p54usb: New USB ID for Gemtek WUBI-100GW
[pandora-kernel.git] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  * This program is free software; you can redistribute  it and/or modify it
17  * under  the terms of  the GNU General  Public License as published by the
18  * Free Software Foundation;  either version 2 of the  License, or (at your
19  * option) any later version.
20  *
21  *  Gianfar:  AKA Lambda Draconis, "Dragon"
22  *  RA 11 31 24.2
23  *  Dec +69 19 52
24  *  V 3.84
25  *  B-V +1.62
26  *
27  *  Theory of operation
28  *
29  *  The driver is initialized through of_device. Configuration information
30  *  is therefore conveyed through an OF-style device tree.
31  *
32  *  The Gianfar Ethernet Controller uses a ring of buffer
33  *  descriptors.  The beginning is indicated by a register
34  *  pointing to the physical address of the start of the ring.
35  *  The end is determined by a "wrap" bit being set in the
36  *  last descriptor of the ring.
37  *
38  *  When a packet is received, the RXF bit in the
39  *  IEVENT register is set, triggering an interrupt when the
40  *  corresponding bit in the IMASK register is also set (if
41  *  interrupt coalescing is active, then the interrupt may not
42  *  happen immediately, but will wait until either a set number
43  *  of frames or amount of time have passed).  In NAPI, the
44  *  interrupt handler will signal there is work to be done, and
45  *  exit. This method will start at the last known empty
46  *  descriptor, and process every subsequent descriptor until there
47  *  are none left with data (NAPI will stop after a set number of
48  *  packets to give time to other tasks, but will eventually
49  *  process all the packets).  The data arrives inside a
50  *  pre-allocated skb, and so after the skb is passed up to the
51  *  stack, a new skb must be allocated, and the address field in
52  *  the buffer descriptor must be updated to indicate this new
53  *  skb.
54  *
55  *  When the kernel requests that a packet be transmitted, the
56  *  driver starts where it left off last time, and points the
57  *  descriptor at the buffer which was passed in.  The driver
58  *  then informs the DMA engine that there are packets ready to
59  *  be transmitted.  Once the controller is finished transmitting
60  *  the packet, an interrupt may be triggered (under the same
61  *  conditions as for reception, but depending on the TXF bit).
62  *  The driver then cleans up the buffer.
63  */
64
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
78 #include <linux/mm.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
81 #include <linux/ip.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
84 #include <linux/in.h>
85 #include <linux/net_tstamp.h>
86
87 #include <asm/io.h>
88 #include <asm/reg.h>
89 #include <asm/irq.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96 #include <linux/phy_fixed.h>
97 #include <linux/of.h>
98
99 #include "gianfar.h"
100 #include "fsl_pq_mdio.h"
101
102 #define TX_TIMEOUT      (1*HZ)
103 #undef BRIEF_GFAR_ERRORS
104 #undef VERBOSE_GFAR_ERRORS
105
106 const char gfar_driver_name[] = "Gianfar Ethernet";
107 const char gfar_driver_version[] = "1.3";
108
109 static int gfar_enet_open(struct net_device *dev);
110 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
111 static void gfar_reset_task(struct work_struct *work);
112 static void gfar_timeout(struct net_device *dev);
113 static int gfar_close(struct net_device *dev);
114 struct sk_buff *gfar_new_skb(struct net_device *dev);
115 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
116                 struct sk_buff *skb);
117 static int gfar_set_mac_address(struct net_device *dev);
118 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
119 static irqreturn_t gfar_error(int irq, void *dev_id);
120 static irqreturn_t gfar_transmit(int irq, void *dev_id);
121 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
122 static void adjust_link(struct net_device *dev);
123 static void init_registers(struct net_device *dev);
124 static int init_phy(struct net_device *dev);
125 static int gfar_probe(struct platform_device *ofdev,
126                 const struct of_device_id *match);
127 static int gfar_remove(struct platform_device *ofdev);
128 static void free_skb_resources(struct gfar_private *priv);
129 static void gfar_set_multi(struct net_device *dev);
130 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
131 static void gfar_configure_serdes(struct net_device *dev);
132 static int gfar_poll(struct napi_struct *napi, int budget);
133 #ifdef CONFIG_NET_POLL_CONTROLLER
134 static void gfar_netpoll(struct net_device *dev);
135 #endif
136 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
137 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
138 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
139                               int amount_pull);
140 static void gfar_vlan_rx_register(struct net_device *netdev,
141                                 struct vlan_group *grp);
142 void gfar_halt(struct net_device *dev);
143 static void gfar_halt_nodisable(struct net_device *dev);
144 void gfar_start(struct net_device *dev);
145 static void gfar_clear_exact_match(struct net_device *dev);
146 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
147 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
148
149 MODULE_AUTHOR("Freescale Semiconductor, Inc");
150 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
151 MODULE_LICENSE("GPL");
152
153 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
154                             dma_addr_t buf)
155 {
156         u32 lstatus;
157
158         bdp->bufPtr = buf;
159
160         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
161         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
162                 lstatus |= BD_LFLAG(RXBD_WRAP);
163
164         eieio();
165
166         bdp->lstatus = lstatus;
167 }
168
169 static int gfar_init_bds(struct net_device *ndev)
170 {
171         struct gfar_private *priv = netdev_priv(ndev);
172         struct gfar_priv_tx_q *tx_queue = NULL;
173         struct gfar_priv_rx_q *rx_queue = NULL;
174         struct txbd8 *txbdp;
175         struct rxbd8 *rxbdp;
176         int i, j;
177
178         for (i = 0; i < priv->num_tx_queues; i++) {
179                 tx_queue = priv->tx_queue[i];
180                 /* Initialize some variables in our dev structure */
181                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
182                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
183                 tx_queue->cur_tx = tx_queue->tx_bd_base;
184                 tx_queue->skb_curtx = 0;
185                 tx_queue->skb_dirtytx = 0;
186
187                 /* Initialize Transmit Descriptor Ring */
188                 txbdp = tx_queue->tx_bd_base;
189                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
190                         txbdp->lstatus = 0;
191                         txbdp->bufPtr = 0;
192                         txbdp++;
193                 }
194
195                 /* Set the last descriptor in the ring to indicate wrap */
196                 txbdp--;
197                 txbdp->status |= TXBD_WRAP;
198         }
199
200         for (i = 0; i < priv->num_rx_queues; i++) {
201                 rx_queue = priv->rx_queue[i];
202                 rx_queue->cur_rx = rx_queue->rx_bd_base;
203                 rx_queue->skb_currx = 0;
204                 rxbdp = rx_queue->rx_bd_base;
205
206                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
207                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
208
209                         if (skb) {
210                                 gfar_init_rxbdp(rx_queue, rxbdp,
211                                                 rxbdp->bufPtr);
212                         } else {
213                                 skb = gfar_new_skb(ndev);
214                                 if (!skb) {
215                                         pr_err("%s: Can't allocate RX buffers\n",
216                                                         ndev->name);
217                                         goto err_rxalloc_fail;
218                                 }
219                                 rx_queue->rx_skbuff[j] = skb;
220
221                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
222                         }
223
224                         rxbdp++;
225                 }
226
227         }
228
229         return 0;
230
231 err_rxalloc_fail:
232         free_skb_resources(priv);
233         return -ENOMEM;
234 }
235
236 static int gfar_alloc_skb_resources(struct net_device *ndev)
237 {
238         void *vaddr;
239         dma_addr_t addr;
240         int i, j, k;
241         struct gfar_private *priv = netdev_priv(ndev);
242         struct device *dev = &priv->ofdev->dev;
243         struct gfar_priv_tx_q *tx_queue = NULL;
244         struct gfar_priv_rx_q *rx_queue = NULL;
245
246         priv->total_tx_ring_size = 0;
247         for (i = 0; i < priv->num_tx_queues; i++)
248                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
249
250         priv->total_rx_ring_size = 0;
251         for (i = 0; i < priv->num_rx_queues; i++)
252                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
253
254         /* Allocate memory for the buffer descriptors */
255         vaddr = dma_alloc_coherent(dev,
256                         sizeof(struct txbd8) * priv->total_tx_ring_size +
257                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
258                         &addr, GFP_KERNEL);
259         if (!vaddr) {
260                 if (netif_msg_ifup(priv))
261                         pr_err("%s: Could not allocate buffer descriptors!\n",
262                                ndev->name);
263                 return -ENOMEM;
264         }
265
266         for (i = 0; i < priv->num_tx_queues; i++) {
267                 tx_queue = priv->tx_queue[i];
268                 tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
269                 tx_queue->tx_bd_dma_base = addr;
270                 tx_queue->dev = ndev;
271                 /* enet DMA only understands physical addresses */
272                 addr    += sizeof(struct txbd8) *tx_queue->tx_ring_size;
273                 vaddr   += sizeof(struct txbd8) *tx_queue->tx_ring_size;
274         }
275
276         /* Start the rx descriptor ring where the tx ring leaves off */
277         for (i = 0; i < priv->num_rx_queues; i++) {
278                 rx_queue = priv->rx_queue[i];
279                 rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
280                 rx_queue->rx_bd_dma_base = addr;
281                 rx_queue->dev = ndev;
282                 addr    += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
283                 vaddr   += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
284         }
285
286         /* Setup the skbuff rings */
287         for (i = 0; i < priv->num_tx_queues; i++) {
288                 tx_queue = priv->tx_queue[i];
289                 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
290                                   tx_queue->tx_ring_size, GFP_KERNEL);
291                 if (!tx_queue->tx_skbuff) {
292                         if (netif_msg_ifup(priv))
293                                 pr_err("%s: Could not allocate tx_skbuff\n",
294                                                 ndev->name);
295                         goto cleanup;
296                 }
297
298                 for (k = 0; k < tx_queue->tx_ring_size; k++)
299                         tx_queue->tx_skbuff[k] = NULL;
300         }
301
302         for (i = 0; i < priv->num_rx_queues; i++) {
303                 rx_queue = priv->rx_queue[i];
304                 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
305                                   rx_queue->rx_ring_size, GFP_KERNEL);
306
307                 if (!rx_queue->rx_skbuff) {
308                         if (netif_msg_ifup(priv))
309                                 pr_err("%s: Could not allocate rx_skbuff\n",
310                                        ndev->name);
311                         goto cleanup;
312                 }
313
314                 for (j = 0; j < rx_queue->rx_ring_size; j++)
315                         rx_queue->rx_skbuff[j] = NULL;
316         }
317
318         if (gfar_init_bds(ndev))
319                 goto cleanup;
320
321         return 0;
322
323 cleanup:
324         free_skb_resources(priv);
325         return -ENOMEM;
326 }
327
328 static void gfar_init_tx_rx_base(struct gfar_private *priv)
329 {
330         struct gfar __iomem *regs = priv->gfargrp[0].regs;
331         u32 __iomem *baddr;
332         int i;
333
334         baddr = &regs->tbase0;
335         for(i = 0; i < priv->num_tx_queues; i++) {
336                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
337                 baddr   += 2;
338         }
339
340         baddr = &regs->rbase0;
341         for(i = 0; i < priv->num_rx_queues; i++) {
342                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
343                 baddr   += 2;
344         }
345 }
346
347 static void gfar_init_mac(struct net_device *ndev)
348 {
349         struct gfar_private *priv = netdev_priv(ndev);
350         struct gfar __iomem *regs = priv->gfargrp[0].regs;
351         u32 rctrl = 0;
352         u32 tctrl = 0;
353         u32 attrs = 0;
354
355         /* write the tx/rx base registers */
356         gfar_init_tx_rx_base(priv);
357
358         /* Configure the coalescing support */
359         gfar_configure_coalescing(priv, 0xFF, 0xFF);
360
361         if (priv->rx_filer_enable) {
362                 rctrl |= RCTRL_FILREN;
363                 /* Program the RIR0 reg with the required distribution */
364                 gfar_write(&regs->rir0, DEFAULT_RIR0);
365         }
366
367         if (priv->rx_csum_enable)
368                 rctrl |= RCTRL_CHECKSUMMING;
369
370         if (priv->extended_hash) {
371                 rctrl |= RCTRL_EXTHASH;
372
373                 gfar_clear_exact_match(ndev);
374                 rctrl |= RCTRL_EMEN;
375         }
376
377         if (priv->padding) {
378                 rctrl &= ~RCTRL_PAL_MASK;
379                 rctrl |= RCTRL_PADDING(priv->padding);
380         }
381
382         /* Insert receive time stamps into padding alignment bytes */
383         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
384                 rctrl &= ~RCTRL_PAL_MASK;
385                 rctrl |= RCTRL_PADDING(8);
386                 priv->padding = 8;
387         }
388
389         /* Enable HW time stamping if requested from user space */
390         if (priv->hwts_rx_en)
391                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
392
393         /* keep vlan related bits if it's enabled */
394         if (priv->vlgrp) {
395                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
396                 tctrl |= TCTRL_VLINS;
397         }
398
399         /* Init rctrl based on our settings */
400         gfar_write(&regs->rctrl, rctrl);
401
402         if (ndev->features & NETIF_F_IP_CSUM)
403                 tctrl |= TCTRL_INIT_CSUM;
404
405         tctrl |= TCTRL_TXSCHED_PRIO;
406
407         gfar_write(&regs->tctrl, tctrl);
408
409         /* Set the extraction length and index */
410         attrs = ATTRELI_EL(priv->rx_stash_size) |
411                 ATTRELI_EI(priv->rx_stash_index);
412
413         gfar_write(&regs->attreli, attrs);
414
415         /* Start with defaults, and add stashing or locking
416          * depending on the approprate variables */
417         attrs = ATTR_INIT_SETTINGS;
418
419         if (priv->bd_stash_en)
420                 attrs |= ATTR_BDSTASH;
421
422         if (priv->rx_stash_size != 0)
423                 attrs |= ATTR_BUFSTASH;
424
425         gfar_write(&regs->attr, attrs);
426
427         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
428         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
429         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
430 }
431
432 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
433 {
434         struct gfar_private *priv = netdev_priv(dev);
435         struct netdev_queue *txq;
436         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
437         unsigned long tx_packets = 0, tx_bytes = 0;
438         int i = 0;
439
440         for (i = 0; i < priv->num_rx_queues; i++) {
441                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
442                 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
443                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
444         }
445
446         dev->stats.rx_packets = rx_packets;
447         dev->stats.rx_bytes = rx_bytes;
448         dev->stats.rx_dropped = rx_dropped;
449
450         for (i = 0; i < priv->num_tx_queues; i++) {
451                 txq = netdev_get_tx_queue(dev, i);
452                 tx_bytes += txq->tx_bytes;
453                 tx_packets += txq->tx_packets;
454         }
455
456         dev->stats.tx_bytes = tx_bytes;
457         dev->stats.tx_packets = tx_packets;
458
459         return &dev->stats;
