Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / drivers / net / fs_enet / fs_enet-main.c
1 /*
2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/bitops.h>
36 #include <linux/fs.h>
37 #include <linux/platform_device.h>
38 #include <linux/phy.h>
39 #include <linux/of.h>
40 #include <linux/of_mdio.h>
41 #include <linux/of_platform.h>
42 #include <linux/of_gpio.h>
43 #include <linux/of_net.h>
44
45 #include <linux/vmalloc.h>
46 #include <asm/pgtable.h>
47 #include <asm/irq.h>
48 #include <asm/uaccess.h>
49
50 #include "fs_enet.h"
51
52 /*************************************************/
53
54 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
55 MODULE_DESCRIPTION("Freescale Ethernet Driver");
56 MODULE_LICENSE("GPL");
57 MODULE_VERSION(DRV_MODULE_VERSION);
58
59 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
60 module_param(fs_enet_debug, int, 0);
61 MODULE_PARM_DESC(fs_enet_debug,
62                  "Freescale bitmapped debugging message enable value");
63
64 #ifdef CONFIG_NET_POLL_CONTROLLER
65 static void fs_enet_netpoll(struct net_device *dev);
66 #endif
67
68 static void fs_set_multicast_list(struct net_device *dev)
69 {
70         struct fs_enet_private *fep = netdev_priv(dev);
71
72         (*fep->ops->set_multicast_list)(dev);
73 }
74
75 static void skb_align(struct sk_buff *skb, int align)
76 {
77         int off = ((unsigned long)skb->data) & (align - 1);
78
79         if (off)
80                 skb_reserve(skb, align - off);
81 }
82
83 /* NAPI receive function */
84 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
85 {
86         struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
87         struct net_device *dev = fep->ndev;
88         const struct fs_platform_info *fpi = fep->fpi;
89         cbd_t __iomem *bdp;
90         struct sk_buff *skb, *skbn, *skbt;
91         int received = 0;
92         u16 pkt_len, sc;
93         int curidx;
94
95         /*
96          * First, grab all of the stats for the incoming packet.
97          * These get messed up if we get called due to a busy condition.
98          */
99         bdp = fep->cur_rx;
100
101         /* clear RX status bits for napi*/
102         (*fep->ops->napi_clear_rx_event)(dev);
103
104         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
105                 curidx = bdp - fep->rx_bd_base;
106
107                 /*
108                  * Since we have allocated space to hold a complete frame,
109                  * the last indicator should be set.
110                  */
111                 if ((sc & BD_ENET_RX_LAST) == 0)
112                         dev_warn(fep->dev, "rcv is not +last\n");
113
114                 /*
115                  * Check for errors.
116                  */
117                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
118                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
119                         fep->stats.rx_errors++;
120                         /* Frame too long or too short. */
121                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
122                                 fep->stats.rx_length_errors++;
123                         /* Frame alignment */
124                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
125                                 fep->stats.rx_frame_errors++;
126                         /* CRC Error */
127                         if (sc & BD_ENET_RX_CR)
128                                 fep->stats.rx_crc_errors++;
129                         /* FIFO overrun */
130                         if (sc & BD_ENET_RX_OV)
131                                 fep->stats.rx_crc_errors++;
132
133                         skb = fep->rx_skbuff[curidx];
134
135                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
136                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
137                                 DMA_FROM_DEVICE);
138
139                         skbn = skb;
140
141                 } else {
142                         skb = fep->rx_skbuff[curidx];
143
144                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
145                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
146                                 DMA_FROM_DEVICE);
147
148                         /*
149                          * Process the incoming frame.
150                          */
151                         fep->stats.rx_packets++;
152                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
153                         fep->stats.rx_bytes += pkt_len + 4;
154
155                         if (pkt_len <= fpi->rx_copybreak) {
156                                 /* +2 to make IP header L1 cache aligned */
157                                 skbn = dev_alloc_skb(pkt_len + 2);
158                                 if (skbn != NULL) {
159                                         skb_reserve(skbn, 2);   /* align IP header */
160                                         skb_copy_from_linear_data(skb,
161                                                       skbn->data, pkt_len);
162                                         /* swap */
163                                         skbt = skb;
164                                         skb = skbn;
165                                         skbn = skbt;
166                                 }
167                         } else {
168                                 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
169
170                                 if (skbn)
171                                         skb_align(skbn, ENET_RX_ALIGN);
172                         }
173
174                         if (skbn != NULL) {
175                                 skb_put(skb, pkt_len);  /* Make room */
176                                 skb->protocol = eth_type_trans(skb, dev);
177                                 received++;
178                                 netif_receive_skb(skb);
179                         } else {
180                                 dev_warn(fep->dev,
181                                          "Memory squeeze, dropping packet.\n");
182                                 fep->stats.rx_dropped++;
183                                 skbn = skb;
184                         }
185                 }
186
187                 fep->rx_skbuff[curidx] = skbn;
188                 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
189                              L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
190                              DMA_FROM_DEVICE));
191                 CBDW_DATLEN(bdp, 0);
192                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
193
194                 /*
195                  * Update BD pointer to next entry.
