Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[pandora-kernel.git] / drivers / net / igbvf / netdev.c
1 /*******************************************************************************
2
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/tcp.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/prefetch.h>
45
46 #include "igbvf.h"
47
48 #define DRV_VERSION "2.0.0-k"
49 char igbvf_driver_name[] = "igbvf";
50 const char igbvf_driver_version[] = DRV_VERSION;
51 static const char igbvf_driver_string[] =
52                                 "Intel(R) Virtual Function Network Driver";
53 static const char igbvf_copyright[] =
54                                 "Copyright (c) 2009 - 2010 Intel Corporation.";
55
56 static int igbvf_poll(struct napi_struct *napi, int budget);
57 static void igbvf_reset(struct igbvf_adapter *);
58 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
59 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
60
61 static struct igbvf_info igbvf_vf_info = {
62         .mac                    = e1000_vfadapt,
63         .flags                  = 0,
64         .pba                    = 10,
65         .init_ops               = e1000_init_function_pointers_vf,
66 };
67
68 static struct igbvf_info igbvf_i350_vf_info = {
69         .mac                    = e1000_vfadapt_i350,
70         .flags                  = 0,
71         .pba                    = 10,
72         .init_ops               = e1000_init_function_pointers_vf,
73 };
74
75 static const struct igbvf_info *igbvf_info_tbl[] = {
76         [board_vf]              = &igbvf_vf_info,
77         [board_i350_vf]         = &igbvf_i350_vf_info,
78 };
79
80 /**
81  * igbvf_desc_unused - calculate if we have unused descriptors
82  **/
83 static int igbvf_desc_unused(struct igbvf_ring *ring)
84 {
85         if (ring->next_to_clean > ring->next_to_use)
86                 return ring->next_to_clean - ring->next_to_use - 1;
87
88         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
89 }
90
91 /**
92  * igbvf_receive_skb - helper function to handle Rx indications
93  * @adapter: board private structure
94  * @status: descriptor status field as written by hardware
95  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
96  * @skb: pointer to sk_buff to be indicated to stack
97  **/
98 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
99                               struct net_device *netdev,
100                               struct sk_buff *skb,
101                               u32 status, u16 vlan)
102 {
103         if (status & E1000_RXD_STAT_VP) {
104                 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
105
106                 __vlan_hwaccel_put_tag(skb, vid);
107         }
108         netif_receive_skb(skb);
109 }
110
111 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
112                                          u32 status_err, struct sk_buff *skb)
113 {
114         skb_checksum_none_assert(skb);
115
116         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
117         if ((status_err & E1000_RXD_STAT_IXSM) ||
118             (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
119                 return;
120
121         /* TCP/UDP checksum error bit is set */
122         if (status_err &
123             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
124                 /* let the stack verify checksum errors */
125                 adapter->hw_csum_err++;
126                 return;
127         }
128
129         /* It must be a TCP or UDP packet with a valid checksum */
130         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
131                 skb->ip_summed = CHECKSUM_UNNECESSARY;
132
133         adapter->hw_csum_good++;
134 }
135
136 /**
137  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
138  * @rx_ring: address of ring structure to repopulate
139  * @cleaned_count: number of buffers to repopulate
140  **/
141 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
142                                    int cleaned_count)
143 {
144         struct igbvf_adapter *adapter = rx_ring->adapter;
145         struct net_device *netdev = adapter->netdev;
146         struct pci_dev *pdev = adapter->pdev;
147         union e1000_adv_rx_desc *rx_desc;
148         struct igbvf_buffer *buffer_info;
149         struct sk_buff *skb;
150         unsigned int i;
151         int bufsz;
152
153         i = rx_ring->next_to_use;
154         buffer_info = &rx_ring->buffer_info[i];
155
156         if (adapter->rx_ps_hdr_size)
157                 bufsz = adapter->rx_ps_hdr_size;
158         else
159                 bufsz = adapter->rx_buffer_len;
160
161         while (cleaned_count--) {
162                 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
163
164                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
165                         if (!buffer_info->page) {
166                                 buffer_info->page = alloc_page(GFP_ATOMIC);
167                                 if (!buffer_info->page) {
168                                         adapter->alloc_rx_buff_failed++;
169                                         goto no_buffers;
170                                 }
171                                 buffer_info->page_offset = 0;
172                         } else {
173                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
174                         }
175                         buffer_info->page_dma =
176                                 dma_map_page(&pdev->dev, buffer_info->page,
177                                              buffer_info->page_offset,
178                                              PAGE_SIZE / 2,
179                                              DMA_FROM_DEVICE);
180                 }
181
182                 if (!buffer_info->skb) {
183                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
184                         if (!skb) {
185                                 adapter->alloc_rx_buff_failed++;
186                                 goto no_buffers;
187                         }
188
189                         buffer_info->skb = skb;
190                         buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
191                                                           bufsz,
192                                                           DMA_FROM_DEVICE);
193                 }
194                 /* Refresh the desc even if buffer_addrs didn't change because
195                  * each write-back erases this info. */
196                 if (adapter->rx_ps_hdr_size) {
197                         rx_desc->read.pkt_addr =
198                              cpu_to_le64(buffer_info->page_dma);
199                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
200                 } else {
201                         rx_desc->read.pkt_addr =
202                              cpu_to_le64(buffer_info->dma);
203                         rx_desc->read.hdr_addr = 0;
204                 }
205
206                 i++;
207                 if (i == rx_ring->count)
208                         i = 0;
209                 buffer_info = &rx_ring->buffer_info[i];
210         }
211
212 no_buffers:
213         if (rx_ring->next_to_use != i) {
214                 rx_ring->next_to_use = i;
215                 if (i == 0)
216                         i = (rx_ring->count - 1);
217                 else
218                         i--;
219
220                 /* Force memory writes to complete before letting h/w
221                  * know there are new descriptors to fetch.  (Only
222                  * applicable for weak-ordered memory model archs,
223                  * such as IA-64). */
224                 wmb();
225                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
226         }
227 }
228
229 /**
230  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
231  * @adapter: board private structure
232  *
233  * the return value indicates whether actual cleaning was done, there
234  * is no guarantee that everything was cleaned
235  **/
236 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
237                                int *work_done, int work_to_do)
238 {
239         struct igbvf_ring *rx_ring = adapter->rx_ring;
240         struct net_device *netdev = adapter->netdev;
241         struct pci_dev *pdev = adapter->pdev;
242         union e1000_adv_rx_desc *rx_desc, *next_rxd;
243         struct igbvf_buffer *buffer_info, *next_buffer;
244         struct sk_buff *skb;
245         bool cleaned = false;
246         int cleaned_count = 0;
247         unsigned int total_bytes = 0, total_packets = 0;
248         unsigned int i;
249         u32 length, hlen, staterr;
250
251         i = rx_ring->next_to_clean;
252         rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
253         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
254
255         while (staterr & E1000_RXD_STAT_DD) {
256                 if (*work_done >= work_to_do)
257                         break;
258                 (*work_done)++;
259                 rmb(); /* read descriptor and rx_buffer_info after status DD */
260
261                 buffer_info = &rx_ring->buffer_info[i];
262
263                 /* HW will not DMA in data larger than the given buffer, even
264                  * if it parses the (NFS, of course) header to be larger.  In
265                  * that case, it fills the header buffer and spills the rest
266                  * into the page.
267                  */
268                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
269                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
270                 if (hlen > adapter->rx_ps_hdr_size)
271                         hlen = adapter->rx_ps_hdr_size;
272
273                 length = le16_to_cpu(rx_desc->wb.upper.length);
274                 cleaned = true;
275                 cleaned_count++;
276
277                 skb = buffer_info->skb;
278                 prefetch(skb->data - NET_IP_ALIGN);
279                 buffer_info->skb = NULL;
280                 if (!adapter->rx_ps_hdr_size) {
281                         dma_unmap_single(&pdev->dev, buffer_info->dma,
282                                          adapter->rx_buffer_len,
283                                          DMA_FROM_DEVICE);
284                         buffer_info->dma = 0;
285                         skb_put(skb, length);
286                         goto send_up;
287                 }
288
289                 if (!skb_shinfo(skb)->nr_frags) {
290                         dma_unmap_single(&pdev->dev, buffer_info->dma,
291                                          adapter->rx_ps_hdr_size,
292                                          DMA_FROM_DEVICE);
293                         skb_put(skb, hlen);
294                 }
295
296                 if (length) {
297                         dma_unmap_page(&pdev->dev, buffer_info->page_dma,
298                                        PAGE_SIZE / 2,
299                                        DMA_FROM_DEVICE);
300                         buffer_info->page_dma = 0;
301
302                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
303                                            buffer_info->page,
304                                            buffer_info->page_offset,
305                                            length);
306
307                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
308                             (page_count(buffer_info->page) != 1))
309                                 buffer_info->page = NULL;
310                         else
311                                 get_page(buffer_info->page);
312
313                         skb->len += length;
314                         skb->data_len += length;
315                         skb->truesize += length;
316                 }
317 send_up:
318                 i++;
319                 if (i == rx_ring->count)
320                         i = 0;
321                 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
322                 prefetch(next_rxd);
323                 next_buffer = &rx_ring->buffer_info[i];
324
325                 if (!(staterr & E1000_RXD_STAT_EOP)) {
326                         buffer_info->skb = next_buffer->skb;
327                         buffer_info->dma = next_buffer->dma;
328                         next_buffer->skb = skb;
329                         next_buffer->dma = 0;
330                         goto next_desc;
331                 }
332
333                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
334                         dev_kfree_skb_irq(skb);
335                         goto next_desc;
336                 }
337
338                 total_bytes += skb->len;
339                 total_packets++;
340
341                 igbvf_rx_checksum_adv(adapter, staterr, skb);
342
343                 skb->protocol = eth_type_trans(skb, netdev);
344
345                 igbvf_receive_skb(adapter, netdev, skb, staterr,
346                                   rx_desc->wb.upper.vlan);
347
348 next_desc:
349                 rx_desc->wb.upper.status_error = 0;
350
351                 /* return some buffers to hardware, one at a time is too slow */
352                 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
353                         igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
354                         cleaned_count = 0;
355                 }
356
357                 /* use prefetched values */
358                 rx_desc = next_rxd;
359                 buffer_info = next_buffer;
360
361                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
362         }
