sfc: Fix efx_rx_buf_offset() in the presence of swiotlb
[pandora-kernel.git] / drivers / net / ethernet / sfc / rx.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <linux/prefetch.h>
18 #include <linux/moduleparam.h>
19 #include <net/ip.h>
20 #include <net/checksum.h>
21 #include "net_driver.h"
22 #include "efx.h"
23 #include "nic.h"
24 #include "selftest.h"
25 #include "workarounds.h"
26
27 /* Number of RX descriptors pushed at once. */
28 #define EFX_RX_BATCH  8
29
30 /* Maximum size of a buffer sharing a page */
31 #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
32
33 /* Size of buffer allocated for skb header area. */
34 #define EFX_SKB_HEADERS  64u
35
36 /*
37  * rx_alloc_method - RX buffer allocation method
38  *
39  * This driver supports two methods for allocating and using RX buffers:
40  * each RX buffer may be backed by an skb or by an order-n page.
41  *
42  * When GRO is in use then the second method has a lower overhead,
43  * since we don't have to allocate then free skbs on reassembled frames.
44  *
45  * Values:
46  *   - RX_ALLOC_METHOD_AUTO = 0
47  *   - RX_ALLOC_METHOD_SKB  = 1
48  *   - RX_ALLOC_METHOD_PAGE = 2
49  *
50  * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
51  * controlled by the parameters below.
52  *
53  *   - Since pushing and popping descriptors are separated by the rx_queue
54  *     size, so the watermarks should be ~rxd_size.
55  *   - The performance win by using page-based allocation for GRO is less
56  *     than the performance hit of using page-based allocation of non-GRO,
57  *     so the watermarks should reflect this.
58  *
59  * Per channel we maintain a single variable, updated by each channel:
60  *
61  *   rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO :
62  *                      RX_ALLOC_FACTOR_SKB)
63  * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
64  * limits the hysteresis), and update the allocation strategy:
65  *
66  *   rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ?
67  *                      RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
68  */
69 static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
70
71 #define RX_ALLOC_LEVEL_GRO 0x2000
72 #define RX_ALLOC_LEVEL_MAX 0x3000
73 #define RX_ALLOC_FACTOR_GRO 1
74 #define RX_ALLOC_FACTOR_SKB (-2)
75
76 /* This is the percentage fill level below which new RX descriptors
77  * will be added to the RX descriptor ring.
78  */
79 static unsigned int rx_refill_threshold = 90;
80
81 /* This is the percentage fill level to which an RX queue will be refilled
82  * when the "RX refill threshold" is reached.
83  */
84 static unsigned int rx_refill_limit = 95;
85
86 /*
87  * RX maximum head room required.
88  *
89  * This must be at least 1 to prevent overflow and at least 2 to allow
90  * pipelined receives.
91  */
92 #define EFX_RXD_HEAD_ROOM 2
93
94 /* Offset of ethernet header within page */
95 static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx,
96                                              struct efx_rx_buffer *buf)
97 {
98         return buf->page_offset + efx->type->rx_buffer_hash_size;
99 }
100 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
101 {
102         return PAGE_SIZE << efx->rx_buffer_order;
103 }
104
105 static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf)
106 {
107         if (buf->is_page)
108                 return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf);
109         else
110                 return ((u8 *)buf->u.skb->data +
111                         efx->type->rx_buffer_hash_size);
112 }
113
114 static inline u32 efx_rx_buf_hash(const u8 *eh)
115 {
116         /* The ethernet header is always directly after any hash. */
117 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
118         return __le32_to_cpup((const __le32 *)(eh - 4));
119 #else
120         const u8 *data = eh - 4;
121         return ((u32)data[0]       |
122                 (u32)data[1] << 8  |
123                 (u32)data[2] << 16 |
124                 (u32)data[3] << 24);
125 #endif
126 }
127
128 /**
129  * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
130  *
131  * @rx_queue:           Efx RX queue
132  *
133  * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
134  * struct efx_rx_buffer for each one. Return a negative error code or 0
135  * on success. May fail having only inserted fewer than EFX_RX_BATCH
136  * buffers.