196                  */
197                 if ((sc & BD_ENET_RX_WRAP) == 0)
198                         bdp++;
199                 else
200                         bdp = fep->rx_bd_base;
201
202                 (*fep->ops->rx_bd_done)(dev);
203
204                 if (received >= budget)
205                         break;
206         }
207
208         fep->cur_rx = bdp;
209
210         if (received < budget) {
211                 /* done */
212                 napi_complete(napi);
213                 (*fep->ops->napi_enable_rx)(dev);
214         }
215         return received;
216 }
217
218 /* non NAPI receive function */
219 static int fs_enet_rx_non_napi(struct net_device *dev)
220 {
221         struct fs_enet_private *fep = netdev_priv(dev);
222         const struct fs_platform_info *fpi = fep->fpi;
223         cbd_t __iomem *bdp;
224         struct sk_buff *skb, *skbn, *skbt;
225         int received = 0;
226         u16 pkt_len, sc;
227         int curidx;
228         /*
229          * First, grab all of the stats for the incoming packet.
230          * These get messed up if we get called due to a busy condition.
231          */
232         bdp = fep->cur_rx;
233
234         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
235
236                 curidx = bdp - fep->rx_bd_base;
237
238                 /*
239                  * Since we have allocated space to hold a complete frame,
240                  * the last indicator should be set.
241                  */
242                 if ((sc & BD_ENET_RX_LAST) == 0)
243                         dev_warn(fep->dev, "rcv is not +last\n");
244
245                 /*
246                  * Check for errors.
247                  */
248                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
249                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
250                         fep->stats.rx_errors++;
251                         /* Frame too long or too short. */
252                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
253                                 fep->stats.rx_length_errors++;
254                         /* Frame alignment */
255                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
256                                 fep->stats.rx_frame_errors++;
257                         /* CRC Error */
258                         if (sc & BD_ENET_RX_CR)
259                                 fep->stats.rx_crc_errors++;
260                         /* FIFO overrun */
261                         if (sc & BD_ENET_RX_OV)
262                                 fep->stats.rx_crc_errors++;
263
264                         skb = fep->rx_skbuff[curidx];
265
266                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
267                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
268                                 DMA_FROM_DEVICE);
269
270                         skbn = skb;
271
272                 } else {
273
274                         skb = fep->rx_skbuff[curidx];
275
276                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
277                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
278                                 DMA_FROM_DEVICE);
279
280                         /*
281                          * Process the incoming frame.
282                          */
283                         fep->stats.rx_packets++;
284                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
285                         fep->stats.rx_bytes += pkt_len + 4;
286
287                         if (pkt_len <= fpi->rx_copybreak) {
288                                 /* +2 to make IP header L1 cache aligned */
289                                 skbn = dev_alloc_skb(pkt_len + 2);
290                                 if (skbn != NULL) {
291                                         skb_reserve(skbn, 2);   /* align IP header */
292                                         skb_copy_from_linear_data(skb,
293                                                       skbn->data, pkt_len);
294                                         /* swap */
295                                         skbt = skb;
296                                         skb = skbn;
297                                         skbn = skbt;
298                                 }
299                         } else {
300                                 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
301
302                                 if (skbn)
303                                         skb_align(skbn, ENET_RX_ALIGN);
304                         }
305
306                         if (skbn != NULL) {
307                                 skb_put(skb, pkt_len);  /* Make room */
308                                 skb->protocol = eth_type_trans(skb, dev);
309                                 received++;
310                                 netif_rx(skb);
311                         } else {
312                                 dev_warn(fep->dev,
313                                          "Memory squeeze, dropping packet.\n");
314                                 fep->stats.rx_dropped++;
315                                 skbn = skb;
316                         }
317                 }
318
319                 fep->rx_skbuff[curidx] = skbn;
320                 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
321                              L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
322                              DMA_FROM_DEVICE));
323                 CBDW_DATLEN(bdp, 0);
324                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
325
326                 /*
327                  * Update BD pointer to next entry.