363
364         rx_ring->next_to_clean = i;
365         cleaned_count = igbvf_desc_unused(rx_ring);
366
367         if (cleaned_count)
368                 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
369
370         adapter->total_rx_packets += total_packets;
371         adapter->total_rx_bytes += total_bytes;
372         adapter->net_stats.rx_bytes += total_bytes;
373         adapter->net_stats.rx_packets += total_packets;
374         return cleaned;
375 }
376
377 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
378                             struct igbvf_buffer *buffer_info)
379 {
380         if (buffer_info->dma) {
381                 if (buffer_info->mapped_as_page)
382                         dma_unmap_page(&adapter->pdev->dev,
383                                        buffer_info->dma,
384                                        buffer_info->length,
385                                        DMA_TO_DEVICE);
386                 else
387                         dma_unmap_single(&adapter->pdev->dev,
388                                          buffer_info->dma,
389                                          buffer_info->length,
390                                          DMA_TO_DEVICE);
391                 buffer_info->dma = 0;
392         }
393         if (buffer_info->skb) {
394                 dev_kfree_skb_any(buffer_info->skb);
395                 buffer_info->skb = NULL;
396         }
397         buffer_info->time_stamp = 0;
398 }
399
400 /**
401  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
402  * @adapter: board private structure
403  *
404  * Return 0 on success, negative on failure
405  **/
406 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
407                              struct igbvf_ring *tx_ring)
408 {
409         struct pci_dev *pdev = adapter->pdev;
410         int size;
411
412         size = sizeof(struct igbvf_buffer) * tx_ring->count;
413         tx_ring->buffer_info = vzalloc(size);
414         if (!tx_ring->buffer_info)
415                 goto err;
416
417         /* round up to nearest 4K */
418         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
419         tx_ring->size = ALIGN(tx_ring->size, 4096);
420
421         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
422                                            &tx_ring->dma, GFP_KERNEL);
423
424         if (!tx_ring->desc)
425                 goto err;
426
427         tx_ring->adapter = adapter;
428         tx_ring->next_to_use = 0;
429         tx_ring->next_to_clean = 0;
430
431         return 0;
432 err:
433         vfree(tx_ring->buffer_info);
434         dev_err(&adapter->pdev->dev,
435                 "Unable to allocate memory for the transmit descriptor ring\n");
436         return -ENOMEM;
437 }
438
439 /**
440  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
441  * @adapter: board private structure
442  *
443  * Returns 0 on success, negative on failure
444  **/
445 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
446                              struct igbvf_ring *rx_ring)
447 {
448         struct pci_dev *pdev = adapter->pdev;
449         int size, desc_len;
450
451         size = sizeof(struct igbvf_buffer) * rx_ring->count;
452         rx_ring->buffer_info = vzalloc(size);
453         if (!rx_ring->buffer_info)
454                 goto err;
455
456         desc_len = sizeof(union e1000_adv_rx_desc);
457
458         /* Round up to nearest 4K */
459         rx_ring->size = rx_ring->count * desc_len;
460         rx_ring->size = ALIGN(rx_ring->size, 4096);
461
462         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
463                                            &rx_ring->dma, GFP_KERNEL);
464
465         if (!rx_ring->desc)
466                 goto err;
467
468         rx_ring->next_to_clean = 0;
469         rx_ring->next_to_use = 0;
470
471         rx_ring->adapter = adapter;
472
473         return 0;
474
475 err:
476         vfree(rx_ring->buffer_info);
477         rx_ring->buffer_info = NULL;
478         dev_err(&adapter->pdev->dev,
479                 "Unable to allocate memory for the receive descriptor ring\n");
480         return -ENOMEM;
481 }
482
483 /**
484  * igbvf_clean_tx_ring - Free Tx Buffers
485  * @tx_ring: ring to be cleaned
486  **/
487 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
488 {
489         struct igbvf_adapter *adapter = tx_ring->adapter;
490         struct igbvf_buffer *buffer_info;
491         unsigned long size;
492         unsigned int i;
493
494         if (!tx_ring->buffer_info)
495                 return;
496
497         /* Free all the Tx ring sk_buffs */
498         for (i = 0; i < tx_ring->count; i++) {
499                 buffer_info = &tx_ring->buffer_info[i];
500                 igbvf_put_txbuf(adapter, buffer_info);
501         }
502
503         size = sizeof(struct igbvf_buffer) * tx_ring->count;
504         memset(tx_ring->buffer_info, 0, size);
505
506         /* Zero out the descriptor ring */
507         memset(tx_ring->desc, 0, tx_ring->size);
508
509         tx_ring->next_to_use = 0;
510         tx_ring->next_to_clean = 0;
511
512         writel(0, adapter->hw.hw_addr + tx_ring->head);
513         writel(0, adapter->hw.hw_addr + tx_ring->tail);
514 }
515
516 /**
517  * igbvf_free_tx_resources - Free Tx Resources per Queue
518  * @tx_ring: ring to free resources from
519  *
520  * Free all transmit software resources
521  **/
522 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
523 {
524         struct pci_dev *pdev = tx_ring->adapter->pdev;
525
526         igbvf_clean_tx_ring(tx_ring);
527
528         vfree(tx_ring->buffer_info);
529         tx_ring->buffer_info = NULL;
530
531         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
532                           tx_ring->dma);
533
534         tx_ring->desc = NULL;
535 }
536
537 /**
538  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
539  * @adapter: board private structure
540  **/
541 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
542 {
543         struct igbvf_adapter *adapter = rx_ring->adapter;
544         struct igbvf_buffer *buffer_info;
545         struct pci_dev *pdev = adapter->pdev;
546         unsigned long size;
547         unsigned int i;
548
549         if (!rx_ring->buffer_info)
550                 return;
551
552         /* Free all the Rx ring sk_buffs */
553         for (i = 0; i < rx_ring->count; i++) {
554                 buffer_info = &rx_ring->buffer_info[i];
555                 if (buffer_info->dma) {
556                         if (adapter->rx_ps_hdr_size){
557                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
558                                                  adapter->rx_ps_hdr_size,
559                                                  DMA_FROM_DEVICE);
560                         } else {
561                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
562                                                  adapter->rx_buffer_len,
563                                                  DMA_FROM_DEVICE);
564                         }
565                         buffer_info->dma = 0;
566                 }
567
568                 if (buffer_info->skb) {
569                         dev_kfree_skb(buffer_info->skb);
570                         buffer_info->skb = NULL;
571                 }
572
573                 if (buffer_info->page) {
574                         if (buffer_info->page_dma)
575                                 dma_unmap_page(&pdev->dev,
576                                                buffer_info->page_dma,
577                                                PAGE_SIZE / 2,
578                                                DMA_FROM_DEVICE);
579                         put_page(buffer_info->page);
580                         buffer_info->page = NULL;
581                         buffer_info->page_dma = 0;
582                         buffer_info->page_offset = 0;
583                 }
584         }
585
586         size = sizeof(struct igbvf_buffer) * rx_ring->count;
587         memset(rx_ring->buffer_info, 0, size);
588
589         /* Zero out the descriptor ring */
590         memset(rx_ring->desc, 0, rx_ring->size);
591
592         rx_ring->next_to_clean = 0;
593         rx_ring->next_to_use = 0;
594
595         writel(0, adapter->hw.hw_addr + rx_ring->head);
596         writel(0, adapter->hw.hw_addr + rx_ring->tail);
597 }
598
599 /**
600  * igbvf_free_rx_resources - Free Rx Resources
601  * @rx_ring: ring to clean the resources from
602  *
603  * Free all receive software resources
604  **/
605
606 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
607 {
608         struct pci_dev *pdev = rx_ring->adapter->pdev;
609
610         igbvf_clean_rx_ring(rx_ring);
611
612         vfree(rx_ring->buffer_info);
613         rx_ring->buffer_info = NULL;
614
615         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
616                           rx_ring->dma);
617         rx_ring->desc = NULL;
618 }
619
620 /**
621  * igbvf_update_itr - update the dynamic ITR value based on statistics
622  * @adapter: pointer to adapter
623  * @itr_setting: current adapter->itr
624  * @packets: the number of packets during this measurement interval
625  * @bytes: the number of bytes during this measurement interval
626  *
627  *      Stores a new ITR value based on packets and byte
628  *      counts during the last interrupt.  The advantage of per interrupt
629  *      computation is faster updates and more accurate ITR for the current
630  *      traffic pattern.  Constants in this function were computed
631  *      based on theoretical maximum wire speed and thresholds were set based
632  *      on testing data as well as attempting to minimize response time
633  *      while increasing bulk throughput.  This functionality is controlled
634  *      by the InterruptThrottleRate module parameter.
635  **/
636 static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
637                                      u16 itr_setting, int packets,
638                                      int bytes)
639 {
640         unsigned int retval = itr_setting;
641
642         if (packets == 0)
643                 goto update_itr_done;
644
645         switch (itr_setting) {
646         case lowest_latency:
647                 /* handle TSO and jumbo frames */
648                 if (bytes/packets > 8000)
649                         retval = bulk_latency;
650                 else if ((packets < 5) && (bytes > 512))
651                         retval = low_latency;
652                 break;
653         case low_latency:  /* 50 usec aka 20000 ints/s */
654                 if (bytes > 10000) {
655                         /* this if handles the TSO accounting */
656                         if (bytes/packets > 8000)
657                                 retval = bulk_latency;
658                         else if ((packets < 10) || ((bytes/packets) > 1200))
659                                 retval = bulk_latency;
660                         else if ((packets > 35))
661                                 retval = lowest_latency;
662                 } else if (bytes/packets > 2000) {
663                         retval = bulk_latency;
664                 } else if (packets <= 2 && bytes < 512) {
665                         retval = lowest_latency;
666                 }
667                 break;
668         case bulk_latency: /* 250 usec aka 4000 ints/s */
669                 if (bytes > 25000) {
670                         if (packets > 35)
671                                 retval = low_latency;
672                 } else if (bytes < 6000) {
673                         retval = low_latency;
674                 }
675                 break;
676         }
677
678 update_itr_done:
679         return retval;
680 }
681
682 static void igbvf_set_itr(struct igbvf_adapter *adapter)
683 {
684         struct e1000_hw *hw = &adapter->hw;
685         u16 current_itr;
686         u32 new_itr = adapter->itr;
687
688         adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
689                                            adapter->total_tx_packets,
690                                            adapter->total_tx_bytes);
691         /* conservative mode (itr 3) eliminates the lowest_latency setting */
692         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
693                 adapter->tx_itr = low_latency;
694
695         adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
696                                            adapter->total_rx_packets,
697                                            adapter->total_rx_bytes);
698         /* conservative mode (itr 3) eliminates the lowest_latency setting */
699         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
700                 adapter->rx_itr = low_latency;
701
702         current_itr = max(adapter->rx_itr, adapter->tx_itr);
703
704         switch (current_itr) {
705         /* counts and packets in update_itr are dependent on these numbers */
706         case lowest_latency:
707                 new_itr = 70000;
708                 break;
709         case low_latency:
710                 new_itr = 20000; /* aka hwitr = ~200 */
711                 break;
712         case bulk_latency:
713                 new_itr = 4000;
714                 break;
715         default:
716                 break;
717         }
718
719         if (new_itr != adapter->itr) {
720                 /*
721                  * this attempts to bias the interrupt rate towards Bulk
722                  * by adding intermediate steps when interrupt rate is
723                  * increasing
724                  */
725                 new_itr = new_itr > adapter->itr ?
