Merge branch 'fix/hda' of git://github.com/tiwai/sound
[pandora-kernel.git] / drivers / net / irda / sh_sir.c
1 /*
2  * SuperH IrDA Driver
3  *
4  * Copyright (C) 2009 Renesas Solutions Corp.
5  * Kuninori Morimoto <morimoto.kuninori@renesas.com>
6  *
7  * Based on bfin_sir.c
8  * Copyright 2006-2009 Analog Devices Inc.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14
15 #include <linux/io.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/platform_device.h>
19 #include <linux/slab.h>
20 #include <net/irda/wrapper.h>
21 #include <net/irda/irda_device.h>
22 #include <asm/clock.h>
23
24 #define DRIVER_NAME "sh_sir"
25
26 #define RX_PHASE        (1 << 0)
27 #define TX_PHASE        (1 << 1)
28 #define TX_COMP_PHASE   (1 << 2) /* tx complete */
29 #define NONE_PHASE      (1 << 31)
30
31 #define IRIF_RINTCLR    0x0016 /* DMA rx interrupt source clear */
32 #define IRIF_TINTCLR    0x0018 /* DMA tx interrupt source clear */
33 #define IRIF_SIR0       0x0020 /* IrDA-SIR10 control */
34 #define IRIF_SIR1       0x0022 /* IrDA-SIR10 baudrate error correction */
35 #define IRIF_SIR2       0x0024 /* IrDA-SIR10 baudrate count */
36 #define IRIF_SIR3       0x0026 /* IrDA-SIR10 status */
37 #define IRIF_SIR_FRM    0x0028 /* Hardware frame processing set */
38 #define IRIF_SIR_EOF    0x002A /* EOF value */
39 #define IRIF_SIR_FLG    0x002C /* Flag clear */
40 #define IRIF_UART_STS2  0x002E /* UART status 2 */
41 #define IRIF_UART0      0x0030 /* UART control */
42 #define IRIF_UART1      0x0032 /* UART status */
43 #define IRIF_UART2      0x0034 /* UART mode */
44 #define IRIF_UART3      0x0036 /* UART transmit data */
45 #define IRIF_UART4      0x0038 /* UART receive data */
46 #define IRIF_UART5      0x003A /* UART interrupt mask */
47 #define IRIF_UART6      0x003C /* UART baud rate error correction */
48 #define IRIF_UART7      0x003E /* UART baud rate count set */
49 #define IRIF_CRC0       0x0040 /* CRC engine control */
50 #define IRIF_CRC1       0x0042 /* CRC engine input data */
51 #define IRIF_CRC2       0x0044 /* CRC engine calculation */
52 #define IRIF_CRC3       0x0046 /* CRC engine output data 1 */
53 #define IRIF_CRC4       0x0048 /* CRC engine output data 2 */
54
55 /* IRIF_SIR0 */
56 #define IRTPW           (1 << 1) /* transmit pulse width select */
57 #define IRERRC          (1 << 0) /* Clear receive pulse width error */
58
59 /* IRIF_SIR3 */
60 #define IRERR           (1 << 0) /* received pulse width Error */
61
62 /* IRIF_SIR_FRM */
63 #define EOFD            (1 << 9) /* EOF detection flag */
64 #define FRER            (1 << 8) /* Frame Error bit */
65 #define FRP             (1 << 0) /* Frame processing set */
66
67 /* IRIF_UART_STS2 */
68 #define IRSME           (1 << 6) /* Receive Sum     Error flag */
69 #define IROVE           (1 << 5) /* Receive Overrun Error flag */
70 #define IRFRE           (1 << 4) /* Receive Framing Error flag */
71 #define IRPRE           (1 << 3) /* Receive Parity  Error flag */
72
73 /* IRIF_UART0_*/
74 #define TBEC            (1 << 2) /* Transmit Data Clear */
75 #define RIE             (1 << 1) /* Receive Enable */
76 #define TIE             (1 << 0) /* Transmit Enable */
77
78 /* IRIF_UART1 */
79 #define URSME           (1 << 6) /* Receive Sum Error Flag */
80 #define UROVE           (1 << 5) /* Receive Overrun Error Flag */
81 #define URFRE           (1 << 4) /* Receive Framing Error Flag */
82 #define URPRE           (1 << 3) /* Receive Parity Error Flag */
83 #define RBF             (1 << 2) /* Receive Buffer Full Flag */
84 #define TSBE            (1 << 1) /* Transmit Shift Buffer Empty Flag */
85 #define TBE             (1 << 0) /* Transmit Buffer Empty flag */
86 #define TBCOMP          (TSBE | TBE)
