Merge branch 'omap-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tmlind...
[pandora-kernel.git] / drivers / net / ixgbe / ixgbe_phy.c
1 /*******************************************************************************
2
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31
32 #include "ixgbe_common.h"
33 #include "ixgbe_phy.h"
34
35 static void ixgbe_i2c_start(struct ixgbe_hw *hw);
36 static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
37 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
38 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
39 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
40 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
41 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
42 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
43 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
44 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
45 static bool ixgbe_get_i2c_data(u32 *i2cctl);
46 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
47 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
48 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
49
50 /**
51  *  ixgbe_identify_phy_generic - Get physical layer module
52  *  @hw: pointer to hardware structure
53  *
54  *  Determines the physical layer module found on the current adapter.
55  **/
56 s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
57 {
58         s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
59         u32 phy_addr;
60
61         if (hw->phy.type == ixgbe_phy_unknown) {
62                 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
63                         hw->phy.mdio.prtad = phy_addr;
64                         if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
65                                 ixgbe_get_phy_id(hw);
66                                 hw->phy.type =
67                                         ixgbe_get_phy_type_from_id(hw->phy.id);
68                                 status = 0;
69                                 break;
70                         }
71                 }
72                 /* clear value if nothing found */
73                 hw->phy.mdio.prtad = 0;
74         } else {
75                 status = 0;
76         }
77
78         return status;
79 }
80
81 /**
82  *  ixgbe_get_phy_id - Get the phy type
83  *  @hw: pointer to hardware structure
84  *
85  **/
86 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
87 {
88         u32 status;
89         u16 phy_id_high = 0;
90         u16 phy_id_low = 0;
91
92         status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
93                                       &phy_id_high);
94
95         if (status == 0) {
96                 hw->phy.id = (u32)(phy_id_high << 16);
97                 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
98                                               &phy_id_low);
99                 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
100                 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
101         }
102         return status;
103 }
104
105 /**
106  *  ixgbe_get_phy_type_from_id - Get the phy type
107  *  @hw: pointer to hardware structure
108  *
109  **/
110 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
111 {
112         enum ixgbe_phy_type phy_type;
113
114         switch (phy_id) {
115         case TN1010_PHY_ID:
116                 phy_type = ixgbe_phy_tn;
117                 break;
118         case QT2022_PHY_ID:
119                 phy_type = ixgbe_phy_qt;
120                 break;
121         case ATH_PHY_ID:
122                 phy_type = ixgbe_phy_nl;
123                 break;
124         default:
125                 phy_type = ixgbe_phy_unknown;
126                 break;
127         }
128
129         return phy_type;
130 }
131
132 /**
133  *  ixgbe_reset_phy_generic - Performs a PHY reset
134  *  @hw: pointer to hardware structure
135  **/
136 s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
137 {
138         /*
139          * Perform soft PHY reset to the PHY_XS.
140          * This will cause a soft reset to the PHY
141          */
142         return hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
143                                      MDIO_CTRL1_RESET);
144 }
145
146 /**
147  *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
148  *  @hw: pointer to hardware structure
149  *  @reg_addr: 32 bit address of PHY register to read
150  *  @phy_data: Pointer to read data from PHY register
151  **/
152 s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
153                                u32 device_type, u16 *phy_data)
154 {
155         u32 command;
156         u32 i;
157         u32 data;
158         s32 status = 0;
159         u16 gssr;
160
161         if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
162                 gssr = IXGBE_GSSR_PHY1_SM;
163         else
164                 gssr = IXGBE_GSSR_PHY0_SM;
165
166         if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
167                 status = IXGBE_ERR_SWFW_SYNC;
168
169         if (status == 0) {
170                 /* Setup and write the address cycle command */
171                 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
172                            (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
173                            (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
174                            (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
175
176                 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
177
178                 /*
179                  * Check every 10 usec to see if the address cycle completed.
