Merge branch 'driver-core-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  * This program is free software; you can redistribute  it and/or modify it
17  * under  the terms of  the GNU General  Public License as published by the
18  * Free Software Foundation;  either version 2 of the  License, or (at your
19  * option) any later version.
20  *
21  *  Gianfar:  AKA Lambda Draconis, "Dragon"
22  *  RA 11 31 24.2
23  *  Dec +69 19 52
24  *  V 3.84
25  *  B-V +1.62
26  *
27  *  Theory of operation
28  *
29  *  The driver is initialized through of_device. Configuration information
30  *  is therefore conveyed through an OF-style device tree.
31  *
32  *  The Gianfar Ethernet Controller uses a ring of buffer
33  *  descriptors.  The beginning is indicated by a register
34  *  pointing to the physical address of the start of the ring.
35  *  The end is determined by a "wrap" bit being set in the
36  *  last descriptor of the ring.
37  *
38  *  When a packet is received, the RXF bit in the
39  *  IEVENT register is set, triggering an interrupt when the
40  *  corresponding bit in the IMASK register is also set (if
41  *  interrupt coalescing is active, then the interrupt may not
42  *  happen immediately, but will wait until either a set number
43  *  of frames or amount of time have passed).  In NAPI, the
44  *  interrupt handler will signal there is work to be done, and
45  *  exit. This method will start at the last known empty
46  *  descriptor, and process every subsequent descriptor until there
47  *  are none left with data (NAPI will stop after a set number of
48  *  packets to give time to other tasks, but will eventually
49  *  process all the packets).  The data arrives inside a
50  *  pre-allocated skb, and so after the skb is passed up to the
51  *  stack, a new skb must be allocated, and the address field in
52  *  the buffer descriptor must be updated to indicate this new
53  *  skb.
54  *
55  *  When the kernel requests that a packet be transmitted, the
56  *  driver starts where it left off last time, and points the
57  *  descriptor at the buffer which was passed in.  The driver
58  *  then informs the DMA engine that there are packets ready to
59  *  be transmitted.  Once the controller is finished transmitting
60  *  the packet, an interrupt may be triggered (under the same
61  *  conditions as for reception, but depending on the TXF bit).
62  *  The driver then cleans up the buffer.
63  */
64
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
78 #include <linux/mm.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
81 #include <linux/ip.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
84 #include <linux/in.h>
85 #include <linux/net_tstamp.h>
86
87 #include <asm/io.h>
88 #include <asm/reg.h>
89 #include <asm/irq.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96 #include <linux/phy_fixed.h>
97 #include <linux/of.h>
98 #include <linux/of_net.h>
99
100 #include "gianfar.h"
101 #include "fsl_pq_mdio.h"
102
103 #define TX_TIMEOUT      (1*HZ)
104 #undef BRIEF_GFAR_ERRORS
105 #undef VERBOSE_GFAR_ERRORS
106
107 const char gfar_driver_name[] = "Gianfar Ethernet";
108 const char gfar_driver_version[] = "1.3";
109
110 static int gfar_enet_open(struct net_device *dev);
111 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
112 static void gfar_reset_task(struct work_struct *work);
113 static void gfar_timeout(struct net_device *dev);
114 static int gfar_close(struct net_device *dev);
115 struct sk_buff *gfar_new_skb(struct net_device *dev);
116 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
117                 struct sk_buff *skb);
118 static int gfar_set_mac_address(struct net_device *dev);
119 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
120 static irqreturn_t gfar_error(int irq, void *dev_id);
121 static irqreturn_t gfar_transmit(int irq, void *dev_id);
122 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
123 static void adjust_link(struct net_device *dev);
124 static void init_registers(struct net_device *dev);
125 static int init_phy(struct net_device *dev);
126 static int gfar_probe(struct platform_device *ofdev);
127 static int gfar_remove(struct platform_device *ofdev);
128 static void free_skb_resources(struct gfar_private *priv);
129 static void gfar_set_multi(struct net_device *dev);
130 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
131 static void gfar_configure_serdes(struct net_device *dev);
132 static int gfar_poll(struct napi_struct *napi, int budget);
133 #ifdef CONFIG_NET_POLL_CONTROLLER
134 static void gfar_netpoll(struct net_device *dev);
135 #endif
136 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
137 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
138 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
139                               int amount_pull);
140 static void gfar_vlan_rx_register(struct net_device *netdev,
141                                 struct vlan_group *grp);
142 void gfar_halt(struct net_device *dev);
143 static void gfar_halt_nodisable(struct net_device *dev);
144 void gfar_start(struct net_device *dev);
145 static void gfar_clear_exact_match(struct net_device *dev);
146 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
147                                   const u8 *addr);
148 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
149
150 MODULE_AUTHOR("Freescale Semiconductor, Inc");
151 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
152 MODULE_LICENSE("GPL");
153
154 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
155                             dma_addr_t buf)
156 {
157         u32 lstatus;
158
159         bdp->bufPtr = buf;
160
161         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
162         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
163                 lstatus |= BD_LFLAG(RXBD_WRAP);
164
165         eieio();
166
167         bdp->lstatus = lstatus;
168 }
169
170 static int gfar_init_bds(struct net_device *ndev)
171 {
172         struct gfar_private *priv = netdev_priv(ndev);
173         struct gfar_priv_tx_q *tx_queue = NULL;
174         struct gfar_priv_rx_q *rx_queue = NULL;
175         struct txbd8 *txbdp;
176         struct rxbd8 *rxbdp;
177         int i, j;
178
179         for (i = 0; i < priv->num_tx_queues; i++) {
180                 tx_queue = priv->tx_queue[i];
181                 /* Initialize some variables in our dev structure */
182                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
183                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
184                 tx_queue->cur_tx = tx_queue->tx_bd_base;
185                 tx_queue->skb_curtx = 0;
186                 tx_queue->skb_dirtytx = 0;
187
188                 /* Initialize Transmit Descriptor Ring */
189                 txbdp = tx_queue->tx_bd_base;
190                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
191                         txbdp->lstatus = 0;
192                         txbdp->bufPtr = 0;
193                         txbdp++;
194                 }
195
196                 /* Set the last descriptor in the ring to indicate wrap */
197                 txbdp--;
198                 txbdp->status |= TXBD_WRAP;
199         }
200
201         for (i = 0; i < priv->num_rx_queues; i++) {
202                 rx_queue = priv->rx_queue[i];
203                 rx_queue->cur_rx = rx_queue->rx_bd_base;
204                 rx_queue->skb_currx = 0;
205                 rxbdp = rx_queue->rx_bd_base;
206
207                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
208                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
209
210                         if (skb) {
211                                 gfar_init_rxbdp(rx_queue, rxbdp,
212                                                 rxbdp->bufPtr);
213                         } else {
214                                 skb = gfar_new_skb(ndev);
215                                 if (!skb) {
216                                         pr_err("%s: Can't allocate RX buffers\n",
217                                                         ndev->name);
218                                         goto err_rxalloc_fail;
219                                 }
220                                 rx_queue->rx_skbuff[j] = skb;
221
222                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
223                         }
224
225                         rxbdp++;
226                 }
227
228         }
229
230         return 0;
231
232 err_rxalloc_fail:
233         free_skb_resources(priv);
234         return -ENOMEM;
235 }
236
237 static int gfar_alloc_skb_resources(struct net_device *ndev)
238 {
239         void *vaddr;
240         dma_addr_t addr;
241         int i, j, k;
242         struct gfar_private *priv = netdev_priv(ndev);
243         struct device *dev = &priv->ofdev->dev;
244         struct gfar_priv_tx_q *tx_queue = NULL;
245         struct gfar_priv_rx_q *rx_queue = NULL;
246
247         priv->total_tx_ring_size = 0;
248         for (i = 0; i < priv->num_tx_queues; i++)
249                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
250
251         priv->total_rx_ring_size = 0;
252         for (i = 0; i < priv->num_rx_queues; i++)
253                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
254
255         /* Allocate memory for the buffer descriptors */
256         vaddr = dma_alloc_coherent(dev,
257                         sizeof(struct txbd8) * priv->total_tx_ring_size +
258                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
259                         &addr, GFP_KERNEL);
260         if (!vaddr) {
261                 if (netif_msg_ifup(priv))
262                         pr_err("%s: Could not allocate buffer descriptors!\n",
263                                ndev->name);
264                 return -ENOMEM;
265         }
266
267         for (i = 0; i < priv->num_tx_queues; i++) {
268                 tx_queue = priv->tx_queue[i];
269                 tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
270                 tx_queue->tx_bd_dma_base = addr;
271                 tx_queue->dev = ndev;
272                 /* enet DMA only understands physical addresses */
273                 addr    += sizeof(struct txbd8) *tx_queue->tx_ring_size;
274                 vaddr   += sizeof(struct txbd8) *tx_queue->tx_ring_size;
275         }
276
277         /* Start the rx descriptor ring where the tx ring leaves off */
278         for (i = 0; i < priv->num_rx_queues; i++) {
279                 rx_queue = priv->rx_queue[i];
280                 rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
281                 rx_queue->rx_bd_dma_base = addr;
282                 rx_queue->dev = ndev;
283                 addr    += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
284                 vaddr   += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
285         }
286
287         /* Setup the skbuff rings */
288         for (i = 0; i < priv->num_tx_queues; i++) {
289                 tx_queue = priv->tx_queue[i];
290                 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
291                                   tx_queue->tx_ring_size, GFP_KERNEL);
292                 if (!tx_queue->tx_skbuff) {
293                         if (netif_msg_ifup(priv))
294                                 pr_err("%s: Could not allocate tx_skbuff\n",
295                                                 ndev->name);
296                         goto cleanup;
297                 }
298
299                 for (k = 0; k < tx_queue->tx_ring_size; k++)
300                         tx_queue->tx_skbuff[k] = NULL;
301         }
302
303         for (i = 0; i < priv->num_rx_queues; i++) {
304                 rx_queue = priv->rx_queue[i];
305                 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
306                                   rx_queue->rx_ring_size, GFP_KERNEL);
307
308                 if (!rx_queue->rx_skbuff) {
309                         if (netif_msg_ifup(priv))
310                                 pr_err("%s: Could not allocate rx_skbuff\n",
311                                        ndev->name);
312                         goto cleanup;
313                 }
314
315                 for (j = 0; j < rx_queue->rx_ring_size; j++)
316                         rx_queue->rx_skbuff[j] = NULL;
317         }
318
319         if (gfar_init_bds(ndev))
320                 goto cleanup;
321
322         return 0;
323
324 cleanup:
325         free_skb_resources(priv);
326         return -ENOMEM;
327 }
328
329 static void gfar_init_tx_rx_base(struct gfar_private *priv)
330 {
331         struct gfar __iomem *regs = priv->gfargrp[0].regs;
332         u32 __iomem *baddr;
333         int i;
334
335         baddr = &regs->tbase0;
336         for(i = 0; i < priv->num_tx_queues; i++) {
337                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
338                 baddr   += 2;
339         }
340
341         baddr = &regs->rbase0;
342         for(i = 0; i < priv->num_rx_queues; i++) {
343                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
344                 baddr   += 2;
345         }
346 }
347
348 static void gfar_init_mac(struct net_device *ndev)
349 {
350         struct gfar_private *priv = netdev_priv(ndev);
351         struct gfar __iomem *regs = priv->gfargrp[0].regs;
352         u32 rctrl = 0;
353         u32 tctrl = 0;
354         u32 attrs = 0;
355
356         /* write the tx/rx base registers */
357         gfar_init_tx_rx_base(priv);
358
359         /* Configure the coalescing support */
360         gfar_configure_coalescing(priv, 0xFF, 0xFF);
361
362         if (priv->rx_filer_enable) {
363                 rctrl |= RCTRL_FILREN;
364                 /* Program the RIR0 reg with the required distribution */
365                 gfar_write(&regs->rir0, DEFAULT_RIR0);
366         }
367
368         if (ndev->features & NETIF_F_RXCSUM)
369                 rctrl |= RCTRL_CHECKSUMMING;
370
371         if (priv->extended_hash) {
372                 rctrl |= RCTRL_EXTHASH;
373
374                 gfar_clear_exact_match(ndev);
375                 rctrl |= RCTRL_EMEN;
376         }
377
378         if (priv->padding) {
379                 rctrl &= ~RCTRL_PAL_MASK;
380                 rctrl |= RCTRL_PADDING(priv->padding);
381         }
382
383         /* Insert receive time stamps into padding alignment bytes */
384         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
385                 rctrl &= ~RCTRL_PAL_MASK;
386                 rctrl |= RCTRL_PADDING(8);
387                 priv->padding = 8;
388         }
389
390         /* Enable HW time stamping if requested from user space */
391         if (priv->hwts_rx_en)
392                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
393
394         /* keep vlan related bits if it's enabled */
395         if (priv->vlgrp) {
396                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
397                 tctrl |= TCTRL_VLINS;
398         }
399
400         /* Init rctrl based on our settings */
401         gfar_write(&regs->rctrl, rctrl);
402
403         if (ndev->features & NETIF_F_IP_CSUM)
404                 tctrl |= TCTRL_INIT_CSUM;
405
406         tctrl |= TCTRL_TXSCHED_PRIO;
407
408         gfar_write(&regs->tctrl, tctrl);
409
410         /* Set the extraction length and index */
411         attrs = ATTRELI_EL(priv->rx_stash_size) |
412                 ATTRELI_EI(priv->rx_stash_index);
413
414         gfar_write(&regs->attreli, attrs);
415
416         /* Start with defaults, and add stashing or locking
417          * depending on the approprate variables */
418         attrs = ATTR_INIT_SETTINGS;
419
420         if (priv->bd_stash_en)
421                 attrs |= ATTR_BDSTASH;
422
423         if (priv->rx_stash_size != 0)
424                 attrs |= ATTR_BUFSTASH;
425
426         gfar_write(&regs->attr, attrs);
427
428         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
429         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
430         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
431 }
432
433 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
434 {
435         struct gfar_private *priv = netdev_priv(dev);
436         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
437         unsigned long tx_packets = 0, tx_bytes = 0;
438         int i = 0;
439
440         for (i = 0; i < priv->num_rx_queues; i++) {
441                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
442                 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
443                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
444         }
445
446         dev->stats.rx_packets = rx_packets;
447         dev->stats.rx_bytes = rx_bytes;
448         dev->stats.rx_dropped = rx_dropped;
449
450         for (i = 0; i < priv->num_tx_queues; i++) {
451                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
452                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
453         }
454
455         dev->stats.tx_bytes = tx_bytes;
456         dev->stats.tx_packets = tx_packets;
457
458         return &dev->stats;
459 }
460
461 static const struct net_device_ops gfar_netdev_ops = {
462         .ndo_open = gfar_enet_open,