87
88 /* IRIF_UART5 */
89 #define RSEIM           (1 << 6) /* Receive Sum Error Flag IRQ Mask */
90 #define RBFIM           (1 << 2) /* Receive Buffer Full Flag IRQ Mask */
91 #define TSBEIM          (1 << 1) /* Transmit Shift Buffer Empty Flag IRQ Mask */
92 #define TBEIM           (1 << 0) /* Transmit Buffer Empty Flag IRQ Mask */
93 #define RX_MASK         (RSEIM  | RBFIM)
94
95 /* IRIF_CRC0 */
96 #define CRC_RST         (1 << 15) /* CRC Engine Reset */
97 #define CRC_CT_MASK     0x0FFF
98
99 /************************************************************************
100
101
102                         structure
103
104
105 ************************************************************************/
106 struct sh_sir_self {
107         void __iomem            *membase;
108         unsigned int             irq;
109         struct clk              *clk;
110
111         struct net_device       *ndev;
112
113         struct irlap_cb         *irlap;
114         struct qos_info         qos;
115
116         iobuff_t                tx_buff;
117         iobuff_t                rx_buff;
118 };
119
120 /************************************************************************
121
122
123                         common function
124
125
126 ************************************************************************/
127 static void sh_sir_write(struct sh_sir_self *self, u32 offset, u16 data)
128 {
129         iowrite16(data, self->membase + offset);
130 }
131
132 static u16 sh_sir_read(struct sh_sir_self *self, u32 offset)
133 {
134         return ioread16(self->membase + offset);
135 }
136
137 static void sh_sir_update_bits(struct sh_sir_self *self, u32 offset,
138                                u16 mask, u16 data)
139 {
140         u16 old, new;
141
142         old = sh_sir_read(self, offset);
143         new = (old & ~mask) | data;
144         if (old != new)
145                 sh_sir_write(self, offset, new);
146 }
147
148 /************************************************************************
149
150
151                         CRC function
152
153
154 ************************************************************************/
155 static void sh_sir_crc_reset(struct sh_sir_self *self)
156 {
157         sh_sir_write(self, IRIF_CRC0, CRC_RST);
158 }
159
160 static void sh_sir_crc_add(struct sh_sir_self *self, u8 data)
161 {
162         sh_sir_write(self, IRIF_CRC1, (u16)data);
163 }
164
165 static u16 sh_sir_crc_cnt(struct sh_sir_self *self)
166 {
167         return CRC_CT_MASK & sh_sir_read(self, IRIF_CRC0);
168 }
169
170 static u16 sh_sir_crc_out(struct sh_sir_self *self)
171 {
172         return sh_sir_read(self, IRIF_CRC4);
173 }
174
175 static int sh_sir_crc_init(struct sh_sir_self *self)
176 {
177         struct device *dev = &self->ndev->dev;
178         int ret = -EIO;
179         u16 val;
180
181         sh_sir_crc_reset(self);
182
183         sh_sir_crc_add(self, 0xCC);
184         sh_sir_crc_add(self, 0xF5);
185         sh_sir_crc_add(self, 0xF1);
186         sh_sir_crc_add(self, 0xA7);
187
188         val = sh_sir_crc_cnt(self);
189         if (4 != val) {
190                 dev_err(dev, "CRC count error %x\n", val);
191                 goto crc_init_out;
192         }
193
194         val = sh_sir_crc_out(self);
195         if (0x51DF != val) {
196                 dev_err(dev, "CRC result error%x\n", val);
197                 goto crc_init_out;
198         }
199
200         ret = 0;
201
202 crc_init_out:
203
204         sh_sir_crc_reset(self);
205         return ret;
206 }
207
208 /************************************************************************
209
210
211                         baud rate functions
212
213