180                  * The MDI Command bit will clear when the operation is
181                  * complete
182                  */
183                 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
184                         udelay(10);
185
186                         command = IXGBE_READ_REG(hw, IXGBE_MSCA);
187
188                         if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
189                                 break;
190                 }
191
192                 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
193                         hw_dbg(hw, "PHY address command did not complete.\n");
194                         status = IXGBE_ERR_PHY;
195                 }
196
197                 if (status == 0) {
198                         /*
199                          * Address cycle complete, setup and write the read
200                          * command
201                          */
202                         command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
203                                    (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
204                                    (hw->phy.mdio.prtad <<
205                                     IXGBE_MSCA_PHY_ADDR_SHIFT) |
206                                    (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
207
208                         IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
209
210                         /*
211                          * Check every 10 usec to see if the address cycle
212                          * completed. The MDI Command bit will clear when the
213                          * operation is complete
214                          */
215                         for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
216                                 udelay(10);
217
218                                 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
219
220                                 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
221                                         break;
222                         }
223
224                         if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
225                                 hw_dbg(hw, "PHY read command didn't complete\n");
226                                 status = IXGBE_ERR_PHY;
227                         } else {
228                                 /*
229                                  * Read operation is complete.  Get the data
230                                  * from MSRWD
231                                  */
232                                 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
233                                 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
234                                 *phy_data = (u16)(data);
235                         }
236                 }
237
238                 ixgbe_release_swfw_sync(hw, gssr);
239         }
240
241         return status;
242 }
243
244 /**
245  *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
246  *  @hw: pointer to hardware structure
247  *  @reg_addr: 32 bit PHY register to write
248  *  @device_type: 5 bit device type
249  *  @phy_data: Data to write to the PHY register
250  **/
251 s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
252                                 u32 device_type, u16 phy_data)
253 {
254         u32 command;
255         u32 i;
256         s32 status = 0;
257         u16 gssr;
258
259         if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
260                 gssr = IXGBE_GSSR_PHY1_SM;
261         else
262                 gssr = IXGBE_GSSR_PHY0_SM;
263
264         if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
265                 status = IXGBE_ERR_SWFW_SYNC;
266
267         if (status == 0) {
268                 /* Put the data in the MDI single read and write data register*/
269                 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
270
271                 /* Setup and write the address cycle command */
272                 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
273                            (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
274                            (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
275                            (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
276
277                 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
278
279                 /*
280                  * Check every 10 usec to see if the address cycle completed.
281                  * The MDI Command bit will clear when the operation is
282                  * complete
283                  */
284                 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
285                         udelay(10);
286
287                         command = IXGBE_READ_REG(hw, IXGBE_MSCA);
288
289                         if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
290                                 break;
291                 }
292
293                 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
294                         hw_dbg(hw, "PHY address cmd didn't complete\n");
295                         status = IXGBE_ERR_PHY;
296                 }
297
298                 if (status == 0) {
299                         /*
300                          * Address cycle complete, setup and write the write
301                          * command
302                          */
303                         command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
304                                    (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
305                                    (hw->phy.mdio.prtad <<
306                                     IXGBE_MSCA_PHY_ADDR_SHIFT) |
307                                    (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
308
309                         IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
310
311                         /*
312                          * Check every 10 usec to see if the address cycle
313                          * completed. The MDI Command bit will clear when the
314                          * operation is complete
315                          */
316                         for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
317                                 udelay(10);
318
319                                 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
320
321                                 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
322                                         break;
323                         }
324
325                         if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
326                                 hw_dbg(hw, "PHY address cmd didn't complete\n");
327                                 status = IXGBE_ERR_PHY;
328                         }
329                 }
330
331                 ixgbe_release_swfw_sync(hw, gssr);
332         }
333
334         return status;
335 }
336
337 /**
338  *  ixgbe_setup_phy_link_generic - Set and restart autoneg
339  *  @hw: pointer to hardware structure
340  *
341  *  Restart autonegotiation and PHY and waits for completion.
342  **/
343 s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
344 {
345         s32 status = IXGBE_NOT_IMPLEMENTED;
346         u32 time_out;
347         u32 max_time_out = 10;
348         u16 autoneg_reg;
349
350         /*
351          * Set advertisement settings in PHY based on autoneg_advertised
352          * settings. If autoneg_advertised = 0, then advertise default values
353          * tnx devices cannot be "forced" to a autoneg 10G and fail.  But can
354          * for a 1G.
355          */
356         hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
357
358         if (hw->phy.autoneg_advertised == IXGBE_LINK_SPEED_1GB_FULL)
359                 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
360         else
361                 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
362
363         hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
364
365         /* Restart PHY autonegotiation and wait for completion */
366         hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, &autoneg_reg);
367
368         autoneg_reg |= MDIO_AN_CTRL1_RESTART;
369
370         hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, autoneg_reg);
371
372         /* Wait for autonegotiation to finish */
373         for (time_out = 0; time_out < max_time_out; time_out++) {
374                 udelay(10);
375                 /* Restart PHY autonegotiation and wait for completion */
376                 status = hw->phy.ops.read_reg(hw, MDIO_STAT1, MDIO_MMD_AN,
377                                               &autoneg_reg);
378
379                 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
380                 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE) {
381                         status = 0;
382                         break;
383                 }
384         }
385
386         if (time_out == max_time_out)
387                 status = IXGBE_ERR_LINK_SETUP;
388
389         return status;
390 }
391
392 /**
393  *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
394  *  @hw: pointer to hardware structure
395  *  @speed: new link speed
396  *  @autoneg: true if autonegotiation enabled
397  **/
398 s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
399                                        ixgbe_link_speed speed,
400                                        bool autoneg,
401                                        bool autoneg_wait_to_complete)
402 {
403
404         /*
405          * Clear autoneg_advertised and set new values based on input link
406          * speed.