328                  */
329                 if ((sc & BD_ENET_RX_WRAP) == 0)
330                         bdp++;
331                 else
332                         bdp = fep->rx_bd_base;
333
334                 (*fep->ops->rx_bd_done)(dev);
335         }
336
337         fep->cur_rx = bdp;
338
339         return 0;
340 }
341
342 static void fs_enet_tx(struct net_device *dev)
343 {
344         struct fs_enet_private *fep = netdev_priv(dev);
345         cbd_t __iomem *bdp;
346         struct sk_buff *skb;
347         int dirtyidx, do_wake, do_restart;
348         u16 sc;
349
350         spin_lock(&fep->tx_lock);
351         bdp = fep->dirty_tx;
352
353         do_wake = do_restart = 0;
354         while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
355                 dirtyidx = bdp - fep->tx_bd_base;
356
357                 if (fep->tx_free == fep->tx_ring)
358                         break;
359
360                 skb = fep->tx_skbuff[dirtyidx];
361
362                 /*
363                  * Check for errors.
364                  */
365                 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
366                           BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
367
368                         if (sc & BD_ENET_TX_HB) /* No heartbeat */
369                                 fep->stats.tx_heartbeat_errors++;
370                         if (sc & BD_ENET_TX_LC) /* Late collision */
371                                 fep->stats.tx_window_errors++;
372                         if (sc & BD_ENET_TX_RL) /* Retrans limit */
373                                 fep->stats.tx_aborted_errors++;
374                         if (sc & BD_ENET_TX_UN) /* Underrun */
375                                 fep->stats.tx_fifo_errors++;
376                         if (sc & BD_ENET_TX_CSL)        /* Carrier lost */
377                                 fep->stats.tx_carrier_errors++;
378
379                         if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
380                                 fep->stats.tx_errors++;
381                                 do_restart = 1;
382                         }
383                 } else
384                         fep->stats.tx_packets++;
385
386                 if (sc & BD_ENET_TX_READY) {
387                         dev_warn(fep->dev,
388                                  "HEY! Enet xmit interrupt and TX_READY.\n");
389                 }
390
391                 /*
392                  * Deferred means some collisions occurred during transmit,
393                  * but we eventually sent the packet OK.
394                  */
395                 if (sc & BD_ENET_TX_DEF)
396                         fep->stats.collisions++;
397
398                 /* unmap */
399                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
400                                 skb->len, DMA_TO_DEVICE);
401
402                 /*
403                  * Free the sk buffer associated with this last transmit.
404                  */
405                 dev_kfree_skb_irq(skb);
406                 fep->tx_skbuff[dirtyidx] = NULL;
407
408                 /*
409                  * Update pointer to next buffer descriptor to be transmitted.
410                  */
411                 if ((sc & BD_ENET_TX_WRAP) == 0)
412                         bdp++;
413                 else
414                         bdp = fep->tx_bd_base;
415
416                 /*
417                  * Since we have freed up a buffer, the ring is no longer
418                  * full.
419                  */
420                 if (!fep->tx_free++)
421                         do_wake = 1;
422         }
423
424         fep->dirty_tx = bdp;
425
426         if (do_restart)
427                 (*fep->ops->tx_restart)(dev);
428
429         spin_unlock(&fep->tx_lock);
430
431         if (do_wake)
432                 netif_wake_queue(dev);
433 }
434
435 /*
436  * The interrupt handler.
437  * This is called from the MPC core interrupt.
438  */
439 static irqreturn_t
440 fs_enet_interrupt(int irq, void *dev_id)
441 {
442         struct net_device *dev = dev_id;
443         struct fs_enet_private *fep;
444         const struct fs_platform_info *fpi;
445         u32 int_events;
446         u32 int_clr_events;
447         int nr, napi_ok;
448         int handled;
449
450         fep = netdev_priv(dev);
451         fpi = fep->fpi;
452
453         nr = 0;
454         while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
455                 nr++;
456
457                 int_clr_events = int_events;
458                 if (fpi->use_napi)
459                         int_clr_events &= ~fep->ev_napi_rx;
460
461                 (*fep->ops->clear_int_events)(dev, int_clr_events);
462
463                 if (int_events & fep->ev_err)
464                         (*fep->ops->ev_error)(dev, int_events);
465
466                 if (int_events & fep->ev_rx) {
467                         if (!fpi->use_napi)
468                                 fs_enet_rx_non_napi(dev);
469                         else {
470                                 napi_ok = napi_schedule_prep(&fep->napi);
471
472                                 (*fep->ops->napi_disable_rx)(dev);
473                                 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
474
475                                 /* NOTE: it is possible for FCCs in NAPI mode    */
476                                 /* to submit a spurious interrupt while in poll  */
477                                 if (napi_ok)
478                                         __napi_schedule(&fep->napi);
479                         }
480                 }
481
482                 if (int_events & fep->ev_tx)
483                         fs_enet_tx(dev);
484         }
485
486         handled = nr > 0;
487         return IRQ_RETVAL(handled);
488 }
489
490 void fs_init_bds(struct net_device *dev)
491 {
492         struct fs_enet_private *fep = netdev_priv(dev);
493         cbd_t __iomem *bdp;
494         struct sk_buff *skb;
495         int i;
496
497         fs_cleanup_bds(dev);
498
499         fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
500         fep->tx_free = fep->tx_ring;
501         fep->cur_rx = fep->rx_bd_base;
502
503         /*
504          * Initialize the receive buffer descriptors.