726                              min(adapter->itr + (new_itr >> 2), new_itr) :
727                              new_itr;
728                 adapter->itr = new_itr;
729                 adapter->rx_ring->itr_val = 1952;
730
731                 if (adapter->msix_entries)
732                         adapter->rx_ring->set_itr = 1;
733                 else
734                         ew32(ITR, 1952);
735         }
736 }
737
738 /**
739  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
740  * @adapter: board private structure
741  * returns true if ring is completely cleaned
742  **/
743 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
744 {
745         struct igbvf_adapter *adapter = tx_ring->adapter;
746         struct net_device *netdev = adapter->netdev;
747         struct igbvf_buffer *buffer_info;
748         struct sk_buff *skb;
749         union e1000_adv_tx_desc *tx_desc, *eop_desc;
750         unsigned int total_bytes = 0, total_packets = 0;
751         unsigned int i, eop, count = 0;
752         bool cleaned = false;
753
754         i = tx_ring->next_to_clean;
755         eop = tx_ring->buffer_info[i].next_to_watch;
756         eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
757
758         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
759                (count < tx_ring->count)) {
760                 rmb();  /* read buffer_info after eop_desc status */
761                 for (cleaned = false; !cleaned; count++) {
762                         tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
763                         buffer_info = &tx_ring->buffer_info[i];
764                         cleaned = (i == eop);
765                         skb = buffer_info->skb;
766
767                         if (skb) {
768                                 unsigned int segs, bytecount;
769
770                                 /* gso_segs is currently only valid for tcp */
771                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
772                                 /* multiply data chunks by size of headers */
773                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
774                                             skb->len;
775                                 total_packets += segs;
776                                 total_bytes += bytecount;
777                         }
778
779                         igbvf_put_txbuf(adapter, buffer_info);
780                         tx_desc->wb.status = 0;
781
782                         i++;
783                         if (i == tx_ring->count)
784                                 i = 0;
785                 }
786                 eop = tx_ring->buffer_info[i].next_to_watch;
787                 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
788         }
789
790         tx_ring->next_to_clean = i;
791
792         if (unlikely(count &&
793                      netif_carrier_ok(netdev) &&
794                      igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
795                 /* Make sure that anybody stopping the queue after this
796                  * sees the new next_to_clean.
797                  */
798                 smp_mb();
799                 if (netif_queue_stopped(netdev) &&
800                     !(test_bit(__IGBVF_DOWN, &adapter->state))) {
801                         netif_wake_queue(netdev);
802                         ++adapter->restart_queue;
803                 }
804         }
805
806         adapter->net_stats.tx_bytes += total_bytes;
807         adapter->net_stats.tx_packets += total_packets;
808         return count < tx_ring->count;
809 }
810
811 static irqreturn_t igbvf_msix_other(int irq, void *data)
812 {
813         struct net_device *netdev = data;
814         struct igbvf_adapter *adapter = netdev_priv(netdev);
815         struct e1000_hw *hw = &adapter->hw;
816
817         adapter->int_counter1++;
818
819         netif_carrier_off(netdev);
820         hw->mac.get_link_status = 1;
821         if (!test_bit(__IGBVF_DOWN, &adapter->state))
822                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
823
824         ew32(EIMS, adapter->eims_other);
825
826         return IRQ_HANDLED;
827 }
828
829 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
830 {
831         struct net_device *netdev = data;
832         struct igbvf_adapter *adapter = netdev_priv(netdev);
833         struct e1000_hw *hw = &adapter->hw;
834         struct igbvf_ring *tx_ring = adapter->tx_ring;
835
836
837         adapter->total_tx_bytes = 0;
838         adapter->total_tx_packets = 0;
839
840         /* auto mask will automatically reenable the interrupt when we write
841          * EICS */
842         if (!igbvf_clean_tx_irq(tx_ring))
843                 /* Ring was not completely cleaned, so fire another interrupt */
844                 ew32(EICS, tx_ring->eims_value);
845         else
846                 ew32(EIMS, tx_ring->eims_value);
847
848         return IRQ_HANDLED;
849 }
850
851 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
852 {
853         struct net_device *netdev = data;
854         struct igbvf_adapter *adapter = netdev_priv(netdev);
855
856         adapter->int_counter0++;
857
858         /* Write the ITR value calculated at the end of the
859          * previous interrupt.
860          */
861         if (adapter->rx_ring->set_itr) {
862                 writel(adapter->rx_ring->itr_val,
863                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
864                 adapter->rx_ring->set_itr = 0;
865         }
866
867         if (napi_schedule_prep(&adapter->rx_ring->napi)) {
868                 adapter->total_rx_bytes = 0;
869                 adapter->total_rx_packets = 0;
870                 __napi_schedule(&adapter->rx_ring->napi);
871         }
872
873         return IRQ_HANDLED;
874 }
875
876 #define IGBVF_NO_QUEUE -1
877
878 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
879                                 int tx_queue, int msix_vector)
880 {
881         struct e1000_hw *hw = &adapter->hw;
882         u32 ivar, index;
883
884         /* 82576 uses a table-based method for assigning vectors.
885            Each queue has a single entry in the table to which we write
886            a vector number along with a "valid" bit.  Sadly, the layout
887            of the table is somewhat counterintuitive. */
888         if (rx_queue > IGBVF_NO_QUEUE) {
889                 index = (rx_queue >> 1);
890                 ivar = array_er32(IVAR0, index);
891                 if (rx_queue & 0x1) {
892                         /* vector goes into third byte of register */
893                         ivar = ivar & 0xFF00FFFF;
894                         ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
895                 } else {
896                         /* vector goes into low byte of register */
897                         ivar = ivar & 0xFFFFFF00;
898                         ivar |= msix_vector | E1000_IVAR_VALID;
899                 }
900                 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
901                 array_ew32(IVAR0, index, ivar);
902         }
903         if (tx_queue > IGBVF_NO_QUEUE) {
904                 index = (tx_queue >> 1);
905                 ivar = array_er32(IVAR0, index);
906                 if (tx_queue & 0x1) {
907                         /* vector goes into high byte of register */
908                         ivar = ivar & 0x00FFFFFF;
909                         ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
910                 } else {
911                         /* vector goes into second byte of register */
912                         ivar = ivar & 0xFFFF00FF;
913                         ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
914                 }
915                 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
916                 array_ew32(IVAR0, index, ivar);
917         }
918 }
919
920 /**
921  * igbvf_configure_msix - Configure MSI-X hardware
922  *
923  * igbvf_configure_msix sets up the hardware to properly
924  * generate MSI-X interrupts.
925  **/
926 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
927 {
928         u32 tmp;
929         struct e1000_hw *hw = &adapter->hw;
930         struct igbvf_ring *tx_ring = adapter->tx_ring;
931         struct igbvf_ring *rx_ring = adapter->rx_ring;
932         int vector = 0;
933
934         adapter->eims_enable_mask = 0;
935
936         igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
937         adapter->eims_enable_mask |= tx_ring->eims_value;
938         if (tx_ring->itr_val)
939                 writel(tx_ring->itr_val,
940                        hw->hw_addr + tx_ring->itr_register);
941         else
942                 writel(1952, hw->hw_addr + tx_ring->itr_register);
943
944         igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
945         adapter->eims_enable_mask |= rx_ring->eims_value;
946         if (rx_ring->itr_val)
947                 writel(rx_ring->itr_val,
948                        hw->hw_addr + rx_ring->itr_register);
949         else
950                 writel(1952, hw->hw_addr + rx_ring->itr_register);
951
952         /* set vector for other causes, i.e. link changes */
953
954         tmp = (vector++ | E1000_IVAR_VALID);
955
956         ew32(IVAR_MISC, tmp);
957
958         adapter->eims_enable_mask = (1 << (vector)) - 1;
959         adapter->eims_other = 1 << (vector - 1);
960         e1e_flush();
961 }
962
963 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
964 {
965         if (adapter->msix_entries) {
966                 pci_disable_msix(adapter->pdev);
967                 kfree(adapter->msix_entries);
968                 adapter->msix_entries = NULL;
969         }
970 }
971
972 /**
973  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
974  *
975  * Attempt to configure interrupts using the best available
976  * capabilities of the hardware and kernel.
977  **/
978 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
979 {
980         int err = -ENOMEM;
981         int i;
982
983         /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
984         adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
985                                         GFP_KERNEL);
986         if (adapter->msix_entries) {
987                 for (i = 0; i < 3; i++)
988                         adapter->msix_entries[i].entry = i;
989
990                 err = pci_enable_msix(adapter->pdev,
991                                       adapter->msix_entries, 3);
992         }
993
994         if (err) {
995                 /* MSI-X failed */
996                 dev_err(&adapter->pdev->dev,
997                         "Failed to initialize MSI-X interrupts.\n");
998                 igbvf_reset_interrupt_capability(adapter);
999         }
1000 }
1001
1002 /**
1003  * igbvf_request_msix - Initialize MSI-X interrupts
1004  *
1005  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1006  * kernel.
1007  **/
1008 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1009 {
1010         struct net_device *netdev = adapter->netdev;
1011         int err = 0, vector = 0;
1012
1013         if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1014                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1015                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1016         } else {
1017                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1018                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1019         }
1020
1021         err = request_irq(adapter->msix_entries[vector].vector,
1022                           igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1023                           netdev);
1024         if (err)
1025                 goto out;
1026
1027         adapter->tx_ring->itr_register = E1000_EITR(vector);
1028         adapter->tx_ring->itr_val = 1952;
1029         vector++;
1030
1031         err = request_irq(adapter->msix_entries[vector].vector,
1032                           igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1033                           netdev);
1034         if (err)
1035                 goto out;
1036
1037         adapter->rx_ring->itr_register = E1000_EITR(vector);
1038         adapter->rx_ring->itr_val = 1952;
1039         vector++;
1040
1041         err = request_irq(adapter->msix_entries[vector].vector,
1042                           igbvf_msix_other, 0, netdev->name, netdev);
1043         if (err)
1044                 goto out;
1045
1046         igbvf_configure_msix(adapter);
1047         return 0;
1048 out:
1049         return err;
1050 }
1051
1052 /**
1053  * igbvf_alloc_queues - Allocate memory for all rings
1054  * @adapter: board private structure to initialize
1055  **/
1056 static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1057 {
1058         struct net_device *netdev = adapter->netdev;
1059
1060         adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1061         if (!adapter->tx_ring)
1062                 return -ENOMEM;
1063
1064         adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1065         if (!adapter->rx_ring) {
1066                 kfree(adapter->tx_ring);
1067                 return -ENOMEM;
1068         }
1069
1070         netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1071
1072         return 0;
1073 }
1074
1075 /**
1076  * igbvf_request_irq - initialize interrupts
1077  *
1078  * Attempts to configure interrupts using the best available
1079  * capabilities of the hardware and kernel.
