[PATCH] bcm43xx: fix netdev watchdog timeouts
[pandora-kernel.git] / drivers / net / forcedeth.c
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  *      engineered documentation written by Carl-Daniel Hailfinger
6  *      and Andrew de Quincey. It's neither supported nor endorsed
7  *      by NVIDIA Corp. Use at your own risk.
8  *
9  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10  * trademarks of NVIDIA Corporation in the United States and other
11  * countries.
12  *
13  * Copyright (C) 2003,4,5 Manfred Spraul
14  * Copyright (C) 2004 Andrew de Quincey (wol support)
15  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16  *              IRQ rate fixes, bigendian fixes, cleanups, verification)
17  * Copyright (c) 2004 NVIDIA Corporation
18  *
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License as published by
21  * the Free Software Foundation; either version 2 of the License, or
22  * (at your option) any later version.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  *
33  * Changelog:
34  *      0.01: 05 Oct 2003: First release that compiles without warnings.
35  *      0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36  *                         Check all PCI BARs for the register window.
37  *                         udelay added to mii_rw.
38  *      0.03: 06 Oct 2003: Initialize dev->irq.
39  *      0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40  *      0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41  *      0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42  *                         irq mask updated
43  *      0.07: 14 Oct 2003: Further irq mask updates.
44  *      0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45  *                         added into irq handler, NULL check for drain_ring.
46  *      0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47  *                         requested interrupt sources.
48  *      0.10: 20 Oct 2003: First cleanup for release.
49  *      0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50  *                         MAC Address init fix, set_multicast cleanup.
51  *      0.12: 23 Oct 2003: Cleanups for release.
52  *      0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53  *                         Set link speed correctly. start rx before starting
54  *                         tx (nv_start_rx sets the link speed).
55  *      0.14: 25 Oct 2003: Nic dependant irq mask.
56  *      0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57  *                         open.
58  *      0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59  *                         increased to 1628 bytes.
60  *      0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61  *                         the tx length.
62  *      0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63  *      0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64  *                         addresses, really stop rx if already running
65  *                         in nv_start_rx, clean up a bit.
66  *      0.20: 07 Dec 2003: alloc fixes
67  *      0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68  *      0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69  *                         on close.
70  *      0.23: 26 Jan 2004: various small cleanups
71  *      0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72  *      0.25: 09 Mar 2004: wol support
73  *      0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74  *      0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75  *                         added CK804/MCP04 device IDs, code fixes
76  *                         for registers, link status and other minor fixes.
77  *      0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78  *      0.29: 31 Aug 2004: Add backup timer for link change notification.
79  *      0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80  *                         into nv_close, otherwise reenabling for wol can
81  *                         cause DMA to kfree'd memory.
82  *      0.31: 14 Nov 2004: ethtool support for getting/setting link
83  *                         capabilities.
84  *      0.32: 16 Apr 2005: RX_ERROR4 handling added.
85  *      0.33: 16 May 2005: Support for MCP51 added.
86  *      0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87  *      0.35: 26 Jun 2005: Support for MCP55 added.
88  *      0.36: 28 Jun 2005: Add jumbo frame support.
89  *      0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90  *      0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91  *                         per-packet flags.
92  *      0.39: 18 Jul 2005: Add 64bit descriptor support.
93  *      0.40: 19 Jul 2005: Add support for mac address change.
94  *      0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95  *                         of nv_remove
96  *      0.42: 06 Aug 2005: Fix lack of link speed initialization
97  *                         in the second (and later) nv_open call
98  *      0.43: 10 Aug 2005: Add support for tx checksum.
99  *      0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100  *      0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101  *      0.46: 20 Oct 2005: Add irq optimization modes.
102  *      0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
103  *      0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
104  *      0.49: 10 Dec 2005: Fix tso for large buffers.
105  *      0.50: 20 Jan 2006: Add 8021pq tagging support.
106  *      0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
107  *      0.52: 20 Jan 2006: Add MSI/MSIX support.
108  *      0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
109  *      0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
110  *      0.55: 22 Mar 2006: Add flow control (pause frame).
111  *      0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
112  *      0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
113  *
114  * Known bugs:
115  * We suspect that on some hardware no TX done interrupts are generated.
116  * This means recovery from netif_stop_queue only happens if the hw timer
117  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
118  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
119  * If your hardware reliably generates tx done interrupts, then you can remove
120  * DEV_NEED_TIMERIRQ from the driver_data flags.
121  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
122  * superfluous timer interrupts from the nic.
123  */
124 #ifdef CONFIG_FORCEDETH_NAPI
125 #define DRIVERNAPI "-NAPI"
126 #else
127 #define DRIVERNAPI
128 #endif
129 #define FORCEDETH_VERSION               "0.57"
130 #define DRV_NAME                        "forcedeth"
131
132 #include <linux/module.h>
133 #include <linux/types.h>
134 #include <linux/pci.h>
135 #include <linux/interrupt.h>
136 #include <linux/netdevice.h>
137 #include <linux/etherdevice.h>
138 #include <linux/delay.h>
139 #include <linux/spinlock.h>
140 #include <linux/ethtool.h>
141 #include <linux/timer.h>
142 #include <linux/skbuff.h>
143 #include <linux/mii.h>
144 #include <linux/random.h>
145 #include <linux/init.h>
146 #include <linux/if_vlan.h>
147 #include <linux/dma-mapping.h>
148
149 #include <asm/irq.h>
150 #include <asm/io.h>
151 #include <asm/uaccess.h>
152 #include <asm/system.h>
153
154 #if 0
155 #define dprintk                 printk
156 #else
157 #define dprintk(x...)           do { } while (0)
158 #endif
159
160
161 /*
162  * Hardware access:
163  */
164
165 #define DEV_NEED_TIMERIRQ       0x0001  /* set the timer irq flag in the irq mask */
166 #define DEV_NEED_LINKTIMER      0x0002  /* poll link settings. Relies on the timer irq */
167 #define DEV_HAS_LARGEDESC       0x0004  /* device supports jumbo frames and needs packet format 2 */
168 #define DEV_HAS_HIGH_DMA        0x0008  /* device supports 64bit dma */
169 #define DEV_HAS_CHECKSUM        0x0010  /* device supports tx and rx checksum offloads */
170 #define DEV_HAS_VLAN            0x0020  /* device supports vlan tagging and striping */
171 #define DEV_HAS_MSI             0x0040  /* device supports MSI */
172 #define DEV_HAS_MSI_X           0x0080  /* device supports MSI-X */
173 #define DEV_HAS_POWER_CNTRL     0x0100  /* device supports power savings */
174 #define DEV_HAS_PAUSEFRAME_TX   0x0200  /* device supports tx pause frames */
175 #define DEV_HAS_STATISTICS      0x0400  /* device supports hw statistics */
176 #define DEV_HAS_TEST_EXTENDED   0x0800  /* device supports extended diagnostic test */
177
178 enum {
179         NvRegIrqStatus = 0x000,
180 #define NVREG_IRQSTAT_MIIEVENT  0x040
181 #define NVREG_IRQSTAT_MASK              0x1ff
182         NvRegIrqMask = 0x004,
183 #define NVREG_IRQ_RX_ERROR              0x0001
184 #define NVREG_IRQ_RX                    0x0002
185 #define NVREG_IRQ_RX_NOBUF              0x0004
186 #define NVREG_IRQ_TX_ERR                0x0008
187 #define NVREG_IRQ_TX_OK                 0x0010
188 #define NVREG_IRQ_TIMER                 0x0020
189 #define NVREG_IRQ_LINK                  0x0040
190 #define NVREG_IRQ_RX_FORCED             0x0080
191 #define NVREG_IRQ_TX_FORCED             0x0100
192 #define NVREG_IRQMASK_THROUGHPUT        0x00df
193 #define NVREG_IRQMASK_CPU               0x0040
194 #define NVREG_IRQ_TX_ALL                (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
195 #define NVREG_IRQ_RX_ALL                (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
196 #define NVREG_IRQ_OTHER                 (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
197
198 #define NVREG_IRQ_UNKNOWN       (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
199                                         NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
200                                         NVREG_IRQ_TX_FORCED))
201
202         NvRegUnknownSetupReg6 = 0x008,
203 #define NVREG_UNKSETUP6_VAL             3
204
205 /*
206  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
207  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
208  */
209         NvRegPollingInterval = 0x00c,
210 #define NVREG_POLL_DEFAULT_THROUGHPUT   970
211 #define NVREG_POLL_DEFAULT_CPU  13
212         NvRegMSIMap0 = 0x020,
213         NvRegMSIMap1 = 0x024,
214         NvRegMSIIrqMask = 0x030,
215 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
216         NvRegMisc1 = 0x080,
217 #define NVREG_MISC1_PAUSE_TX    0x01
218 #define NVREG_MISC1_HD          0x02
219 #define NVREG_MISC1_FORCE       0x3b0f3c
220
221         NvRegMacReset = 0x3c,
222 #define NVREG_MAC_RESET_ASSERT  0x0F3
223         NvRegTransmitterControl = 0x084,
224 #define NVREG_XMITCTL_START     0x01
225         NvRegTransmitterStatus = 0x088,
226 #define NVREG_XMITSTAT_BUSY     0x01
227
228         NvRegPacketFilterFlags = 0x8c,
229 #define NVREG_PFF_PAUSE_RX      0x08
230 #define NVREG_PFF_ALWAYS        0x7F0000
231 #define NVREG_PFF_PROMISC       0x80
232 #define NVREG_PFF_MYADDR        0x20
233 #define NVREG_PFF_LOOPBACK      0x10
234
235         NvRegOffloadConfig = 0x90,
236 #define NVREG_OFFLOAD_HOMEPHY   0x601
237 #define NVREG_OFFLOAD_NORMAL    RX_NIC_BUFSIZE
238         NvRegReceiverControl = 0x094,
239 #define NVREG_RCVCTL_START      0x01
240         NvRegReceiverStatus = 0x98,
241 #define NVREG_RCVSTAT_BUSY      0x01
242
243         NvRegRandomSeed = 0x9c,
244 #define NVREG_RNDSEED_MASK      0x00ff
245 #define NVREG_RNDSEED_FORCE     0x7f00
246 #define NVREG_RNDSEED_FORCE2    0x2d00
247 #define NVREG_RNDSEED_FORCE3    0x7400
248
249         NvRegTxDeferral = 0xA0,
250 #define NVREG_TX_DEFERRAL_DEFAULT       0x15050f
251 #define NVREG_TX_DEFERRAL_RGMII_10_100  0x16070f
252 #define NVREG_TX_DEFERRAL_RGMII_1000    0x14050f
253         NvRegRxDeferral = 0xA4,
254 #define NVREG_RX_DEFERRAL_DEFAULT       0x16
255         NvRegMacAddrA = 0xA8,
256         NvRegMacAddrB = 0xAC,
257         NvRegMulticastAddrA = 0xB0,
258 #define NVREG_MCASTADDRA_FORCE  0x01
259         NvRegMulticastAddrB = 0xB4,
260         NvRegMulticastMaskA = 0xB8,
261         NvRegMulticastMaskB = 0xBC,
262
263         NvRegPhyInterface = 0xC0,
264 #define PHY_RGMII               0x10000000
265
266         NvRegTxRingPhysAddr = 0x100,
267         NvRegRxRingPhysAddr = 0x104,
268         NvRegRingSizes = 0x108,
269 #define NVREG_RINGSZ_TXSHIFT 0
270 #define NVREG_RINGSZ_RXSHIFT 16
271         NvRegTransmitPoll = 0x10c,
272 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
273         NvRegLinkSpeed = 0x110,
274 #define NVREG_LINKSPEED_FORCE 0x10000
275 #define NVREG_LINKSPEED_10      1000
276 #define NVREG_LINKSPEED_100     100
277 #define NVREG_LINKSPEED_1000    50
278 #define NVREG_LINKSPEED_MASK    (0xFFF)
279         NvRegUnknownSetupReg5 = 0x130,
280 #define NVREG_UNKSETUP5_BIT31   (1<<31)
281         NvRegTxWatermark = 0x13c,
282 #define NVREG_TX_WM_DESC1_DEFAULT       0x0200010
283 #define NVREG_TX_WM_DESC2_3_DEFAULT     0x1e08000
284 #define NVREG_TX_WM_DESC2_3_1000        0xfe08000
285         NvRegTxRxControl = 0x144,
286 #define NVREG_TXRXCTL_KICK      0x0001
287 #define NVREG_TXRXCTL_BIT1      0x0002
288 #define NVREG_TXRXCTL_BIT2      0x0004
289 #define NVREG_TXRXCTL_IDLE      0x0008
290 #define NVREG_TXRXCTL_RESET     0x0010
291 #define NVREG_TXRXCTL_RXCHECK   0x0400
292 #define NVREG_TXRXCTL_DESC_1    0
293 #define NVREG_TXRXCTL_DESC_2    0x02100
294 #define NVREG_TXRXCTL_DESC_3    0x02200
295 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
296 #define NVREG_TXRXCTL_VLANINS   0x00080
297         NvRegTxRingPhysAddrHigh = 0x148,
298         NvRegRxRingPhysAddrHigh = 0x14C,
299         NvRegTxPauseFrame = 0x170,
300 #define NVREG_TX_PAUSEFRAME_DISABLE     0x1ff0080
301 #define NVREG_TX_PAUSEFRAME_ENABLE      0x0c00030
302         NvRegMIIStatus = 0x180,
303 #define NVREG_MIISTAT_ERROR             0x0001
304 #define NVREG_MIISTAT_LINKCHANGE        0x0008
305 #define NVREG_MIISTAT_MASK              0x000f
306 #define NVREG_MIISTAT_MASK2             0x000f
307         NvRegUnknownSetupReg4 = 0x184,
308 #define NVREG_UNKSETUP4_VAL     8
309
310         NvRegAdapterControl = 0x188,
311 #define NVREG_ADAPTCTL_START    0x02
312 #define NVREG_ADAPTCTL_LINKUP   0x04
313 #define NVREG_ADAPTCTL_PHYVALID 0x40000
314 #define NVREG_ADAPTCTL_RUNNING  0x100000
315 #define NVREG_ADAPTCTL_PHYSHIFT 24
316         NvRegMIISpeed = 0x18c,
317 #define NVREG_MIISPEED_BIT8     (1<<8)
318 #define NVREG_MIIDELAY  5
319         NvRegMIIControl = 0x190,
320 #define NVREG_MIICTL_INUSE      0x08000
321 #define NVREG_MIICTL_WRITE      0x00400
322 #define NVREG_MIICTL_ADDRSHIFT  5
323         NvRegMIIData = 0x194,
324         NvRegWakeUpFlags = 0x200,
325 #define NVREG_WAKEUPFLAGS_VAL           0x7770
326 #define NVREG_WAKEUPFLAGS_BUSYSHIFT     24
327 #define NVREG_WAKEUPFLAGS_ENABLESHIFT   16
328 #define NVREG_WAKEUPFLAGS_D3SHIFT       12
329 #define NVREG_WAKEUPFLAGS_D2SHIFT       8
330 #define NVREG_WAKEUPFLAGS_D1SHIFT       4
331 #define NVREG_WAKEUPFLAGS_D0SHIFT       0
332 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT         0x01
333 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT      0x02
334 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE     0x04
335 #define NVREG_WAKEUPFLAGS_ENABLE        0x1111
336
337         NvRegPatternCRC = 0x204,
338         NvRegPatternMask = 0x208,
339         NvRegPowerCap = 0x268,
340 #define NVREG_POWERCAP_D3SUPP   (1<<30)
341 #define NVREG_POWERCAP_D2SUPP   (1<<26)
342 #define NVREG_POWERCAP_D1SUPP   (1<<25)
343         NvRegPowerState = 0x26c,
344 #define NVREG_POWERSTATE_POWEREDUP      0x8000
345 #define NVREG_POWERSTATE_VALID          0x0100
346 #define NVREG_POWERSTATE_MASK           0x0003
347 #define NVREG_POWERSTATE_D0             0x0000
348 #define NVREG_POWERSTATE_D1             0x0001
349 #define NVREG_POWERSTATE_D2             0x0002
350 #define NVREG_POWERSTATE_D3             0x0003
351         NvRegTxCnt = 0x280,
352         NvRegTxZeroReXmt = 0x284,
353         NvRegTxOneReXmt = 0x288,
354         NvRegTxManyReXmt = 0x28c,
355         NvRegTxLateCol = 0x290,
356         NvRegTxUnderflow = 0x294,
357         NvRegTxLossCarrier = 0x298,
358         NvRegTxExcessDef = 0x29c,
359         NvRegTxRetryErr = 0x2a0,
360         NvRegRxFrameErr = 0x2a4,
361         NvRegRxExtraByte = 0x2a8,
362         NvRegRxLateCol = 0x2ac,
363         NvRegRxRunt = 0x2b0,
364         NvRegRxFrameTooLong = 0x2b4,
365         NvRegRxOverflow = 0x2b8,
366         NvRegRxFCSErr = 0x2bc,
367         NvRegRxFrameAlignErr = 0x2c0,
368         NvRegRxLenErr = 0x2c4,
369         NvRegRxUnicast = 0x2c8,
370         NvRegRxMulticast = 0x2cc,
371         NvRegRxBroadcast = 0x2d0,
372         NvRegTxDef = 0x2d4,
373         NvRegTxFrame = 0x2d8,
374         NvRegRxCnt = 0x2dc,
375         NvRegTxPause = 0x2e0,
376         NvRegRxPause = 0x2e4,
377         NvRegRxDropFrame = 0x2e8,
378         NvRegVlanControl = 0x300,
379 #define NVREG_VLANCONTROL_ENABLE        0x2000
380         NvRegMSIXMap0 = 0x3e0,
381         NvRegMSIXMap1 = 0x3e4,
382         NvRegMSIXIrqStatus = 0x3f0,
383
384         NvRegPowerState2 = 0x600,
385 #define NVREG_POWERSTATE2_POWERUP_MASK          0x0F11
386 #define NVREG_POWERSTATE2_POWERUP_REV_A3        0x0001
387 };
388
389 /* Big endian: should work, but is untested */
390 struct ring_desc {
391         __le32 buf;
392         __le32 flaglen;
393 };
394
395 struct ring_desc_ex {
396         __le32 bufhigh;
397         __le32 buflow;
398         __le32 txvlan;
399         __le32 flaglen;
400 };
401
402 union ring_type {
403         struct ring_desc* orig;
404         struct ring_desc_ex* ex;
405 };
406
407 #define FLAG_MASK_V1 0xffff0000
408 #define FLAG_MASK_V2 0xffffc000
409 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
410 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
411
412 #define NV_TX_LASTPACKET        (1<<16)
413 #define NV_TX_RETRYERROR        (1<<19)
414 #define NV_TX_FORCED_INTERRUPT  (1<<24)
415 #define NV_TX_DEFERRED          (1<<26)
416 #define NV_TX_CARRIERLOST       (1<<27)
417 #define NV_TX_LATECOLLISION     (1<<28)
418 #define NV_TX_UNDERFLOW         (1<<29)
419 #define NV_TX_ERROR             (1<<30)
420 #define NV_TX_VALID             (1<<31)
421
422 #define NV_TX2_LASTPACKET       (1<<29)
423 #define NV_TX2_RETRYERROR       (1<<18)
424 #define NV_TX2_FORCED_INTERRUPT (1<<30)
425 #define NV_TX2_DEFERRED         (1<<25)
426 #define NV_TX2_CARRIERLOST      (1<<26)
427 #define NV_TX2_LATECOLLISION    (1<<27)
428 #define NV_TX2_UNDERFLOW        (1<<28)
429 /* error and valid are the same for both */
430 #define NV_TX2_ERROR            (1<<30)
431 #define NV_TX2_VALID            (1<<31)
432 #define NV_TX2_TSO              (1<<28)
433 #define NV_TX2_TSO_SHIFT        14
434 #define NV_TX2_TSO_MAX_SHIFT    14
435 #define NV_TX2_TSO_MAX_SIZE     (1<<NV_TX2_TSO_MAX_SHIFT)
436 #define NV_TX2_CHECKSUM_L3      (1<<27)
437 #define NV_TX2_CHECKSUM_L4      (1<<26)
438
439 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
440
441 #define NV_RX_DESCRIPTORVALID   (1<<16)
442 #define NV_RX_MISSEDFRAME       (1<<17)
443 #define NV_RX_SUBSTRACT1        (1<<18)
444 #define NV_RX_ERROR1            (1<<23)
445 #define NV_RX_ERROR2            (1<<24)
446 #define NV_RX_ERROR3            (1<<25)
447 #define NV_RX_ERROR4            (1<<26)
448 #define NV_RX_CRCERR            (1<<27)
449 #define NV_RX_OVERFLOW          (1<<28)
450 #define NV_RX_FRAMINGERR        (1<<29)
451 #define NV_RX_ERROR             (1<<30)
452 #define NV_RX_AVAIL             (1<<31)
453
454 #define NV_RX2_CHECKSUMMASK     (0x1C000000)
455 #define NV_RX2_CHECKSUMOK1      (0x10000000)
456 #define NV_RX2_CHECKSUMOK2      (0x14000000)
457 #define NV_RX2_CHECKSUMOK3      (0x18000000)
458 #define NV_RX2_DESCRIPTORVALID  (1<<29)
459 #define NV_RX2_SUBSTRACT1       (1<<25)
460 #define NV_RX2_ERROR1           (1<<18)
461 #define NV_RX2_ERROR2           (1<<19)
462 #define NV_RX2_ERROR3           (1<<20)
463 #define NV_RX2_ERROR4           (1<<21)
464 #define NV_RX2_CRCERR           (1<<22)
465 #define NV_RX2_OVERFLOW         (1<<23)
466 #define NV_RX2_FRAMINGERR       (1<<24)
467 /* error and avail are the same for both */
468 #define NV_RX2_ERROR            (1<<30)
469 #define NV_RX2_AVAIL            (1<<31)
470
471 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
472 #define NV_RX3_VLAN_TAG_MASK    (0x0000FFFF)
473
474 /* Miscelaneous hardware related defines: */
475 #define NV_PCI_REGSZ_VER1       0x270
476 #define NV_PCI_REGSZ_VER2       0x604
477
478 /* various timeout delays: all in usec */
479 #define NV_TXRX_RESET_DELAY     4
480 #define NV_TXSTOP_DELAY1        10
481 #define NV_TXSTOP_DELAY1MAX     500000
482 #define NV_TXSTOP_DELAY2        100
483 #define NV_RXSTOP_DELAY1        10
484 #define NV_RXSTOP_DELAY1MAX     500000
485 #define NV_RXSTOP_DELAY2        100
486 #define NV_SETUP5_DELAY         5
487 #define NV_SETUP5_DELAYMAX      50000
488 #define NV_POWERUP_DELAY        5
489 #define NV_POWERUP_DELAYMAX     5000
490 #define NV_MIIBUSY_DELAY        50
491 #define NV_MIIPHY_DELAY 10
492 #define NV_MIIPHY_DELAYMAX      10000
493 #define NV_MAC_RESET_DELAY      64
494
495 #define NV_WAKEUPPATTERNS       5
496 #define NV_WAKEUPMASKENTRIES    4
497
498 /* General driver defaults */
499 #define NV_WATCHDOG_TIMEO       (5*HZ)
500
501 #define RX_RING_DEFAULT         128
502 #define TX_RING_DEFAULT         256
503 #define RX_RING_MIN             128
504 #define TX_RING_MIN             64
505 #define RING_MAX_DESC_VER_1     1024
506 #define RING_MAX_DESC_VER_2_3   16384
507 /*
508  * Difference between the get and put pointers for the tx ring.
