Merge branch 'next-rebase' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes/pci
[pandora-kernel.git] / drivers / net / ethernet / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2010 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "mac.h"
23 #include "spi.h"
24 #include "nic.h"
25 #include "regs.h"
26 #include "io.h"
27 #include "phy.h"
28 #include "workarounds.h"
29
30 /* Hardware control for SFC4000 (aka Falcon). */
31
32 static const unsigned int
33 /* "Large" EEPROM device: Atmel AT25640 or similar
34  * 8 KB, 16-bit address, 32 B write block */
35 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
36                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
37                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
38 /* Default flash device: Atmel AT25F1024
39  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
40 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
41                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
42                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
43                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
44                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
45
46 /**************************************************************************
47  *
48  * I2C bus - this is a bit-bashing interface using GPIO pins
49  * Note that it uses the output enables to tristate the outputs
50  * SDA is the data pin and SCL is the clock
51  *
52  **************************************************************************
53  */
54 static void falcon_setsda(void *data, int state)
55 {
56         struct efx_nic *efx = (struct efx_nic *)data;
57         efx_oword_t reg;
58
59         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
60         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
61         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
62 }
63
64 static void falcon_setscl(void *data, int state)
65 {
66         struct efx_nic *efx = (struct efx_nic *)data;
67         efx_oword_t reg;
68
69         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
70         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
71         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
72 }
73
74 static int falcon_getsda(void *data)
75 {
76         struct efx_nic *efx = (struct efx_nic *)data;
77         efx_oword_t reg;
78
79         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
80         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
81 }
82
83 static int falcon_getscl(void *data)
84 {
85         struct efx_nic *efx = (struct efx_nic *)data;
86         efx_oword_t reg;
87
88         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
89         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
90 }
91
92 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
93         .setsda         = falcon_setsda,
94         .setscl         = falcon_setscl,
95         .getsda         = falcon_getsda,
96         .getscl         = falcon_getscl,
97         .udelay         = 5,
98         /* Wait up to 50 ms for slave to let us pull SCL high */
99         .timeout        = DIV_ROUND_UP(HZ, 20),
100 };
101
102 static void falcon_push_irq_moderation(struct efx_channel *channel)
103 {
104         efx_dword_t timer_cmd;
105         struct efx_nic *efx = channel->efx;
106
107         BUILD_BUG_ON(EFX_IRQ_MOD_MAX > (1 << FRF_AB_TC_TIMER_VAL_WIDTH));
108
109         /* Set timer register */
110         if (channel->irq_moderation) {
111                 EFX_POPULATE_DWORD_2(timer_cmd,
112                                      FRF_AB_TC_TIMER_MODE,
113                                      FFE_BB_TIMER_MODE_INT_HLDOFF,
114                                      FRF_AB_TC_TIMER_VAL,
115                                      channel->irq_moderation - 1);
116         } else {
117                 EFX_POPULATE_DWORD_2(timer_cmd,
118                                      FRF_AB_TC_TIMER_MODE,
119                                      FFE_BB_TIMER_MODE_DIS,
120                                      FRF_AB_TC_TIMER_VAL, 0);
121         }
122         BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
123         efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
124                                channel->channel);
125 }
126
127 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
128
129 static void falcon_prepare_flush(struct efx_nic *efx)
130 {
131         falcon_deconfigure_mac_wrapper(efx);
132
133         /* Wait for the tx and rx fifo's to get to the next packet boundary
134          * (~1ms without back-pressure), then to drain the remainder of the
135          * fifo's at data path speeds (negligible), with a healthy margin. */
136         msleep(10);
137 }
138
139 /* Acknowledge a legacy interrupt from Falcon
140  *
141  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
142  *
143  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
144  * BIU. Interrupt acknowledge is read sensitive so must write instead
145  * (then read to ensure the BIU collector is flushed)
146  *
147  * NB most hardware supports MSI interrupts
148  */
149 inline void falcon_irq_ack_a1(struct efx_nic *efx)
150 {
151         efx_dword_t reg;
152
153         EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
154         efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
155         efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
156 }
157
158
159 irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
160 {
161         struct efx_nic *efx = dev_id;
162         efx_oword_t *int_ker = efx->irq_status.addr;
163         int syserr;
164         int queues;
165
166         /* Check to see if this is our interrupt.  If it isn't, we
167          * exit without having touched the hardware.
168          */
169         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
170                 netif_vdbg(efx, intr, efx->net_dev,
171                            "IRQ %d on CPU %d not for me\n", irq,
172                            raw_smp_processor_id());
173                 return IRQ_NONE;
174         }
175         efx->last_irq_cpu = raw_smp_processor_id();
176         netif_vdbg(efx, intr, efx->net_dev,
177                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
178                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
179
180         /* Determine interrupting queues, clear interrupt status
181          * register and acknowledge the device interrupt.