214 ************************************************************************/
215 #define SCLK_BASE 1843200 /* 1.8432MHz */
216
217 static u32 sh_sir_find_sclk(struct clk *irda_clk)
218 {
219         struct cpufreq_frequency_table *freq_table = irda_clk->freq_table;
220         struct clk *pclk = clk_get(NULL, "peripheral_clk");
221         u32 limit, min = 0xffffffff, tmp;
222         int i, index = 0;
223
224         limit = clk_get_rate(pclk);
225         clk_put(pclk);
226
227         /* IrDA can not set over peripheral_clk */
228         for (i = 0;
229              freq_table[i].frequency != CPUFREQ_TABLE_END;
230              i++) {
231                 u32 freq = freq_table[i].frequency;
232
233                 if (freq == CPUFREQ_ENTRY_INVALID)
234                         continue;
235
236                 /* IrDA should not over peripheral_clk */
237                 if (freq > limit)
238                         continue;
239
240                 tmp = freq % SCLK_BASE;
241                 if (tmp < min) {
242                         min = tmp;
243                         index = i;
244                 }
245         }
246
247         return freq_table[index].frequency;
248 }
249
250 #define ERR_ROUNDING(a) ((a + 5000) / 10000)
251 static int sh_sir_set_baudrate(struct sh_sir_self *self, u32 baudrate)
252 {
253         struct clk *clk;
254         struct device *dev = &self->ndev->dev;
255         u32 rate;
256         u16 uabca, uabc;
257         u16 irbca, irbc;
258         u32 min, rerr, tmp;
259         int i;
260
261         /* Baud Rate Error Correction x 10000 */
262         u32 rate_err_array[] = {
263                    0,  625, 1250, 1875,
264                 2500, 3125, 3750, 4375,
265                 5000, 5625, 6250, 6875,
266                 7500, 8125, 8750, 9375,
267         };
268
269         /*
270          * FIXME
271          *
272          * it support 9600 only now
273          */
274         switch (baudrate) {
275         case 9600:
276                 break;
277         default:
278                 dev_err(dev, "un-supported baudrate %d\n", baudrate);
279                 return -EIO;
280         }
281
282         clk = clk_get(NULL, "irda_clk");
283         if (!clk) {
284                 dev_err(dev, "can not get irda_clk\n");
285                 return -EIO;
286         }
287
288         clk_set_rate(clk, sh_sir_find_sclk(clk));
289         rate = clk_get_rate(clk);
290         clk_put(clk);
291
292         dev_dbg(dev, "selected sclk = %d\n", rate);
293
294         /*
295          * CALCULATION
296          *
297          * 1843200 = system rate / (irbca + (irbc + 1))
298          */
299
300         irbc = rate / SCLK_BASE;
301
302         tmp = rate - (SCLK_BASE * irbc);
303         tmp *= 10000;
304
305         rerr = tmp / SCLK_BASE;
306
307         min = 0xffffffff;
308         irbca = 0;
309         for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) {
310                 tmp = abs(rate_err_array[i] - rerr);
311                 if (min > tmp) {
312                         min = tmp;
313                         irbca = i;
314                 }
315         }
316
317         tmp = rate / (irbc + ERR_ROUNDING(rate_err_array[irbca]));
318         if ((SCLK_BASE / 100) < abs(tmp - SCLK_BASE))
319                 dev_warn(dev, "IrDA freq error margin over %d\n", tmp);
320
321         dev_dbg(dev, "target = %d, result = %d, infrared = %d.%d\n",
322                SCLK_BASE, tmp, irbc, rate_err_array[irbca]);
323
324         irbca = (irbca & 0xF) << 4;
325         irbc  = (irbc - 1) & 0xF;
326
327         if (!irbc) {
328                 dev_err(dev, "sh_sir can not set 0 in IRIF_SIR2\n");
329                 return -EIO;
330         }
331