509  * This is used to throttle the amount of data outstanding in the
510  * tx ring.
511  */
512 #define TX_LIMIT_DIFFERENCE     1
513
514 /* rx/tx mac addr + type + vlan + align + slack*/
515 #define NV_RX_HEADERS           (64)
516 /* even more slack. */
517 #define NV_RX_ALLOC_PAD         (64)
518
519 /* maximum mtu size */
520 #define NV_PKTLIMIT_1   ETH_DATA_LEN    /* hard limit not known */
521 #define NV_PKTLIMIT_2   9100    /* Actual limit according to NVidia: 9202 */
522
523 #define OOM_REFILL      (1+HZ/20)
524 #define POLL_WAIT       (1+HZ/100)
525 #define LINK_TIMEOUT    (3*HZ)
526 #define STATS_INTERVAL  (10*HZ)
527
528 /*
529  * desc_ver values:
530  * The nic supports three different descriptor types:
531  * - DESC_VER_1: Original
532  * - DESC_VER_2: support for jumbo frames.
533  * - DESC_VER_3: 64-bit format.
534  */
535 #define DESC_VER_1      1
536 #define DESC_VER_2      2
537 #define DESC_VER_3      3
538
539 /* PHY defines */
540 #define PHY_OUI_MARVELL 0x5043
541 #define PHY_OUI_CICADA  0x03f1
542 #define PHYID1_OUI_MASK 0x03ff
543 #define PHYID1_OUI_SHFT 6
544 #define PHYID2_OUI_MASK 0xfc00
545 #define PHYID2_OUI_SHFT 10
546 #define PHYID2_MODEL_MASK               0x03f0
547 #define PHY_MODEL_MARVELL_E3016         0x220
548 #define PHY_MARVELL_E3016_INITMASK      0x0300
549 #define PHY_INIT1       0x0f000
550 #define PHY_INIT2       0x0e00
551 #define PHY_INIT3       0x01000
552 #define PHY_INIT4       0x0200
553 #define PHY_INIT5       0x0004
554 #define PHY_INIT6       0x02000
555 #define PHY_GIGABIT     0x0100
556
557 #define PHY_TIMEOUT     0x1
558 #define PHY_ERROR       0x2
559
560 #define PHY_100 0x1
561 #define PHY_1000        0x2
562 #define PHY_HALF        0x100
563
564 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
565 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
566 #define NV_PAUSEFRAME_RX_ENABLE  0x0004
567 #define NV_PAUSEFRAME_TX_ENABLE  0x0008
568 #define NV_PAUSEFRAME_RX_REQ     0x0010
569 #define NV_PAUSEFRAME_TX_REQ     0x0020
570 #define NV_PAUSEFRAME_AUTONEG    0x0040
571
572 /* MSI/MSI-X defines */
573 #define NV_MSI_X_MAX_VECTORS  8
574 #define NV_MSI_X_VECTORS_MASK 0x000f
575 #define NV_MSI_CAPABLE        0x0010
576 #define NV_MSI_X_CAPABLE      0x0020
577 #define NV_MSI_ENABLED        0x0040
578 #define NV_MSI_X_ENABLED      0x0080
579
580 #define NV_MSI_X_VECTOR_ALL   0x0
581 #define NV_MSI_X_VECTOR_RX    0x0
582 #define NV_MSI_X_VECTOR_TX    0x1
583 #define NV_MSI_X_VECTOR_OTHER 0x2
584
585 /* statistics */
586 struct nv_ethtool_str {
587         char name[ETH_GSTRING_LEN];
588 };
589
590 static const struct nv_ethtool_str nv_estats_str[] = {
591         { "tx_bytes" },
592         { "tx_zero_rexmt" },
593         { "tx_one_rexmt" },
594         { "tx_many_rexmt" },
595         { "tx_late_collision" },
596         { "tx_fifo_errors" },
597         { "tx_carrier_errors" },
598         { "tx_excess_deferral" },
599         { "tx_retry_error" },
600         { "tx_deferral" },
601         { "tx_packets" },
602         { "tx_pause" },
603         { "rx_frame_error" },
604         { "rx_extra_byte" },
605         { "rx_late_collision" },
606         { "rx_runt" },
607         { "rx_frame_too_long" },
608         { "rx_over_errors" },
609         { "rx_crc_errors" },
610         { "rx_frame_align_error" },
611         { "rx_length_error" },
612         { "rx_unicast" },
613         { "rx_multicast" },
614         { "rx_broadcast" },
615         { "rx_bytes" },
616         { "rx_pause" },
617         { "rx_drop_frame" },
618         { "rx_packets" },
619         { "rx_errors_total" }
620 };
621
622 struct nv_ethtool_stats {
623         u64 tx_bytes;
624         u64 tx_zero_rexmt;
625         u64 tx_one_rexmt;
626         u64 tx_many_rexmt;
627         u64 tx_late_collision;
628         u64 tx_fifo_errors;
629         u64 tx_carrier_errors;
630         u64 tx_excess_deferral;
631         u64 tx_retry_error;
632         u64 tx_deferral;
633         u64 tx_packets;
634         u64 tx_pause;
635         u64 rx_frame_error;
636         u64 rx_extra_byte;
637         u64 rx_late_collision;
638         u64 rx_runt;
639         u64 rx_frame_too_long;
640         u64 rx_over_errors;
641         u64 rx_crc_errors;
642         u64 rx_frame_align_error;
643         u64 rx_length_error;
644         u64 rx_unicast;
645         u64 rx_multicast;
646         u64 rx_broadcast;
647         u64 rx_bytes;
648         u64 rx_pause;
649         u64 rx_drop_frame;
650         u64 rx_packets;
651         u64 rx_errors_total;
652 };
653
654 /* diagnostics */
655 #define NV_TEST_COUNT_BASE 3
656 #define NV_TEST_COUNT_EXTENDED 4
657
658 static const struct nv_ethtool_str nv_etests_str[] = {
659         { "link      (online/offline)" },
660         { "register  (offline)       " },
661         { "interrupt (offline)       " },
662         { "loopback  (offline)       " }
663 };
664
665 struct register_test {
666         __le32 reg;
667         __le32 mask;
668 };
669
670 static const struct register_test nv_registers_test[] = {
671         { NvRegUnknownSetupReg6, 0x01 },
672         { NvRegMisc1, 0x03c },
673         { NvRegOffloadConfig, 0x03ff },
674         { NvRegMulticastAddrA, 0xffffffff },
675         { NvRegTxWatermark, 0x0ff },
676         { NvRegWakeUpFlags, 0x07777 },
677         { 0,0 }
678 };
679
680 /*
681  * SMP locking:
682  * All hardware access under dev->priv->lock, except the performance
683  * critical parts:
684  * - rx is (pseudo-) lockless: it relies on the single-threading provided
685  *      by the arch code for interrupts.
686  * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
687  *      needs dev->priv->lock :-(
688  * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
689  */
690
691 /* in dev: base, irq */
692 struct fe_priv {
693         spinlock_t lock;
694
695         /* General data:
696          * Locking: spin_lock(&np->lock); */
697         struct net_device_stats stats;
698         struct nv_ethtool_stats estats;
699         int in_shutdown;
700         u32 linkspeed;
701         int duplex;
702         int autoneg;
703         int fixed_mode;
704         int phyaddr;
705         int wolenabled;
706         unsigned int phy_oui;
707         unsigned int phy_model;
708         u16 gigabit;
709         int intr_test;
710
711         /* General data: RO fields */
712         dma_addr_t ring_addr;
713         struct pci_dev *pci_dev;
714         u32 orig_mac[2];
715         u32 irqmask;
716         u32 desc_ver;
717         u32 txrxctl_bits;
718         u32 vlanctl_bits;
719         u32 driver_data;
720         u32 register_size;
721         int rx_csum;
722
723         void __iomem *base;
724
725         /* rx specific fields.
726          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
727          */
728         union ring_type rx_ring;
729         unsigned int cur_rx, refill_rx;
730         struct sk_buff **rx_skbuff;
731         dma_addr_t *rx_dma;
732         unsigned int rx_buf_sz;
733         unsigned int pkt_limit;
734         struct timer_list oom_kick;
735         struct timer_list nic_poll;
736         struct timer_list stats_poll;
737         u32 nic_poll_irq;
738         int rx_ring_size;
739
740         /* media detection workaround.
741          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
742          */
743         int need_linktimer;
744         unsigned long link_timeout;
745         /*
746          * tx specific fields.
747          */
748         union ring_type tx_ring;
749         unsigned int next_tx, nic_tx;
750         struct sk_buff **tx_skbuff;
751         dma_addr_t *tx_dma;
752         unsigned int *tx_dma_len;
753         u32 tx_flags;
754         int tx_ring_size;
755         int tx_limit_start;
756         int tx_limit_stop;
757
758         /* vlan fields */
759         struct vlan_group *vlangrp;
760
761         /* msi/msi-x fields */
762         u32 msi_flags;
763         struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
764
765         /* flow control */
766         u32 pause_flags;
767 };
768
769 /*
770  * Maximum number of loops until we assume that a bit in the irq mask
771  * is stuck. Overridable with module param.
772  */
773 static int max_interrupt_work = 5;
774
775 /*
776  * Optimization can be either throuput mode or cpu mode
777  *
778  * Throughput Mode: Every tx and rx packet will generate an interrupt.
779  * CPU Mode: Interrupts are controlled by a timer.
780  */
781 enum {
782         NV_OPTIMIZATION_MODE_THROUGHPUT,
783         NV_OPTIMIZATION_MODE_CPU
784 };
785 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
786
787 /*
788  * Poll interval for timer irq
789  *
790  * This interval determines how frequent an interrupt is generated.
791  * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
792  * Min = 0, and Max = 65535
793  */
794 static int poll_interval = -1;
795
796 /*
797  * MSI interrupts
798  */
799 enum {
800         NV_MSI_INT_DISABLED,
801         NV_MSI_INT_ENABLED
802 };
803 static int msi = NV_MSI_INT_ENABLED;
804
805 /*
806  * MSIX interrupts
807  */
808 enum {
809         NV_MSIX_INT_DISABLED,
810         NV_MSIX_INT_ENABLED
811 };
812 static int msix = NV_MSIX_INT_ENABLED;
813
814 /*
815  * DMA 64bit
816  */
817 enum {
818         NV_DMA_64BIT_DISABLED,
819         NV_DMA_64BIT_ENABLED
820 };
821 static int dma_64bit = NV_DMA_64BIT_ENABLED;
822
823 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
824 {
825         return netdev_priv(dev);
826 }
827
828 static inline u8 __iomem *get_hwbase(struct net_device *dev)
829 {
830         return ((struct fe_priv *)netdev_priv(dev))->base;
831 }
832
833 static inline void pci_push(u8 __iomem *base)
834 {
835         /* force out pending posted writes */
836         readl(base);
837 }
838
839 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
840 {
841         return le32_to_cpu(prd->flaglen)
842                 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
843 }
844
845 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
846 {
847         return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
848 }
849
850 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
851                                 int delay, int delaymax, const char *msg)
852 {
853         u8 __iomem *base = get_hwbase(dev);
854
855         pci_push(base);
856         do {
857                 udelay(delay);
858                 delaymax -= delay;
859                 if (delaymax < 0) {
860                         if (msg)
861                                 printk(msg);
862                         return 1;
863                 }
864         } while ((readl(base + offset) & mask) != target);
865         return 0;
866 }
867
868 #define NV_SETUP_RX_RING 0x01
869 #define NV_SETUP_TX_RING 0x02
870
871 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
872 {
873         struct fe_priv *np = get_nvpriv(dev);
874         u8 __iomem *base = get_hwbase(dev);
875
876         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
877                 if (rxtx_flags & NV_SETUP_RX_RING) {
878                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
879                 }
880                 if (rxtx_flags & NV_SETUP_TX_RING) {
881                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
882                 }
883         } else {
884                 if (rxtx_flags & NV_SETUP_RX_RING) {
885                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
886                         writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
887                 }
888                 if (rxtx_flags & NV_SETUP_TX_RING) {
889                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
890                         writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
891                 }
892         }
893 }
894
895 static void free_rings(struct net_device *dev)
896 {
897         struct fe_priv *np = get_nvpriv(dev);
898
899         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
900                 if (np->rx_ring.orig)
901                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
902                                             np->rx_ring.orig, np->ring_addr);
903         } else {
904                 if (np->rx_ring.ex)
905                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
906                                             np->rx_ring.ex, np->ring_addr);
907         }
908         if (np->rx_skbuff)
909                 kfree(np->rx_skbuff);
910         if (np->rx_dma)
911                 kfree(np->rx_dma);
912         if (np->tx_skbuff)
913                 kfree(np->tx_skbuff);
914         if (np->tx_dma)
915                 kfree(np->tx_dma);
916         if (np->tx_dma_len)
917                 kfree(np->tx_dma_len);
918 }
919
920 static int using_multi_irqs(struct net_device *dev)
921 {
922         struct fe_priv *np = get_nvpriv(dev);
923
924         if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
925             ((np->msi_flags & NV_MSI_X_ENABLED) &&
926              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
927                 return 0;
928         else
929                 return 1;
930 }
931
932 static void nv_enable_irq(struct net_device *dev)
933 {
934         struct fe_priv *np = get_nvpriv(dev);
935
936         if (!using_multi_irqs(dev)) {
937                 if (np->msi_flags & NV_MSI_X_ENABLED)
938                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
939                 else
940                         enable_irq(dev->irq);
941         } else {
942                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
943                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
944                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
945         }
946 }
947
948 static void nv_disable_irq(struct net_device *dev)
949 {
950         struct fe_priv *np = get_nvpriv(dev);
951
952         if (!using_multi_irqs(dev)) {
953                 if (np->msi_flags & NV_MSI_X_ENABLED)
954                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
955                 else
956                         disable_irq(dev->irq);
957         } else {
958                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
959                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
960                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
961         }
962 }
963
964 /* In MSIX mode, a write to irqmask behaves as XOR */
965 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
966 {
967         u8 __iomem *base = get_hwbase(dev);
968
969         writel(mask, base + NvRegIrqMask);
970 }
971
972 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
973 {
974         struct fe_priv *np = get_nvpriv(dev);
975         u8 __iomem *base = get_hwbase(dev);
976
977         if (np->msi_flags & NV_MSI_X_ENABLED) {
978                 writel(mask, base + NvRegIrqMask);
979         } else {
980                 if (np->msi_flags & NV_MSI_ENABLED)
981                         writel(0, base + NvRegMSIIrqMask);
982                 writel(0, base + NvRegIrqMask);
983         }
984 }
985
986 #define MII_READ        (-1)
987 /* mii_rw: read/write a register on the PHY.