460 }
461
462 static const struct net_device_ops gfar_netdev_ops = {
463         .ndo_open = gfar_enet_open,
464         .ndo_start_xmit = gfar_start_xmit,
465         .ndo_stop = gfar_close,
466         .ndo_change_mtu = gfar_change_mtu,
467         .ndo_set_multicast_list = gfar_set_multi,
468         .ndo_tx_timeout = gfar_timeout,
469         .ndo_do_ioctl = gfar_ioctl,
470         .ndo_get_stats = gfar_get_stats,
471         .ndo_vlan_rx_register = gfar_vlan_rx_register,
472         .ndo_set_mac_address = eth_mac_addr,
473         .ndo_validate_addr = eth_validate_addr,
474 #ifdef CONFIG_NET_POLL_CONTROLLER
475         .ndo_poll_controller = gfar_netpoll,
476 #endif
477 };
478
479 unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
480 unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
481
482 void lock_rx_qs(struct gfar_private *priv)
483 {
484         int i = 0x0;
485
486         for (i = 0; i < priv->num_rx_queues; i++)
487                 spin_lock(&priv->rx_queue[i]->rxlock);
488 }
489
490 void lock_tx_qs(struct gfar_private *priv)
491 {
492         int i = 0x0;
493
494         for (i = 0; i < priv->num_tx_queues; i++)
495                 spin_lock(&priv->tx_queue[i]->txlock);
496 }
497
498 void unlock_rx_qs(struct gfar_private *priv)
499 {
500         int i = 0x0;
501
502         for (i = 0; i < priv->num_rx_queues; i++)
503                 spin_unlock(&priv->rx_queue[i]->rxlock);
504 }
505
506 void unlock_tx_qs(struct gfar_private *priv)
507 {
508         int i = 0x0;
509
510         for (i = 0; i < priv->num_tx_queues; i++)
511                 spin_unlock(&priv->tx_queue[i]->txlock);
512 }
513
514 /* Returns 1 if incoming frames use an FCB */
515 static inline int gfar_uses_fcb(struct gfar_private *priv)
516 {
517         return priv->vlgrp || priv->rx_csum_enable ||
518                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
519 }
520
521 static void free_tx_pointers(struct gfar_private *priv)
522 {
523         int i = 0;
524
525         for (i = 0; i < priv->num_tx_queues; i++)
526                 kfree(priv->tx_queue[i]);
527 }
528
529 static void free_rx_pointers(struct gfar_private *priv)
530 {
531         int i = 0;
532
533         for (i = 0; i < priv->num_rx_queues; i++)
534                 kfree(priv->rx_queue[i]);
535 }
536
537 static void unmap_group_regs(struct gfar_private *priv)
538 {
539         int i = 0;
540
541         for (i = 0; i < MAXGROUPS; i++)
542                 if (priv->gfargrp[i].regs)
543                         iounmap(priv->gfargrp[i].regs);
544 }
545
546 static void disable_napi(struct gfar_private *priv)
547 {
548         int i = 0;
549
550         for (i = 0; i < priv->num_grps; i++)
551                 napi_disable(&priv->gfargrp[i].napi);
552 }
553
554 static void enable_napi(struct gfar_private *priv)
555 {
556         int i = 0;
557
558         for (i = 0; i < priv->num_grps; i++)
559                 napi_enable(&priv->gfargrp[i].napi);
560 }
561
562 static int gfar_parse_group(struct device_node *np,
563                 struct gfar_private *priv, const char *model)
564 {
565         u32 *queue_mask;
566
567         priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
568         if (!priv->gfargrp[priv->num_grps].regs)
569                 return -ENOMEM;
570
571         priv->gfargrp[priv->num_grps].interruptTransmit =
572                         irq_of_parse_and_map(np, 0);
573
574         /* If we aren't the FEC we have multiple interrupts */
575         if (model && strcasecmp(model, "FEC")) {
576                 priv->gfargrp[priv->num_grps].interruptReceive =
577                         irq_of_parse_and_map(np, 1);
578                 priv->gfargrp[priv->num_grps].interruptError =
579                         irq_of_parse_and_map(np,2);
580                 if (priv->gfargrp[priv->num_grps].interruptTransmit < 0 ||
581                         priv->gfargrp[priv->num_grps].interruptReceive < 0 ||
582                         priv->gfargrp[priv->num_grps].interruptError < 0) {
583                         return -EINVAL;
584                 }
585         }
586
587         priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
588         priv->gfargrp[priv->num_grps].priv = priv;
589         spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
590         if(priv->mode == MQ_MG_MODE) {
591                 queue_mask = (u32 *)of_get_property(np,
592                                         "fsl,rx-bit-map", NULL);
593                 priv->gfargrp[priv->num_grps].rx_bit_map =
594                         queue_mask ?  *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
595                 queue_mask = (u32 *)of_get_property(np,
596                                         "fsl,tx-bit-map", NULL);
597                 priv->gfargrp[priv->num_grps].tx_bit_map =
598                         queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
599         } else {
600                 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
601                 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
602         }
603         priv->num_grps++;
604
605         return 0;
606 }
607
608 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
609 {
610         const char *model;
611         const char *ctype;
612         const void *mac_addr;
613         int err = 0, i;
614         struct net_device *dev = NULL;
615         struct gfar_private *priv = NULL;
616         struct device_node *np = ofdev->dev.of_node;
617         struct device_node *child = NULL;
618         const u32 *stash;
619         const u32 *stash_len;
620         const u32 *stash_idx;
621         unsigned int num_tx_qs, num_rx_qs;
622         u32 *tx_queues, *rx_queues;
623
624         if (!np || !of_device_is_available(np))
625                 return -ENODEV;
626
627         /* parse the num of tx and rx queues */
628         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
629         num_tx_qs = tx_queues ? *tx_queues : 1;
630
631         if (num_tx_qs > MAX_TX_QS) {
632                 printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
633                                 num_tx_qs, MAX_TX_QS);
634                 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
635                 return -EINVAL;
636         }
637
638         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
639         num_rx_qs = rx_queues ? *rx_queues : 1;
640
641         if (num_rx_qs > MAX_RX_QS) {
642                 printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
643                                 num_tx_qs, MAX_TX_QS);
644                 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
645                 return -EINVAL;
646         }
647
648         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
649         dev = *pdev;
650         if (NULL == dev)
651                 return -ENOMEM;
652
653         priv = netdev_priv(dev);
654         priv->node = ofdev->dev.of_node;
655         priv->ndev = dev;
656
657         priv->num_tx_queues = num_tx_qs;
658         netif_set_real_num_rx_queues(dev, num_rx_qs);
659         priv->num_rx_queues = num_rx_qs;
660         priv->num_grps = 0x0;
661
662         model = of_get_property(np, "model", NULL);
663
664         for (i = 0; i < MAXGROUPS; i++)
665                 priv->gfargrp[i].regs = NULL;
666
667         /* Parse and initialize group specific information */
668         if (of_device_is_compatible(np, "fsl,etsec2")) {
669                 priv->mode = MQ_MG_MODE;
670                 for_each_child_of_node(np, child) {
671                         err = gfar_parse_group(child, priv, model);
672                         if (err)
673                                 goto err_grp_init;
674                 }
675         } else {
676                 priv->mode = SQ_SG_MODE;
677                 err = gfar_parse_group(np, priv, model);
678                 if(err)
679                         goto err_grp_init;
680         }
681
682         for (i = 0; i < priv->num_tx_queues; i++)
683                priv->tx_queue[i] = NULL;
684         for (i = 0; i < priv->num_rx_queues; i++)
685                 priv->rx_queue[i] = NULL;
686
687         for (i = 0; i < priv->num_tx_queues; i++) {
688                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
689                                             GFP_KERNEL);
690                 if (!priv->tx_queue[i]) {
691                         err = -ENOMEM;
692                         goto tx_alloc_failed;
693                 }
694                 priv->tx_queue[i]->tx_skbuff = NULL;
695                 priv->tx_queue[i]->qindex = i;
696                 priv->tx_queue[i]->dev = dev;
697                 spin_lock_init(&(priv->tx_queue[i]->txlock));
698         }
699
700         for (i = 0; i < priv->num_rx_queues; i++) {
701                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
702                                             GFP_KERNEL);
703                 if (!priv->rx_queue[i]) {
704                         err = -ENOMEM;
705                         goto rx_alloc_failed;
706                 }
707                 priv->rx_queue[i]->rx_skbuff = NULL;
708                 priv->rx_queue[i]->qindex = i;
709                 priv->rx_queue[i]->dev = dev;
710                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
711         }
712
713
714         stash = of_get_property(np, "bd-stash", NULL);
715
716         if (stash) {
717                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
718                 priv->bd_stash_en = 1;
719         }
720
721         stash_len = of_get_property(np, "rx-stash-len", NULL);
722
723         if (stash_len)
724                 priv->rx_stash_size = *stash_len;
725
726         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
727
728         if (stash_idx)
729                 priv->rx_stash_index = *stash_idx;
730
731         if (stash_len || stash_idx)
732                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
733
734         mac_addr = of_get_mac_address(np);
735         if (mac_addr)
736                 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
737
738         if (model && !strcasecmp(model, "TSEC"))
739                 priv->device_flags =
740                         FSL_GIANFAR_DEV_HAS_GIGABIT |
741                         FSL_GIANFAR_DEV_HAS_COALESCE |
742                         FSL_GIANFAR_DEV_HAS_RMON |
743                         FSL_GIANFAR_DEV_HAS_MULTI_INTR;
744         if (model && !strcasecmp(model, "eTSEC"))
745                 priv->device_flags =
746                         FSL_GIANFAR_DEV_HAS_GIGABIT |
747                         FSL_GIANFAR_DEV_HAS_COALESCE |
748                         FSL_GIANFAR_DEV_HAS_RMON |
749                         FSL_GIANFAR_DEV_HAS_MULTI_INTR |
750                         FSL_GIANFAR_DEV_HAS_PADDING |
751                         FSL_GIANFAR_DEV_HAS_CSUM |
752                         FSL_GIANFAR_DEV_HAS_VLAN |
753                         FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
754                         FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
755                         FSL_GIANFAR_DEV_HAS_TIMER;
756
757         ctype = of_get_property(np, "phy-connection-type", NULL);
758
759         /* We only care about rgmii-id.  The rest are autodetected */
760         if (ctype && !strcmp(ctype, "rgmii-id"))
761                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
762         else
763                 priv->interface = PHY_INTERFACE_MODE_MII;
764
765         if (of_get_property(np, "fsl,magic-packet", NULL))
766                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
767
768         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
769
770         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
771         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
772
773         return 0;
774
775 rx_alloc_failed:
776         free_rx_pointers(priv);
777 tx_alloc_failed:
778         free_tx_pointers(priv);
779 err_grp_init:
780         unmap_group_regs(priv);
781         free_netdev(dev);
782         return err;
783 }
784
785 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
786                         struct ifreq *ifr, int cmd)
787 {
788         struct hwtstamp_config config;
789         struct gfar_private *priv = netdev_priv(netdev);
790
791         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
792                 return -EFAULT;
793
794         /* reserved for future extensions */
795         if (config.flags)
796                 return -EINVAL;
797
798         switch (config.tx_type) {
799         case HWTSTAMP_TX_OFF:
800                 priv->hwts_tx_en = 0;
801                 break;
802         case HWTSTAMP_TX_ON:
803                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
804                         return -ERANGE;
805                 priv->hwts_tx_en = 1;
806                 break;
807         default:
808                 return -ERANGE;
809         }
810
811         switch (config.rx_filter) {
812         case HWTSTAMP_FILTER_NONE:
813                 if (priv->hwts_rx_en) {
814                         stop_gfar(netdev);
815                         priv->hwts_rx_en = 0;
816                         startup_gfar(netdev);
817                 }
818                 break;
819         default:
820                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
821                         return -ERANGE;
822                 if (!priv->hwts_rx_en) {
823                         stop_gfar(netdev);
824                         priv->hwts_rx_en = 1;
825                         startup_gfar(netdev);
826                 }
827                 config.rx_filter = HWTSTAMP_FILTER_ALL;
828                 break;
829         }
830
831         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
832                 -EFAULT : 0;
833 }
834
835 /* Ioctl MII Interface */
836 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
837 {
838         struct gfar_private *priv = netdev_priv(dev);
839
840         if (!netif_running(dev))
841                 return -EINVAL;
842
843         if (cmd == SIOCSHWTSTAMP)
844                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
845
846         if (!priv->phydev)
847                 return -ENODEV;
848
849         return phy_mii_ioctl(priv->phydev, rq, cmd);
850 }
851
852 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
853 {
854         unsigned int new_bit_map = 0x0;
855         int mask = 0x1 << (max_qs - 1), i;
856         for (i = 0; i < max_qs; i++) {
857                 if (bit_map & mask)
858                         new_bit_map = new_bit_map + (1 << i);
859                 mask = mask >> 0x1;
860         }
861         return new_bit_map;
862 }
863
864 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
865                                    u32 class)
866 {
867         u32 rqfpr = FPR_FILER_MASK;
868         u32 rqfcr = 0x0;
869
870         rqfar--;
871         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
872         ftp_rqfpr[rqfar] = rqfpr;
873         ftp_rqfcr[rqfar] = rqfcr;
874         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
875
876         rqfar--;
877         rqfcr = RQFCR_CMP_NOMATCH;
878         ftp_rqfpr[rqfar] = rqfpr;
879         ftp_rqfcr[rqfar] = rqfcr;
880         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
881
882         rqfar--;
883         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
884         rqfpr = class;
885         ftp_rqfcr[rqfar] = rqfcr;
886         ftp_rqfpr[rqfar] = rqfpr;
887         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
888
889         rqfar--;
890         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
891         rqfpr = class;
892         ftp_rqfcr[rqfar] = rqfcr;
893         ftp_rqfpr[rqfar] = rqfpr;
894         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
895
896         return rqfar;
897 }
898
899 static void gfar_init_filer_table(struct gfar_private *priv)
900 {
901         int i = 0x0;
902         u32 rqfar = MAX_FILER_IDX;
903         u32 rqfcr = 0x0;
904         u32 rqfpr = FPR_FILER_MASK;
905
906         /* Default rule */
907         rqfcr = RQFCR_CMP_MATCH;
908         ftp_rqfcr[rqfar] = rqfcr;
909         ftp_rqfpr[rqfar] = rqfpr;
910         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
911
912         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
913         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
914         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
915         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
916         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
917         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
918
919         /* cur_filer_idx indicated the first non-masked rule */
920         priv->cur_filer_idx = rqfar;
921
922         /* Rest are masked rules */
923         rqfcr = RQFCR_CMP_NOMATCH;
924         for (i = 0; i < rqfar; i++) {
925                 ftp_rqfcr[i] = rqfcr;
926                 ftp_rqfpr[i] = rqfpr;
927                 gfar_write_filer(priv, i, rqfcr, rqfpr);
928         }
929 }
930
