Merge master.kernel.org:/pub/scm/linux/kernel/git/acme/net-2.6
[pandora-kernel.git] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
13  *
14  * This program is free software; you can redistribute  it and/or modify it
15  * under  the terms of  the GNU General  Public License as published by the
16  * Free Software Foundation;  either version 2 of the  License, or (at your
17  * option) any later version.
18  *
19  *  Gianfar:  AKA Lambda Draconis, "Dragon"
20  *  RA 11 31 24.2
21  *  Dec +69 19 52
22  *  V 3.84
23  *  B-V +1.62
24  *
25  *  Theory of operation
26  *
27  *  The driver is initialized through platform_device.  Structures which
28  *  define the configuration needed by the board are defined in a
29  *  board structure in arch/ppc/platforms (though I do not
30  *  discount the possibility that other architectures could one
31  *  day be supported.
32  *
33  *  The Gianfar Ethernet Controller uses a ring of buffer
34  *  descriptors.  The beginning is indicated by a register
35  *  pointing to the physical address of the start of the ring.
36  *  The end is determined by a "wrap" bit being set in the
37  *  last descriptor of the ring.
38  *
39  *  When a packet is received, the RXF bit in the
40  *  IEVENT register is set, triggering an interrupt when the
41  *  corresponding bit in the IMASK register is also set (if
42  *  interrupt coalescing is active, then the interrupt may not
43  *  happen immediately, but will wait until either a set number
44  *  of frames or amount of time have passed).  In NAPI, the
45  *  interrupt handler will signal there is work to be done, and
46  *  exit.  Without NAPI, the packet(s) will be handled
47  *  immediately.  Both methods will start at the last known empty
48  *  descriptor, and process every subsequent descriptor until there
49  *  are none left with data (NAPI will stop after a set number of
50  *  packets to give time to other tasks, but will eventually
51  *  process all the packets).  The data arrives inside a
52  *  pre-allocated skb, and so after the skb is passed up to the
53  *  stack, a new skb must be allocated, and the address field in
54  *  the buffer descriptor must be updated to indicate this new
55  *  skb.
56  *
57  *  When the kernel requests that a packet be transmitted, the
58  *  driver starts where it left off last time, and points the
59  *  descriptor at the buffer which was passed in.  The driver
60  *  then informs the DMA engine that there are packets ready to
61  *  be transmitted.  Once the controller is finished transmitting
62  *  the packet, an interrupt may be triggered (under the same
63  *  conditions as for reception, but depending on the TXF bit).
64  *  The driver then cleans up the buffer.
65  */
66
67 #include <linux/kernel.h>
68 #include <linux/sched.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
81 #include <linux/mm.h>
82 #include <linux/platform_device.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87
88 #include <asm/io.h>
89 #include <asm/irq.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96
97 #include "gianfar.h"
98 #include "gianfar_mii.h"
99
100 #define TX_TIMEOUT      (1*HZ)
101 #define SKB_ALLOC_TIMEOUT 1000000
102 #undef BRIEF_GFAR_ERRORS
103 #undef VERBOSE_GFAR_ERRORS
104
105 #ifdef CONFIG_GFAR_NAPI
106 #define RECEIVE(x) netif_receive_skb(x)
107 #else
108 #define RECEIVE(x) netif_rx(x)
109 #endif
110
111 const char gfar_driver_name[] = "Gianfar Ethernet";
112 const char gfar_driver_version[] = "1.3";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_timeout(struct net_device *dev);
117 static int gfar_close(struct net_device *dev);
118 struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
119 static struct net_device_stats *gfar_get_stats(struct net_device *dev);
120 static int gfar_set_mac_address(struct net_device *dev);
121 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
122 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs);
123 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs);
124 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs);
125 static void adjust_link(struct net_device *dev);
126 static void init_registers(struct net_device *dev);
127 static int init_phy(struct net_device *dev);
128 static int gfar_probe(struct platform_device *pdev);
129 static int gfar_remove(struct platform_device *pdev);
130 static void free_skb_resources(struct gfar_private *priv);
131 static void gfar_set_multi(struct net_device *dev);
132 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
133 #ifdef CONFIG_GFAR_NAPI
134 static int gfar_poll(struct net_device *dev, int *budget);
135 #endif
136 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
137 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
138 static void gfar_vlan_rx_register(struct net_device *netdev,
139                                 struct vlan_group *grp);
140 static void gfar_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
141 void gfar_halt(struct net_device *dev);
142 void gfar_start(struct net_device *dev);
143 static void gfar_clear_exact_match(struct net_device *dev);
144 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
145
146 extern const struct ethtool_ops gfar_ethtool_ops;
147
148 MODULE_AUTHOR("Freescale Semiconductor, Inc");
149 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
150 MODULE_LICENSE("GPL");
151
152 /* Returns 1 if incoming frames use an FCB */
153 static inline int gfar_uses_fcb(struct gfar_private *priv)
154 {
155         return (priv->vlan_enable || priv->rx_csum_enable);
156 }
157
158 /* Set up the ethernet device structure, private data,
159  * and anything else we need before we start */
160 static int gfar_probe(struct platform_device *pdev)
161 {
162         u32 tempval;
163         struct net_device *dev = NULL;
164         struct gfar_private *priv = NULL;
165         struct gianfar_platform_data *einfo;
166         struct resource *r;
167         int idx;
168         int err = 0;
169
170         einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
171
172         if (NULL == einfo) {
173                 printk(KERN_ERR "gfar %d: Missing additional data!\n",
174                        pdev->id);
175
176                 return -ENODEV;
177         }
178
179         /* Create an ethernet device instance */
180         dev = alloc_etherdev(sizeof (*priv));
181
182         if (NULL == dev)
183                 return -ENOMEM;
184
185         priv = netdev_priv(dev);
186
187         /* Set the info in the priv to the current info */
188         priv->einfo = einfo;
189
190         /* fill out IRQ fields */
191         if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
192                 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
193                 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
194                 priv->interruptError = platform_get_irq_byname(pdev, "error");
195                 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
196                         goto regs_fail;
197         } else {
198                 priv->interruptTransmit = platform_get_irq(pdev, 0);
199                 if (priv->interruptTransmit < 0)
200                         goto regs_fail;
201         }
202
203         /* get a pointer to the register memory */
204         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
205         priv->regs = ioremap(r->start, sizeof (struct gfar));
206
207         if (NULL == priv->regs) {
208                 err = -ENOMEM;
209                 goto regs_fail;
210         }
211
212         spin_lock_init(&priv->txlock);
213         spin_lock_init(&priv->rxlock);
214
215         platform_set_drvdata(pdev, dev);
216
217         /* Stop the DMA engine now, in case it was running before */
218         /* (The firmware could have used it, and left it running). */
219         /* To do this, we write Graceful Receive Stop and Graceful */
220         /* Transmit Stop, and then wait until the corresponding bits */
221         /* in IEVENT indicate the stops have completed. */
222         tempval = gfar_read(&priv->regs->dmactrl);
223         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
224         gfar_write(&priv->regs->dmactrl, tempval);
225
226         tempval = gfar_read(&priv->regs->dmactrl);
227         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
228         gfar_write(&priv->regs->dmactrl, tempval);
229
230         while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
231                 cpu_relax();
232
233         /* Reset MAC layer */
234         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
235
236         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
237         gfar_write(&priv->regs->maccfg1, tempval);
238
239         /* Initialize MACCFG2. */
240         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
241
242         /* Initialize ECNTRL */
243         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
244
245         /* Copy the station address into the dev structure, */
246         memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
247
248         /* Set the dev->base_addr to the gfar reg region */
249         dev->base_addr = (unsigned long) (priv->regs);
250
251         SET_MODULE_OWNER(dev);
252         SET_NETDEV_DEV(dev, &pdev->dev);
253
254         /* Fill in the dev structure */
255         dev->open = gfar_enet_open;
256         dev->hard_start_xmit = gfar_start_xmit;
257         dev->tx_timeout = gfar_timeout;
258         dev->watchdog_timeo = TX_TIMEOUT;
259 #ifdef CONFIG_GFAR_NAPI
260         dev->poll = gfar_poll;
261         dev->weight = GFAR_DEV_WEIGHT;
262 #endif
263         dev->stop = gfar_close;
264         dev->get_stats = gfar_get_stats;
265         dev->change_mtu = gfar_change_mtu;
266         dev->mtu = 1500;
267         dev->set_multicast_list = gfar_set_multi;
268
269         dev->ethtool_ops = &gfar_ethtool_ops;
270
271         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
272                 priv->rx_csum_enable = 1;
273                 dev->features |= NETIF_F_IP_CSUM;
274         } else
275                 priv->rx_csum_enable = 0;
276
277         priv->vlgrp = NULL;