1080  **/
1081 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1082 {
1083         int err = -1;
1084
1085         /* igbvf supports msi-x only */
1086         if (adapter->msix_entries)
1087                 err = igbvf_request_msix(adapter);
1088
1089         if (!err)
1090                 return err;
1091
1092         dev_err(&adapter->pdev->dev,
1093                 "Unable to allocate interrupt, Error: %d\n", err);
1094
1095         return err;
1096 }
1097
1098 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1099 {
1100         struct net_device *netdev = adapter->netdev;
1101         int vector;
1102
1103         if (adapter->msix_entries) {
1104                 for (vector = 0; vector < 3; vector++)
1105                         free_irq(adapter->msix_entries[vector].vector, netdev);
1106         }
1107 }
1108
1109 /**
1110  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1111  **/
1112 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1113 {
1114         struct e1000_hw *hw = &adapter->hw;
1115
1116         ew32(EIMC, ~0);
1117
1118         if (adapter->msix_entries)
1119                 ew32(EIAC, 0);
1120 }
1121
1122 /**
1123  * igbvf_irq_enable - Enable default interrupt generation settings
1124  **/
1125 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1126 {
1127         struct e1000_hw *hw = &adapter->hw;
1128
1129         ew32(EIAC, adapter->eims_enable_mask);
1130         ew32(EIAM, adapter->eims_enable_mask);
1131         ew32(EIMS, adapter->eims_enable_mask);
1132 }
1133
1134 /**
1135  * igbvf_poll - NAPI Rx polling callback
1136  * @napi: struct associated with this polling callback
1137  * @budget: amount of packets driver is allowed to process this poll
1138  **/
1139 static int igbvf_poll(struct napi_struct *napi, int budget)
1140 {
1141         struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1142         struct igbvf_adapter *adapter = rx_ring->adapter;
1143         struct e1000_hw *hw = &adapter->hw;
1144         int work_done = 0;
1145
1146         igbvf_clean_rx_irq(adapter, &work_done, budget);
1147
1148         /* If not enough Rx work done, exit the polling mode */
1149         if (work_done < budget) {
1150                 napi_complete(napi);
1151
1152                 if (adapter->itr_setting & 3)
1153                         igbvf_set_itr(adapter);
1154
1155                 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1156                         ew32(EIMS, adapter->rx_ring->eims_value);
1157         }
1158
1159         return work_done;
1160 }
1161
1162 /**
1163  * igbvf_set_rlpml - set receive large packet maximum length
1164  * @adapter: board private structure
1165  *
1166  * Configure the maximum size of packets that will be received
1167  */
1168 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1169 {
1170         int max_frame_size;
1171         struct e1000_hw *hw = &adapter->hw;
1172
1173         max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1174         e1000_rlpml_set_vf(hw, max_frame_size);
1175 }
1176
1177 static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1178 {
1179         struct igbvf_adapter *adapter = netdev_priv(netdev);
1180         struct e1000_hw *hw = &adapter->hw;
1181
1182         if (hw->mac.ops.set_vfta(hw, vid, true))
1183                 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1184         else
1185                 set_bit(vid, adapter->active_vlans);
1186 }
1187
1188 static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1189 {
1190         struct igbvf_adapter *adapter = netdev_priv(netdev);
1191         struct e1000_hw *hw = &adapter->hw;
1192
1193         igbvf_irq_disable(adapter);
1194
1195         if (!test_bit(__IGBVF_DOWN, &adapter->state))
1196                 igbvf_irq_enable(adapter);
1197
1198         if (hw->mac.ops.set_vfta(hw, vid, false))
1199                 dev_err(&adapter->pdev->dev,
1200                         "Failed to remove vlan id %d\n", vid);
1201         else
1202                 clear_bit(vid, adapter->active_vlans);
1203 }
1204
1205 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1206 {
1207         u16 vid;
1208
1209         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1210                 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1211 }
1212
1213 /**
1214  * igbvf_configure_tx - Configure Transmit Unit after Reset
1215  * @adapter: board private structure
1216  *
1217  * Configure the Tx unit of the MAC after a reset.
1218  **/
1219 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1220 {
1221         struct e1000_hw *hw = &adapter->hw;
1222         struct igbvf_ring *tx_ring = adapter->tx_ring;
1223         u64 tdba;
1224         u32 txdctl, dca_txctrl;
1225
1226         /* disable transmits */
1227         txdctl = er32(TXDCTL(0));
1228         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1229         msleep(10);
1230
1231         /* Setup the HW Tx Head and Tail descriptor pointers */
1232         ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1233         tdba = tx_ring->dma;
1234         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1235         ew32(TDBAH(0), (tdba >> 32));
1236         ew32(TDH(0), 0);
1237         ew32(TDT(0), 0);
1238         tx_ring->head = E1000_TDH(0);
1239         tx_ring->tail = E1000_TDT(0);
1240
1241         /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1242          * MUST be delivered in order or it will completely screw up
1243          * our bookeeping.
1244          */
1245         dca_txctrl = er32(DCA_TXCTRL(0));
1246         dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1247         ew32(DCA_TXCTRL(0), dca_txctrl);
1248
1249         /* enable transmits */
1250         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1251         ew32(TXDCTL(0), txdctl);
1252
1253         /* Setup Transmit Descriptor Settings for eop descriptor */
1254         adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1255
1256         /* enable Report Status bit */
1257         adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1258 }
1259
1260 /**
1261  * igbvf_setup_srrctl - configure the receive control registers
1262  * @adapter: Board private structure
1263  **/
1264 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1265 {
1266         struct e1000_hw *hw = &adapter->hw;
1267         u32 srrctl = 0;
1268
1269         srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1270                     E1000_SRRCTL_BSIZEHDR_MASK |
1271                     E1000_SRRCTL_BSIZEPKT_MASK);
1272
1273         /* Enable queue drop to avoid head of line blocking */
1274         srrctl |= E1000_SRRCTL_DROP_EN;
1275
1276         /* Setup buffer sizes */
1277         srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1278                   E1000_SRRCTL_BSIZEPKT_SHIFT;
1279
1280         if (adapter->rx_buffer_len < 2048) {
1281                 adapter->rx_ps_hdr_size = 0;
1282                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1283         } else {
1284                 adapter->rx_ps_hdr_size = 128;
1285                 srrctl |= adapter->rx_ps_hdr_size <<
1286                           E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1287                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1288         }
1289
1290         ew32(SRRCTL(0), srrctl);
1291 }
1292
1293 /**
1294  * igbvf_configure_rx - Configure Receive Unit after Reset
1295  * @adapter: board private structure
1296  *
1297  * Configure the Rx unit of the MAC after a reset.
1298  **/
1299 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1300 {
1301         struct e1000_hw *hw = &adapter->hw;
1302         struct igbvf_ring *rx_ring = adapter->rx_ring;
1303         u64 rdba;
1304         u32 rdlen, rxdctl;
1305
1306         /* disable receives */
1307         rxdctl = er32(RXDCTL(0));
1308         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1309         msleep(10);
1310
1311         rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1312
1313         /*
1314          * Setup the HW Rx Head and Tail Descriptor Pointers and
1315          * the Base and Length of the Rx Descriptor Ring
1316          */
1317         rdba = rx_ring->dma;
1318         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1319         ew32(RDBAH(0), (rdba >> 32));
1320         ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1321         rx_ring->head = E1000_RDH(0);
1322         rx_ring->tail = E1000_RDT(0);
1323         ew32(RDH(0), 0);
1324         ew32(RDT(0), 0);
1325
1326         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1327         rxdctl &= 0xFFF00000;
1328         rxdctl |= IGBVF_RX_PTHRESH;
1329         rxdctl |= IGBVF_RX_HTHRESH << 8;
1330         rxdctl |= IGBVF_RX_WTHRESH << 16;
1331
1332         igbvf_set_rlpml(adapter);
1333
1334         /* enable receives */
1335         ew32(RXDCTL(0), rxdctl);
1336 }
1337
1338 /**
1339  * igbvf_set_multi - Multicast and Promiscuous mode set
1340  * @netdev: network interface device structure
1341  *
1342  * The set_multi entry point is called whenever the multicast address
1343  * list or the network interface flags are updated.  This routine is
1344  * responsible for configuring the hardware for proper multicast,
1345  * promiscuous mode, and all-multi behavior.
1346  **/
1347 static void igbvf_set_multi(struct net_device *netdev)
1348 {
1349         struct igbvf_adapter *adapter = netdev_priv(netdev);
1350         struct e1000_hw *hw = &adapter->hw;
1351         struct netdev_hw_addr *ha;
1352         u8  *mta_list = NULL;
1353         int i;
1354
1355         if (!netdev_mc_empty(netdev)) {
1356                 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1357                 if (!mta_list) {
1358                         dev_err(&adapter->pdev->dev,
1359                                 "failed to allocate multicast filter list\n");
1360                         return;
1361                 }
1362         }
1363
1364         /* prepare a packed array of only addresses. */
1365         i = 0;
1366         netdev_for_each_mc_addr(ha, netdev)
1367                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1368
1369         hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1370         kfree(mta_list);
1371 }
1372
1373 /**
1374  * igbvf_configure - configure the hardware for Rx and Tx
1375  * @adapter: private board structure
1376  **/
1377 static void igbvf_configure(struct igbvf_adapter *adapter)
1378 {
1379         igbvf_set_multi(adapter->netdev);
1380
1381         igbvf_restore_vlan(adapter);
1382
1383         igbvf_configure_tx(adapter);
1384         igbvf_setup_srrctl(adapter);
1385         igbvf_configure_rx(adapter);
1386         igbvf_alloc_rx_buffers(adapter->rx_ring,
1387                                igbvf_desc_unused(adapter->rx_ring));
1388 }
1389
1390 /* igbvf_reset - bring the hardware into a known good state
1391  *
1392  * This function boots the hardware and enables some settings that
1393  * require a configuration cycle of the hardware - those cannot be
1394  * set/changed during runtime. After reset the device needs to be
1395  * properly configured for Rx, Tx etc.
1396  */
1397 static void igbvf_reset(struct igbvf_adapter *adapter)
1398 {
1399         struct e1000_mac_info *mac = &adapter->hw.mac;
1400         struct net_device *netdev = adapter->netdev;
1401         struct e1000_hw *hw = &adapter->hw;
1402
1403         /* Allow time for pending master requests to run */
1404         if (mac->ops.reset_hw(hw))
1405                 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1406
1407         mac->ops.init_hw(hw);
1408
1409         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1410                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1411                        netdev->addr_len);
1412                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1413                        netdev->addr_len);
1414         }
1415
1416         adapter->last_reset = jiffies;
1417 }
1418
1419 int igbvf_up(struct igbvf_adapter *adapter)
1420 {
1421         struct e1000_hw *hw = &adapter->hw;
1422
1423         /* hardware has been reset, we need to reload some things */
1424         igbvf_configure(adapter);
1425
1426         clear_bit(__IGBVF_DOWN, &adapter->state);
1427
1428         napi_enable(&adapter->rx_ring->napi);
1429         if (adapter->msix_entries)
1430                 igbvf_configure_msix(adapter);
1431
1432         /* Clear any pending interrupts. */
1433         er32(EICR);
1434         igbvf_irq_enable(adapter);
1435
1436         /* start the watchdog */
1437         hw->mac.get_link_status = 1;
1438         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1439
1440
1441         return 0;
1442 }
1443
1444 void igbvf_down(struct igbvf_adapter *adapter)
1445 {
1446         struct net_device *netdev = adapter->netdev;
1447         struct e1000_hw *hw = &adapter->hw;
1448         u32 rxdctl, txdctl;
1449
1450         /*
1451          * signal that we're down so the interrupt handler does not
1452          * reschedule our watchdog timer
1453          */
1454         set_bit(__IGBVF_DOWN, &adapter->state);
1455
1456         /* disable receives in the hardware */
1457         rxdctl = er32(RXDCTL(0));
1458         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1459
1460         netif_stop_queue(netdev);
1461
1462         /* disable transmits in the hardware */
1463         txdctl = er32(TXDCTL(0));
1464         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1465
1466         /* flush both disables and wait for them to finish */
1467         e1e_flush();
1468         msleep(10);
1469
1470         napi_disable(&adapter->rx_ring->napi);
1471
1472         igbvf_irq_disable(adapter);
1473
1474         del_timer_sync(&adapter->watchdog_timer);
1475
1476         netif_carrier_off(netdev);
1477
1478         /* record the stats before reset*/
1479         igbvf_update_stats(adapter);
1480
1481         adapter->link_speed = 0;
1482         adapter->link_duplex = 0;
1483
1484         igbvf_reset(adapter);
1485         igbvf_clean_tx_ring(adapter->tx_ring);
1486         igbvf_clean_rx_ring(adapter->rx_ring);
1487 }
1488
1489 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1490 {
1491         might_sleep();
1492         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1493                 msleep(1);
1494         igbvf_down(adapter);
1495         igbvf_up(adapter);
1496         clear_bit(__IGBVF_RESETTING, &adapter->state);
1497 }
1498
1499 /**
1500  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1501  * @adapter: board private structure to initialize
1502  *
1503  * igbvf_sw_init initializes the Adapter private data structure.