931 static void gfar_detect_errata(struct gfar_private *priv)
932 {
933         struct device *dev = &priv->ofdev->dev;
934         unsigned int pvr = mfspr(SPRN_PVR);
935         unsigned int svr = mfspr(SPRN_SVR);
936         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
937         unsigned int rev = svr & 0xffff;
938
939         /* MPC8313 Rev 2.0 and higher; All MPC837x */
940         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
941                         (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
942                 priv->errata |= GFAR_ERRATA_74;
943
944         /* MPC8313 and MPC837x all rev */
945         if ((pvr == 0x80850010 && mod == 0x80b0) ||
946                         (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
947                 priv->errata |= GFAR_ERRATA_76;
948
949         /* MPC8313 and MPC837x all rev */
950         if ((pvr == 0x80850010 && mod == 0x80b0) ||
951                         (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
952                 priv->errata |= GFAR_ERRATA_A002;
953
954         if (priv->errata)
955                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
956                          priv->errata);
957 }
958
959 /* Set up the ethernet device structure, private data,
960  * and anything else we need before we start */
961 static int gfar_probe(struct platform_device *ofdev,
962                 const struct of_device_id *match)
963 {
964         u32 tempval;
965         struct net_device *dev = NULL;
966         struct gfar_private *priv = NULL;
967         struct gfar __iomem *regs = NULL;
968         int err = 0, i, grp_idx = 0;
969         int len_devname;
970         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
971         u32 isrg = 0;
972         u32 __iomem *baddr;
973
974         err = gfar_of_init(ofdev, &dev);
975
976         if (err)
977                 return err;
978
979         priv = netdev_priv(dev);
980         priv->ndev = dev;
981         priv->ofdev = ofdev;
982         priv->node = ofdev->dev.of_node;
983         SET_NETDEV_DEV(dev, &ofdev->dev);
984
985         spin_lock_init(&priv->bflock);
986         INIT_WORK(&priv->reset_task, gfar_reset_task);
987
988         dev_set_drvdata(&ofdev->dev, priv);
989         regs = priv->gfargrp[0].regs;
990
991         gfar_detect_errata(priv);
992
993         /* Stop the DMA engine now, in case it was running before */
994         /* (The firmware could have used it, and left it running). */
995         gfar_halt(dev);
996
997         /* Reset MAC layer */
998         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
999
1000         /* We need to delay at least 3 TX clocks */
1001         udelay(2);
1002
1003         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1004         gfar_write(&regs->maccfg1, tempval);
1005
1006         /* Initialize MACCFG2. */
1007         tempval = MACCFG2_INIT_SETTINGS;
1008         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1009                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1010         gfar_write(&regs->maccfg2, tempval);
1011
1012         /* Initialize ECNTRL */
1013         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1014
1015         /* Set the dev->base_addr to the gfar reg region */
1016         dev->base_addr = (unsigned long) regs;
1017
1018         SET_NETDEV_DEV(dev, &ofdev->dev);
1019
1020         /* Fill in the dev structure */
1021         dev->watchdog_timeo = TX_TIMEOUT;
1022         dev->mtu = 1500;
1023         dev->netdev_ops = &gfar_netdev_ops;
1024         dev->ethtool_ops = &gfar_ethtool_ops;
1025
1026         /* Register for napi ...We are registering NAPI for each grp */
1027         for (i = 0; i < priv->num_grps; i++)
1028                 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
1029
1030         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1031                 priv->rx_csum_enable = 1;
1032                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
1033         } else
1034                 priv->rx_csum_enable = 0;
1035
1036         priv->vlgrp = NULL;
1037
1038         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
1039                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1040
1041         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1042                 priv->extended_hash = 1;
1043                 priv->hash_width = 9;
1044
1045                 priv->hash_regs[0] = &regs->igaddr0;
1046                 priv->hash_regs[1] = &regs->igaddr1;
1047                 priv->hash_regs[2] = &regs->igaddr2;
1048                 priv->hash_regs[3] = &regs->igaddr3;
1049                 priv->hash_regs[4] = &regs->igaddr4;
1050                 priv->hash_regs[5] = &regs->igaddr5;
1051                 priv->hash_regs[6] = &regs->igaddr6;
1052                 priv->hash_regs[7] = &regs->igaddr7;
1053                 priv->hash_regs[8] = &regs->gaddr0;
1054                 priv->hash_regs[9] = &regs->gaddr1;
1055                 priv->hash_regs[10] = &regs->gaddr2;
1056                 priv->hash_regs[11] = &regs->gaddr3;
1057                 priv->hash_regs[12] = &regs->gaddr4;
1058                 priv->hash_regs[13] = &regs->gaddr5;
1059                 priv->hash_regs[14] = &regs->gaddr6;
1060                 priv->hash_regs[15] = &regs->gaddr7;
1061
1062         } else {
1063                 priv->extended_hash = 0;
1064                 priv->hash_width = 8;
1065
1066                 priv->hash_regs[0] = &regs->gaddr0;
1067                 priv->hash_regs[1] = &regs->gaddr1;
1068                 priv->hash_regs[2] = &regs->gaddr2;
1069                 priv->hash_regs[3] = &regs->gaddr3;
1070                 priv->hash_regs[4] = &regs->gaddr4;
1071                 priv->hash_regs[5] = &regs->gaddr5;
1072                 priv->hash_regs[6] = &regs->gaddr6;
1073                 priv->hash_regs[7] = &regs->gaddr7;
1074         }
1075
1076         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1077                 priv->padding = DEFAULT_PADDING;
1078         else
1079                 priv->padding = 0;
1080
1081         if (dev->features & NETIF_F_IP_CSUM ||
1082                         priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1083                 dev->hard_header_len += GMAC_FCB_LEN;
1084
1085         /* Program the isrg regs only if number of grps > 1 */
1086         if (priv->num_grps > 1) {
1087                 baddr = &regs->isrg0;
1088                 for (i = 0; i < priv->num_grps; i++) {
1089                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1090                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1091                         gfar_write(baddr, isrg);
1092                         baddr++;
1093                         isrg = 0x0;
1094                 }
1095         }
1096
1097         /* Need to reverse the bit maps as  bit_map's MSB is q0
1098          * but, for_each_set_bit parses from right to left, which
1099          * basically reverses the queue numbers */
1100         for (i = 0; i< priv->num_grps; i++) {
1101                 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1102                                 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1103                 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1104                                 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1105         }
1106
1107         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1108          * also assign queues to groups */
1109         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1110                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1111                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1112                                 priv->num_rx_queues) {
1113                         priv->gfargrp[grp_idx].num_rx_queues++;
1114                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1115                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1116                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1117                 }
1118                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1119                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1120                                 priv->num_tx_queues) {
1121                         priv->gfargrp[grp_idx].num_tx_queues++;
1122                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1123                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1124                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1125                 }
1126                 priv->gfargrp[grp_idx].rstat = rstat;
1127                 priv->gfargrp[grp_idx].tstat = tstat;
1128                 rstat = tstat =0;
1129         }
1130
1131         gfar_write(&regs->rqueue, rqueue);
1132         gfar_write(&regs->tqueue, tqueue);
1133
1134         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1135
1136         /* Initializing some of the rx/tx queue level parameters */
1137         for (i = 0; i < priv->num_tx_queues; i++) {
1138                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1139                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1140                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1141                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1142         }
1143
1144         for (i = 0; i < priv->num_rx_queues; i++) {
1145                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1146                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1147                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1148         }
1149
1150         /* enable filer if using multiple RX queues*/
1151         if(priv->num_rx_queues > 1)
1152                 priv->rx_filer_enable = 1;
1153         /* Enable most messages by default */
1154         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1155
1156         /* Carrier starts down, phylib will bring it up */
1157         netif_carrier_off(dev);
1158
1159         err = register_netdev(dev);
1160
1161         if (err) {
1162                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1163                                 dev->name);
1164                 goto register_fail;
1165         }
1166
1167         device_init_wakeup(&dev->dev,
1168                 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1169
1170         /* fill out IRQ number and name fields */
1171         len_devname = strlen(dev->name);
1172         for (i = 0; i < priv->num_grps; i++) {
1173                 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1174                                 len_devname);
1175                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1176                         strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1177                                 "_g", sizeof("_g"));
1178                         priv->gfargrp[i].int_name_tx[
1179                                 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1180                         strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1181                                 priv->gfargrp[i].int_name_tx)],
1182                                 "_tx", sizeof("_tx") + 1);
1183
1184                         strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1185                                         len_devname);
1186                         strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1187                                         "_g", sizeof("_g"));
1188                         priv->gfargrp[i].int_name_rx[
1189                                 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1190                         strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1191                                 priv->gfargrp[i].int_name_rx)],
1192                                 "_rx", sizeof("_rx") + 1);
1193
1194                         strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1195                                         len_devname);
1196                         strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1197                                 "_g", sizeof("_g"));
1198                         priv->gfargrp[i].int_name_er[strlen(
1199                                         priv->gfargrp[i].int_name_er)] = i+48;
1200                         strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1201                                 priv->gfargrp[i].int_name_er)],
1202                                 "_er", sizeof("_er") + 1);
1203                 } else
1204                         priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1205         }
1206
1207         /* Initialize the filer table */
1208         gfar_init_filer_table(priv);
1209
1210         /* Create all the sysfs files */
1211         gfar_init_sysfs(dev);
1212
1213         /* Print out the device info */
1214         printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
1215
1216         /* Even more device info helps when determining which kernel */
1217         /* provided which set of benchmarks. */
1218         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
1219         for (i = 0; i < priv->num_rx_queues; i++)
1220                 printk(KERN_INFO "%s: RX BD ring size for Q[%d]: %d\n",
1221                         dev->name, i, priv->rx_queue[i]->rx_ring_size);
1222         for(i = 0; i < priv->num_tx_queues; i++)
1223                  printk(KERN_INFO "%s: TX BD ring size for Q[%d]: %d\n",
1224                         dev->name, i, priv->tx_queue[i]->tx_ring_size);
1225
1226         return 0;
1227
1228 register_fail:
1229         unmap_group_regs(priv);
1230         free_tx_pointers(priv);
1231         free_rx_pointers(priv);
1232         if (priv->phy_node)
1233                 of_node_put(priv->phy_node);
1234         if (priv->tbi_node)
1235                 of_node_put(priv->tbi_node);
1236         free_netdev(dev);
1237         return err;
1238 }
1239
1240 static int gfar_remove(struct platform_device *ofdev)
1241 {
1242         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1243
1244         if (priv->phy_node)
1245                 of_node_put(priv->phy_node);
1246         if (priv->tbi_node)
1247                 of_node_put(priv->tbi_node);
1248
1249         dev_set_drvdata(&ofdev->dev, NULL);
1250
1251         unregister_netdev(priv->ndev);
1252         unmap_group_regs(priv);
1253         free_netdev(priv->ndev);
1254
1255         return 0;
1256 }
1257
1258 #ifdef CONFIG_PM
1259
1260 static int gfar_suspend(struct device *dev)
1261 {
1262         struct gfar_private *priv = dev_get_drvdata(dev);
1263         struct net_device *ndev = priv->ndev;
1264         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1265         unsigned long flags;
1266         u32 tempval;
1267
1268         int magic_packet = priv->wol_en &&
1269                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1270
1271         netif_device_detach(ndev);
1272
1273         if (netif_running(ndev)) {
1274
1275                 local_irq_save(flags);
1276                 lock_tx_qs(priv);
1277                 lock_rx_qs(priv);
1278
1279                 gfar_halt_nodisable(ndev);
1280
1281                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1282                 tempval = gfar_read(&regs->maccfg1);
1283
1284                 tempval &= ~MACCFG1_TX_EN;
1285
1286                 if (!magic_packet)
1287                         tempval &= ~MACCFG1_RX_EN;
1288
1289                 gfar_write(&regs->maccfg1, tempval);
1290
1291                 unlock_rx_qs(priv);
1292                 unlock_tx_qs(priv);
1293                 local_irq_restore(flags);
1294
1295                 disable_napi(priv);
1296
1297                 if (magic_packet) {
1298                         /* Enable interrupt on Magic Packet */
1299                         gfar_write(&regs->imask, IMASK_MAG);
1300
1301                         /* Enable Magic Packet mode */
1302                         tempval = gfar_read(&regs->maccfg2);
1303                         tempval |= MACCFG2_MPEN;
1304                         gfar_write(&regs->maccfg2, tempval);
1305                 } else {
1306                         phy_stop(priv->phydev);
1307                 }
1308         }
1309
1310         return 0;
1311 }
1312
1313 static int gfar_resume(struct device *dev)
1314 {
1315         struct gfar_private *priv = dev_get_drvdata(dev);
1316         struct net_device *ndev = priv->ndev;
1317         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1318         unsigned long flags;
1319         u32 tempval;
1320         int magic_packet = priv->wol_en &&
1321                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1322
1323         if (!netif_running(ndev)) {
1324                 netif_device_attach(ndev);
1325                 return 0;
1326         }
1327
1328         if (!magic_packet && priv->phydev)
1329                 phy_start(priv->phydev);
1330
1331         /* Disable Magic Packet mode, in case something
1332          * else woke us up.