278
279         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
280                 dev->vlan_rx_register = gfar_vlan_rx_register;
281                 dev->vlan_rx_kill_vid = gfar_vlan_rx_kill_vid;
282
283                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
284
285                 priv->vlan_enable = 1;
286         }
287
288         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
289                 priv->extended_hash = 1;
290                 priv->hash_width = 9;
291
292                 priv->hash_regs[0] = &priv->regs->igaddr0;
293                 priv->hash_regs[1] = &priv->regs->igaddr1;
294                 priv->hash_regs[2] = &priv->regs->igaddr2;
295                 priv->hash_regs[3] = &priv->regs->igaddr3;
296                 priv->hash_regs[4] = &priv->regs->igaddr4;
297                 priv->hash_regs[5] = &priv->regs->igaddr5;
298                 priv->hash_regs[6] = &priv->regs->igaddr6;
299                 priv->hash_regs[7] = &priv->regs->igaddr7;
300                 priv->hash_regs[8] = &priv->regs->gaddr0;
301                 priv->hash_regs[9] = &priv->regs->gaddr1;
302                 priv->hash_regs[10] = &priv->regs->gaddr2;
303                 priv->hash_regs[11] = &priv->regs->gaddr3;
304                 priv->hash_regs[12] = &priv->regs->gaddr4;
305                 priv->hash_regs[13] = &priv->regs->gaddr5;
306                 priv->hash_regs[14] = &priv->regs->gaddr6;
307                 priv->hash_regs[15] = &priv->regs->gaddr7;
308
309         } else {
310                 priv->extended_hash = 0;
311                 priv->hash_width = 8;
312
313                 priv->hash_regs[0] = &priv->regs->gaddr0;
314                 priv->hash_regs[1] = &priv->regs->gaddr1;
315                 priv->hash_regs[2] = &priv->regs->gaddr2;
316                 priv->hash_regs[3] = &priv->regs->gaddr3;
317                 priv->hash_regs[4] = &priv->regs->gaddr4;
318                 priv->hash_regs[5] = &priv->regs->gaddr5;
319                 priv->hash_regs[6] = &priv->regs->gaddr6;
320                 priv->hash_regs[7] = &priv->regs->gaddr7;
321         }
322
323         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
324                 priv->padding = DEFAULT_PADDING;
325         else
326                 priv->padding = 0;
327
328         if (dev->features & NETIF_F_IP_CSUM)
329                 dev->hard_header_len += GMAC_FCB_LEN;
330
331         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
332         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
333         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
334
335         priv->txcoalescing = DEFAULT_TX_COALESCE;
336         priv->txcount = DEFAULT_TXCOUNT;
337         priv->txtime = DEFAULT_TXTIME;
338         priv->rxcoalescing = DEFAULT_RX_COALESCE;
339         priv->rxcount = DEFAULT_RXCOUNT;
340         priv->rxtime = DEFAULT_RXTIME;
341
342         /* Enable most messages by default */
343         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
344
345         err = register_netdev(dev);
346
347         if (err) {
348                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
349                                 dev->name);
350                 goto register_fail;
351         }
352
353         /* Create all the sysfs files */
354         gfar_init_sysfs(dev);
355
356         /* Print out the device info */
357         printk(KERN_INFO DEVICE_NAME, dev->name);
358         for (idx = 0; idx < 6; idx++)
359                 printk("%2.2x%c", dev->dev_addr[idx], idx == 5 ? ' ' : ':');
360         printk("\n");
361
362         /* Even more device info helps when determining which kernel */
363         /* provided which set of benchmarks. */
364 #ifdef CONFIG_GFAR_NAPI
365         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
366 #else
367         printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
368 #endif
369         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
370                dev->name, priv->rx_ring_size, priv->tx_ring_size);
371
372         return 0;
373
374 register_fail:
375         iounmap(priv->regs);
376 regs_fail:
377         free_netdev(dev);
378         return err;
379 }
380
381 static int gfar_remove(struct platform_device *pdev)
382 {
383         struct net_device *dev = platform_get_drvdata(pdev);
384         struct gfar_private *priv = netdev_priv(dev);
385
386         platform_set_drvdata(pdev, NULL);
387
388         iounmap(priv->regs);
389         free_netdev(dev);
390
391         return 0;
392 }
393
394
395 /* Initializes driver's PHY state, and attaches to the PHY.
396  * Returns 0 on success.
397  */
398 static int init_phy(struct net_device *dev)
399 {
400         struct gfar_private *priv = netdev_priv(dev);
401         uint gigabit_support =
402                 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
403                 SUPPORTED_1000baseT_Full : 0;
404         struct phy_device *phydev;
405         char phy_id[BUS_ID_SIZE];
406
407         priv->oldlink = 0;
408         priv->oldspeed = 0;
409         priv->oldduplex = -1;
410
411         snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
412
413         phydev = phy_connect(dev, phy_id, &adjust_link, 0);
414
415         if (IS_ERR(phydev)) {
416                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
417                 return PTR_ERR(phydev);
418         }
419
420         /* Remove any features not supported by the controller */
421         phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
422         phydev->advertising = phydev->supported;
423
424         priv->phydev = phydev;
425
426         return 0;
427 }
428
429 static void init_registers(struct net_device *dev)
430 {
431         struct gfar_private *priv = netdev_priv(dev);
432
433         /* Clear IEVENT */
434         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
435
436         /* Initialize IMASK */
437         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
438
439         /* Init hash registers to zero */
440         gfar_write(&priv->regs->igaddr0, 0);
441         gfar_write(&priv->regs->igaddr1, 0);
442         gfar_write(&priv->regs->igaddr2, 0);
443         gfar_write(&priv->regs->igaddr3, 0);
444         gfar_write(&priv->regs->igaddr4, 0);
445         gfar_write(&priv->regs->igaddr5, 0);
446         gfar_write(&priv->regs->igaddr6, 0);
447         gfar_write(&priv->regs->igaddr7, 0);
448
449         gfar_write(&priv->regs->gaddr0, 0);
450         gfar_write(&priv->regs->gaddr1, 0);
451         gfar_write(&priv->regs->gaddr2, 0);
452         gfar_write(&priv->regs->gaddr3, 0);
453         gfar_write(&priv->regs->gaddr4, 0);
454         gfar_write(&priv->regs->gaddr5, 0);
455         gfar_write(&priv->regs->gaddr6, 0);
456         gfar_write(&priv->regs->gaddr7, 0);
457
458         /* Zero out the rmon mib registers if it has them */
459         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
460                 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
461
462                 /* Mask off the CAM interrupts */
463                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
464                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
465         }
466
467         /* Initialize the max receive buffer length */
468         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
469
470         /* Initialize the Minimum Frame Length Register */
471         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
472
473         /* Assign the TBI an address which won't conflict with the PHYs */
474         gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
475 }
476
477
478 /* Halt the receive and transmit queues */
479 void gfar_halt(struct net_device *dev)
480 {
481         struct gfar_private *priv = netdev_priv(dev);
482         struct gfar __iomem *regs = priv->regs;
483         u32 tempval;
484
485         /* Mask all interrupts */
486         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
487
488         /* Clear all interrupts */
489         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
490
491         /* Stop the DMA, and wait for it to stop */
492         tempval = gfar_read(&priv->regs->dmactrl);
493         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
494             != (DMACTRL_GRS | DMACTRL_GTS)) {
495                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
496                 gfar_write(&priv->regs->dmactrl, tempval);
497
498                 while (!(gfar_read(&priv->regs->ievent) &
499                          (IEVENT_GRSC | IEVENT_GTSC)))
500                         cpu_relax();
501         }
502
503         /* Disable Rx and Tx */
504         tempval = gfar_read(&regs->maccfg1);
505         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
506         gfar_write(&regs->maccfg1, tempval);
507 }
508
509 void stop_gfar(struct net_device *dev)
510 {
511         struct gfar_private *priv = netdev_priv(dev);
512         struct gfar __iomem *regs = priv->regs;
513         unsigned long flags;
514
515         phy_stop(priv->phydev);
516
517         /* Lock it down */
518         spin_lock_irqsave(&priv->txlock, flags);
519         spin_lock(&priv->rxlock);
520
521         gfar_halt(dev);
522
523         spin_unlock(&priv->rxlock);
524         spin_unlock_irqrestore(&priv->txlock, flags);
525
526         /* Free the IRQs */
527         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
528                 free_irq(priv->interruptError, dev);
529                 free_irq(priv->interruptTransmit, dev);
530                 free_irq(priv->interruptReceive, dev);
531         } else {
532                 free_irq(priv->interruptTransmit, dev);
533         }
534
535         free_skb_resources(priv);
536
537         dma_free_coherent(NULL,
538                         sizeof(struct txbd8)*priv->tx_ring_size
539                         + sizeof(struct rxbd8)*priv->rx_ring_size,
540                         priv->tx_bd_base,
541                         gfar_read(&regs->tbase0));
542 }
543
544 /* If there are any tx skbs or rx skbs still around, free them.