137  */
138 static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
139 {
140         struct efx_nic *efx = rx_queue->efx;
141         struct net_device *net_dev = efx->net_dev;
142         struct efx_rx_buffer *rx_buf;
143         struct sk_buff *skb;
144         int skb_len = efx->rx_buffer_len;
145         unsigned index, count;
146
147         for (count = 0; count < EFX_RX_BATCH; ++count) {
148                 index = rx_queue->added_count & rx_queue->ptr_mask;
149                 rx_buf = efx_rx_buffer(rx_queue, index);
150
151                 rx_buf->u.skb = skb = netdev_alloc_skb(net_dev, skb_len);
152                 if (unlikely(!skb))
153                         return -ENOMEM;
154
155                 /* Adjust the SKB for padding */
156                 skb_reserve(skb, NET_IP_ALIGN);
157                 rx_buf->len = skb_len - NET_IP_ALIGN;
158                 rx_buf->is_page = false;
159
160                 rx_buf->dma_addr = pci_map_single(efx->pci_dev,
161                                                   skb->data, rx_buf->len,
162                                                   PCI_DMA_FROMDEVICE);
163                 if (unlikely(pci_dma_mapping_error(efx->pci_dev,
164                                                    rx_buf->dma_addr))) {
165                         dev_kfree_skb_any(skb);
166                         rx_buf->u.skb = NULL;
167                         return -EIO;
168                 }
169
170                 ++rx_queue->added_count;
171                 ++rx_queue->alloc_skb_count;
172         }
173
174         return 0;
175 }
176
177 /**
178  * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
179  *
180  * @rx_queue:           Efx RX queue
181  *
182  * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
183  * and populates struct efx_rx_buffers for each one. Return a negative error
184  * code or 0 on success. If a single page can be split between two buffers,
185  * then the page will either be inserted fully, or not at at all.
186  */
187 static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
188 {
189         struct efx_nic *efx = rx_queue->efx;
190         struct efx_rx_buffer *rx_buf;
191         struct page *page;
192         void *page_addr;
193         unsigned int page_offset;
194         struct efx_rx_page_state *state;
195         dma_addr_t dma_addr;
196         unsigned index, count;
197
198         /* We can split a page between two buffers */
199         BUILD_BUG_ON(EFX_RX_BATCH & 1);
200
201         for (count = 0; count < EFX_RX_BATCH; ++count) {
202                 page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
203                                    efx->rx_buffer_order);
204                 if (unlikely(page == NULL))
205                         return -ENOMEM;
206                 dma_addr = pci_map_page(efx->pci_dev, page, 0,
207                                         efx_rx_buf_size(efx),
208                                         PCI_DMA_FROMDEVICE);
209                 if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
210                         __free_pages(page, efx->rx_buffer_order);
211                         return -EIO;
212                 }
213                 page_addr = page_address(page);
214                 state = page_addr;
215                 state->refcnt = 0;
216                 state->dma_addr = dma_addr;
217
218                 page_addr += sizeof(struct efx_rx_page_state);
219                 dma_addr += sizeof(struct efx_rx_page_state);
220                 page_offset = sizeof(struct efx_rx_page_state);
221
222         split:
223                 index = rx_queue->added_count & rx_queue->ptr_mask;
224                 rx_buf = efx_rx_buffer(rx_queue, index);
225                 rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
226                 rx_buf->u.page = page;
227                 rx_buf->page_offset = page_offset + EFX_PAGE_IP_ALIGN;
228                 rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
229                 rx_buf->is_page = true;
230                 ++rx_queue->added_count;
231                 ++rx_queue->alloc_page_count;
232                 ++state->refcnt;
233
234                 if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
235                         /* Use the second half of the page */
236                         get_page(page);
237                         dma_addr += (PAGE_SIZE >> 1);
238                         page_addr += (PAGE_SIZE >> 1);
239                         page_offset += (PAGE_SIZE >> 1);
240                         ++count;
241                         goto split;
242                 }
243         }
244
245         return 0;
246 }
247
248 static void efx_unmap_rx_buffer(struct efx_nic *efx,