332         sh_sir_write(self, IRIF_SIR0, IRTPW | IRERRC);
333         sh_sir_write(self, IRIF_SIR1, irbca);
334         sh_sir_write(self, IRIF_SIR2, irbc);
335
336         /*
337          * CALCULATION
338          *
339          * BaudRate[bps] = system rate / (uabca + (uabc + 1) x 16)
340          */
341
342         uabc = rate / baudrate;
343         uabc = (uabc / 16) - 1;
344         uabc = (uabc + 1) * 16;
345
346         tmp = rate - (uabc * baudrate);
347         tmp *= 10000;
348
349         rerr = tmp / baudrate;
350
351         min = 0xffffffff;
352         uabca = 0;
353         for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) {
354                 tmp = abs(rate_err_array[i] - rerr);
355                 if (min > tmp) {
356                         min = tmp;
357                         uabca = i;
358                 }
359         }
360
361         tmp = rate / (uabc + ERR_ROUNDING(rate_err_array[uabca]));
362         if ((baudrate / 100) < abs(tmp - baudrate))
363                 dev_warn(dev, "UART freq error margin over %d\n", tmp);
364
365         dev_dbg(dev, "target = %d, result = %d, uart = %d.%d\n",
366                baudrate, tmp,
367                uabc, rate_err_array[uabca]);
368
369         uabca = (uabca & 0xF) << 4;
370         uabc  = (uabc / 16) - 1;
371
372         sh_sir_write(self, IRIF_UART6, uabca);
373         sh_sir_write(self, IRIF_UART7, uabc);
374
375         return 0;
376 }
377
378 /************************************************************************
379
380
381                         iobuf function
382
383
384 ************************************************************************/
385 static int __sh_sir_init_iobuf(iobuff_t *io, int size)
386 {
387         io->head = kmalloc(size, GFP_KERNEL);
388         if (!io->head)
389                 return -ENOMEM;
390
391         io->truesize    = size;
392         io->in_frame    = FALSE;
393         io->state       = OUTSIDE_FRAME;
394         io->data        = io->head;
395
396         return 0;
397 }
398
399 static void sh_sir_remove_iobuf(struct sh_sir_self *self)
400 {
401         kfree(self->rx_buff.head);
402         kfree(self->tx_buff.head);
403
404         self->rx_buff.head = NULL;
405         self->tx_buff.head = NULL;
406 }
407
408 static int sh_sir_init_iobuf(struct sh_sir_self *self, int rxsize, int txsize)
409 {
410         int err = -ENOMEM;
411
412         if (self->rx_buff.head ||
413             self->tx_buff.head) {
414                 dev_err(&self->ndev->dev, "iobuff has already existed.");
415                 return err;
416         }
417
418         err = __sh_sir_init_iobuf(&self->rx_buff, rxsize);
419         if (err)
420                 goto iobuf_err;
421
422         err = __sh_sir_init_iobuf(&self->tx_buff, txsize);
423
424 iobuf_err:
425         if (err)
426                 sh_sir_remove_iobuf(self);
427
428         return err;
429 }
430
431 /************************************************************************
432
433
434                         status function
435
436
437 ************************************************************************/
438 static void sh_sir_clear_all_err(struct sh_sir_self *self)
439 {
440         /* Clear error flag for receive pulse width */
441         sh_sir_update_bits(self, IRIF_SIR0, IRERRC, IRERRC);
442
443         /* Clear frame / EOF error flag */
444         sh_sir_write(self, IRIF_SIR_FLG, 0xffff);
445
446         /* Clear all status error */
447         sh_sir_write(self, IRIF_UART_STS2, 0);
448 }
449
450 static void sh_sir_set_phase(struct sh_sir_self *self, int phase)
451 {
452         u16 uart5 = 0;
453         u16 uart0 = 0;
454
455         switch (phase) {
456         case TX_PHASE:
457                 uart5 = TBEIM;
458                 uart0 = TBEC | TIE;
459                 break;
460         case TX_COMP_PHASE:
461                 uart5 = TSBEIM;
462                 uart0 = TIE;
463                 break;
464         case RX_PHASE:
465                 uart5 = RX_MASK;
466                 uart0 = RIE;
467                 break;
468         default:
469                 break;
470         }
471
472         sh_sir_write(self, IRIF_UART5, uart5);
473         sh_sir_write(self, IRIF_UART0, uart0);
474 }
475
476 static int sh_sir_is_which_phase(struct sh_sir_self *self)
477 {
478         u16 val = sh_sir_read(self, IRIF_UART5);
479
480         if (val & TBEIM)
481                 return TX_PHASE;
482
483         if (val & TSBEIM)
484                 return TX_COMP_PHASE;
485
486         if (val & RX_MASK)
487                 return RX_PHASE;
488
489         return NONE_PHASE;
490 }
491
492 static void sh_sir_tx(struct sh_sir_self *self, int phase)
493 {
494         switch (phase) {
495         case TX_PHASE:
496                 if (0 >= self->tx_buff.len) {
497                         sh_sir_set_phase(self, TX_COMP_PHASE);
498                 } else {
499                         sh_sir_write(self, IRIF_UART3, self->tx_buff.data[0]);
500                         self->tx_buff.len--;
501                         self->tx_buff.data++;
502                 }
503                 break;
504         case TX_COMP_PHASE:
505                 sh_sir_set_phase(self, RX_PHASE);
506                 netif_wake_queue(self->ndev);
507                 break;
508         default:
509                 dev_err(&self->ndev->dev, "should not happen\n");
510                 break;
511         }
512 }
513
514 static int sh_sir_read_data(struct sh_sir_self *self)
515 {
516         u16 val = 0;
517         int timeout = 1024;
518
519         while (timeout--) {
520                 val = sh_sir_read(self, IRIF_UART1);
521
522                 /* data get */
523                 if (val & RBF) {
524                         if (val & (URSME | UROVE | URFRE | URPRE))
525                                 break;
526
527                         return (int)sh_sir_read(self, IRIF_UART4);
528                 }
529
530                 udelay(1);
531         }
532
533         dev_err(&self->ndev->dev, "UART1 %04x : STATUS %04x\n",
534                 val, sh_sir_read(self, IRIF_UART_STS2));
535
536         /* read data register for clear error */
537         sh_sir_read(self, IRIF_UART4);
538
539         return -1;
540 }
541
542 static void sh_sir_rx(struct sh_sir_self *self)
543 {
544         int timeout = 1024;
545         int data;
546
547         while (timeout--) {
548                 data = sh_sir_read_data(self);
549                 if (data < 0)
550                         break;
551
552                 async_unwrap_char(self->ndev, &self->ndev->stats,
553                                   &self->rx_buff, (u8)data);
554                 self->ndev->last_rx = jiffies;
555
556                 if (EOFD & sh_sir_read(self, IRIF_SIR_FRM))
557                         continue;
558
559                 break;
560         }
561 }
562
563 static irqreturn_t sh_sir_irq(int irq, void *dev_id)
564 {
565         struct sh_sir_self *self = dev_id;
566         struct device *dev = &self->ndev->dev;
567         int phase = sh_sir_is_which_phase(self);
568
569         switch (phase) {
570         case TX_COMP_PHASE:
571         case TX_PHASE:
572                 sh_sir_tx(self, phase);
573                 break;
574         case RX_PHASE:
575                 if (sh_sir_read(self, IRIF_SIR3))
576                         dev_err(dev, "rcv pulse width error occurred\n");
577
