Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/async_tx
[pandora-kernel.git] / drivers / net / ixgbe / ixgbe_phy.c
1 /*******************************************************************************
2
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31
32 #include "ixgbe_common.h"
33 #include "ixgbe_phy.h"
34
35 static void ixgbe_i2c_start(struct ixgbe_hw *hw);
36 static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
37 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
38 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
39 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
40 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
41 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
42 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
43 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
44 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
45 static bool ixgbe_get_i2c_data(u32 *i2cctl);
46 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
47 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
48 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
49
50 /**
51  *  ixgbe_identify_phy_generic - Get physical layer module
52  *  @hw: pointer to hardware structure
53  *
54  *  Determines the physical layer module found on the current adapter.
55  **/
56 s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
57 {
58         s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
59         u32 phy_addr;
60
61         if (hw->phy.type == ixgbe_phy_unknown) {
62                 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
63                         hw->phy.mdio.prtad = phy_addr;
64                         if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
65                                 ixgbe_get_phy_id(hw);
66                                 hw->phy.type =
67                                         ixgbe_get_phy_type_from_id(hw->phy.id);
68                                 status = 0;
69                                 break;
70                         }
71                 }
72                 /* clear value if nothing found */
73                 hw->phy.mdio.prtad = 0;
74         } else {
75                 status = 0;
76         }
77
78         return status;
79 }
80
81 /**
82  *  ixgbe_get_phy_id - Get the phy type
83  *  @hw: pointer to hardware structure
84  *
85  **/
86 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
87 {
88         u32 status;
89         u16 phy_id_high = 0;
90         u16 phy_id_low = 0;
91
92         status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
93                                       &phy_id_high);
94
95         if (status == 0) {
96                 hw->phy.id = (u32)(phy_id_high << 16);
97                 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
98                                               &phy_id_low);
99                 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
100                 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
101         }
102         return status;
103 }
104
105 /**
106  *  ixgbe_get_phy_type_from_id - Get the phy type
107  *  @hw: pointer to hardware structure
108  *
109  **/
110 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
111 {
112         enum ixgbe_phy_type phy_type;
113
114         switch (phy_id) {
115         case TN1010_PHY_ID:
116                 phy_type = ixgbe_phy_tn;
117                 break;
118         case QT2022_PHY_ID:
119                 phy_type = ixgbe_phy_qt;
120                 break;
121         case ATH_PHY_ID:
122                 phy_type = ixgbe_phy_nl;
123                 break;
124         default:
125                 phy_type = ixgbe_phy_unknown;
126                 break;
127         }
128
129         return phy_type;
130 }
131
132 /**
133  *  ixgbe_reset_phy_generic - Performs a PHY reset
134  *  @hw: pointer to hardware structure
135  **/
136 s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
137 {
138         /* Don't reset PHY if it's shut down due to overtemp. */
139         if (!hw->phy.reset_if_overtemp &&
140             (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
141                 return 0;
142
143         /*
144          * Perform soft PHY reset to the PHY_XS.
145          * This will cause a soft reset to the PHY
146          */
147         return hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
148                                      MDIO_CTRL1_RESET);
149 }
150
151 /**
152  *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
153  *  @hw: pointer to hardware structure
154  *  @reg_addr: 32 bit address of PHY register to read
155  *  @phy_data: Pointer to read data from PHY register
156  **/
157 s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
158                                u32 device_type, u16 *phy_data)
159 {
160         u32 command;
161         u32 i;
162         u32 data;
163         s32 status = 0;
164         u16 gssr;
165
166         if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
167                 gssr = IXGBE_GSSR_PHY1_SM;
168         else
169                 gssr = IXGBE_GSSR_PHY0_SM;
170
171         if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
172                 status = IXGBE_ERR_SWFW_SYNC;
173
174         if (status == 0) {
175                 /* Setup and write the address cycle command */
176                 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
177                            (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
178                            (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
179                            (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
180
181                 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
182
183                 /*
184                  * Check every 10 usec to see if the address cycle completed.