249                                 struct efx_rx_buffer *rx_buf,
250                                 unsigned int used_len)
251 {
252         if (rx_buf->is_page && rx_buf->u.page) {
253                 struct efx_rx_page_state *state;
254
255                 state = page_address(rx_buf->u.page);
256                 if (--state->refcnt == 0) {
257                         pci_unmap_page(efx->pci_dev,
258                                        state->dma_addr,
259                                        efx_rx_buf_size(efx),
260                                        PCI_DMA_FROMDEVICE);
261                 } else if (used_len) {
262                         dma_sync_single_for_cpu(&efx->pci_dev->dev,
263                                                 rx_buf->dma_addr, used_len,
264                                                 DMA_FROM_DEVICE);
265                 }
266         } else if (!rx_buf->is_page && rx_buf->u.skb) {
267                 pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
268                                  rx_buf->len, PCI_DMA_FROMDEVICE);
269         }
270 }
271
272 static void efx_free_rx_buffer(struct efx_nic *efx,
273                                struct efx_rx_buffer *rx_buf)
274 {
275         if (rx_buf->is_page && rx_buf->u.page) {
276                 __free_pages(rx_buf->u.page, efx->rx_buffer_order);
277                 rx_buf->u.page = NULL;
278         } else if (!rx_buf->is_page && rx_buf->u.skb) {
279                 dev_kfree_skb_any(rx_buf->u.skb);
280                 rx_buf->u.skb = NULL;
281         }
282 }
283
284 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
285                                struct efx_rx_buffer *rx_buf)
286 {
287         efx_unmap_rx_buffer(rx_queue->efx, rx_buf, 0);
288         efx_free_rx_buffer(rx_queue->efx, rx_buf);
289 }
290
291 /* Attempt to resurrect the other receive buffer that used to share this page,
292  * which had previously been passed up to the kernel and freed. */
293 static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
294                                     struct efx_rx_buffer *rx_buf)
295 {
296         struct efx_rx_page_state *state = page_address(rx_buf->u.page);
297         struct efx_rx_buffer *new_buf;
298         unsigned fill_level, index;
299
300         /* +1 because efx_rx_packet() incremented removed_count. +1 because
301          * we'd like to insert an additional descriptor whilst leaving
302          * EFX_RXD_HEAD_ROOM for the non-recycle path */
303         fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
304         if (unlikely(fill_level > rx_queue->max_fill)) {
305                 /* We could place "state" on a list, and drain the list in
306                  * efx_fast_push_rx_descriptors(). For now, this will do. */
307                 return;
308         }
309
310         ++state->refcnt;
311         get_page(rx_buf->u.page);
312
313         index = rx_queue->added_count & rx_queue->ptr_mask;
314         new_buf = efx_rx_buffer(rx_queue, index);
315         new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
316         new_buf->u.page = rx_buf->u.page;
317         new_buf->len = rx_buf->len;
318         new_buf->is_page = true;
319         ++rx_queue->added_count;
320 }
321
322 /* Recycle the given rx buffer directly back into the rx_queue. There is
323  * always room to add this buffer, because we've just popped a buffer. */
324 static void efx_recycle_rx_buffer(struct efx_channel *channel,
325                                   struct efx_rx_buffer *rx_buf)
326 {
327         struct efx_nic *efx = channel->efx;
328         struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
329         struct efx_rx_buffer *new_buf;
330         unsigned index;
331
332         if (rx_buf->is_page && efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
333             page_count(rx_buf->u.page) == 1)
334                 efx_resurrect_rx_buffer(rx_queue, rx_buf);
335
336         index = rx_queue->added_count & rx_queue->ptr_mask;
337         new_buf = efx_rx_buffer(rx_queue, index);
338
339         memcpy(new_buf, rx_buf, sizeof(*new_buf));
340         rx_buf->u.page = NULL;
341         ++rx_queue->added_count;
342 }
343
344 /**
345  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
346  * @rx_queue:           RX descriptor queue
347  * This will aim to fill the RX descriptor queue up to
348  * @rx_queue->@fast_fill_limit. If there is insufficient atomic
349  * memory to do so, a slow fill will be scheduled.
350  *
351  * The caller must provide serialisation (none is used here). In practise,
352  * this means this function must run from the NAPI handler, or be called
353  * when NAPI is disabled.