1504  * Fields are initialized based on PCI device information and
1505  * OS network device settings (MTU size).
1506  **/
1507 static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1508 {
1509         struct net_device *netdev = adapter->netdev;
1510         s32 rc;
1511
1512         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1513         adapter->rx_ps_hdr_size = 0;
1514         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1515         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1516
1517         adapter->tx_int_delay = 8;
1518         adapter->tx_abs_int_delay = 32;
1519         adapter->rx_int_delay = 0;
1520         adapter->rx_abs_int_delay = 8;
1521         adapter->itr_setting = 3;
1522         adapter->itr = 20000;
1523
1524         /* Set various function pointers */
1525         adapter->ei->init_ops(&adapter->hw);
1526
1527         rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1528         if (rc)
1529                 return rc;
1530
1531         rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1532         if (rc)
1533                 return rc;
1534
1535         igbvf_set_interrupt_capability(adapter);
1536
1537         if (igbvf_alloc_queues(adapter))
1538                 return -ENOMEM;
1539
1540         spin_lock_init(&adapter->tx_queue_lock);
1541
1542         /* Explicitly disable IRQ since the NIC can be in any state. */
1543         igbvf_irq_disable(adapter);
1544
1545         spin_lock_init(&adapter->stats_lock);
1546
1547         set_bit(__IGBVF_DOWN, &adapter->state);
1548         return 0;
1549 }
1550
1551 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1552 {
1553         struct e1000_hw *hw = &adapter->hw;
1554
1555         adapter->stats.last_gprc = er32(VFGPRC);
1556         adapter->stats.last_gorc = er32(VFGORC);
1557         adapter->stats.last_gptc = er32(VFGPTC);
1558         adapter->stats.last_gotc = er32(VFGOTC);
1559         adapter->stats.last_mprc = er32(VFMPRC);
1560         adapter->stats.last_gotlbc = er32(VFGOTLBC);
1561         adapter->stats.last_gptlbc = er32(VFGPTLBC);
1562         adapter->stats.last_gorlbc = er32(VFGORLBC);
1563         adapter->stats.last_gprlbc = er32(VFGPRLBC);
1564
1565         adapter->stats.base_gprc = er32(VFGPRC);
1566         adapter->stats.base_gorc = er32(VFGORC);
1567         adapter->stats.base_gptc = er32(VFGPTC);
1568         adapter->stats.base_gotc = er32(VFGOTC);
1569         adapter->stats.base_mprc = er32(VFMPRC);
1570         adapter->stats.base_gotlbc = er32(VFGOTLBC);
1571         adapter->stats.base_gptlbc = er32(VFGPTLBC);
1572         adapter->stats.base_gorlbc = er32(VFGORLBC);
1573         adapter->stats.base_gprlbc = er32(VFGPRLBC);
1574 }
1575
1576 /**
1577  * igbvf_open - Called when a network interface is made active
1578  * @netdev: network interface device structure
1579  *
1580  * Returns 0 on success, negative value on failure
1581  *
1582  * The open entry point is called when a network interface is made
1583  * active by the system (IFF_UP).  At this point all resources needed
1584  * for transmit and receive operations are allocated, the interrupt
1585  * handler is registered with the OS, the watchdog timer is started,
1586  * and the stack is notified that the interface is ready.
1587  **/
1588 static int igbvf_open(struct net_device *netdev)
1589 {
1590         struct igbvf_adapter *adapter = netdev_priv(netdev);
1591         struct e1000_hw *hw = &adapter->hw;
1592         int err;
1593
1594         /* disallow open during test */
1595         if (test_bit(__IGBVF_TESTING, &adapter->state))
1596                 return -EBUSY;
1597
1598         /* allocate transmit descriptors */
1599         err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1600         if (err)
1601                 goto err_setup_tx;
1602
1603         /* allocate receive descriptors */
1604         err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1605         if (err)
1606                 goto err_setup_rx;
1607
1608         /*
1609          * before we allocate an interrupt, we must be ready to handle it.
1610          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1611          * as soon as we call pci_request_irq, so we have to setup our
1612          * clean_rx handler before we do so.
1613          */
1614         igbvf_configure(adapter);
1615
1616         err = igbvf_request_irq(adapter);
1617         if (err)
1618                 goto err_req_irq;
1619
1620         /* From here on the code is the same as igbvf_up() */
1621         clear_bit(__IGBVF_DOWN, &adapter->state);
1622
1623         napi_enable(&adapter->rx_ring->napi);
1624
1625         /* clear any pending interrupts */
1626         er32(EICR);
1627
1628         igbvf_irq_enable(adapter);
1629
1630         /* start the watchdog */
1631         hw->mac.get_link_status = 1;
1632         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1633
1634         return 0;
1635
1636 err_req_irq:
1637         igbvf_free_rx_resources(adapter->rx_ring);
1638 err_setup_rx:
1639         igbvf_free_tx_resources(adapter->tx_ring);
1640 err_setup_tx:
1641         igbvf_reset(adapter);
1642
1643         return err;
1644 }
1645
1646 /**
1647  * igbvf_close - Disables a network interface
1648  * @netdev: network interface device structure
1649  *
1650  * Returns 0, this is not allowed to fail
1651  *
1652  * The close entry point is called when an interface is de-activated
1653  * by the OS.  The hardware is still under the drivers control, but
1654  * needs to be disabled.  A global MAC reset is issued to stop the
1655  * hardware, and all transmit and receive resources are freed.
1656  **/
1657 static int igbvf_close(struct net_device *netdev)
1658 {
1659         struct igbvf_adapter *adapter = netdev_priv(netdev);
1660
1661         WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1662         igbvf_down(adapter);
1663
1664         igbvf_free_irq(adapter);
1665
1666         igbvf_free_tx_resources(adapter->tx_ring);
1667         igbvf_free_rx_resources(adapter->rx_ring);
1668
1669         return 0;
1670 }
1671 /**
1672  * igbvf_set_mac - Change the Ethernet Address of the NIC
1673  * @netdev: network interface device structure
1674  * @p: pointer to an address structure
1675  *
1676  * Returns 0 on success, negative on failure
1677  **/
1678 static int igbvf_set_mac(struct net_device *netdev, void *p)
1679 {
1680         struct igbvf_adapter *adapter = netdev_priv(netdev);
1681         struct e1000_hw *hw = &adapter->hw;
1682         struct sockaddr *addr = p;
1683
1684         if (!is_valid_ether_addr(addr->sa_data))
1685                 return -EADDRNOTAVAIL;
1686
1687         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1688
1689         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1690
1691         if (memcmp(addr->sa_data, hw->mac.addr, 6))
1692                 return -EADDRNOTAVAIL;
1693
1694         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1695
1696         return 0;
1697 }
1698
1699 #define UPDATE_VF_COUNTER(reg, name)                                    \
1700         {                                                               \
1701                 u32 current_counter = er32(reg);                        \
1702                 if (current_counter < adapter->stats.last_##name)       \
1703                         adapter->stats.name += 0x100000000LL;           \
1704                 adapter->stats.last_##name = current_counter;           \
1705                 adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
1706                 adapter->stats.name |= current_counter;                 \
1707         }
1708
1709 /**
1710  * igbvf_update_stats - Update the board statistics counters
1711  * @adapter: board private structure
1712 **/
1713 void igbvf_update_stats(struct igbvf_adapter *adapter)
1714 {
1715         struct e1000_hw *hw = &adapter->hw;
1716         struct pci_dev *pdev = adapter->pdev;
1717
1718         /*
1719          * Prevent stats update while adapter is being reset, link is down
1720          * or if the pci connection is down.
1721          */
1722         if (adapter->link_speed == 0)
1723                 return;
1724
1725         if (test_bit(__IGBVF_RESETTING, &adapter->state))
1726                 return;
1727
1728         if (pci_channel_offline(pdev))
1729                 return;
1730
1731         UPDATE_VF_COUNTER(VFGPRC, gprc);
1732         UPDATE_VF_COUNTER(VFGORC, gorc);
1733         UPDATE_VF_COUNTER(VFGPTC, gptc);
1734         UPDATE_VF_COUNTER(VFGOTC, gotc);
1735         UPDATE_VF_COUNTER(VFMPRC, mprc);
1736         UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1737         UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1738         UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1739         UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1740
1741         /* Fill out the OS statistics structure */
1742         adapter->net_stats.multicast = adapter->stats.mprc;
1743 }
1744
1745 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1746 {
1747         dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1748                  adapter->link_speed,
1749                  ((adapter->link_duplex == FULL_DUPLEX) ?
1750                   "Full Duplex" : "Half Duplex"));
1751 }
1752
1753 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1754 {
1755         struct e1000_hw *hw = &adapter->hw;
1756         s32 ret_val = E1000_SUCCESS;
1757         bool link_active;
1758
1759         /* If interface is down, stay link down */
1760         if (test_bit(__IGBVF_DOWN, &adapter->state))
1761                 return false;
1762
1763         ret_val = hw->mac.ops.check_for_link(hw);
1764         link_active = !hw->mac.get_link_status;
1765
1766         /* if check for link returns error we will need to reset */
1767         if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1768                 schedule_work(&adapter->reset_task);
1769
1770         return link_active;
1771 }
1772
1773 /**
1774  * igbvf_watchdog - Timer Call-back
1775  * @data: pointer to adapter cast into an unsigned long
1776  **/
1777 static void igbvf_watchdog(unsigned long data)
1778 {
1779         struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1780
1781         /* Do the rest outside of interrupt context */
1782         schedule_work(&adapter->watchdog_task);
1783 }
1784
1785 static void igbvf_watchdog_task(struct work_struct *work)
1786 {
1787         struct igbvf_adapter *adapter = container_of(work,
1788                                                      struct igbvf_adapter,
1789                                                      watchdog_task);
1790         struct net_device *netdev = adapter->netdev;
1791         struct e1000_mac_info *mac = &adapter->hw.mac;
1792         struct igbvf_ring *tx_ring = adapter->tx_ring;
1793         struct e1000_hw *hw = &adapter->hw;
1794         u32 link;
1795         int tx_pending = 0;
1796
1797         link = igbvf_has_link(adapter);
1798
1799         if (link) {
1800                 if (!netif_carrier_ok(netdev)) {
1801                         mac->ops.get_link_up_info(&adapter->hw,
1802                                                   &adapter->link_speed,
1803                                                   &adapter->link_duplex);
1804                         igbvf_print_link_info(adapter);
1805
1806                         netif_carrier_on(netdev);
1807                         netif_wake_queue(netdev);
1808                 }
1809         } else {
1810                 if (netif_carrier_ok(netdev)) {
1811                         adapter->link_speed = 0;
1812                         adapter->link_duplex = 0;
1813                         dev_info(&adapter->pdev->dev, "Link is Down\n");
1814                         netif_carrier_off(netdev);
1815                         netif_stop_queue(netdev);
1816                 }
1817         }
1818
1819         if (netif_carrier_ok(netdev)) {
1820                 igbvf_update_stats(adapter);
1821         } else {
1822                 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1823                               tx_ring->count);
1824                 if (tx_pending) {
1825                         /*
1826                          * We've lost link, so the controller stops DMA,
1827                          * but we've got queued Tx work that's never going
1828                          * to get done, so reset controller to flush Tx.
