rx_resources(adapter);
3267         }
3268
3269 #ifdef CONFIG_PM
3270         pci_save_state(pdev);
3271 #endif
3272
3273         pci_disable_device(pdev);
3274 }
3275
3276 static const struct net_device_ops ixgbe_netdev_ops = {
3277         .ndo_open               = &ixgbevf_open,
3278         .ndo_stop               = &ixgbevf_close,
3279         .ndo_start_xmit         = &ixgbevf_xmit_frame,
3280         .ndo_get_stats          = &ixgbevf_get_stats,
3281         .ndo_set_rx_mode        = &ixgbevf_set_rx_mode,
3282         .ndo_set_multicast_list = &ixgbevf_set_rx_mode,
3283         .ndo_validate_addr      = eth_validate_addr,
3284         .ndo_set_mac_address    = &ixgbevf_set_mac,
3285         .ndo_change_mtu         = &ixgbevf_change_mtu,
3286         .ndo_tx_timeout         = &ixgbevf_tx_timeout,
3287         .ndo_vlan_rx_register   = &ixgbevf_vlan_rx_register,
3288         .ndo_vlan_rx_add_vid    = &ixgbevf_vlan_rx_add_vid,
3289         .ndo_vlan_rx_kill_vid   = &ixgbevf_vlan_rx_kill_vid,
3290 };
3291
3292 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3293 {
3294         struct ixgbevf_adapter *adapter;
3295         adapter = netdev_priv(dev);
3296         dev->netdev_ops = &ixgbe_netdev_ops;
3297         ixgbevf_set_ethtool_ops(dev);
3298         dev->watchdog_timeo = 5 * HZ;
3299 }
3300
3301 /**
3302  * ixgbevf_probe - Device Initialization Routine
3303  * @pdev: PCI device information struct
3304  * @ent: entry in ixgbevf_pci_tbl
3305  *
3306  * Returns 0 on success, negative on failure
3307  *
3308  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3309  * The OS initialization, configuring of the adapter private structure,
3310  * and a hardware reset occur.
3311  **/
3312 static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3313                                    const struct pci_device_id *ent)
3314 {
3315         struct net_device *netdev;
3316         struct ixgbevf_adapter *adapter = NULL;
3317         struct ixgbe_hw *hw = NULL;
3318         const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3319         static int cards_found;
3320         int err, pci_using_dac;
3321
3322         err = pci_enable_device(pdev);
3323         if (err)
3324                 return err;
3325
3326         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3327             !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3328                 pci_using_dac = 1;
3329         } else {
3330                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3331                 if (err) {
3332                         err = dma_set_coherent_mask(&pdev->dev,
3333                                                     DMA_BIT_MASK(32));
3334                         if (err) {
3335                                 dev_err(&pdev->dev, "No usable DMA "
3336                                         "configuration, aborting\n");
3337                                 goto err_dma;
3338                         }
3339                 }
3340                 pci_using_dac = 0;
3341         }
3342
3343         err = pci_request_regions(pdev, ixgbevf_driver_name);
3344         if (err) {
3345                 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3346                 goto err_pci_reg;
3347         }
3348
3349         pci_set_master(pdev);
3350
3351 #ifdef HAVE_TX_MQ
3352         netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3353                                    MAX_TX_QUEUES);
3354 #else
3355         netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3356 #endif
3357         if (!netdev) {
3358                 err = -ENOMEM;
3359                 goto err_alloc_etherdev;
3360         }
3361
3362         SET_NETDEV_DEV(netdev, &pdev->dev);
3363
3364         pci_set_drvdata(pdev, netdev);
3365         adapter = netdev_priv(netdev);
3366
3367         adapter->netdev = netdev;
3368         adapter->pdev = pdev;
3369         hw = &adapter->hw;
3370         hw->back = adapter;
3371         adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3372
3373         /*
3374          * call save state here in standalone driver because it relies on
3375          * adapter struct to exist, and needs to call netdev_priv
3376          */
3377         pci_save_state(pdev);
3378
3379         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3380                               pci_resource_len(pdev, 0));
3381         if (!hw->hw_addr) {
3382                 err = -EIO;
3383                 goto err_ioremap;
3384         }
3385
3386         ixgbevf_assign_netdev_ops(netdev);
3387
3388         adapter->bd_number = cards_found;
3389
3390         /* Setup hw api */
3391         memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3392         hw->mac.type  = ii->mac;
3393
3394         memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3395                sizeof(struct ixgbe_mac_operations));
3396
3397         adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3398         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3399         adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3400
3401         /* setup the private structure */
3402         err = ixgbevf_sw_init(adapter);
3403
3404 #ifdef MAX_SKB_FRAGS
3405         netdev->features = NETIF_F_SG |
3406                            NETIF_F_IP_CSUM |
3407                            NETIF_F_HW_VLAN_TX |
3408                            NETIF_F_HW_VLAN_RX |
3409                            NETIF_F_HW_VLAN_FILTER;
3410
3411         netdev->features |= NETIF_F_IPV6_CSUM;
3412         netdev->features |= NETIF_F_TSO;
3413         netdev->features |= NETIF_F_TSO6;
3414         netdev->vlan_features |= NETIF_F_TSO;