185                  * The MDI Command bit will clear when the operation is
186                  * complete
187                  */
188                 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
189                         udelay(10);
190
191                         command = IXGBE_READ_REG(hw, IXGBE_MSCA);
192
193                         if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
194                                 break;
195                 }
196
197                 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
198                         hw_dbg(hw, "PHY address command did not complete.\n");
199                         status = IXGBE_ERR_PHY;
200                 }
201
202                 if (status == 0) {
203                         /*
204                          * Address cycle complete, setup and write the read
205                          * command
206                          */
207                         command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
208                                    (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
209                                    (hw->phy.mdio.prtad <<
210                                     IXGBE_MSCA_PHY_ADDR_SHIFT) |
211                                    (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
212
213                         IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
214
215                         /*
216                          * Check every 10 usec to see if the address cycle
217                          * completed. The MDI Command bit will clear when the
218                          * operation is complete
219                          */
220                         for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
221                                 udelay(10);
222
223                                 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
224
225                                 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
226                                         break;
227                         }
228
229                         if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
230                                 hw_dbg(hw, "PHY read command didn't complete\n");
231                                 status = IXGBE_ERR_PHY;
232                         } else {
233                                 /*
234                                  * Read operation is complete.  Get the data
235                                  * from MSRWD
236                                  */
237                                 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
238                                 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
239                                 *phy_data = (u16)(data);
240                         }
241                 }
242
243                 ixgbe_release_swfw_sync(hw, gssr);
244         }
245
246         return status;
247 }
248
249 /**
250  *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
251  *  @hw: pointer to hardware structure
252  *  @reg_addr: 32 bit PHY register to write
253  *  @device_type: 5 bit device type
254  *  @phy_data: Data to write to the PHY register
255  **/
256 s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
257                                 u32 device_type, u16 phy_data)
258 {
259         u32 command;
260         u32 i;
261         s32 status = 0;
262         u16 gssr;
263
264         if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
265                 gssr = IXGBE_GSSR_PHY1_SM;
266         else
267                 gssr = IXGBE_GSSR_PHY0_SM;
268
269         if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
270                 status = IXGBE_ERR_SWFW_SYNC;
271
272         if (status == 0) {
273                 /* Put the data in the MDI single read and write data register*/
274                 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
275
276                 /* Setup and write the address cycle command */
277                 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
278                            (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
279                            (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
280                            (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
281
282                 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
283
284                 /*
285                  * Check every 10 usec to see if the address cycle completed.
286                  * The MDI Command bit will clear when the operation is
287                  * complete
288                  */
289                 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
290                         udelay(10);
291
292                         command = IXGBE_READ_REG(hw, IXGBE_MSCA);
293
294                         if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
295                                 break;
296                 }
297
298                 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
299                         hw_dbg(hw, "PHY address cmd didn't complete\n");
300                         status = IXGBE_ERR_PHY;
301                 }
302
303                 if (status == 0) {
304                         /*
305                          * Address cycle complete, setup and write the write
306                          * command
307                          */
308                         command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
309                                    (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
310                                    (hw->phy.mdio.prtad <<
311                                     IXGBE_MSCA_PHY_ADDR_SHIFT) |
312                                    (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
313
314                         IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
315
316                         /*
317                          * Check every 10 usec to see if the address cycle
318                          * completed. The MDI Command bit will clear when the
319                          * operation is complete
320                          */
321                         for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
322                                 udelay(10);
323
324                                 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
325
326                                 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
327                                         break;
328                         }
329
330                         if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
331                                 hw_dbg(hw, "PHY address cmd didn't complete\n");
332                                 status = IXGBE_ERR_PHY;
333                         }
334                 }
335
336                 ixgbe_release_swfw_sync(hw, gssr);
337         }
338
339         return status;
340 }
341
342 /**
343  *  ixgbe_setup_phy_link_generic - Set and restart autoneg
344  *  @hw: pointer to hardware structure
345  *
346  *  Restart autonegotiation and PHY and waits for completion.
347  **/
348 s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
349 {
350         s32 status = IXGBE_NOT_IMPLEMENTED;
351         u32 time_out;
352         u32 max_time_out = 10;
353         u16 autoneg_reg;
354
355         /*
356          * Set advertisement settings in PHY based on autoneg_advertised
357          * settings. If autoneg_advertised = 0, then advertise default values
358          * tnx devices cannot be "forced" to a autoneg 10G and fail.  But can
359          * for a 1G.
360          */
361         hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
362
363         if (hw->phy.autoneg_advertised == IXGBE_LINK_SPEED_1GB_FULL)
364                 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
365         else
366                 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
367
368         hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
369
370         /* Restart PHY autonegotiation and wait for completion */
371         hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, &autoneg_reg);
372
373         autoneg_reg |= MDIO_AN_CTRL1_RESTART;
374
375         hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, autoneg_reg);
376
377         /* Wait for autonegotiation to finish */
378         for (time_out = 0; time_out < max_time_out; time_out++) {
379                 udelay(10);
380                 /* Restart PHY autonegotiation and wait for completion */
381                 status = hw->phy.ops.read_reg(hw, MDIO_STAT1, MDIO_MMD_AN,
382                                               &autoneg_reg);
383
384                 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
385                 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE) {
386                         status = 0;
387                         break;
388                 }
389         }
390
391         if (time_out == max_time_out)
392                 status = IXGBE_ERR_LINK_SETUP;
393
394         return status;
395 }
396
397 /**
398  *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
399  *  @hw: pointer to hardware structure
400  *  @speed: new link speed
401  *  @autoneg: true if autonegotiation enabled
402  **/
403 s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
404                                        ixgbe_link_speed speed,
405                                        bool autoneg,
406                                        bool autoneg_wait_to_complete)
407 {
408
409         /*
410          * Clear autoneg_advertised and set new values based on input link
411          * speed.