988  *
989  * Caller must guarantee serialization
990  */
991 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
992 {
993         u8 __iomem *base = get_hwbase(dev);
994         u32 reg;
995         int retval;
996
997         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
998
999         reg = readl(base + NvRegMIIControl);
1000         if (reg & NVREG_MIICTL_INUSE) {
1001                 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1002                 udelay(NV_MIIBUSY_DELAY);
1003         }
1004
1005         reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1006         if (value != MII_READ) {
1007                 writel(value, base + NvRegMIIData);
1008                 reg |= NVREG_MIICTL_WRITE;
1009         }
1010         writel(reg, base + NvRegMIIControl);
1011
1012         if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1013                         NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1014                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1015                                 dev->name, miireg, addr);
1016                 retval = -1;
1017         } else if (value != MII_READ) {
1018                 /* it was a write operation - fewer failures are detectable */
1019                 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1020                                 dev->name, value, miireg, addr);
1021                 retval = 0;
1022         } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1023                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1024                                 dev->name, miireg, addr);
1025                 retval = -1;
1026         } else {
1027                 retval = readl(base + NvRegMIIData);
1028                 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1029                                 dev->name, miireg, addr, retval);
1030         }
1031
1032         return retval;
1033 }
1034
1035 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1036 {
1037         struct fe_priv *np = netdev_priv(dev);
1038         u32 miicontrol;
1039         unsigned int tries = 0;
1040
1041         miicontrol = BMCR_RESET | bmcr_setup;
1042         if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1043                 return -1;
1044         }
1045
1046         /* wait for 500ms */
1047         msleep(500);
1048
1049         /* must wait till reset is deasserted */
1050         while (miicontrol & BMCR_RESET) {
1051                 msleep(10);
1052                 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1053                 /* FIXME: 100 tries seem excessive */
1054                 if (tries++ > 100)
1055                         return -1;
1056         }
1057         return 0;
1058 }
1059
1060 static int phy_init(struct net_device *dev)
1061 {
1062         struct fe_priv *np = get_nvpriv(dev);
1063         u8 __iomem *base = get_hwbase(dev);
1064         u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1065
1066         /* phy errata for E3016 phy */
1067         if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1068                 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1069                 reg &= ~PHY_MARVELL_E3016_INITMASK;
1070                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1071                         printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
1072                         return PHY_ERROR;
1073                 }
1074         }
1075
1076         /* set advertise register */
1077         reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1078         reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1079         if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1080                 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1081                 return PHY_ERROR;
1082         }
1083
1084         /* get phy interface type */
1085         phyinterface = readl(base + NvRegPhyInterface);
1086
1087         /* see if gigabit phy */
1088         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1089         if (mii_status & PHY_GIGABIT) {
1090                 np->gigabit = PHY_GIGABIT;
1091                 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1092                 mii_control_1000 &= ~ADVERTISE_1000HALF;
1093                 if (phyinterface & PHY_RGMII)
1094                         mii_control_1000 |= ADVERTISE_1000FULL;
1095                 else
1096                         mii_control_1000 &= ~ADVERTISE_1000FULL;
1097
1098                 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1099                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1100                         return PHY_ERROR;
1101                 }
1102         }
1103         else
1104                 np->gigabit = 0;
1105
1106         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1107         mii_control |= BMCR_ANENABLE;
1108
1109         /* reset the phy
1110          * (certain phys need bmcr to be setup with reset)
1111          */
1112         if (phy_reset(dev, mii_control)) {
1113                 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1114                 return PHY_ERROR;
1115         }
1116
1117         /* phy vendor specific configuration */
1118         if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1119                 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1120                 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
1121                 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
1122                 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1123                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1124                         return PHY_ERROR;
1125                 }
1126                 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1127                 phy_reserved |= PHY_INIT5;
1128                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1129                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1130                         return PHY_ERROR;
1131                 }
1132         }
1133         if (np->phy_oui == PHY_OUI_CICADA) {
1134                 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1135                 phy_reserved |= PHY_INIT6;
1136                 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1137                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1138                         return PHY_ERROR;
1139                 }
1140         }
1141         /* some phys clear out pause advertisment on reset, set it back */
1142         mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1143
1144         /* restart auto negotiation */
1145         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1146         mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1147         if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1148                 return PHY_ERROR;
1149         }
1150
1151         return 0;
1152 }
1153
1154 static void nv_start_rx(struct net_device *dev)
1155 {
1156         struct fe_priv *np = netdev_priv(dev);
1157         u8 __iomem *base = get_hwbase(dev);
1158
1159         dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1160         /* Already running? Stop it. */
1161         if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
1162                 writel(0, base + NvRegReceiverControl);
1163                 pci_push(base);
1164         }
1165         writel(np->linkspeed, base + NvRegLinkSpeed);
1166         pci_push(base);
1167         writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
1168         dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1169                                 dev->name, np->duplex, np->linkspeed);
1170         pci_push(base);
1171 }
1172
1173 static void nv_stop_rx(struct net_device *dev)
1174 {
1175         u8 __iomem *base = get_hwbase(dev);
1176
1177         dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1178         writel(0, base + NvRegReceiverControl);
1179         reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1180                         NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1181                         KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1182
1183         udelay(NV_RXSTOP_DELAY2);
1184         writel(0, base + NvRegLinkSpeed);
1185 }
1186
1187 static void nv_start_tx(struct net_device *dev)
1188 {
1189         u8 __iomem *base = get_hwbase(dev);
1190
1191         dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1192         writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
1193         pci_push(base);
1194 }
1195
1196 static void nv_stop_tx(struct net_device *dev)
1197 {
1198         u8 __iomem *base = get_hwbase(dev);
1199
1200         dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1201         writel(0, base + NvRegTransmitterControl);
1202         reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1203                         NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1204                         KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1205
1206         udelay(NV_TXSTOP_DELAY2);
1207         writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
1208 }
1209
1210 static void nv_txrx_reset(struct net_device *dev)
1211 {
1212         struct fe_priv *np = netdev_priv(dev);
1213         u8 __iomem *base = get_hwbase(dev);
1214
1215         dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1216         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1217         pci_push(base);
1218         udelay(NV_TXRX_RESET_DELAY);
1219         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1220         pci_push(base);
1221 }
1222
1223 static void nv_mac_reset(struct net_device *dev)
1224 {
1225         struct fe_priv *np = netdev_priv(dev);
1226         u8 __iomem *base = get_hwbase(dev);
1227
1228         dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1229         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1230         pci_push(base);
1231         writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1232         pci_push(base);
1233         udelay(NV_MAC_RESET_DELAY);
1234         writel(0, base + NvRegMacReset);
1235         pci_push(base);
1236         udelay(NV_MAC_RESET_DELAY);
1237         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1238         pci_push(base);
1239 }
1240
1241 /*
1242  * nv_get_stats: dev->get_stats function
1243  * Get latest stats value from the nic.
1244  * Called with read_lock(&dev_base_lock) held for read -
1245  * only synchronized against unregister_netdevice.
1246  */
1247 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1248 {
1249         struct fe_priv *np = netdev_priv(dev);
1250
1251         /* It seems that the nic always generates interrupts and doesn't
1252          * accumulate errors internally. Thus the current values in np->stats
1253          * are already up to date.
1254          */
1255         return &np->stats;
1256 }
1257
1258 /*
1259  * nv_alloc_rx: fill rx ring entries.
1260  * Return 1 if the allocations for the skbs failed and the
1261  * rx engine is without Available descriptors
1262  */
1263 static int nv_alloc_rx(struct net_device *dev)
1264 {
1265         struct fe_priv *np = netdev_priv(dev);
1266         unsigned int refill_rx = np->refill_rx;
1267         int nr;
1268
1269         while (np->cur_rx != refill_rx) {
1270                 struct sk_buff *skb;
1271
1272                 nr = refill_rx % np->rx_ring_size;
1273                 if (np->rx_skbuff[nr] == NULL) {
1274
1275                         skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1276                         if (!skb)
1277                                 break;
1278
1279                         skb->dev = dev;
1280                         np->rx_skbuff[nr] = skb;
1281                 } else {
1282                         skb = np->rx_skbuff[nr];
1283                 }
1284                 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
1285                                         skb->end-skb->data, PCI_DMA_FROMDEVICE);
1286                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1287                         np->rx_ring.orig[nr].buf = cpu_to_le32(np->rx_dma[nr]);
1288                         wmb();
1289                         np->rx_ring.orig[nr].flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1290                 } else {
1291                         np->rx_ring.ex[nr].bufhigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
1292                         np->rx_ring.ex[nr].buflow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
1293                         wmb();
1294                         np->rx_ring.ex[nr].flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1295                 }
1296                 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
1297                                         dev->name, refill_rx);
1298                 refill_rx++;
1299         }
1300         np->refill_rx = refill_rx;
1301         if (np->cur_rx - refill_rx == np->rx_ring_size)
1302                 return 1;
1303         return 0;
1304 }
1305
1306 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1307 #ifdef CONFIG_FORCEDETH_NAPI
1308 static void nv_do_rx_refill(unsigned long data)
1309 {
1310         struct net_device *dev = (struct net_device *) data;
1311
1312         /* Just reschedule NAPI rx processing */
1313         netif_rx_schedule(dev);
1314 }
1315 #else
1316 static void nv_do_rx_refill(unsigned long data)
1317 {
1318         struct net_device *dev = (struct net_device *) data;
1319         struct fe_priv *np = netdev_priv(dev);
1320
1321         if (!using_multi_irqs(dev)) {
1322                 if (np->msi_flags & NV_MSI_X_ENABLED)
1323                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1324                 else
1325                         disable_irq(dev->irq);
1326         } else {
1327                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1328         }
1329         if (nv_alloc_rx(dev)) {
1330                 spin_lock_irq(&np->lock);
1331                 if (!np->in_shutdown)
1332                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1333                 spin_unlock_irq(&np->lock);
1334         }
1335         if (!using_multi_irqs(dev)) {
1336                 if (np->msi_flags & NV_MSI_X_ENABLED)
1337                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1338                 else
1339                         enable_irq(dev->irq);
1340         } else {
1341                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1342         }
1343 }
1344 #endif
1345
1346 static void nv_init_rx(struct net_device *dev)
1347 {
1348         struct fe_priv *np = netdev_priv(dev);
1349         int i;
1350
1351         np->cur_rx = np->rx_ring_size;
1352         np->refill_rx = 0;
1353         for (i = 0; i < np->rx_ring_size; i++)
1354                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1355                         np->rx_ring.orig[i].flaglen = 0;
1356                 else
1357                         np->rx_ring.ex[i].flaglen = 0;
1358 }
1359
1360 static void nv_init_tx(struct net_device *dev)
1361 {
1362         struct fe_priv *np = netdev_priv(dev);
1363         int i;
1364
1365         np->next_tx = np->nic_tx = 0;
1366         for (i = 0; i < np->tx_ring_size; i++) {
1367                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1368                         np->tx_ring.orig[i].flaglen = 0;
1369                 else
1370                         np->tx_ring.ex[i].flaglen = 0;
1371                 np->tx_skbuff[i] = NULL;
1372                 np->tx_dma[i] = 0;
1373         }
1374 }
1375
1376 static int nv_init_ring(struct net_device *dev)
1377 {
1378         nv_init_tx(dev);
1379         nv_init_rx(dev);
1380         return nv_alloc_rx(dev);
1381 }
1382
1383 static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
1384 {
1385         struct fe_priv *np = netdev_priv(dev);
1386
1387         dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
1388                 dev->name, skbnr);
1389
1390         if (np->tx_dma[skbnr]) {
1391                 pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
1392                                np->tx_dma_len[skbnr],
1393                                PCI_DMA_TODEVICE);
1394                 np->tx_dma[skbnr] = 0;
1395         }
1396
1397         if (np->tx_skbuff[skbnr]) {
1398                 dev_kfree_skb_any(np->tx_skbuff[skbnr]);
1399                 np->tx_skbuff[skbnr] = NULL;
1400                 return 1;
1401         } else {
1402                 return 0;
1403         }
1404 }
1405
1406 static void nv_drain_tx(struct net_device *dev)
1407 {
1408         struct fe_priv *np = netdev_priv(dev);
1409         unsigned int i;
1410
1411         for (i = 0; i < np->tx_ring_size; i++) {
1412                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1413                         np->tx_ring.orig[i].flaglen = 0;
1414                 else
1415                         np->tx_ring.ex[i].flaglen = 0;
1416                 if (nv_release_txskb(dev, i))
1417                         np->stats.tx_dropped++;
1418         }
1419 }
1420
1421 static void nv_drain_rx(struct net_device *dev)
1422 {
1423         struct fe_priv *np = netdev_priv(dev);
1424         int i;
1425         for (i = 0; i < np->rx_ring_size; i++) {
1426                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1427                         np->rx_ring.orig[i].flaglen = 0;
1428                 else
1429                         np->rx_ring.ex[i].flaglen = 0;
1430                 wmb();
1431                 if (np->rx_skbuff[i]) {
1432                         pci_unmap_single(np->pci_dev, np->rx_dma[i],
1433                                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1434                                                 PCI_DMA_FROMDEVICE);
1435                         dev_kfree_skb(np->rx_skbuff[i]);
1436                         np->rx_skbuff[i] = NULL;
1437                 }
1438         }
1439 }
1440
1441 static void drain_ring(struct net_device *dev)
1442 {
1443         nv_drain_tx(dev);
1444         nv_drain_rx(dev);
1445 }
1446
1447 /*
1448  * nv_start_xmit: dev->hard_start_xmit function
1449  * Called with netif_tx_lock held.
1450  */
1451 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1452 {
1453         struct fe_priv *np = netdev_priv(dev);
1454         u32 tx_flags = 0;
1455         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1456         unsigned int fragments = skb_shinfo(skb)->nr_frags;
1457         unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
1458         unsigned int start_nr = np->next_tx % np->tx_ring_size;
1459         unsigned int i;
1460         u32 offset = 0;
1461         u32 bcnt;
1462         u32 size = skb->len-skb->data_len;
1463         u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1464         u32 tx_flags_vlan = 0;
1465
1466         /* add fragments to entries count */
1467         for (i = 0; i < fragments; i++) {
1468                 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1469                            ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1470         }
1471
1472         spin_lock_irq(&np->lock);
1473
1474         if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
1475                 spin_unlock_irq(&np->lock);
1476                 netif_stop_queue(dev);
1477                 return NETDEV_TX_BUSY;
1478         }
1479
1480         /* setup the header buffer */
1481         do {
1482                 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1483                 nr = (nr + 1) % np->tx_ring_size;
1484
1485                 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1486                                                 PCI_DMA_TODEVICE);
1487                 np->tx_dma_len[nr] = bcnt;
1488
1489                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1490                         np->tx_ring.orig[nr].buf = cpu_to_le32(np->tx_dma[nr]);
1491                         np->tx_ring.orig[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1492                 } else {
1493                         np->tx_ring.ex[nr].bufhigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1494                         np->tx_ring.ex[nr].buflow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1495                         np->tx_ring.ex[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1496                 }
1497                 tx_flags = np->tx_flags;
1498                 offset += bcnt;
1499                 size -= bcnt;
1500         } while (size);
1501
1502         /* setup the fragments */
1503         for (i = 0; i < fragments; i++) {
1504                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1505                 u32 size = frag->size;
1506                 offset = 0;
1507
1508                 do {
1509                         bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1510                         nr = (nr + 1) % np->tx_ring_size;
1511
1512                         np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1513                                                       PCI_DMA_TODEVICE);
1514                         np->tx_dma_len[nr] = bcnt;
1515
1516                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1517                                 np->tx_ring.orig[nr].buf = cpu_to_le32(np->tx_dma[nr]);
1518                                 np->tx_ring.orig[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1519                         } else {
1520                                 np->tx_ring.ex[nr].bufhigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1521                                 np->tx_ring.ex[nr].buflow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1522                                 np->tx_ring.ex[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1523                         }
1524                         offset += bcnt;
1525                         size -= bcnt;
1526                 } while (size);
1527         }
1528
1529         /* set last fragment flag  */
1530         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1531                 np->tx_ring.orig[nr].flaglen |= cpu_to_le32(tx_flags_extra);
1532         } else {
1533                 np->tx_ring.ex[nr].flaglen |= cpu_to_le32(tx_flags_extra);
1534         }
1535
1536         np->tx_skbuff[nr] = skb;
1537
1538 #ifdef NETIF_F_TSO
1539         if (skb_is_gso(skb))
1540                 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1541         else
1542 #endif
1543         tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
1544                          NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
1545
1546         /* vlan tag */
1547         if (np->vlangrp && vlan_tx_tag_present(skb)) {
1548                 tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
1549         }
1550
1551         /* set tx flags */
1552         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1553                 np->tx_ring.orig[start_nr].flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1554         } else {
1555                 np->tx_ring.ex[start_nr].txvlan = cpu_to_le32(tx_flags_vlan);
1556                 np->tx_ring.ex[start_nr].flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1557         }
1558
1559         dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
1560                 dev->name, np->next_tx, entries, tx_flags_extra);
1561         {
1562                 int j;
1563                 for (j=0; j<64; j++) {
1564                         if ((j%16) == 0)
1565                                 dprintk("\n%03x:", j);
1566                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1567                 }
1568                 dprintk("\n");
1569         }
1570
1571         np->next_tx += entries;
1572
1573         dev->trans_start = jiffies;
1574         spin_unlock_irq(&np->lock);
1575         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1576         pci_push(get_hwbase(dev));
1577         return NETDEV_TX_OK;
1578 }
1579
1580 /*
1581  * nv_tx_done: check for completed packets, release the skbs.
1582  *
1583  * Caller must own np->lock.
1584  */
1585 static void nv_tx_done(struct net_device *dev)
1586 {
1587         struct fe_priv *np = netdev_priv(dev);
1588         u32 flags;
1589         unsigned int i;
1590         struct sk_buff *skb;
1591
1592         while (np->nic_tx != np->next_tx) {
1593                 i = np->nic_tx % np->tx_ring_size;
1594
1595                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1596                         flags = le32_to_cpu(np->tx_ring.orig[i].flaglen);
1597                 else
1598                         flags = le32_to_cpu(np->tx_ring.ex[i].flaglen);
1599
1600                 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, flags 0x%x.\n",
1601                                         dev->name, np->nic_tx, flags);
1602                 if (flags & NV_TX_VALID)
1603                         break;
1604                 if (np->desc_ver == DESC_VER_1) {
1605                         if (flags & NV_TX_LASTPACKET) {
1606                                 skb = np->tx_skbuff[i];
1607                                 if (flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1608                                              NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1609                                         if (flags & NV_TX_UNDERFLOW)
1610                                                 np->stats.tx_fifo_errors++;
1611                                         if (flags & NV_TX_CARRIERLOST)
1612                                                 np->stats.tx_carrier_errors++;
1613                                         np->stats.tx_errors++;
1614                                 } else {
1615                                         np->stats.tx_packets++;
1616                                         np->stats.tx_bytes += skb->len;
1617                                 }
1618                         }
1619                 } else {
1620                         if (flags & NV_TX2_LASTPACKET) {
1621                                 skb = np->tx_skbuff[i];
1622                                 if (flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1623                                              NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1624                                         if (flags & NV_TX2_UNDERFLOW)
1625                                                 np->stats.tx_fifo_errors++;
1626                                         if (flags & NV_TX2_CARRIERLOST)
1627                                                 np->stats.tx_carrier_errors++;
1628                                         np->stats.tx_errors++;
1629                                 } else {
1630                                         np->stats.tx_packets++;
1631                                         np->stats.tx_bytes += skb->len;
1632                                 }
1633                         }
1634                 }
1635                 nv_release_txskb(dev, i);
1636                 np->nic_tx++;
1637         }
1638         if (np->next_tx - np->nic_tx < np->tx_limit_start)
1639                 netif_wake_queue(dev);
1640 }
1641
1642 /*
1643  * nv_tx_timeout: dev->tx_timeout function
1644  * Called with netif_tx_lock held.