1333          */
1334         local_irq_save(flags);
1335         lock_tx_qs(priv);
1336         lock_rx_qs(priv);
1337
1338         tempval = gfar_read(&regs->maccfg2);
1339         tempval &= ~MACCFG2_MPEN;
1340         gfar_write(&regs->maccfg2, tempval);
1341
1342         gfar_start(ndev);
1343
1344         unlock_rx_qs(priv);
1345         unlock_tx_qs(priv);
1346         local_irq_restore(flags);
1347
1348         netif_device_attach(ndev);
1349
1350         enable_napi(priv);
1351
1352         return 0;
1353 }
1354
1355 static int gfar_restore(struct device *dev)
1356 {
1357         struct gfar_private *priv = dev_get_drvdata(dev);
1358         struct net_device *ndev = priv->ndev;
1359
1360         if (!netif_running(ndev))
1361                 return 0;
1362
1363         gfar_init_bds(ndev);
1364         init_registers(ndev);
1365         gfar_set_mac_address(ndev);
1366         gfar_init_mac(ndev);
1367         gfar_start(ndev);
1368
1369         priv->oldlink = 0;
1370         priv->oldspeed = 0;
1371         priv->oldduplex = -1;
1372
1373         if (priv->phydev)
1374                 phy_start(priv->phydev);
1375
1376         netif_device_attach(ndev);
1377         enable_napi(priv);
1378
1379         return 0;
1380 }
1381
1382 static struct dev_pm_ops gfar_pm_ops = {
1383         .suspend = gfar_suspend,
1384         .resume = gfar_resume,
1385         .freeze = gfar_suspend,
1386         .thaw = gfar_resume,
1387         .restore = gfar_restore,
1388 };
1389
1390 #define GFAR_PM_OPS (&gfar_pm_ops)
1391
1392 #else
1393
1394 #define GFAR_PM_OPS NULL
1395
1396 #endif
1397
1398 /* Reads the controller's registers to determine what interface
1399  * connects it to the PHY.
1400  */
1401 static phy_interface_t gfar_get_interface(struct net_device *dev)
1402 {
1403         struct gfar_private *priv = netdev_priv(dev);
1404         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1405         u32 ecntrl;
1406
1407         ecntrl = gfar_read(&regs->ecntrl);
1408
1409         if (ecntrl & ECNTRL_SGMII_MODE)
1410                 return PHY_INTERFACE_MODE_SGMII;
1411
1412         if (ecntrl & ECNTRL_TBI_MODE) {
1413                 if (ecntrl & ECNTRL_REDUCED_MODE)
1414                         return PHY_INTERFACE_MODE_RTBI;
1415                 else
1416                         return PHY_INTERFACE_MODE_TBI;
1417         }
1418
1419         if (ecntrl & ECNTRL_REDUCED_MODE) {
1420                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1421                         return PHY_INTERFACE_MODE_RMII;
1422                 else {
1423                         phy_interface_t interface = priv->interface;
1424
1425                         /*
1426                          * This isn't autodetected right now, so it must
1427                          * be set by the device tree or platform code.
1428                          */
1429                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1430                                 return PHY_INTERFACE_MODE_RGMII_ID;
1431
1432                         return PHY_INTERFACE_MODE_RGMII;
1433                 }
1434         }
1435
1436         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1437                 return PHY_INTERFACE_MODE_GMII;
1438
1439         return PHY_INTERFACE_MODE_MII;
1440 }
1441
1442
1443 /* Initializes driver's PHY state, and attaches to the PHY.
1444  * Returns 0 on success.
1445  */
1446 static int init_phy(struct net_device *dev)
1447 {
1448         struct gfar_private *priv = netdev_priv(dev);
1449         uint gigabit_support =
1450                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1451                 SUPPORTED_1000baseT_Full : 0;
1452         phy_interface_t interface;
1453
1454         priv->oldlink = 0;
1455         priv->oldspeed = 0;
1456         priv->oldduplex = -1;
1457
1458         interface = gfar_get_interface(dev);
1459
1460         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1461                                       interface);
1462         if (!priv->phydev)
1463                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1464                                                          interface);
1465         if (!priv->phydev) {
1466                 dev_err(&dev->dev, "could not attach to PHY\n");
1467                 return -ENODEV;
1468         }
1469
1470         if (interface == PHY_INTERFACE_MODE_SGMII)
1471                 gfar_configure_serdes(dev);
1472
1473         /* Remove any features not supported by the controller */
1474         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1475         priv->phydev->advertising = priv->phydev->supported;
1476
1477         return 0;
1478 }
1479
1480 /*
1481  * Initialize TBI PHY interface for communicating with the
1482  * SERDES lynx PHY on the chip.  We communicate with this PHY
1483  * through the MDIO bus on each controller, treating it as a
1484  * "normal" PHY at the address found in the TBIPA register.  We assume
1485  * that the TBIPA register is valid.  Either the MDIO bus code will set
1486  * it to a value that doesn't conflict with other PHYs on the bus, or the
1487  * value doesn't matter, as there are no other PHYs on the bus.
1488  */
1489 static void gfar_configure_serdes(struct net_device *dev)
1490 {
1491         struct gfar_private *priv = netdev_priv(dev);
1492         struct phy_device *tbiphy;
1493
1494         if (!priv->tbi_node) {
1495                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1496                                     "device tree specify a tbi-handle\n");
1497                 return;
1498         }
1499
1500         tbiphy = of_phy_find_device(priv->tbi_node);
1501         if (!tbiphy) {
1502                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1503                 return;
1504         }
1505
1506         /*
1507          * If the link is already up, we must already be ok, and don't need to
1508          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1509          * everything for us?  Resetting it takes the link down and requires
1510          * several seconds for it to come back.
1511          */
1512         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1513                 return;
1514
1515         /* Single clk mode, mii mode off(for serdes communication) */
1516         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1517
1518         phy_write(tbiphy, MII_ADVERTISE,
1519                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1520                         ADVERTISE_1000XPSE_ASYM);
1521
1522         phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1523                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1524 }
1525
1526 static void init_registers(struct net_device *dev)
1527 {
1528         struct gfar_private *priv = netdev_priv(dev);
1529         struct gfar __iomem *regs = NULL;
1530         int i = 0;
1531
1532         for (i = 0; i < priv->num_grps; i++) {
1533                 regs = priv->gfargrp[i].regs;
1534                 /* Clear IEVENT */
1535                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1536
1537                 /* Initialize IMASK */
1538                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1539         }
1540
1541         regs = priv->gfargrp[0].regs;
1542         /* Init hash registers to zero */
1543         gfar_write(&regs->igaddr0, 0);
1544         gfar_write(&regs->igaddr1, 0);
1545         gfar_write(&regs->igaddr2, 0);
1546         gfar_write(&regs->igaddr3, 0);
1547         gfar_write(&regs->igaddr4, 0);
1548         gfar_write(&regs->igaddr5, 0);
1549         gfar_write(&regs->igaddr6, 0);
1550         gfar_write(&regs->igaddr7, 0);
1551
1552         gfar_write(&regs->gaddr0, 0);
1553         gfar_write(&regs->gaddr1, 0);
1554         gfar_write(&regs->gaddr2, 0);
1555         gfar_write(&regs->gaddr3, 0);
1556         gfar_write(&regs->gaddr4, 0);
1557         gfar_write(&regs->gaddr5, 0);
1558         gfar_write(&regs->gaddr6, 0);
1559         gfar_write(&regs->gaddr7, 0);
1560
1561         /* Zero out the rmon mib registers if it has them */
1562         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1563                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1564
1565                 /* Mask off the CAM interrupts */
1566                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1567                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1568         }
1569
1570         /* Initialize the max receive buffer length */
1571         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1572
1573         /* Initialize the Minimum Frame Length Register */
1574         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1575 }
1576
1577 static int __gfar_is_rx_idle(struct gfar_private *priv)
1578 {
1579         u32 res;
1580
1581         /*
1582          * Normaly TSEC should not hang on GRS commands, so we should
1583          * actually wait for IEVENT_GRSC flag.
1584          */
1585         if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1586                 return 0;
1587
1588         /*
1589          * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1590          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1591          * and the Rx can be safely reset.
1592          */
1593         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1594         res &= 0x7f807f80;
1595         if ((res & 0xffff) == (res >> 16))
1596                 return 1;
1597
1598         return 0;
1599 }
1600
1601 /* Halt the receive and transmit queues */
1602 static void gfar_halt_nodisable(struct net_device *dev)
1603 {
1604         struct gfar_private *priv = netdev_priv(dev);
1605         struct gfar __iomem *regs = NULL;
1606         u32 tempval;
1607         int i = 0;
1608
1609         for (i = 0; i < priv->num_grps; i++) {
1610                 regs = priv->gfargrp[i].regs;
1611                 /* Mask all interrupts */
1612                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1613
1614                 /* Clear all interrupts */
1615                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1616         }
1617
1618         regs = priv->gfargrp[0].regs;
1619         /* Stop the DMA, and wait for it to stop */
1620         tempval = gfar_read(&regs->dmactrl);
1621         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1622             != (DMACTRL_GRS | DMACTRL_GTS)) {
1623                 int ret;
1624
1625                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1626                 gfar_write(&regs->dmactrl, tempval);
1627
1628                 do {
1629                         ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1630                                  (IEVENT_GRSC | IEVENT_GTSC)) ==
1631                                  (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1632                         if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1633                                 ret = __gfar_is_rx_idle(priv);
1634                 } while (!ret);
1635         }
1636 }
1637
1638 /* Halt the receive and transmit queues */
1639 void gfar_halt(struct net_device *dev)
1640 {
1641         struct gfar_private *priv = netdev_priv(dev);
1642         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1643         u32 tempval;
1644
1645         gfar_halt_nodisable(dev);
1646
1647         /* Disable Rx and Tx */
1648         tempval = gfar_read(&regs->maccfg1);
1649         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1650         gfar_write(&regs->maccfg1, tempval);
1651 }
1652
1653 static void free_grp_irqs(struct gfar_priv_grp *grp)
1654 {
1655         free_irq(grp->interruptError, grp);
1656         free_irq(grp->interruptTransmit, grp);
1657         free_irq(grp->interruptReceive, grp);
1658 }
1659
1660 void stop_gfar(struct net_device *dev)
1661 {
1662         struct gfar_private *priv = netdev_priv(dev);
1663         unsigned long flags;
1664         int i;
1665
1666         phy_stop(priv->phydev);
1667
1668
1669         /* Lock it down */
1670         local_irq_save(flags);
1671         lock_tx_qs(priv);
1672         lock_rx_qs(priv);
1673
1674         gfar_halt(dev);
1675
1676         unlock_rx_qs(priv);
1677         unlock_tx_qs(priv);
1678         local_irq_restore(flags);
1679
1680         /* Free the IRQs */
1681         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1682                 for (i = 0; i < priv->num_grps; i++)
1683                         free_grp_irqs(&priv->gfargrp[i]);
1684         } else {
1685                 for (i = 0; i < priv->num_grps; i++)
1686                         free_irq(priv->gfargrp[i].interruptTransmit,
1687                                         &priv->gfargrp[i]);
1688         }
1689
1690         free_skb_resources(priv);
1691 }
1692
1693 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1694 {
1695         struct txbd8 *txbdp;
1696         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1697         int i, j;
1698
1699         txbdp = tx_queue->tx_bd_base;
1700
1701         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1702                 if (!tx_queue->tx_skbuff[i])
1703                         continue;
1704
1705                 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1706                                 txbdp->length, DMA_TO_DEVICE);
1707                 txbdp->lstatus = 0;
1708                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1709                                 j++) {
1710                         txbdp++;
1711                         dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1712                                         txbdp->length, DMA_TO_DEVICE);
1713                 }
1714                 txbdp++;
1715                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1716                 tx_queue->tx_skbuff[i] = NULL;
1717         }
1718         kfree(tx_queue->tx_skbuff);
1719 }
1720
1721 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1722 {
1723         struct rxbd8 *rxbdp;
1724         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1725         int i;
1726
1727         rxbdp = rx_queue->rx_bd_base;
1728
1729         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1730                 if (rx_queue->rx_skbuff[i]) {
1731                         dma_unmap_single(&priv->ofdev->dev,
1732                                         rxbdp->bufPtr, priv->rx_buffer_size,
1733                                         DMA_FROM_DEVICE);
1734                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1735                         rx_queue->rx_skbuff[i] = NULL;
1736                 }
1737                 rxbdp->lstatus = 0;
1738                 rxbdp->bufPtr = 0;
1739                 rxbdp++;
1740         }
1741         kfree(rx_queue->rx_skbuff);
1742 }
1743
1744 /* If there are any tx skbs or rx skbs still around, free them.