182          */
183         BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
184         queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
185
186         /* Check to see if we have a serious error condition */
187         if (queues & (1U << efx->fatal_irq_level)) {
188                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
189                 if (unlikely(syserr))
190                         return efx_nic_fatal_interrupt(efx);
191         }
192
193         EFX_ZERO_OWORD(*int_ker);
194         wmb(); /* Ensure the vector is cleared before interrupt ack */
195         falcon_irq_ack_a1(efx);
196
197         if (queues & 1)
198                 efx_schedule_channel(efx_get_channel(efx, 0));
199         if (queues & 2)
200                 efx_schedule_channel(efx_get_channel(efx, 1));
201         return IRQ_HANDLED;
202 }
203 /**************************************************************************
204  *
205  * EEPROM/flash
206  *
207  **************************************************************************
208  */
209
210 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
211
212 static int falcon_spi_poll(struct efx_nic *efx)
213 {
214         efx_oword_t reg;
215         efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
216         return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
217 }
218
219 /* Wait for SPI command completion */
220 static int falcon_spi_wait(struct efx_nic *efx)
221 {
222         /* Most commands will finish quickly, so we start polling at
223          * very short intervals.  Sometimes the command may have to
224          * wait for VPD or expansion ROM access outside of our
225          * control, so we allow up to 100 ms. */
226         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
227         int i;
228
229         for (i = 0; i < 10; i++) {
230                 if (!falcon_spi_poll(efx))
231                         return 0;
232                 udelay(10);
233         }
234
235         for (;;) {
236                 if (!falcon_spi_poll(efx))
237                         return 0;
238                 if (time_after_eq(jiffies, timeout)) {
239                         netif_err(efx, hw, efx->net_dev,
240                                   "timed out waiting for SPI\n");
241                         return -ETIMEDOUT;
242                 }
243                 schedule_timeout_uninterruptible(1);
244         }
245 }
246
247 int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
248                    unsigned int command, int address,
249                    const void *in, void *out, size_t len)
250 {
251         bool addressed = (address >= 0);
252         bool reading = (out != NULL);
253         efx_oword_t reg;
254         int rc;
255
256         /* Input validation */
257         if (len > FALCON_SPI_MAX_LEN)
258                 return -EINVAL;
259
260         /* Check that previous command is not still running */
261         rc = falcon_spi_poll(efx);
262         if (rc)
263                 return rc;
264
265         /* Program address register, if we have an address */
266         if (addressed) {
267                 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
268                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
269         }
270
271         /* Program data register, if we have data */
272         if (in != NULL) {
273                 memcpy(&reg, in, len);
274                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
275         }
276
277         /* Issue read/write command */
278         EFX_POPULATE_OWORD_7(reg,
279                              FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
280                              FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
281                              FRF_AB_EE_SPI_HCMD_DABCNT, len,
282                              FRF_AB_EE_SPI_HCMD_READ, reading,
283                              FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
284                              FRF_AB_EE_SPI_HCMD_ADBCNT,
285                              (addressed ? spi->addr_len : 0),
286                              FRF_AB_EE_SPI_HCMD_ENC, command);
287         efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
288
289         /* Wait for read/write to complete */
290         rc = falcon_spi_wait(efx);
291         if (rc)
292                 return rc;
293
294         /* Read data */
295         if (out != NULL) {
296                 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
297                 memcpy(out, &reg, len);
298         }
299
300         return 0;
301 }
302
303 static size_t
304 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
305 {
306         return min(FALCON_SPI_MAX_LEN,
307                    (spi->block_size - (start & (spi->block_size - 1))));
308 }
309
310 static inline u8
311 efx_spi_munge_command(const struct efx_spi_device *spi,
312                       const u8 command, const unsigned int address)
313 {
314         return command | (((address >> 8) & spi->munge_address) << 3);
315 }
316
317 /* Wait up to 10 ms for buffered write completion */
318 int
319 falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
320 {
321         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
322         u8 status;
323         int rc;
324
325         for (;;) {
326                 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
327                                     &status, sizeof(status));
328                 if (rc)
329                         return rc;
330                 if (!(status & SPI_STATUS_NRDY))
331                         return 0;
332                 if (time_after_eq(jiffies, timeout)) {
333                         netif_err(efx, hw, efx->net_dev,
334                                   "SPI write timeout on device %d"
335                                   " last status=0x%02x\n",
336                                   spi->device_id, status);
337                         return -ETIMEDOUT;
338                 }
339                 schedule_timeout_uninterruptible(1);
340         }
341 }
342
343 int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
344                     loff_t start, size_t len, size_t *retlen, u8 *buffer)
345 {
346         size_t block_len, pos = 0;
347         unsigned int command;
348         int rc = 0;
349
350         while (pos < len) {
351                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
352
353                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
354                 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
355                                     buffer + pos, block_len);
356                 if (rc)
357                         break;
358                 pos += block_len;
359
360                 /* Avoid locking up the system */
361                 cond_resched();
362                 if (signal_pending(current)) {
363                         rc = -EINTR;
364                         break;
365                 }
366         }
367
368         if (retlen)
369                 *retlen = pos;
370         return rc;
371 }
372
373 int
374 falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
375                  loff_t start, size_t len, size_t *retlen, const u8 *buffer)
376 {
377         u8 verify_buffer[FALCON_SPI_MAX_LEN];
378         size_t block_len, pos = 0;
379         unsigned int command;
380         int rc = 0;
381
382         while (pos < len) {