1645  */
1646 static void nv_tx_timeout(struct net_device *dev)
1647 {
1648         struct fe_priv *np = netdev_priv(dev);
1649         u8 __iomem *base = get_hwbase(dev);
1650         u32 status;
1651
1652         if (np->msi_flags & NV_MSI_X_ENABLED)
1653                 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
1654         else
1655                 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1656
1657         printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
1658
1659         {
1660                 int i;
1661
1662                 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1663                                 dev->name, (unsigned long)np->ring_addr,
1664                                 np->next_tx, np->nic_tx);
1665                 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1666                 for (i=0;i<=np->register_size;i+= 32) {
1667                         printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1668                                         i,
1669                                         readl(base + i + 0), readl(base + i + 4),
1670                                         readl(base + i + 8), readl(base + i + 12),
1671                                         readl(base + i + 16), readl(base + i + 20),
1672                                         readl(base + i + 24), readl(base + i + 28));
1673                 }
1674                 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1675                 for (i=0;i<np->tx_ring_size;i+= 4) {
1676                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1677                                 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1678                                        i,
1679                                        le32_to_cpu(np->tx_ring.orig[i].buf),
1680                                        le32_to_cpu(np->tx_ring.orig[i].flaglen),
1681                                        le32_to_cpu(np->tx_ring.orig[i+1].buf),
1682                                        le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
1683                                        le32_to_cpu(np->tx_ring.orig[i+2].buf),
1684                                        le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
1685                                        le32_to_cpu(np->tx_ring.orig[i+3].buf),
1686                                        le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
1687                         } else {
1688                                 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1689                                        i,
1690                                        le32_to_cpu(np->tx_ring.ex[i].bufhigh),
1691                                        le32_to_cpu(np->tx_ring.ex[i].buflow),
1692                                        le32_to_cpu(np->tx_ring.ex[i].flaglen),
1693                                        le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
1694                                        le32_to_cpu(np->tx_ring.ex[i+1].buflow),
1695                                        le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
1696                                        le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
1697                                        le32_to_cpu(np->tx_ring.ex[i+2].buflow),
1698                                        le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
1699                                        le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
1700                                        le32_to_cpu(np->tx_ring.ex[i+3].buflow),
1701                                        le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
1702                         }
1703                 }
1704         }
1705
1706         spin_lock_irq(&np->lock);
1707
1708         /* 1) stop tx engine */
1709         nv_stop_tx(dev);
1710
1711         /* 2) check that the packets were not sent already: */
1712         nv_tx_done(dev);
1713
1714         /* 3) if there are dead entries: clear everything */
1715         if (np->next_tx != np->nic_tx) {
1716                 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1717                 nv_drain_tx(dev);
1718                 np->next_tx = np->nic_tx = 0;
1719                 setup_hw_rings(dev, NV_SETUP_TX_RING);
1720                 netif_wake_queue(dev);
1721         }
1722
1723         /* 4) restart tx engine */
1724         nv_start_tx(dev);
1725         spin_unlock_irq(&np->lock);
1726 }
1727
1728 /*
1729  * Called when the nic notices a mismatch between the actual data len on the
1730  * wire and the len indicated in the 802 header
1731  */
1732 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1733 {
1734         int hdrlen;     /* length of the 802 header */
1735         int protolen;   /* length as stored in the proto field */
1736
1737         /* 1) calculate len according to header */
1738         if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
1739                 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1740                 hdrlen = VLAN_HLEN;
1741         } else {
1742                 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1743                 hdrlen = ETH_HLEN;
1744         }
1745         dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1746                                 dev->name, datalen, protolen, hdrlen);
1747         if (protolen > ETH_DATA_LEN)
1748                 return datalen; /* Value in proto field not a len, no checks possible */
1749
1750         protolen += hdrlen;
1751         /* consistency checks: */
1752         if (datalen > ETH_ZLEN) {
1753                 if (datalen >= protolen) {
1754                         /* more data on wire than in 802 header, trim of
1755                          * additional data.
1756                          */
1757                         dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1758                                         dev->name, protolen);
1759                         return protolen;
1760                 } else {
1761                         /* less data on wire than mentioned in header.
1762                          * Discard the packet.
1763                          */
1764                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1765                                         dev->name);
1766                         return -1;
1767                 }
1768         } else {
1769                 /* short packet. Accept only if 802 values are also short */
1770                 if (protolen > ETH_ZLEN) {
1771                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1772                                         dev->name);
1773                         return -1;
1774                 }
1775                 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1776                                 dev->name, datalen);
1777                 return datalen;
1778         }
1779 }
1780
1781 static int nv_rx_process(struct net_device *dev, int limit)
1782 {
1783         struct fe_priv *np = netdev_priv(dev);
1784         u32 flags;
1785         u32 vlanflags = 0;
1786         int count;
1787
1788         for (count = 0; count < limit; ++count) {
1789                 struct sk_buff *skb;
1790                 int len;
1791                 int i;
1792                 if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
1793                         break;  /* we scanned the whole ring - do not continue */
1794
1795                 i = np->cur_rx % np->rx_ring_size;
1796                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1797                         flags = le32_to_cpu(np->rx_ring.orig[i].flaglen);
1798                         len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1799                 } else {
1800                         flags = le32_to_cpu(np->rx_ring.ex[i].flaglen);
1801                         len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1802                         vlanflags = le32_to_cpu(np->rx_ring.ex[i].buflow);
1803                 }
1804
1805                 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, flags 0x%x.\n",
1806                                         dev->name, np->cur_rx, flags);
1807
1808                 if (flags & NV_RX_AVAIL)
1809                         break;  /* still owned by hardware, */
1810
1811                 /*
1812                  * the packet is for us - immediately tear down the pci mapping.
1813                  * TODO: check if a prefetch of the first cacheline improves
1814                  * the performance.
1815                  */
1816                 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1817                                 np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
1818                                 PCI_DMA_FROMDEVICE);
1819
1820                 {
1821                         int j;
1822                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
1823                         for (j=0; j<64; j++) {
1824                                 if ((j%16) == 0)
1825                                         dprintk("\n%03x:", j);
1826                                 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1827                         }
1828                         dprintk("\n");
1829                 }
1830                 /* look at what we actually got: */
1831                 if (np->desc_ver == DESC_VER_1) {
1832                         if (!(flags & NV_RX_DESCRIPTORVALID))
1833                                 goto next_pkt;
1834
1835                         if (flags & NV_RX_ERROR) {
1836                                 if (flags & NV_RX_MISSEDFRAME) {
1837                                         np->stats.rx_missed_errors++;
1838                                         np->stats.rx_errors++;
1839                                         goto next_pkt;
1840                                 }
1841                                 if (flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1842                                         np->stats.rx_errors++;
1843                                         goto next_pkt;
1844                                 }
1845                                 if (flags & NV_RX_CRCERR) {
1846                                         np->stats.rx_crc_errors++;
1847                                         np->stats.rx_errors++;
1848                                         goto next_pkt;
1849                                 }
1850                                 if (flags & NV_RX_OVERFLOW) {
1851                                         np->stats.rx_over_errors++;
1852                                         np->stats.rx_errors++;
1853                                         goto next_pkt;
1854                                 }
1855                                 if (flags & NV_RX_ERROR4) {
1856                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1857                                         if (len < 0) {
1858                                                 np->stats.rx_errors++;
1859                                                 goto next_pkt;
1860                                         }
1861                                 }
1862                                 /* framing errors are soft errors. */
1863                                 if (flags & NV_RX_FRAMINGERR) {
1864                                         if (flags & NV_RX_SUBSTRACT1) {
1865                                                 len--;
1866                                         }
1867                                 }
1868                         }
1869                 } else {
1870                         if (!(flags & NV_RX2_DESCRIPTORVALID))
1871                                 goto next_pkt;
1872
1873                         if (flags & NV_RX2_ERROR) {
1874                                 if (flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1875                                         np->stats.rx_errors++;
1876                                         goto next_pkt;
1877                                 }
1878                                 if (flags & NV_RX2_CRCERR) {
1879                                         np->stats.rx_crc_errors++;
1880                                         np->stats.rx_errors++;
1881                                         goto next_pkt;
1882                                 }
1883                                 if (flags & NV_RX2_OVERFLOW) {
1884                                         np->stats.rx_over_errors++;
1885                                         np->stats.rx_errors++;
1886                                         goto next_pkt;
1887                                 }
1888                                 if (flags & NV_RX2_ERROR4) {
1889                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1890                                         if (len < 0) {
1891                                                 np->stats.rx_errors++;
1892                                                 goto next_pkt;
1893                                         }
1894                                 }
1895                                 /* framing errors are soft errors */
1896                                 if (flags & NV_RX2_FRAMINGERR) {
1897                                         if (flags & NV_RX2_SUBSTRACT1) {
1898                                                 len--;
1899                                         }
1900                                 }
1901                         }
1902                         if (np->rx_csum) {
1903                                 flags &= NV_RX2_CHECKSUMMASK;
1904                                 if (flags == NV_RX2_CHECKSUMOK1 ||
1905                                     flags == NV_RX2_CHECKSUMOK2 ||
1906                                     flags == NV_RX2_CHECKSUMOK3) {
1907                                         dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1908                                         np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1909                                 } else {
1910                                         dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1911                                 }
1912                         }
1913                 }
1914                 /* got a valid packet - forward it to the network core */
1915                 skb = np->rx_skbuff[i];
1916                 np->rx_skbuff[i] = NULL;
1917
1918                 skb_put(skb, len);
1919                 skb->protocol = eth_type_trans(skb, dev);
1920                 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1921                                         dev->name, np->cur_rx, len, skb->protocol);
1922 #ifdef CONFIG_FORCEDETH_NAPI
1923                 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT))
1924                         vlan_hwaccel_receive_skb(skb, np->vlangrp,
1925                                                  vlanflags & NV_RX3_VLAN_TAG_MASK);
1926                 else
1927                         netif_receive_skb(skb);
1928 #else
1929                 if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT))
1930                         vlan_hwaccel_rx(skb, np->vlangrp,
1931                                         vlanflags & NV_RX3_VLAN_TAG_MASK);
1932                 else
1933                         netif_rx(skb);
1934 #endif
1935                 dev->last_rx = jiffies;
1936                 np->stats.rx_packets++;
1937                 np->stats.rx_bytes += len;
1938 next_pkt:
1939                 np->cur_rx++;
1940         }
1941
1942         return count;
1943 }
1944
1945 static void set_bufsize(struct net_device *dev)
1946 {
1947         struct fe_priv *np = netdev_priv(dev);
1948
1949         if (dev->mtu <= ETH_DATA_LEN)
1950                 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1951         else
1952                 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1953 }
1954
1955 /*
1956  * nv_change_mtu: dev->change_mtu function
1957  * Called with dev_base_lock held for read.
1958  */
1959 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1960 {
1961         struct fe_priv *np = netdev_priv(dev);
1962         int old_mtu;
1963
1964         if (new_mtu < 64 || new_mtu > np->pkt_limit)
1965                 return -EINVAL;
1966
1967         old_mtu = dev->mtu;
1968         dev->mtu = new_mtu;
1969
1970         /* return early if the buffer sizes will not change */
1971         if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1972                 return 0;
1973         if (old_mtu == new_mtu)
1974                 return 0;
1975
1976         /* synchronized against open : rtnl_lock() held by caller */
1977         if (netif_running(dev)) {
1978                 u8 __iomem *base = get_hwbase(dev);
1979                 /*
1980                  * It seems that the nic preloads valid ring entries into an
1981                  * internal buffer. The procedure for flushing everything is
1982                  * guessed, there is probably a simpler approach.
1983                  * Changing the MTU is a rare event, it shouldn't matter.
1984                  */
1985                 nv_disable_irq(dev);
1986                 netif_tx_lock_bh(dev);
1987                 spin_lock(&np->lock);
1988                 /* stop engines */
1989                 nv_stop_rx(dev);
1990                 nv_stop_tx(dev);
1991                 nv_txrx_reset(dev);
1992                 /* drain rx queue */
1993                 nv_drain_rx(dev);
1994                 nv_drain_tx(dev);
1995                 /* reinit driver view of the rx queue */
1996                 set_bufsize(dev);
1997                 if (nv_init_ring(dev)) {
1998                         if (!np->in_shutdown)
1999                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2000                 }
2001                 /* reinit nic view of the rx queue */
2002                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2003                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2004                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
2005                         base + NvRegRingSizes);
2006                 pci_push(base);
2007                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2008                 pci_push(base);
2009
2010                 /* restart rx engine */
2011                 nv_start_rx(dev);
2012                 nv_start_tx(dev);
2013                 spin_unlock(&np->lock);
2014                 netif_tx_unlock_bh(dev);
2015                 nv_enable_irq(dev);
2016         }
2017         return 0;
2018 }
2019
2020 static void nv_copy_mac_to_hw(struct net_device *dev)
2021 {
2022         u8 __iomem *base = get_hwbase(dev);
2023         u32 mac[2];
2024
2025         mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
2026                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
2027         mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
2028
2029         writel(mac[0], base + NvRegMacAddrA);
2030         writel(mac[1], base + NvRegMacAddrB);
2031 }
2032
2033 /*
2034  * nv_set_mac_address: dev->set_mac_address function
2035  * Called with rtnl_lock() held.
2036  */
2037 static int nv_set_mac_address(struct net_device *dev, void *addr)
2038 {
2039         struct fe_priv *np = netdev_priv(dev);
2040         struct sockaddr *macaddr = (struct sockaddr*)addr;
2041
2042         if (!is_valid_ether_addr(macaddr->sa_data))
2043                 return -EADDRNOTAVAIL;
2044
2045         /* synchronized against open : rtnl_lock() held by caller */
2046         memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
2047
2048         if (netif_running(dev)) {
2049                 netif_tx_lock_bh(dev);
2050                 spin_lock_irq(&np->lock);
2051
2052                 /* stop rx engine */
2053                 nv_stop_rx(dev);
2054
2055                 /* set mac address */
2056                 nv_copy_mac_to_hw(dev);
2057
2058                 /* restart rx engine */
2059                 nv_start_rx(dev);
2060                 spin_unlock_irq(&np->lock);
2061                 netif_tx_unlock_bh(dev);
2062         } else {
2063                 nv_copy_mac_to_hw(dev);
2064         }
2065         return 0;
2066 }
2067
2068 /*
2069  * nv_set_multicast: dev->set_multicast function
2070  * Called with netif_tx_lock held.
2071  */
2072 static void nv_set_multicast(struct net_device *dev)
2073 {
2074         struct fe_priv *np = netdev_priv(dev);
2075         u8 __iomem *base = get_hwbase(dev);
2076         u32 addr[2];
2077         u32 mask[2];
2078         u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
2079
2080         memset(addr, 0, sizeof(addr));
2081         memset(mask, 0, sizeof(mask));
2082
2083         if (dev->flags & IFF_PROMISC) {
2084                 pff |= NVREG_PFF_PROMISC;
2085         } else {
2086                 pff |= NVREG_PFF_MYADDR;
2087
2088                 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
2089                         u32 alwaysOff[2];
2090                         u32 alwaysOn[2];
2091
2092                         alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
2093                         if (dev->flags & IFF_ALLMULTI) {
2094                                 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
2095                         } else {
2096                                 struct dev_mc_list *walk;
2097
2098                                 walk = dev->mc_list;
2099                                 while (walk != NULL) {
2100                                         u32 a, b;
2101                                         a = le32_to_cpu(*(u32 *) walk->dmi_addr);
2102                                         b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
2103                                         alwaysOn[0] &= a;
2104                                         alwaysOff[0] &= ~a;
2105                                         alwaysOn[1] &= b;
2106                                         alwaysOff[1] &= ~b;
2107                                         walk = walk->next;
2108                                 }
2109                         }
2110                         addr[0] = alwaysOn[0];
2111                         addr[1] = alwaysOn[1];
2112                         mask[0] = alwaysOn[0] | alwaysOff[0];
2113                         mask[1] = alwaysOn[1] | alwaysOff[1];
2114                 }
2115         }
2116         addr[0] |= NVREG_MCASTADDRA_FORCE;
2117         pff |= NVREG_PFF_ALWAYS;
2118         spin_lock_irq(&np->lock);
2119         nv_stop_rx(dev);
2120         writel(addr[0], base + NvRegMulticastAddrA);
2121         writel(addr[1], base + NvRegMulticastAddrB);
2122         writel(mask[0], base + NvRegMulticastMaskA);
2123         writel(mask[1], base + NvRegMulticastMaskB);
2124         writel(pff, base + NvRegPacketFilterFlags);
2125         dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
2126                 dev->name);
2127         nv_start_rx(dev);
2128         spin_unlock_irq(&np->lock);
2129 }
2130
2131 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
2132 {
2133         struct fe_priv *np = netdev_priv(dev);
2134         u8 __iomem *base = get_hwbase(dev);
2135
2136         np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2137
2138         if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2139                 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2140                 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
2141                         writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2142                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2143                 } else {
2144                         writel(pff, base + NvRegPacketFilterFlags);
2145                 }
2146         }
2147         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2148                 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2149                 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2150                         writel(NVREG_TX_PAUSEFRAME_ENABLE,  base + NvRegTxPauseFrame);
2151                         writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2152                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2153                 } else {
2154                         writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
2155                         writel(regmisc, base + NvRegMisc1);
2156                 }
2157         }
2158 }
2159
2160 /**
2161  * nv_update_linkspeed: Setup the MAC according to the link partner
2162  * @dev: Network device to be configured
2163  *
2164  * The function queries the PHY and checks if there is a link partner.
2165  * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
2166  * set to 10 MBit HD.
2167  *
2168  * The function returns 0 if there is no link partner and 1 if there is
2169  * a good link partner.
2170  */
2171 static int nv_update_linkspeed(struct net_device *dev)
2172 {
2173         struct fe_priv *np = netdev_priv(dev);
2174         u8 __iomem *base = get_hwbase(dev);
2175         int adv = 0;
2176         int lpa = 0;
2177         int adv_lpa, adv_pause, lpa_pause;
2178         int newls = np->linkspeed;
2179         int newdup = np->duplex;
2180         int mii_status;
2181         int retval = 0;
2182         u32 control_1000, status_1000, phyreg, pause_flags, txreg;
2183
2184         /* BMSR_LSTATUS is latched, read it twice:
2185          * we want the current value.