1745  * Then free tx_skbuff and rx_skbuff */
1746 static void free_skb_resources(struct gfar_private *priv)
1747 {
1748         struct gfar_priv_tx_q *tx_queue = NULL;
1749         struct gfar_priv_rx_q *rx_queue = NULL;
1750         int i;
1751
1752         /* Go through all the buffer descriptors and free their data buffers */
1753         for (i = 0; i < priv->num_tx_queues; i++) {
1754                 tx_queue = priv->tx_queue[i];
1755                 if(tx_queue->tx_skbuff)
1756                         free_skb_tx_queue(tx_queue);
1757         }
1758
1759         for (i = 0; i < priv->num_rx_queues; i++) {
1760                 rx_queue = priv->rx_queue[i];
1761                 if(rx_queue->rx_skbuff)
1762                         free_skb_rx_queue(rx_queue);
1763         }
1764
1765         dma_free_coherent(&priv->ofdev->dev,
1766                         sizeof(struct txbd8) * priv->total_tx_ring_size +
1767                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
1768                         priv->tx_queue[0]->tx_bd_base,
1769                         priv->tx_queue[0]->tx_bd_dma_base);
1770         skb_queue_purge(&priv->rx_recycle);
1771 }
1772
1773 void gfar_start(struct net_device *dev)
1774 {
1775         struct gfar_private *priv = netdev_priv(dev);
1776         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1777         u32 tempval;
1778         int i = 0;
1779
1780         /* Enable Rx and Tx in MACCFG1 */
1781         tempval = gfar_read(&regs->maccfg1);
1782         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1783         gfar_write(&regs->maccfg1, tempval);
1784
1785         /* Initialize DMACTRL to have WWR and WOP */
1786         tempval = gfar_read(&regs->dmactrl);
1787         tempval |= DMACTRL_INIT_SETTINGS;
1788         gfar_write(&regs->dmactrl, tempval);
1789
1790         /* Make sure we aren't stopped */
1791         tempval = gfar_read(&regs->dmactrl);
1792         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1793         gfar_write(&regs->dmactrl, tempval);
1794
1795         for (i = 0; i < priv->num_grps; i++) {
1796                 regs = priv->gfargrp[i].regs;
1797                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1798                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1799                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1800                 /* Unmask the interrupts we look for */
1801                 gfar_write(&regs->imask, IMASK_DEFAULT);
1802         }
1803
1804         dev->trans_start = jiffies; /* prevent tx timeout */
1805 }
1806
1807 void gfar_configure_coalescing(struct gfar_private *priv,
1808         unsigned long tx_mask, unsigned long rx_mask)
1809 {
1810         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1811         u32 __iomem *baddr;
1812         int i = 0;
1813
1814         /* Backward compatible case ---- even if we enable
1815          * multiple queues, there's only single reg to program
1816          */
1817         gfar_write(&regs->txic, 0);
1818         if(likely(priv->tx_queue[0]->txcoalescing))
1819                 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1820
1821         gfar_write(&regs->rxic, 0);
1822         if(unlikely(priv->rx_queue[0]->rxcoalescing))
1823                 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1824
1825         if (priv->mode == MQ_MG_MODE) {
1826                 baddr = &regs->txic0;
1827                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1828                         if (likely(priv->tx_queue[i]->txcoalescing)) {
1829                                 gfar_write(baddr + i, 0);
1830                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1831                         }
1832                 }
1833
1834                 baddr = &regs->rxic0;
1835                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1836                         if (likely(priv->rx_queue[i]->rxcoalescing)) {
1837                                 gfar_write(baddr + i, 0);
1838                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1839                         }
1840                 }
1841         }
1842 }
1843
1844 static int register_grp_irqs(struct gfar_priv_grp *grp)
1845 {
1846         struct gfar_private *priv = grp->priv;
1847         struct net_device *dev = priv->ndev;
1848         int err;
1849
1850         /* If the device has multiple interrupts, register for
1851          * them.  Otherwise, only register for the one */
1852         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1853                 /* Install our interrupt handlers for Error,
1854                  * Transmit, and Receive */
1855                 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1856                                 grp->int_name_er,grp)) < 0) {
1857                         if (netif_msg_intr(priv))
1858                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1859                                         dev->name, grp->interruptError);
1860
1861                         goto err_irq_fail;
1862                 }
1863
1864                 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1865                                 0, grp->int_name_tx, grp)) < 0) {
1866                         if (netif_msg_intr(priv))
1867                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1868                                         dev->name, grp->interruptTransmit);
1869                         goto tx_irq_fail;
1870                 }
1871
1872                 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1873                                 grp->int_name_rx, grp)) < 0) {
1874                         if (netif_msg_intr(priv))
1875                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1876                                         dev->name, grp->interruptReceive);
1877                         goto rx_irq_fail;
1878                 }
1879         } else {
1880                 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1881                                 grp->int_name_tx, grp)) < 0) {
1882                         if (netif_msg_intr(priv))
1883                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1884                                         dev->name, grp->interruptTransmit);
1885                         goto err_irq_fail;
1886                 }
1887         }
1888
1889         return 0;
1890
1891 rx_irq_fail:
1892         free_irq(grp->interruptTransmit, grp);
1893 tx_irq_fail:
1894         free_irq(grp->interruptError, grp);
1895 err_irq_fail:
1896         return err;
1897
1898 }
1899
1900 /* Bring the controller up and running */
1901 int startup_gfar(struct net_device *ndev)
1902 {
1903         struct gfar_private *priv = netdev_priv(ndev);
1904         struct gfar __iomem *regs = NULL;
1905         int err, i, j;
1906
1907         for (i = 0; i < priv->num_grps; i++) {
1908                 regs= priv->gfargrp[i].regs;
1909                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1910         }
1911
1912         regs= priv->gfargrp[0].regs;
1913         err = gfar_alloc_skb_resources(ndev);
1914         if (err)
1915                 return err;
1916
1917         gfar_init_mac(ndev);
1918
1919         for (i = 0; i < priv->num_grps; i++) {
1920                 err = register_grp_irqs(&priv->gfargrp[i]);
1921                 if (err) {
1922                         for (j = 0; j < i; j++)
1923                                 free_grp_irqs(&priv->gfargrp[j]);
1924                                 goto irq_fail;
1925                 }
1926         }
1927
1928         /* Start the controller */
1929         gfar_start(ndev);
1930
1931         phy_start(priv->phydev);
1932
1933         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1934
1935         return 0;
1936
1937 irq_fail:
1938         free_skb_resources(priv);
1939         return err;
1940 }
1941
1942 /* Called when something needs to use the ethernet device */
1943 /* Returns 0 for success. */
1944 static int gfar_enet_open(struct net_device *dev)
1945 {
1946         struct gfar_private *priv = netdev_priv(dev);
1947         int err;
1948
1949         enable_napi(priv);
1950
1951         skb_queue_head_init(&priv->rx_recycle);
1952
1953         /* Initialize a bunch of registers */
1954         init_registers(dev);
1955
1956         gfar_set_mac_address(dev);
1957
1958         err = init_phy(dev);
1959
1960         if (err) {
1961                 disable_napi(priv);
1962                 return err;
1963         }
1964
1965         err = startup_gfar(dev);
1966         if (err) {
1967                 disable_napi(priv);
1968                 return err;
1969         }
1970
1971         netif_tx_start_all_queues(dev);
1972
1973         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1974
1975         return err;
1976 }
1977
1978 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1979 {
1980         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1981
1982         memset(fcb, 0, GMAC_FCB_LEN);
1983
1984         return fcb;
1985 }
1986
1987 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1988 {
1989         u8 flags = 0;
1990
1991         /* If we're here, it's a IP packet with a TCP or UDP
1992          * payload.  We set it to checksum, using a pseudo-header
1993          * we provide
1994          */
1995         flags = TXFCB_DEFAULT;
1996
1997         /* Tell the controller what the protocol is */
1998         /* And provide the already calculated phcs */
1999         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2000                 flags |= TXFCB_UDP;
2001                 fcb->phcs = udp_hdr(skb)->check;
2002         } else
2003                 fcb->phcs = tcp_hdr(skb)->check;
2004
2005         /* l3os is the distance between the start of the
2006          * frame (skb->data) and the start of the IP hdr.
2007          * l4os is the distance between the start of the
2008          * l3 hdr and the l4 hdr */
2009         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
2010         fcb->l4os = skb_network_header_len(skb);
2011
2012         fcb->flags = flags;
2013 }
2014
2015 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2016 {
2017         fcb->flags |= TXFCB_VLN;
2018         fcb->vlctl = vlan_tx_tag_get(skb);
2019 }
2020
2021 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2022                                struct txbd8 *base, int ring_size)
2023 {
2024         struct txbd8 *new_bd = bdp + stride;
2025
2026         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2027 }
2028
2029 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2030                 int ring_size)
2031 {
2032         return skip_txbd(bdp, 1, base, ring_size);
2033 }
2034
2035 /* This is called by the kernel when a frame is ready for transmission. */
2036 /* It is pointed to by the dev->hard_start_xmit function pointer */
2037 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2038 {
2039         struct gfar_private *priv = netdev_priv(dev);
2040         struct gfar_priv_tx_q *tx_queue = NULL;
2041         struct netdev_queue *txq;
2042         struct gfar __iomem *regs = NULL;
2043         struct txfcb *fcb = NULL;
2044         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2045         u32 lstatus;
2046         int i, rq = 0, do_tstamp = 0;
2047         u32 bufaddr;
2048         unsigned long flags;
2049         unsigned int nr_frags, nr_txbds, length;
2050
2051         /*
2052          * TOE=1 frames larger than 2500 bytes may see excess delays
2053          * before start of transmission.