505          */
506         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
507                 skb = dev_alloc_skb(ENET_RX_FRSIZE);
508                 if (skb == NULL) {
509                         dev_warn(fep->dev,
510                                  "Memory squeeze, unable to allocate skb\n");
511                         break;
512                 }
513                 skb_align(skb, ENET_RX_ALIGN);
514                 fep->rx_skbuff[i] = skb;
515                 CBDW_BUFADDR(bdp,
516                         dma_map_single(fep->dev, skb->data,
517                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
518                                 DMA_FROM_DEVICE));
519                 CBDW_DATLEN(bdp, 0);    /* zero */
520                 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
521                         ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
522         }
523         /*
524          * if we failed, fillup remainder
525          */
526         for (; i < fep->rx_ring; i++, bdp++) {
527                 fep->rx_skbuff[i] = NULL;
528                 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
529         }
530
531         /*
532          * ...and the same for transmit.
533          */
534         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
535                 fep->tx_skbuff[i] = NULL;
536                 CBDW_BUFADDR(bdp, 0);
537                 CBDW_DATLEN(bdp, 0);
538                 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
539         }
540 }
541
542 void fs_cleanup_bds(struct net_device *dev)
543 {
544         struct fs_enet_private *fep = netdev_priv(dev);
545         struct sk_buff *skb;
546         cbd_t __iomem *bdp;
547         int i;
548
549         /*
550          * Reset SKB transmit buffers.
551          */
552         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
553                 if ((skb = fep->tx_skbuff[i]) == NULL)
554                         continue;
555
556                 /* unmap */
557                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
558                                 skb->len, DMA_TO_DEVICE);
559
560                 fep->tx_skbuff[i] = NULL;
561                 dev_kfree_skb(skb);
562         }
563
564         /*
565          * Reset SKB receive buffers
566          */
567         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
568                 if ((skb = fep->rx_skbuff[i]) == NULL)
569                         continue;
570
571                 /* unmap */
572                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
573                         L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
574                         DMA_FROM_DEVICE);
575
576                 fep->rx_skbuff[i] = NULL;
577
578                 dev_kfree_skb(skb);
579         }
580 }
581
582 /**********************************************************************************/
583
584 #ifdef CONFIG_FS_ENET_MPC5121_FEC
585 /*
586  * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
587  */
588 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
589                                                struct sk_buff *skb)
590 {
591         struct sk_buff *new_skb;
592         struct fs_enet_private *fep = netdev_priv(dev);
593
594         /* Alloc new skb */
595         new_skb = dev_alloc_skb(skb->len + 4);
596         if (!new_skb) {
597                 if (net_ratelimit()) {
598                         dev_warn(fep->dev,
599                                  "Memory squeeze, dropping tx packet.\n");
600                 }
601                 return NULL;
602         }
603
604         /* Make sure new skb is properly aligned */
605         skb_align(new_skb, 4);
606
607         /* Copy data to new skb ... */
608         skb_copy_from_linear_data(skb, new_skb->data, skb->len);
609         skb_put(new_skb, skb->len);
610
611         /* ... and free an old one */
612         dev_kfree_skb_any(skb);
613
614         return new_skb;
615 }
616 #endif
617
618 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
619 {
620         struct fs_enet_private *fep = netdev_priv(dev);
621         cbd_t __iomem *bdp;
622         int curidx;
623         u16 sc;
624         unsigned long flags;
625
626 #ifdef CONFIG_FS_ENET_MPC5121_FEC
627         if (((unsigned long)skb->data) & 0x3) {
628                 skb = tx_skb_align_workaround(dev, skb);
629                 if (!skb) {
630                         /*
631                          * We have lost packet due to memory allocation error
632                          * in tx_skb_align_workaround(). Hopefully original
633                          * skb is still valid, so try transmit it later.