1829                          * (Do the reset outside of interrupt context).
1830                          */
1831                         adapter->tx_timeout_count++;
1832                         schedule_work(&adapter->reset_task);
1833                 }
1834         }
1835
1836         /* Cause software interrupt to ensure Rx ring is cleaned */
1837         ew32(EICS, adapter->rx_ring->eims_value);
1838
1839         /* Reset the timer */
1840         if (!test_bit(__IGBVF_DOWN, &adapter->state))
1841                 mod_timer(&adapter->watchdog_timer,
1842                           round_jiffies(jiffies + (2 * HZ)));
1843 }
1844
1845 #define IGBVF_TX_FLAGS_CSUM             0x00000001
1846 #define IGBVF_TX_FLAGS_VLAN             0x00000002
1847 #define IGBVF_TX_FLAGS_TSO              0x00000004
1848 #define IGBVF_TX_FLAGS_IPV4             0x00000008
1849 #define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1850 #define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1851
1852 static int igbvf_tso(struct igbvf_adapter *adapter,
1853                      struct igbvf_ring *tx_ring,
1854                      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1855 {
1856         struct e1000_adv_tx_context_desc *context_desc;
1857         unsigned int i;
1858         int err;
1859         struct igbvf_buffer *buffer_info;
1860         u32 info = 0, tu_cmd = 0;
1861         u32 mss_l4len_idx, l4len;
1862         *hdr_len = 0;
1863
1864         if (skb_header_cloned(skb)) {
1865                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1866                 if (err) {
1867                         dev_err(&adapter->pdev->dev,
1868                                 "igbvf_tso returning an error\n");
1869                         return err;
1870                 }
1871         }
1872
1873         l4len = tcp_hdrlen(skb);
1874         *hdr_len += l4len;
1875
1876         if (skb->protocol == htons(ETH_P_IP)) {
1877                 struct iphdr *iph = ip_hdr(skb);
1878                 iph->tot_len = 0;
1879                 iph->check = 0;
1880                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1881                                                          iph->daddr, 0,
1882                                                          IPPROTO_TCP,
1883                                                          0);
1884         } else if (skb_is_gso_v6(skb)) {
1885                 ipv6_hdr(skb)->payload_len = 0;
1886                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1887                                                        &ipv6_hdr(skb)->daddr,
1888                                                        0, IPPROTO_TCP, 0);
1889         }
1890
1891         i = tx_ring->next_to_use;
1892
1893         buffer_info = &tx_ring->buffer_info[i];
1894         context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1895         /* VLAN MACLEN IPLEN */
1896         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1897                 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1898         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1899         *hdr_len += skb_network_offset(skb);
1900         info |= (skb_transport_header(skb) - skb_network_header(skb));
1901         *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1902         context_desc->vlan_macip_lens = cpu_to_le32(info);
1903
1904         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1905         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1906
1907         if (skb->protocol == htons(ETH_P_IP))
1908                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1909         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1910
1911         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1912
1913         /* MSS L4LEN IDX */
1914         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1915         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1916
1917         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1918         context_desc->seqnum_seed = 0;
1919
1920         buffer_info->time_stamp = jiffies;
1921         buffer_info->next_to_watch = i;
1922         buffer_info->dma = 0;
1923         i++;
1924         if (i == tx_ring->count)
1925                 i = 0;
1926
1927         tx_ring->next_to_use = i;
1928
1929         return true;
1930 }
1931
1932 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1933                                  struct igbvf_ring *tx_ring,
1934                                  struct sk_buff *skb, u32 tx_flags)
1935 {
1936         struct e1000_adv_tx_context_desc *context_desc;
1937         unsigned int i;
1938         struct igbvf_buffer *buffer_info;
1939         u32 info = 0, tu_cmd = 0;
1940
1941         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1942             (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1943                 i = tx_ring->next_to_use;
1944                 buffer_info = &tx_ring->buffer_info[i];
1945                 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1946
1947                 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1948                         info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1949
1950                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1951                 if (skb->ip_summed == CHECKSUM_PARTIAL)
1952                         info |= (skb_transport_header(skb) -
1953                                  skb_network_header(skb));
1954
1955
1956                 context_desc->vlan_macip_lens = cpu_to_le32(info);
1957
1958                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1959
1960                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1961                         switch (skb->protocol) {
1962                         case __constant_htons(ETH_P_IP):
1963                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1964                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
1965                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1966                                 break;
1967                         case __constant_htons(ETH_P_IPV6):
1968                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
1969                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1970                                 break;
1971                         default:
1972                                 break;
1973                         }
1974                 }
1975
1976                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1977                 context_desc->seqnum_seed = 0;
1978                 context_desc->mss_l4len_idx = 0;
1979
1980                 buffer_info->time_stamp = jiffies;
1981                 buffer_info->next_to_watch = i;
1982                 buffer_info->dma = 0;
1983                 i++;
1984                 if (i == tx_ring->count)
1985                         i = 0;
1986                 tx_ring->next_to_use = i;
1987
1988                 return true;
1989         }
1990
1991         return false;
1992 }
1993
1994 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
1995 {
1996         struct igbvf_adapter *adapter = netdev_priv(netdev);
1997
1998         /* there is enough descriptors then we don't need to worry  */
1999         if (igbvf_desc_unused(adapter->tx_ring) >= size)
2000                 return 0;
2001
2002         netif_stop_queue(netdev);
2003
2004         smp_mb();
2005
2006         /* We need to check again just in case room has been made available */
2007         if (igbvf_desc_unused(adapter->tx_ring) < size)
2008                 return -EBUSY;
2009
2010         netif_wake_queue(netdev);
2011
2012         ++adapter->restart_queue;
2013         return 0;
2014 }
2015
2016 #define IGBVF_MAX_TXD_PWR       16
2017 #define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2018
2019 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2020                                    struct igbvf_ring *tx_ring,
2021                                    struct sk_buff *skb,
2022                                    unsigned int first)
2023 {
2024         struct igbvf_buffer *buffer_info;
2025         struct pci_dev *pdev = adapter->pdev;
2026         unsigned int len = skb_headlen(skb);
2027         unsigned int count = 0, i;
2028         unsigned int f;
2029
2030         i = tx_ring->next_to_use;
2031
2032         buffer_info = &tx_ring->buffer_info[i];
2033         BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2034         buffer_info->length = len;
2035         /* set time_stamp *before* dma to help avoid a possible race */
2036         buffer_info->time_stamp = jiffies;
2037         buffer_info->next_to_watch = i;
2038         buffer_info->mapped_as_page = false;
2039         buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2040                                           DMA_TO_DEVICE);
2041         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2042                 goto dma_error;
2043
2044
2045         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2046                 struct skb_frag_struct *frag;
2047
2048                 count++;
2049                 i++;
2050                 if (i == tx_ring->count)
2051                         i = 0;
2052
2053                 frag = &skb_shinfo(skb)->frags[f];
2054                 len = frag->size;
2055
2056                 buffer_info = &tx_ring->buffer_info[i];
2057                 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2058                 buffer_info->length = len;
2059                 buffer_info->time_stamp = jiffies;
2060                 buffer_info->next_to_watch = i;
2061                 buffer_info->mapped_as_page = true;
2062                 buffer_info->dma = dma_map_page(&pdev->dev,
2063                                                 frag->page,
2064                                                 frag->page_offset,
2065                                                 len,
2066                                                 DMA_TO_DEVICE);
2067                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2068                         goto dma_error;
2069         }
2070
2071         tx_ring->buffer_info[i].skb = skb;
2072         tx_ring->buffer_info[first].next_to_watch = i;
2073
2074         return ++count;
2075
2076 dma_error:
2077         dev_err(&pdev->dev, "TX DMA map failed\n");
2078
2079         /* clear timestamp and dma mappings for failed buffer_info mapping */
2080         buffer_info->dma = 0;
2081         buffer_info->time_stamp = 0;
2082         buffer_info->length = 0;
2083         buffer_info->next_to_watch = 0;
2084         buffer_info->mapped_as_page = false;
2085         if (count)
2086                 count--;
2087
2088         /* clear timestamp and dma mappings for remaining portion of packet */
2089         while (count--) {
2090                 if (i==0)
2091                         i += tx_ring->count;
2092                 i--;
2093                 buffer_info = &tx_ring->buffer_info[i];
2094                 igbvf_put_txbuf(adapter, buffer_info);
2095         }
2096
2097         return 0;
2098 }
2099
2100 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2101                                       struct igbvf_ring *tx_ring,
2102                                       int tx_flags, int count, u32 paylen,
2103                                       u8 hdr_len)
2104 {
2105         union e1000_adv_tx_desc *tx_desc = NULL;
2106         struct igbvf_buffer *buffer_info;
2107         u32 olinfo_status = 0, cmd_type_len;
2108         unsigned int i;
2109
2110         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2111                         E1000_ADVTXD_DCMD_DEXT);
2112
2113         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2114                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2115
2116         if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2117                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2118
2119                 /* insert tcp checksum */
2120                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2121
2122                 /* insert ip checksum */
2123                 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2124                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2125
2126         } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2127                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2128         }
2129
2130         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2131
2132         i = tx_ring->next_to_use;
2133         while (count--) {
2134                 buffer_info = &tx_ring->buffer_info[i];
2135                 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2136                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2137                 tx_desc->read.cmd_type_len =
2138                          cpu_to_le32(cmd_type_len | buffer_info->length);
2139                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2140                 i++;
2141                 if (i == tx_ring->count)
2142                         i = 0;
2143         }
2144
2145         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2146         /* Force memory writes to complete before letting h/w
2147          * know there are new descriptors to fetch.  (Only
2148          * applicable for weak-ordered memory model archs,
2149          * such as IA-64). */
2150         wmb();
2151
2152         tx_ring->next_to_use = i;
2153         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2154         /* we need this if more than one processor can write to our tail
2155          * at a time, it syncronizes IO on IA64/Altix systems */
2156         mmiowb();
2157 }
2158
2159 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2160                                              struct net_device *netdev,
2161                                              struct igbvf_ring *tx_ring)
2162 {
2163         struct igbvf_adapter *adapter = netdev_priv(netdev);
2164         unsigned int first, tx_flags = 0;
2165         u8 hdr_len = 0;
2166         int count = 0;
2167         int tso = 0;
2168
2169         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2170                 dev_kfree_skb_any(skb);
2171                 return NETDEV_TX_OK;
2172         }
2173
2174         if (skb->len <= 0) {
2175                 dev_kfree_skb_any(skb);
2176                 return NETDEV_TX_OK;
2177         }
2178
2179         /*
2180          * need: count + 4 desc gap to keep tail from touching
2181          *       + 2 desc gap to keep tail from touching head,
2182          *       + 1 desc for skb->data,
2183          *       + 1 desc for context descriptor,
2184          * head, otherwise try next time
2185          */
2186         if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2187                 /* this is a hard error */
2188                 return NETDEV_TX_BUSY;
2189         }
2190
2191         if (vlan_tx_tag_present(skb)) {
2192                 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2193                 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2194         }
2195
2196         if (skb->protocol == htons(ETH_P_IP))
2197                 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2198
2199         first = tx_ring->next_to_use;
2200
2201         tso = skb_is_gso(skb) ?