412          */
413         hw->phy.autoneg_advertised = 0;
414
415         if (speed & IXGBE_LINK_SPEED_10GB_FULL)
416                 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
417
418         if (speed & IXGBE_LINK_SPEED_1GB_FULL)
419                 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
420
421         /* Setup link based on the new speed settings */
422         hw->phy.ops.setup_link(hw);
423
424         return 0;
425 }
426
427 /**
428  *  ixgbe_reset_phy_nl - Performs a PHY reset
429  *  @hw: pointer to hardware structure
430  **/
431 s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
432 {
433         u16 phy_offset, control, eword, edata, block_crc;
434         bool end_data = false;
435         u16 list_offset, data_offset;
436         u16 phy_data = 0;
437         s32 ret_val = 0;
438         u32 i;
439
440         hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
441
442         /* reset the PHY and poll for completion */
443         hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
444                               (phy_data | MDIO_CTRL1_RESET));
445
446         for (i = 0; i < 100; i++) {
447                 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
448                                      &phy_data);
449                 if ((phy_data & MDIO_CTRL1_RESET) == 0)
450                         break;
451                 msleep(10);
452         }
453
454         if ((phy_data & MDIO_CTRL1_RESET) != 0) {
455                 hw_dbg(hw, "PHY reset did not complete.\n");
456                 ret_val = IXGBE_ERR_PHY;
457                 goto out;
458         }
459
460         /* Get init offsets */
461         ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
462                                                       &data_offset);
463         if (ret_val != 0)
464                 goto out;
465
466         ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
467         data_offset++;
468         while (!end_data) {
469                 /*
470                  * Read control word from PHY init contents offset
471                  */
472                 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
473                 control = (eword & IXGBE_CONTROL_MASK_NL) >>
474                            IXGBE_CONTROL_SHIFT_NL;
475                 edata = eword & IXGBE_DATA_MASK_NL;
476                 switch (control) {
477                 case IXGBE_DELAY_NL:
478                         data_offset++;
479                         hw_dbg(hw, "DELAY: %d MS\n", edata);
480                         msleep(edata);
481                         break;
482                 case IXGBE_DATA_NL:
483                         hw_dbg(hw, "DATA:\n");
484                         data_offset++;
485                         hw->eeprom.ops.read(hw, data_offset++,
486                                             &phy_offset);
487                         for (i = 0; i < edata; i++) {
488                                 hw->eeprom.ops.read(hw, data_offset, &eword);
489                                 hw->phy.ops.write_reg(hw, phy_offset,
490                                                       MDIO_MMD_PMAPMD, eword);
491                                 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
492                                        phy_offset);
493                                 data_offset++;
494                                 phy_offset++;
495                         }
496                         break;
497                 case IXGBE_CONTROL_NL:
498                         data_offset++;
499                         hw_dbg(hw, "CONTROL:\n");
500                         if (edata == IXGBE_CONTROL_EOL_NL) {
501                                 hw_dbg(hw, "EOL\n");
502                                 end_data = true;
503                         } else if (edata == IXGBE_CONTROL_SOL_NL) {
504                                 hw_dbg(hw, "SOL\n");
505                         } else {
506                                 hw_dbg(hw, "Bad control value\n");
507                                 ret_val = IXGBE_ERR_PHY;
508                                 goto out;
509                         }
510                         break;
511                 default:
512                         hw_dbg(hw, "Bad control type\n");
513                         ret_val = IXGBE_ERR_PHY;
514                         goto out;
515                 }
516         }
517
518 out:
519         return ret_val;
520 }
521
522 /**
523  *  ixgbe_identify_sfp_module_generic - Identifies SFP module and assigns
524  *                                      the PHY type.
525  *  @hw: pointer to hardware structure
526  *
527  *  Searches for and indentifies the SFP module.  Assings appropriate PHY type.