634                          */
635                         return NETDEV_TX_BUSY;
636                 }
637         }
638 #endif
639         spin_lock_irqsave(&fep->tx_lock, flags);
640
641         /*
642          * Fill in a Tx ring entry
643          */
644         bdp = fep->cur_tx;
645
646         if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
647                 netif_stop_queue(dev);
648                 spin_unlock_irqrestore(&fep->tx_lock, flags);
649
650                 /*
651                  * Ooops.  All transmit buffers are full.  Bail out.
652                  * This should not happen, since the tx queue should be stopped.
653                  */
654                 dev_warn(fep->dev, "tx queue full!.\n");
655                 return NETDEV_TX_BUSY;
656         }
657
658         curidx = bdp - fep->tx_bd_base;
659         /*
660          * Clear all of the status flags.
661          */
662         CBDC_SC(bdp, BD_ENET_TX_STATS);
663
664         /*
665          * Save skb pointer.
666          */
667         fep->tx_skbuff[curidx] = skb;
668
669         fep->stats.tx_bytes += skb->len;
670
671         /*
672          * Push the data cache so the CPM does not get stale memory data.
673          */
674         CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
675                                 skb->data, skb->len, DMA_TO_DEVICE));
676         CBDW_DATLEN(bdp, skb->len);
677
678         /*
679          * If this was the last BD in the ring, start at the beginning again.
680          */
681         if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
682                 fep->cur_tx++;
683         else
684                 fep->cur_tx = fep->tx_bd_base;
685
686         if (!--fep->tx_free)
687                 netif_stop_queue(dev);
688
689         /* Trigger transmission start */
690         sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
691              BD_ENET_TX_LAST | BD_ENET_TX_TC;
692
693         /* note that while FEC does not have this bit
694          * it marks it as available for software use
695          * yay for hw reuse :) */
696         if (skb->len <= 60)
697                 sc |= BD_ENET_TX_PAD;
698         CBDS_SC(bdp, sc);
699
700         skb_tx_timestamp(skb);
701
702         (*fep->ops->tx_kickstart)(dev);
703
704         spin_unlock_irqrestore(&fep->tx_lock, flags);
705
706         return NETDEV_TX_OK;
707 }
708
709 static void fs_timeout(struct net_device *dev)
710 {
711         struct fs_enet_private *fep = netdev_priv(dev);
712         unsigned long flags;
713         int wake = 0;
714
715         fep->stats.tx_errors++;
716
717         spin_lock_irqsave(&fep->lock, flags);
718
719         if (dev->flags & IFF_UP) {
720                 phy_stop(fep->phydev);
721                 (*fep->ops->stop)(dev);
722                 (*fep->ops->restart)(dev);
723                 phy_start(fep->phydev);
724         }
725
726         phy_start(fep->phydev);
727         wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
728         spin_unlock_irqrestore(&fep->lock, flags);
729
730         if (wake)
731                 netif_wake_queue(dev);
732 }
733
734 /*-----------------------------------------------------------------------------
735  *  generic link-change handler - should be sufficient for most cases
736  *-----------------------------------------------------------------------------*/
737 static void generic_adjust_link(struct  net_device *dev)
738 {
739         struct fs_enet_private *fep = netdev_priv(dev);
740         struct phy_device *phydev = fep->phydev;
741         int new_state = 0;
742
743         if (phydev->link) {
744                 /* adjust to duplex mode */
745                 if (phydev->duplex != fep->oldduplex) {
746                         new_state = 1;
747                         fep->oldduplex = phydev->duplex;
748                 }
749
750                 if (phydev->speed != fep->oldspeed) {
751                         new_state = 1;
752                         fep->oldspeed = phydev->speed;
753                 }
754
755                 if (!fep->oldlink) {
756                         new_state = 1;
757                         fep->oldlink = 1;
758                 }
759
760                 if (new_state)
761                         fep->ops->restart(dev);
762         } else if (fep->oldlink) {
763                 new_state = 1;
764                 fep->oldlink = 0;
765                 fep->oldspeed = 0;
766                 fep->oldduplex = -1;