2186          */
2187         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2188         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2189
2190         if (!(mii_status & BMSR_LSTATUS)) {
2191                 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
2192                                 dev->name);
2193                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2194                 newdup = 0;
2195                 retval = 0;
2196                 goto set_speed;
2197         }
2198
2199         if (np->autoneg == 0) {
2200                 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
2201                                 dev->name, np->fixed_mode);
2202                 if (np->fixed_mode & LPA_100FULL) {
2203                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2204                         newdup = 1;
2205                 } else if (np->fixed_mode & LPA_100HALF) {
2206                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2207                         newdup = 0;
2208                 } else if (np->fixed_mode & LPA_10FULL) {
2209                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2210                         newdup = 1;
2211                 } else {
2212                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2213                         newdup = 0;
2214                 }
2215                 retval = 1;
2216                 goto set_speed;
2217         }
2218         /* check auto negotiation is complete */
2219         if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2220                 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2221                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2222                 newdup = 0;
2223                 retval = 0;
2224                 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2225                 goto set_speed;
2226         }
2227
2228         adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2229         lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2230         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2231                                 dev->name, adv, lpa);
2232
2233         retval = 1;
2234         if (np->gigabit == PHY_GIGABIT) {
2235                 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2236                 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2237
2238                 if ((control_1000 & ADVERTISE_1000FULL) &&
2239                         (status_1000 & LPA_1000FULL)) {
2240                         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2241                                 dev->name);
2242                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2243                         newdup = 1;
2244                         goto set_speed;
2245                 }
2246         }
2247
2248         /* FIXME: handle parallel detection properly */
2249         adv_lpa = lpa & adv;
2250         if (adv_lpa & LPA_100FULL) {
2251                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2252                 newdup = 1;
2253         } else if (adv_lpa & LPA_100HALF) {
2254                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2255                 newdup = 0;
2256         } else if (adv_lpa & LPA_10FULL) {
2257                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2258                 newdup = 1;
2259         } else if (adv_lpa & LPA_10HALF) {
2260                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2261                 newdup = 0;
2262         } else {
2263                 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2264                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2265                 newdup = 0;
2266         }
2267
2268 set_speed:
2269         if (np->duplex == newdup && np->linkspeed == newls)
2270                 return retval;
2271
2272         dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2273                         dev->name, np->linkspeed, np->duplex, newls, newdup);
2274
2275         np->duplex = newdup;
2276         np->linkspeed = newls;
2277
2278         if (np->gigabit == PHY_GIGABIT) {
2279                 phyreg = readl(base + NvRegRandomSeed);
2280                 phyreg &= ~(0x3FF00);
2281                 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2282                         phyreg |= NVREG_RNDSEED_FORCE3;
2283                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2284                         phyreg |= NVREG_RNDSEED_FORCE2;
2285                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2286                         phyreg |= NVREG_RNDSEED_FORCE;
2287                 writel(phyreg, base + NvRegRandomSeed);
2288         }
2289
2290         phyreg = readl(base + NvRegPhyInterface);
2291         phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2292         if (np->duplex == 0)
2293                 phyreg |= PHY_HALF;
2294         if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2295                 phyreg |= PHY_100;
2296         else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2297                 phyreg |= PHY_1000;
2298         writel(phyreg, base + NvRegPhyInterface);
2299
2300         if (phyreg & PHY_RGMII) {
2301                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2302                         txreg = NVREG_TX_DEFERRAL_RGMII_1000;
2303                 else
2304                         txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
2305         } else {
2306                 txreg = NVREG_TX_DEFERRAL_DEFAULT;
2307         }
2308         writel(txreg, base + NvRegTxDeferral);
2309
2310         if (np->desc_ver == DESC_VER_1) {
2311                 txreg = NVREG_TX_WM_DESC1_DEFAULT;
2312         } else {
2313                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2314                         txreg = NVREG_TX_WM_DESC2_3_1000;
2315                 else
2316                         txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
2317         }
2318         writel(txreg, base + NvRegTxWatermark);
2319
2320         writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2321                 base + NvRegMisc1);
2322         pci_push(base);
2323         writel(np->linkspeed, base + NvRegLinkSpeed);
2324         pci_push(base);
2325
2326         pause_flags = 0;
2327         /* setup pause frame */
2328         if (np->duplex != 0) {
2329                 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
2330                         adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2331                         lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2332
2333                         switch (adv_pause) {
2334                         case ADVERTISE_PAUSE_CAP:
2335                                 if (lpa_pause & LPA_PAUSE_CAP) {
2336                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2337                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2338                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2339                                 }
2340                                 break;
2341                         case ADVERTISE_PAUSE_ASYM:
2342                                 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2343                                 {
2344                                         pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2345                                 }
2346                                 break;
2347                         case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
2348                                 if (lpa_pause & LPA_PAUSE_CAP)
2349                                 {
2350                                         pause_flags |=  NV_PAUSEFRAME_RX_ENABLE;
2351                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2352                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2353                                 }
2354                                 if (lpa_pause == LPA_PAUSE_ASYM)
2355                                 {
2356                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2357                                 }
2358                                 break;
2359                         }
2360                 } else {
2361                         pause_flags = np->pause_flags;
2362                 }
2363         }
2364         nv_update_pause(dev, pause_flags);
2365
2366         return retval;
2367 }
2368
2369 static void nv_linkchange(struct net_device *dev)
2370 {
2371         if (nv_update_linkspeed(dev)) {
2372                 if (!netif_carrier_ok(dev)) {
2373                         netif_carrier_on(dev);
2374                         printk(KERN_INFO "%s: link up.\n", dev->name);
2375                         nv_start_rx(dev);
2376                 }
2377         } else {
2378                 if (netif_carrier_ok(dev)) {
2379                         netif_carrier_off(dev);
2380                         printk(KERN_INFO "%s: link down.\n", dev->name);
2381                         nv_stop_rx(dev);
2382                 }
2383         }
2384 }
2385
2386 static void nv_link_irq(struct net_device *dev)
2387 {
2388         u8 __iomem *base = get_hwbase(dev);
2389         u32 miistat;
2390
2391         miistat = readl(base + NvRegMIIStatus);
2392         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2393         dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2394
2395         if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2396                 nv_linkchange(dev);
2397         dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2398 }
2399
2400 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
2401 {
2402         struct net_device *dev = (struct net_device *) data;
2403         struct fe_priv *np = netdev_priv(dev);
2404         u8 __iomem *base = get_hwbase(dev);
2405         u32 events;
2406         int i;
2407
2408         dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2409
2410         for (i=0; ; i++) {
2411                 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2412                         events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2413                         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2414                 } else {
2415                         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2416                         writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2417                 }
2418                 pci_push(base);
2419                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2420                 if (!(events & np->irqmask))
2421                         break;
2422
2423                 spin_lock(&np->lock);
2424                 nv_tx_done(dev);
2425                 spin_unlock(&np->lock);
2426
2427                 if (events & NVREG_IRQ_LINK) {
2428                         spin_lock(&np->lock);
2429                         nv_link_irq(dev);
2430                         spin_unlock(&np->lock);
2431                 }
2432                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2433                         spin_lock(&np->lock);
2434                         nv_linkchange(dev);
2435                         spin_unlock(&np->lock);
2436                         np->link_timeout = jiffies + LINK_TIMEOUT;
2437                 }
2438                 if (events & (NVREG_IRQ_TX_ERR)) {
2439                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2440                                                 dev->name, events);
2441                 }
2442                 if (events & (NVREG_IRQ_UNKNOWN)) {
2443                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2444                                                 dev->name, events);
2445                 }
2446 #ifdef CONFIG_FORCEDETH_NAPI
2447                 if (events & NVREG_IRQ_RX_ALL) {
2448                         netif_rx_schedule(dev);
2449
2450                         /* Disable furthur receive irq's */
2451                         spin_lock(&np->lock);
2452                         np->irqmask &= ~NVREG_IRQ_RX_ALL;
2453
2454                         if (np->msi_flags & NV_MSI_X_ENABLED)
2455                                 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2456                         else
2457                                 writel(np->irqmask, base + NvRegIrqMask);
2458                         spin_unlock(&np->lock);
2459                 }
2460 #else
2461                 nv_rx_process(dev, dev->weight);
2462                 if (nv_alloc_rx(dev)) {
2463                         spin_lock(&np->lock);
2464                         if (!np->in_shutdown)
2465                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2466                         spin_unlock(&np->lock);
2467                 }
2468 #endif
2469                 if (i > max_interrupt_work) {
2470                         spin_lock(&np->lock);
2471                         /* disable interrupts on the nic */
2472                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
2473                                 writel(0, base + NvRegIrqMask);
2474                         else
2475                                 writel(np->irqmask, base + NvRegIrqMask);
2476                         pci_push(base);
2477
2478                         if (!np->in_shutdown) {
2479                                 np->nic_poll_irq = np->irqmask;
2480                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2481                         }
2482                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
2483                         spin_unlock(&np->lock);
2484                         break;
2485                 }
2486
2487         }
2488         dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
2489
2490         return IRQ_RETVAL(i);
2491 }
2492
2493 static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
2494 {
2495         struct net_device *dev = (struct net_device *) data;
2496         struct fe_priv *np = netdev_priv(dev);
2497         u8 __iomem *base = get_hwbase(dev);
2498         u32 events;
2499         int i;
2500
2501         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
2502
2503         for (i=0; ; i++) {
2504                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
2505                 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
2506                 pci_push(base);
2507                 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
2508                 if (!(events & np->irqmask))
2509                         break;
2510
2511                 spin_lock_irq(&np->lock);
2512                 nv_tx_done(dev);
2513                 spin_unlock_irq(&np->lock);
2514
2515                 if (events & (NVREG_IRQ_TX_ERR)) {
2516                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2517                                                 dev->name, events);
2518                 }
2519                 if (i > max_interrupt_work) {
2520                         spin_lock_irq(&np->lock);
2521                         /* disable interrupts on the nic */
2522                         writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
2523                         pci_push(base);
2524
2525                         if (!np->in_shutdown) {
2526                                 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
2527                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2528                         }
2529                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
2530                         spin_unlock_irq(&np->lock);
2531                         break;
2532                 }
2533
2534         }
2535         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
2536
2537         return IRQ_RETVAL(i);
2538 }
2539
2540 #ifdef CONFIG_FORCEDETH_NAPI
2541 static int nv_napi_poll(struct net_device *dev, int *budget)
2542 {
2543         int pkts, limit = min(*budget, dev->quota);
2544         struct fe_priv *np = netdev_priv(dev);
2545         u8 __iomem *base = get_hwbase(dev);
2546
2547         pkts = nv_rx_process(dev, limit);
2548
2549         if (nv_alloc_rx(dev)) {
2550                 spin_lock_irq(&np->lock);
2551                 if (!np->in_shutdown)
2552                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2553                 spin_unlock_irq(&np->lock);
2554         }
2555
2556         if (pkts < limit) {
2557                 /* all done, no more packets present */
2558                 netif_rx_complete(dev);
2559
2560                 /* re-enable receive interrupts */
2561                 spin_lock_irq(&np->lock);
2562                 np->irqmask |= NVREG_IRQ_RX_ALL;
2563                 if (np->msi_flags & NV_MSI_X_ENABLED)
2564                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2565                 else
2566                         writel(np->irqmask, base + NvRegIrqMask);
2567                 spin_unlock_irq(&np->lock);
2568                 return 0;
2569         } else {
2570                 /* used up our quantum, so reschedule */
2571                 dev->quota -= pkts;
2572                 *budget -= pkts;
2573                 return 1;
2574         }
2575 }
2576 #endif
2577
2578 #ifdef CONFIG_FORCEDETH_NAPI
2579 static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
2580 {
2581         struct net_device *dev = (struct net_device *) data;
2582         u8 __iomem *base = get_hwbase(dev);
2583         u32 events;
2584
2585         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2586         writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2587
2588         if (events) {
2589                 netif_rx_schedule(dev);
2590                 /* disable receive interrupts on the nic */
2591                 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2592                 pci_push(base);
2593         }
2594         return IRQ_HANDLED;
2595 }
2596 #else
2597 static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
2598 {
2599         struct net_device *dev = (struct net_device *) data;
2600         struct fe_priv *np = netdev_priv(dev);
2601         u8 __iomem *base = get_hwbase(dev);
2602         u32 events;
2603         int i;
2604
2605         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
2606
2607         for (i=0; ; i++) {
2608                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
2609                 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
2610                 pci_push(base);
2611                 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
2612                 if (!(events & np->irqmask))
2613                         break;
2614
2615                 nv_rx_process(dev, dev->weight);
2616                 if (nv_alloc_rx(dev)) {
2617                         spin_lock_irq(&np->lock);
2618                         if (!np->in_shutdown)
2619                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2620                         spin_unlock_irq(&np->lock);
2621                 }
2622
2623                 if (i > max_interrupt_work) {
2624                         spin_lock_irq(&np->lock);
2625                         /* disable interrupts on the nic */
2626                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2627                         pci_push(base);
2628
2629                         if (!np->in_shutdown) {
2630                                 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
2631                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2632                         }
2633                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
2634                         spin_unlock_irq(&np->lock);
2635                         break;
2636                 }
2637         }
2638         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
2639
2640         return IRQ_RETVAL(i);
2641 }
2642 #endif
2643
2644 static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
2645 {
2646         struct net_device *dev = (struct net_device *) data;
2647         struct fe_priv *np = netdev_priv(dev);
2648         u8 __iomem *base = get_hwbase(dev);
2649         u32 events;
2650         int i;
2651
2652         dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
2653
2654         for (i=0; ; i++) {
2655                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
2656                 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
2657                 pci_push(base);
2658                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2659                 if (!(events & np->irqmask))
2660                         break;
2661
2662                 if (events & NVREG_IRQ_LINK) {
2663                         spin_lock_irq(&np->lock);
2664                         nv_link_irq(dev);
2665                         spin_unlock_irq(&np->lock);
2666                 }
2667                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
2668                         spin_lock_irq(&np->lock);
2669                         nv_linkchange(dev);
2670                         spin_unlock_irq(&np->lock);
2671                         np->link_timeout = jiffies + LINK_TIMEOUT;
2672                 }
2673                 if (events & (NVREG_IRQ_UNKNOWN)) {
2674                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2675                                                 dev->name, events);
2676                 }
2677                 if (i > max_interrupt_work) {
2678                         spin_lock_irq(&np->lock);
2679                         /* disable interrupts on the nic */
2680                         writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
2681                         pci_push(base);
2682
2683                         if (!np->in_shutdown) {
2684                                 np->nic_poll_irq |= NVREG_IRQ_OTHER;
2685                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2686                         }
2687                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
2688                         spin_unlock_irq(&np->lock);
2689                         break;
2690                 }
2691
2692         }
2693         dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
2694
2695         return IRQ_RETVAL(i);
2696 }
2697
2698 static irqreturn_t nv_nic_irq_test(int foo, void *data, struct pt_regs *regs)
2699 {
2700         struct net_device *dev = (struct net_device *) data;
2701         struct fe_priv *np = netdev_priv(dev);
2702         u8 __iomem *base = get_hwbase(dev);
2703         u32 events;
2704
2705         dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
2706
2707         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2708                 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2709                 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
2710         } else {
2711                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2712                 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
2713         }
2714         pci_push(base);
2715         dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2716         if (!(events & NVREG_IRQ_TIMER))
2717                 return IRQ_RETVAL(0);
2718
2719         spin_lock(&np->lock);
2720         np->intr_test = 1;
2721         spin_unlock(&np->lock);
2722
2723         dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
2724
2725         return IRQ_RETVAL(1);
2726 }
2727
2728 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
2729 {
2730         u8 __iomem *base = get_hwbase(dev);
2731         int i;
2732         u32 msixmap = 0;
2733
2734         /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
2735          * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
2736          * the remaining 8 interrupts.