463         .ndo_start_xmit = gfar_start_xmit,
464         .ndo_stop = gfar_close,
465         .ndo_change_mtu = gfar_change_mtu,
466         .ndo_set_features = gfar_set_features,
467         .ndo_set_multicast_list = gfar_set_multi,
468         .ndo_tx_timeout = gfar_timeout,
469         .ndo_do_ioctl = gfar_ioctl,
470         .ndo_get_stats = gfar_get_stats,
471         .ndo_vlan_rx_register = gfar_vlan_rx_register,
472         .ndo_set_mac_address = eth_mac_addr,
473         .ndo_validate_addr = eth_validate_addr,
474 #ifdef CONFIG_NET_POLL_CONTROLLER
475         .ndo_poll_controller = gfar_netpoll,
476 #endif
477 };
478
479 void lock_rx_qs(struct gfar_private *priv)
480 {
481         int i = 0x0;
482
483         for (i = 0; i < priv->num_rx_queues; i++)
484                 spin_lock(&priv->rx_queue[i]->rxlock);
485 }
486
487 void lock_tx_qs(struct gfar_private *priv)
488 {
489         int i = 0x0;
490
491         for (i = 0; i < priv->num_tx_queues; i++)
492                 spin_lock(&priv->tx_queue[i]->txlock);
493 }
494
495 void unlock_rx_qs(struct gfar_private *priv)
496 {
497         int i = 0x0;
498
499         for (i = 0; i < priv->num_rx_queues; i++)
500                 spin_unlock(&priv->rx_queue[i]->rxlock);
501 }
502
503 void unlock_tx_qs(struct gfar_private *priv)
504 {
505         int i = 0x0;
506
507         for (i = 0; i < priv->num_tx_queues; i++)
508                 spin_unlock(&priv->tx_queue[i]->txlock);
509 }
510
511 /* Returns 1 if incoming frames use an FCB */
512 static inline int gfar_uses_fcb(struct gfar_private *priv)
513 {
514         return priv->vlgrp || (priv->ndev->features & NETIF_F_RXCSUM) ||
515                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
516 }
517
518 static void free_tx_pointers(struct gfar_private *priv)
519 {
520         int i = 0;
521
522         for (i = 0; i < priv->num_tx_queues; i++)
523                 kfree(priv->tx_queue[i]);
524 }
525
526 static void free_rx_pointers(struct gfar_private *priv)
527 {
528         int i = 0;
529
530         for (i = 0; i < priv->num_rx_queues; i++)
531                 kfree(priv->rx_queue[i]);
532 }
533
534 static void unmap_group_regs(struct gfar_private *priv)
535 {
536         int i = 0;
537
538         for (i = 0; i < MAXGROUPS; i++)
539                 if (priv->gfargrp[i].regs)
540                         iounmap(priv->gfargrp[i].regs);
541 }
542
543 static void disable_napi(struct gfar_private *priv)
544 {
545         int i = 0;
546
547         for (i = 0; i < priv->num_grps; i++)
548                 napi_disable(&priv->gfargrp[i].napi);
549 }
550
551 static void enable_napi(struct gfar_private *priv)
552 {
553         int i = 0;
554
555         for (i = 0; i < priv->num_grps; i++)
556                 napi_enable(&priv->gfargrp[i].napi);
557 }
558
559 static int gfar_parse_group(struct device_node *np,
560                 struct gfar_private *priv, const char *model)
561 {
562         u32 *queue_mask;
563
564         priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
565         if (!priv->gfargrp[priv->num_grps].regs)
566                 return -ENOMEM;
567
568         priv->gfargrp[priv->num_grps].interruptTransmit =
569                         irq_of_parse_and_map(np, 0);
570
571         /* If we aren't the FEC we have multiple interrupts */
572         if (model && strcasecmp(model, "FEC")) {
573                 priv->gfargrp[priv->num_grps].interruptReceive =
574                         irq_of_parse_and_map(np, 1);
575                 priv->gfargrp[priv->num_grps].interruptError =
576                         irq_of_parse_and_map(np,2);
577                 if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
578                     priv->gfargrp[priv->num_grps].interruptReceive  == NO_IRQ ||
579                     priv->gfargrp[priv->num_grps].interruptError    == NO_IRQ)
580                         return -EINVAL;
581         }
582
583         priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
584         priv->gfargrp[priv->num_grps].priv = priv;
585         spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
586         if(priv->mode == MQ_MG_MODE) {
587                 queue_mask = (u32 *)of_get_property(np,
588                                         "fsl,rx-bit-map", NULL);
589                 priv->gfargrp[priv->num_grps].rx_bit_map =
590                         queue_mask ?  *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
591                 queue_mask = (u32 *)of_get_property(np,
592                                         "fsl,tx-bit-map", NULL);
593                 priv->gfargrp[priv->num_grps].tx_bit_map =
594                         queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
595         } else {
596                 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
597                 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
598         }
599         priv->num_grps++;
600
601         return 0;
602 }
603
604 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
605 {
606         const char *model;
607         const char *ctype;
608         const void *mac_addr;
609         int err = 0, i;
610         struct net_device *dev = NULL;
611         struct gfar_private *priv = NULL;
612         struct device_node *np = ofdev->dev.of_node;
613         struct device_node *child = NULL;
614         const u32 *stash;
615         const u32 *stash_len;
616         const u32 *stash_idx;
617         unsigned int num_tx_qs, num_rx_qs;
618         u32 *tx_queues, *rx_queues;
619
620         if (!np || !of_device_is_available(np))
621                 return -ENODEV;
622
623         /* parse the num of tx and rx queues */
624         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
625         num_tx_qs = tx_queues ? *tx_queues : 1;
626
627         if (num_tx_qs > MAX_TX_QS) {
628                 printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
629                                 num_tx_qs, MAX_TX_QS);
630                 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
631                 return -EINVAL;
632         }
633
634         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
635         num_rx_qs = rx_queues ? *rx_queues : 1;
636
637         if (num_rx_qs > MAX_RX_QS) {
638                 printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
639                                 num_tx_qs, MAX_TX_QS);
640                 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
641                 return -EINVAL;
642         }
643
644         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
645         dev = *pdev;
646         if (NULL == dev)
647                 return -ENOMEM;
648
649         priv = netdev_priv(dev);
650         priv->node = ofdev->dev.of_node;
651         priv->ndev = dev;
652
653         priv->num_tx_queues = num_tx_qs;
654         netif_set_real_num_rx_queues(dev, num_rx_qs);
655         priv->num_rx_queues = num_rx_qs;
656         priv->num_grps = 0x0;
657
658         model = of_get_property(np, "model", NULL);
659
660         for (i = 0; i < MAXGROUPS; i++)
661                 priv->gfargrp[i].regs = NULL;
662
663         /* Parse and initialize group specific information */
664         if (of_device_is_compatible(np, "fsl,etsec2")) {
665                 priv->mode = MQ_MG_MODE;
666                 for_each_child_of_node(np, child) {
667                         err = gfar_parse_group(child, priv, model);
668                         if (err)
669                                 goto err_grp_init;
670                 }
671         } else {
672                 priv->mode = SQ_SG_MODE;
673                 err = gfar_parse_group(np, priv, model);
674                 if(err)
675                         goto err_grp_init;
676         }
677
678         for (i = 0; i < priv->num_tx_queues; i++)
679                priv->tx_queue[i] = NULL;
680         for (i = 0; i < priv->num_rx_queues; i++)
681                 priv->rx_queue[i] = NULL;
682
683         for (i = 0; i < priv->num_tx_queues; i++) {
684                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
685                                             GFP_KERNEL);
686                 if (!priv->tx_queue[i]) {
687                         err = -ENOMEM;
688                         goto tx_alloc_failed;
689                 }
690                 priv->tx_queue[i]->tx_skbuff = NULL;
691                 priv->tx_queue[i]->qindex = i;
692                 priv->tx_queue[i]->dev = dev;
693                 spin_lock_init(&(priv->tx_queue[i]->txlock));
694         }
695
696         for (i = 0; i < priv->num_rx_queues; i++) {
697                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
698                                             GFP_KERNEL);
699                 if (!priv->rx_queue[i]) {
700                         err = -ENOMEM;
701                         goto rx_alloc_failed;
702                 }
703                 priv->rx_queue[i]->rx_skbuff = NULL;
704                 priv->rx_queue[i]->qindex = i;
705                 priv->rx_queue[i]->dev = dev;
706                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
707         }
708
709
710         stash = of_get_property(np, "bd-stash", NULL);
711
712         if (stash) {
713                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
714                 priv->bd_stash_en = 1;
715         }
716
717         stash_len = of_get_property(np, "rx-stash-len", NULL);
718
719         if (stash_len)
720                 priv->rx_stash_size = *stash_len;
721
722         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
723
724         if (stash_idx)
725                 priv->rx_stash_index = *stash_idx;
726
727         if (stash_len || stash_idx)
728                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
729
730         mac_addr = of_get_mac_address(np);
731         if (mac_addr)
732                 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
733
734         if (model && !strcasecmp(model, "TSEC"))
735                 priv->device_flags =
736                         FSL_GIANFAR_DEV_HAS_GIGABIT |
737                         FSL_GIANFAR_DEV_HAS_COALESCE |
738                         FSL_GIANFAR_DEV_HAS_RMON |
739                         FSL_GIANFAR_DEV_HAS_MULTI_INTR;
740         if (model && !strcasecmp(model, "eTSEC"))
741                 priv->device_flags =
742                         FSL_GIANFAR_DEV_HAS_GIGABIT |
743                         FSL_GIANFAR_DEV_HAS_COALESCE |
744                         FSL_GIANFAR_DEV_HAS_RMON |
745                         FSL_GIANFAR_DEV_HAS_MULTI_INTR |
746                         FSL_GIANFAR_DEV_HAS_PADDING |
747                         FSL_GIANFAR_DEV_HAS_CSUM |
748                         FSL_GIANFAR_DEV_HAS_VLAN |
749                         FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
750                         FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
751                         FSL_GIANFAR_DEV_HAS_TIMER;
752
753         ctype = of_get_property(np, "phy-connection-type", NULL);
754
755         /* We only care about rgmii-id.  The rest are autodetected */
756         if (ctype && !strcmp(ctype, "rgmii-id"))
757                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
758         else
759                 priv->interface = PHY_INTERFACE_MODE_MII;
760
761         if (of_get_property(np, "fsl,magic-packet", NULL))
762                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
763
764         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
765
766         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
767         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
768
769         return 0;
770
771 rx_alloc_failed:
772         free_rx_pointers(priv);
773 tx_alloc_failed:
774         free_tx_pointers(priv);
775 err_grp_init:
776         unmap_group_regs(priv);
777         free_netdev(dev);
778         return err;
779 }
780
781 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
782                         struct ifreq *ifr, int cmd)
783 {
784         struct hwtstamp_config config;
785         struct gfar_private *priv = netdev_priv(netdev);
786
787         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
788                 return -EFAULT;
789
790         /* reserved for future extensions */
791         if (config.flags)
792                 return -EINVAL;
793
794         switch (config.tx_type) {
795         case HWTSTAMP_TX_OFF:
796                 priv->hwts_tx_en = 0;
797                 break;
798         case HWTSTAMP_TX_ON:
799                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
800                         return -ERANGE;
801                 priv->hwts_tx_en = 1;
802                 break;
803         default:
804                 return -ERANGE;
805         }
806
807         switch (config.rx_filter) {
808         case HWTSTAMP_FILTER_NONE:
809                 if (priv->hwts_rx_en) {
810                         stop_gfar(netdev);
811                         priv->hwts_rx_en = 0;
812                         startup_gfar(netdev);
813                 }
814                 break;
815         default:
816                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
817                         return -ERANGE;
818                 if (!priv->hwts_rx_en) {
819                         stop_gfar(netdev);
820                         priv->hwts_rx_en = 1;
821                         startup_gfar(netdev);
822                 }
823                 config.rx_filter = HWTSTAMP_FILTER_ALL;
824                 break;
825         }
826
827         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
828                 -EFAULT : 0;
829 }
830
831 /* Ioctl MII Interface */
832 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
833 {
834         struct gfar_private *priv = netdev_priv(dev);
835
836         if (!netif_running(dev))
837                 return -EINVAL;
838
839         if (cmd == SIOCSHWTSTAMP)
840                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
841
842         if (!priv->phydev)
843                 return -ENODEV;
844
845         return phy_mii_ioctl(priv->phydev, rq, cmd);
846 }
847
848 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
849 {
850         unsigned int new_bit_map = 0x0;
851         int mask = 0x1 << (max_qs - 1), i;
852         for (i = 0; i < max_qs; i++) {
853                 if (bit_map & mask)
854                         new_bit_map = new_bit_map + (1 << i);
855                 mask = mask >> 0x1;
856         }
857         return new_bit_map;
858 }
859
860 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
861                                    u32 class)
862 {
863         u32 rqfpr = FPR_FILER_MASK;
864         u32 rqfcr = 0x0;
865
866         rqfar--;
867         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
868         priv->ftp_rqfpr[rqfar] = rqfpr;
869         priv->ftp_rqfcr[rqfar] = rqfcr;
870         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
871
872         rqfar--;
873         rqfcr = RQFCR_CMP_NOMATCH;
874         priv->ftp_rqfpr[rqfar] = rqfpr;
875         priv->ftp_rqfcr[rqfar] = rqfcr;
876         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
877
878         rqfar--;
879         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
880         rqfpr = class;
881         priv->ftp_rqfcr[rqfar] = rqfcr;
882         priv->ftp_rqfpr[rqfar] = rqfpr;
883         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
884
885         rqfar--;
886         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
887         rqfpr = class;
888         priv->ftp_rqfcr[rqfar] = rqfcr;
889         priv->ftp_rqfpr[rqfar] = rqfpr;
890         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
891
892         return rqfar;
893 }
894
895 static void gfar_init_filer_table(struct gfar_private *priv)
896 {
897         int i = 0x0;
898         u32 rqfar = MAX_FILER_IDX;
899         u32 rqfcr = 0x0;
900         u32 rqfpr = FPR_FILER_MASK;
901
902         /* Default rule */
903         rqfcr = RQFCR_CMP_MATCH;
904         priv->ftp_rqfcr[rqfar] = rqfcr;
905         priv->ftp_rqfpr[rqfar] = rqfpr;
906         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
907
908         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
909         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
910         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
911         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
912         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
913         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
914
915         /* cur_filer_idx indicated the first non-masked rule */
916         priv->cur_filer_idx = rqfar;
917
918         /* Rest are masked rules */
919         rqfcr = RQFCR_CMP_NOMATCH;
920         for (i = 0; i < rqfar; i++) {
921                 priv->ftp_rqfcr[i] = rqfcr;
922                 priv->ftp_rqfpr[i] = rqfpr;
923                 gfar_write_filer(priv, i, rqfcr, rqfpr);
924         }
925 }
926
927 static void gfar_detect_errata(struct gfar_private *priv)
928 {
929         struct device *dev = &priv->ofdev->dev;
930         unsigned int pvr = mfspr(SPRN_PVR);
931         unsigned int svr = mfspr(SPRN_SVR);