2054          */
2055         if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2056                         skb->ip_summed == CHECKSUM_PARTIAL &&
2057                         skb->len > 2500)) {
2058                 int ret;
2059
2060                 ret = skb_checksum_help(skb);
2061                 if (ret)
2062                         return ret;
2063         }
2064
2065         rq = skb->queue_mapping;
2066         tx_queue = priv->tx_queue[rq];
2067         txq = netdev_get_tx_queue(dev, rq);
2068         base = tx_queue->tx_bd_base;
2069         regs = tx_queue->grp->regs;
2070
2071         /* check if time stamp should be generated */
2072         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2073                      priv->hwts_tx_en))
2074                 do_tstamp = 1;
2075
2076         /* make space for additional header when fcb is needed */
2077         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2078                         vlan_tx_tag_present(skb) ||
2079                         unlikely(do_tstamp)) &&
2080                         (skb_headroom(skb) < GMAC_FCB_LEN)) {
2081                 struct sk_buff *skb_new;
2082
2083                 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
2084                 if (!skb_new) {
2085                         dev->stats.tx_errors++;
2086                         kfree_skb(skb);
2087                         return NETDEV_TX_OK;
2088                 }
2089                 kfree_skb(skb);
2090                 skb = skb_new;
2091         }
2092
2093         /* total number of fragments in the SKB */
2094         nr_frags = skb_shinfo(skb)->nr_frags;
2095
2096         /* calculate the required number of TxBDs for this skb */
2097         if (unlikely(do_tstamp))
2098                 nr_txbds = nr_frags + 2;
2099         else
2100                 nr_txbds = nr_frags + 1;
2101
2102         /* check if there is space to queue this packet */
2103         if (nr_txbds > tx_queue->num_txbdfree) {
2104                 /* no space, stop the queue */
2105                 netif_tx_stop_queue(txq);
2106                 dev->stats.tx_fifo_errors++;
2107                 return NETDEV_TX_BUSY;
2108         }
2109
2110         /* Update transmit stats */
2111         txq->tx_bytes += skb->len;
2112         txq->tx_packets ++;
2113
2114         txbdp = txbdp_start = tx_queue->cur_tx;
2115         lstatus = txbdp->lstatus;
2116
2117         /* Time stamp insertion requires one additional TxBD */
2118         if (unlikely(do_tstamp))
2119                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2120                                 tx_queue->tx_ring_size);
2121
2122         if (nr_frags == 0) {
2123                 if (unlikely(do_tstamp))
2124                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2125                                         TXBD_INTERRUPT);
2126                 else
2127                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2128         } else {
2129                 /* Place the fragment addresses and lengths into the TxBDs */
2130                 for (i = 0; i < nr_frags; i++) {
2131                         /* Point at the next BD, wrapping as needed */
2132                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2133
2134                         length = skb_shinfo(skb)->frags[i].size;
2135
2136                         lstatus = txbdp->lstatus | length |
2137                                 BD_LFLAG(TXBD_READY);
2138
2139                         /* Handle the last BD specially */
2140                         if (i == nr_frags - 1)
2141                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2142
2143                         bufaddr = dma_map_page(&priv->ofdev->dev,
2144                                         skb_shinfo(skb)->frags[i].page,
2145                                         skb_shinfo(skb)->frags[i].page_offset,
2146                                         length,
2147                                         DMA_TO_DEVICE);
2148
2149                         /* set the TxBD length and buffer pointer */
2150                         txbdp->bufPtr = bufaddr;
2151                         txbdp->lstatus = lstatus;
2152                 }
2153
2154                 lstatus = txbdp_start->lstatus;
2155         }
2156
2157         /* Set up checksumming */
2158         if (CHECKSUM_PARTIAL == skb->ip_summed) {
2159                 fcb = gfar_add_fcb(skb);
2160                 lstatus |= BD_LFLAG(TXBD_TOE);
2161                 gfar_tx_checksum(skb, fcb);
2162         }
2163
2164         if (vlan_tx_tag_present(skb)) {
2165                 if (unlikely(NULL == fcb)) {
2166                         fcb = gfar_add_fcb(skb);
2167                         lstatus |= BD_LFLAG(TXBD_TOE);
2168                 }
2169
2170                 gfar_tx_vlan(skb, fcb);
2171         }
2172
2173         /* Setup tx hardware time stamping if requested */
2174         if (unlikely(do_tstamp)) {
2175                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2176                 if (fcb == NULL)
2177                         fcb = gfar_add_fcb(skb);
2178                 fcb->ptp = 1;
2179                 lstatus |= BD_LFLAG(TXBD_TOE);
2180         }
2181
2182         txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2183                         skb_headlen(skb), DMA_TO_DEVICE);
2184
2185         /*
2186          * If time stamping is requested one additional TxBD must be set up. The
2187          * first TxBD points to the FCB and must have a data length of
2188          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2189          * the full frame length.
2190          */
2191         if (unlikely(do_tstamp)) {
2192                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + GMAC_FCB_LEN;
2193                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2194                                 (skb_headlen(skb) - GMAC_FCB_LEN);
2195                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2196         } else {
2197                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2198         }
2199
2200         /*
2201          * We can work in parallel with gfar_clean_tx_ring(), except
2202          * when modifying num_txbdfree. Note that we didn't grab the lock
2203          * when we were reading the num_txbdfree and checking for available
2204          * space, that's because outside of this function it can only grow,
2205          * and once we've got needed space, it cannot suddenly disappear.
2206          *
2207          * The lock also protects us from gfar_error(), which can modify
2208          * regs->tstat and thus retrigger the transfers, which is why we
2209          * also must grab the lock before setting ready bit for the first
2210          * to be transmitted BD.
2211          */
2212         spin_lock_irqsave(&tx_queue->txlock, flags);
2213
2214         /*
2215          * The powerpc-specific eieio() is used, as wmb() has too strong
2216          * semantics (it requires synchronization between cacheable and
2217          * uncacheable mappings, which eieio doesn't provide and which we
2218          * don't need), thus requiring a more expensive sync instruction.  At
2219          * some point, the set of architecture-independent barrier functions
2220          * should be expanded to include weaker barriers.
2221          */
2222         eieio();
2223
2224         txbdp_start->lstatus = lstatus;
2225
2226         eieio(); /* force lstatus write before tx_skbuff */
2227
2228         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2229
2230         /* Update the current skb pointer to the next entry we will use
2231          * (wrapping if necessary) */
2232         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2233                 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2234
2235         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2236
2237         /* reduce TxBD free count */
2238         tx_queue->num_txbdfree -= (nr_txbds);
2239
2240         /* If the next BD still needs to be cleaned up, then the bds
2241            are full.  We need to tell the kernel to stop sending us stuff. */
2242         if (!tx_queue->num_txbdfree) {
2243                 netif_tx_stop_queue(txq);
2244
2245                 dev->stats.tx_fifo_errors++;
2246         }
2247
2248         /* Tell the DMA to go go go */
2249         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2250
2251         /* Unlock priv */
2252         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2253
2254         return NETDEV_TX_OK;
2255 }
2256
2257 /* Stops the kernel queue, and halts the controller */
2258 static int gfar_close(struct net_device *dev)
2259 {
2260         struct gfar_private *priv = netdev_priv(dev);
2261
2262         disable_napi(priv);
2263
2264         cancel_work_sync(&priv->reset_task);
2265         stop_gfar(dev);
2266
2267         /* Disconnect from the PHY */
2268         phy_disconnect(priv->phydev);
2269         priv->phydev = NULL;
2270
2271         netif_tx_stop_all_queues(dev);
2272
2273         return 0;
2274 }
2275
2276 /* Changes the mac address if the controller is not running. */
2277 static int gfar_set_mac_address(struct net_device *dev)
2278 {
2279         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2280
2281         return 0;
2282 }
2283
2284
2285 /* Enables and disables VLAN insertion/extraction */
2286 static void gfar_vlan_rx_register(struct net_device *dev,
2287                 struct vlan_group *grp)
2288 {
2289         struct gfar_private *priv = netdev_priv(dev);
2290         struct gfar __iomem *regs = NULL;
2291         unsigned long flags;
2292         u32 tempval;
2293
2294         regs = priv->gfargrp[0].regs;
2295         local_irq_save(flags);
2296         lock_rx_qs(priv);
2297
2298         priv->vlgrp = grp;
2299
2300         if (grp) {
2301                 /* Enable VLAN tag insertion */
2302                 tempval = gfar_read(&regs->tctrl);
2303                 tempval |= TCTRL_VLINS;
2304
2305                 gfar_write(&regs->tctrl, tempval);
2306
2307                 /* Enable VLAN tag extraction */
2308                 tempval = gfar_read(&regs->rctrl);
2309                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2310                 gfar_write(&regs->rctrl, tempval);
2311         } else {
2312                 /* Disable VLAN tag insertion */
2313                 tempval = gfar_read(&regs->tctrl);
2314                 tempval &= ~TCTRL_VLINS;
2315                 gfar_write(&regs->tctrl, tempval);
2316
2317                 /* Disable VLAN tag extraction */
2318                 tempval = gfar_read(&regs->rctrl);
2319                 tempval &= ~RCTRL_VLEX;
2320                 /* If parse is no longer required, then disable parser */
2321                 if (tempval & RCTRL_REQ_PARSER)
2322                         tempval |= RCTRL_PRSDEP_INIT;
2323                 else
2324                         tempval &= ~RCTRL_PRSDEP_INIT;
2325                 gfar_write(&regs->rctrl, tempval);
2326         }
2327
2328         gfar_change_mtu(dev, dev->mtu);
2329
2330         unlock_rx_qs(priv);
2331         local_irq_restore(flags);
2332 }
2333
2334 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2335 {
2336         int tempsize, tempval;
2337         struct gfar_private *priv = netdev_priv(dev);
2338         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2339         int oldsize = priv->rx_buffer_size;
2340         int frame_size = new_mtu + ETH_HLEN;
2341
2342         if (priv->vlgrp)
2343                 frame_size += VLAN_HLEN;
2344
2345         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2346                 if (netif_msg_drv(priv))
2347                         printk(KERN_ERR "%s: Invalid MTU setting\n",
2348                                         dev->name);
2349                 return -EINVAL;
2350         }
2351
2352         if (gfar_uses_fcb(priv))
2353                 frame_size += GMAC_FCB_LEN;
2354
2355         frame_size += priv->padding;
2356
2357         tempsize =
2358             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2359             INCREMENTAL_BUFFER_SIZE;
2360
2361         /* Only stop and start the controller if it isn't already
2362          * stopped, and we changed something */
2363         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2364                 stop_gfar(dev);
2365
2366         priv->rx_buffer_size = tempsize;
2367
2368         dev->mtu = new_mtu;
2369
2370         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2371         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2372
2373         /* If the mtu is larger than the max size for standard
2374          * ethernet frames (ie, a jumbo frame), then set maccfg2
2375          * to allow huge frames, and to check the length */
2376         tempval = gfar_read(&regs->maccfg2);
2377
2378         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2379                         gfar_has_errata(priv, GFAR_ERRATA_74))
2380                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2381         else
2382                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2383
2384         gfar_write(&regs->maccfg2, tempval);
2385
2386         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2387                 startup_gfar(dev);
2388
2389         return 0;
2390 }
2391
2392 /* gfar_reset_task gets scheduled when a packet has not been
2393  * transmitted after a set amount of time.
2394  * For now, assume that clearing out all the structures, and
2395  * starting over will fix the problem.
2396  */
2397 static void gfar_reset_task(struct work_struct *work)
2398 {
2399         struct gfar_private *priv = container_of(work, struct gfar_private,
2400                         reset_task);
2401         struct net_device *dev = priv->ndev;
2402
2403         if (dev->flags & IFF_UP) {
2404                 netif_tx_stop_all_queues(dev);
2405                 stop_gfar(dev);
2406                 startup_gfar(dev);
2407                 netif_tx_start_all_queues(dev);
2408         }
2409
2410         netif_tx_schedule_all(dev);
2411 }
2412
2413 static void gfar_timeout(struct net_device *dev)
2414 {
2415         struct gfar_private *priv = netdev_priv(dev);
2416
2417         dev->stats.tx_errors++;
2418         schedule_work(&priv->reset_task);
2419 }
2420
2421 static void gfar_align_skb(struct sk_buff *skb)
2422 {
2423         /* We need the data buffer to be aligned properly.  We will reserve
2424          * as many bytes as needed to align the data properly
2425          */
2426         skb_reserve(skb, RXBUF_ALIGNMENT -
2427                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2428 }
2429
2430 /* Interrupt Handler for Transmit complete */
2431 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2432 {
2433         struct net_device *dev = tx_queue->dev;
2434         struct gfar_private *priv = netdev_priv(dev);
2435         struct gfar_priv_rx_q *rx_queue = NULL;
2436         struct txbd8 *bdp, *next = NULL;
2437         struct txbd8 *lbdp = NULL;
2438         struct txbd8 *base = tx_queue->tx_bd_base;
2439         struct sk_buff *skb;
2440         int skb_dirtytx;
2441         int tx_ring_size = tx_queue->tx_ring_size;
2442         int frags = 0, nr_txbds = 0;
2443         int i;
2444         int howmany = 0;
2445         u32 lstatus;
2446         size_t buflen;
2447
2448         rx_queue = priv->rx_queue[tx_queue->qindex];
2449         bdp = tx_queue->dirty_tx;
2450         skb_dirtytx = tx_queue->skb_dirtytx;
2451
2452         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2453                 unsigned long flags;
2454
2455                 frags = skb_shinfo(skb)->nr_frags;
2456
2457                 /*
2458                  * When time stamping, one additional TxBD must be freed.
2459                  * Also, we need to dma_unmap_single() the TxPAL.