528  **/
529 s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
530 {
531         s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
532         u32 vendor_oui = 0;
533         enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
534         u8 identifier = 0;
535         u8 comp_codes_1g = 0;
536         u8 comp_codes_10g = 0;
537         u8 oui_bytes[3] = {0, 0, 0};
538         u8 cable_tech = 0;
539         u8 cable_spec = 0;
540         u16 enforce_sfp = 0;
541
542         if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
543                 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
544                 status = IXGBE_ERR_SFP_NOT_PRESENT;
545                 goto out;
546         }
547
548         status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
549                                              &identifier);
550
551         if (status == IXGBE_ERR_SFP_NOT_PRESENT || status == IXGBE_ERR_I2C) {
552                 status = IXGBE_ERR_SFP_NOT_PRESENT;
553                 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
554                 if (hw->phy.type != ixgbe_phy_nl) {
555                         hw->phy.id = 0;
556                         hw->phy.type = ixgbe_phy_unknown;
557                 }
558                 goto out;
559         }
560
561         if (identifier == IXGBE_SFF_IDENTIFIER_SFP) {
562                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_1GBE_COMP_CODES,
563                                             &comp_codes_1g);
564                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_10GBE_COMP_CODES,
565                                             &comp_codes_10g);
566                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_CABLE_TECHNOLOGY,
567                                             &cable_tech);
568
569                 /* ID Module
570                  * =========
571                  * 0    SFP_DA_CU
572                  * 1    SFP_SR
573                  * 2    SFP_LR
574                  * 3    SFP_DA_CORE0 - 82599-specific
575                  * 4    SFP_DA_CORE1 - 82599-specific
576                  * 5    SFP_SR/LR_CORE0 - 82599-specific
577                  * 6    SFP_SR/LR_CORE1 - 82599-specific
578                  */
579                 if (hw->mac.type == ixgbe_mac_82598EB) {
580                         if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
581                                 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
582                         else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
583                                 hw->phy.sfp_type = ixgbe_sfp_type_sr;
584                         else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
585                                 hw->phy.sfp_type = ixgbe_sfp_type_lr;
586                         else
587                                 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
588                 } else if (hw->mac.type == ixgbe_mac_82599EB) {
589                         if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
590                                 if (hw->bus.lan_id == 0)
591                                         hw->phy.sfp_type =
592                                                      ixgbe_sfp_type_da_cu_core0;
593                                 else
594                                         hw->phy.sfp_type =
595                                                      ixgbe_sfp_type_da_cu_core1;
596                         } else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
597                                 hw->phy.ops.read_i2c_eeprom(
598                                                 hw, IXGBE_SFF_CABLE_SPEC_COMP,
599                                                 &cable_spec);
600                                 if (cable_spec &
601                                     IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
602                                         if (hw->bus.lan_id == 0)
603                                                 hw->phy.sfp_type =
604                                                 ixgbe_sfp_type_da_act_lmt_core0;
605                                         else
606                                                 hw->phy.sfp_type =
607                                                 ixgbe_sfp_type_da_act_lmt_core1;
608                                 } else {
609                                         hw->phy.sfp_type =
610                                                 ixgbe_sfp_type_unknown;
611                                 }
612                         } else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
613                                 if (hw->bus.lan_id == 0)
614                                         hw->phy.sfp_type =
615                                                       ixgbe_sfp_type_srlr_core0;
616                                 else
617                                         hw->phy.sfp_type =
618                                                       ixgbe_sfp_type_srlr_core1;
619                         else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
620                                 if (hw->bus.lan_id == 0)
621                                         hw->phy.sfp_type =
622                                                       ixgbe_sfp_type_srlr_core0;
623                                 else
624                                         hw->phy.sfp_type =
625                                                       ixgbe_sfp_type_srlr_core1;
626                         else
627                                 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
628                 }
629
630                 if (hw->phy.sfp_type != stored_sfp_type)
631                         hw->phy.sfp_setup_needed = true;
632
633                 /* Determine if the SFP+ PHY is dual speed or not. */
634                 hw->phy.multispeed_fiber = false;
635                 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
636                    (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
637                    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
638                    (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
639                         hw->phy.multispeed_fiber = true;
640
641                 /* Determine PHY vendor */
642                 if (hw->phy.type != ixgbe_phy_nl) {
643                         hw->phy.id = identifier;
644                         hw->phy.ops.read_i2c_eeprom(hw,
645                                                     IXGBE_SFF_VENDOR_OUI_BYTE0,
646                                                     &oui_bytes[0]);
647                         hw->phy.ops.read_i2c_eeprom(hw,
648                                                     IXGBE_SFF_VENDOR_OUI_BYTE1,
649                                                     &oui_bytes[1]);
650                         hw->phy.ops.read_i2c_eeprom(hw,
651                                                     IXGBE_SFF_VENDOR_OUI_BYTE2,
652                                                     &oui_bytes[2]);
653
654                         vendor_oui =
655                           ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
656                            (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
657                            (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
658
659                         switch (vendor_oui) {
660                         case IXGBE_SFF_VENDOR_OUI_TYCO:
661                                 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
662                                         hw->phy.type =
663                                                 ixgbe_phy_sfp_passive_tyco;
664                                 break;
665                         case IXGBE_SFF_VENDOR_OUI_FTL:
666                                 if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
667                                         hw->phy.type = ixgbe_phy_sfp_ftl_active;
668                                 else
669                                         hw->phy.type = ixgbe_phy_sfp_ftl;
670                                 break;
671                         case IXGBE_SFF_VENDOR_OUI_AVAGO:
672                                 hw->phy.type = ixgbe_phy_sfp_avago;
673                                 break;
674                         case IXGBE_SFF_VENDOR_OUI_INTEL:
675                                 hw->phy.type = ixgbe_phy_sfp_intel;
676                                 break;
677                         default:
678                                 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
679                                         hw->phy.type =
680                                                 ixgbe_phy_sfp_passive_unknown;
681                                 else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
682                                         hw->phy.type =
683                                                 ixgbe_phy_sfp_active_unknown;
684                                 else
685                                         hw->phy.type = ixgbe_phy_sfp_unknown;
686                                 break;
687                         }
688                 }
689
690                 /* All passive DA cables are supported */
691                 if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
692                     IXGBE_SFF_DA_ACTIVE_CABLE)) {
693                         status = 0;
694                         goto out;
695                 }
696
697                 /* 1G SFP modules are not supported */
698                 if (comp_codes_10g == 0) {
699                         hw->phy.type = ixgbe_phy_sfp_unsupported;
700                         status = IXGBE_ERR_SFP_NOT_SUPPORTED;
701                         goto out;
702                 }
703
704                 /* Anything else 82598-based is supported */
705                 if (hw->mac.type == ixgbe_mac_82598EB) {
706                         status = 0;
707                         goto out;
708                 }
709
710                 /* This is guaranteed to be 82599, no need to check for NULL */
711                 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
712                 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
713                         /* Make sure we're a supported PHY type */
714                         if (hw->phy.type == ixgbe_phy_sfp_intel) {
715                                 status = 0;
716                         } else {
717                                 hw_dbg(hw, "SFP+ module not supported\n");
718                                 hw->phy.type = ixgbe_phy_sfp_unsupported;
719                                 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
720                         }
721                 } else {
722                         status = 0;
723                 }
724         }
725
726 out:
727         return status;
728 }
729
730 /**
731  *  ixgbe_get_sfp_init_sequence_offsets - Checks the MAC's EEPROM to see
732  *  if it supports a given SFP+ module type, if so it returns the offsets to the
733  *  phy init sequence block.