407          */
408         hw->phy.autoneg_advertised = 0;
409
410         if (speed & IXGBE_LINK_SPEED_10GB_FULL)
411                 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
412
413         if (speed & IXGBE_LINK_SPEED_1GB_FULL)
414                 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
415
416         /* Setup link based on the new speed settings */
417         hw->phy.ops.setup_link(hw);
418
419         return 0;
420 }
421
422 /**
423  *  ixgbe_reset_phy_nl - Performs a PHY reset
424  *  @hw: pointer to hardware structure
425  **/
426 s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
427 {
428         u16 phy_offset, control, eword, edata, block_crc;
429         bool end_data = false;
430         u16 list_offset, data_offset;
431         u16 phy_data = 0;
432         s32 ret_val = 0;
433         u32 i;
434
435         hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
436
437         /* reset the PHY and poll for completion */
438         hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
439                               (phy_data | MDIO_CTRL1_RESET));
440
441         for (i = 0; i < 100; i++) {
442                 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
443                                      &phy_data);
444                 if ((phy_data & MDIO_CTRL1_RESET) == 0)
445                         break;
446                 msleep(10);
447         }
448
449         if ((phy_data & MDIO_CTRL1_RESET) != 0) {
450                 hw_dbg(hw, "PHY reset did not complete.\n");
451                 ret_val = IXGBE_ERR_PHY;
452                 goto out;
453         }
454
455         /* Get init offsets */
456         ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
457                                                       &data_offset);
458         if (ret_val != 0)
459                 goto out;
460
461         ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
462         data_offset++;
463         while (!end_data) {
464                 /*
465                  * Read control word from PHY init contents offset
466                  */
467                 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
468                 control = (eword & IXGBE_CONTROL_MASK_NL) >>
469                            IXGBE_CONTROL_SHIFT_NL;
470                 edata = eword & IXGBE_DATA_MASK_NL;
471                 switch (control) {
472                 case IXGBE_DELAY_NL:
473                         data_offset++;
474                         hw_dbg(hw, "DELAY: %d MS\n", edata);
475                         msleep(edata);
476                         break;
477                 case IXGBE_DATA_NL:
478                         hw_dbg(hw, "DATA:\n");
479                         data_offset++;
480                         hw->eeprom.ops.read(hw, data_offset++,
481                                             &phy_offset);
482                         for (i = 0; i < edata; i++) {
483                                 hw->eeprom.ops.read(hw, data_offset, &eword);
484                                 hw->phy.ops.write_reg(hw, phy_offset,
485                                                       MDIO_MMD_PMAPMD, eword);
486                                 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
487                                        phy_offset);
488                                 data_offset++;
489                                 phy_offset++;
490                         }
491                         break;
492                 case IXGBE_CONTROL_NL:
493                         data_offset++;
494                         hw_dbg(hw, "CONTROL:\n");
495                         if (edata == IXGBE_CONTROL_EOL_NL) {
496                                 hw_dbg(hw, "EOL\n");
497                                 end_data = true;
498                         } else if (edata == IXGBE_CONTROL_SOL_NL) {
499                                 hw_dbg(hw, "SOL\n");
500                         } else {
501                                 hw_dbg(hw, "Bad control value\n");
502                                 ret_val = IXGBE_ERR_PHY;
503                                 goto out;
504                         }
505                         break;
506                 default:
507                         hw_dbg(hw, "Bad control type\n");
508                         ret_val = IXGBE_ERR_PHY;
509                         goto out;
510                 }
511         }
512
513 out:
514         return ret_val;
515 }
516
517 /**
518  *  ixgbe_identify_sfp_module_generic - Identifies SFP module and assigns
519  *                                      the PHY type.
520  *  @hw: pointer to hardware structure
521  *
522  *  Searches for and indentifies the SFP module.  Assings appropriate PHY type.