354  */
355 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
356 {
357         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
358         unsigned fill_level;
359         int space, rc = 0;
360
361         /* Calculate current fill level, and exit if we don't need to fill */
362         fill_level = (rx_queue->added_count - rx_queue->removed_count);
363         EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
364         if (fill_level >= rx_queue->fast_fill_trigger)
365                 goto out;
366
367         /* Record minimum fill level */
368         if (unlikely(fill_level < rx_queue->min_fill)) {
369                 if (fill_level)
370                         rx_queue->min_fill = fill_level;
371         }
372
373         space = rx_queue->fast_fill_limit - fill_level;
374         if (space < EFX_RX_BATCH)
375                 goto out;
376
377         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
378                    "RX queue %d fast-filling descriptor ring from"
379                    " level %d to level %d using %s allocation\n",
380                    efx_rx_queue_index(rx_queue), fill_level,
381                    rx_queue->fast_fill_limit,
382                    channel->rx_alloc_push_pages ? "page" : "skb");
383
384         do {
385                 if (channel->rx_alloc_push_pages)
386                         rc = efx_init_rx_buffers_page(rx_queue);
387                 else
388                         rc = efx_init_rx_buffers_skb(rx_queue);
389                 if (unlikely(rc)) {
390                         /* Ensure that we don't leave the rx queue empty */
391                         if (rx_queue->added_count == rx_queue->removed_count)
392                                 efx_schedule_slow_fill(rx_queue);
393                         goto out;
394                 }
395         } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
396
397         netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
398                    "RX queue %d fast-filled descriptor ring "
399                    "to level %d\n", efx_rx_queue_index(rx_queue),
400                    rx_queue->added_count - rx_queue->removed_count);
401
402  out:
403         if (rx_queue->notified_count != rx_queue->added_count)
404                 efx_nic_notify_rx_desc(rx_queue);
405 }
406
407 void efx_rx_slow_fill(unsigned long context)
408 {
409         struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
410         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
411
412         /* Post an event to cause NAPI to run and refill the queue */
413         efx_nic_generate_fill_event(channel);
414         ++rx_queue->slow_fill_count;
415 }
416
417 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
418                                      struct efx_rx_buffer *rx_buf,
419                                      int len, bool *discard,
420                                      bool *leak_packet)
421 {
422         struct efx_nic *efx = rx_queue->efx;
423         unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
424
425         if (likely(len <= max_len))
426                 return;
427
428         /* The packet must be discarded, but this is only a fatal error
429          * if the caller indicated it was
430          */
431         *discard = true;
432
433         if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
434                 if (net_ratelimit())
435                         netif_err(efx, rx_err, efx->net_dev,
436                                   " RX queue %d seriously overlength "
437                                   "RX event (0x%x > 0x%x+0x%x). Leaking\n",
438                                   efx_rx_queue_index(rx_queue), len, max_len,
439                                   efx->type->rx_buffer_padding);
440                 /* If this buffer was skb-allocated, then the meta
441                  * data at the end of the skb will be trashed. So
442                  * we have no choice but to leak the fragment.
443                  */
444                 *leak_packet = !rx_buf->is_page;
445                 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
446         } else {
447                 if (net_ratelimit())
448                         netif_err(efx, rx_err, efx->net_dev,
449                                   " RX queue %d overlength RX event "
450                                   "(0x%x > 0x%x)\n",
451                                   efx_rx_queue_index(rx_queue), len, max_len);
452         }
453
454         efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
455 }
456
457 /* Pass a received packet up through the generic GRO stack
458  *
459  * Handles driverlink veto, and passes the fragment up via
460  * the appropriate GRO method
461  */
462 static void efx_rx_packet_gro(struct efx_channel *channel,
463                               struct efx_rx_buffer *rx_buf,
464                               const u8 *eh, bool checksummed)
465 {
466         struct napi_struct *napi = &channel->napi_str;
467         gro_result_t gro_result;
468
469         /* Pass the skb/page into the GRO engine */
470         if (rx_buf->is_page) {
471                 struct efx_nic *efx = channel->efx;
472                 struct page *page = rx_buf->u.page;
473                 struct sk_buff *skb;
474
475                 rx_buf->u.page = NULL;
476
477                 skb = napi_get_frags(napi);
478                 if (!skb) {
479                         put_page(page);
480                         return;
481                 }
482
483                 if (efx->net_dev->features & NETIF_F_RXHASH)
484                         skb->rxhash = efx_rx_buf_hash(eh);
485
486                 skb_frag_set_page(skb, 0, page);
487                 skb_shinfo(skb)->frags[0].page_offset =
488                         efx_rx_buf_offset(efx, rx_buf);
489                 skb_frag_size_set(&skb_shinfo(skb)->frags[0], rx_buf->len);
490                 skb_shinfo(skb)->nr_frags = 1;
491
492                 skb->len = rx_buf->len;
493                 skb->data_len = rx_buf->len;
494                 skb->truesize += rx_buf->len;
495                 skb->ip_summed =
496                         checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE;
497
498                 skb_record_rx_queue(skb, channel->channel);
499
500                 gro_result = napi_gro_frags(napi);
501         } else {
502                 struct sk_buff *skb = rx_buf->u.skb;
503
504                 EFX_BUG_ON_PARANOID(!checksummed);
505                 rx_buf->u.skb = NULL;
506                 skb->ip_summed = CHECKSUM_UNNECESSARY;
507
508                 gro_result = napi_gro_receive(napi, skb);
509         }
510
511         if (gro_result == GRO_NORMAL) {
512                 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
513         } else if (gro_result != GRO_DROP) {
514                 channel->rx_alloc_level += RX_ALLOC_FACTOR_GRO;
515                 channel->irq_mod_score += 2;
516         }
517 }
518
519 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
520                    unsigned int len, bool checksummed, bool discard)
521 {
522         struct efx_nic *efx = rx_queue->efx;
523         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
524         struct efx_rx_buffer *rx_buf;
525         bool leak_packet = false;
526
527         rx_buf = efx_rx_buffer(rx_queue, index);
528
529         /* This allows the refill path to post another buffer.