734  *  @hw: pointer to hardware structure
735  *  @list_offset: offset to the SFP ID list
736  *  @data_offset: offset to the SFP data block
737  **/
738 s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
739                                         u16 *list_offset,
740                                         u16 *data_offset)
741 {
742         u16 sfp_id;
743
744         if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
745                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
746
747         if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
748                 return IXGBE_ERR_SFP_NOT_PRESENT;
749
750         if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
751             (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
752                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
753
754         /* Read offset to PHY init contents */
755         hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
756
757         if ((!*list_offset) || (*list_offset == 0xFFFF))
758                 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
759
760         /* Shift offset to first ID word */
761         (*list_offset)++;
762
763         /*
764          * Find the matching SFP ID in the EEPROM
765          * and program the init sequence
766          */
767         hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
768
769         while (sfp_id != IXGBE_PHY_INIT_END_NL) {
770                 if (sfp_id == hw->phy.sfp_type) {
771                         (*list_offset)++;
772                         hw->eeprom.ops.read(hw, *list_offset, data_offset);
773                         if ((!*data_offset) || (*data_offset == 0xFFFF)) {
774                                 hw_dbg(hw, "SFP+ module not supported\n");
775                                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
776                         } else {
777                                 break;
778                         }
779                 } else {
780                         (*list_offset) += 2;
781                         if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
782                                 return IXGBE_ERR_PHY;
783                 }
784         }
785
786         if (sfp_id == IXGBE_PHY_INIT_END_NL) {
787                 hw_dbg(hw, "No matching SFP+ module found\n");
788                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
789         }
790
791         return 0;
792 }
793
794 /**
795  *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
796  *  @hw: pointer to hardware structure
797  *  @byte_offset: EEPROM byte offset to read
798  *  @eeprom_data: value read
799  *
800  *  Performs byte read operation to SFP module's EEPROM over I2C interface.
801  **/
802 s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
803                                   u8 *eeprom_data)
804 {
805         return hw->phy.ops.read_i2c_byte(hw, byte_offset,
806                                          IXGBE_I2C_EEPROM_DEV_ADDR,
807                                          eeprom_data);
808 }
809
810 /**
811  *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
812  *  @hw: pointer to hardware structure
813  *  @byte_offset: EEPROM byte offset to write
814  *  @eeprom_data: value to write
815  *
816  *  Performs byte write operation to SFP module's EEPROM over I2C interface.
817  **/
818 s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
819                                    u8 eeprom_data)
820 {
821         return hw->phy.ops.write_i2c_byte(hw, byte_offset,
822                                           IXGBE_I2C_EEPROM_DEV_ADDR,
823                                           eeprom_data);
824 }
825
826 /**
827  *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
828  *  @hw: pointer to hardware structure
829  *  @byte_offset: byte offset to read
830  *  @data: value read
831  *
832  *  Performs byte read operation to SFP module's EEPROM over I2C interface at
833  *  a specified deivce address.