523  **/
524 s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
525 {
526         s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
527         u32 vendor_oui = 0;
528         enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
529         u8 identifier = 0;
530         u8 comp_codes_1g = 0;
531         u8 comp_codes_10g = 0;
532         u8 oui_bytes[3] = {0, 0, 0};
533         u8 cable_tech = 0;
534         u8 cable_spec = 0;
535         u16 enforce_sfp = 0;
536
537         if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
538                 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
539                 status = IXGBE_ERR_SFP_NOT_PRESENT;
540                 goto out;
541         }
542
543         status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
544                                              &identifier);
545
546         if (status == IXGBE_ERR_SFP_NOT_PRESENT || status == IXGBE_ERR_I2C) {
547                 status = IXGBE_ERR_SFP_NOT_PRESENT;
548                 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
549                 if (hw->phy.type != ixgbe_phy_nl) {
550                         hw->phy.id = 0;
551                         hw->phy.type = ixgbe_phy_unknown;
552                 }
553                 goto out;
554         }
555
556         if (identifier == IXGBE_SFF_IDENTIFIER_SFP) {
557                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_1GBE_COMP_CODES,
558                                             &comp_codes_1g);
559                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_10GBE_COMP_CODES,
560                                             &comp_codes_10g);
561                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_CABLE_TECHNOLOGY,
562                                             &cable_tech);
563
564                 /* ID Module
565                  * =========
566                  * 0    SFP_DA_CU
567                  * 1    SFP_SR
568                  * 2    SFP_LR
569                  * 3    SFP_DA_CORE0 - 82599-specific
570                  * 4    SFP_DA_CORE1 - 82599-specific
571                  * 5    SFP_SR/LR_CORE0 - 82599-specific
572                  * 6    SFP_SR/LR_CORE1 - 82599-specific
573                  */
574                 if (hw->mac.type == ixgbe_mac_82598EB) {
575                         if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
576                                 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
577                         else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
578                                 hw->phy.sfp_type = ixgbe_sfp_type_sr;
579                         else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
580                                 hw->phy.sfp_type = ixgbe_sfp_type_lr;
581                         else
582                                 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
583                 } else if (hw->mac.type == ixgbe_mac_82599EB) {
584                         if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
585                                 if (hw->bus.lan_id == 0)
586                                         hw->phy.sfp_type =
587                                                      ixgbe_sfp_type_da_cu_core0;
588                                 else
589                                         hw->phy.sfp_type =
590                                                      ixgbe_sfp_type_da_cu_core1;
591                         } else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
592                                 hw->phy.ops.read_i2c_eeprom(
593                                                 hw, IXGBE_SFF_CABLE_SPEC_COMP,
594                                                 &cable_spec);
595                                 if (cable_spec &
596                                     IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
597                                         if (hw->bus.lan_id == 0)
598                                                 hw->phy.sfp_type =
599                                                 ixgbe_sfp_type_da_act_lmt_core0;
600                                         else
601                                                 hw->phy.sfp_type =
602                                                 ixgbe_sfp_type_da_act_lmt_core1;
603                                 } else {
604                                         hw->phy.sfp_type =
605                                                 ixgbe_sfp_type_unknown;
606                                 }
607                         } else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
608                                 if (hw->bus.lan_id == 0)
609                                         hw->phy.sfp_type =
610                                                       ixgbe_sfp_type_srlr_core0;
611                                 else
612                                         hw->phy.sfp_type =
613                                                       ixgbe_sfp_type_srlr_core1;
614                         else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
615                                 if (hw->bus.lan_id == 0)
616                                         hw->phy.sfp_type =
617                                                       ixgbe_sfp_type_srlr_core0;
618                                 else
619                                         hw->phy.sfp_type =
620                                                       ixgbe_sfp_type_srlr_core1;
621                         else
622                                 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
623                 }
624
625                 if (hw->phy.sfp_type != stored_sfp_type)
626                         hw->phy.sfp_setup_needed = true;
627
628                 /* Determine if the SFP+ PHY is dual speed or not. */
629                 hw->phy.multispeed_fiber = false;
630                 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
631                    (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
632                    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
633                    (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
634                         hw->phy.multispeed_fiber = true;
635
636                 /* Determine PHY vendor */
637                 if (hw->phy.type != ixgbe_phy_nl) {
638                         hw->phy.id = identifier;
639                         hw->phy.ops.read_i2c_eeprom(hw,
640                                                     IXGBE_SFF_VENDOR_OUI_BYTE0,
641                                                     &oui_bytes[0]);
642                         hw->phy.ops.read_i2c_eeprom(hw,
643                                                     IXGBE_SFF_VENDOR_OUI_BYTE1,
644                                                     &oui_bytes[1]);
645                         hw->phy.ops.read_i2c_eeprom(hw,
646                                                     IXGBE_SFF_VENDOR_OUI_BYTE2,
647                                                     &oui_bytes[2]);
648
649                         vendor_oui =
650                           ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
651                            (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
652                            (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
653
654                         switch (vendor_oui) {
655                         case IXGBE_SFF_VENDOR_OUI_TYCO:
656                                 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