545  * Then free tx_skbuff and rx_skbuff */
546 static void free_skb_resources(struct gfar_private *priv)
547 {
548         struct rxbd8 *rxbdp;
549         struct txbd8 *txbdp;
550         int i;
551
552         /* Go through all the buffer descriptors and free their data buffers */
553         txbdp = priv->tx_bd_base;
554
555         for (i = 0; i < priv->tx_ring_size; i++) {
556
557                 if (priv->tx_skbuff[i]) {
558                         dma_unmap_single(NULL, txbdp->bufPtr,
559                                         txbdp->length,
560                                         DMA_TO_DEVICE);
561                         dev_kfree_skb_any(priv->tx_skbuff[i]);
562                         priv->tx_skbuff[i] = NULL;
563                 }
564         }
565
566         kfree(priv->tx_skbuff);
567
568         rxbdp = priv->rx_bd_base;
569
570         /* rx_skbuff is not guaranteed to be allocated, so only
571          * free it and its contents if it is allocated */
572         if(priv->rx_skbuff != NULL) {
573                 for (i = 0; i < priv->rx_ring_size; i++) {
574                         if (priv->rx_skbuff[i]) {
575                                 dma_unmap_single(NULL, rxbdp->bufPtr,
576                                                 priv->rx_buffer_size,
577                                                 DMA_FROM_DEVICE);
578
579                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
580                                 priv->rx_skbuff[i] = NULL;
581                         }
582
583                         rxbdp->status = 0;
584                         rxbdp->length = 0;
585                         rxbdp->bufPtr = 0;
586
587                         rxbdp++;
588                 }
589
590                 kfree(priv->rx_skbuff);
591         }
592 }
593
594 void gfar_start(struct net_device *dev)
595 {
596         struct gfar_private *priv = netdev_priv(dev);
597         struct gfar __iomem *regs = priv->regs;
598         u32 tempval;
599
600         /* Enable Rx and Tx in MACCFG1 */
601         tempval = gfar_read(&regs->maccfg1);
602         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
603         gfar_write(&regs->maccfg1, tempval);
604
605         /* Initialize DMACTRL to have WWR and WOP */
606         tempval = gfar_read(&priv->regs->dmactrl);
607         tempval |= DMACTRL_INIT_SETTINGS;
608         gfar_write(&priv->regs->dmactrl, tempval);
609
610         /* Make sure we aren't stopped */
611         tempval = gfar_read(&priv->regs->dmactrl);
612         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
613         gfar_write(&priv->regs->dmactrl, tempval);
614
615         /* Clear THLT/RHLT, so that the DMA starts polling now */
616         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
617         gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
618
619         /* Unmask the interrupts we look for */
620         gfar_write(&regs->imask, IMASK_DEFAULT);
621 }
622
623 /* Bring the controller up and running */
624 int startup_gfar(struct net_device *dev)
625 {
626         struct txbd8 *txbdp;
627         struct rxbd8 *rxbdp;
628         dma_addr_t addr;
629         unsigned long vaddr;
630         int i;
631         struct gfar_private *priv = netdev_priv(dev);
632         struct gfar __iomem *regs = priv->regs;
633         int err = 0;
634         u32 rctrl = 0;
635         u32 attrs = 0;
636
637         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
638
639         /* Allocate memory for the buffer descriptors */
640         vaddr = (unsigned long) dma_alloc_coherent(NULL,
641                         sizeof (struct txbd8) * priv->tx_ring_size +
642                         sizeof (struct rxbd8) * priv->rx_ring_size,
643                         &addr, GFP_KERNEL);
644
645         if (vaddr == 0) {
646                 if (netif_msg_ifup(priv))
647                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
648                                         dev->name);
649                 return -ENOMEM;
650         }
651
652         priv->tx_bd_base = (struct txbd8 *) vaddr;
653
654         /* enet DMA only understands physical addresses */
655         gfar_write(&regs->tbase0, addr);
656
657         /* Start the rx descriptor ring where the tx ring leaves off */
658         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
659         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
660         priv->rx_bd_base = (struct rxbd8 *) vaddr;
661         gfar_write(&regs->rbase0, addr);
662
663         /* Setup the skbuff rings */
664         priv->tx_skbuff =
665             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
666                                         priv->tx_ring_size, GFP_KERNEL);
667
668         if (NULL == priv->tx_skbuff) {
669                 if (netif_msg_ifup(priv))
670                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
671                                         dev->name);
672                 err = -ENOMEM;
673                 goto tx_skb_fail;
674         }
675
676         for (i = 0; i < priv->tx_ring_size; i++)
677                 priv->tx_skbuff[i] = NULL;
678
679         priv->rx_skbuff =
680             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
681                                         priv->rx_ring_size, GFP_KERNEL);
682
683         if (NULL == priv->rx_skbuff) {
684                 if (netif_msg_ifup(priv))
685                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
686                                         dev->name);
687                 err = -ENOMEM;
688                 goto rx_skb_fail;
689         }
690
691         for (i = 0; i < priv->rx_ring_size; i++)
692                 priv->rx_skbuff[i] = NULL;
693
694         /* Initialize some variables in our dev structure */
695         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
696         priv->cur_rx = priv->rx_bd_base;
697         priv->skb_curtx = priv->skb_dirtytx = 0;
698         priv->skb_currx = 0;
699
700         /* Initialize Transmit Descriptor Ring */
701         txbdp = priv->tx_bd_base;
702         for (i = 0; i < priv->tx_ring_size; i++) {
703                 txbdp->status = 0;
704                 txbdp->length = 0;
705                 txbdp->bufPtr = 0;
706                 txbdp++;
707         }
708
709         /* Set the last descriptor in the ring to indicate wrap */
710         txbdp--;
711         txbdp->status |= TXBD_WRAP;
712
713         rxbdp = priv->rx_bd_base;
714         for (i = 0; i < priv->rx_ring_size; i++) {
715                 struct sk_buff *skb = NULL;
716
717                 rxbdp->status = 0;
718
719                 skb = gfar_new_skb(dev, rxbdp);
720
721                 priv->rx_skbuff[i] = skb;
722
723                 rxbdp++;
724         }
725
726         /* Set the last descriptor in the ring to wrap */
727         rxbdp--;
728         rxbdp->status |= RXBD_WRAP;
729
730         /* If the device has multiple interrupts, register for
731          * them.  Otherwise, only register for the one */
732         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
733                 /* Install our interrupt handlers for Error,
734                  * Transmit, and Receive */
735                 if (request_irq(priv->interruptError, gfar_error,
736                                 0, "enet_error", dev) < 0) {
737                         if (netif_msg_intr(priv))
738                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
739                                         dev->name, priv->interruptError);
740
741                         err = -1;
742                         goto err_irq_fail;
743                 }
744
745                 if (request_irq(priv->interruptTransmit, gfar_transmit,
746                                 0, "enet_tx", dev) < 0) {
747                         if (netif_msg_intr(priv))
748                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
749                                         dev->name, priv->interruptTransmit);
750
751                         err = -1;
752
753                         goto tx_irq_fail;
754                 }
755
756                 if (request_irq(priv->interruptReceive, gfar_receive,
757                                 0, "enet_rx", dev) < 0) {
758                         if (netif_msg_intr(priv))
759                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
760                                                 dev->name, priv->interruptReceive);
761
762                         err = -1;
763                         goto rx_irq_fail;
764                 }
765         } else {
766                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
767                                 0, "gfar_interrupt", dev) < 0) {
768                         if (netif_msg_intr(priv))
769                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
770                                         dev->name, priv->interruptError);
771