3415         netdev->vlan_features |= NETIF_F_TSO6;
3416         netdev->vlan_features |= NETIF_F_IP_CSUM;
3417         netdev->vlan_features |= NETIF_F_SG;
3418
3419         if (pci_using_dac)
3420                 netdev->features |= NETIF_F_HIGHDMA;
3421
3422 #endif /* MAX_SKB_FRAGS */
3423
3424         /* The HW MAC address was set and/or determined in sw_init */
3425         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3426         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3427
3428         if (!is_valid_ether_addr(netdev->dev_addr)) {
3429                 printk(KERN_ERR "invalid MAC address\n");
3430                 err = -EIO;
3431                 goto err_sw_init;
3432         }
3433
3434         init_timer(&adapter->watchdog_timer);
3435         adapter->watchdog_timer.function = &ixgbevf_watchdog;
3436         adapter->watchdog_timer.data = (unsigned long)adapter;
3437
3438         INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3439         INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3440
3441         err = ixgbevf_init_interrupt_scheme(adapter);
3442         if (err)
3443                 goto err_sw_init;
3444
3445         /* pick up the PCI bus settings for reporting later */
3446         if (hw->mac.ops.get_bus_info)
3447                 hw->mac.ops.get_bus_info(hw);
3448
3449
3450         netif_carrier_off(netdev);
3451         netif_tx_stop_all_queues(netdev);
3452
3453         strcpy(netdev->name, "eth%d");
3454
3455         err = register_netdev(netdev);
3456         if (err)
3457                 goto err_register;
3458
3459         adapter->netdev_registered = true;
3460
3461         ixgbevf_init_last_counter_stats(adapter);
3462
3463         /* print the MAC address */
3464         hw_dbg(hw, "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
3465                netdev->dev_addr[0],
3466                netdev->dev_addr[1],
3467                netdev->dev_addr[2],
3468                netdev->dev_addr[3],
3469                netdev->dev_addr[4],
3470                netdev->dev_addr[5]);
3471
3472         hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3473
3474         hw_dbg(hw, "LRO is disabled\n");
3475
3476         hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3477         cards_found++;
3478         return 0;
3479
3480 err_register:
3481 err_sw_init:
3482         ixgbevf_reset_interrupt_capability(adapter);
3483         iounmap(hw->hw_addr);
3484 err_ioremap:
3485         free_netdev(netdev);
3486 err_alloc_etherdev:
3487         pci_release_regions(pdev);
3488 err_pci_reg:
3489 err_dma:
3490         pci_disable_device(pdev);
3491         return err;
3492 }
3493
3494 /**
3495  * ixgbevf_remove - Device Removal Routine
3496  * @pdev: PCI device information struct
3497  *
3498  * ixgbevf_remove is called by the PCI subsystem to alert the driver
3499  * that it should release a PCI device.  The could be caused by a
3500  * Hot-Plug event, or because the driver is going to be removed from
3501  * memory.
3502  **/
3503 static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3504 {
3505         struct net_device *netdev = pci_get_drvdata(pdev);
3506         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3507
3508         set_bit(__IXGBEVF_DOWN, &adapter->state);
3509
3510         del_timer_sync(&adapter->watchdog_timer);
3511
3512         cancel_work_sync(&adapter->watchdog_task);
3513
3514         flush_scheduled_work();
3515
3516         if (adapter->netdev_registered) {
3517                 unregister_netdev(netdev);
3518                 adapter->netdev_registered = false;
3519         }
3520
3521         ixgbevf_reset_interrupt_capability(adapter);
3522
3523         iounmap(adapter->hw.hw_addr);
3524         pci_release_regions(pdev);
3525
3526         hw_dbg(&adapter->hw, "Remove complete\n");
3527
3528         kfree(adapter->tx_ring);
3529         kfree(adapter->rx_ring);
3530
3531         free_netdev(netdev);
3532
3533         pci_disable_device(pdev);
3534 }
3535
3536 static struct pci_driver ixgbevf_driver = {
3537         .name     = ixgbevf_driver_name,
3538         .id_table = ixgbevf_pci_tbl,
3539         .probe    = ixgbevf_probe,
3540         .remove   = __devexit_p(ixgbevf_remove),
3541         .shutdown = ixgbevf_shutdown,
3542 };
3543
3544 /**
3545  * ixgbe_init_module - Driver Registration Routine
3546  *
3547  * ixgbe_init_module is the first routine called when the driver is
3548  * loaded. All it does is register with the PCI subsystem.
3549  **/
3550 static int __init ixgbevf_init_module(void)
3551 {
3552         int ret;
3553         printk(KERN_INFO "ixgbevf: %s - version %s\n", ixgbevf_driver_string,
3554                ixgbevf_driver_version);
3555
3556         printk(KERN_INFO "%s\n", ixgbevf_copyright);
3557
3558         ret = pci_register_driver(&ixgbevf_driver);
3559         return ret;
3560 }
3561
3562 module_init(ixgbevf_init_module);
3563
3564 /**
3565  * ixgbe_exit_module - Driver Exit Cleanup Routine
3566  *
3567  * ixgbe_exit_module is called just before the driver is removed
3568  * from memory.
3569  **/
3570 static void __exit ixgbevf_exit_module(void)
3571 {
3572         pci_unregister_driver(&ixgbevf_driver);
3573 }
3574
3575 #ifdef DEBUG
3576 /**
3577  * ixgbe_get_hw_dev_name - return device name string
3578  * used by hardware layer to print debugging information
3579  **/
3580 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3581 {
3582         struct ixgbevf_adapter *adapter = hw->back;
3583         return adapter->netdev->name;
3584 }
3585
3586 #endif
3587 module_exit(ixgbevf_exit_module);
3588
3589 /* ixgbevf_main.c */