657                                         hw->phy.type =
658                                                 ixgbe_phy_sfp_passive_tyco;
659                                 break;
660                         case IXGBE_SFF_VENDOR_OUI_FTL:
661                                 if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
662                                         hw->phy.type = ixgbe_phy_sfp_ftl_active;
663                                 else
664                                         hw->phy.type = ixgbe_phy_sfp_ftl;
665                                 break;
666                         case IXGBE_SFF_VENDOR_OUI_AVAGO:
667                                 hw->phy.type = ixgbe_phy_sfp_avago;
668                                 break;
669                         case IXGBE_SFF_VENDOR_OUI_INTEL:
670                                 hw->phy.type = ixgbe_phy_sfp_intel;
671                                 break;
672                         default:
673                                 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
674                                         hw->phy.type =
675                                                 ixgbe_phy_sfp_passive_unknown;
676                                 else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
677                                         hw->phy.type =
678                                                 ixgbe_phy_sfp_active_unknown;
679                                 else
680                                         hw->phy.type = ixgbe_phy_sfp_unknown;
681                                 break;
682                         }
683                 }
684
685                 /* All passive DA cables are supported */
686                 if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
687                     IXGBE_SFF_DA_ACTIVE_CABLE)) {
688                         status = 0;
689                         goto out;
690                 }
691
692                 /* 1G SFP modules are not supported */
693                 if (comp_codes_10g == 0) {
694                         hw->phy.type = ixgbe_phy_sfp_unsupported;
695                         status = IXGBE_ERR_SFP_NOT_SUPPORTED;
696                         goto out;
697                 }
698
699                 /* Anything else 82598-based is supported */
700                 if (hw->mac.type == ixgbe_mac_82598EB) {
701                         status = 0;
702                         goto out;
703                 }
704
705                 /* This is guaranteed to be 82599, no need to check for NULL */
706                 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
707                 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
708                         /* Make sure we're a supported PHY type */
709                         if (hw->phy.type == ixgbe_phy_sfp_intel) {
710                                 status = 0;
711                         } else {
712                                 hw_dbg(hw, "SFP+ module not supported\n");
713                                 hw->phy.type = ixgbe_phy_sfp_unsupported;
714                                 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
715                         }
716                 } else {
717                         status = 0;
718                 }
719         }
720
721 out:
722         return status;
723 }
724
725 /**
726  *  ixgbe_get_sfp_init_sequence_offsets - Checks the MAC's EEPROM to see
727  *  if it supports a given SFP+ module type, if so it returns the offsets to the
728  *  phy init sequence block.
729  *  @hw: pointer to hardware structure
730  *  @list_offset: offset to the SFP ID list
731  *  @data_offset: offset to the SFP data block
732  **/
733 s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
734                                         u16 *list_offset,
735                                         u16 *data_offset)
736 {
737         u16 sfp_id;
738
739         if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
740                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
741
742         if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
743                 return IXGBE_ERR_SFP_NOT_PRESENT;
744
745         if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
746             (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
747                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
748
749         /* Read offset to PHY init contents */
750         hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
751
752         if ((!*list_offset) || (*list_offset == 0xFFFF))
753                 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
754
755         /* Shift offset to first ID word */
756         (*list_offset)++;
757
758         /*
759          * Find the matching SFP ID in the EEPROM
760          * and program the init sequence
761          */
762         hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
763
764         while (sfp_id != IXGBE_PHY_INIT_END_NL) {
765                 if (sfp_id == hw->phy.sfp_type) {
766                         (*list_offset)++;
767                         hw->eeprom.ops.read(hw, *list_offset, data_offset);
768                         if ((!*data_offset) || (*data_offset == 0xFFFF)) {
769                                 hw_dbg(hw, "SFP+ module not supported\n");
770                                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
771                         } else {
772                                 break;
773                         }
774                 } else {
775                         (*list_offset) += 2;
776                         if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
777                                 return IXGBE_ERR_PHY;
778                 }
779         }
780
781         if (sfp_id == IXGBE_PHY_INIT_END_NL) {
782                 hw_dbg(hw, "No matching SFP+ module found\n");
783                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
784         }
785
786         return 0;
787 }
788
789 /**
790  *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
791  *  @hw: pointer to hardware structure
792  *  @byte_offset: EEPROM byte offset to read
793  *  @eeprom_data: value read
794  *
795  *  Performs byte read operation to SFP module's EEPROM over I2C interface.
796  **/
797 s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
798                                   u8 *eeprom_data)
799 {
800         return hw->phy.ops.read_i2c_byte(hw, byte_offset,
801                                          IXGBE_I2C_EEPROM_DEV_ADDR,
802                                          eeprom_data);
803 }
804
805 /**
806  *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
807  *  @hw: pointer to hardware structure
808  *  @byte_offset: EEPROM byte offset to write
809  *  @eeprom_data: value to write
810  *
811  *  Performs byte write operation to SFP module's EEPROM over I2C interface.
812  **/
813 s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
814                                    u8 eeprom_data)
815 {
816         return hw->phy.ops.write_i2c_byte(hw, byte_offset,
817                                           IXGBE_I2C_EEPROM_DEV_ADDR,
818                                           eeprom_data);
819 }
820
821 /**
822  *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
823  *  @hw: pointer to hardware structure
824  *  @byte_offset: byte offset to read
825  *  @data: value read
826  *
827  *  Performs byte read operation to SFP module's EEPROM over I2C interface at
828  *  a specified deivce address.