578                 sh_sir_rx(self);
579                 sh_sir_clear_all_err(self);
580                 break;
581         default:
582                 dev_err(dev, "unknown interrupt\n");
583         }
584
585          return IRQ_HANDLED;
586 }
587
588 /************************************************************************
589
590
591                         net_device_ops function
592
593
594 ************************************************************************/
595 static int sh_sir_hard_xmit(struct sk_buff *skb, struct net_device *ndev)
596 {
597         struct sh_sir_self *self = netdev_priv(ndev);
598         int speed = irda_get_next_speed(skb);
599
600         if ((0 < speed) &&
601             (9600 != speed)) {
602                 dev_err(&ndev->dev, "support 9600 only (%d)\n", speed);
603                 return -EIO;
604         }
605
606         netif_stop_queue(ndev);
607
608         self->tx_buff.data = self->tx_buff.head;
609         self->tx_buff.len = 0;
610         if (skb->len)
611                 self->tx_buff.len = async_wrap_skb(skb, self->tx_buff.data,
612                                                    self->tx_buff.truesize);
613
614         sh_sir_set_phase(self, TX_PHASE);
615         dev_kfree_skb(skb);
616
617         return 0;
618 }
619
620 static int sh_sir_ioctl(struct net_device *ndev, struct ifreq *ifreq, int cmd)
621 {
622         /*
623          * FIXME
624          *
625          * This function is needed for irda framework.
626          * But nothing to do now
627          */
628         return 0;
629 }
630
631 static struct net_device_stats *sh_sir_stats(struct net_device *ndev)
632 {
633         struct sh_sir_self *self = netdev_priv(ndev);
634
635         return &self->ndev->stats;
636 }
637
638 static int sh_sir_open(struct net_device *ndev)
639 {
640         struct sh_sir_self *self = netdev_priv(ndev);
641         int err;
642
643         clk_enable(self->clk);
644         err = sh_sir_crc_init(self);
645         if (err)
646                 goto open_err;
647
648         sh_sir_set_baudrate(self, 9600);
649
650         self->irlap = irlap_open(ndev, &self->qos, DRIVER_NAME);
651         if (!self->irlap) {
652                 err = -ENODEV;
653                 goto open_err;
654         }
655
656         /*
657          * Now enable the interrupt then start the queue
658          */
659         sh_sir_update_bits(self, IRIF_SIR_FRM, FRP, FRP);
660         sh_sir_read(self, IRIF_UART1); /* flag clear */
661         sh_sir_read(self, IRIF_UART4); /* flag clear */
662         sh_sir_set_phase(self, RX_PHASE);
663
664         netif_start_queue(ndev);
665
666         dev_info(&self->ndev->dev, "opened\n");
667
668         return 0;
669
670 open_err:
671         clk_disable(self->clk);
672
673         return err;
674 }
675
676 static int sh_sir_stop(struct net_device *ndev)
677 {
678         struct sh_sir_self *self = netdev_priv(ndev);
679
680         /* Stop IrLAP */
681         if (self->irlap) {
682                 irlap_close(self->irlap);
683                 self->irlap = NULL;
684         }
685
686         netif_stop_queue(ndev);
687
688         dev_info(&ndev->dev, "stoped\n");
689
690         return 0;
691 }
692
693 static const struct net_device_ops sh_sir_ndo = {
694         .ndo_open               = sh_sir_open,
695         .ndo_stop               = sh_sir_stop,
696         .ndo_start_xmit         = sh_sir_hard_xmit,
697         .ndo_do_ioctl           = sh_sir_ioctl,
698         .ndo_get_stats          = sh_sir_stats,
699 };
700
701 /************************************************************************
702
703
704                         platform_driver function
705
706