932         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
933         unsigned int rev = svr & 0xffff;
934
935         /* MPC8313 Rev 2.0 and higher; All MPC837x */
936         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
937                         (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
938                 priv->errata |= GFAR_ERRATA_74;
939
940         /* MPC8313 and MPC837x all rev */
941         if ((pvr == 0x80850010 && mod == 0x80b0) ||
942                         (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
943                 priv->errata |= GFAR_ERRATA_76;
944
945         /* MPC8313 and MPC837x all rev */
946         if ((pvr == 0x80850010 && mod == 0x80b0) ||
947                         (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
948                 priv->errata |= GFAR_ERRATA_A002;
949
950         /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
951         if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
952                         (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
953                 priv->errata |= GFAR_ERRATA_12;
954
955         if (priv->errata)
956                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
957                          priv->errata);
958 }
959
960 /* Set up the ethernet device structure, private data,
961  * and anything else we need before we start */
962 static int gfar_probe(struct platform_device *ofdev)
963 {
964         u32 tempval;
965         struct net_device *dev = NULL;
966         struct gfar_private *priv = NULL;
967         struct gfar __iomem *regs = NULL;
968         int err = 0, i, grp_idx = 0;
969         int len_devname;
970         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
971         u32 isrg = 0;
972         u32 __iomem *baddr;
973
974         err = gfar_of_init(ofdev, &dev);
975
976         if (err)
977                 return err;
978
979         priv = netdev_priv(dev);
980         priv->ndev = dev;
981         priv->ofdev = ofdev;
982         priv->node = ofdev->dev.of_node;
983         SET_NETDEV_DEV(dev, &ofdev->dev);
984
985         spin_lock_init(&priv->bflock);
986         INIT_WORK(&priv->reset_task, gfar_reset_task);
987
988         dev_set_drvdata(&ofdev->dev, priv);
989         regs = priv->gfargrp[0].regs;
990
991         gfar_detect_errata(priv);
992
993         /* Stop the DMA engine now, in case it was running before */
994         /* (The firmware could have used it, and left it running). */
995         gfar_halt(dev);
996
997         /* Reset MAC layer */
998         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
999
1000         /* We need to delay at least 3 TX clocks */
1001         udelay(2);
1002
1003         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1004         gfar_write(&regs->maccfg1, tempval);
1005
1006         /* Initialize MACCFG2. */
1007         tempval = MACCFG2_INIT_SETTINGS;
1008         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1009                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1010         gfar_write(&regs->maccfg2, tempval);
1011
1012         /* Initialize ECNTRL */
1013         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1014
1015         /* Set the dev->base_addr to the gfar reg region */
1016         dev->base_addr = (unsigned long) regs;
1017
1018         SET_NETDEV_DEV(dev, &ofdev->dev);
1019
1020         /* Fill in the dev structure */
1021         dev->watchdog_timeo = TX_TIMEOUT;
1022         dev->mtu = 1500;
1023         dev->netdev_ops = &gfar_netdev_ops;
1024         dev->ethtool_ops = &gfar_ethtool_ops;
1025
1026         /* Register for napi ...We are registering NAPI for each grp */
1027         for (i = 0; i < priv->num_grps; i++)
1028                 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
1029
1030         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1031                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1032                         NETIF_F_RXCSUM;
1033                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1034                         NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1035         }
1036
1037         priv->vlgrp = NULL;
1038
1039         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
1040                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1041
1042         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1043                 priv->extended_hash = 1;
1044                 priv->hash_width = 9;
1045
1046                 priv->hash_regs[0] = &regs->igaddr0;
1047                 priv->hash_regs[1] = &regs->igaddr1;
1048                 priv->hash_regs[2] = &regs->igaddr2;
1049                 priv->hash_regs[3] = &regs->igaddr3;
1050                 priv->hash_regs[4] = &regs->igaddr4;
1051                 priv->hash_regs[5] = &regs->igaddr5;
1052                 priv->hash_regs[6] = &regs->igaddr6;
1053                 priv->hash_regs[7] = &regs->igaddr7;
1054                 priv->hash_regs[8] = &regs->gaddr0;
1055                 priv->hash_regs[9] = &regs->gaddr1;
1056                 priv->hash_regs[10] = &regs->gaddr2;
1057                 priv->hash_regs[11] = &regs->gaddr3;
1058                 priv->hash_regs[12] = &regs->gaddr4;
1059                 priv->hash_regs[13] = &regs->gaddr5;
1060                 priv->hash_regs[14] = &regs->gaddr6;
1061                 priv->hash_regs[15] = &regs->gaddr7;
1062
1063         } else {
1064                 priv->extended_hash = 0;
1065                 priv->hash_width = 8;
1066
1067                 priv->hash_regs[0] = &regs->gaddr0;
1068                 priv->hash_regs[1] = &regs->gaddr1;
1069                 priv->hash_regs[2] = &regs->gaddr2;
1070                 priv->hash_regs[3] = &regs->gaddr3;
1071                 priv->hash_regs[4] = &regs->gaddr4;
1072                 priv->hash_regs[5] = &regs->gaddr5;
1073                 priv->hash_regs[6] = &regs->gaddr6;
1074                 priv->hash_regs[7] = &regs->gaddr7;
1075         }
1076
1077         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1078                 priv->padding = DEFAULT_PADDING;
1079         else
1080                 priv->padding = 0;
1081
1082         if (dev->features & NETIF_F_IP_CSUM ||
1083                         priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1084                 dev->hard_header_len += GMAC_FCB_LEN;
1085
1086         /* Program the isrg regs only if number of grps > 1 */
1087         if (priv->num_grps > 1) {
1088                 baddr = &regs->isrg0;
1089                 for (i = 0; i < priv->num_grps; i++) {
1090                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1091                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1092                         gfar_write(baddr, isrg);
1093                         baddr++;
1094                         isrg = 0x0;
1095                 }
1096         }
1097
1098         /* Need to reverse the bit maps as  bit_map's MSB is q0
1099          * but, for_each_set_bit parses from right to left, which
1100          * basically reverses the queue numbers */
1101         for (i = 0; i< priv->num_grps; i++) {
1102                 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1103                                 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1104                 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1105                                 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1106         }
1107
1108         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1109          * also assign queues to groups */
1110         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1111                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1112                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1113                                 priv->num_rx_queues) {
1114                         priv->gfargrp[grp_idx].num_rx_queues++;
1115                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1116                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1117                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1118                 }
1119                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1120                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1121                                 priv->num_tx_queues) {
1122                         priv->gfargrp[grp_idx].num_tx_queues++;
1123                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1124                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1125                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1126                 }
1127                 priv->gfargrp[grp_idx].rstat = rstat;
1128                 priv->gfargrp[grp_idx].tstat = tstat;
1129                 rstat = tstat =0;
1130         }
1131
1132         gfar_write(&regs->rqueue, rqueue);
1133         gfar_write(&regs->tqueue, tqueue);
1134
1135         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1136
1137         /* Initializing some of the rx/tx queue level parameters */
1138         for (i = 0; i < priv->num_tx_queues; i++) {
1139                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1140                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1141                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1142                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1143         }
1144
1145         for (i = 0; i < priv->num_rx_queues; i++) {
1146                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1147                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1148                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1149         }
1150
1151         /* enable filer if using multiple RX queues*/
1152         if(priv->num_rx_queues > 1)
1153                 priv->rx_filer_enable = 1;
1154         /* Enable most messages by default */
1155         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1156
1157         /* Carrier starts down, phylib will bring it up */
1158         netif_carrier_off(dev);
1159
1160         err = register_netdev(dev);
1161
1162         if (err) {
1163                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1164                                 dev->name);
1165                 goto register_fail;
1166         }
1167
1168         device_init_wakeup(&dev->dev,
1169                 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1170
1171         /* fill out IRQ number and name fields */
1172         len_devname = strlen(dev->name);
1173         for (i = 0; i < priv->num_grps; i++) {
1174                 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1175                                 len_devname);
1176                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1177                         strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1178                                 "_g", sizeof("_g"));
1179                         priv->gfargrp[i].int_name_tx[
1180                                 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1181                         strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1182                                 priv->gfargrp[i].int_name_tx)],
1183                                 "_tx", sizeof("_tx") + 1);
1184
1185                         strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1186                                         len_devname);
1187                         strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1188                                         "_g", sizeof("_g"));
1189                         priv->gfargrp[i].int_name_rx[
1190                                 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1191                         strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1192                                 priv->gfargrp[i].int_name_rx)],
1193                                 "_rx", sizeof("_rx") + 1);
1194
1195                         strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1196                                         len_devname);
1197                         strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1198                                 "_g", sizeof("_g"));
1199                         priv->gfargrp[i].int_name_er[strlen(
1200                                         priv->gfargrp[i].int_name_er)] = i+48;
1201                         strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1202                                 priv->gfargrp[i].int_name_er)],
1203                                 "_er", sizeof("_er") + 1);
1204                 } else
1205                         priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1206         }
1207
1208         /* Initialize the filer table */
1209         gfar_init_filer_table(priv);
1210
1211         /* Create all the sysfs files */
1212         gfar_init_sysfs(dev);
1213
1214         /* Print out the device info */
1215         printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
1216
1217         /* Even more device info helps when determining which kernel */
1218         /* provided which set of benchmarks. */
1219         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
1220         for (i = 0; i < priv->num_rx_queues; i++)
1221                 printk(KERN_INFO "%s: RX BD ring size for Q[%d]: %d\n",
1222                         dev->name, i, priv->rx_queue[i]->rx_ring_size);
1223         for(i = 0; i < priv->num_tx_queues; i++)
1224                  printk(KERN_INFO "%s: TX BD ring size for Q[%d]: %d\n",
1225                         dev->name, i, priv->tx_queue[i]->tx_ring_size);
1226
1227         return 0;
1228
1229 register_fail:
1230         unmap_group_regs(priv);
1231         free_tx_pointers(priv);
1232         free_rx_pointers(priv);
1233         if (priv->phy_node)
1234                 of_node_put(priv->phy_node);
1235         if (priv->tbi_node)
1236                 of_node_put(priv->tbi_node);
1237         free_netdev(dev);
1238         return err;
1239 }
1240
1241 static int gfar_remove(struct platform_device *ofdev)
1242 {
1243         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1244
1245         if (priv->phy_node)
1246                 of_node_put(priv->phy_node);
1247         if (priv->tbi_node)
1248                 of_node_put(priv->tbi_node);
1249
1250         dev_set_drvdata(&ofdev->dev, NULL);
1251
1252         unregister_netdev(priv->ndev);
1253         unmap_group_regs(priv);
1254         free_netdev(priv->ndev);
1255
1256         return 0;
1257 }
1258
1259 #ifdef CONFIG_PM
1260
1261 static int gfar_suspend(struct device *dev)
1262 {
1263         struct gfar_private *priv = dev_get_drvdata(dev);
1264         struct net_device *ndev = priv->ndev;
1265         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1266         unsigned long flags;
1267         u32 tempval;
1268
1269         int magic_packet = priv->wol_en &&
1270                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1271
1272         netif_device_detach(ndev);
1273
1274         if (netif_running(ndev)) {
1275
1276                 local_irq_save(flags);
1277                 lock_tx_qs(priv);
1278                 lock_rx_qs(priv);
1279
1280                 gfar_halt_nodisable(ndev);
1281
1282                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1283                 tempval = gfar_read(&regs->maccfg1);
1284
1285                 tempval &= ~MACCFG1_TX_EN;
1286
1287                 if (!magic_packet)
1288                         tempval &= ~MACCFG1_RX_EN;
1289
1290                 gfar_write(&regs->maccfg1, tempval);
1291
1292                 unlock_rx_qs(priv);
1293                 unlock_tx_qs(priv);
1294                 local_irq_restore(flags);
1295
1296                 disable_napi(priv);
1297
1298                 if (magic_packet) {
1299                         /* Enable interrupt on Magic Packet */
1300                         gfar_write(&regs->imask, IMASK_MAG);
1301
1302                         /* Enable Magic Packet mode */
1303                         tempval = gfar_read(&regs->maccfg2);
1304                         tempval |= MACCFG2_MPEN;
1305                         gfar_write(&regs->maccfg2, tempval);
1306                 } else {
1307                         phy_stop(priv->phydev);
1308                 }
1309         }
1310
1311         return 0;
1312 }
1313
1314 static int gfar_resume(struct device *dev)
1315 {
1316         struct gfar_private *priv = dev_get_drvdata(dev);
1317         struct net_device *ndev = priv->ndev;
1318         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1319         unsigned long flags;
1320         u32 tempval;
1321         int magic_packet = priv->wol_en &&
1322                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1323
1324         if (!netif_running(ndev)) {
1325                 netif_device_attach(ndev);
1326                 return 0;
1327         }
1328
1329         if (!magic_packet && priv->phydev)
1330                 phy_start(priv->phydev);
1331
1332         /* Disable Magic Packet mode, in case something
1333          * else woke us up.