2202                 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2203         if (unlikely(tso < 0)) {
2204                 dev_kfree_skb_any(skb);
2205                 return NETDEV_TX_OK;
2206         }
2207
2208         if (tso)
2209                 tx_flags |= IGBVF_TX_FLAGS_TSO;
2210         else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2211                  (skb->ip_summed == CHECKSUM_PARTIAL))
2212                 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2213
2214         /*
2215          * count reflects descriptors mapped, if 0 then mapping error
2216          * has occurred and we need to rewind the descriptor queue
2217          */
2218         count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2219
2220         if (count) {
2221                 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2222                                    skb->len, hdr_len);
2223                 /* Make sure there is space in the ring for the next send. */
2224                 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2225         } else {
2226                 dev_kfree_skb_any(skb);
2227                 tx_ring->buffer_info[first].time_stamp = 0;
2228                 tx_ring->next_to_use = first;
2229         }
2230
2231         return NETDEV_TX_OK;
2232 }
2233
2234 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2235                                     struct net_device *netdev)
2236 {
2237         struct igbvf_adapter *adapter = netdev_priv(netdev);
2238         struct igbvf_ring *tx_ring;
2239
2240         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2241                 dev_kfree_skb_any(skb);
2242                 return NETDEV_TX_OK;
2243         }
2244
2245         tx_ring = &adapter->tx_ring[0];
2246
2247         return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2248 }
2249
2250 /**
2251  * igbvf_tx_timeout - Respond to a Tx Hang
2252  * @netdev: network interface device structure
2253  **/
2254 static void igbvf_tx_timeout(struct net_device *netdev)
2255 {
2256         struct igbvf_adapter *adapter = netdev_priv(netdev);
2257
2258         /* Do the reset outside of interrupt context */
2259         adapter->tx_timeout_count++;
2260         schedule_work(&adapter->reset_task);
2261 }
2262
2263 static void igbvf_reset_task(struct work_struct *work)
2264 {
2265         struct igbvf_adapter *adapter;
2266         adapter = container_of(work, struct igbvf_adapter, reset_task);
2267
2268         igbvf_reinit_locked(adapter);
2269 }
2270
2271 /**
2272  * igbvf_get_stats - Get System Network Statistics
2273  * @netdev: network interface device structure
2274  *
2275  * Returns the address of the device statistics structure.
2276  * The statistics are actually updated from the timer callback.
2277  **/
2278 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2279 {
2280         struct igbvf_adapter *adapter = netdev_priv(netdev);
2281
2282         /* only return the current stats */
2283         return &adapter->net_stats;
2284 }
2285
2286 /**
2287  * igbvf_change_mtu - Change the Maximum Transfer Unit
2288  * @netdev: network interface device structure
2289  * @new_mtu: new value for maximum frame size
2290  *
2291  * Returns 0 on success, negative on failure
2292  **/
2293 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2294 {
2295         struct igbvf_adapter *adapter = netdev_priv(netdev);
2296         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2297
2298         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2299                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2300                 return -EINVAL;
2301         }
2302
2303 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2304         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2305                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2306                 return -EINVAL;
2307         }
2308
2309         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2310                 msleep(1);
2311         /* igbvf_down has a dependency on max_frame_size */
2312         adapter->max_frame_size = max_frame;
2313         if (netif_running(netdev))
2314                 igbvf_down(adapter);
2315
2316         /*
2317          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2318          * means we reserve 2 more, this pushes us to allocate from the next
2319          * larger slab size.
2320          * i.e. RXBUFFER_2048 --> size-4096 slab
2321          * However with the new *_jumbo_rx* routines, jumbo receives will use
2322          * fragmented skbs
2323          */
2324
2325         if (max_frame <= 1024)
2326                 adapter->rx_buffer_len = 1024;
2327         else if (max_frame <= 2048)
2328                 adapter->rx_buffer_len = 2048;
2329         else
2330 #if (PAGE_SIZE / 2) > 16384
2331                 adapter->rx_buffer_len = 16384;
2332 #else
2333                 adapter->rx_buffer_len = PAGE_SIZE / 2;
2334 #endif
2335
2336
2337         /* adjust allocation if LPE protects us, and we aren't using SBP */
2338         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2339              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2340                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2341                                          ETH_FCS_LEN;
2342
2343         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2344                  netdev->mtu, new_mtu);
2345         netdev->mtu = new_mtu;
2346
2347         if (netif_running(netdev))
2348                 igbvf_up(adapter);
2349         else
2350                 igbvf_reset(adapter);
2351
2352         clear_bit(__IGBVF_RESETTING, &adapter->state);
2353
2354         return 0;
2355 }
2356
2357 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2358 {
2359         switch (cmd) {
2360         default:
2361                 return -EOPNOTSUPP;
2362         }
2363 }
2364
2365 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2366 {
2367         struct net_device *netdev = pci_get_drvdata(pdev);
2368         struct igbvf_adapter *adapter = netdev_priv(netdev);
2369 #ifdef CONFIG_PM
2370         int retval = 0;
2371 #endif
2372
2373         netif_device_detach(netdev);
2374
2375         if (netif_running(netdev)) {
2376                 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2377                 igbvf_down(adapter);
2378                 igbvf_free_irq(adapter);
2379         }
2380
2381 #ifdef CONFIG_PM
2382         retval = pci_save_state(pdev);
2383         if (retval)
2384                 return retval;
2385 #endif
2386
2387         pci_disable_device(pdev);
2388
2389         return 0;
2390 }
2391
2392 #ifdef CONFIG_PM
2393 static int igbvf_resume(struct pci_dev *pdev)
2394 {
2395         struct net_device *netdev = pci_get_drvdata(pdev);
2396         struct igbvf_adapter *adapter = netdev_priv(netdev);
2397         u32 err;
2398
2399         pci_restore_state(pdev);
2400         err = pci_enable_device_mem(pdev);
2401         if (err) {
2402                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2403                 return err;
2404         }
2405
2406         pci_set_master(pdev);
2407
2408         if (netif_running(netdev)) {
2409                 err = igbvf_request_irq(adapter);
2410                 if (err)
2411                         return err;
2412         }
2413
2414         igbvf_reset(adapter);
2415
2416         if (netif_running(netdev))
2417                 igbvf_up(adapter);
2418
2419         netif_device_attach(netdev);
2420
2421         return 0;
2422 }
2423 #endif
2424
2425 static void igbvf_shutdown(struct pci_dev *pdev)
2426 {
2427         igbvf_suspend(pdev, PMSG_SUSPEND);
2428 }
2429
2430 #ifdef CONFIG_NET_POLL_CONTROLLER
2431 /*
2432  * Polling 'interrupt' - used by things like netconsole to send skbs
2433  * without having to re-enable interrupts. It's not called while
2434  * the interrupt routine is executing.
2435  */
2436 static void igbvf_netpoll(struct net_device *netdev)
2437 {
2438         struct igbvf_adapter *adapter = netdev_priv(netdev);
2439
2440         disable_irq(adapter->pdev->irq);
2441
2442         igbvf_clean_tx_irq(adapter->tx_ring);
2443
2444         enable_irq(adapter->pdev->irq);
2445 }
2446 #endif
2447
2448 /**
2449  * igbvf_io_error_detected - called when PCI error is detected
2450  * @pdev: Pointer to PCI device
2451  * @state: The current pci connection state
2452  *
2453  * This function is called after a PCI bus error affecting
2454  * this device has been detected.
2455  */
2456 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2457                                                 pci_channel_state_t state)
2458 {
2459         struct net_device *netdev = pci_get_drvdata(pdev);
2460         struct igbvf_adapter *adapter = netdev_priv(netdev);
2461
2462         netif_device_detach(netdev);
2463
2464         if (state == pci_channel_io_perm_failure)
2465                 return PCI_ERS_RESULT_DISCONNECT;
2466
2467         if (netif_running(netdev))
2468                 igbvf_down(adapter);
2469         pci_disable_device(pdev);
2470
2471         /* Request a slot slot reset. */
2472         return PCI_ERS_RESULT_NEED_RESET;
2473 }
2474
2475 /**
2476  * igbvf_io_slot_reset - called after the pci bus has been reset.
2477  * @pdev: Pointer to PCI device
2478  *
2479  * Restart the card from scratch, as if from a cold-boot. Implementation
2480  * resembles the first-half of the igbvf_resume routine.
2481  */
2482 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2483 {
2484         struct net_device *netdev = pci_get_drvdata(pdev);
2485         struct igbvf_adapter *adapter = netdev_priv(netdev);
2486
2487         if (pci_enable_device_mem(pdev)) {
2488                 dev_err(&pdev->dev,
2489                         "Cannot re-enable PCI device after reset.\n");
2490                 return PCI_ERS_RESULT_DISCONNECT;
2491         }
2492         pci_set_master(pdev);
2493
2494         igbvf_reset(adapter);
2495
2496         return PCI_ERS_RESULT_RECOVERED;
2497 }
2498
2499 /**
2500  * igbvf_io_resume - called when traffic can start flowing again.
2501  * @pdev: Pointer to PCI device
2502  *
2503  * This callback is called when the error recovery driver tells us that
2504  * its OK to resume normal operation. Implementation resembles the
2505  * second-half of the igbvf_resume routine.