767         }
768
769         if (new_state && netif_msg_link(fep))
770                 phy_print_status(phydev);
771 }
772
773
774 static void fs_adjust_link(struct net_device *dev)
775 {
776         struct fs_enet_private *fep = netdev_priv(dev);
777         unsigned long flags;
778
779         spin_lock_irqsave(&fep->lock, flags);
780
781         if(fep->ops->adjust_link)
782                 fep->ops->adjust_link(dev);
783         else
784                 generic_adjust_link(dev);
785
786         spin_unlock_irqrestore(&fep->lock, flags);
787 }
788
789 static int fs_init_phy(struct net_device *dev)
790 {
791         struct fs_enet_private *fep = netdev_priv(dev);
792         struct phy_device *phydev;
793
794         fep->oldlink = 0;
795         fep->oldspeed = 0;
796         fep->oldduplex = -1;
797
798         phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
799                                 PHY_INTERFACE_MODE_MII);
800         if (!phydev) {
801                 phydev = of_phy_connect_fixed_link(dev, &fs_adjust_link,
802                                                    PHY_INTERFACE_MODE_MII);
803         }
804         if (!phydev) {
805                 dev_err(&dev->dev, "Could not attach to PHY\n");
806                 return -ENODEV;
807         }
808
809         fep->phydev = phydev;
810
811         return 0;
812 }
813
814 static int fs_enet_open(struct net_device *dev)
815 {
816         struct fs_enet_private *fep = netdev_priv(dev);
817         int r;
818         int err;
819
820         /* to initialize the fep->cur_rx,... */
821         /* not doing this, will cause a crash in fs_enet_rx_napi */
822         fs_init_bds(fep->ndev);
823
824         if (fep->fpi->use_napi)
825                 napi_enable(&fep->napi);
826
827         /* Install our interrupt handler. */
828         r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
829                         "fs_enet-mac", dev);
830         if (r != 0) {
831                 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
832                 if (fep->fpi->use_napi)
833                         napi_disable(&fep->napi);
834                 return -EINVAL;
835         }
836
837         err = fs_init_phy(dev);
838         if (err) {
839                 free_irq(fep->interrupt, dev);
840                 if (fep->fpi->use_napi)
841                         napi_disable(&fep->napi);
842                 return err;
843         }
844         phy_start(fep->phydev);
845
846         netif_start_queue(dev);
847
848         return 0;
849 }
850
851 static int fs_enet_close(struct net_device *dev)
852 {
853         struct fs_enet_private *fep = netdev_priv(dev);
854         unsigned long flags;
855
856         netif_stop_queue(dev);
857         netif_carrier_off(dev);
858         if (fep->fpi->use_napi)
859                 napi_disable(&fep->napi);
860         phy_stop(fep->phydev);
861
862         spin_lock_irqsave(&fep->lock, flags);
863         spin_lock(&fep->tx_lock);
864         (*fep->ops->stop)(dev);
865         spin_unlock(&fep->tx_lock);
866         spin_unlock_irqrestore(&fep->lock, flags);
867
868         /* release any irqs */
869         phy_disconnect(fep->phydev);
870         fep->phydev = NULL;
871         free_irq(fep->interrupt, dev);
872
873         return 0;
874 }
875
876 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
877 {
878         struct fs_enet_private *fep = netdev_priv(dev);
879         return &fep->stats;
880 }
881
882 /*************************************************************************/
883
884 static void fs_get_drvinfo(struct net_device *dev,
885                             struct ethtool_drvinfo *info)
886 {
887         strcpy(info->driver, DRV_MODULE_NAME);
888         strcpy(info->version, DRV_MODULE_VERSION);
889 }
890
891 static int fs_get_regs_len(struct net_device *dev)
892 {
893         struct fs_enet_private *fep = netdev_priv(dev);
894
895         return (*fep->ops->get_regs_len)(dev);
896 }
897
898 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
899                          void *p)
900 {
901         struct fs_enet_private *fep = netdev_priv(dev);
902         unsigned long flags;
903         int r, len;
904
905         len = regs->len;
906
907         spin_lock_irqsave(&fep->lock, flags);
908         r = (*fep->ops->get_regs)(dev, p, &len);
909         spin_unlock_irqrestore(&fep->lock, flags);
910
911         if (r == 0)
912                 regs->version = 0;
913 }
914