834  **/
835 s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
836                                 u8 dev_addr, u8 *data)
837 {
838         s32 status = 0;
839         u32 max_retry = 1;
840         u32 retry = 0;
841         bool nack = 1;
842
843         do {
844                 ixgbe_i2c_start(hw);
845
846                 /* Device Address and write indication */
847                 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
848                 if (status != 0)
849                         goto fail;
850
851                 status = ixgbe_get_i2c_ack(hw);
852                 if (status != 0)
853                         goto fail;
854
855                 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
856                 if (status != 0)
857                         goto fail;
858
859                 status = ixgbe_get_i2c_ack(hw);
860                 if (status != 0)
861                         goto fail;
862
863                 ixgbe_i2c_start(hw);
864
865                 /* Device Address and read indication */
866                 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
867                 if (status != 0)
868                         goto fail;
869
870                 status = ixgbe_get_i2c_ack(hw);
871                 if (status != 0)
872                         goto fail;
873
874                 status = ixgbe_clock_in_i2c_byte(hw, data);
875                 if (status != 0)
876                         goto fail;
877
878                 status = ixgbe_clock_out_i2c_bit(hw, nack);
879                 if (status != 0)
880                         goto fail;
881
882                 ixgbe_i2c_stop(hw);
883                 break;
884
885 fail:
886                 ixgbe_i2c_bus_clear(hw);
887                 retry++;
888                 if (retry < max_retry)
889                         hw_dbg(hw, "I2C byte read error - Retrying.\n");
890                 else
891                         hw_dbg(hw, "I2C byte read error.\n");
892
893         } while (retry < max_retry);
894
895         return status;
896 }
897
898 /**
899  *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
900  *  @hw: pointer to hardware structure
901  *  @byte_offset: byte offset to write
902  *  @data: value to write
903  *
904  *  Performs byte write operation to SFP module's EEPROM over I2C interface at
905  *  a specified device address.
906  **/
907 s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
908                                  u8 dev_addr, u8 data)
909 {
910         s32 status = 0;
911         u32 max_retry = 1;
912         u32 retry = 0;
913
914         do {
915                 ixgbe_i2c_start(hw);
916
917                 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
918                 if (status != 0)
919                         goto fail;
920
921                 status = ixgbe_get_i2c_ack(hw);
922                 if (status != 0)
923                         goto fail;
924
925                 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
926                 if (status != 0)
927                         goto fail;
928
929                 status = ixgbe_get_i2c_ack(hw);
930                 if (status != 0)
931                         goto fail;
932
933                 status = ixgbe_clock_out_i2c_byte(hw, data);
934                 if (status != 0)
935                         goto fail;
936
937                 status = ixgbe_get_i2c_ack(hw);
938                 if (status != 0)
939                         goto fail;
940
941                 ixgbe_i2c_stop(hw);
942                 break;
943
944 fail:
945                 ixgbe_i2c_bus_clear(hw);
946                 retry++;
947                 if (retry < max_retry)
948                         hw_dbg(hw, "I2C byte write error - Retrying.\n");
949                 else
950                         hw_dbg(hw, "I2C byte write error.\n");
951         } while (retry < max_retry);
952
953         return status;
954 }
955
956 /**
957  *  ixgbe_i2c_start - Sets I2C start condition
958  *  @hw: pointer to hardware structure
959  *
960  *  Sets I2C start condition (High -> Low on SDA while SCL is High)
961  **/
962 static void ixgbe_i2c_start(struct ixgbe_hw *hw)
963 {
964         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
965
966         /* Start condition must begin with data and clock high */
967         ixgbe_set_i2c_data(hw, &i2cctl, 1);
968         ixgbe_raise_i2c_clk(hw, &i2cctl);
969
970         /* Setup time for start condition (4.7us) */
971         udelay(IXGBE_I2C_T_SU_STA);
972
973         ixgbe_set_i2c_data(hw, &i2cctl, 0);
974
975         /* Hold time for start condition (4us) */
976         udelay(IXGBE_I2C_T_HD_STA);
977
978         ixgbe_lower_i2c_clk(hw, &i2cctl);
979
980         /* Minimum low period of clock is 4.7 us */
981         udelay(IXGBE_I2C_T_LOW);
982
983 }
984
985 /**
986  *  ixgbe_i2c_stop - Sets I2C stop condition
987  *  @hw: pointer to hardware structure
988  *
989  *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
990  **/
991 static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
992 {
993         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
994
995         /* Stop condition must begin with data low and clock high */
996         ixgbe_set_i2c_data(hw, &i2cctl, 0);
997         ixgbe_raise_i2c_clk(hw, &i2cctl);
998
999         /* Setup time for stop condition (4us) */
1000         udelay(IXGBE_I2C_T_SU_STO);
1001
1002         ixgbe_set_i2c_data(hw, &i2cctl, 1);
1003
1004         /* bus free time between stop and start (4.7us)*/
1005         udelay(IXGBE_I2C_T_BUF);
1006 }
1007
1008 /**
1009  *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
1010  *  @hw: pointer to hardware structure
1011  *  @data: data byte to clock in
1012  *
1013  *  Clocks in one byte data via I2C data/clock
1014  **/
1015 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
1016 {
1017         s32 status = 0;
1018         s32 i;
1019         bool bit = 0;
1020
1021         for (i = 7; i >= 0; i--) {
1022                 status = ixgbe_clock_in_i2c_bit(hw, &bit);
1023                 *data |= bit << i;
1024
1025                 if (status != 0)
1026                         break;
1027         }
1028
1029         return status;
1030 }
1031
1032 /**
1033  *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
1034  *  @hw: pointer to hardware structure
1035  *  @data: data byte clocked out
1036  *
1037  *  Clocks out one byte data via I2C data/clock
1038  **/
1039 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
1040 {
1041         s32 status = 0;
1042         s32 i;
1043         u32 i2cctl;
1044         bool bit = 0;
1045
1046         for (i = 7; i >= 0; i--) {