829  **/
830 s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
831                                 u8 dev_addr, u8 *data)
832 {
833         s32 status = 0;
834         u32 max_retry = 1;
835         u32 retry = 0;
836         bool nack = 1;
837
838         do {
839                 ixgbe_i2c_start(hw);
840
841                 /* Device Address and write indication */
842                 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
843                 if (status != 0)
844                         goto fail;
845
846                 status = ixgbe_get_i2c_ack(hw);
847                 if (status != 0)
848                         goto fail;
849
850                 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
851                 if (status != 0)
852                         goto fail;
853
854                 status = ixgbe_get_i2c_ack(hw);
855                 if (status != 0)
856                         goto fail;
857
858                 ixgbe_i2c_start(hw);
859
860                 /* Device Address and read indication */
861                 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
862                 if (status != 0)
863                         goto fail;
864
865                 status = ixgbe_get_i2c_ack(hw);
866                 if (status != 0)
867                         goto fail;
868
869                 status = ixgbe_clock_in_i2c_byte(hw, data);
870                 if (status != 0)
871                         goto fail;
872
873                 status = ixgbe_clock_out_i2c_bit(hw, nack);
874                 if (status != 0)
875                         goto fail;
876
877                 ixgbe_i2c_stop(hw);
878                 break;
879
880 fail:
881                 ixgbe_i2c_bus_clear(hw);
882                 retry++;
883                 if (retry < max_retry)
884                         hw_dbg(hw, "I2C byte read error - Retrying.\n");
885                 else
886                         hw_dbg(hw, "I2C byte read error.\n");
887
888         } while (retry < max_retry);
889
890         return status;
891 }
892
893 /**
894  *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
895  *  @hw: pointer to hardware structure
896  *  @byte_offset: byte offset to write
897  *  @data: value to write
898  *
899  *  Performs byte write operation to SFP module's EEPROM over I2C interface at
900  *  a specified device address.
901  **/
902 s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
903                                  u8 dev_addr, u8 data)
904 {
905         s32 status = 0;
906         u32 max_retry = 1;
907         u32 retry = 0;
908
909         do {
910                 ixgbe_i2c_start(hw);
911
912                 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
913                 if (status != 0)
914                         goto fail;
915
916                 status = ixgbe_get_i2c_ack(hw);
917                 if (status != 0)
918                         goto fail;
919
920                 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
921                 if (status != 0)
922                         goto fail;
923
924                 status = ixgbe_get_i2c_ack(hw);
925                 if (status != 0)
926                         goto fail;
927
928                 status = ixgbe_clock_out_i2c_byte(hw, data);
929                 if (status != 0)
930                         goto fail;
931
932                 status = ixgbe_get_i2c_ack(hw);
933                 if (status != 0)
934                         goto fail;
935
936                 ixgbe_i2c_stop(hw);
937                 break;
938
939 fail:
940                 ixgbe_i2c_bus_clear(hw);
941                 retry++;
942                 if (retry < max_retry)
943                         hw_dbg(hw, "I2C byte write error - Retrying.\n");
944                 else
945                         hw_dbg(hw, "I2C byte write error.\n");
946         } while (retry < max_retry);
947
948         return status;
949 }
950
951 /**
952  *  ixgbe_i2c_start - Sets I2C start condition
953  *  @hw: pointer to hardware structure
954  *
955  *  Sets I2C start condition (High -> Low on SDA while SCL is High)
956  **/
957 static void ixgbe_i2c_start(struct ixgbe_hw *hw)
958 {
959         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
960
961         /* Start condition must begin with data and clock high */
962         ixgbe_set_i2c_data(hw, &i2cctl, 1);
963         ixgbe_raise_i2c_clk(hw, &i2cctl);
964
965         /* Setup time for start condition (4.7us) */
966         udelay(IXGBE_I2C_T_SU_STA);
967
968         ixgbe_set_i2c_data(hw, &i2cctl, 0);
969
970         /* Hold time for start condition (4us) */
971         udelay(IXGBE_I2C_T_HD_STA);
972
973         ixgbe_lower_i2c_clk(hw, &i2cctl);
974
975         /* Minimum low period of clock is 4.7 us */
976         udelay(IXGBE_I2C_T_LOW);
977
978 }
979
980 /**
981  *  ixgbe_i2c_stop - Sets I2C stop condition
982  *  @hw: pointer to hardware structure
983  *
984  *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
985  **/
986 static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
987 {
988         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