2506  */
2507 static void igbvf_io_resume(struct pci_dev *pdev)
2508 {
2509         struct net_device *netdev = pci_get_drvdata(pdev);
2510         struct igbvf_adapter *adapter = netdev_priv(netdev);
2511
2512         if (netif_running(netdev)) {
2513                 if (igbvf_up(adapter)) {
2514                         dev_err(&pdev->dev,
2515                                 "can't bring device back up after reset\n");
2516                         return;
2517                 }
2518         }
2519
2520         netif_device_attach(netdev);
2521 }
2522
2523 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2524 {
2525         struct e1000_hw *hw = &adapter->hw;
2526         struct net_device *netdev = adapter->netdev;
2527         struct pci_dev *pdev = adapter->pdev;
2528
2529         dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2530         dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2531         dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
2532 }
2533
2534 static const struct net_device_ops igbvf_netdev_ops = {
2535         .ndo_open                       = igbvf_open,
2536         .ndo_stop                       = igbvf_close,
2537         .ndo_start_xmit                 = igbvf_xmit_frame,
2538         .ndo_get_stats                  = igbvf_get_stats,
2539         .ndo_set_multicast_list         = igbvf_set_multi,
2540         .ndo_set_mac_address            = igbvf_set_mac,
2541         .ndo_change_mtu                 = igbvf_change_mtu,
2542         .ndo_do_ioctl                   = igbvf_ioctl,
2543         .ndo_tx_timeout                 = igbvf_tx_timeout,
2544         .ndo_vlan_rx_add_vid            = igbvf_vlan_rx_add_vid,
2545         .ndo_vlan_rx_kill_vid           = igbvf_vlan_rx_kill_vid,
2546 #ifdef CONFIG_NET_POLL_CONTROLLER
2547         .ndo_poll_controller            = igbvf_netpoll,
2548 #endif
2549 };
2550
2551 /**
2552  * igbvf_probe - Device Initialization Routine
2553  * @pdev: PCI device information struct
2554  * @ent: entry in igbvf_pci_tbl
2555  *
2556  * Returns 0 on success, negative on failure
2557  *
2558  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2559  * The OS initialization, configuring of the adapter private structure,
2560  * and a hardware reset occur.
2561  **/
2562 static int __devinit igbvf_probe(struct pci_dev *pdev,
2563                                  const struct pci_device_id *ent)
2564 {
2565         struct net_device *netdev;
2566         struct igbvf_adapter *adapter;
2567         struct e1000_hw *hw;
2568         const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2569
2570         static int cards_found;
2571         int err, pci_using_dac;
2572
2573         err = pci_enable_device_mem(pdev);
2574         if (err)
2575                 return err;
2576
2577         pci_using_dac = 0;
2578         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2579         if (!err) {
2580                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2581                 if (!err)
2582                         pci_using_dac = 1;
2583         } else {
2584                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2585                 if (err) {
2586                         err = dma_set_coherent_mask(&pdev->dev,
2587                                                     DMA_BIT_MASK(32));
2588                         if (err) {
2589                                 dev_err(&pdev->dev, "No usable DMA "
2590                                         "configuration, aborting\n");
2591                                 goto err_dma;
2592                         }
2593                 }
2594         }
2595
2596         err = pci_request_regions(pdev, igbvf_driver_name);
2597         if (err)
2598                 goto err_pci_reg;
2599
2600         pci_set_master(pdev);
2601
2602         err = -ENOMEM;
2603         netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2604         if (!netdev)
2605                 goto err_alloc_etherdev;
2606
2607         SET_NETDEV_DEV(netdev, &pdev->dev);
2608
2609         pci_set_drvdata(pdev, netdev);
2610         adapter = netdev_priv(netdev);
2611         hw = &adapter->hw;
2612         adapter->netdev = netdev;
2613         adapter->pdev = pdev;
2614         adapter->ei = ei;
2615         adapter->pba = ei->pba;
2616         adapter->flags = ei->flags;
2617         adapter->hw.back = adapter;
2618         adapter->hw.mac.type = ei->mac;
2619         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2620
2621         /* PCI config space info */
2622
2623         hw->vendor_id = pdev->vendor;
2624         hw->device_id = pdev->device;
2625         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2626         hw->subsystem_device_id = pdev->subsystem_device;
2627         hw->revision_id = pdev->revision;
2628
2629         err = -EIO;
2630         adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2631                                       pci_resource_len(pdev, 0));
2632
2633         if (!adapter->hw.hw_addr)
2634                 goto err_ioremap;
2635
2636         if (ei->get_variants) {
2637                 err = ei->get_variants(adapter);
2638                 if (err)
2639                         goto err_ioremap;
2640         }
2641
2642         /* setup adapter struct */
2643         err = igbvf_sw_init(adapter);
2644         if (err)
2645                 goto err_sw_init;
2646
2647         /* construct the net_device struct */
2648         netdev->netdev_ops = &igbvf_netdev_ops;
2649
2650         igbvf_set_ethtool_ops(netdev);
2651         netdev->watchdog_timeo = 5 * HZ;
2652         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2653
2654         adapter->bd_number = cards_found++;
2655
2656         netdev->features = NETIF_F_SG |
2657                            NETIF_F_IP_CSUM |
2658                            NETIF_F_HW_VLAN_TX |
2659                            NETIF_F_HW_VLAN_RX |
2660                            NETIF_F_HW_VLAN_FILTER;
2661
2662         netdev->features |= NETIF_F_IPV6_CSUM;
2663         netdev->features |= NETIF_F_TSO;
2664         netdev->features |= NETIF_F_TSO6;
2665
2666         if (pci_using_dac)
2667                 netdev->features |= NETIF_F_HIGHDMA;
2668
2669         netdev->vlan_features |= NETIF_F_TSO;
2670         netdev->vlan_features |= NETIF_F_TSO6;
2671         netdev->vlan_features |= NETIF_F_IP_CSUM;
2672         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2673         netdev->vlan_features |= NETIF_F_SG;
2674
2675         /*reset the controller to put the device in a known good state */
2676         err = hw->mac.ops.reset_hw(hw);
2677         if (err) {
2678                 dev_info(&pdev->dev,
2679                          "PF still in reset state, assigning new address."
2680                          " Is the PF interface up?\n");
2681                 dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2682         } else {
2683                 err = hw->mac.ops.read_mac_addr(hw);
2684                 if (err) {
2685                         dev_err(&pdev->dev, "Error reading MAC address\n");
2686                         goto err_hw_init;
2687                 }
2688         }
2689
2690         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2691         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2692
2693         if (!is_valid_ether_addr(netdev->perm_addr)) {
2694                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2695                         netdev->dev_addr);
2696                 err = -EIO;
2697                 goto err_hw_init;
2698         }
2699
2700         setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2701                     (unsigned long) adapter);
2702
2703         INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2704         INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2705
2706         /* ring size defaults */
2707         adapter->rx_ring->count = 1024;
2708         adapter->tx_ring->count = 1024;
2709
2710         /* reset the hardware with the new settings */
2711         igbvf_reset(adapter);
2712
2713         strcpy(netdev->name, "eth%d");
2714         err = register_netdev(netdev);
2715         if (err)
2716                 goto err_hw_init;
2717
2718         /* tell the stack to leave us alone until igbvf_open() is called */
2719         netif_carrier_off(netdev);
2720         netif_stop_queue(netdev);
2721
2722         igbvf_print_device_info(adapter);
2723
2724         igbvf_initialize_last_counter_stats(adapter);
2725
2726         return 0;
2727
2728 err_hw_init:
2729         kfree(adapter->tx_ring);
2730         kfree(adapter->rx_ring);
2731 err_sw_init:
2732         igbvf_reset_interrupt_capability(adapter);
2733         iounmap(adapter->hw.hw_addr);
2734 err_ioremap:
2735         free_netdev(netdev);
2736 err_alloc_etherdev:
2737         pci_release_regions(pdev);
2738 err_pci_reg:
2739 err_dma:
2740         pci_disable_device(pdev);
2741         return err;
2742 }
2743
2744 /**
2745  * igbvf_remove - Device Removal Routine
2746  * @pdev: PCI device information struct
2747  *
2748  * igbvf_remove is called by the PCI subsystem to alert the driver
2749  * that it should release a PCI device.  The could be caused by a
2750  * Hot-Plug event, or because the driver is going to be removed from
2751  * memory.
2752  **/
2753 static void __devexit igbvf_remove(struct pci_dev *pdev)
2754 {
2755         struct net_device *netdev = pci_get_drvdata(pdev);
2756         struct igbvf_adapter *adapter = netdev_priv(netdev);
2757         struct e1000_hw *hw = &adapter->hw;
2758
2759         /*
2760          * The watchdog timer may be rescheduled, so explicitly
2761          * disable it from being rescheduled.
2762          */
2763         set_bit(__IGBVF_DOWN, &adapter->state);
2764         del_timer_sync(&adapter->watchdog_timer);
2765
2766         cancel_work_sync(&adapter->reset_task);
2767         cancel_work_sync(&adapter->watchdog_task);
2768
2769         unregister_netdev(netdev);
2770
2771         igbvf_reset_interrupt_capability(adapter);
2772
2773         /*
2774          * it is important to delete the napi struct prior to freeing the
2775          * rx ring so that you do not end up with null pointer refs
2776          */
2777         netif_napi_del(&adapter->rx_ring->napi);
2778         kfree(adapter->tx_ring);
2779         kfree(adapter->rx_ring);
2780
2781         iounmap(hw->hw_addr);
2782         if (hw->flash_address)
2783                 iounmap(hw->flash_address);
2784         pci_release_regions(pdev);
2785
2786         free_netdev(netdev);
2787
2788         pci_disable_device(pdev);
2789 }
2790
2791 /* PCI Error Recovery (ERS) */
2792 static struct pci_error_handlers igbvf_err_handler = {
2793         .error_detected = igbvf_io_error_detected,
2794         .slot_reset = igbvf_io_slot_reset,
2795         .resume = igbvf_io_resume,
2796 };
2797
2798 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2799         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2800         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2801         { } /* terminate list */
2802 };
2803 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2804
2805 /* PCI Device API Driver */
2806 static struct pci_driver igbvf_driver = {
2807         .name     = igbvf_driver_name,
2808         .id_table = igbvf_pci_tbl,
2809         .probe    = igbvf_probe,
2810         .remove   = __devexit_p(igbvf_remove),
2811 #ifdef CONFIG_PM
2812         /* Power Management Hooks */
2813         .suspend  = igbvf_suspend,
2814         .resume   = igbvf_resume,
2815 #endif
2816         .shutdown = igbvf_shutdown,
2817         .err_handler = &igbvf_err_handler
2818 };
2819
2820 /**
2821  * igbvf_init_module - Driver Registration Routine
2822  *
2823  * igbvf_init_module is the first routine called when the driver is
2824  * loaded. All it does is register with the PCI subsystem.
2825  **/
2826 static int __init igbvf_init_module(void)
2827 {
2828         int ret;
2829         printk(KERN_INFO "%s - version %s\n",
2830                igbvf_driver_string, igbvf_driver_version);
2831         printk(KERN_INFO "%s\n", igbvf_copyright);
2832
2833         ret = pci_register_driver(&igbvf_driver);
2834
2835         return ret;
2836 }
2837 module_init(igbvf_init_module);
2838
2839 /**
2840  * igbvf_exit_module - Driver Exit Cleanup Routine
2841  *
2842  * igbvf_exit_module is called just before the driver is removed
2843  * from memory.
2844  **/
2845 static void __exit igbvf_exit_module(void)
2846 {
2847         pci_unregister_driver(&igbvf_driver);
2848 }
2849 module_exit(igbvf_exit_module);
2850
2851
2852 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2853 MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2854 MODULE_LICENSE("GPL");
2855 MODULE_VERSION(DRV_VERSION);
2856
2857 /* netdev.c */