1334          */
1335         local_irq_save(flags);
1336         lock_tx_qs(priv);
1337         lock_rx_qs(priv);
1338
1339         tempval = gfar_read(&regs->maccfg2);
1340         tempval &= ~MACCFG2_MPEN;
1341         gfar_write(&regs->maccfg2, tempval);
1342
1343         gfar_start(ndev);
1344
1345         unlock_rx_qs(priv);
1346         unlock_tx_qs(priv);
1347         local_irq_restore(flags);
1348
1349         netif_device_attach(ndev);
1350
1351         enable_napi(priv);
1352
1353         return 0;
1354 }
1355
1356 static int gfar_restore(struct device *dev)
1357 {
1358         struct gfar_private *priv = dev_get_drvdata(dev);
1359         struct net_device *ndev = priv->ndev;
1360
1361         if (!netif_running(ndev))
1362                 return 0;
1363
1364         gfar_init_bds(ndev);
1365         init_registers(ndev);
1366         gfar_set_mac_address(ndev);
1367         gfar_init_mac(ndev);
1368         gfar_start(ndev);
1369
1370         priv->oldlink = 0;
1371         priv->oldspeed = 0;
1372         priv->oldduplex = -1;
1373
1374         if (priv->phydev)
1375                 phy_start(priv->phydev);
1376
1377         netif_device_attach(ndev);
1378         enable_napi(priv);
1379
1380         return 0;
1381 }
1382
1383 static struct dev_pm_ops gfar_pm_ops = {
1384         .suspend = gfar_suspend,
1385         .resume = gfar_resume,
1386         .freeze = gfar_suspend,
1387         .thaw = gfar_resume,
1388         .restore = gfar_restore,
1389 };
1390
1391 #define GFAR_PM_OPS (&gfar_pm_ops)
1392
1393 #else
1394
1395 #define GFAR_PM_OPS NULL
1396
1397 #endif
1398
1399 /* Reads the controller's registers to determine what interface
1400  * connects it to the PHY.
1401  */
1402 static phy_interface_t gfar_get_interface(struct net_device *dev)
1403 {
1404         struct gfar_private *priv = netdev_priv(dev);
1405         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1406         u32 ecntrl;
1407
1408         ecntrl = gfar_read(&regs->ecntrl);
1409
1410         if (ecntrl & ECNTRL_SGMII_MODE)
1411                 return PHY_INTERFACE_MODE_SGMII;
1412
1413         if (ecntrl & ECNTRL_TBI_MODE) {
1414                 if (ecntrl & ECNTRL_REDUCED_MODE)
1415                         return PHY_INTERFACE_MODE_RTBI;
1416                 else
1417                         return PHY_INTERFACE_MODE_TBI;
1418         }
1419
1420         if (ecntrl & ECNTRL_REDUCED_MODE) {
1421                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1422                         return PHY_INTERFACE_MODE_RMII;
1423                 else {
1424                         phy_interface_t interface = priv->interface;
1425
1426                         /*
1427                          * This isn't autodetected right now, so it must
1428                          * be set by the device tree or platform code.
1429                          */
1430                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1431                                 return PHY_INTERFACE_MODE_RGMII_ID;
1432
1433                         return PHY_INTERFACE_MODE_RGMII;
1434                 }
1435         }
1436
1437         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1438                 return PHY_INTERFACE_MODE_GMII;
1439
1440         return PHY_INTERFACE_MODE_MII;
1441 }
1442
1443
1444 /* Initializes driver's PHY state, and attaches to the PHY.
1445  * Returns 0 on success.
1446  */
1447 static int init_phy(struct net_device *dev)
1448 {
1449         struct gfar_private *priv = netdev_priv(dev);
1450         uint gigabit_support =
1451                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1452                 SUPPORTED_1000baseT_Full : 0;
1453         phy_interface_t interface;
1454
1455         priv->oldlink = 0;
1456         priv->oldspeed = 0;
1457         priv->oldduplex = -1;
1458
1459         interface = gfar_get_interface(dev);
1460
1461         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1462                                       interface);
1463         if (!priv->phydev)
1464                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1465                                                          interface);
1466         if (!priv->phydev) {
1467                 dev_err(&dev->dev, "could not attach to PHY\n");
1468                 return -ENODEV;
1469         }
1470
1471         if (interface == PHY_INTERFACE_MODE_SGMII)
1472                 gfar_configure_serdes(dev);
1473
1474         /* Remove any features not supported by the controller */
1475         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1476         priv->phydev->advertising = priv->phydev->supported;
1477
1478         return 0;
1479 }
1480
1481 /*
1482  * Initialize TBI PHY interface for communicating with the
1483  * SERDES lynx PHY on the chip.  We communicate with this PHY
1484  * through the MDIO bus on each controller, treating it as a
1485  * "normal" PHY at the address found in the TBIPA register.  We assume
1486  * that the TBIPA register is valid.  Either the MDIO bus code will set
1487  * it to a value that doesn't conflict with other PHYs on the bus, or the
1488  * value doesn't matter, as there are no other PHYs on the bus.
1489  */
1490 static void gfar_configure_serdes(struct net_device *dev)
1491 {
1492         struct gfar_private *priv = netdev_priv(dev);
1493         struct phy_device *tbiphy;
1494
1495         if (!priv->tbi_node) {
1496                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1497                                     "device tree specify a tbi-handle\n");
1498                 return;
1499         }
1500
1501         tbiphy = of_phy_find_device(priv->tbi_node);
1502         if (!tbiphy) {
1503                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1504                 return;
1505         }
1506
1507         /*
1508          * If the link is already up, we must already be ok, and don't need to
1509          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1510          * everything for us?  Resetting it takes the link down and requires
1511          * several seconds for it to come back.
1512          */
1513         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1514                 return;
1515
1516         /* Single clk mode, mii mode off(for serdes communication) */
1517         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1518
1519         phy_write(tbiphy, MII_ADVERTISE,
1520                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1521                         ADVERTISE_1000XPSE_ASYM);
1522
1523         phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1524                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1525 }
1526
1527 static void init_registers(struct net_device *dev)
1528 {
1529         struct gfar_private *priv = netdev_priv(dev);
1530         struct gfar __iomem *regs = NULL;
1531         int i = 0;
1532
1533         for (i = 0; i < priv->num_grps; i++) {
1534                 regs = priv->gfargrp[i].regs;
1535                 /* Clear IEVENT */
1536                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1537
1538                 /* Initialize IMASK */
1539                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1540         }
1541
1542         regs = priv->gfargrp[0].regs;
1543         /* Init hash registers to zero */
1544         gfar_write(&regs->igaddr0, 0);
1545         gfar_write(&regs->igaddr1, 0);
1546         gfar_write(&regs->igaddr2, 0);
1547         gfar_write(&regs->igaddr3, 0);
1548         gfar_write(&regs->igaddr4, 0);
1549         gfar_write(&regs->igaddr5, 0);
1550         gfar_write(&regs->igaddr6, 0);
1551         gfar_write(&regs->igaddr7, 0);
1552
1553         gfar_write(&regs->gaddr0, 0);
1554         gfar_write(&regs->gaddr1, 0);
1555         gfar_write(&regs->gaddr2, 0);
1556         gfar_write(&regs->gaddr3, 0);
1557         gfar_write(&regs->gaddr4, 0);
1558         gfar_write(&regs->gaddr5, 0);
1559         gfar_write(&regs->gaddr6, 0);
1560         gfar_write(&regs->gaddr7, 0);
1561
1562         /* Zero out the rmon mib registers if it has them */
1563         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1564                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1565
1566                 /* Mask off the CAM interrupts */
1567                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1568                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1569         }
1570
1571         /* Initialize the max receive buffer length */
1572         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1573
1574         /* Initialize the Minimum Frame Length Register */
1575         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1576 }
1577
1578 static int __gfar_is_rx_idle(struct gfar_private *priv)
1579 {
1580         u32 res;
1581
1582         /*
1583          * Normaly TSEC should not hang on GRS commands, so we should
1584          * actually wait for IEVENT_GRSC flag.
1585          */
1586         if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1587                 return 0;
1588
1589         /*
1590          * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1591          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1592          * and the Rx can be safely reset.
1593          */
1594         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1595         res &= 0x7f807f80;
1596         if ((res & 0xffff) == (res >> 16))
1597                 return 1;
1598
1599         return 0;
1600 }
1601
1602 /* Halt the receive and transmit queues */
1603 static void gfar_halt_nodisable(struct net_device *dev)
1604 {
1605         struct gfar_private *priv = netdev_priv(dev);
1606         struct gfar __iomem *regs = NULL;
1607         u32 tempval;
1608         int i = 0;
1609
1610         for (i = 0; i < priv->num_grps; i++) {
1611                 regs = priv->gfargrp[i].regs;
1612                 /* Mask all interrupts */
1613                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1614
1615                 /* Clear all interrupts */
1616                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1617         }
1618
1619         regs = priv->gfargrp[0].regs;
1620         /* Stop the DMA, and wait for it to stop */
1621         tempval = gfar_read(&regs->dmactrl);
1622         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1623             != (DMACTRL_GRS | DMACTRL_GTS)) {
1624                 int ret;
1625
1626                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1627                 gfar_write(&regs->dmactrl, tempval);
1628
1629                 do {
1630                         ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1631                                  (IEVENT_GRSC | IEVENT_GTSC)) ==
1632                                  (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1633                         if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1634                                 ret = __gfar_is_rx_idle(priv);
1635                 } while (!ret);
1636         }
1637 }
1638
1639 /* Halt the receive and transmit queues */
1640 void gfar_halt(struct net_device *dev)
1641 {
1642         struct gfar_private *priv = netdev_priv(dev);
1643         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1644         u32 tempval;
1645
1646         gfar_halt_nodisable(dev);
1647
1648         /* Disable Rx and Tx */
1649         tempval = gfar_read(&regs->maccfg1);
1650         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1651         gfar_write(&regs->maccfg1, tempval);
1652 }
1653
1654 static void free_grp_irqs(struct gfar_priv_grp *grp)
1655 {
1656         free_irq(grp->interruptError, grp);
1657         free_irq(grp->interruptTransmit, grp);
1658         free_irq(grp->interruptReceive, grp);
1659 }
1660
1661 void stop_gfar(struct net_device *dev)
1662 {
1663         struct gfar_private *priv = netdev_priv(dev);
1664         unsigned long flags;
1665         int i;
1666
1667         phy_stop(priv->phydev);
1668
1669
1670         /* Lock it down */
1671         local_irq_save(flags);
1672         lock_tx_qs(priv);
1673         lock_rx_qs(priv);
1674
1675         gfar_halt(dev);
1676
1677         unlock_rx_qs(priv);
1678         unlock_tx_qs(priv);
1679         local_irq_restore(flags);
1680
1681         /* Free the IRQs */
1682         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1683                 for (i = 0; i < priv->num_grps; i++)
1684                         free_grp_irqs(&priv->gfargrp[i]);
1685         } else {
1686                 for (i = 0; i < priv->num_grps; i++)
1687                         free_irq(priv->gfargrp[i].interruptTransmit,
1688                                         &priv->gfargrp[i]);
1689         }
1690
1691         free_skb_resources(priv);
1692 }
1693
1694 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1695 {
1696         struct txbd8 *txbdp;
1697         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1698         int i, j;
1699
1700         txbdp = tx_queue->tx_bd_base;
1701
1702         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1703                 if (!tx_queue->tx_skbuff[i])
1704                         continue;
1705
1706                 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1707                                 txbdp->length, DMA_TO_DEVICE);
1708                 txbdp->lstatus = 0;
1709                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1710                                 j++) {
1711                         txbdp++;
1712                         dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1713                                         txbdp->length, DMA_TO_DEVICE);
1714                 }
1715                 txbdp++;
1716                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1717                 tx_queue->tx_skbuff[i] = NULL;
1718         }
1719         kfree(tx_queue->tx_skbuff);
1720 }
1721
1722 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1723 {
1724         struct rxbd8 *rxbdp;
1725         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1726         int i;
1727
1728         rxbdp = rx_queue->rx_bd_base;
1729
1730         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1731                 if (rx_queue->rx_skbuff[i]) {
1732                         dma_unmap_single(&priv->ofdev->dev,
1733                                         rxbdp->bufPtr, priv->rx_buffer_size,
1734                                         DMA_FROM_DEVICE);
1735                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1736                         rx_queue->rx_skbuff[i] = NULL;
1737                 }
1738                 rxbdp->lstatus = 0;
1739                 rxbdp->bufPtr = 0;
1740                 rxbdp++;
1741         }
1742         kfree(rx_queue->rx_skbuff);
1743 }
1744
1745 /* If there are any tx skbs or rx skbs still around, free them.