989
990         /* Stop condition must begin with data low and clock high */
991         ixgbe_set_i2c_data(hw, &i2cctl, 0);
992         ixgbe_raise_i2c_clk(hw, &i2cctl);
993
994         /* Setup time for stop condition (4us) */
995         udelay(IXGBE_I2C_T_SU_STO);
996
997         ixgbe_set_i2c_data(hw, &i2cctl, 1);
998
999         /* bus free time between stop and start (4.7us)*/
1000         udelay(IXGBE_I2C_T_BUF);
1001 }
1002
1003 /**
1004  *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
1005  *  @hw: pointer to hardware structure
1006  *  @data: data byte to clock in
1007  *
1008  *  Clocks in one byte data via I2C data/clock
1009  **/
1010 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
1011 {
1012         s32 status = 0;
1013         s32 i;
1014         bool bit = 0;
1015
1016         for (i = 7; i >= 0; i--) {
1017                 status = ixgbe_clock_in_i2c_bit(hw, &bit);
1018                 *data |= bit << i;
1019
1020                 if (status != 0)
1021                         break;
1022         }
1023
1024         return status;
1025 }
1026
1027 /**
1028  *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
1029  *  @hw: pointer to hardware structure
1030  *  @data: data byte clocked out
1031  *
1032  *  Clocks out one byte data via I2C data/clock
1033  **/
1034 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
1035 {
1036         s32 status = 0;
1037         s32 i;
1038         u32 i2cctl;
1039         bool bit = 0;
1040
1041         for (i = 7; i >= 0; i--) {
1042                 bit = (data >> i) & 0x1;
1043                 status = ixgbe_clock_out_i2c_bit(hw, bit);
1044
1045                 if (status != 0)
1046                         break;
1047         }
1048
1049         /* Release SDA line (set high) */
1050         i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1051         i2cctl |= IXGBE_I2C_DATA_OUT;
1052         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
1053
1054         return status;
1055 }
1056
1057 /**
1058  *  ixgbe_get_i2c_ack - Polls for I2C ACK
1059  *  @hw: pointer to hardware structure
1060  *
1061  *  Clocks in/out one bit via I2C data/clock
1062  **/
1063 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1064 {
1065         s32 status;
1066         u32 i = 0;
1067         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1068         u32 timeout = 10;
1069         bool ack = 1;
1070
1071         status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1072
1073         if (status != 0)
1074                 goto out;
1075
1076         /* Minimum high period of clock is 4us */
1077         udelay(IXGBE_I2C_T_HIGH);
1078
1079         /* Poll for ACK.  Note that ACK in I2C spec is
1080          * transition from 1 to 0 */
1081         for (i = 0; i < timeout; i++) {
1082                 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1083                 ack = ixgbe_get_i2c_data(&i2cctl);
1084
1085                 udelay(1);
1086                 if (ack == 0)
1087                         break;
1088         }
1089
1090         if (ack == 1) {
1091                 hw_dbg(hw, "I2C ack was not received.\n");
1092                 status = IXGBE_ERR_I2C;
1093         }
1094
1095         ixgbe_lower_i2c_clk(hw, &i2cctl);
1096
1097         /* Minimum low period of clock is 4.7 us */
1098         udelay(IXGBE_I2C_T_LOW);
1099
1100 out:
1101         return status;
1102 }
1103
1104 /**
1105  *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1106  *  @hw: pointer to hardware structure
1107  *  @data: read data value
1108  *
1109  *  Clocks in one bit via I2C data/clock
1110  **/
1111 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1112 {
1113         s32 status;
1114         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1115
1116         status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1117
1118         /* Minimum high period of clock is 4us */
1119         udelay(IXGBE_I2C_T_HIGH);
1120
1121         i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1122         *data = ixgbe_get_i2c_data(&i2cctl);
1123
1124         ixgbe_lower_i2c_clk(hw, &i2cctl);
1125
1126         /* Minimum low period of clock is 4.7 us */
1127         udelay(IXGBE_I2C_T_LOW);
1128
1129         return status;
1130 }
1131
1132 /**
1133  *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1134  *  @hw: pointer to hardware structure
1135  *  @data: data value to write
1136  *
1137  *  Clocks out one bit via I2C data/clock
1138  **/
1139 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1140 {
1141         s32 status;
1142         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1143
1144         status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1145         if (status == 0) {
1146                 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1147
1148                 /* Minimum high period of clock is 4us */
1149                 udelay(IXGBE_I2C_T_HIGH);
1150
1151                 ixgbe_lower_i2c_clk(hw, &i2cctl);
1152
1153                 /* Minimum low period of clock is 4.7 us.
1154                  * This also takes care of the data hold time.