772                         err = -1;
773                         goto err_irq_fail;
774                 }
775         }
776
777         phy_start(priv->phydev);
778
779         /* Configure the coalescing support */
780         if (priv->txcoalescing)
781                 gfar_write(&regs->txic,
782                            mk_ic_value(priv->txcount, priv->txtime));
783         else
784                 gfar_write(&regs->txic, 0);
785
786         if (priv->rxcoalescing)
787                 gfar_write(&regs->rxic,
788                            mk_ic_value(priv->rxcount, priv->rxtime));
789         else
790                 gfar_write(&regs->rxic, 0);
791
792         if (priv->rx_csum_enable)
793                 rctrl |= RCTRL_CHECKSUMMING;
794
795         if (priv->extended_hash) {
796                 rctrl |= RCTRL_EXTHASH;
797
798                 gfar_clear_exact_match(dev);
799                 rctrl |= RCTRL_EMEN;
800         }
801
802         if (priv->vlan_enable)
803                 rctrl |= RCTRL_VLAN;
804
805         if (priv->padding) {
806                 rctrl &= ~RCTRL_PAL_MASK;
807                 rctrl |= RCTRL_PADDING(priv->padding);
808         }
809
810         /* Init rctrl based on our settings */
811         gfar_write(&priv->regs->rctrl, rctrl);
812
813         if (dev->features & NETIF_F_IP_CSUM)
814                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
815
816         /* Set the extraction length and index */
817         attrs = ATTRELI_EL(priv->rx_stash_size) |
818                 ATTRELI_EI(priv->rx_stash_index);
819
820         gfar_write(&priv->regs->attreli, attrs);
821
822         /* Start with defaults, and add stashing or locking
823          * depending on the approprate variables */
824         attrs = ATTR_INIT_SETTINGS;
825
826         if (priv->bd_stash_en)
827                 attrs |= ATTR_BDSTASH;
828
829         if (priv->rx_stash_size != 0)
830                 attrs |= ATTR_BUFSTASH;
831
832         gfar_write(&priv->regs->attr, attrs);
833
834         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
835         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
836         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
837
838         /* Start the controller */
839         gfar_start(dev);
840
841         return 0;
842
843 rx_irq_fail:
844         free_irq(priv->interruptTransmit, dev);
845 tx_irq_fail:
846         free_irq(priv->interruptError, dev);
847 err_irq_fail:
848 rx_skb_fail:
849         free_skb_resources(priv);
850 tx_skb_fail:
851         dma_free_coherent(NULL,
852                         sizeof(struct txbd8)*priv->tx_ring_size
853                         + sizeof(struct rxbd8)*priv->rx_ring_size,
854                         priv->tx_bd_base,
855                         gfar_read(&regs->tbase0));
856
857         return err;
858 }
859
860 /* Called when something needs to use the ethernet device */
861 /* Returns 0 for success. */
862 static int gfar_enet_open(struct net_device *dev)
863 {
864         int err;
865
866         /* Initialize a bunch of registers */
867         init_registers(dev);
868
869         gfar_set_mac_address(dev);
870
871         err = init_phy(dev);
872
873         if(err)
874                 return err;
875
876         err = startup_gfar(dev);
877
878         netif_start_queue(dev);
879
880         return err;
881 }
882
883 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
884 {
885         struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
886
887         memset(fcb, 0, GMAC_FCB_LEN);
888
889         return fcb;
890 }
891
892 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
893 {
894         u8 flags = 0;
895
896         /* If we're here, it's a IP packet with a TCP or UDP
897          * payload.  We set it to checksum, using a pseudo-header
898          * we provide
899          */
900         flags = TXFCB_DEFAULT;
901
902         /* Tell the controller what the protocol is */
903         /* And provide the already calculated phcs */
904         if (skb->nh.iph->protocol == IPPROTO_UDP) {
905                 flags |= TXFCB_UDP;
906                 fcb->phcs = skb->h.uh->check;
907         } else
908                 fcb->phcs = skb->h.th->check;
909
910         /* l3os is the distance between the start of the
911          * frame (skb->data) and the start of the IP hdr.
912          * l4os is the distance between the start of the
913          * l3 hdr and the l4 hdr */
914         fcb->l3os = (u16)(skb->nh.raw - skb->data - GMAC_FCB_LEN);
915         fcb->l4os = (u16)(skb->h.raw - skb->nh.raw);
916
917         fcb->flags = flags;
918 }
919
920 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
921 {
922         fcb->flags |= TXFCB_VLN;
923         fcb->vlctl = vlan_tx_tag_get(skb);
924 }
925
926 /* This is called by the kernel when a frame is ready for transmission. */
927 /* It is pointed to by the dev->hard_start_xmit function pointer */
928 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
929 {
930         struct gfar_private *priv = netdev_priv(dev);
931         struct txfcb *fcb = NULL;
932         struct txbd8 *txbdp;
933         u16 status;
934         unsigned long flags;
935
936         /* Update transmit stats */
937         priv->stats.tx_bytes += skb->len;
938
939         /* Lock priv now */
940         spin_lock_irqsave(&priv->txlock, flags);
941
942         /* Point at the first free tx descriptor */
943         txbdp = priv->cur_tx;
944
945         /* Clear all but the WRAP status flags */
946         status = txbdp->status & TXBD_WRAP;
947
948         /* Set up checksumming */
949         if (likely((dev->features & NETIF_F_IP_CSUM)
950                         && (CHECKSUM_PARTIAL == skb->ip_summed))) {
951                 fcb = gfar_add_fcb(skb, txbdp);
952                 status |= TXBD_TOE;
953                 gfar_tx_checksum(skb, fcb);
954         }
955
956         if (priv->vlan_enable &&
957                         unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
958                 if (unlikely(NULL == fcb)) {
959                         fcb = gfar_add_fcb(skb, txbdp);
960                         status |= TXBD_TOE;
961                 }
962
963                 gfar_tx_vlan(skb, fcb);
964         }
965
966         /* Set buffer length and pointer */
967         txbdp->length = skb->len;
968         txbdp->bufPtr = dma_map_single(NULL, skb->data,
969                         skb->len, DMA_TO_DEVICE);
970
971         /* Save the skb pointer so we can free it later */
972         priv->tx_skbuff[priv->skb_curtx] = skb;
973
974         /* Update the current skb pointer (wrapping if this was the last) */
975         priv->skb_curtx =
976             (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
977
978         /* Flag the BD as interrupt-causing */
979         status |= TXBD_INTERRUPT;
980
981         /* Flag the BD as ready to go, last in frame, and  */
982         /* in need of CRC */
983         status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
984
985         dev->trans_start = jiffies;
986
987         txbdp->status = status;
988
989         /* If this was the last BD in the ring, the next one */
990         /* is at the beginning of the ring */
991         if (txbdp->status & TXBD_WRAP)
992                 txbdp = priv->tx_bd_base;
993         else
994                 txbdp++;
995
996         /* If the next BD still needs to be cleaned up, then the bds
997            are full.  We need to tell the kernel to stop sending us stuff. */
998         if (txbdp == priv->dirty_tx) {
999                 netif_stop_queue(dev);
1000
1001                 priv->stats.tx_fifo_errors++;
1002         }
1003
1004         /* Update the current txbd to the next one */
1005         priv->cur_tx = txbdp;
1006
1007         /* Tell the DMA to go go go */
1008         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1009
1010         /* Unlock priv */
1011         spin_unlock_irqrestore(&priv->txlock, flags);
1012
1013         return 0;
1014 }
1015
1016 /* Stops the kernel queue, and halts the controller */
1017 static int gfar_close(struct net_device *dev)
1018 {
1019         struct gfar_private *priv = netdev_priv(dev);
1020         stop_gfar(dev);
1021
1022         /* Disconnect from the PHY */
1023         phy_disconnect(priv->phydev);
1024         priv->phydev = NULL;
1025
1026         netif_stop_queue(dev);
1027
1028         return 0;
1029 }
1030
1031 /* returns a net_device_stats structure pointer */
1032 static struct net_device_stats * gfar_get_stats(struct net_device *dev)
1033 {
1034         struct gfar_private *priv = netdev_priv(dev);
1035
1036         return &(priv->stats);
1037 }
1038
1039 /* Changes the mac address if the controller is not running. */
1040 int gfar_set_mac_address(struct net_device *dev)
1041 {
1042         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1043
1044         return 0;
1045 }
1046
1047
1048 /* Enables and disables VLAN insertion/extraction */