1746  * Then free tx_skbuff and rx_skbuff */
1747 static void free_skb_resources(struct gfar_private *priv)
1748 {
1749         struct gfar_priv_tx_q *tx_queue = NULL;
1750         struct gfar_priv_rx_q *rx_queue = NULL;
1751         int i;
1752
1753         /* Go through all the buffer descriptors and free their data buffers */
1754         for (i = 0; i < priv->num_tx_queues; i++) {
1755                 tx_queue = priv->tx_queue[i];
1756                 if(tx_queue->tx_skbuff)
1757                         free_skb_tx_queue(tx_queue);
1758         }
1759
1760         for (i = 0; i < priv->num_rx_queues; i++) {
1761                 rx_queue = priv->rx_queue[i];
1762                 if(rx_queue->rx_skbuff)
1763                         free_skb_rx_queue(rx_queue);
1764         }
1765
1766         dma_free_coherent(&priv->ofdev->dev,
1767                         sizeof(struct txbd8) * priv->total_tx_ring_size +
1768                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
1769                         priv->tx_queue[0]->tx_bd_base,
1770                         priv->tx_queue[0]->tx_bd_dma_base);
1771         skb_queue_purge(&priv->rx_recycle);
1772 }
1773
1774 void gfar_start(struct net_device *dev)
1775 {
1776         struct gfar_private *priv = netdev_priv(dev);
1777         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1778         u32 tempval;
1779         int i = 0;
1780
1781         /* Enable Rx and Tx in MACCFG1 */
1782         tempval = gfar_read(&regs->maccfg1);
1783         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1784         gfar_write(&regs->maccfg1, tempval);
1785
1786         /* Initialize DMACTRL to have WWR and WOP */
1787         tempval = gfar_read(&regs->dmactrl);
1788         tempval |= DMACTRL_INIT_SETTINGS;
1789         gfar_write(&regs->dmactrl, tempval);
1790
1791         /* Make sure we aren't stopped */
1792         tempval = gfar_read(&regs->dmactrl);
1793         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1794         gfar_write(&regs->dmactrl, tempval);
1795
1796         for (i = 0; i < priv->num_grps; i++) {
1797                 regs = priv->gfargrp[i].regs;
1798                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1799                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1800                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1801                 /* Unmask the interrupts we look for */
1802                 gfar_write(&regs->imask, IMASK_DEFAULT);
1803         }
1804
1805         dev->trans_start = jiffies; /* prevent tx timeout */
1806 }
1807
1808 void gfar_configure_coalescing(struct gfar_private *priv,
1809         unsigned long tx_mask, unsigned long rx_mask)
1810 {
1811         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1812         u32 __iomem *baddr;
1813         int i = 0;
1814
1815         /* Backward compatible case ---- even if we enable
1816          * multiple queues, there's only single reg to program
1817          */
1818         gfar_write(&regs->txic, 0);
1819         if(likely(priv->tx_queue[0]->txcoalescing))
1820                 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1821
1822         gfar_write(&regs->rxic, 0);
1823         if(unlikely(priv->rx_queue[0]->rxcoalescing))
1824                 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1825
1826         if (priv->mode == MQ_MG_MODE) {
1827                 baddr = &regs->txic0;
1828                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1829                         if (likely(priv->tx_queue[i]->txcoalescing)) {
1830                                 gfar_write(baddr + i, 0);
1831                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1832                         }
1833                 }
1834
1835                 baddr = &regs->rxic0;
1836                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1837                         if (likely(priv->rx_queue[i]->rxcoalescing)) {
1838                                 gfar_write(baddr + i, 0);
1839                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1840                         }
1841                 }
1842         }
1843 }
1844
1845 static int register_grp_irqs(struct gfar_priv_grp *grp)
1846 {
1847         struct gfar_private *priv = grp->priv;
1848         struct net_device *dev = priv->ndev;
1849         int err;
1850
1851         /* If the device has multiple interrupts, register for
1852          * them.  Otherwise, only register for the one */
1853         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1854                 /* Install our interrupt handlers for Error,
1855                  * Transmit, and Receive */
1856                 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1857                                 grp->int_name_er,grp)) < 0) {
1858                         if (netif_msg_intr(priv))
1859                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1860                                         dev->name, grp->interruptError);
1861
1862                         goto err_irq_fail;
1863                 }
1864
1865                 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1866                                 0, grp->int_name_tx, grp)) < 0) {
1867                         if (netif_msg_intr(priv))
1868                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1869                                         dev->name, grp->interruptTransmit);
1870                         goto tx_irq_fail;
1871                 }
1872
1873                 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1874                                 grp->int_name_rx, grp)) < 0) {
1875                         if (netif_msg_intr(priv))
1876                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1877                                         dev->name, grp->interruptReceive);
1878                         goto rx_irq_fail;
1879                 }
1880         } else {
1881                 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1882                                 grp->int_name_tx, grp)) < 0) {
1883                         if (netif_msg_intr(priv))
1884                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1885                                         dev->name, grp->interruptTransmit);
1886                         goto err_irq_fail;
1887                 }
1888         }
1889
1890         return 0;
1891
1892 rx_irq_fail:
1893         free_irq(grp->interruptTransmit, grp);
1894 tx_irq_fail:
1895         free_irq(grp->interruptError, grp);
1896 err_irq_fail:
1897         return err;
1898
1899 }
1900
1901 /* Bring the controller up and running */
1902 int startup_gfar(struct net_device *ndev)
1903 {
1904         struct gfar_private *priv = netdev_priv(ndev);
1905         struct gfar __iomem *regs = NULL;
1906         int err, i, j;
1907
1908         for (i = 0; i < priv->num_grps; i++) {
1909                 regs= priv->gfargrp[i].regs;
1910                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1911         }
1912
1913         regs= priv->gfargrp[0].regs;
1914         err = gfar_alloc_skb_resources(ndev);
1915         if (err)
1916                 return err;
1917
1918         gfar_init_mac(ndev);
1919
1920         for (i = 0; i < priv->num_grps; i++) {
1921                 err = register_grp_irqs(&priv->gfargrp[i]);
1922                 if (err) {
1923                         for (j = 0; j < i; j++)
1924                                 free_grp_irqs(&priv->gfargrp[j]);
1925                         goto irq_fail;
1926                 }
1927         }
1928
1929         /* Start the controller */
1930         gfar_start(ndev);
1931
1932         phy_start(priv->phydev);
1933
1934         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1935
1936         return 0;
1937
1938 irq_fail:
1939         free_skb_resources(priv);
1940         return err;
1941 }
1942
1943 /* Called when something needs to use the ethernet device */
1944 /* Returns 0 for success. */
1945 static int gfar_enet_open(struct net_device *dev)
1946 {
1947         struct gfar_private *priv = netdev_priv(dev);
1948         int err;
1949
1950         enable_napi(priv);
1951
1952         skb_queue_head_init(&priv->rx_recycle);
1953
1954         /* Initialize a bunch of registers */
1955         init_registers(dev);
1956
1957         gfar_set_mac_address(dev);
1958
1959         err = init_phy(dev);
1960
1961         if (err) {
1962                 disable_napi(priv);
1963                 return err;
1964         }
1965
1966         err = startup_gfar(dev);
1967         if (err) {
1968                 disable_napi(priv);
1969                 return err;
1970         }
1971
1972         netif_tx_start_all_queues(dev);
1973
1974         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1975
1976         return err;
1977 }
1978
1979 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1980 {
1981         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1982
1983         memset(fcb, 0, GMAC_FCB_LEN);
1984
1985         return fcb;
1986 }
1987
1988 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1989 {
1990         u8 flags = 0;
1991
1992         /* If we're here, it's a IP packet with a TCP or UDP
1993          * payload.  We set it to checksum, using a pseudo-header
1994          * we provide
1995          */
1996         flags = TXFCB_DEFAULT;
1997
1998         /* Tell the controller what the protocol is */
1999         /* And provide the already calculated phcs */
2000         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2001                 flags |= TXFCB_UDP;
2002                 fcb->phcs = udp_hdr(skb)->check;
2003         } else
2004                 fcb->phcs = tcp_hdr(skb)->check;
2005
2006         /* l3os is the distance between the start of the
2007          * frame (skb->data) and the start of the IP hdr.
2008          * l4os is the distance between the start of the
2009          * l3 hdr and the l4 hdr */
2010         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
2011         fcb->l4os = skb_network_header_len(skb);
2012
2013         fcb->flags = flags;
2014 }
2015
2016 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2017 {
2018         fcb->flags |= TXFCB_VLN;
2019         fcb->vlctl = vlan_tx_tag_get(skb);
2020 }
2021
2022 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2023                                struct txbd8 *base, int ring_size)
2024 {
2025         struct txbd8 *new_bd = bdp + stride;
2026
2027         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2028 }
2029
2030 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2031                 int ring_size)
2032 {
2033         return skip_txbd(bdp, 1, base, ring_size);
2034 }
2035
2036 /* This is called by the kernel when a frame is ready for transmission. */
2037 /* It is pointed to by the dev->hard_start_xmit function pointer */
2038 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2039 {
2040         struct gfar_private *priv = netdev_priv(dev);
2041         struct gfar_priv_tx_q *tx_queue = NULL;
2042         struct netdev_queue *txq;
2043         struct gfar __iomem *regs = NULL;
2044         struct txfcb *fcb = NULL;
2045         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2046         u32 lstatus;
2047         int i, rq = 0, do_tstamp = 0;
2048         u32 bufaddr;
2049         unsigned long flags;
2050         unsigned int nr_frags, nr_txbds, length;
2051
2052         /*
2053          * TOE=1 frames larger than 2500 bytes may see excess delays
2054          * before start of transmission.