2737          */
2738         for (i = 0; i < 8; i++) {
2739                 if ((irqmask >> i) & 0x1) {
2740                         msixmap |= vector << (i << 2);
2741                 }
2742         }
2743         writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
2744
2745         msixmap = 0;
2746         for (i = 0; i < 8; i++) {
2747                 if ((irqmask >> (i + 8)) & 0x1) {
2748                         msixmap |= vector << (i << 2);
2749                 }
2750         }
2751         writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
2752 }
2753
2754 static int nv_request_irq(struct net_device *dev, int intr_test)
2755 {
2756         struct fe_priv *np = get_nvpriv(dev);
2757         u8 __iomem *base = get_hwbase(dev);
2758         int ret = 1;
2759         int i;
2760
2761         if (np->msi_flags & NV_MSI_X_CAPABLE) {
2762                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2763                         np->msi_x_entry[i].entry = i;
2764                 }
2765                 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
2766                         np->msi_flags |= NV_MSI_X_ENABLED;
2767                         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
2768                                 /* Request irq for rx handling */
2769                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
2770                                         printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
2771                                         pci_disable_msix(np->pci_dev);
2772                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2773                                         goto out_err;
2774                                 }
2775                                 /* Request irq for tx handling */
2776                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
2777                                         printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
2778                                         pci_disable_msix(np->pci_dev);
2779                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2780                                         goto out_free_rx;
2781                                 }
2782                                 /* Request irq for link and timer handling */
2783                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
2784                                         printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
2785                                         pci_disable_msix(np->pci_dev);
2786                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2787                                         goto out_free_tx;
2788                                 }
2789                                 /* map interrupts to their respective vector */
2790                                 writel(0, base + NvRegMSIXMap0);
2791                                 writel(0, base + NvRegMSIXMap1);
2792                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
2793                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
2794                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
2795                         } else {
2796                                 /* Request irq for all interrupts */
2797                                 if ((!intr_test &&
2798                                      request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2799                                     (intr_test &&
2800                                      request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
2801                                         printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2802                                         pci_disable_msix(np->pci_dev);
2803                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
2804                                         goto out_err;
2805                                 }
2806
2807                                 /* map interrupts to vector 0 */
2808                                 writel(0, base + NvRegMSIXMap0);
2809                                 writel(0, base + NvRegMSIXMap1);
2810                         }
2811                 }
2812         }
2813         if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
2814                 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
2815                         np->msi_flags |= NV_MSI_ENABLED;
2816                         if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2817                             (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
2818                                 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
2819                                 pci_disable_msi(np->pci_dev);
2820                                 np->msi_flags &= ~NV_MSI_ENABLED;
2821                                 goto out_err;
2822                         }
2823
2824                         /* map interrupts to vector 0 */
2825                         writel(0, base + NvRegMSIMap0);
2826                         writel(0, base + NvRegMSIMap1);
2827                         /* enable msi vector 0 */
2828                         writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
2829                 }
2830         }
2831         if (ret != 0) {
2832                 if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
2833                     (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0))
2834                         goto out_err;
2835
2836         }
2837
2838         return 0;
2839 out_free_tx:
2840         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
2841 out_free_rx:
2842         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
2843 out_err:
2844         return 1;
2845 }
2846
2847 static void nv_free_irq(struct net_device *dev)
2848 {
2849         struct fe_priv *np = get_nvpriv(dev);
2850         int i;
2851
2852         if (np->msi_flags & NV_MSI_X_ENABLED) {
2853                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
2854                         free_irq(np->msi_x_entry[i].vector, dev);
2855                 }
2856                 pci_disable_msix(np->pci_dev);
2857                 np->msi_flags &= ~NV_MSI_X_ENABLED;
2858         } else {
2859                 free_irq(np->pci_dev->irq, dev);
2860                 if (np->msi_flags & NV_MSI_ENABLED) {
2861                         pci_disable_msi(np->pci_dev);
2862                         np->msi_flags &= ~NV_MSI_ENABLED;
2863                 }
2864         }
2865 }
2866
2867 static void nv_do_nic_poll(unsigned long data)
2868 {
2869         struct net_device *dev = (struct net_device *) data;
2870         struct fe_priv *np = netdev_priv(dev);
2871         u8 __iomem *base = get_hwbase(dev);
2872         u32 mask = 0;
2873
2874         /*
2875          * First disable irq(s) and then
2876          * reenable interrupts on the nic, we have to do this before calling
2877          * nv_nic_irq because that may decide to do otherwise
2878          */
2879
2880         if (!using_multi_irqs(dev)) {
2881                 if (np->msi_flags & NV_MSI_X_ENABLED)
2882                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2883                 else
2884                         disable_irq_lockdep(dev->irq);
2885                 mask = np->irqmask;
2886         } else {
2887                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2888                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2889                         mask |= NVREG_IRQ_RX_ALL;
2890                 }
2891                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2892                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2893                         mask |= NVREG_IRQ_TX_ALL;
2894                 }
2895                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2896                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2897                         mask |= NVREG_IRQ_OTHER;
2898                 }
2899         }
2900         np->nic_poll_irq = 0;
2901
2902         /* FIXME: Do we need synchronize_irq(dev->irq) here? */
2903
2904         writel(mask, base + NvRegIrqMask);
2905         pci_push(base);
2906
2907         if (!using_multi_irqs(dev)) {
2908                 nv_nic_irq(0, dev, NULL);
2909                 if (np->msi_flags & NV_MSI_X_ENABLED)
2910                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
2911                 else
2912                         enable_irq_lockdep(dev->irq);
2913         } else {
2914                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
2915                         nv_nic_irq_rx(0, dev, NULL);
2916                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
2917                 }
2918                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
2919                         nv_nic_irq_tx(0, dev, NULL);
2920                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
2921                 }
2922                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
2923                         nv_nic_irq_other(0, dev, NULL);
2924                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
2925                 }
2926         }
2927 }
2928
2929 #ifdef CONFIG_NET_POLL_CONTROLLER
2930 static void nv_poll_controller(struct net_device *dev)
2931 {
2932         nv_do_nic_poll((unsigned long) dev);
2933 }
2934 #endif
2935
2936 static void nv_do_stats_poll(unsigned long data)
2937 {
2938         struct net_device *dev = (struct net_device *) data;
2939         struct fe_priv *np = netdev_priv(dev);
2940         u8 __iomem *base = get_hwbase(dev);
2941
2942         np->estats.tx_bytes += readl(base + NvRegTxCnt);
2943         np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
2944         np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
2945         np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
2946         np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
2947         np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
2948         np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
2949         np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
2950         np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
2951         np->estats.tx_deferral += readl(base + NvRegTxDef);
2952         np->estats.tx_packets += readl(base + NvRegTxFrame);
2953         np->estats.tx_pause += readl(base + NvRegTxPause);
2954         np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
2955         np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
2956         np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
2957         np->estats.rx_runt += readl(base + NvRegRxRunt);
2958         np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
2959         np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
2960         np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
2961         np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
2962         np->estats.rx_length_error += readl(base + NvRegRxLenErr);
2963         np->estats.rx_unicast += readl(base + NvRegRxUnicast);
2964         np->estats.rx_multicast += readl(base + NvRegRxMulticast);
2965         np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
2966         np->estats.rx_bytes += readl(base + NvRegRxCnt);
2967         np->estats.rx_pause += readl(base + NvRegRxPause);
2968         np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
2969         np->estats.rx_packets =
2970                 np->estats.rx_unicast +
2971                 np->estats.rx_multicast +
2972                 np->estats.rx_broadcast;
2973         np->estats.rx_errors_total =
2974                 np->estats.rx_crc_errors +
2975                 np->estats.rx_over_errors +
2976                 np->estats.rx_frame_error +
2977                 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
2978                 np->estats.rx_late_collision +
2979                 np->estats.rx_runt +
2980                 np->estats.rx_frame_too_long;
2981
2982         if (!np->in_shutdown)
2983                 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
2984 }
2985
2986 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2987 {
2988         struct fe_priv *np = netdev_priv(dev);
2989         strcpy(info->driver, "forcedeth");
2990         strcpy(info->version, FORCEDETH_VERSION);
2991         strcpy(info->bus_info, pci_name(np->pci_dev));
2992 }
2993
2994 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
2995 {
2996         struct fe_priv *np = netdev_priv(dev);
2997         wolinfo->supported = WAKE_MAGIC;
2998
2999         spin_lock_irq(&np->lock);
3000         if (np->wolenabled)
3001                 wolinfo->wolopts = WAKE_MAGIC;
3002         spin_unlock_irq(&np->lock);
3003 }
3004
3005 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3006 {
3007         struct fe_priv *np = netdev_priv(dev);
3008         u8 __iomem *base = get_hwbase(dev);
3009         u32 flags = 0;
3010
3011         if (wolinfo->wolopts == 0) {
3012                 np->wolenabled = 0;
3013         } else if (wolinfo->wolopts & WAKE_MAGIC) {
3014                 np->wolenabled = 1;
3015                 flags = NVREG_WAKEUPFLAGS_ENABLE;
3016         }
3017         if (netif_running(dev)) {
3018                 spin_lock_irq(&np->lock);
3019                 writel(flags, base + NvRegWakeUpFlags);
3020                 spin_unlock_irq(&np->lock);
3021         }
3022         return 0;
3023 }
3024
3025 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3026 {
3027         struct fe_priv *np = netdev_priv(dev);
3028         int adv;
3029
3030         spin_lock_irq(&np->lock);
3031         ecmd->port = PORT_MII;
3032         if (!netif_running(dev)) {
3033                 /* We do not track link speed / duplex setting if the
3034                  * interface is disabled. Force a link check */
3035                 if (nv_update_linkspeed(dev)) {
3036                         if (!netif_carrier_ok(dev))
3037                                 netif_carrier_on(dev);
3038                 } else {
3039                         if (netif_carrier_ok(dev))
3040                                 netif_carrier_off(dev);
3041                 }
3042         }
3043
3044         if (netif_carrier_ok(dev)) {
3045                 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
3046                 case NVREG_LINKSPEED_10:
3047                         ecmd->speed = SPEED_10;
3048                         break;
3049                 case NVREG_LINKSPEED_100:
3050                         ecmd->speed = SPEED_100;
3051                         break;
3052                 case NVREG_LINKSPEED_1000:
3053                         ecmd->speed = SPEED_1000;
3054                         break;
3055                 }
3056                 ecmd->duplex = DUPLEX_HALF;
3057                 if (np->duplex)
3058                         ecmd->duplex = DUPLEX_FULL;
3059         } else {
3060                 ecmd->speed = -1;
3061                 ecmd->duplex = -1;
3062         }
3063
3064         ecmd->autoneg = np->autoneg;
3065
3066         ecmd->advertising = ADVERTISED_MII;
3067         if (np->autoneg) {
3068                 ecmd->advertising |= ADVERTISED_Autoneg;
3069                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3070                 if (adv & ADVERTISE_10HALF)
3071                         ecmd->advertising |= ADVERTISED_10baseT_Half;
3072                 if (adv & ADVERTISE_10FULL)
3073                         ecmd->advertising |= ADVERTISED_10baseT_Full;
3074                 if (adv & ADVERTISE_100HALF)
3075                         ecmd->advertising |= ADVERTISED_100baseT_Half;
3076                 if (adv & ADVERTISE_100FULL)
3077                         ecmd->advertising |= ADVERTISED_100baseT_Full;
3078                 if (np->gigabit == PHY_GIGABIT) {
3079                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3080                         if (adv & ADVERTISE_1000FULL)
3081                                 ecmd->advertising |= ADVERTISED_1000baseT_Full;
3082                 }
3083         }
3084         ecmd->supported = (SUPPORTED_Autoneg |
3085                 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
3086                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
3087                 SUPPORTED_MII);
3088         if (np->gigabit == PHY_GIGABIT)
3089                 ecmd->supported |= SUPPORTED_1000baseT_Full;
3090
3091         ecmd->phy_address = np->phyaddr;
3092         ecmd->transceiver = XCVR_EXTERNAL;
3093
3094         /* ignore maxtxpkt, maxrxpkt for now */
3095         spin_unlock_irq(&np->lock);
3096         return 0;
3097 }
3098
3099 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3100 {
3101         struct fe_priv *np = netdev_priv(dev);
3102
3103         if (ecmd->port != PORT_MII)
3104                 return -EINVAL;
3105         if (ecmd->transceiver != XCVR_EXTERNAL)
3106                 return -EINVAL;
3107         if (ecmd->phy_address != np->phyaddr) {
3108                 /* TODO: support switching between multiple phys. Should be
3109                  * trivial, but not enabled due to lack of test hardware. */
3110                 return -EINVAL;
3111         }
3112         if (ecmd->autoneg == AUTONEG_ENABLE) {
3113                 u32 mask;
3114
3115                 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
3116                           ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
3117                 if (np->gigabit == PHY_GIGABIT)
3118                         mask |= ADVERTISED_1000baseT_Full;
3119
3120                 if ((ecmd->advertising & mask) == 0)
3121                         return -EINVAL;
3122
3123         } else if (ecmd->autoneg == AUTONEG_DISABLE) {
3124                 /* Note: autonegotiation disable, speed 1000 intentionally
3125                  * forbidden - noone should need that. */
3126
3127                 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
3128                         return -EINVAL;
3129                 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
3130                         return -EINVAL;
3131         } else {
3132                 return -EINVAL;
3133         }
3134
3135         netif_carrier_off(dev);
3136         if (netif_running(dev)) {
3137                 nv_disable_irq(dev);
3138                 netif_tx_lock_bh(dev);
3139                 spin_lock(&np->lock);
3140                 /* stop engines */
3141                 nv_stop_rx(dev);
3142                 nv_stop_tx(dev);
3143                 spin_unlock(&np->lock);
3144                 netif_tx_unlock_bh(dev);
3145         }
3146
3147         if (ecmd->autoneg == AUTONEG_ENABLE) {
3148                 int adv, bmcr;
3149
3150                 np->autoneg = 1;
3151
3152                 /* advertise only what has been requested */
3153                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3154                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3155                 if (ecmd->advertising & ADVERTISED_10baseT_Half)
3156                         adv |= ADVERTISE_10HALF;
3157                 if (ecmd->advertising & ADVERTISED_10baseT_Full)
3158                         adv |= ADVERTISE_10FULL;
3159                 if (ecmd->advertising & ADVERTISED_100baseT_Half)
3160                         adv |= ADVERTISE_100HALF;
3161                 if (ecmd->advertising & ADVERTISED_100baseT_Full)
3162                         adv |= ADVERTISE_100FULL;
3163                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ)  /* for rx we set both advertisments but disable tx pause */
3164                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3165                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3166                         adv |=  ADVERTISE_PAUSE_ASYM;
3167                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3168
3169                 if (np->gigabit == PHY_GIGABIT) {
3170                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3171                         adv &= ~ADVERTISE_1000FULL;
3172                         if (ecmd->advertising & ADVERTISED_1000baseT_Full)
3173                                 adv |= ADVERTISE_1000FULL;
3174                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3175                 }
3176
3177                 if (netif_running(dev))
3178                         printk(KERN_INFO "%s: link down.\n", dev->name);
3179                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3180                 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
3181                         bmcr |= BMCR_ANENABLE;
3182                         /* reset the phy in order for settings to stick,
3183                          * and cause autoneg to start */
3184                         if (phy_reset(dev, bmcr)) {
3185                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3186                                 return -EINVAL;
3187                         }
3188                 } else {
3189                         bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3190                         mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3191                 }
3192         } else {
3193                 int adv, bmcr;
3194
3195                 np->autoneg = 0;
3196
3197                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3198                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3199                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
3200                         adv |= ADVERTISE_10HALF;
3201                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
3202                         adv |= ADVERTISE_10FULL;
3203                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
3204                         adv |= ADVERTISE_100HALF;
3205                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
3206                         adv |= ADVERTISE_100FULL;
3207                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3208                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
3209                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3210                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3211                 }
3212                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
3213                         adv |=  ADVERTISE_PAUSE_ASYM;
3214                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3215                 }
3216                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3217                 np->fixed_mode = adv;
3218
3219                 if (np->gigabit == PHY_GIGABIT) {
3220                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3221                         adv &= ~ADVERTISE_1000FULL;
3222                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3223                 }
3224
3225                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3226                 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
3227                 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
3228                         bmcr |= BMCR_FULLDPLX;
3229                 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
3230                         bmcr |= BMCR_SPEED100;
3231                 if (np->phy_oui == PHY_OUI_MARVELL) {
3232                         /* reset the phy in order for forced mode settings to stick */
3233                         if (phy_reset(dev, bmcr)) {
3234                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3235                                 return -EINVAL;
3236                         }
3237                 } else {
3238                         mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3239                         if (netif_running(dev)) {
3240                                 /* Wait a bit and then reconfigure the nic. */
3241                                 udelay(10);
3242                                 nv_linkchange(dev);
3243                         }
3244                 }
3245         }
3246
3247         if (netif_running(dev)) {
3248                 nv_start_rx(dev);
3249                 nv_start_tx(dev);
3250                 nv_enable_irq(dev);
3251         }
3252
3253         return 0;
3254 }
3255
3256 #define FORCEDETH_REGS_VER      1
3257
3258 static int nv_get_regs_len(struct net_device *dev)
3259 {
3260         struct fe_priv *np = netdev_priv(dev);
3261         return np->register_size;
3262 }
3263
3264 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
3265 {
3266         struct fe_priv *np = netdev_priv(dev);
3267         u8 __iomem *base = get_hwbase(dev);
3268         u32 *rbuf = buf;
3269         int i;
3270
3271         regs->version = FORCEDETH_REGS_VER;
3272         spin_lock_irq(&np->lock);
3273         for (i = 0;i <= np->register_size/sizeof(u32); i++)
3274                 rbuf[i] = readl(base + i*sizeof(u32));
3275         spin_unlock_irq(&np->lock);
3276 }
3277
3278 static int nv_nway_reset(struct net_device *dev)
3279 {
3280         struct fe_priv *np = netdev_priv(dev);
3281         int ret;
3282
3283         if (np->autoneg) {
3284                 int bmcr;
3285
3286                 netif_carrier_off(dev);
3287                 if (netif_running(dev)) {
3288                         nv_disable_irq(dev);
3289                         netif_tx_lock_bh(dev);
3290                         spin_lock(&np->lock);
3291                         /* stop engines */
3292                         nv_stop_rx(dev);
3293                         nv_stop_tx(dev);
3294                         spin_unlock(&np->lock);
3295                         netif_tx_unlock_bh(dev);
3296                         printk(KERN_INFO "%s: link down.\n", dev->name);
3297                 }
3298
3299                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3300                 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
3301                         bmcr |= BMCR_ANENABLE;
3302                         /* reset the phy in order for settings to stick*/
3303                         if (phy_reset(dev, bmcr)) {
3304                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3305                                 return -EINVAL;
3306                         }
3307                 } else {
3308                         bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3309                         mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3310                 }
3311
3312                 if (netif_running(dev)) {
3313                         nv_start_rx(dev);
3314                         nv_start_tx(dev);
3315                         nv_enable_irq(dev);
3316                 }
3317                 ret = 0;
3318         } else {
3319                 ret = -EINVAL;
3320         }
3321
3322         return ret;
3323 }
3324
3325 static int nv_set_tso(struct net_device *dev, u32 value)
3326 {
3327         struct fe_priv *np = netdev_priv(dev);
3328
3329         if ((np->driver_data & DEV_HAS_CHECKSUM))
3330                 return ethtool_op_set_tso(dev, value);
3331         else
3332                 return -EOPNOTSUPP;
3333 }
3334
3335 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3336 {
3337         struct fe_priv *np = netdev_priv(dev);
3338
3339         ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3340         ring->rx_mini_max_pending = 0;
3341         ring->rx_jumbo_max_pending = 0;
3342         ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
3343
3344         ring->rx_pending = np->rx_ring_size;
3345         ring->rx_mini_pending = 0;
3346         ring->rx_jumbo_pending = 0;
3347         ring->tx_pending = np->tx_ring_size;
3348 }
3349
3350 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
3351 {
3352         struct fe_priv *np = netdev_priv(dev);
3353         u8 __iomem *base = get_hwbase(dev);
3354         u8 *rxtx_ring, *rx_skbuff, *tx_skbuff, *rx_dma, *tx_dma, *tx_dma_len;
3355         dma_addr_t ring_addr;
3356
3357         if (ring->rx_pending < RX_RING_MIN ||
3358             ring->tx_pending < TX_RING_MIN ||
3359             ring->rx_mini_pending != 0 ||
3360             ring->rx_jumbo_pending != 0 ||
3361             (np->desc_ver == DESC_VER_1 &&
3362              (ring->rx_pending > RING_MAX_DESC_VER_1 ||
3363               ring->tx_pending > RING_MAX_DESC_VER_1)) ||
3364             (np->desc_ver != DESC_VER_1 &&
3365              (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
3366               ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
3367                 return -EINVAL;
3368         }
3369
3370         /* allocate new rings */
3371         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3372                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3373                                             sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3374                                             &ring_addr);
3375         } else {
3376                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
3377                                             sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3378                                             &ring_addr);
3379         }
3380         rx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->rx_pending, GFP_KERNEL);
3381         rx_dma = kmalloc(sizeof(dma_addr_t) * ring->rx_pending, GFP_KERNEL);
3382         tx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->tx_pending, GFP_KERNEL);
3383         tx_dma = kmalloc(sizeof(dma_addr_t) * ring->tx_pending, GFP_KERNEL);
3384         tx_dma_len = kmalloc(sizeof(unsigned int) * ring->tx_pending, GFP_KERNEL);
3385         if (!rxtx_ring || !rx_skbuff || !rx_dma || !tx_skbuff || !tx_dma || !tx_dma_len) {
3386                 /* fall back to old rings */
3387                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3388                         if (rxtx_ring)
3389                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