1047                 bit = (data >> i) & 0x1;
1048                 status = ixgbe_clock_out_i2c_bit(hw, bit);
1049
1050                 if (status != 0)
1051                         break;
1052         }
1053
1054         /* Release SDA line (set high) */
1055         i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1056         i2cctl |= IXGBE_I2C_DATA_OUT;
1057         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
1058
1059         return status;
1060 }
1061
1062 /**
1063  *  ixgbe_get_i2c_ack - Polls for I2C ACK
1064  *  @hw: pointer to hardware structure
1065  *
1066  *  Clocks in/out one bit via I2C data/clock
1067  **/
1068 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1069 {
1070         s32 status;
1071         u32 i = 0;
1072         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1073         u32 timeout = 10;
1074         bool ack = 1;
1075
1076         status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1077
1078         if (status != 0)
1079                 goto out;
1080
1081         /* Minimum high period of clock is 4us */
1082         udelay(IXGBE_I2C_T_HIGH);
1083
1084         /* Poll for ACK.  Note that ACK in I2C spec is
1085          * transition from 1 to 0 */
1086         for (i = 0; i < timeout; i++) {
1087                 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1088                 ack = ixgbe_get_i2c_data(&i2cctl);
1089
1090                 udelay(1);
1091                 if (ack == 0)
1092                         break;
1093         }
1094
1095         if (ack == 1) {
1096                 hw_dbg(hw, "I2C ack was not received.\n");
1097                 status = IXGBE_ERR_I2C;
1098         }
1099
1100         ixgbe_lower_i2c_clk(hw, &i2cctl);
1101
1102         /* Minimum low period of clock is 4.7 us */
1103         udelay(IXGBE_I2C_T_LOW);
1104
1105 out:
1106         return status;
1107 }
1108
1109 /**
1110  *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1111  *  @hw: pointer to hardware structure
1112  *  @data: read data value
1113  *
1114  *  Clocks in one bit via I2C data/clock
1115  **/
1116 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1117 {
1118         s32 status;
1119         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1120
1121         status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1122
1123         /* Minimum high period of clock is 4us */
1124         udelay(IXGBE_I2C_T_HIGH);
1125
1126         i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1127         *data = ixgbe_get_i2c_data(&i2cctl);
1128
1129         ixgbe_lower_i2c_clk(hw, &i2cctl);
1130
1131         /* Minimum low period of clock is 4.7 us */
1132         udelay(IXGBE_I2C_T_LOW);
1133
1134         return status;
1135 }
1136
1137 /**
1138  *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1139  *  @hw: pointer to hardware structure
1140  *  @data: data value to write
1141  *
1142  *  Clocks out one bit via I2C data/clock
1143  **/
1144 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1145 {
1146         s32 status;
1147         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1148
1149         status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1150         if (status == 0) {
1151                 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1152
1153                 /* Minimum high period of clock is 4us */
1154                 udelay(IXGBE_I2C_T_HIGH);
1155
1156                 ixgbe_lower_i2c_clk(hw, &i2cctl);
1157
1158                 /* Minimum low period of clock is 4.7 us.
1159                  * This also takes care of the data hold time.
1160                  */
1161                 udelay(IXGBE_I2C_T_LOW);
1162         } else {
1163                 status = IXGBE_ERR_I2C;
1164                 hw_dbg(hw, "I2C data was not set to %X\n", data);
1165         }
1166
1167         return status;
1168 }
1169 /**
1170  *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1171  *  @hw: pointer to hardware structure
1172  *  @i2cctl: Current value of I2CCTL register
1173  *
1174  *  Raises the I2C clock line '0'->'1'
1175  **/
1176 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1177 {
1178         s32 status = 0;
1179
1180         *i2cctl |= IXGBE_I2C_CLK_OUT;
1181
1182         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1183
1184         /* SCL rise time (1000ns) */
1185         udelay(IXGBE_I2C_T_RISE);
1186
1187         return status;
1188 }
1189
1190 /**
1191  *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1192  *  @hw: pointer to hardware structure
1193  *  @i2cctl: Current value of I2CCTL register
1194  *
1195  *  Lowers the I2C clock line '1'->'0'
1196  **/
1197 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1198 {
1199
1200         *i2cctl &= ~IXGBE_I2C_CLK_OUT;
1201
1202         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1203
1204         /* SCL fall time (300ns) */
1205         udelay(IXGBE_I2C_T_FALL);
1206 }
1207
1208 /**
1209  *  ixgbe_set_i2c_data - Sets the I2C data bit
1210  *  @hw: pointer to hardware structure
1211  *  @i2cctl: Current value of I2CCTL register
1212  *  @data: I2C data value (0 or 1) to set
1213  *
1214  *  Sets the I2C data bit
1215  **/
1216 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1217 {
1218         s32 status = 0;
1219
1220         if (data)
1221                 *i2cctl |= IXGBE_I2C_DATA_OUT;
1222         else
1223                 *i2cctl &= ~IXGBE_I2C_DATA_OUT;
1224
1225         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1226
1227         /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1228         udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1229
1230         /* Verify data was set correctly */
1231         *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1232         if (data != ixgbe_get_i2c_data(i2cctl)) {
1233                 status = IXGBE_ERR_I2C;
1234                 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
1235         }
1236
1237         return status;
1238 }
1239
1240 /**
1241  *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
1242  *  @hw: pointer to hardware structure
1243  *  @i2cctl: Current value of I2CCTL register
1244  *
1245  *  Returns the I2C data bit value
1246  **/
1247 static bool ixgbe_get_i2c_data(u32 *i2cctl)
1248 {
1249         bool data;
1250
1251         if (*i2cctl & IXGBE_I2C_DATA_IN)
1252                 data = 1;
1253         else
1254                 data = 0;
1255
1256         return data;
1257 }
1258
1259 /**
1260  *  ixgbe_i2c_bus_clear - Clears the I2C bus
1261  *  @hw: pointer to hardware structure
1262  *
1263  *  Clears the I2C bus by sending nine clock pulses.