2055          */
2056         if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2057                         skb->ip_summed == CHECKSUM_PARTIAL &&
2058                         skb->len > 2500)) {
2059                 int ret;
2060
2061                 ret = skb_checksum_help(skb);
2062                 if (ret)
2063                         return ret;
2064         }
2065
2066         rq = skb->queue_mapping;
2067         tx_queue = priv->tx_queue[rq];
2068         txq = netdev_get_tx_queue(dev, rq);
2069         base = tx_queue->tx_bd_base;
2070         regs = tx_queue->grp->regs;
2071
2072         /* check if time stamp should be generated */
2073         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2074                      priv->hwts_tx_en))
2075                 do_tstamp = 1;
2076
2077         /* make space for additional header when fcb is needed */
2078         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2079                         vlan_tx_tag_present(skb) ||
2080                         unlikely(do_tstamp)) &&
2081                         (skb_headroom(skb) < GMAC_FCB_LEN)) {
2082                 struct sk_buff *skb_new;
2083
2084                 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
2085                 if (!skb_new) {
2086                         dev->stats.tx_errors++;
2087                         kfree_skb(skb);
2088                         return NETDEV_TX_OK;
2089                 }
2090                 kfree_skb(skb);
2091                 skb = skb_new;
2092         }
2093
2094         /* total number of fragments in the SKB */
2095         nr_frags = skb_shinfo(skb)->nr_frags;
2096
2097         /* calculate the required number of TxBDs for this skb */
2098         if (unlikely(do_tstamp))
2099                 nr_txbds = nr_frags + 2;
2100         else
2101                 nr_txbds = nr_frags + 1;
2102
2103         /* check if there is space to queue this packet */
2104         if (nr_txbds > tx_queue->num_txbdfree) {
2105                 /* no space, stop the queue */
2106                 netif_tx_stop_queue(txq);
2107                 dev->stats.tx_fifo_errors++;
2108                 return NETDEV_TX_BUSY;
2109         }
2110
2111         /* Update transmit stats */
2112         tx_queue->stats.tx_bytes += skb->len;
2113         tx_queue->stats.tx_packets++;
2114
2115         txbdp = txbdp_start = tx_queue->cur_tx;
2116         lstatus = txbdp->lstatus;
2117
2118         /* Time stamp insertion requires one additional TxBD */
2119         if (unlikely(do_tstamp))
2120                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2121                                 tx_queue->tx_ring_size);
2122
2123         if (nr_frags == 0) {
2124                 if (unlikely(do_tstamp))
2125                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2126                                         TXBD_INTERRUPT);
2127                 else
2128                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2129         } else {
2130                 /* Place the fragment addresses and lengths into the TxBDs */
2131                 for (i = 0; i < nr_frags; i++) {
2132                         /* Point at the next BD, wrapping as needed */
2133                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2134
2135                         length = skb_shinfo(skb)->frags[i].size;
2136
2137                         lstatus = txbdp->lstatus | length |
2138                                 BD_LFLAG(TXBD_READY);
2139
2140                         /* Handle the last BD specially */
2141                         if (i == nr_frags - 1)
2142                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2143
2144                         bufaddr = dma_map_page(&priv->ofdev->dev,
2145                                         skb_shinfo(skb)->frags[i].page,
2146                                         skb_shinfo(skb)->frags[i].page_offset,
2147                                         length,
2148                                         DMA_TO_DEVICE);
2149
2150                         /* set the TxBD length and buffer pointer */
2151                         txbdp->bufPtr = bufaddr;
2152                         txbdp->lstatus = lstatus;
2153                 }
2154
2155                 lstatus = txbdp_start->lstatus;
2156         }
2157
2158         /* Set up checksumming */
2159         if (CHECKSUM_PARTIAL == skb->ip_summed) {
2160                 fcb = gfar_add_fcb(skb);
2161                 /* as specified by errata */
2162                 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12)
2163                              && ((unsigned long)fcb % 0x20) > 0x18)) {
2164                         __skb_pull(skb, GMAC_FCB_LEN);
2165                         skb_checksum_help(skb);
2166                 } else {
2167                         lstatus |= BD_LFLAG(TXBD_TOE);
2168                         gfar_tx_checksum(skb, fcb);
2169                 }
2170         }
2171
2172         if (vlan_tx_tag_present(skb)) {
2173                 if (unlikely(NULL == fcb)) {
2174                         fcb = gfar_add_fcb(skb);
2175                         lstatus |= BD_LFLAG(TXBD_TOE);
2176                 }
2177
2178                 gfar_tx_vlan(skb, fcb);
2179         }
2180
2181         /* Setup tx hardware time stamping if requested */
2182         if (unlikely(do_tstamp)) {
2183                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2184                 if (fcb == NULL)
2185                         fcb = gfar_add_fcb(skb);
2186                 fcb->ptp = 1;
2187                 lstatus |= BD_LFLAG(TXBD_TOE);
2188         }
2189
2190         txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2191                         skb_headlen(skb), DMA_TO_DEVICE);
2192
2193         /*
2194          * If time stamping is requested one additional TxBD must be set up. The
2195          * first TxBD points to the FCB and must have a data length of
2196          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2197          * the full frame length.
2198          */
2199         if (unlikely(do_tstamp)) {
2200                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + GMAC_FCB_LEN;
2201                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2202                                 (skb_headlen(skb) - GMAC_FCB_LEN);
2203                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2204         } else {
2205                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2206         }
2207
2208         /*
2209          * We can work in parallel with gfar_clean_tx_ring(), except
2210          * when modifying num_txbdfree. Note that we didn't grab the lock
2211          * when we were reading the num_txbdfree and checking for available
2212          * space, that's because outside of this function it can only grow,
2213          * and once we've got needed space, it cannot suddenly disappear.
2214          *
2215          * The lock also protects us from gfar_error(), which can modify
2216          * regs->tstat and thus retrigger the transfers, which is why we
2217          * also must grab the lock before setting ready bit for the first
2218          * to be transmitted BD.
2219          */
2220         spin_lock_irqsave(&tx_queue->txlock, flags);
2221
2222         /*
2223          * The powerpc-specific eieio() is used, as wmb() has too strong
2224          * semantics (it requires synchronization between cacheable and
2225          * uncacheable mappings, which eieio doesn't provide and which we
2226          * don't need), thus requiring a more expensive sync instruction.  At
2227          * some point, the set of architecture-independent barrier functions
2228          * should be expanded to include weaker barriers.
2229          */
2230         eieio();
2231
2232         txbdp_start->lstatus = lstatus;
2233
2234         eieio(); /* force lstatus write before tx_skbuff */
2235
2236         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2237
2238         /* Update the current skb pointer to the next entry we will use
2239          * (wrapping if necessary) */
2240         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2241                 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2242
2243         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2244
2245         /* reduce TxBD free count */
2246         tx_queue->num_txbdfree -= (nr_txbds);
2247
2248         /* If the next BD still needs to be cleaned up, then the bds
2249            are full.  We need to tell the kernel to stop sending us stuff. */
2250         if (!tx_queue->num_txbdfree) {
2251                 netif_tx_stop_queue(txq);
2252
2253                 dev->stats.tx_fifo_errors++;
2254         }
2255
2256         /* Tell the DMA to go go go */
2257         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2258
2259         /* Unlock priv */
2260         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2261
2262         return NETDEV_TX_OK;
2263 }
2264
2265 /* Stops the kernel queue, and halts the controller */
2266 static int gfar_close(struct net_device *dev)
2267 {
2268         struct gfar_private *priv = netdev_priv(dev);
2269
2270         disable_napi(priv);
2271
2272         cancel_work_sync(&priv->reset_task);
2273         stop_gfar(dev);
2274
2275         /* Disconnect from the PHY */
2276         phy_disconnect(priv->phydev);
2277         priv->phydev = NULL;
2278
2279         netif_tx_stop_all_queues(dev);
2280
2281         return 0;
2282 }
2283
2284 /* Changes the mac address if the controller is not running. */
2285 static int gfar_set_mac_address(struct net_device *dev)
2286 {
2287         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2288
2289         return 0;
2290 }
2291
2292
2293 /* Enables and disables VLAN insertion/extraction */
2294 static void gfar_vlan_rx_register(struct net_device *dev,
2295                 struct vlan_group *grp)
2296 {
2297         struct gfar_private *priv = netdev_priv(dev);
2298         struct gfar __iomem *regs = NULL;
2299         unsigned long flags;
2300         u32 tempval;
2301
2302         regs = priv->gfargrp[0].regs;
2303         local_irq_save(flags);
2304         lock_rx_qs(priv);
2305
2306         priv->vlgrp = grp;
2307
2308         if (grp) {
2309                 /* Enable VLAN tag insertion */
2310                 tempval = gfar_read(&regs->tctrl);
2311                 tempval |= TCTRL_VLINS;
2312
2313                 gfar_write(&regs->tctrl, tempval);
2314
2315                 /* Enable VLAN tag extraction */
2316                 tempval = gfar_read(&regs->rctrl);
2317                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2318                 gfar_write(&regs->rctrl, tempval);
2319         } else {
2320                 /* Disable VLAN tag insertion */
2321                 tempval = gfar_read(&regs->tctrl);
2322                 tempval &= ~TCTRL_VLINS;
2323                 gfar_write(&regs->tctrl, tempval);
2324
2325                 /* Disable VLAN tag extraction */
2326                 tempval = gfar_read(&regs->rctrl);
2327                 tempval &= ~RCTRL_VLEX;
2328                 /* If parse is no longer required, then disable parser */
2329                 if (tempval & RCTRL_REQ_PARSER)
2330                         tempval |= RCTRL_PRSDEP_INIT;
2331                 else
2332                         tempval &= ~RCTRL_PRSDEP_INIT;
2333                 gfar_write(&regs->rctrl, tempval);
2334         }
2335
2336         gfar_change_mtu(dev, dev->mtu);
2337
2338         unlock_rx_qs(priv);
2339         local_irq_restore(flags);
2340 }
2341
2342 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2343 {
2344         int tempsize, tempval;
2345         struct gfar_private *priv = netdev_priv(dev);
2346         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2347         int oldsize = priv->rx_buffer_size;
2348         int frame_size = new_mtu + ETH_HLEN;
2349
2350         if (priv->vlgrp)
2351                 frame_size += VLAN_HLEN;
2352
2353         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2354                 if (netif_msg_drv(priv))
2355                         printk(KERN_ERR "%s: Invalid MTU setting\n",
2356                                         dev->name);
2357                 return -EINVAL;
2358         }
2359
2360         if (gfar_uses_fcb(priv))
2361                 frame_size += GMAC_FCB_LEN;
2362
2363         frame_size += priv->padding;
2364
2365         tempsize =
2366             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2367             INCREMENTAL_BUFFER_SIZE;
2368
2369         /* Only stop and start the controller if it isn't already
2370          * stopped, and we changed something */
2371         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2372                 stop_gfar(dev);
2373
2374         priv->rx_buffer_size = tempsize;
2375
2376         dev->mtu = new_mtu;
2377
2378         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2379         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2380
2381         /* If the mtu is larger than the max size for standard
2382          * ethernet frames (ie, a jumbo frame), then set maccfg2
2383          * to allow huge frames, and to check the length */
2384         tempval = gfar_read(&regs->maccfg2);
2385
2386         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2387                         gfar_has_errata(priv, GFAR_ERRATA_74))
2388                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2389         else
2390                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2391
2392         gfar_write(&regs->maccfg2, tempval);
2393
2394         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2395                 startup_gfar(dev);
2396
2397         return 0;
2398 }
2399
2400 /* gfar_reset_task gets scheduled when a packet has not been
2401  * transmitted after a set amount of time.
2402  * For now, assume that clearing out all the structures, and
2403  * starting over will fix the problem.
2404  */
2405 static void gfar_reset_task(struct work_struct *work)
2406 {
2407         struct gfar_private *priv = container_of(work, struct gfar_private,
2408                         reset_task);
2409         struct net_device *dev = priv->ndev;
2410
2411         if (dev->flags & IFF_UP) {
2412                 netif_tx_stop_all_queues(dev);
2413                 stop_gfar(dev);
2414                 startup_gfar(dev);
2415                 netif_tx_start_all_queues(dev);
2416         }
2417
2418         netif_tx_schedule_all(dev);
2419 }
2420
2421 static void gfar_timeout(struct net_device *dev)
2422 {
2423         struct gfar_private *priv = netdev_priv(dev);
2424
2425         dev->stats.tx_errors++;
2426         schedule_work(&priv->reset_task);
2427 }
2428
2429 static void gfar_align_skb(struct sk_buff *skb)
2430 {
2431         /* We need the data buffer to be aligned properly.  We will reserve
2432          * as many bytes as needed to align the data properly
2433          */
2434         skb_reserve(skb, RXBUF_ALIGNMENT -
2435                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2436 }
2437
2438 /* Interrupt Handler for Transmit complete */
2439 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2440 {
2441         struct net_device *dev = tx_queue->dev;
2442         struct gfar_private *priv = netdev_priv(dev);
2443         struct gfar_priv_rx_q *rx_queue = NULL;
2444         struct txbd8 *bdp, *next = NULL;
2445         struct txbd8 *lbdp = NULL;
2446         struct txbd8 *base = tx_queue->tx_bd_base;
2447         struct sk_buff *skb;
2448         int skb_dirtytx;
2449         int tx_ring_size = tx_queue->tx_ring_size;
2450         int frags = 0, nr_txbds = 0;
2451         int i;
2452         int howmany = 0;
2453         u32 lstatus;
2454         size_t buflen;
2455
2456         rx_queue = priv->rx_queue[tx_queue->qindex];
2457         bdp = tx_queue->dirty_tx;
2458         skb_dirtytx = tx_queue->skb_dirtytx;
2459
2460         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2461                 unsigned long flags;
2462
2463                 frags = skb_shinfo(skb)->nr_frags;
2464
2465                 /*
2466                  * When time stamping, one additional TxBD must be freed.
2467                  * Also, we need to dma_unmap_single() the TxPAL.