530          * EFX_RXD_HEAD_ROOM ensures that the slot we are using
531          * isn't overwritten yet.
532          */
533         rx_queue->removed_count++;
534
535         /* Validate the length encoded in the event vs the descriptor pushed */
536         efx_rx_packet__check_len(rx_queue, rx_buf, len,
537                                  &discard, &leak_packet);
538
539         netif_vdbg(efx, rx_status, efx->net_dev,
540                    "RX queue %d received id %x at %llx+%x %s%s\n",
541                    efx_rx_queue_index(rx_queue), index,
542                    (unsigned long long)rx_buf->dma_addr, len,
543                    (checksummed ? " [SUMMED]" : ""),
544                    (discard ? " [DISCARD]" : ""));
545
546         /* Discard packet, if instructed to do so */
547         if (unlikely(discard)) {
548                 if (unlikely(leak_packet))
549                         channel->n_skbuff_leaks++;
550                 else
551                         efx_recycle_rx_buffer(channel, rx_buf);
552
553                 /* Don't hold off the previous receive */
554                 rx_buf = NULL;
555                 goto out;
556         }
557
558         /* Release and/or sync DMA mapping - assumes all RX buffers
559          * consumed in-order per RX queue
560          */
561         efx_unmap_rx_buffer(efx, rx_buf, len);
562
563         /* Prefetch nice and early so data will (hopefully) be in cache by
564          * the time we look at it.
565          */
566         prefetch(efx_rx_buf_eh(efx, rx_buf));
567
568         /* Pipeline receives so that we give time for packet headers to be
569          * prefetched into cache.
570          */
571         rx_buf->len = len - efx->type->rx_buffer_hash_size;
572 out:
573         if (channel->rx_pkt)
574                 __efx_rx_packet(channel,
575                                 channel->rx_pkt, channel->rx_pkt_csummed);
576         channel->rx_pkt = rx_buf;
577         channel->rx_pkt_csummed = checksummed;
578 }
579
580 /* Handle a received packet.  Second half: Touches packet payload. */
581 void __efx_rx_packet(struct efx_channel *channel,
582                      struct efx_rx_buffer *rx_buf, bool checksummed)
583 {
584         struct efx_nic *efx = channel->efx;
585         struct sk_buff *skb;
586         u8 *eh = efx_rx_buf_eh(efx, rx_buf);
587
588         /* If we're in loopback test, then pass the packet directly to the
589          * loopback layer, and free the rx_buf here
590          */
591         if (unlikely(efx->loopback_selftest)) {
592                 efx_loopback_rx_packet(efx, eh, rx_buf->len);
593                 efx_free_rx_buffer(efx, rx_buf);
594                 return;
595         }
596
597         if (!rx_buf->is_page) {
598                 skb = rx_buf->u.skb;
599
600                 prefetch(skb_shinfo(skb));
601
602                 skb_reserve(skb, efx->type->rx_buffer_hash_size);
603                 skb_put(skb, rx_buf->len);
604
605                 if (efx->net_dev->features & NETIF_F_RXHASH)
606                         skb->rxhash = efx_rx_buf_hash(eh);
607
608                 /* Move past the ethernet header. rx_buf->data still points
609                  * at the ethernet header */
610                 skb->protocol = eth_type_trans(skb, efx->net_dev);
611
612                 skb_record_rx_queue(skb, channel->channel);
613         }
614
615         if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
616                 checksummed = false;
617
618         if (likely(checksummed || rx_buf->is_page)) {
619                 efx_rx_packet_gro(channel, rx_buf, eh, checksummed);
620                 return;
621         }
622
623         /* We now own the SKB */
624         skb = rx_buf->u.skb;
625         rx_buf->u.skb = NULL;
626
627         /* Set the SKB flags */
628         skb_checksum_none_assert(skb);
629
630         /* Pass the packet up */
631         netif_receive_skb(skb);
632
633         /* Update allocation strategy method */
634         channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
635 }
636
637 void efx_rx_strategy(struct efx_channel *channel)
638 {
639         enum efx_rx_alloc_method method = rx_alloc_method;
640
641         /* Only makes sense to use page based allocation if GRO is enabled */