2460                  */
2461                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2462                         nr_txbds = frags + 2;
2463                 else
2464                         nr_txbds = frags + 1;
2465
2466                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2467
2468                 lstatus = lbdp->lstatus;
2469
2470                 /* Only clean completed frames */
2471                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2472                                 (lstatus & BD_LENGTH_MASK))
2473                         break;
2474
2475                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2476                         next = next_txbd(bdp, base, tx_ring_size);
2477                         buflen = next->length + GMAC_FCB_LEN;
2478                 } else
2479                         buflen = bdp->length;
2480
2481                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2482                                 buflen, DMA_TO_DEVICE);
2483
2484                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2485                         struct skb_shared_hwtstamps shhwtstamps;
2486                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2487                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2488                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2489                         skb_tstamp_tx(skb, &shhwtstamps);
2490                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2491                         bdp = next;
2492                 }
2493
2494                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2495                 bdp = next_txbd(bdp, base, tx_ring_size);
2496
2497                 for (i = 0; i < frags; i++) {
2498                         dma_unmap_page(&priv->ofdev->dev,
2499                                         bdp->bufPtr,
2500                                         bdp->length,
2501                                         DMA_TO_DEVICE);
2502                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2503                         bdp = next_txbd(bdp, base, tx_ring_size);
2504                 }
2505
2506                 /*
2507                  * If there's room in the queue (limit it to rx_buffer_size)
2508                  * we add this skb back into the pool, if it's the right size
2509                  */
2510                 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2511                                 skb_recycle_check(skb, priv->rx_buffer_size +
2512                                         RXBUF_ALIGNMENT)) {
2513                         gfar_align_skb(skb);
2514                         __skb_queue_head(&priv->rx_recycle, skb);
2515                 } else
2516                         dev_kfree_skb_any(skb);
2517
2518                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2519
2520                 skb_dirtytx = (skb_dirtytx + 1) &
2521                         TX_RING_MOD_MASK(tx_ring_size);
2522
2523                 howmany++;
2524                 spin_lock_irqsave(&tx_queue->txlock, flags);
2525                 tx_queue->num_txbdfree += nr_txbds;
2526                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2527         }
2528
2529         /* If we freed a buffer, we can restart transmission, if necessary */
2530         if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2531                 netif_wake_subqueue(dev, tx_queue->qindex);
2532
2533         /* Update dirty indicators */
2534         tx_queue->skb_dirtytx = skb_dirtytx;
2535         tx_queue->dirty_tx = bdp;
2536
2537         return howmany;
2538 }
2539
2540 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2541 {
2542         unsigned long flags;
2543
2544         spin_lock_irqsave(&gfargrp->grplock, flags);
2545         if (napi_schedule_prep(&gfargrp->napi)) {
2546                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2547                 __napi_schedule(&gfargrp->napi);
2548         } else {
2549                 /*
2550                  * Clear IEVENT, so interrupts aren't called again
2551                  * because of the packets that have already arrived.
2552                  */
2553                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2554         }
2555         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2556
2557 }
2558
2559 /* Interrupt Handler for Transmit complete */
2560 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2561 {
2562         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2563         return IRQ_HANDLED;
2564 }
2565
2566 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2567                 struct sk_buff *skb)
2568 {
2569         struct net_device *dev = rx_queue->dev;
2570         struct gfar_private *priv = netdev_priv(dev);
2571         dma_addr_t buf;
2572
2573         buf = dma_map_single(&priv->ofdev->dev, skb->data,
2574                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2575         gfar_init_rxbdp(rx_queue, bdp, buf);
2576 }
2577
2578 static struct sk_buff * gfar_alloc_skb(struct net_device *dev)
2579 {
2580         struct gfar_private *priv = netdev_priv(dev);
2581         struct sk_buff *skb = NULL;
2582
2583         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2584         if (!skb)
2585                 return NULL;
2586
2587         gfar_align_skb(skb);
2588
2589         return skb;
2590 }
2591
2592 struct sk_buff * gfar_new_skb(struct net_device *dev)
2593 {
2594         struct gfar_private *priv = netdev_priv(dev);
2595         struct sk_buff *skb = NULL;
2596
2597         skb = __skb_dequeue(&priv->rx_recycle);
2598         if (!skb)
2599                 skb = gfar_alloc_skb(dev);
2600
2601         return skb;
2602 }
2603
2604 static inline void count_errors(unsigned short status, struct net_device *dev)
2605 {
2606         struct gfar_private *priv = netdev_priv(dev);
2607         struct net_device_stats *stats = &dev->stats;
2608         struct gfar_extra_stats *estats = &priv->extra_stats;
2609
2610         /* If the packet was truncated, none of the other errors
2611          * matter */
2612         if (status & RXBD_TRUNCATED) {
2613                 stats->rx_length_errors++;
2614
2615                 estats->rx_trunc++;
2616
2617                 return;
2618         }
2619         /* Count the errors, if there were any */
2620         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2621                 stats->rx_length_errors++;
2622
2623                 if (status & RXBD_LARGE)
2624                         estats->rx_large++;
2625                 else
2626                         estats->rx_short++;
2627         }
2628         if (status & RXBD_NONOCTET) {
2629                 stats->rx_frame_errors++;
2630                 estats->rx_nonoctet++;
2631         }
2632         if (status & RXBD_CRCERR) {
2633                 estats->rx_crcerr++;
2634                 stats->rx_crc_errors++;
2635         }
2636         if (status & RXBD_OVERRUN) {
2637                 estats->rx_overrun++;
2638                 stats->rx_crc_errors++;
2639         }
2640 }
2641
2642 irqreturn_t gfar_receive(int irq, void *grp_id)
2643 {
2644         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2645         return IRQ_HANDLED;
2646 }
2647
2648 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2649 {
2650         /* If valid headers were found, and valid sums
2651          * were verified, then we tell the kernel that no
2652          * checksumming is necessary.  Otherwise, it is */
2653         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2654                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2655         else
2656                 skb_checksum_none_assert(skb);
2657 }
2658
2659
2660 /* gfar_process_frame() -- handle one incoming packet if skb
2661  * isn't NULL.  */
2662 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2663                               int amount_pull)
2664 {
2665         struct gfar_private *priv = netdev_priv(dev);
2666         struct rxfcb *fcb = NULL;
2667
2668         int ret;
2669
2670         /* fcb is at the beginning if exists */
2671         fcb = (struct rxfcb *)skb->data;
2672
2673         /* Remove the FCB from the skb */
2674         /* Remove the padded bytes, if there are any */
2675         if (amount_pull) {
2676                 skb_record_rx_queue(skb, fcb->rq);
2677                 skb_pull(skb, amount_pull);
2678         }
2679
2680         /* Get receive timestamp from the skb */
2681         if (priv->hwts_rx_en) {
2682                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2683                 u64 *ns = (u64 *) skb->data;
2684                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2685                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2686         }
2687
2688         if (priv->padding)
2689                 skb_pull(skb, priv->padding);
2690
2691         if (priv->rx_csum_enable)
2692                 gfar_rx_checksum(skb, fcb);
2693
2694         /* Tell the skb what kind of packet this is */
2695         skb->protocol = eth_type_trans(skb, dev);
2696
2697         /* Send the packet up the stack */
2698         if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
2699                 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
2700         else
2701                 ret = netif_receive_skb(skb);
2702
2703         if (NET_RX_DROP == ret)
2704                 priv->extra_stats.kernel_dropped++;
2705
2706         return 0;
2707 }
2708
2709 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2710  *   until the budget/quota has been reached. Returns the number
2711  *   of frames handled
2712  */
2713 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2714 {
2715         struct net_device *dev = rx_queue->dev;
2716         struct rxbd8 *bdp, *base;
2717         struct sk_buff *skb;
2718         int pkt_len;
2719         int amount_pull;
2720         int howmany = 0;
2721         struct gfar_private *priv = netdev_priv(dev);
2722
2723         /* Get the first full descriptor */
2724         bdp = rx_queue->cur_rx;
2725         base = rx_queue->rx_bd_base;
2726
2727         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2728
2729         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2730                 struct sk_buff *newskb;
2731                 rmb();
2732
2733                 /* Add another skb for the future */
2734                 newskb = gfar_new_skb(dev);
2735
2736                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2737
2738                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2739                                 priv->rx_buffer_size, DMA_FROM_DEVICE);
2740
2741                 if (unlikely(!(bdp->status & RXBD_ERR) &&
2742                                 bdp->length > priv->rx_buffer_size))
2743                         bdp->status = RXBD_LARGE;
2744
2745                 /* We drop the frame if we failed to allocate a new buffer */
2746                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2747                                  bdp->status & RXBD_ERR)) {
2748                         count_errors(bdp->status, dev);
2749
2750                         if (unlikely(!newskb))
2751                                 newskb = skb;
2752                         else if (skb)
2753                                 __skb_queue_head(&priv->rx_recycle, skb);
2754                 } else {
2755                         /* Increment the number of packets */
2756                         rx_queue->stats.rx_packets++;
2757                         howmany++;
2758
2759                         if (likely(skb)) {
2760                                 pkt_len = bdp->length - ETH_FCS_LEN;
2761                                 /* Remove the FCS from the packet length */
2762                                 skb_put(skb, pkt_len);
2763                                 rx_queue->stats.rx_bytes += pkt_len;
2764                                 skb_record_rx_queue(skb, rx_queue->qindex);
2765                                 gfar_process_frame(dev, skb, amount_pull);
2766
2767                         } else {
2768                                 if (netif_msg_rx_err(priv))
2769                                         printk(KERN_WARNING
2770                                                "%s: Missing skb!\n", dev->name);
2771                                 rx_queue->stats.rx_dropped++;
2772                                 priv->extra_stats.rx_skbmissing++;
2773                         }
2774
2775                 }
2776
2777                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2778
2779                 /* Setup the new bdp */
2780                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2781
2782                 /* Update to the next pointer */
2783                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2784
2785                 /* update to point at the next skb */
2786                 rx_queue->skb_currx =
2787                     (rx_queue->skb_currx + 1) &
2788                     RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2789         }
2790
2791         /* Update the current rxbd pointer to be the next one */
2792         rx_queue->cur_rx = bdp;
2793
2794         return howmany;
2795 }
2796
2797 static int gfar_poll(struct napi_struct *napi, int budget)
2798 {
2799         struct gfar_priv_grp *gfargrp = container_of(napi,
2800                         struct gfar_priv_grp, napi);
2801         struct gfar_private *priv = gfargrp->priv;
2802         struct gfar __iomem *regs = gfargrp->regs;
2803         struct gfar_priv_tx_q *tx_queue = NULL;
2804         struct gfar_priv_rx_q *rx_queue = NULL;
2805         int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2806         int tx_cleaned = 0, i, left_over_budget = budget;
2807         unsigned long serviced_queues = 0;
2808         int num_queues = 0;
2809
2810         num_queues = gfargrp->num_rx_queues;
2811         budget_per_queue = budget/num_queues;
2812
2813         /* Clear IEVENT, so interrupts aren't called again
2814          * because of the packets that have already arrived */
2815         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2816
2817         while (num_queues && left_over_budget) {
2818
2819                 budget_per_queue = left_over_budget/num_queues;
2820                 left_over_budget = 0;
2821
2822                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2823                         if (test_bit(i, &serviced_queues))
2824                                 continue;
2825                         rx_queue = priv->rx_queue[i];
2826                         tx_queue = priv->tx_queue[rx_queue->qindex];
2827
2828                         tx_cleaned += gfar_clean_tx_ring(tx_queue);
2829                         rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2830                                                         budget_per_queue);
2831                         rx_cleaned += rx_cleaned_per_queue;
2832                         if(rx_cleaned_per_queue < budget_per_queue) {
2833                                 left_over_budget = left_over_budget +
2834                                         (budget_per_queue - rx_cleaned_per_queue);
2835                                 set_bit(i, &serviced_queues);
2836                                 num_queues--;
2837                         }
2838                 }
2839         }
2840
2841         if (tx_cleaned)
2842                 return budget;
2843
2844         if (rx_cleaned < budget) {
2845                 napi_complete(napi);
2846
2847                 /* Clear the halt bit in RSTAT */
2848                 gfar_write(&regs->rstat, gfargrp->rstat);
2849
2850                 gfar_write(&regs->imask, IMASK_DEFAULT);
2851
2852                 /* If we are coalescing interrupts, update the timer */
2853                 /* Otherwise, clear it */
2854                 gfar_configure_coalescing(priv,
2855                                 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2856         }
2857
2858         return rx_cleaned;
2859 }
2860
2861 #ifdef CONFIG_NET_POLL_CONTROLLER
2862 /*
2863  * Polling 'interrupt' - used by things like netconsole to send skbs
2864  * without having to re-enable interrupts. It's not called while
2865  * the interrupt routine is executing.
2866  */
2867 static void gfar_netpoll(struct net_device *dev)
2868 {
2869         struct gfar_private *priv = netdev_priv(dev);
2870         int i = 0;
2871
2872         /* If the device has multiple interrupts, run tx/rx */
2873         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2874                 for (i = 0; i < priv->num_grps; i++) {
2875                         disable_irq(priv->gfargrp[i].interruptTransmit);
2876                         disable_irq(priv->gfargrp[i].interruptReceive);
2877                         disable_irq(priv->gfargrp[i].interruptError);
2878                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2879                                                 &priv->gfargrp[i]);
2880                         enable_irq(priv->gfargrp[i].interruptError);
2881                         enable_irq(priv->gfargrp[i].interruptReceive);
2882                         enable_irq(priv->gfargrp[i].interruptTransmit);
2883                 }
2884         } else {
2885                 for (i = 0; i < priv->num_grps; i++) {
2886                         disable_irq(priv->gfargrp[i].interruptTransmit);
2887                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2888                                                 &priv->gfargrp[i]);
2889                         enable_irq(priv->gfargrp[i].interruptTransmit);
2890                 }
2891         }
2892 }
2893 #endif
2894
2895 /* The interrupt handler for devices with one interrupt */
2896 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2897 {
2898         struct gfar_priv_grp *gfargrp = grp_id;
2899
2900         /* Save ievent for future reference */
2901         u32 events = gfar_read(&gfargrp->regs->ievent);
2902
2903         /* Check for reception */
2904         if (events & IEVENT_RX_MASK)
2905                 gfar_receive(irq, grp_id);
2906
2907         /* Check for transmit completion */
2908         if (events & IEVENT_TX_MASK)
2909                 gfar_transmit(irq, grp_id);
2910
2911         /* Check for errors */
2912         if (events & IEVENT_ERR_MASK)
2913                 gfar_error(irq, grp_id);
2914
2915         return IRQ_HANDLED;
2916 }
2917
2918 /* Called every time the controller might need to be made
2919  * aware of new link state.  The PHY code conveys this
2920  * information through variables in the phydev structure, and this
2921  * function converts those variables into the appropriate
2922  * register values, and can bring down the device if needed.