3390                                                     rxtx_ring, ring_addr);
3391                 } else {
3392                         if (rxtx_ring)
3393                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
3394                                                     rxtx_ring, ring_addr);
3395                 }
3396                 if (rx_skbuff)
3397                         kfree(rx_skbuff);
3398                 if (rx_dma)
3399                         kfree(rx_dma);
3400                 if (tx_skbuff)
3401                         kfree(tx_skbuff);
3402                 if (tx_dma)
3403                         kfree(tx_dma);
3404                 if (tx_dma_len)
3405                         kfree(tx_dma_len);
3406                 goto exit;
3407         }
3408
3409         if (netif_running(dev)) {
3410                 nv_disable_irq(dev);
3411                 netif_tx_lock_bh(dev);
3412                 spin_lock(&np->lock);
3413                 /* stop engines */
3414                 nv_stop_rx(dev);
3415                 nv_stop_tx(dev);
3416                 nv_txrx_reset(dev);
3417                 /* drain queues */
3418                 nv_drain_rx(dev);
3419                 nv_drain_tx(dev);
3420                 /* delete queues */
3421                 free_rings(dev);
3422         }
3423
3424         /* set new values */
3425         np->rx_ring_size = ring->rx_pending;
3426         np->tx_ring_size = ring->tx_pending;
3427         np->tx_limit_stop = ring->tx_pending - TX_LIMIT_DIFFERENCE;
3428         np->tx_limit_start = ring->tx_pending - TX_LIMIT_DIFFERENCE - 1;
3429         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3430                 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
3431                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
3432         } else {
3433                 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
3434                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
3435         }
3436         np->rx_skbuff = (struct sk_buff**)rx_skbuff;
3437         np->rx_dma = (dma_addr_t*)rx_dma;
3438         np->tx_skbuff = (struct sk_buff**)tx_skbuff;
3439         np->tx_dma = (dma_addr_t*)tx_dma;
3440         np->tx_dma_len = (unsigned int*)tx_dma_len;
3441         np->ring_addr = ring_addr;
3442
3443         memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
3444         memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
3445         memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
3446         memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
3447         memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
3448
3449         if (netif_running(dev)) {
3450                 /* reinit driver view of the queues */
3451                 set_bufsize(dev);
3452                 if (nv_init_ring(dev)) {
3453                         if (!np->in_shutdown)
3454                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3455                 }
3456
3457                 /* reinit nic view of the queues */
3458                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3459                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3460                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3461                         base + NvRegRingSizes);
3462                 pci_push(base);
3463                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3464                 pci_push(base);
3465
3466                 /* restart engines */
3467                 nv_start_rx(dev);
3468                 nv_start_tx(dev);
3469                 spin_unlock(&np->lock);
3470                 netif_tx_unlock_bh(dev);
3471                 nv_enable_irq(dev);
3472         }
3473         return 0;
3474 exit:
3475         return -ENOMEM;
3476 }
3477
3478 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
3479 {
3480         struct fe_priv *np = netdev_priv(dev);
3481
3482         pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
3483         pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
3484         pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
3485 }
3486
3487 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
3488 {
3489         struct fe_priv *np = netdev_priv(dev);
3490         int adv, bmcr;
3491
3492         if ((!np->autoneg && np->duplex == 0) ||
3493             (np->autoneg && !pause->autoneg && np->duplex == 0)) {
3494                 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
3495                        dev->name);
3496                 return -EINVAL;
3497         }
3498         if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
3499                 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
3500                 return -EINVAL;
3501         }
3502
3503         netif_carrier_off(dev);
3504         if (netif_running(dev)) {
3505                 nv_disable_irq(dev);
3506                 netif_tx_lock_bh(dev);
3507                 spin_lock(&np->lock);
3508                 /* stop engines */
3509                 nv_stop_rx(dev);
3510                 nv_stop_tx(dev);
3511                 spin_unlock(&np->lock);
3512                 netif_tx_unlock_bh(dev);
3513         }
3514
3515         np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
3516         if (pause->rx_pause)
3517                 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
3518         if (pause->tx_pause)
3519                 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
3520
3521         if (np->autoneg && pause->autoneg) {
3522                 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
3523
3524                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3525                 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3526                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
3527                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3528                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3529                         adv |=  ADVERTISE_PAUSE_ASYM;
3530                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3531
3532                 if (netif_running(dev))
3533                         printk(KERN_INFO "%s: link down.\n", dev->name);
3534                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3535                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3536                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3537         } else {
3538                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3539                 if (pause->rx_pause)
3540                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3541                 if (pause->tx_pause)
3542                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3543
3544                 if (!netif_running(dev))
3545                         nv_update_linkspeed(dev);
3546                 else
3547                         nv_update_pause(dev, np->pause_flags);
3548         }
3549
3550         if (netif_running(dev)) {
3551                 nv_start_rx(dev);
3552                 nv_start_tx(dev);
3553                 nv_enable_irq(dev);
3554         }
3555         return 0;
3556 }
3557
3558 static u32 nv_get_rx_csum(struct net_device *dev)
3559 {
3560         struct fe_priv *np = netdev_priv(dev);
3561         return (np->rx_csum) != 0;
3562 }
3563
3564 static int nv_set_rx_csum(struct net_device *dev, u32 data)
3565 {
3566         struct fe_priv *np = netdev_priv(dev);
3567         u8 __iomem *base = get_hwbase(dev);
3568         int retcode = 0;
3569
3570         if (np->driver_data & DEV_HAS_CHECKSUM) {
3571                 if (data) {
3572                         np->rx_csum = 1;
3573                         np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
3574                 } else {
3575                         np->rx_csum = 0;
3576                         /* vlan is dependent on rx checksum offload */
3577                         if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
3578                                 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
3579                 }
3580                 if (netif_running(dev)) {
3581                         spin_lock_irq(&np->lock);
3582                         writel(np->txrxctl_bits, base + NvRegTxRxControl);
3583                         spin_unlock_irq(&np->lock);
3584                 }
3585         } else {
3586                 return -EINVAL;
3587         }
3588
3589         return retcode;
3590 }
3591
3592 static int nv_set_tx_csum(struct net_device *dev, u32 data)
3593 {
3594         struct fe_priv *np = netdev_priv(dev);
3595
3596         if (np->driver_data & DEV_HAS_CHECKSUM)
3597                 return ethtool_op_set_tx_hw_csum(dev, data);
3598         else
3599                 return -EOPNOTSUPP;
3600 }
3601
3602 static int nv_set_sg(struct net_device *dev, u32 data)
3603 {
3604         struct fe_priv *np = netdev_priv(dev);
3605
3606         if (np->driver_data & DEV_HAS_CHECKSUM)
3607                 return ethtool_op_set_sg(dev, data);
3608         else
3609                 return -EOPNOTSUPP;
3610 }
3611
3612 static int nv_get_stats_count(struct net_device *dev)
3613 {
3614         struct fe_priv *np = netdev_priv(dev);
3615
3616         if (np->driver_data & DEV_HAS_STATISTICS)
3617                 return sizeof(struct nv_ethtool_stats)/sizeof(u64);
3618         else
3619                 return 0;
3620 }
3621
3622 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
3623 {
3624         struct fe_priv *np = netdev_priv(dev);
3625
3626         /* update stats */
3627         nv_do_stats_poll((unsigned long)dev);
3628
3629         memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
3630 }
3631
3632 static int nv_self_test_count(struct net_device *dev)
3633 {
3634         struct fe_priv *np = netdev_priv(dev);
3635
3636         if (np->driver_data & DEV_HAS_TEST_EXTENDED)
3637                 return NV_TEST_COUNT_EXTENDED;
3638         else
3639                 return NV_TEST_COUNT_BASE;
3640 }
3641
3642 static int nv_link_test(struct net_device *dev)
3643 {
3644         struct fe_priv *np = netdev_priv(dev);
3645         int mii_status;
3646
3647         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3648         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
3649
3650         /* check phy link status */
3651         if (!(mii_status & BMSR_LSTATUS))
3652                 return 0;
3653         else
3654                 return 1;
3655 }
3656
3657 static int nv_register_test(struct net_device *dev)
3658 {
3659         u8 __iomem *base = get_hwbase(dev);
3660         int i = 0;
3661         u32 orig_read, new_read;
3662
3663         do {
3664                 orig_read = readl(base + nv_registers_test[i].reg);
3665
3666                 /* xor with mask to toggle bits */
3667                 orig_read ^= nv_registers_test[i].mask;
3668
3669                 writel(orig_read, base + nv_registers_test[i].reg);
3670
3671                 new_read = readl(base + nv_registers_test[i].reg);
3672
3673                 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
3674                         return 0;
3675
3676                 /* restore original value */
3677                 orig_read ^= nv_registers_test[i].mask;
3678                 writel(orig_read, base + nv_registers_test[i].reg);
3679
3680         } while (nv_registers_test[++i].reg != 0);
3681
3682         return 1;
3683 }
3684
3685 static int nv_interrupt_test(struct net_device *dev)
3686 {
3687         struct fe_priv *np = netdev_priv(dev);
3688         u8 __iomem *base = get_hwbase(dev);
3689         int ret = 1;
3690         int testcnt;
3691         u32 save_msi_flags, save_poll_interval = 0;
3692
3693         if (netif_running(dev)) {
3694                 /* free current irq */
3695                 nv_free_irq(dev);
3696                 save_poll_interval = readl(base+NvRegPollingInterval);
3697         }
3698
3699         /* flag to test interrupt handler */
3700         np->intr_test = 0;
3701
3702         /* setup test irq */
3703         save_msi_flags = np->msi_flags;
3704         np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
3705         np->msi_flags |= 0x001; /* setup 1 vector */
3706         if (nv_request_irq(dev, 1))
3707                 return 0;
3708
3709         /* setup timer interrupt */
3710         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
3711         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3712
3713         nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
3714
3715         /* wait for at least one interrupt */
3716         msleep(100);
3717
3718         spin_lock_irq(&np->lock);
3719
3720         /* flag should be set within ISR */
3721         testcnt = np->intr_test;
3722         if (!testcnt)
3723                 ret = 2;
3724
3725         nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
3726         if (!(np->msi_flags & NV_MSI_X_ENABLED))
3727                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3728         else
3729                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3730
3731         spin_unlock_irq(&np->lock);
3732
3733         nv_free_irq(dev);
3734
3735         np->msi_flags = save_msi_flags;
3736
3737         if (netif_running(dev)) {
3738                 writel(save_poll_interval, base + NvRegPollingInterval);
3739                 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
3740                 /* restore original irq */
3741                 if (nv_request_irq(dev, 0))
3742                         return 0;
3743         }
3744
3745         return ret;
3746 }
3747
3748 static int nv_loopback_test(struct net_device *dev)
3749 {
3750         struct fe_priv *np = netdev_priv(dev);
3751         u8 __iomem *base = get_hwbase(dev);
3752         struct sk_buff *tx_skb, *rx_skb;
3753         dma_addr_t test_dma_addr;
3754         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
3755         u32 flags;
3756         int len, i, pkt_len;
3757         u8 *pkt_data;
3758         u32 filter_flags = 0;
3759         u32 misc1_flags = 0;
3760         int ret = 1;
3761
3762         if (netif_running(dev)) {
3763                 nv_disable_irq(dev);
3764                 filter_flags = readl(base + NvRegPacketFilterFlags);
3765                 misc1_flags = readl(base + NvRegMisc1);
3766         } else {
3767                 nv_txrx_reset(dev);
3768         }
3769
3770         /* reinit driver view of the rx queue */
3771         set_bufsize(dev);
3772         nv_init_ring(dev);
3773
3774         /* setup hardware for loopback */
3775         writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
3776         writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
3777
3778         /* reinit nic view of the rx queue */
3779         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3780         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3781         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3782                 base + NvRegRingSizes);
3783         pci_push(base);
3784
3785         /* restart rx engine */
3786         nv_start_rx(dev);
3787         nv_start_tx(dev);
3788
3789         /* setup packet for tx */
3790         pkt_len = ETH_DATA_LEN;
3791         tx_skb = dev_alloc_skb(pkt_len);
3792         pkt_data = skb_put(tx_skb, pkt_len);
3793         for (i = 0; i < pkt_len; i++)
3794                 pkt_data[i] = (u8)(i & 0xff);
3795         test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
3796                                        tx_skb->end-tx_skb->data, PCI_DMA_FROMDEVICE);
3797
3798         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3799                 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
3800                 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
3801         } else {
3802                 np->tx_ring.ex[0].bufhigh = cpu_to_le64(test_dma_addr) >> 32;
3803                 np->tx_ring.ex[0].buflow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
3804                 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
3805         }
3806         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3807         pci_push(get_hwbase(dev));
3808
3809         msleep(500);
3810
3811         /* check for rx of the packet */
3812         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3813                 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
3814                 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
3815
3816         } else {
3817                 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
3818                 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
3819         }
3820
3821         if (flags & NV_RX_AVAIL) {
3822                 ret = 0;
3823         } else if (np->desc_ver == DESC_VER_1) {
3824                 if (flags & NV_RX_ERROR)
3825                         ret = 0;
3826         } else {
3827                 if (flags & NV_RX2_ERROR) {
3828                         ret = 0;
3829                 }
3830         }
3831
3832         if (ret) {
3833                 if (len != pkt_len) {
3834                         ret = 0;
3835                         dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
3836                                 dev->name, len, pkt_len);
3837                 } else {
3838                         rx_skb = np->rx_skbuff[0];
3839                         for (i = 0; i < pkt_len; i++) {
3840                                 if (rx_skb->data[i] != (u8)(i & 0xff)) {
3841                                         ret = 0;
3842                                         dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
3843                                                 dev->name, i);
3844                                         break;
3845                                 }
3846                         }
3847                 }
3848         } else {
3849                 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
3850         }
3851
3852         pci_unmap_page(np->pci_dev, test_dma_addr,
3853                        tx_skb->end-tx_skb->data,
3854                        PCI_DMA_TODEVICE);
3855         dev_kfree_skb_any(tx_skb);
3856
3857         /* stop engines */
3858         nv_stop_rx(dev);
3859         nv_stop_tx(dev);
3860         nv_txrx_reset(dev);
3861         /* drain rx queue */
3862         nv_drain_rx(dev);
3863         nv_drain_tx(dev);
3864
3865         if (netif_running(dev)) {
3866                 writel(misc1_flags, base + NvRegMisc1);
3867                 writel(filter_flags, base + NvRegPacketFilterFlags);
3868                 nv_enable_irq(dev);
3869         }
3870
3871         return ret;
3872 }
3873
3874 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
3875 {
3876         struct fe_priv *np = netdev_priv(dev);
3877         u8 __iomem *base = get_hwbase(dev);
3878         int result;
3879         memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
3880
3881         if (!nv_link_test(dev)) {
3882                 test->flags |= ETH_TEST_FL_FAILED;
3883                 buffer[0] = 1;
3884         }
3885
3886         if (test->flags & ETH_TEST_FL_OFFLINE) {
3887                 if (netif_running(dev)) {
3888                         netif_stop_queue(dev);
3889                         netif_poll_disable(dev);
3890                         netif_tx_lock_bh(dev);
3891                         spin_lock_irq(&np->lock);
3892                         nv_disable_hw_interrupts(dev, np->irqmask);
3893                         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3894                                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3895                         } else {
3896                                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3897                         }
3898                         /* stop engines */
3899                         nv_stop_rx(dev);
3900                         nv_stop_tx(dev);
3901                         nv_txrx_reset(dev);
3902                         /* drain rx queue */
3903                         nv_drain_rx(dev);
3904                         nv_drain_tx(dev);
3905                         spin_unlock_irq(&np->lock);
3906                         netif_tx_unlock_bh(dev);
3907                 }
3908
3909                 if (!nv_register_test(dev)) {
3910                         test->flags |= ETH_TEST_FL_FAILED;
3911                         buffer[1] = 1;
3912                 }
3913
3914                 result = nv_interrupt_test(dev);
3915                 if (result != 1) {
3916                         test->flags |= ETH_TEST_FL_FAILED;
3917                         buffer[2] = 1;
3918                 }
3919                 if (result == 0) {
3920                         /* bail out */
3921                         return;
3922                 }
3923
3924                 if (!nv_loopback_test(dev)) {
3925                         test->flags |= ETH_TEST_FL_FAILED;
3926                         buffer[3] = 1;
3927                 }
3928
3929                 if (netif_running(dev)) {
3930                         /* reinit driver view of the rx queue */
3931                         set_bufsize(dev);
3932                         if (nv_init_ring(dev)) {
3933                                 if (!np->in_shutdown)
3934                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3935                         }
3936                         /* reinit nic view of the rx queue */
3937                         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3938                         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3939                         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3940                                 base + NvRegRingSizes);
3941                         pci_push(base);
3942                         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3943                         pci_push(base);
3944                         /* restart rx engine */
3945                         nv_start_rx(dev);
3946                         nv_start_tx(dev);
3947                         netif_start_queue(dev);
3948                         netif_poll_enable(dev);
3949                         nv_enable_hw_interrupts(dev, np->irqmask);
3950                 }
3951         }
3952 }
3953
3954 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
3955 {
3956         switch (stringset) {
3957         case ETH_SS_STATS:
3958                 memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
3959                 break;
3960         case ETH_SS_TEST:
3961                 memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
3962                 break;
3963         }
3964 }
3965
3966 static const struct ethtool_ops ops = {
3967         .get_drvinfo = nv_get_drvinfo,
3968         .get_link = ethtool_op_get_link,
3969         .get_wol = nv_get_wol,
3970         .set_wol = nv_set_wol,
3971         .get_settings = nv_get_settings,
3972         .set_settings = nv_set_settings,
3973         .get_regs_len = nv_get_regs_len,
3974         .get_regs = nv_get_regs,
3975         .nway_reset = nv_nway_reset,
3976         .get_perm_addr = ethtool_op_get_perm_addr,
3977         .get_tso = ethtool_op_get_tso,
3978         .set_tso = nv_set_tso,
3979         .get_ringparam = nv_get_ringparam,
3980         .set_ringparam = nv_set_ringparam,
3981         .get_pauseparam = nv_get_pauseparam,
3982         .set_pauseparam = nv_set_pauseparam,
3983         .get_rx_csum = nv_get_rx_csum,
3984         .set_rx_csum = nv_set_rx_csum,
3985         .get_tx_csum = ethtool_op_get_tx_csum,
3986         .set_tx_csum = nv_set_tx_csum,
3987         .get_sg = ethtool_op_get_sg,
3988         .set_sg = nv_set_sg,
3989         .get_strings = nv_get_strings,
3990         .get_stats_count = nv_get_stats_count,
3991         .get_ethtool_stats = nv_get_ethtool_stats,
3992         .self_test_count = nv_self_test_count,
3993         .self_test = nv_self_test,
3994 };
3995
3996 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
3997 {
3998         struct fe_priv *np = get_nvpriv(dev);
3999
4000         spin_lock_irq(&np->lock);
4001
4002         /* save vlan group */
4003         np->vlangrp = grp;
4004
4005         if (grp) {
4006                 /* enable vlan on MAC */
4007                 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
4008         } else {
4009                 /* disable vlan on MAC */
4010                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
4011                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
4012         }
4013
4014         writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4015
4016         spin_unlock_irq(&np->lock);
4017 };
4018
4019 static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
4020 {
4021         /* nothing to do */
4022 };
4023
4024 static int nv_open(struct net_device *dev)
4025 {
4026         struct fe_priv *np = netdev_priv(dev);
4027         u8 __iomem *base = get_hwbase(dev);
4028         int ret = 1;
4029         int oom, i;
4030
4031         dprintk(KERN_DEBUG "nv_open: begin\n");
4032
4033         /* erase previous misconfiguration */
4034         if (np->driver_data & DEV_HAS_POWER_CNTRL)
4035                 nv_mac_reset(dev);
4036         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4037         writel(0, base + NvRegMulticastAddrB);
4038         writel(0, base + NvRegMulticastMaskA);
4039         writel(0, base + NvRegMulticastMaskB);
4040         writel(0, base + NvRegPacketFilterFlags);
4041
4042         writel(0, base + NvRegTransmitterControl);
4043         writel(0, base + NvRegReceiverControl);
4044
4045         writel(0, base + NvRegAdapterControl);
4046
4047         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
4048                 writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
4049
4050         /* initialize descriptor rings */
4051         set_bufsize(dev);
4052         oom = nv_init_ring(dev);
4053
4054         writel(0, base + NvRegLinkSpeed);
4055         writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
4056         nv_txrx_reset(dev);
4057         writel(0, base + NvRegUnknownSetupReg6);
4058
4059         np->in_shutdown = 0;
4060
4061         /* give hw rings */
4062         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4063         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4064                 base + NvRegRingSizes);
4065
4066         writel(np->linkspeed, base + NvRegLinkSpeed);
4067         if (np->desc_ver == DESC_VER_1)
4068                 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
4069         else
4070                 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
4071         writel(np->txrxctl_bits, base + NvRegTxRxControl);
4072         writel(np->vlanctl_bits, base + NvRegVlanControl);
4073         pci_push(base);
4074         writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
4075         reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
4076                         NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
4077                         KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
4078
4079         writel(0, base + NvRegUnknownSetupReg4);
4080         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4081         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
4082
4083         writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
4084         writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
4085         writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
4086         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4087
4088         writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
4089         get_random_bytes(&i, sizeof(i));
4090         writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
4091         writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
4092         writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
4093         if (poll_interval == -1) {
4094                 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
4095                         writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
4096                 else
4097                         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4098         }
4099         else
4100                 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
4101         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4102         writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
4103                         base + NvRegAdapterControl);
4104         writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
4105         writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
4106         if (np->wolenabled)
4107                 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
4108
4109         i = readl(base + NvRegPowerState);
4110         if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
4111                 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
4112
4113         pci_push(base);
4114         udelay(10);
4115         writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
4116
4117         nv_disable_hw_interrupts(dev, np->irqmask);
4118         pci_push(base);
4119         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
4120         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4121         pci_push(base);
4122
4123         if (nv_request_irq(dev, 0)) {
4124                 goto out_drain;
4125         }
4126
4127         /* ask for interrupts */
4128         nv_enable_hw_interrupts(dev, np->irqmask);
4129
4130         spin_lock_irq(&np->lock);
4131         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4132         writel(0, base + NvRegMulticastAddrB);
4133         writel(0, base + NvRegMulticastMaskA);
4134         writel(0, base + NvRegMulticastMaskB);
4135         writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
4136         /* One manual link speed update: Interrupts are enabled, future link
4137          * speed changes cause interrupts and are handled by nv_link_irq().