642         if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
643                 method = RX_ALLOC_METHOD_SKB;
644         } else if (method == RX_ALLOC_METHOD_AUTO) {
645                 /* Constrain the rx_alloc_level */
646                 if (channel->rx_alloc_level < 0)
647                         channel->rx_alloc_level = 0;
648                 else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
649                         channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
650
651                 /* Decide on the allocation method */
652                 method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_GRO) ?
653                           RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
654         }
655
656         /* Push the option */
657         channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
658 }
659
660 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
661 {
662         struct efx_nic *efx = rx_queue->efx;
663         unsigned int entries;
664         int rc;
665
666         /* Create the smallest power-of-two aligned ring */
667         entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
668         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
669         rx_queue->ptr_mask = entries - 1;
670
671         netif_dbg(efx, probe, efx->net_dev,
672                   "creating RX queue %d size %#x mask %#x\n",
673                   efx_rx_queue_index(rx_queue), efx->rxq_entries,
674                   rx_queue->ptr_mask);
675
676         /* Allocate RX buffers */
677         rx_queue->buffer = kzalloc(entries * sizeof(*rx_queue->buffer),
678                                    GFP_KERNEL);
679         if (!rx_queue->buffer)
680                 return -ENOMEM;
681
682         rc = efx_nic_probe_rx(rx_queue);
683         if (rc) {
684                 kfree(rx_queue->buffer);
685                 rx_queue->buffer = NULL;
686         }
687         return rc;
688 }
689
690 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
691 {
692         struct efx_nic *efx = rx_queue->efx;
693         unsigned int max_fill, trigger, limit;
694
695         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
696                   "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
697
698         /* Initialise ptr fields */
699         rx_queue->added_count = 0;
700         rx_queue->notified_count = 0;
701         rx_queue->removed_count = 0;
702         rx_queue->min_fill = -1U;
703
704         /* Initialise limit fields */
705         max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
706         trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
707         limit = max_fill * min(rx_refill_limit, 100U) / 100U;
708
709         rx_queue->max_fill = max_fill;
710         rx_queue->fast_fill_trigger = trigger;
711         rx_queue->fast_fill_limit = limit;
712
713         /* Set up RX descriptor ring */
714         efx_nic_init_rx(rx_queue);
715 }
716
717 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
718 {
719         int i;
720         struct efx_rx_buffer *rx_buf;
721
722         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
723                   "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
724
725         del_timer_sync(&rx_queue->slow_fill);
726         efx_nic_fini_rx(rx_queue);
727
728         /* Release RX buffers NB start at index 0 not current HW ptr */
729         if (rx_queue->buffer) {
730                 for (i = 0; i <= rx_queue->ptr_mask; i++) {
731                         rx_buf = efx_rx_buffer(rx_queue, i);
732                         efx_fini_rx_buffer(rx_queue, rx_buf);
733                 }
734         }
735 }
736
737 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
738 {
739         netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
740                   "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
741
742         efx_nic_remove_rx(rx_queue);
743
744         kfree(rx_queue->buffer);
745         rx_queue->buffer = NULL;
746 }
747
748
749 module_param(rx_alloc_method, int, 0644);
750 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
751
752 module_param(rx_refill_threshold, uint, 0444);
753 MODULE_PARM_DESC(rx_refill_threshold,
754                  "RX descriptor ring fast/slow fill threshold (%)");
755