1049 static void gfar_vlan_rx_register(struct net_device *dev,
1050                 struct vlan_group *grp)
1051 {
1052         struct gfar_private *priv = netdev_priv(dev);
1053         unsigned long flags;
1054         u32 tempval;
1055
1056         spin_lock_irqsave(&priv->rxlock, flags);
1057
1058         priv->vlgrp = grp;
1059
1060         if (grp) {
1061                 /* Enable VLAN tag insertion */
1062                 tempval = gfar_read(&priv->regs->tctrl);
1063                 tempval |= TCTRL_VLINS;
1064
1065                 gfar_write(&priv->regs->tctrl, tempval);
1066
1067                 /* Enable VLAN tag extraction */
1068                 tempval = gfar_read(&priv->regs->rctrl);
1069                 tempval |= RCTRL_VLEX;
1070                 gfar_write(&priv->regs->rctrl, tempval);
1071         } else {
1072                 /* Disable VLAN tag insertion */
1073                 tempval = gfar_read(&priv->regs->tctrl);
1074                 tempval &= ~TCTRL_VLINS;
1075                 gfar_write(&priv->regs->tctrl, tempval);
1076
1077                 /* Disable VLAN tag extraction */
1078                 tempval = gfar_read(&priv->regs->rctrl);
1079                 tempval &= ~RCTRL_VLEX;
1080                 gfar_write(&priv->regs->rctrl, tempval);
1081         }
1082
1083         spin_unlock_irqrestore(&priv->rxlock, flags);
1084 }
1085
1086
1087 static void gfar_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid)
1088 {
1089         struct gfar_private *priv = netdev_priv(dev);
1090         unsigned long flags;
1091
1092         spin_lock_irqsave(&priv->rxlock, flags);
1093
1094         if (priv->vlgrp)
1095                 priv->vlgrp->vlan_devices[vid] = NULL;
1096
1097         spin_unlock_irqrestore(&priv->rxlock, flags);
1098 }
1099
1100
1101 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1102 {
1103         int tempsize, tempval;
1104         struct gfar_private *priv = netdev_priv(dev);
1105         int oldsize = priv->rx_buffer_size;
1106         int frame_size = new_mtu + ETH_HLEN;
1107
1108         if (priv->vlan_enable)
1109                 frame_size += VLAN_ETH_HLEN;
1110
1111         if (gfar_uses_fcb(priv))
1112                 frame_size += GMAC_FCB_LEN;
1113
1114         frame_size += priv->padding;
1115
1116         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1117                 if (netif_msg_drv(priv))
1118                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1119                                         dev->name);
1120                 return -EINVAL;
1121         }
1122
1123         tempsize =
1124             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1125             INCREMENTAL_BUFFER_SIZE;
1126
1127         /* Only stop and start the controller if it isn't already
1128          * stopped, and we changed something */
1129         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1130                 stop_gfar(dev);
1131
1132         priv->rx_buffer_size = tempsize;
1133
1134         dev->mtu = new_mtu;
1135
1136         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1137         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1138
1139         /* If the mtu is larger than the max size for standard
1140          * ethernet frames (ie, a jumbo frame), then set maccfg2
1141          * to allow huge frames, and to check the length */
1142         tempval = gfar_read(&priv->regs->maccfg2);
1143
1144         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1145                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1146         else
1147                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1148
1149         gfar_write(&priv->regs->maccfg2, tempval);
1150
1151         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1152                 startup_gfar(dev);
1153
1154         return 0;
1155 }
1156
1157 /* gfar_timeout gets called when a packet has not been
1158  * transmitted after a set amount of time.
1159  * For now, assume that clearing out all the structures, and
1160  * starting over will fix the problem. */
1161 static void gfar_timeout(struct net_device *dev)
1162 {
1163         struct gfar_private *priv = netdev_priv(dev);
1164
1165         priv->stats.tx_errors++;
1166
1167         if (dev->flags & IFF_UP) {
1168                 stop_gfar(dev);
1169                 startup_gfar(dev);
1170         }
1171
1172         netif_schedule(dev);
1173 }
1174
1175 /* Interrupt Handler for Transmit complete */
1176 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs)
1177 {
1178         struct net_device *dev = (struct net_device *) dev_id;
1179         struct gfar_private *priv = netdev_priv(dev);
1180         struct txbd8 *bdp;
1181
1182         /* Clear IEVENT */
1183         gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1184
1185         /* Lock priv */
1186         spin_lock(&priv->txlock);
1187         bdp = priv->dirty_tx;
1188         while ((bdp->status & TXBD_READY) == 0) {
1189                 /* If dirty_tx and cur_tx are the same, then either the */
1190                 /* ring is empty or full now (it could only be full in the beginning, */
1191                 /* obviously).  If it is empty, we are done. */
1192                 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1193                         break;
1194
1195                 priv->stats.tx_packets++;
1196
1197                 /* Deferred means some collisions occurred during transmit, */
1198                 /* but we eventually sent the packet. */
1199                 if (bdp->status & TXBD_DEF)
1200                         priv->stats.collisions++;
1201
1202                 /* Free the sk buffer associated with this TxBD */
1203                 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1204                 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1205                 priv->skb_dirtytx =
1206                     (priv->skb_dirtytx +
1207                      1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1208
1209                 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1210                 if (bdp->status & TXBD_WRAP)
1211                         bdp = priv->tx_bd_base;
1212                 else
1213                         bdp++;
1214
1215                 /* Move dirty_tx to be the next bd */
1216                 priv->dirty_tx = bdp;
1217
1218                 /* We freed a buffer, so now we can restart transmission */
1219                 if (netif_queue_stopped(dev))
1220                         netif_wake_queue(dev);
1221         } /* while ((bdp->status & TXBD_READY) == 0) */
1222
1223         /* If we are coalescing the interrupts, reset the timer */
1224         /* Otherwise, clear it */
1225         if (priv->txcoalescing)
1226                 gfar_write(&priv->regs->txic,
1227                            mk_ic_value(priv->txcount, priv->txtime));
1228         else
1229                 gfar_write(&priv->regs->txic, 0);
1230
1231         spin_unlock(&priv->txlock);
1232
1233         return IRQ_HANDLED;
1234 }
1235
1236 struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
1237 {
1238         unsigned int alignamount;
1239         struct gfar_private *priv = netdev_priv(dev);
1240         struct sk_buff *skb = NULL;
1241         unsigned int timeout = SKB_ALLOC_TIMEOUT;
1242
1243         /* We have to allocate the skb, so keep trying till we succeed */
1244         while ((!skb) && timeout--)
1245                 skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
1246
1247         if (NULL == skb)
1248                 return NULL;
1249
1250         alignamount = RXBUF_ALIGNMENT -
1251                 (((unsigned) skb->data) & (RXBUF_ALIGNMENT - 1));
1252
1253         /* We need the data buffer to be aligned properly.  We will reserve
1254          * as many bytes as needed to align the data properly
1255          */
1256         skb_reserve(skb, alignamount);
1257
1258         skb->dev = dev;
1259
1260         bdp->bufPtr = dma_map_single(NULL, skb->data,
1261                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1262
1263         bdp->length = 0;
1264
1265         /* Mark the buffer empty */
1266         bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
1267
1268         return skb;
1269 }
1270
1271 static inline void count_errors(unsigned short status, struct gfar_private *priv)
1272 {
1273         struct net_device_stats *stats = &priv->stats;
1274         struct gfar_extra_stats *estats = &priv->extra_stats;
1275
1276         /* If the packet was truncated, none of the other errors
1277          * matter */
1278         if (status & RXBD_TRUNCATED) {
1279                 stats->rx_length_errors++;
1280
1281                 estats->rx_trunc++;
1282
1283                 return;
1284         }
1285         /* Count the errors, if there were any */
1286         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1287                 stats->rx_length_errors++;
1288