915 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
916 {
917         struct fs_enet_private *fep = netdev_priv(dev);
918
919         if (!fep->phydev)
920                 return -ENODEV;
921
922         return phy_ethtool_gset(fep->phydev, cmd);
923 }
924
925 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
926 {
927         struct fs_enet_private *fep = netdev_priv(dev);
928
929         if (!fep->phydev)
930                 return -ENODEV;
931
932         return phy_ethtool_sset(fep->phydev, cmd);
933 }
934
935 static int fs_nway_reset(struct net_device *dev)
936 {
937         return 0;
938 }
939
940 static u32 fs_get_msglevel(struct net_device *dev)
941 {
942         struct fs_enet_private *fep = netdev_priv(dev);
943         return fep->msg_enable;
944 }
945
946 static void fs_set_msglevel(struct net_device *dev, u32 value)
947 {
948         struct fs_enet_private *fep = netdev_priv(dev);
949         fep->msg_enable = value;
950 }
951
952 static const struct ethtool_ops fs_ethtool_ops = {
953         .get_drvinfo = fs_get_drvinfo,
954         .get_regs_len = fs_get_regs_len,
955         .get_settings = fs_get_settings,
956         .set_settings = fs_set_settings,
957         .nway_reset = fs_nway_reset,
958         .get_link = ethtool_op_get_link,
959         .get_msglevel = fs_get_msglevel,
960         .set_msglevel = fs_set_msglevel,
961         .get_regs = fs_get_regs,
962 };
963
964 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
965 {
966         struct fs_enet_private *fep = netdev_priv(dev);
967
968         if (!netif_running(dev))
969                 return -EINVAL;
970
971         return phy_mii_ioctl(fep->phydev, rq, cmd);
972 }
973
974 extern int fs_mii_connect(struct net_device *dev);
975 extern void fs_mii_disconnect(struct net_device *dev);
976
977 /**************************************************************************************/
978
979 #ifdef CONFIG_FS_ENET_HAS_FEC
980 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
981 #else
982 #define IS_FEC(match) 0
983 #endif
984
985 static const struct net_device_ops fs_enet_netdev_ops = {
986         .ndo_open               = fs_enet_open,
987         .ndo_stop               = fs_enet_close,
988         .ndo_get_stats          = fs_enet_get_stats,
989         .ndo_start_xmit         = fs_enet_start_xmit,
990         .ndo_tx_timeout         = fs_timeout,
991         .ndo_set_multicast_list = fs_set_multicast_list,
992         .ndo_do_ioctl           = fs_ioctl,
993         .ndo_validate_addr      = eth_validate_addr,
994         .ndo_set_mac_address    = eth_mac_addr,
995         .ndo_change_mtu         = eth_change_mtu,
996 #ifdef CONFIG_NET_POLL_CONTROLLER
997         .ndo_poll_controller    = fs_enet_netpoll,
998 #endif
999 };
1000
1001 static struct of_device_id fs_enet_match[];
1002 static int __devinit fs_enet_probe(struct platform_device *ofdev)
1003 {
1004         const struct of_device_id *match;
1005         struct net_device *ndev;
1006         struct fs_enet_private *fep;
1007         struct fs_platform_info *fpi;
1008         const u32 *data;
1009         const u8 *mac_addr;
1010         int privsize, len, ret = -ENODEV;
1011
1012         match = of_match_device(fs_enet_match, &ofdev->dev);
1013         if (!match)
1014                 return -EINVAL;
1015
1016         fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
1017         if (!fpi)
1018                 return -ENOMEM;
1019
1020         if (!IS_FEC(match)) {
1021                 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
1022                 if (!data || len != 4)
1023                         goto out_free_fpi;
1024
1025                 fpi->cp_command = *data;
1026         }
1027
1028         fpi->rx_ring = 32;
1029         fpi->tx_ring = 32;
1030         fpi->rx_copybreak = 240;
1031         fpi->use_napi = 1;
1032         fpi->napi_weight = 17;
1033         fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
1034         if ((!fpi->phy_node) && (!of_get_property(ofdev->dev.of_node, "fixed-link",
1035                                                   NULL)))
1036                 goto out_free_fpi;
1037
1038         privsize = sizeof(*fep) +
1039                    sizeof(struct sk_buff **) *
1040                    (fpi->rx_ring + fpi->tx_ring);
1041
1042         ndev = alloc_etherdev(privsize);
1043         if (!ndev) {
1044                 ret = -ENOMEM;
1045                 goto out_put;
1046         }
1047
1048         SET_NETDEV_DEV(ndev, &ofdev->dev);