1264  *  Used when data line is stuck low.
1265  **/
1266 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
1267 {
1268         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1269         u32 i;
1270
1271         ixgbe_set_i2c_data(hw, &i2cctl, 1);
1272
1273         for (i = 0; i < 9; i++) {
1274                 ixgbe_raise_i2c_clk(hw, &i2cctl);
1275
1276                 /* Min high period of clock is 4us */
1277                 udelay(IXGBE_I2C_T_HIGH);
1278
1279                 ixgbe_lower_i2c_clk(hw, &i2cctl);
1280
1281                 /* Min low period of clock is 4.7us*/
1282                 udelay(IXGBE_I2C_T_LOW);
1283         }
1284
1285         /* Put the i2c bus back to default state */
1286         ixgbe_i2c_stop(hw);
1287 }
1288
1289 /**
1290  *  ixgbe_check_phy_link_tnx - Determine link and speed status
1291  *  @hw: pointer to hardware structure
1292  *
1293  *  Reads the VS1 register to determine if link is up and the current speed for
1294  *  the PHY.
1295  **/
1296 s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1297                              bool *link_up)
1298 {
1299         s32 status = 0;
1300         u32 time_out;
1301         u32 max_time_out = 10;
1302         u16 phy_link = 0;
1303         u16 phy_speed = 0;
1304         u16 phy_data = 0;
1305
1306         /* Initialize speed and link to default case */
1307         *link_up = false;
1308         *speed = IXGBE_LINK_SPEED_10GB_FULL;
1309
1310         /*
1311          * Check current speed and link status of the PHY register.
1312          * This is a vendor specific register and may have to
1313          * be changed for other copper PHYs.
1314          */
1315         for (time_out = 0; time_out < max_time_out; time_out++) {
1316                 udelay(10);
1317                 status = hw->phy.ops.read_reg(hw,
1318                                         IXGBE_MDIO_VENDOR_SPECIFIC_1_STATUS,
1319                                         MDIO_MMD_VEND1,
1320                                         &phy_data);
1321                 phy_link = phy_data &
1322                            IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1323                 phy_speed = phy_data &
1324                             IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1325                 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1326                         *link_up = true;
1327                         if (phy_speed ==
1328                             IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1329                                 *speed = IXGBE_LINK_SPEED_1GB_FULL;
1330                         break;
1331                 }
1332         }
1333
1334         return status;
1335 }
1336
1337 /**
1338  *  ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
1339  *  @hw: pointer to hardware structure
1340  *  @firmware_version: pointer to the PHY Firmware Version
1341  **/
1342 s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
1343                                        u16 *firmware_version)
1344 {
1345         s32 status = 0;
1346
1347         status = hw->phy.ops.read_reg(hw, TNX_FW_REV, MDIO_MMD_VEND1,
1348                                       firmware_version);
1349
1350         return status;
1351 }
1352
1353 /**
1354  *  ixgbe_tn_check_overtemp - Checks if an overtemp occured.
1355  *  @hw: pointer to hardware structure
1356  *
1357  *  Checks if the LASI temp alarm status was triggered due to overtemp
1358  **/
1359 s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
1360 {
1361         s32 status = 0;
1362         u16 phy_data = 0;
1363
1364         if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
1365                 goto out;
1366
1367         /* Check that the LASI temp alarm status was triggered */
1368         hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
1369                              MDIO_MMD_PMAPMD, &phy_data);
1370
1371         if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
1372                 goto out;
1373
1374         status = IXGBE_ERR_OVERTEMP;
1375 out:
1376         return status;
1377 }