1289                 if (status & RXBD_LARGE)
1290                         estats->rx_large++;
1291                 else
1292                         estats->rx_short++;
1293         }
1294         if (status & RXBD_NONOCTET) {
1295                 stats->rx_frame_errors++;
1296                 estats->rx_nonoctet++;
1297         }
1298         if (status & RXBD_CRCERR) {
1299                 estats->rx_crcerr++;
1300                 stats->rx_crc_errors++;
1301         }
1302         if (status & RXBD_OVERRUN) {
1303                 estats->rx_overrun++;
1304                 stats->rx_crc_errors++;
1305         }
1306 }
1307
1308 irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs)
1309 {
1310         struct net_device *dev = (struct net_device *) dev_id;
1311         struct gfar_private *priv = netdev_priv(dev);
1312 #ifdef CONFIG_GFAR_NAPI
1313         u32 tempval;
1314 #else
1315         unsigned long flags;
1316 #endif
1317
1318         /* Clear IEVENT, so rx interrupt isn't called again
1319          * because of this interrupt */
1320         gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1321
1322         /* support NAPI */
1323 #ifdef CONFIG_GFAR_NAPI
1324         if (netif_rx_schedule_prep(dev)) {
1325                 tempval = gfar_read(&priv->regs->imask);
1326                 tempval &= IMASK_RX_DISABLED;
1327                 gfar_write(&priv->regs->imask, tempval);
1328
1329                 __netif_rx_schedule(dev);
1330         } else {
1331                 if (netif_msg_rx_err(priv))
1332                         printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1333                                 dev->name, gfar_read(&priv->regs->ievent),
1334                                 gfar_read(&priv->regs->imask));
1335         }
1336 #else
1337
1338         spin_lock_irqsave(&priv->rxlock, flags);
1339         gfar_clean_rx_ring(dev, priv->rx_ring_size);
1340
1341         /* If we are coalescing interrupts, update the timer */
1342         /* Otherwise, clear it */
1343         if (priv->rxcoalescing)
1344                 gfar_write(&priv->regs->rxic,
1345                            mk_ic_value(priv->rxcount, priv->rxtime));
1346         else
1347                 gfar_write(&priv->regs->rxic, 0);
1348
1349         spin_unlock_irqrestore(&priv->rxlock, flags);
1350 #endif
1351
1352         return IRQ_HANDLED;
1353 }
1354
1355 static inline int gfar_rx_vlan(struct sk_buff *skb,
1356                 struct vlan_group *vlgrp, unsigned short vlctl)
1357 {
1358 #ifdef CONFIG_GFAR_NAPI
1359         return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1360 #else
1361         return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1362 #endif
1363 }
1364
1365 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1366 {
1367         /* If valid headers were found, and valid sums
1368          * were verified, then we tell the kernel that no
1369          * checksumming is necessary.  Otherwise, it is */
1370         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1371                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1372         else
1373                 skb->ip_summed = CHECKSUM_NONE;
1374 }
1375
1376
1377 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1378 {
1379         struct rxfcb *fcb = (struct rxfcb *)skb->data;
1380
1381         /* Remove the FCB from the skb */
1382         skb_pull(skb, GMAC_FCB_LEN);
1383
1384         return fcb;
1385 }
1386
1387 /* gfar_process_frame() -- handle one incoming packet if skb
1388  * isn't NULL.  */
1389 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1390                 int length)
1391 {
1392         struct gfar_private *priv = netdev_priv(dev);
1393         struct rxfcb *fcb = NULL;
1394
1395         if (NULL == skb) {
1396                 if (netif_msg_rx_err(priv))
1397                         printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1398                 priv->stats.rx_dropped++;
1399                 priv->extra_stats.rx_skbmissing++;
1400         } else {
1401                 int ret;
1402
1403                 /* Prep the skb for the packet */
1404                 skb_put(skb, length);
1405
1406                 /* Grab the FCB if there is one */
1407                 if (gfar_uses_fcb(priv))
1408                         fcb = gfar_get_fcb(skb);
1409
1410                 /* Remove the padded bytes, if there are any */
1411                 if (priv->padding)
1412                         skb_pull(skb, priv->padding);
1413
1414                 if (priv->rx_csum_enable)
1415                         gfar_rx_checksum(skb, fcb);
1416
1417                 /* Tell the skb what kind of packet this is */
1418                 skb->protocol = eth_type_trans(skb, dev);
1419
1420                 /* Send the packet up the stack */
1421                 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1422                         ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1423                 else
1424                         ret = RECEIVE(skb);
1425
1426                 if (NET_RX_DROP == ret)
1427                         priv->extra_stats.kernel_dropped++;
1428         }
1429
1430         return 0;
1431 }
1432
1433 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1434  *   until the budget/quota has been reached. Returns the number
1435  *   of frames handled
1436  */
1437 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1438 {
1439         struct rxbd8 *bdp;
1440         struct sk_buff *skb;
1441         u16 pkt_len;
1442         int howmany = 0;
1443         struct gfar_private *priv = netdev_priv(dev);
1444
1445         /* Get the first full descriptor */
1446         bdp = priv->cur_rx;
1447
1448         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1449                 skb = priv->rx_skbuff[priv->skb_currx];
1450
1451                 if (!(bdp->status &
1452                       (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
1453                        | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
1454                         /* Increment the number of packets */
1455                         priv->stats.rx_packets++;
1456                         howmany++;
1457
1458                         /* Remove the FCS from the packet length */
1459                         pkt_len = bdp->length - 4;
1460
1461                         gfar_process_frame(dev, skb, pkt_len);
1462
1463                         priv->stats.rx_bytes += pkt_len;
1464                 } else {
1465                         count_errors(bdp->status, priv);
1466
1467                         if (skb)
1468                                 dev_kfree_skb_any(skb);
1469
1470                         priv->rx_skbuff[priv->skb_currx] = NULL;
1471                 }
1472
1473                 dev->last_rx = jiffies;
1474
1475                 /* Clear the status flags for this buffer */
1476                 bdp->status &= ~RXBD_STATS;
1477
1478                 /* Add another skb for the future */
1479                 skb = gfar_new_skb(dev, bdp);
1480                 priv->rx_skbuff[priv->skb_currx] = skb;
1481
1482                 /* Update to the next pointer */
1483                 if (bdp->status & RXBD_WRAP)
1484                         bdp = priv->rx_bd_base;
1485                 else
1486                         bdp++;
1487
1488                 /* update to point at the next skb */
1489                 priv->skb_currx =
1490                     (priv->skb_currx +
1491                      1) & RX_RING_MOD_MASK(priv->rx_ring_size);
1492
1493         }
1494
1495         /* Update the current rxbd pointer to be the next one */
1496         priv->cur_rx = bdp;
1497
1498         return howmany;
1499 }
1500
1501 #ifdef CONFIG_GFAR_NAPI
1502 static int gfar_poll(struct net_device *dev, int *budget)
1503 {
1504         int howmany;
1505         struct gfar_private *priv = netdev_priv(dev);
1506         int rx_work_limit = *budget;
1507
1508         if (rx_work_limit > dev->quota)
1509                 rx_work_limit = dev->quota;
1510
1511         howmany = gfar_clean_rx_ring(dev, rx_work_limit);
1512
1513         dev->quota -= howmany;
1514         rx_work_limit -= howmany;
1515         *budget -= howmany;
1516
1517         if (rx_work_limit > 0) {
1518                 netif_rx_complete(dev);
1519
1520                 /* Clear the halt bit in RSTAT */
1521                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1522
1523                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1524
1525                 /* If we are coalescing interrupts, update the timer */
1526                 /* Otherwise, clear it */
1527                 if (priv->rxcoalescing)
1528                         gfar_write(&priv->regs->rxic,
1529                                    mk_ic_value(priv->rxcount, priv->rxtime));
1530                 else
1531                         gfar_write(&priv->regs->rxic, 0);
1532         }
1533
1534         /* Return 1 if there's more work to do */