1049         dev_set_drvdata(&ofdev->dev, ndev);
1050
1051         fep = netdev_priv(ndev);
1052         fep->dev = &ofdev->dev;
1053         fep->ndev = ndev;
1054         fep->fpi = fpi;
1055         fep->ops = match->data;
1056
1057         ret = fep->ops->setup_data(ndev);
1058         if (ret)
1059                 goto out_free_dev;
1060
1061         fep->rx_skbuff = (struct sk_buff **)&fep[1];
1062         fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1063
1064         spin_lock_init(&fep->lock);
1065         spin_lock_init(&fep->tx_lock);
1066
1067         mac_addr = of_get_mac_address(ofdev->dev.of_node);
1068         if (mac_addr)
1069                 memcpy(ndev->dev_addr, mac_addr, 6);
1070
1071         ret = fep->ops->allocate_bd(ndev);
1072         if (ret)
1073                 goto out_cleanup_data;
1074
1075         fep->rx_bd_base = fep->ring_base;
1076         fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1077
1078         fep->tx_ring = fpi->tx_ring;
1079         fep->rx_ring = fpi->rx_ring;
1080
1081         ndev->netdev_ops = &fs_enet_netdev_ops;
1082         ndev->watchdog_timeo = 2 * HZ;
1083         if (fpi->use_napi)
1084                 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
1085                                fpi->napi_weight);
1086
1087         ndev->ethtool_ops = &fs_ethtool_ops;
1088
1089         init_timer(&fep->phy_timer_list);
1090
1091         netif_carrier_off(ndev);
1092
1093         ret = register_netdev(ndev);
1094         if (ret)
1095                 goto out_free_bd;
1096
1097         pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1098
1099         return 0;
1100
1101 out_free_bd:
1102         fep->ops->free_bd(ndev);
1103 out_cleanup_data:
1104         fep->ops->cleanup_data(ndev);
1105 out_free_dev:
1106         free_netdev(ndev);
1107         dev_set_drvdata(&ofdev->dev, NULL);
1108 out_put:
1109         of_node_put(fpi->phy_node);
1110 out_free_fpi:
1111         kfree(fpi);
1112         return ret;
1113 }
1114
1115 static int fs_enet_remove(struct platform_device *ofdev)
1116 {
1117         struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
1118         struct fs_enet_private *fep = netdev_priv(ndev);
1119
1120         unregister_netdev(ndev);
1121
1122         fep->ops->free_bd(ndev);
1123         fep->ops->cleanup_data(ndev);
1124         dev_set_drvdata(fep->dev, NULL);
1125         of_node_put(fep->fpi->phy_node);
1126         free_netdev(ndev);
1127         return 0;
1128 }
1129
1130 static struct of_device_id fs_enet_match[] = {
1131 #ifdef CONFIG_FS_ENET_HAS_SCC
1132         {
1133                 .compatible = "fsl,cpm1-scc-enet",
1134                 .data = (void *)&fs_scc_ops,
1135         },
1136         {
1137                 .compatible = "fsl,cpm2-scc-enet",
1138                 .data = (void *)&fs_scc_ops,
1139         },
1140 #endif
1141 #ifdef CONFIG_FS_ENET_HAS_FCC
1142         {
1143                 .compatible = "fsl,cpm2-fcc-enet",
1144                 .data = (void *)&fs_fcc_ops,
1145         },
1146 #endif
1147 #ifdef CONFIG_FS_ENET_HAS_FEC
1148 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1149         {
1150                 .compatible = "fsl,mpc5121-fec",
1151                 .data = (void *)&fs_fec_ops,
1152         },
1153 #else
1154         {
1155                 .compatible = "fsl,pq1-fec-enet",
1156                 .data = (void *)&fs_fec_ops,
1157         },
1158 #endif
1159 #endif
1160         {}
1161 };
1162 MODULE_DEVICE_TABLE(of, fs_enet_match);
1163
1164 static struct platform_driver fs_enet_driver = {
1165         .driver = {
1166                 .owner = THIS_MODULE,
1167                 .name = "fs_enet",
1168                 .of_match_table = fs_enet_match,
1169         },
1170         .probe = fs_enet_probe,
1171         .remove = fs_enet_remove,
1172 };
1173
1174 static int __init fs_init(void)
1175 {
1176         return platform_driver_register(&fs_enet_driver);
1177 }
1178
1179 static void __exit fs_cleanup(void)
1180 {
1181         platform_driver_unregister(&fs_enet_driver);
1182 }
1183
1184 #ifdef CONFIG_NET_POLL_CONTROLLER
1185 static void fs_enet_netpoll(struct net_device *dev)
1186 {
1187        disable_irq(dev->irq);
1188        fs_enet_interrupt(dev->irq, dev);
1189        enable_irq(dev->irq);
1190 }
1191 #endif
1192
1193 /**************************************************************************************/
1194
1195 module_init(fs_init);
1196 module_exit(fs_cleanup);