2923  */
2924 static void adjust_link(struct net_device *dev)
2925 {
2926         struct gfar_private *priv = netdev_priv(dev);
2927         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2928         unsigned long flags;
2929         struct phy_device *phydev = priv->phydev;
2930         int new_state = 0;
2931
2932         local_irq_save(flags);
2933         lock_tx_qs(priv);
2934
2935         if (phydev->link) {
2936                 u32 tempval = gfar_read(&regs->maccfg2);
2937                 u32 ecntrl = gfar_read(&regs->ecntrl);
2938
2939                 /* Now we make sure that we can be in full duplex mode.
2940                  * If not, we operate in half-duplex mode. */
2941                 if (phydev->duplex != priv->oldduplex) {
2942                         new_state = 1;
2943                         if (!(phydev->duplex))
2944                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2945                         else
2946                                 tempval |= MACCFG2_FULL_DUPLEX;
2947
2948                         priv->oldduplex = phydev->duplex;
2949                 }
2950
2951                 if (phydev->speed != priv->oldspeed) {
2952                         new_state = 1;
2953                         switch (phydev->speed) {
2954                         case 1000:
2955                                 tempval =
2956                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2957
2958                                 ecntrl &= ~(ECNTRL_R100);
2959                                 break;
2960                         case 100:
2961                         case 10:
2962                                 tempval =
2963                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2964
2965                                 /* Reduced mode distinguishes
2966                                  * between 10 and 100 */
2967                                 if (phydev->speed == SPEED_100)
2968                                         ecntrl |= ECNTRL_R100;
2969                                 else
2970                                         ecntrl &= ~(ECNTRL_R100);
2971                                 break;
2972                         default:
2973                                 if (netif_msg_link(priv))
2974                                         printk(KERN_WARNING
2975                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
2976                                                 dev->name, phydev->speed);
2977                                 break;
2978                         }
2979
2980                         priv->oldspeed = phydev->speed;
2981                 }
2982
2983                 gfar_write(&regs->maccfg2, tempval);
2984                 gfar_write(&regs->ecntrl, ecntrl);
2985
2986                 if (!priv->oldlink) {
2987                         new_state = 1;
2988                         priv->oldlink = 1;
2989                 }
2990         } else if (priv->oldlink) {
2991                 new_state = 1;
2992                 priv->oldlink = 0;
2993                 priv->oldspeed = 0;
2994                 priv->oldduplex = -1;
2995         }
2996
2997         if (new_state && netif_msg_link(priv))
2998                 phy_print_status(phydev);
2999         unlock_tx_qs(priv);
3000         local_irq_restore(flags);
3001 }
3002
3003 /* Update the hash table based on the current list of multicast
3004  * addresses we subscribe to.  Also, change the promiscuity of
3005  * the device based on the flags (this function is called
3006  * whenever dev->flags is changed */
3007 static void gfar_set_multi(struct net_device *dev)
3008 {
3009         struct netdev_hw_addr *ha;
3010         struct gfar_private *priv = netdev_priv(dev);
3011         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3012         u32 tempval;
3013
3014         if (dev->flags & IFF_PROMISC) {
3015                 /* Set RCTRL to PROM */
3016                 tempval = gfar_read(&regs->rctrl);
3017                 tempval |= RCTRL_PROM;
3018                 gfar_write(&regs->rctrl, tempval);
3019         } else {
3020                 /* Set RCTRL to not PROM */
3021                 tempval = gfar_read(&regs->rctrl);
3022                 tempval &= ~(RCTRL_PROM);
3023                 gfar_write(&regs->rctrl, tempval);
3024         }
3025
3026         if (dev->flags & IFF_ALLMULTI) {
3027                 /* Set the hash to rx all multicast frames */
3028                 gfar_write(&regs->igaddr0, 0xffffffff);
3029                 gfar_write(&regs->igaddr1, 0xffffffff);
3030                 gfar_write(&regs->igaddr2, 0xffffffff);
3031                 gfar_write(&regs->igaddr3, 0xffffffff);
3032                 gfar_write(&regs->igaddr4, 0xffffffff);
3033                 gfar_write(&regs->igaddr5, 0xffffffff);
3034                 gfar_write(&regs->igaddr6, 0xffffffff);
3035                 gfar_write(&regs->igaddr7, 0xffffffff);
3036                 gfar_write(&regs->gaddr0, 0xffffffff);
3037                 gfar_write(&regs->gaddr1, 0xffffffff);
3038                 gfar_write(&regs->gaddr2, 0xffffffff);
3039                 gfar_write(&regs->gaddr3, 0xffffffff);
3040                 gfar_write(&regs->gaddr4, 0xffffffff);
3041                 gfar_write(&regs->gaddr5, 0xffffffff);
3042                 gfar_write(&regs->gaddr6, 0xffffffff);
3043                 gfar_write(&regs->gaddr7, 0xffffffff);
3044         } else {
3045                 int em_num;
3046                 int idx;
3047
3048                 /* zero out the hash */
3049                 gfar_write(&regs->igaddr0, 0x0);
3050                 gfar_write(&regs->igaddr1, 0x0);
3051                 gfar_write(&regs->igaddr2, 0x0);
3052                 gfar_write(&regs->igaddr3, 0x0);
3053                 gfar_write(&regs->igaddr4, 0x0);
3054                 gfar_write(&regs->igaddr5, 0x0);
3055                 gfar_write(&regs->igaddr6, 0x0);
3056                 gfar_write(&regs->igaddr7, 0x0);
3057                 gfar_write(&regs->gaddr0, 0x0);
3058                 gfar_write(&regs->gaddr1, 0x0);
3059                 gfar_write(&regs->gaddr2, 0x0);
3060                 gfar_write(&regs->gaddr3, 0x0);
3061                 gfar_write(&regs->gaddr4, 0x0);
3062                 gfar_write(&regs->gaddr5, 0x0);
3063                 gfar_write(&regs->gaddr6, 0x0);
3064                 gfar_write(&regs->gaddr7, 0x0);
3065
3066                 /* If we have extended hash tables, we need to
3067                  * clear the exact match registers to prepare for
3068                  * setting them */
3069                 if (priv->extended_hash) {
3070                         em_num = GFAR_EM_NUM + 1;
3071                         gfar_clear_exact_match(dev);
3072                         idx = 1;
3073                 } else {
3074                         idx = 0;
3075                         em_num = 0;
3076                 }
3077
3078                 if (netdev_mc_empty(dev))
3079                         return;
3080
3081                 /* Parse the list, and set the appropriate bits */
3082                 netdev_for_each_mc_addr(ha, dev) {
3083                         if (idx < em_num) {
3084                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3085                                 idx++;
3086                         } else
3087                                 gfar_set_hash_for_addr(dev, ha->addr);
3088                 }
3089         }
3090 }
3091
3092
3093 /* Clears each of the exact match registers to zero, so they
3094  * don't interfere with normal reception */
3095 static void gfar_clear_exact_match(struct net_device *dev)
3096 {
3097         int idx;
3098         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
3099
3100         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3101                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
3102 }
3103
3104 /* Set the appropriate hash bit for the given addr */
3105 /* The algorithm works like so:
3106  * 1) Take the Destination Address (ie the multicast address), and
3107  * do a CRC on it (little endian), and reverse the bits of the
3108  * result.
3109  * 2) Use the 8 most significant bits as a hash into a 256-entry
3110  * table.  The table is controlled through 8 32-bit registers:
3111  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3112  * gaddr7.  This means that the 3 most significant bits in the
3113  * hash index which gaddr register to use, and the 5 other bits
3114  * indicate which bit (assuming an IBM numbering scheme, which
3115  * for PowerPC (tm) is usually the case) in the register holds
3116  * the entry. */
3117 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3118 {
3119         u32 tempval;
3120         struct gfar_private *priv = netdev_priv(dev);
3121         u32 result = ether_crc(MAC_ADDR_LEN, addr);
3122         int width = priv->hash_width;
3123         u8 whichbit = (result >> (32 - width)) & 0x1f;
3124         u8 whichreg = result >> (32 - width + 5);
3125         u32 value = (1 << (31-whichbit));
3126
3127         tempval = gfar_read(priv->hash_regs[whichreg]);
3128         tempval |= value;
3129         gfar_write(priv->hash_regs[whichreg], tempval);
3130 }
3131
3132
3133 /* There are multiple MAC Address register pairs on some controllers
3134  * This function sets the numth pair to a given address
3135  */
3136 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
3137 {
3138         struct gfar_private *priv = netdev_priv(dev);
3139         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3140         int idx;
3141         char tmpbuf[MAC_ADDR_LEN];
3142         u32 tempval;
3143         u32 __iomem *macptr = &regs->macstnaddr1;
3144
3145         macptr += num*2;
3146
3147         /* Now copy it into the mac registers backwards, cuz */
3148         /* little endian is silly */
3149         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
3150                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
3151
3152         gfar_write(macptr, *((u32 *) (tmpbuf)));
3153
3154         tempval = *((u32 *) (tmpbuf + 4));
3155
3156         gfar_write(macptr+1, tempval);
3157 }
3158
3159 /* GFAR error interrupt handler */
3160 static irqreturn_t gfar_error(int irq, void *grp_id)
3161 {
3162         struct gfar_priv_grp *gfargrp = grp_id;
3163         struct gfar __iomem *regs = gfargrp->regs;
3164         struct gfar_private *priv= gfargrp->priv;
3165         struct net_device *dev = priv->ndev;
3166
3167         /* Save ievent for future reference */
3168         u32 events = gfar_read(&regs->ievent);
3169
3170         /* Clear IEVENT */
3171         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3172
3173         /* Magic Packet is not an error. */
3174         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3175             (events & IEVENT_MAG))
3176                 events &= ~IEVENT_MAG;
3177
3178         /* Hmm... */
3179         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3180                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
3181                        dev->name, events, gfar_read(&regs->imask));
3182
3183         /* Update the error counters */
3184         if (events & IEVENT_TXE) {
3185                 dev->stats.tx_errors++;
3186
3187                 if (events & IEVENT_LC)
3188                         dev->stats.tx_window_errors++;
3189                 if (events & IEVENT_CRL)
3190                         dev->stats.tx_aborted_errors++;
3191                 if (events & IEVENT_XFUN) {
3192                         unsigned long flags;
3193
3194                         if (netif_msg_tx_err(priv))
3195                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
3196                                        "packet dropped.\n", dev->name);
3197                         dev->stats.tx_dropped++;
3198                         priv->extra_stats.tx_underrun++;
3199
3200                         local_irq_save(flags);
3201                         lock_tx_qs(priv);
3202
3203                         /* Reactivate the Tx Queues */
3204                         gfar_write(&regs->tstat, gfargrp->tstat);
3205
3206                         unlock_tx_qs(priv);
3207                         local_irq_restore(flags);
3208                 }
3209                 if (netif_msg_tx_err(priv))
3210                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
3211         }
3212         if (events & IEVENT_BSY) {
3213                 dev->stats.rx_errors++;
3214                 priv->extra_stats.rx_bsy++;
3215
3216                 gfar_receive(irq, grp_id);
3217
3218                 if (netif_msg_rx_err(priv))
3219                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
3220                                dev->name, gfar_read(&regs->rstat));
3221         }
3222         if (events & IEVENT_BABR) {
3223                 dev->stats.rx_errors++;
3224                 priv->extra_stats.rx_babr++;
3225
3226                 if (netif_msg_rx_err(priv))
3227                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
3228         }
3229         if (events & IEVENT_EBERR) {
3230                 priv->extra_stats.eberr++;
3231                 if (netif_msg_rx_err(priv))
3232                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
3233         }
3234         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
3235                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
3236
3237         if (events & IEVENT_BABT) {
3238                 priv->extra_stats.tx_babt++;
3239                 if (netif_msg_tx_err(priv))
3240                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
3241         }
3242         return IRQ_HANDLED;
3243 }
3244
3245 static struct of_device_id gfar_match[] =
3246 {
3247         {
3248                 .type = "network",
3249                 .compatible = "gianfar",
3250         },
3251         {
3252                 .compatible = "fsl,etsec2",
3253         },
3254         {},
3255 };
3256 MODULE_DEVICE_TABLE(of, gfar_match);
3257
3258 /* Structure for a device driver */
3259 static struct of_platform_driver gfar_driver = {
3260         .driver = {
3261                 .name = "fsl-gianfar",
3262                 .owner = THIS_MODULE,
3263                 .pm = GFAR_PM_OPS,
3264                 .of_match_table = gfar_match,
3265         },
3266         .probe = gfar_probe,
3267         .remove = gfar_remove,
3268 };
3269
3270 static int __init gfar_init(void)
3271 {
3272         return of_register_platform_driver(&gfar_driver);
3273 }
3274
3275 static void __exit gfar_exit(void)
3276 {
3277         of_unregister_platform_driver(&gfar_driver);
3278 }
3279
3280 module_init(gfar_init);
3281 module_exit(gfar_exit);
3282