1155                  */
1156                 udelay(IXGBE_I2C_T_LOW);
1157         } else {
1158                 status = IXGBE_ERR_I2C;
1159                 hw_dbg(hw, "I2C data was not set to %X\n", data);
1160         }
1161
1162         return status;
1163 }
1164 /**
1165  *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1166  *  @hw: pointer to hardware structure
1167  *  @i2cctl: Current value of I2CCTL register
1168  *
1169  *  Raises the I2C clock line '0'->'1'
1170  **/
1171 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1172 {
1173         s32 status = 0;
1174
1175         *i2cctl |= IXGBE_I2C_CLK_OUT;
1176
1177         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1178
1179         /* SCL rise time (1000ns) */
1180         udelay(IXGBE_I2C_T_RISE);
1181
1182         return status;
1183 }
1184
1185 /**
1186  *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1187  *  @hw: pointer to hardware structure
1188  *  @i2cctl: Current value of I2CCTL register
1189  *
1190  *  Lowers the I2C clock line '1'->'0'
1191  **/
1192 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1193 {
1194
1195         *i2cctl &= ~IXGBE_I2C_CLK_OUT;
1196
1197         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1198
1199         /* SCL fall time (300ns) */
1200         udelay(IXGBE_I2C_T_FALL);
1201 }
1202
1203 /**
1204  *  ixgbe_set_i2c_data - Sets the I2C data bit
1205  *  @hw: pointer to hardware structure
1206  *  @i2cctl: Current value of I2CCTL register
1207  *  @data: I2C data value (0 or 1) to set
1208  *
1209  *  Sets the I2C data bit
1210  **/
1211 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1212 {
1213         s32 status = 0;
1214
1215         if (data)
1216                 *i2cctl |= IXGBE_I2C_DATA_OUT;
1217         else
1218                 *i2cctl &= ~IXGBE_I2C_DATA_OUT;
1219
1220         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1221
1222         /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1223         udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1224
1225         /* Verify data was set correctly */
1226         *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1227         if (data != ixgbe_get_i2c_data(i2cctl)) {
1228                 status = IXGBE_ERR_I2C;
1229                 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
1230         }
1231
1232         return status;
1233 }
1234
1235 /**
1236  *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
1237  *  @hw: pointer to hardware structure
1238  *  @i2cctl: Current value of I2CCTL register
1239  *
1240  *  Returns the I2C data bit value
1241  **/
1242 static bool ixgbe_get_i2c_data(u32 *i2cctl)
1243 {
1244         bool data;
1245
1246         if (*i2cctl & IXGBE_I2C_DATA_IN)
1247                 data = 1;
1248         else
1249                 data = 0;
1250
1251         return data;
1252 }
1253
1254 /**
1255  *  ixgbe_i2c_bus_clear - Clears the I2C bus
1256  *  @hw: pointer to hardware structure
1257  *
1258  *  Clears the I2C bus by sending nine clock pulses.
1259  *  Used when data line is stuck low.
1260  **/
1261 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
1262 {
1263         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1264         u32 i;
1265
1266         ixgbe_set_i2c_data(hw, &i2cctl, 1);
1267
1268         for (i = 0; i < 9; i++) {
1269                 ixgbe_raise_i2c_clk(hw, &i2cctl);
1270
1271                 /* Min high period of clock is 4us */
1272                 udelay(IXGBE_I2C_T_HIGH);
1273
1274                 ixgbe_lower_i2c_clk(hw, &i2cctl);
1275
1276                 /* Min low period of clock is 4.7us*/
1277                 udelay(IXGBE_I2C_T_LOW);
1278         }
1279
1280         /* Put the i2c bus back to default state */
1281         ixgbe_i2c_stop(hw);
1282 }
1283
1284 /**
1285  *  ixgbe_check_phy_link_tnx - Determine link and speed status
1286  *  @hw: pointer to hardware structure
1287  *
1288  *  Reads the VS1 register to determine if link is up and the current speed for
1289  *  the PHY.
1290  **/
1291 s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1292                              bool *link_up)
1293 {
1294         s32 status = 0;
1295         u32 time_out;
1296         u32 max_time_out = 10;
1297         u16 phy_link = 0;
1298         u16 phy_speed = 0;
1299         u16 phy_data = 0;
1300
1301         /* Initialize speed and link to default case */
1302         *link_up = false;
1303         *speed = IXGBE_LINK_SPEED_10GB_FULL;
1304
1305         /*
1306          * Check current speed and link status of the PHY register.
1307          * This is a vendor specific register and may have to
1308          * be changed for other copper PHYs.
1309          */
1310         for (time_out = 0; time_out < max_time_out; time_out++) {
1311                 udelay(10);
1312                 status = hw->phy.ops.read_reg(hw,
1313                                         IXGBE_MDIO_VENDOR_SPECIFIC_1_STATUS,
1314                                         MDIO_MMD_VEND1,
1315                                         &phy_data);
1316                 phy_link = phy_data &
1317                            IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1318                 phy_speed = phy_data &
1319                             IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1320                 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1321                         *link_up = true;
1322                         if (phy_speed ==
1323                             IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1324                                 *speed = IXGBE_LINK_SPEED_1GB_FULL;
1325                         break;
1326                 }
1327         }
1328
1329         return status;
1330 }
1331
1332 /**
1333  *  ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
1334  *  @hw: pointer to hardware structure
1335  *  @firmware_version: pointer to the PHY Firmware Version
1336  **/
1337 s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
1338                                        u16 *firmware_version)
1339 {
1340         s32 status = 0;
1341
1342         status = hw->phy.ops.read_reg(hw, TNX_FW_REV, MDIO_MMD_VEND1,
1343                                       firmware_version);
1344
1345         return status;
1346 }
1347