707 ************************************************************************/
708 static int __devinit sh_sir_probe(struct platform_device *pdev)
709 {
710         struct net_device *ndev;
711         struct sh_sir_self *self;
712         struct resource *res;
713         char clk_name[8];
714         int irq;
715         int err = -ENOMEM;
716
717         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
718         irq = platform_get_irq(pdev, 0);
719         if (!res || irq < 0) {
720                 dev_err(&pdev->dev, "Not enough platform resources.\n");
721                 goto exit;
722         }
723
724         ndev = alloc_irdadev(sizeof(*self));
725         if (!ndev)
726                 goto exit;
727
728         self = netdev_priv(ndev);
729         self->membase = ioremap_nocache(res->start, resource_size(res));
730         if (!self->membase) {
731                 err = -ENXIO;
732                 dev_err(&pdev->dev, "Unable to ioremap.\n");
733                 goto err_mem_1;
734         }
735
736         err = sh_sir_init_iobuf(self, IRDA_SKB_MAX_MTU, IRDA_SIR_MAX_FRAME);
737         if (err)
738                 goto err_mem_2;
739
740         snprintf(clk_name, sizeof(clk_name), "irda%d", pdev->id);
741         self->clk = clk_get(&pdev->dev, clk_name);
742         if (IS_ERR(self->clk)) {
743                 dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
744                 goto err_mem_3;
745         }
746
747         irda_init_max_qos_capabilies(&self->qos);
748
749         ndev->netdev_ops        = &sh_sir_ndo;
750         ndev->irq               = irq;
751
752         self->ndev                      = ndev;
753         self->qos.baud_rate.bits        &= IR_9600; /* FIXME */
754         self->qos.min_turn_time.bits    = 1; /* 10 ms or more */
755
756         irda_qos_bits_to_value(&self->qos);
757
758         err = register_netdev(ndev);
759         if (err)
760                 goto err_mem_4;
761
762         platform_set_drvdata(pdev, ndev);
763
764         if (request_irq(irq, sh_sir_irq, IRQF_DISABLED, "sh_sir", self)) {
765                 dev_warn(&pdev->dev, "Unable to attach sh_sir interrupt\n");
766                 goto err_mem_4;
767         }
768
769         dev_info(&pdev->dev, "SuperH IrDA probed\n");
770
771         goto exit;
772
773 err_mem_4:
774         clk_put(self->clk);
775 err_mem_3:
776         sh_sir_remove_iobuf(self);
777 err_mem_2:
778         iounmap(self->membase);
779 err_mem_1:
780         free_netdev(ndev);
781 exit:
782         return err;
783 }
784
785 static int __devexit sh_sir_remove(struct platform_device *pdev)
786 {
787         struct net_device *ndev = platform_get_drvdata(pdev);
788         struct sh_sir_self *self = netdev_priv(ndev);
789
790         if (!self)
791                 return 0;
792
793         unregister_netdev(ndev);
794         clk_put(self->clk);
795         sh_sir_remove_iobuf(self);
796         iounmap(self->membase);
797         free_netdev(ndev);
798         platform_set_drvdata(pdev, NULL);
799
800         return 0;
801 }
802
803 static struct platform_driver sh_sir_driver = {
804         .probe   = sh_sir_probe,
805         .remove  = __devexit_p(sh_sir_remove),
806         .driver  = {
807                 .name = DRIVER_NAME,
808         },
809 };
810
811 static int __init sh_sir_init(void)
812 {
813         return platform_driver_register(&sh_sir_driver);
814 }
815
816 static void __exit sh_sir_exit(void)
817 {
818         platform_driver_unregister(&sh_sir_driver);
819 }
820
821 module_init(sh_sir_init);
822 module_exit(sh_sir_exit);
823
824 MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");
825 MODULE_DESCRIPTION("SuperH IrDA driver");
826 MODULE_LICENSE("GPL");