1535         return (rx_work_limit > 0) ? 0 : 1;
1536 }
1537 #endif
1538
1539 /* The interrupt handler for devices with one interrupt */
1540 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1541 {
1542         struct net_device *dev = dev_id;
1543         struct gfar_private *priv = netdev_priv(dev);
1544
1545         /* Save ievent for future reference */
1546         u32 events = gfar_read(&priv->regs->ievent);
1547
1548         /* Clear IEVENT */
1549         gfar_write(&priv->regs->ievent, events);
1550
1551         /* Check for reception */
1552         if ((events & IEVENT_RXF0) || (events & IEVENT_RXB0))
1553                 gfar_receive(irq, dev_id, regs);
1554
1555         /* Check for transmit completion */
1556         if ((events & IEVENT_TXF) || (events & IEVENT_TXB))
1557                 gfar_transmit(irq, dev_id, regs);
1558
1559         /* Update error statistics */
1560         if (events & IEVENT_TXE) {
1561                 priv->stats.tx_errors++;
1562
1563                 if (events & IEVENT_LC)
1564                         priv->stats.tx_window_errors++;
1565                 if (events & IEVENT_CRL)
1566                         priv->stats.tx_aborted_errors++;
1567                 if (events & IEVENT_XFUN) {
1568                         if (netif_msg_tx_err(priv))
1569                                 printk(KERN_WARNING "%s: tx underrun. dropped packet\n", dev->name);
1570                         priv->stats.tx_dropped++;
1571                         priv->extra_stats.tx_underrun++;
1572
1573                         /* Reactivate the Tx Queues */
1574                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1575                 }
1576         }
1577         if (events & IEVENT_BSY) {
1578                 priv->stats.rx_errors++;
1579                 priv->extra_stats.rx_bsy++;
1580
1581                 gfar_receive(irq, dev_id, regs);
1582
1583 #ifndef CONFIG_GFAR_NAPI
1584                 /* Clear the halt bit in RSTAT */
1585                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1586 #endif
1587
1588                 if (netif_msg_rx_err(priv))
1589                         printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
1590                                         dev->name,
1591                                         gfar_read(&priv->regs->rstat));
1592         }
1593         if (events & IEVENT_BABR) {
1594                 priv->stats.rx_errors++;
1595                 priv->extra_stats.rx_babr++;
1596
1597                 if (netif_msg_rx_err(priv))
1598                         printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1599         }
1600         if (events & IEVENT_EBERR) {
1601                 priv->extra_stats.eberr++;
1602                 if (netif_msg_rx_err(priv))
1603                         printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1604         }
1605         if ((events & IEVENT_RXC) && (netif_msg_rx_err(priv)))
1606                         printk(KERN_DEBUG "%s: control frame\n", dev->name);
1607
1608         if (events & IEVENT_BABT) {
1609                 priv->extra_stats.tx_babt++;
1610                 if (netif_msg_rx_err(priv))
1611                         printk(KERN_DEBUG "%s: babt error\n", dev->name);
1612         }
1613
1614         return IRQ_HANDLED;
1615 }
1616
1617 /* Called every time the controller might need to be made
1618  * aware of new link state.  The PHY code conveys this
1619  * information through variables in the phydev structure, and this
1620  * function converts those variables into the appropriate
1621  * register values, and can bring down the device if needed.
1622  */
1623 static void adjust_link(struct net_device *dev)
1624 {
1625         struct gfar_private *priv = netdev_priv(dev);
1626         struct gfar __iomem *regs = priv->regs;
1627         unsigned long flags;
1628         struct phy_device *phydev = priv->phydev;
1629         int new_state = 0;
1630
1631         spin_lock_irqsave(&priv->txlock, flags);
1632         if (phydev->link) {
1633                 u32 tempval = gfar_read(&regs->maccfg2);
1634                 u32 ecntrl = gfar_read(&regs->ecntrl);
1635
1636                 /* Now we make sure that we can be in full duplex mode.
1637                  * If not, we operate in half-duplex mode. */
1638                 if (phydev->duplex != priv->oldduplex) {
1639                         new_state = 1;
1640                         if (!(phydev->duplex))
1641                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1642                         else
1643                                 tempval |= MACCFG2_FULL_DUPLEX;
1644
1645                         priv->oldduplex = phydev->duplex;
1646                 }
1647
1648                 if (phydev->speed != priv->oldspeed) {
1649                         new_state = 1;
1650                         switch (phydev->speed) {
1651                         case 1000:
1652                                 tempval =
1653                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1654                                 break;
1655                         case 100:
1656                         case 10:
1657                                 tempval =
1658                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1659
1660                                 /* Reduced mode distinguishes
1661                                  * between 10 and 100 */
1662                                 if (phydev->speed == SPEED_100)
1663                                         ecntrl |= ECNTRL_R100;
1664                                 else
1665                                         ecntrl &= ~(ECNTRL_R100);
1666                                 break;
1667                         default:
1668                                 if (netif_msg_link(priv))
1669                                         printk(KERN_WARNING
1670                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
1671                                                 dev->name, phydev->speed);
1672                                 break;
1673                         }
1674
1675                         priv->oldspeed = phydev->speed;
1676                 }
1677
1678                 gfar_write(&regs->maccfg2, tempval);
1679                 gfar_write(&regs->ecntrl, ecntrl);
1680
1681                 if (!priv->oldlink) {
1682                         new_state = 1;
1683                         priv->oldlink = 1;
1684                         netif_schedule(dev);
1685                 }
1686         } else if (priv->oldlink) {
1687                 new_state = 1;
1688                 priv->oldlink = 0;
1689                 priv->oldspeed = 0;
1690                 priv->oldduplex = -1;
1691         }
1692
1693         if (new_state && netif_msg_link(priv))
1694                 phy_print_status(phydev);
1695
1696         spin_unlock_irqrestore(&priv->txlock, flags);
1697 }
1698
1699 /* Update the hash table based on the current list of multicast
1700  * addresses we subscribe to.  Also, change the promiscuity of
1701  * the device based on the flags (this function is called
1702  * whenever dev->flags is changed */
1703 static void gfar_set_multi(struct net_device *dev)
1704 {
1705         struct dev_mc_list *mc_ptr;
1706         struct gfar_private *priv = netdev_priv(dev);
1707         struct gfar __iomem *regs = priv->regs;
1708         u32 tempval;
1709
1710         if(dev->flags & IFF_PROMISC) {
1711                 /* Set RCTRL to PROM */
1712                 tempval = gfar_read(&regs->rctrl);
1713                 tempval |= RCTRL_PROM;
1714                 gfar_write(&regs->rctrl, tempval);
1715         } else {
1716                 /* Set RCTRL to not PROM */
1717                 tempval = gfar_read(&regs->rctrl);
1718                 tempval &= ~(RCTRL_PROM);
1719                 gfar_write(&regs->rctrl, tempval);
1720         }
1721
1722         if(dev->flags & IFF_ALLMULTI) {
1723                 /* Set the hash to rx all multicast frames */
1724                 gfar_write(&regs->igaddr0, 0xffffffff);
1725                 gfar_write(&regs->igaddr1, 0xffffffff);
1726                 gfar_write(&regs->igaddr2, 0xffffffff);
1727                 gfar_write(&regs->igaddr3, 0xffffffff);
1728                 gfar_write(&regs->igaddr4, 0xffffffff);
1729                 gfar_write(&regs->igaddr5, 0xffffffff);
1730                 gfar_write(&regs->igaddr6, 0xffffffff);
1731                 gfar_write(&regs->igaddr7, 0xffffffff);
1732                 gfar_write(&regs->gaddr0, 0xffffffff);
1733                 gfar_write(&regs->gaddr1, 0xffffffff);
1734                 gfar_write(&regs->gaddr2, 0xffffffff);
1735                 gfar_write(&regs->gaddr3, 0xffffffff);
1736                 gfar_write(&regs->gaddr4, 0xffffffff);
1737                 gfar_write(&regs->gaddr5, 0xffffffff);
1738                 gfar_write(&regs->gaddr6, 0xffffffff);
1739                 gfar_write(&regs->gaddr7, 0xffffffff);