2468                  */
2469                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2470                         nr_txbds = frags + 2;
2471                 else
2472                         nr_txbds = frags + 1;
2473
2474                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2475
2476                 lstatus = lbdp->lstatus;
2477
2478                 /* Only clean completed frames */
2479                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2480                                 (lstatus & BD_LENGTH_MASK))
2481                         break;
2482
2483                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2484                         next = next_txbd(bdp, base, tx_ring_size);
2485                         buflen = next->length + GMAC_FCB_LEN;
2486                 } else
2487                         buflen = bdp->length;
2488
2489                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2490                                 buflen, DMA_TO_DEVICE);
2491
2492                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2493                         struct skb_shared_hwtstamps shhwtstamps;
2494                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2495                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2496                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2497                         skb_tstamp_tx(skb, &shhwtstamps);
2498                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2499                         bdp = next;
2500                 }
2501
2502                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2503                 bdp = next_txbd(bdp, base, tx_ring_size);
2504
2505                 for (i = 0; i < frags; i++) {
2506                         dma_unmap_page(&priv->ofdev->dev,
2507                                         bdp->bufPtr,
2508                                         bdp->length,
2509                                         DMA_TO_DEVICE);
2510                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2511                         bdp = next_txbd(bdp, base, tx_ring_size);
2512                 }
2513
2514                 /*
2515                  * If there's room in the queue (limit it to rx_buffer_size)
2516                  * we add this skb back into the pool, if it's the right size
2517                  */
2518                 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2519                                 skb_recycle_check(skb, priv->rx_buffer_size +
2520                                         RXBUF_ALIGNMENT)) {
2521                         gfar_align_skb(skb);
2522                         skb_queue_head(&priv->rx_recycle, skb);
2523                 } else
2524                         dev_kfree_skb_any(skb);
2525
2526                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2527
2528                 skb_dirtytx = (skb_dirtytx + 1) &
2529                         TX_RING_MOD_MASK(tx_ring_size);
2530
2531                 howmany++;
2532                 spin_lock_irqsave(&tx_queue->txlock, flags);
2533                 tx_queue->num_txbdfree += nr_txbds;
2534                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2535         }
2536
2537         /* If we freed a buffer, we can restart transmission, if necessary */
2538         if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2539                 netif_wake_subqueue(dev, tx_queue->qindex);
2540
2541         /* Update dirty indicators */
2542         tx_queue->skb_dirtytx = skb_dirtytx;
2543         tx_queue->dirty_tx = bdp;
2544
2545         return howmany;
2546 }
2547
2548 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2549 {
2550         unsigned long flags;
2551
2552         spin_lock_irqsave(&gfargrp->grplock, flags);
2553         if (napi_schedule_prep(&gfargrp->napi)) {
2554                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2555                 __napi_schedule(&gfargrp->napi);
2556         } else {
2557                 /*
2558                  * Clear IEVENT, so interrupts aren't called again
2559                  * because of the packets that have already arrived.
2560                  */
2561                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2562         }
2563         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2564
2565 }
2566
2567 /* Interrupt Handler for Transmit complete */
2568 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2569 {
2570         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2571         return IRQ_HANDLED;
2572 }
2573
2574 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2575                 struct sk_buff *skb)
2576 {
2577         struct net_device *dev = rx_queue->dev;
2578         struct gfar_private *priv = netdev_priv(dev);
2579         dma_addr_t buf;
2580
2581         buf = dma_map_single(&priv->ofdev->dev, skb->data,
2582                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2583         gfar_init_rxbdp(rx_queue, bdp, buf);
2584 }
2585
2586 static struct sk_buff * gfar_alloc_skb(struct net_device *dev)
2587 {
2588         struct gfar_private *priv = netdev_priv(dev);
2589         struct sk_buff *skb = NULL;
2590
2591         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2592         if (!skb)
2593                 return NULL;
2594
2595         gfar_align_skb(skb);
2596
2597         return skb;
2598 }
2599
2600 struct sk_buff * gfar_new_skb(struct net_device *dev)
2601 {
2602         struct gfar_private *priv = netdev_priv(dev);
2603         struct sk_buff *skb = NULL;
2604
2605         skb = skb_dequeue(&priv->rx_recycle);
2606         if (!skb)
2607                 skb = gfar_alloc_skb(dev);
2608
2609         return skb;
2610 }
2611
2612 static inline void count_errors(unsigned short status, struct net_device *dev)
2613 {
2614         struct gfar_private *priv = netdev_priv(dev);
2615         struct net_device_stats *stats = &dev->stats;
2616         struct gfar_extra_stats *estats = &priv->extra_stats;
2617
2618         /* If the packet was truncated, none of the other errors
2619          * matter */
2620         if (status & RXBD_TRUNCATED) {
2621                 stats->rx_length_errors++;
2622
2623                 estats->rx_trunc++;
2624
2625                 return;
2626         }
2627         /* Count the errors, if there were any */
2628         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2629                 stats->rx_length_errors++;
2630
2631                 if (status & RXBD_LARGE)
2632                         estats->rx_large++;
2633                 else
2634                         estats->rx_short++;
2635         }
2636         if (status & RXBD_NONOCTET) {
2637                 stats->rx_frame_errors++;
2638                 estats->rx_nonoctet++;
2639         }
2640         if (status & RXBD_CRCERR) {
2641                 estats->rx_crcerr++;
2642                 stats->rx_crc_errors++;
2643         }
2644         if (status & RXBD_OVERRUN) {
2645                 estats->rx_overrun++;
2646                 stats->rx_crc_errors++;
2647         }
2648 }
2649
2650 irqreturn_t gfar_receive(int irq, void *grp_id)
2651 {
2652         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2653         return IRQ_HANDLED;
2654 }
2655
2656 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2657 {
2658         /* If valid headers were found, and valid sums
2659          * were verified, then we tell the kernel that no
2660          * checksumming is necessary.  Otherwise, it is */
2661         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2662                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2663         else
2664                 skb_checksum_none_assert(skb);
2665 }
2666
2667
2668 /* gfar_process_frame() -- handle one incoming packet if skb
2669  * isn't NULL.  */
2670 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2671                               int amount_pull)
2672 {
2673         struct gfar_private *priv = netdev_priv(dev);
2674         struct rxfcb *fcb = NULL;
2675
2676         int ret;
2677
2678         /* fcb is at the beginning if exists */
2679         fcb = (struct rxfcb *)skb->data;
2680
2681         /* Remove the FCB from the skb */
2682         /* Remove the padded bytes, if there are any */
2683         if (amount_pull) {
2684                 skb_record_rx_queue(skb, fcb->rq);
2685                 skb_pull(skb, amount_pull);
2686         }
2687
2688         /* Get receive timestamp from the skb */
2689         if (priv->hwts_rx_en) {
2690                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2691                 u64 *ns = (u64 *) skb->data;
2692                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2693                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2694         }
2695
2696         if (priv->padding)
2697                 skb_pull(skb, priv->padding);
2698
2699         if (dev->features & NETIF_F_RXCSUM)
2700                 gfar_rx_checksum(skb, fcb);
2701
2702         /* Tell the skb what kind of packet this is */
2703         skb->protocol = eth_type_trans(skb, dev);
2704
2705         /* Send the packet up the stack */
2706         if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
2707                 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
2708         else
2709                 ret = netif_receive_skb(skb);
2710
2711         if (NET_RX_DROP == ret)
2712                 priv->extra_stats.kernel_dropped++;
2713
2714         return 0;
2715 }
2716
2717 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2718  *   until the budget/quota has been reached. Returns the number
2719  *   of frames handled
2720  */
2721 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2722 {
2723         struct net_device *dev = rx_queue->dev;
2724         struct rxbd8 *bdp, *base;
2725         struct sk_buff *skb;
2726         int pkt_len;
2727         int amount_pull;
2728         int howmany = 0;
2729         struct gfar_private *priv = netdev_priv(dev);
2730
2731         /* Get the first full descriptor */
2732         bdp = rx_queue->cur_rx;
2733         base = rx_queue->rx_bd_base;
2734
2735         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2736
2737         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2738                 struct sk_buff *newskb;
2739                 rmb();
2740
2741                 /* Add another skb for the future */
2742                 newskb = gfar_new_skb(dev);
2743
2744                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2745
2746                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2747                                 priv->rx_buffer_size, DMA_FROM_DEVICE);
2748
2749                 if (unlikely(!(bdp->status & RXBD_ERR) &&
2750                                 bdp->length > priv->rx_buffer_size))
2751                         bdp->status = RXBD_LARGE;
2752
2753                 /* We drop the frame if we failed to allocate a new buffer */
2754                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2755                                  bdp->status & RXBD_ERR)) {
2756                         count_errors(bdp->status, dev);
2757
2758                         if (unlikely(!newskb))
2759                                 newskb = skb;
2760                         else if (skb)
2761                                 skb_queue_head(&priv->rx_recycle, skb);
2762                 } else {
2763                         /* Increment the number of packets */
2764                         rx_queue->stats.rx_packets++;
2765                         howmany++;
2766
2767                         if (likely(skb)) {
2768                                 pkt_len = bdp->length - ETH_FCS_LEN;
2769                                 /* Remove the FCS from the packet length */
2770                                 skb_put(skb, pkt_len);
2771                                 rx_queue->stats.rx_bytes += pkt_len;
2772                                 skb_record_rx_queue(skb, rx_queue->qindex);
2773                                 gfar_process_frame(dev, skb, amount_pull);
2774
2775                         } else {
2776                                 if (netif_msg_rx_err(priv))
2777                                         printk(KERN_WARNING
2778                                                "%s: Missing skb!\n", dev->name);
2779                                 rx_queue->stats.rx_dropped++;
2780                                 priv->extra_stats.rx_skbmissing++;
2781                         }
2782
2783                 }
2784
2785                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2786
2787                 /* Setup the new bdp */
2788                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2789
2790                 /* Update to the next pointer */
2791                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2792
2793                 /* update to point at the next skb */
2794                 rx_queue->skb_currx =
2795                     (rx_queue->skb_currx + 1) &
2796                     RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2797         }
2798
2799         /* Update the current rxbd pointer to be the next one */
2800         rx_queue->cur_rx = bdp;
2801
2802         return howmany;
2803 }
2804
2805 static int gfar_poll(struct napi_struct *napi, int budget)
2806 {
2807         struct gfar_priv_grp *gfargrp = container_of(napi,
2808                         struct gfar_priv_grp, napi);
2809         struct gfar_private *priv = gfargrp->priv;
2810         struct gfar __iomem *regs = gfargrp->regs;
2811         struct gfar_priv_tx_q *tx_queue = NULL;
2812         struct gfar_priv_rx_q *rx_queue = NULL;
2813         int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2814         int tx_cleaned = 0, i, left_over_budget = budget;
2815         unsigned long serviced_queues = 0;
2816         int num_queues = 0;
2817
2818         num_queues = gfargrp->num_rx_queues;
2819         budget_per_queue = budget/num_queues;
2820
2821         /* Clear IEVENT, so interrupts aren't called again
2822          * because of the packets that have already arrived */
2823         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2824
2825         while (num_queues && left_over_budget) {
2826
2827                 budget_per_queue = left_over_budget/num_queues;
2828                 left_over_budget = 0;
2829
2830                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2831                         if (test_bit(i, &serviced_queues))
2832                                 continue;
2833                         rx_queue = priv->rx_queue[i];
2834                         tx_queue = priv->tx_queue[rx_queue->qindex];
2835
2836                         tx_cleaned += gfar_clean_tx_ring(tx_queue);
2837                         rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2838                                                         budget_per_queue);
2839                         rx_cleaned += rx_cleaned_per_queue;
2840                         if(rx_cleaned_per_queue < budget_per_queue) {
2841                                 left_over_budget = left_over_budget +
2842                                         (budget_per_queue - rx_cleaned_per_queue);
2843                                 set_bit(i, &serviced_queues);
2844                                 num_queues--;
2845                         }
2846                 }
2847         }
2848
2849         if (tx_cleaned)
2850                 return budget;
2851
2852         if (rx_cleaned < budget) {
2853                 napi_complete(napi);
2854
2855                 /* Clear the halt bit in RSTAT */
2856                 gfar_write(&regs->rstat, gfargrp->rstat);
2857
2858                 gfar_write(&regs->imask, IMASK_DEFAULT);
2859
2860                 /* If we are coalescing interrupts, update the timer */
2861                 /* Otherwise, clear it */
2862                 gfar_configure_coalescing(priv,
2863                                 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2864         }
2865
2866         return rx_cleaned;
2867 }
2868
2869 #ifdef CONFIG_NET_POLL_CONTROLLER
2870 /*
2871  * Polling 'interrupt' - used by things like netconsole to send skbs
2872  * without having to re-enable interrupts. It's not called while
2873  * the interrupt routine is executing.
2874  */
2875 static void gfar_netpoll(struct net_device *dev)
2876 {
2877         struct gfar_private *priv = netdev_priv(dev);
2878         int i = 0;
2879
2880         /* If the device has multiple interrupts, run tx/rx */
2881         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2882                 for (i = 0; i < priv->num_grps; i++) {
2883                         disable_irq(priv->gfargrp[i].interruptTransmit);
2884                         disable_irq(priv->gfargrp[i].interruptReceive);
2885                         disable_irq(priv->gfargrp[i].interruptError);
2886                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2887                                                 &priv->gfargrp[i]);
2888                         enable_irq(priv->gfargrp[i].interruptError);
2889                         enable_irq(priv->gfargrp[i].interruptReceive);
2890                         enable_irq(priv->gfargrp[i].interruptTransmit);
2891                 }
2892         } else {
2893                 for (i = 0; i < priv->num_grps; i++) {
2894                         disable_irq(priv->gfargrp[i].interruptTransmit);
2895                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2896                                                 &priv->gfargrp[i]);
2897                         enable_irq(priv->gfargrp[i].interruptTransmit);
2898                 }
2899         }
2900 }
2901 #endif
2902
2903 /* The interrupt handler for devices with one interrupt */
2904 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2905 {
2906         struct gfar_priv_grp *gfargrp = grp_id;
2907
2908         /* Save ievent for future reference */
2909         u32 events = gfar_read(&gfargrp->regs->ievent);
2910
2911         /* Check for reception */
2912         if (events & IEVENT_RX_MASK)
2913                 gfar_receive(irq, grp_id);
2914
2915         /* Check for transmit completion */
2916         if (events & IEVENT_TX_MASK)
2917                 gfar_transmit(irq, grp_id);
2918
2919         /* Check for errors */
2920         if (events & IEVENT_ERR_MASK)
2921                 gfar_error(irq, grp_id);
2922
2923         return IRQ_HANDLED;
2924 }
2925
2926 /* Called every time the controller might need to be made
2927  * aware of new link state.  The PHY code conveys this
2928  * information through variables in the phydev structure, and this
2929  * function converts those variables into the appropriate
2930  * register values, and can bring down the device if needed.