4138          */
4139         {
4140                 u32 miistat;
4141                 miistat = readl(base + NvRegMIIStatus);
4142                 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
4143                 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
4144         }
4145         /* set linkspeed to invalid value, thus force nv_update_linkspeed
4146          * to init hw */
4147         np->linkspeed = 0;
4148         ret = nv_update_linkspeed(dev);
4149         nv_start_rx(dev);
4150         nv_start_tx(dev);
4151         netif_start_queue(dev);
4152         netif_poll_enable(dev);
4153
4154         if (ret) {
4155                 netif_carrier_on(dev);
4156         } else {
4157                 printk("%s: no link during initialization.\n", dev->name);
4158                 netif_carrier_off(dev);
4159         }
4160         if (oom)
4161                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4162
4163         /* start statistics timer */
4164         if (np->driver_data & DEV_HAS_STATISTICS)
4165                 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
4166
4167         spin_unlock_irq(&np->lock);
4168
4169         return 0;
4170 out_drain:
4171         drain_ring(dev);
4172         return ret;
4173 }
4174
4175 static int nv_close(struct net_device *dev)
4176 {
4177         struct fe_priv *np = netdev_priv(dev);
4178         u8 __iomem *base;
4179
4180         spin_lock_irq(&np->lock);
4181         np->in_shutdown = 1;
4182         spin_unlock_irq(&np->lock);
4183         netif_poll_disable(dev);
4184         synchronize_irq(dev->irq);
4185
4186         del_timer_sync(&np->oom_kick);
4187         del_timer_sync(&np->nic_poll);
4188         del_timer_sync(&np->stats_poll);
4189
4190         netif_stop_queue(dev);
4191         spin_lock_irq(&np->lock);
4192         nv_stop_tx(dev);
4193         nv_stop_rx(dev);
4194         nv_txrx_reset(dev);
4195
4196         /* disable interrupts on the nic or we will lock up */
4197         base = get_hwbase(dev);
4198         nv_disable_hw_interrupts(dev, np->irqmask);
4199         pci_push(base);
4200         dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
4201
4202         spin_unlock_irq(&np->lock);
4203
4204         nv_free_irq(dev);
4205
4206         drain_ring(dev);
4207
4208         if (np->wolenabled)
4209                 nv_start_rx(dev);
4210
4211         /* FIXME: power down nic */
4212
4213         return 0;
4214 }
4215
4216 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
4217 {
4218         struct net_device *dev;
4219         struct fe_priv *np;
4220         unsigned long addr;
4221         u8 __iomem *base;
4222         int err, i;
4223         u32 powerstate, txreg;
4224
4225         dev = alloc_etherdev(sizeof(struct fe_priv));
4226         err = -ENOMEM;
4227         if (!dev)
4228                 goto out;
4229
4230         np = netdev_priv(dev);
4231         np->pci_dev = pci_dev;
4232         spin_lock_init(&np->lock);
4233         SET_MODULE_OWNER(dev);
4234         SET_NETDEV_DEV(dev, &pci_dev->dev);
4235
4236         init_timer(&np->oom_kick);
4237         np->oom_kick.data = (unsigned long) dev;
4238         np->oom_kick.function = &nv_do_rx_refill;       /* timer handler */
4239         init_timer(&np->nic_poll);
4240         np->nic_poll.data = (unsigned long) dev;
4241         np->nic_poll.function = &nv_do_nic_poll;        /* timer handler */
4242         init_timer(&np->stats_poll);
4243         np->stats_poll.data = (unsigned long) dev;
4244         np->stats_poll.function = &nv_do_stats_poll;    /* timer handler */
4245
4246         err = pci_enable_device(pci_dev);
4247         if (err) {
4248                 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
4249                                 err, pci_name(pci_dev));
4250                 goto out_free;
4251         }
4252
4253         pci_set_master(pci_dev);
4254
4255         err = pci_request_regions(pci_dev, DRV_NAME);
4256         if (err < 0)
4257                 goto out_disable;
4258
4259         if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS))
4260                 np->register_size = NV_PCI_REGSZ_VER2;
4261         else
4262                 np->register_size = NV_PCI_REGSZ_VER1;
4263
4264         err = -EINVAL;
4265         addr = 0;
4266         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4267                 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
4268                                 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
4269                                 pci_resource_len(pci_dev, i),
4270                                 pci_resource_flags(pci_dev, i));
4271                 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
4272                                 pci_resource_len(pci_dev, i) >= np->register_size) {
4273                         addr = pci_resource_start(pci_dev, i);
4274                         break;
4275                 }
4276         }
4277         if (i == DEVICE_COUNT_RESOURCE) {
4278                 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
4279                                         pci_name(pci_dev));
4280                 goto out_relreg;
4281         }
4282
4283         /* copy of driver data */
4284         np->driver_data = id->driver_data;
4285
4286         /* handle different descriptor versions */
4287         if (id->driver_data & DEV_HAS_HIGH_DMA) {
4288                 /* packet format 3: supports 40-bit addressing */
4289                 np->desc_ver = DESC_VER_3;
4290                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
4291                 if (dma_64bit) {
4292                         if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4293                                 printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
4294                                        pci_name(pci_dev));
4295                         } else {
4296                                 dev->features |= NETIF_F_HIGHDMA;
4297                                 printk(KERN_INFO "forcedeth: using HIGHDMA\n");
4298                         }
4299                         if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
4300                                 printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
4301                                        pci_name(pci_dev));
4302                         }
4303                 }
4304         } else if (id->driver_data & DEV_HAS_LARGEDESC) {
4305                 /* packet format 2: supports jumbo frames */
4306                 np->desc_ver = DESC_VER_2;
4307                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
4308         } else {
4309                 /* original packet format */
4310                 np->desc_ver = DESC_VER_1;
4311                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
4312         }
4313
4314         np->pkt_limit = NV_PKTLIMIT_1;
4315         if (id->driver_data & DEV_HAS_LARGEDESC)
4316                 np->pkt_limit = NV_PKTLIMIT_2;
4317
4318         if (id->driver_data & DEV_HAS_CHECKSUM) {
4319                 np->rx_csum = 1;
4320                 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4321                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
4322 #ifdef NETIF_F_TSO
4323                 dev->features |= NETIF_F_TSO;
4324 #endif
4325         }
4326
4327         np->vlanctl_bits = 0;
4328         if (id->driver_data & DEV_HAS_VLAN) {
4329                 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
4330                 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
4331                 dev->vlan_rx_register = nv_vlan_rx_register;
4332                 dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
4333         }
4334
4335         np->msi_flags = 0;
4336         if ((id->driver_data & DEV_HAS_MSI) && msi) {
4337                 np->msi_flags |= NV_MSI_CAPABLE;
4338         }
4339         if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
4340                 np->msi_flags |= NV_MSI_X_CAPABLE;
4341         }
4342
4343         np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
4344         if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
4345                 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
4346         }
4347
4348
4349         err = -ENOMEM;
4350         np->base = ioremap(addr, np->register_size);
4351         if (!np->base)
4352                 goto out_relreg;
4353         dev->base_addr = (unsigned long)np->base;
4354
4355         dev->irq = pci_dev->irq;
4356
4357         np->rx_ring_size = RX_RING_DEFAULT;
4358         np->tx_ring_size = TX_RING_DEFAULT;
4359         np->tx_limit_stop = np->tx_ring_size - TX_LIMIT_DIFFERENCE;
4360         np->tx_limit_start = np->tx_ring_size - TX_LIMIT_DIFFERENCE - 1;
4361
4362         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4363                 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
4364                                         sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
4365                                         &np->ring_addr);
4366                 if (!np->rx_ring.orig)
4367                         goto out_unmap;
4368                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4369         } else {
4370                 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
4371                                         sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
4372                                         &np->ring_addr);
4373                 if (!np->rx_ring.ex)
4374                         goto out_unmap;
4375                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4376         }
4377         np->rx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->rx_ring_size, GFP_KERNEL);
4378         np->rx_dma = kmalloc(sizeof(dma_addr_t) * np->rx_ring_size, GFP_KERNEL);
4379         np->tx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->tx_ring_size, GFP_KERNEL);
4380         np->tx_dma = kmalloc(sizeof(dma_addr_t) * np->tx_ring_size, GFP_KERNEL);
4381         np->tx_dma_len = kmalloc(sizeof(unsigned int) * np->tx_ring_size, GFP_KERNEL);
4382         if (!np->rx_skbuff || !np->rx_dma || !np->tx_skbuff || !np->tx_dma || !np->tx_dma_len)
4383                 goto out_freering;
4384         memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
4385         memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
4386         memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
4387         memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
4388         memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
4389
4390         dev->open = nv_open;
4391         dev->stop = nv_close;
4392         dev->hard_start_xmit = nv_start_xmit;
4393         dev->get_stats = nv_get_stats;
4394         dev->change_mtu = nv_change_mtu;
4395         dev->set_mac_address = nv_set_mac_address;
4396         dev->set_multicast_list = nv_set_multicast;
4397 #ifdef CONFIG_NET_POLL_CONTROLLER
4398         dev->poll_controller = nv_poll_controller;
4399 #endif
4400         dev->weight = 64;
4401 #ifdef CONFIG_FORCEDETH_NAPI
4402         dev->poll = nv_napi_poll;
4403 #endif
4404         SET_ETHTOOL_OPS(dev, &ops);
4405         dev->tx_timeout = nv_tx_timeout;
4406         dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
4407
4408         pci_set_drvdata(pci_dev, dev);
4409
4410         /* read the mac address */
4411         base = get_hwbase(dev);
4412         np->orig_mac[0] = readl(base + NvRegMacAddrA);
4413         np->orig_mac[1] = readl(base + NvRegMacAddrB);
4414
4415         /* check the workaround bit for correct mac address order */
4416         txreg = readl(base + NvRegTransmitPoll);
4417         if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
4418                 /* mac address is already in correct order */
4419                 dev->dev_addr[0] = (np->orig_mac[0] >>  0) & 0xff;
4420                 dev->dev_addr[1] = (np->orig_mac[0] >>  8) & 0xff;
4421                 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
4422                 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
4423                 dev->dev_addr[4] = (np->orig_mac[1] >>  0) & 0xff;
4424                 dev->dev_addr[5] = (np->orig_mac[1] >>  8) & 0xff;
4425         } else {
4426                 /* need to reverse mac address to correct order */
4427                 dev->dev_addr[0] = (np->orig_mac[1] >>  8) & 0xff;
4428                 dev->dev_addr[1] = (np->orig_mac[1] >>  0) & 0xff;
4429                 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
4430                 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
4431                 dev->dev_addr[4] = (np->orig_mac[0] >>  8) & 0xff;
4432                 dev->dev_addr[5] = (np->orig_mac[0] >>  0) & 0xff;
4433                 /* set permanent address to be correct aswell */
4434                 np->orig_mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
4435                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
4436                 np->orig_mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
4437                 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
4438         }
4439         memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
4440
4441         if (!is_valid_ether_addr(dev->perm_addr)) {
4442                 /*
4443                  * Bad mac address. At least one bios sets the mac address
4444                  * to 01:23:45:67:89:ab
4445                  */
4446                 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
4447                         pci_name(pci_dev),
4448                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
4449                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
4450                 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
4451                 dev->dev_addr[0] = 0x00;
4452                 dev->dev_addr[1] = 0x00;
4453                 dev->dev_addr[2] = 0x6c;
4454                 get_random_bytes(&dev->dev_addr[3], 3);
4455         }
4456
4457         dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
4458                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
4459                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
4460
4461         /* set mac address */
4462         nv_copy_mac_to_hw(dev);
4463
4464         /* disable WOL */
4465         writel(0, base + NvRegWakeUpFlags);
4466         np->wolenabled = 0;
4467
4468         if (id->driver_data & DEV_HAS_POWER_CNTRL) {
4469                 u8 revision_id;
4470                 pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
4471
4472                 /* take phy and nic out of low power mode */
4473                 powerstate = readl(base + NvRegPowerState2);
4474                 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
4475                 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
4476                      id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
4477                     revision_id >= 0xA3)
4478                         powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
4479                 writel(powerstate, base + NvRegPowerState2);
4480         }
4481
4482         if (np->desc_ver == DESC_VER_1) {
4483                 np->tx_flags = NV_TX_VALID;
4484         } else {
4485                 np->tx_flags = NV_TX2_VALID;
4486         }
4487         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
4488                 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
4489                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
4490                         np->msi_flags |= 0x0003;
4491         } else {
4492                 np->irqmask = NVREG_IRQMASK_CPU;
4493                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
4494                         np->msi_flags |= 0x0001;
4495         }
4496
4497         if (id->driver_data & DEV_NEED_TIMERIRQ)
4498                 np->irqmask |= NVREG_IRQ_TIMER;
4499         if (id->driver_data & DEV_NEED_LINKTIMER) {
4500                 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
4501                 np->need_linktimer = 1;
4502                 np->link_timeout = jiffies + LINK_TIMEOUT;
4503         } else {
4504                 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
4505                 np->need_linktimer = 0;
4506         }
4507
4508         /* find a suitable phy */
4509         for (i = 1; i <= 32; i++) {
4510                 int id1, id2;
4511                 int phyaddr = i & 0x1F;
4512
4513                 spin_lock_irq(&np->lock);
4514                 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
4515                 spin_unlock_irq(&np->lock);
4516                 if (id1 < 0 || id1 == 0xffff)
4517                         continue;
4518                 spin_lock_irq(&np->lock);
4519                 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
4520                 spin_unlock_irq(&np->lock);
4521                 if (id2 < 0 || id2 == 0xffff)
4522                         continue;
4523
4524                 np->phy_model = id2 & PHYID2_MODEL_MASK;
4525                 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
4526                 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
4527                 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
4528                         pci_name(pci_dev), id1, id2, phyaddr);
4529                 np->phyaddr = phyaddr;
4530                 np->phy_oui = id1 | id2;
4531                 break;
4532         }
4533         if (i == 33) {
4534                 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
4535                        pci_name(pci_dev));
4536                 goto out_error;
4537         }
4538
4539         /* reset it */
4540         phy_init(dev);
4541
4542         /* set default link speed settings */
4543         np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
4544         np->duplex = 0;
4545         np->autoneg = 1;
4546
4547         err = register_netdev(dev);
4548         if (err) {
4549                 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
4550                 goto out_error;
4551         }
4552         printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
4553                         dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
4554                         pci_name(pci_dev));
4555
4556         return 0;
4557
4558 out_error:
4559         pci_set_drvdata(pci_dev, NULL);
4560 out_freering:
4561         free_rings(dev);
4562 out_unmap:
4563         iounmap(get_hwbase(dev));
4564 out_relreg:
4565         pci_release_regions(pci_dev);
4566 out_disable:
4567         pci_disable_device(pci_dev);
4568 out_free:
4569         free_netdev(dev);
4570 out:
4571         return err;
4572 }
4573
4574 static void __devexit nv_remove(struct pci_dev *pci_dev)
4575 {
4576         struct net_device *dev = pci_get_drvdata(pci_dev);
4577         struct fe_priv *np = netdev_priv(dev);
4578         u8 __iomem *base = get_hwbase(dev);
4579
4580         unregister_netdev(dev);
4581
4582         /* special op: write back the misordered MAC address - otherwise
4583          * the next nv_probe would see a wrong address.
4584          */
4585         writel(np->orig_mac[0], base + NvRegMacAddrA);
4586         writel(np->orig_mac[1], base + NvRegMacAddrB);
4587
4588         /* free all structures */
4589         free_rings(dev);
4590         iounmap(get_hwbase(dev));
4591         pci_release_regions(pci_dev);
4592         pci_disable_device(pci_dev);
4593         free_netdev(dev);
4594         pci_set_drvdata(pci_dev, NULL);
4595 }
4596
4597 static struct pci_device_id pci_tbl[] = {
4598         {       /* nForce Ethernet Controller */
4599                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
4600                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4601         },
4602         {       /* nForce2 Ethernet Controller */
4603                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
4604                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4605         },
4606         {       /* nForce3 Ethernet Controller */
4607                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
4608                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
4609         },
4610         {       /* nForce3 Ethernet Controller */
4611                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
4612                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4613         },
4614         {       /* nForce3 Ethernet Controller */
4615                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
4616                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4617         },
4618         {       /* nForce3 Ethernet Controller */
4619                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
4620                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4621         },
4622         {       /* nForce3 Ethernet Controller */
4623                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
4624                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
4625         },
4626         {       /* CK804 Ethernet Controller */
4627                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
4628                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4629         },
4630         {       /* CK804 Ethernet Controller */
4631                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
4632                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4633         },
4634         {       /* MCP04 Ethernet Controller */
4635                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
4636                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4637         },
4638         {       /* MCP04 Ethernet Controller */
4639                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
4640                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
4641         },
4642         {       /* MCP51 Ethernet Controller */
4643                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
4644                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
4645         },
4646         {       /* MCP51 Ethernet Controller */
4647                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
4648                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
4649         },
4650         {       /* MCP55 Ethernet Controller */
4651                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
4652                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4653         },
4654         {       /* MCP55 Ethernet Controller */
4655                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
4656                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4657         },
4658         {       /* MCP61 Ethernet Controller */
4659                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
4660                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4661         },
4662         {       /* MCP61 Ethernet Controller */
4663                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
4664                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4665         },
4666         {       /* MCP61 Ethernet Controller */
4667                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
4668                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4669         },
4670         {       /* MCP61 Ethernet Controller */
4671                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
4672                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4673         },
4674         {       /* MCP65 Ethernet Controller */
4675                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
4676                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4677         },
4678         {       /* MCP65 Ethernet Controller */
4679                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
4680                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4681         },
4682         {       /* MCP65 Ethernet Controller */
4683                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
4684                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4685         },
4686         {       /* MCP65 Ethernet Controller */
4687                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
4688                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
4689         },
4690         {0,},
4691 };
4692
4693 static struct pci_driver driver = {
4694         .name = "forcedeth",
4695         .id_table = pci_tbl,
4696         .probe = nv_probe,
4697         .remove = __devexit_p(nv_remove),
4698 };
4699
4700
4701 static int __init init_nic(void)
4702 {
4703         printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
4704         return pci_register_driver(&driver);
4705 }
4706
4707 static void __exit exit_nic(void)
4708 {
4709         pci_unregister_driver(&driver);
4710 }
4711
4712 module_param(max_interrupt_work, int, 0);
4713 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
4714 module_param(optimization_mode, int, 0);
4715 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
4716 module_param(poll_interval, int, 0);
4717 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
4718 module_param(msi, int, 0);
4719 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
4720 module_param(msix, int, 0);
4721 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
4722 module_param(dma_64bit, int, 0);
4723 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
4724
4725 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
4726 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
4727 MODULE_LICENSE("GPL");
4728
4729 MODULE_DEVICE_TABLE(pci, pci_tbl);
4730
4731 module_init(init_nic);
4732 module_exit(exit_nic);