1740         } else {
1741                 int em_num;
1742                 int idx;
1743
1744                 /* zero out the hash */
1745                 gfar_write(&regs->igaddr0, 0x0);
1746                 gfar_write(&regs->igaddr1, 0x0);
1747                 gfar_write(&regs->igaddr2, 0x0);
1748                 gfar_write(&regs->igaddr3, 0x0);
1749                 gfar_write(&regs->igaddr4, 0x0);
1750                 gfar_write(&regs->igaddr5, 0x0);
1751                 gfar_write(&regs->igaddr6, 0x0);
1752                 gfar_write(&regs->igaddr7, 0x0);
1753                 gfar_write(&regs->gaddr0, 0x0);
1754                 gfar_write(&regs->gaddr1, 0x0);
1755                 gfar_write(&regs->gaddr2, 0x0);
1756                 gfar_write(&regs->gaddr3, 0x0);
1757                 gfar_write(&regs->gaddr4, 0x0);
1758                 gfar_write(&regs->gaddr5, 0x0);
1759                 gfar_write(&regs->gaddr6, 0x0);
1760                 gfar_write(&regs->gaddr7, 0x0);
1761
1762                 /* If we have extended hash tables, we need to
1763                  * clear the exact match registers to prepare for
1764                  * setting them */
1765                 if (priv->extended_hash) {
1766                         em_num = GFAR_EM_NUM + 1;
1767                         gfar_clear_exact_match(dev);
1768                         idx = 1;
1769                 } else {
1770                         idx = 0;
1771                         em_num = 0;
1772                 }
1773
1774                 if(dev->mc_count == 0)
1775                         return;
1776
1777                 /* Parse the list, and set the appropriate bits */
1778                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1779                         if (idx < em_num) {
1780                                 gfar_set_mac_for_addr(dev, idx,
1781                                                 mc_ptr->dmi_addr);
1782                                 idx++;
1783                         } else
1784                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1785                 }
1786         }
1787
1788         return;
1789 }
1790
1791
1792 /* Clears each of the exact match registers to zero, so they
1793  * don't interfere with normal reception */
1794 static void gfar_clear_exact_match(struct net_device *dev)
1795 {
1796         int idx;
1797         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1798
1799         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1800                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1801 }
1802
1803 /* Set the appropriate hash bit for the given addr */
1804 /* The algorithm works like so:
1805  * 1) Take the Destination Address (ie the multicast address), and
1806  * do a CRC on it (little endian), and reverse the bits of the
1807  * result.
1808  * 2) Use the 8 most significant bits as a hash into a 256-entry
1809  * table.  The table is controlled through 8 32-bit registers:
1810  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
1811  * gaddr7.  This means that the 3 most significant bits in the
1812  * hash index which gaddr register to use, and the 5 other bits
1813  * indicate which bit (assuming an IBM numbering scheme, which
1814  * for PowerPC (tm) is usually the case) in the register holds
1815  * the entry. */
1816 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1817 {
1818         u32 tempval;
1819         struct gfar_private *priv = netdev_priv(dev);
1820         u32 result = ether_crc(MAC_ADDR_LEN, addr);
1821         int width = priv->hash_width;
1822         u8 whichbit = (result >> (32 - width)) & 0x1f;
1823         u8 whichreg = result >> (32 - width + 5);
1824         u32 value = (1 << (31-whichbit));
1825
1826         tempval = gfar_read(priv->hash_regs[whichreg]);
1827         tempval |= value;
1828         gfar_write(priv->hash_regs[whichreg], tempval);
1829
1830         return;
1831 }
1832
1833
1834 /* There are multiple MAC Address register pairs on some controllers
1835  * This function sets the numth pair to a given address
1836  */
1837 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1838 {
1839         struct gfar_private *priv = netdev_priv(dev);
1840         int idx;
1841         char tmpbuf[MAC_ADDR_LEN];
1842         u32 tempval;
1843         u32 __iomem *macptr = &priv->regs->macstnaddr1;
1844
1845         macptr += num*2;
1846
1847         /* Now copy it into the mac registers backwards, cuz */
1848         /* little endian is silly */
1849         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
1850                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
1851
1852         gfar_write(macptr, *((u32 *) (tmpbuf)));
1853
1854         tempval = *((u32 *) (tmpbuf + 4));
1855
1856         gfar_write(macptr+1, tempval);
1857 }
1858
1859 /* GFAR error interrupt handler */
1860 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs)
1861 {
1862         struct net_device *dev = dev_id;
1863         struct gfar_private *priv = netdev_priv(dev);
1864
1865         /* Save ievent for future reference */
1866         u32 events = gfar_read(&priv->regs->ievent);
1867
1868         /* Clear IEVENT */
1869         gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1870
1871         /* Hmm... */
1872         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
1873                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1874                                 dev->name, events, gfar_read(&priv->regs->imask));
1875
1876         /* Update the error counters */
1877         if (events & IEVENT_TXE) {
1878                 priv->stats.tx_errors++;
1879
1880                 if (events & IEVENT_LC)
1881                         priv->stats.tx_window_errors++;
1882                 if (events & IEVENT_CRL)
1883                         priv->stats.tx_aborted_errors++;
1884                 if (events & IEVENT_XFUN) {
1885                         if (netif_msg_tx_err(priv))
1886                                 printk(KERN_DEBUG "%s: underrun.  packet dropped.\n",
1887                                                 dev->name);
1888                         priv->stats.tx_dropped++;
1889                         priv->extra_stats.tx_underrun++;
1890
1891                         /* Reactivate the Tx Queues */
1892                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1893                 }
1894                 if (netif_msg_tx_err(priv))
1895                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
1896         }
1897         if (events & IEVENT_BSY) {
1898                 priv->stats.rx_errors++;
1899                 priv->extra_stats.rx_bsy++;
1900
1901                 gfar_receive(irq, dev_id, regs);
1902
1903 #ifndef CONFIG_GFAR_NAPI
1904                 /* Clear the halt bit in RSTAT */
1905                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1906 #endif
1907
1908                 if (netif_msg_rx_err(priv))
1909                         printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
1910                                         dev->name,
1911                                         gfar_read(&priv->regs->rstat));
1912         }
1913         if (events & IEVENT_BABR) {
1914                 priv->stats.rx_errors++;
1915                 priv->extra_stats.rx_babr++;
1916
1917                 if (netif_msg_rx_err(priv))
1918                         printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1919         }
1920         if (events & IEVENT_EBERR) {
1921                 priv->extra_stats.eberr++;
1922                 if (netif_msg_rx_err(priv))
1923                         printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1924         }
1925         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
1926                 if (netif_msg_rx_status(priv))
1927                         printk(KERN_DEBUG "%s: control frame\n", dev->name);
1928
1929         if (events & IEVENT_BABT) {
1930                 priv->extra_stats.tx_babt++;
1931                 if (netif_msg_tx_err(priv))
1932                         printk(KERN_DEBUG "%s: babt error\n", dev->name);
1933         }
1934         return IRQ_HANDLED;
1935 }
1936
1937 /* Structure for a device driver */
1938 static struct platform_driver gfar_driver = {
1939         .probe = gfar_probe,
1940         .remove = gfar_remove,
1941         .driver = {
1942                 .name = "fsl-gianfar",
1943         },
1944 };
1945
1946 static int __init gfar_init(void)
1947 {
1948         int err = gfar_mdio_init();
1949
1950         if (err)
1951                 return err;
1952
1953         err = platform_driver_register(&gfar_driver);
1954
1955         if (err)
1956                 gfar_mdio_exit();
1957
1958         return err;
1959 }
1960
1961 static void __exit gfar_exit(void)
1962 {
1963         platform_driver_unregister(&gfar_driver);
1964         gfar_mdio_exit();
1965 }
1966
1967 module_init(gfar_init);
1968 module_exit(gfar_exit);
1969