2931  */
2932 static void adjust_link(struct net_device *dev)
2933 {
2934         struct gfar_private *priv = netdev_priv(dev);
2935         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2936         unsigned long flags;
2937         struct phy_device *phydev = priv->phydev;
2938         int new_state = 0;
2939
2940         local_irq_save(flags);
2941         lock_tx_qs(priv);
2942
2943         if (phydev->link) {
2944                 u32 tempval = gfar_read(&regs->maccfg2);
2945                 u32 ecntrl = gfar_read(&regs->ecntrl);
2946
2947                 /* Now we make sure that we can be in full duplex mode.
2948                  * If not, we operate in half-duplex mode. */
2949                 if (phydev->duplex != priv->oldduplex) {
2950                         new_state = 1;
2951                         if (!(phydev->duplex))
2952                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2953                         else
2954                                 tempval |= MACCFG2_FULL_DUPLEX;
2955
2956                         priv->oldduplex = phydev->duplex;
2957                 }
2958
2959                 if (phydev->speed != priv->oldspeed) {
2960                         new_state = 1;
2961                         switch (phydev->speed) {
2962                         case 1000:
2963                                 tempval =
2964                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2965
2966                                 ecntrl &= ~(ECNTRL_R100);
2967                                 break;
2968                         case 100:
2969                         case 10:
2970                                 tempval =
2971                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2972
2973                                 /* Reduced mode distinguishes
2974                                  * between 10 and 100 */
2975                                 if (phydev->speed == SPEED_100)
2976                                         ecntrl |= ECNTRL_R100;
2977                                 else
2978                                         ecntrl &= ~(ECNTRL_R100);
2979                                 break;
2980                         default:
2981                                 if (netif_msg_link(priv))
2982                                         printk(KERN_WARNING
2983                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
2984                                                 dev->name, phydev->speed);
2985                                 break;
2986                         }
2987
2988                         priv->oldspeed = phydev->speed;
2989                 }
2990
2991                 gfar_write(&regs->maccfg2, tempval);
2992                 gfar_write(&regs->ecntrl, ecntrl);
2993
2994                 if (!priv->oldlink) {
2995                         new_state = 1;
2996                         priv->oldlink = 1;
2997                 }
2998         } else if (priv->oldlink) {
2999                 new_state = 1;
3000                 priv->oldlink = 0;
3001                 priv->oldspeed = 0;
3002                 priv->oldduplex = -1;
3003         }
3004
3005         if (new_state && netif_msg_link(priv))
3006                 phy_print_status(phydev);
3007         unlock_tx_qs(priv);
3008         local_irq_restore(flags);
3009 }
3010
3011 /* Update the hash table based on the current list of multicast
3012  * addresses we subscribe to.  Also, change the promiscuity of
3013  * the device based on the flags (this function is called
3014  * whenever dev->flags is changed */
3015 static void gfar_set_multi(struct net_device *dev)
3016 {
3017         struct netdev_hw_addr *ha;
3018         struct gfar_private *priv = netdev_priv(dev);
3019         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3020         u32 tempval;
3021
3022         if (dev->flags & IFF_PROMISC) {
3023                 /* Set RCTRL to PROM */
3024                 tempval = gfar_read(&regs->rctrl);
3025                 tempval |= RCTRL_PROM;
3026                 gfar_write(&regs->rctrl, tempval);
3027         } else {
3028                 /* Set RCTRL to not PROM */
3029                 tempval = gfar_read(&regs->rctrl);
3030                 tempval &= ~(RCTRL_PROM);
3031                 gfar_write(&regs->rctrl, tempval);
3032         }
3033
3034         if (dev->flags & IFF_ALLMULTI) {
3035                 /* Set the hash to rx all multicast frames */
3036                 gfar_write(&regs->igaddr0, 0xffffffff);
3037                 gfar_write(&regs->igaddr1, 0xffffffff);
3038                 gfar_write(&regs->igaddr2, 0xffffffff);
3039                 gfar_write(&regs->igaddr3, 0xffffffff);
3040                 gfar_write(&regs->igaddr4, 0xffffffff);
3041                 gfar_write(&regs->igaddr5, 0xffffffff);
3042                 gfar_write(&regs->igaddr6, 0xffffffff);
3043                 gfar_write(&regs->igaddr7, 0xffffffff);
3044                 gfar_write(&regs->gaddr0, 0xffffffff);
3045                 gfar_write(&regs->gaddr1, 0xffffffff);
3046                 gfar_write(&regs->gaddr2, 0xffffffff);
3047                 gfar_write(&regs->gaddr3, 0xffffffff);
3048                 gfar_write(&regs->gaddr4, 0xffffffff);
3049                 gfar_write(&regs->gaddr5, 0xffffffff);
3050                 gfar_write(&regs->gaddr6, 0xffffffff);
3051                 gfar_write(&regs->gaddr7, 0xffffffff);
3052         } else {
3053                 int em_num;
3054                 int idx;
3055
3056                 /* zero out the hash */
3057                 gfar_write(&regs->igaddr0, 0x0);
3058                 gfar_write(&regs->igaddr1, 0x0);
3059                 gfar_write(&regs->igaddr2, 0x0);
3060                 gfar_write(&regs->igaddr3, 0x0);
3061                 gfar_write(&regs->igaddr4, 0x0);
3062                 gfar_write(&regs->igaddr5, 0x0);
3063                 gfar_write(&regs->igaddr6, 0x0);
3064                 gfar_write(&regs->igaddr7, 0x0);
3065                 gfar_write(&regs->gaddr0, 0x0);
3066                 gfar_write(&regs->gaddr1, 0x0);
3067                 gfar_write(&regs->gaddr2, 0x0);
3068                 gfar_write(&regs->gaddr3, 0x0);
3069                 gfar_write(&regs->gaddr4, 0x0);
3070                 gfar_write(&regs->gaddr5, 0x0);
3071                 gfar_write(&regs->gaddr6, 0x0);
3072                 gfar_write(&regs->gaddr7, 0x0);
3073
3074                 /* If we have extended hash tables, we need to
3075                  * clear the exact match registers to prepare for
3076                  * setting them */
3077                 if (priv->extended_hash) {
3078                         em_num = GFAR_EM_NUM + 1;
3079                         gfar_clear_exact_match(dev);
3080                         idx = 1;
3081                 } else {
3082                         idx = 0;
3083                         em_num = 0;
3084                 }
3085
3086                 if (netdev_mc_empty(dev))
3087                         return;
3088
3089                 /* Parse the list, and set the appropriate bits */
3090                 netdev_for_each_mc_addr(ha, dev) {
3091                         if (idx < em_num) {
3092                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3093                                 idx++;
3094                         } else
3095                                 gfar_set_hash_for_addr(dev, ha->addr);
3096                 }
3097         }
3098 }
3099
3100
3101 /* Clears each of the exact match registers to zero, so they
3102  * don't interfere with normal reception */
3103 static void gfar_clear_exact_match(struct net_device *dev)
3104 {
3105         int idx;
3106         static const u8 zero_arr[MAC_ADDR_LEN] = {0, 0, 0, 0, 0, 0};
3107
3108         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3109                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3110 }
3111
3112 /* Set the appropriate hash bit for the given addr */
3113 /* The algorithm works like so:
3114  * 1) Take the Destination Address (ie the multicast address), and
3115  * do a CRC on it (little endian), and reverse the bits of the
3116  * result.
3117  * 2) Use the 8 most significant bits as a hash into a 256-entry
3118  * table.  The table is controlled through 8 32-bit registers:
3119  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3120  * gaddr7.  This means that the 3 most significant bits in the
3121  * hash index which gaddr register to use, and the 5 other bits
3122  * indicate which bit (assuming an IBM numbering scheme, which
3123  * for PowerPC (tm) is usually the case) in the register holds
3124  * the entry. */
3125 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3126 {
3127         u32 tempval;
3128         struct gfar_private *priv = netdev_priv(dev);
3129         u32 result = ether_crc(MAC_ADDR_LEN, addr);
3130         int width = priv->hash_width;
3131         u8 whichbit = (result >> (32 - width)) & 0x1f;
3132         u8 whichreg = result >> (32 - width + 5);
3133         u32 value = (1 << (31-whichbit));
3134
3135         tempval = gfar_read(priv->hash_regs[whichreg]);
3136         tempval |= value;
3137         gfar_write(priv->hash_regs[whichreg], tempval);
3138 }
3139
3140
3141 /* There are multiple MAC Address register pairs on some controllers
3142  * This function sets the numth pair to a given address
3143  */
3144 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3145                                   const u8 *addr)
3146 {
3147         struct gfar_private *priv = netdev_priv(dev);
3148         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3149         int idx;
3150         char tmpbuf[MAC_ADDR_LEN];
3151         u32 tempval;
3152         u32 __iomem *macptr = &regs->macstnaddr1;
3153
3154         macptr += num*2;
3155
3156         /* Now copy it into the mac registers backwards, cuz */
3157         /* little endian is silly */
3158         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
3159                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
3160
3161         gfar_write(macptr, *((u32 *) (tmpbuf)));
3162
3163         tempval = *((u32 *) (tmpbuf + 4));
3164
3165         gfar_write(macptr+1, tempval);
3166 }
3167
3168 /* GFAR error interrupt handler */
3169 static irqreturn_t gfar_error(int irq, void *grp_id)
3170 {
3171         struct gfar_priv_grp *gfargrp = grp_id;
3172         struct gfar __iomem *regs = gfargrp->regs;
3173         struct gfar_private *priv= gfargrp->priv;
3174         struct net_device *dev = priv->ndev;
3175
3176         /* Save ievent for future reference */
3177         u32 events = gfar_read(&regs->ievent);
3178
3179         /* Clear IEVENT */
3180         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3181
3182         /* Magic Packet is not an error. */
3183         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3184             (events & IEVENT_MAG))
3185                 events &= ~IEVENT_MAG;
3186
3187         /* Hmm... */
3188         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3189                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
3190                        dev->name, events, gfar_read(&regs->imask));
3191
3192         /* Update the error counters */
3193         if (events & IEVENT_TXE) {
3194                 dev->stats.tx_errors++;
3195
3196                 if (events & IEVENT_LC)
3197                         dev->stats.tx_window_errors++;
3198                 if (events & IEVENT_CRL)
3199                         dev->stats.tx_aborted_errors++;
3200                 if (events & IEVENT_XFUN) {
3201                         unsigned long flags;
3202
3203                         if (netif_msg_tx_err(priv))
3204                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
3205                                        "packet dropped.\n", dev->name);
3206                         dev->stats.tx_dropped++;
3207                         priv->extra_stats.tx_underrun++;
3208
3209                         local_irq_save(flags);
3210                         lock_tx_qs(priv);
3211
3212                         /* Reactivate the Tx Queues */
3213                         gfar_write(&regs->tstat, gfargrp->tstat);
3214
3215                         unlock_tx_qs(priv);
3216                         local_irq_restore(flags);
3217                 }
3218                 if (netif_msg_tx_err(priv))
3219                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
3220         }
3221         if (events & IEVENT_BSY) {
3222                 dev->stats.rx_errors++;
3223                 priv->extra_stats.rx_bsy++;
3224
3225                 gfar_receive(irq, grp_id);
3226
3227                 if (netif_msg_rx_err(priv))
3228                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
3229                                dev->name, gfar_read(&regs->rstat));
3230         }
3231         if (events & IEVENT_BABR) {
3232                 dev->stats.rx_errors++;
3233                 priv->extra_stats.rx_babr++;
3234
3235                 if (netif_msg_rx_err(priv))
3236                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
3237         }
3238         if (events & IEVENT_EBERR) {
3239                 priv->extra_stats.eberr++;
3240                 if (netif_msg_rx_err(priv))
3241                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
3242         }
3243         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
3244                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
3245
3246         if (events & IEVENT_BABT) {
3247                 priv->extra_stats.tx_babt++;
3248                 if (netif_msg_tx_err(priv))
3249                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
3250         }
3251         return IRQ_HANDLED;
3252 }
3253
3254 static struct of_device_id gfar_match[] =
3255 {
3256         {
3257                 .type = "network",
3258                 .compatible = "gianfar",
3259         },
3260         {
3261                 .compatible = "fsl,etsec2",
3262         },
3263         {},
3264 };
3265 MODULE_DEVICE_TABLE(of, gfar_match);
3266
3267 /* Structure for a device driver */
3268 static struct platform_driver gfar_driver = {
3269         .driver = {
3270                 .name = "fsl-gianfar",
3271                 .owner = THIS_MODULE,
3272                 .pm = GFAR_PM_OPS,
3273                 .of_match_table = gfar_match,
3274         },
3275         .probe = gfar_probe,
3276         .remove = gfar_remove,
3277 };
3278
3279 static int __init gfar_init(void)
3280 {
3281         return platform_driver_register(&gfar_driver);
3282 }
3283
3284 static void __exit gfar_exit(void)
3285 {
3286         platform_driver_unregister(&gfar_driver);
3287 }
3288
3289 module_init(gfar_init);
3290 module_exit(gfar_exit);
3291