383                 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
384                 if (rc)
385                         break;
386
387                 block_len = min(len - pos,
388                                 falcon_spi_write_limit(spi, start + pos));
389                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
390                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
391                                     buffer + pos, NULL, block_len);
392                 if (rc)
393                         break;
394
395                 rc = falcon_spi_wait_write(efx, spi);
396                 if (rc)
397                         break;
398
399                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
400                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
401                                     NULL, verify_buffer, block_len);
402                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
403                         rc = -EIO;
404                         break;
405                 }
406
407                 pos += block_len;
408
409                 /* Avoid locking up the system */
410                 cond_resched();
411                 if (signal_pending(current)) {
412                         rc = -EINTR;
413                         break;
414                 }
415         }
416
417         if (retlen)
418                 *retlen = pos;
419         return rc;
420 }
421
422 /**************************************************************************
423  *
424  * MAC wrapper
425  *
426  **************************************************************************
427  */
428
429 static void falcon_push_multicast_hash(struct efx_nic *efx)
430 {
431         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
432
433         WARN_ON(!mutex_is_locked(&efx->mac_lock));
434
435         efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
436         efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
437 }
438
439 static void falcon_reset_macs(struct efx_nic *efx)
440 {
441         struct falcon_nic_data *nic_data = efx->nic_data;
442         efx_oword_t reg, mac_ctrl;
443         int count;
444
445         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
446                 /* It's not safe to use GLB_CTL_REG to reset the
447                  * macs, so instead use the internal MAC resets
448                  */
449                 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
450                 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
451
452                 for (count = 0; count < 10000; count++) {
453                         efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
454                         if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
455                             0)
456                                 return;
457                         udelay(10);
458                 }
459
460                 netif_err(efx, hw, efx->net_dev,
461                           "timed out waiting for XMAC core reset\n");
462         }
463
464         /* Mac stats will fail whist the TX fifo is draining */
465         WARN_ON(nic_data->stats_disable_count == 0);
466
467         efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
468         EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
469         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
470
471         efx_reado(efx, &reg, FR_AB_GLB_CTL);
472         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
473         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
474         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
475         efx_writeo(efx, &reg, FR_AB_GLB_CTL);
476
477         count = 0;
478         while (1) {
479                 efx_reado(efx, &reg, FR_AB_GLB_CTL);
480                 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
481                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
482                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
483                         netif_dbg(efx, hw, efx->net_dev,
484                                   "Completed MAC reset after %d loops\n",
485                                   count);
486                         break;
487                 }
488                 if (count > 20) {
489                         netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
490                         break;
491                 }
492                 count++;
493                 udelay(10);
494         }
495
496         /* Ensure the correct MAC is selected before statistics
497          * are re-enabled by the caller */
498         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
499
500         falcon_setup_xaui(efx);
501 }
502
503 void falcon_drain_tx_fifo(struct efx_nic *efx)
504 {
505         efx_oword_t reg;
506
507         if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
508             (efx->loopback_mode != LOOPBACK_NONE))
509                 return;
510
511         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
512         /* There is no point in draining more than once */
513         if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
514                 return;
515
516         falcon_reset_macs(efx);
517 }
518
519 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
520 {
521         efx_oword_t reg;
522
523         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
524                 return;
525
526         /* Isolate the MAC -> RX */
527         efx_reado(efx, &reg, FR_AZ_RX_CFG);
528         EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
529         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
530
531         /* Isolate TX -> MAC */
532         falcon_drain_tx_fifo(efx);
533 }
534
535 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
536 {
537         struct efx_link_state *link_state = &efx->link_state;
538         efx_oword_t reg;
539         int link_speed, isolate;
540
541         isolate = !!ACCESS_ONCE(efx->reset_pending);
542
543         switch (link_state->speed) {
544         case 10000: link_speed = 3; break;
545         case 1000:  link_speed = 2; break;
546         case 100:   link_speed = 1; break;
547         default:    link_speed = 0; break;
548         }
549         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
550          * as advertised.  Disable to ensure packets are not
551          * indefinitely held and TX queue can be flushed at any point
552          * while the link is down. */
553         EFX_POPULATE_OWORD_5(reg,
554                              FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
555                              FRF_AB_MAC_BCAD_ACPT, 1,
556                              FRF_AB_MAC_UC_PROM, efx->promiscuous,
557                              FRF_AB_MAC_LINK_STATUS, 1, /* always set */
558                              FRF_AB_MAC_SPEED, link_speed);
559         /* On B0, MAC backpressure can be disabled and packets get
560          * discarded. */
561         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
562                 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
563                                     !link_state->up || isolate);
564         }
565
566         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
567
568         /* Restore the multicast hash registers. */
569         falcon_push_multicast_hash(efx);
570
571         efx_reado(efx, &reg, FR_AZ_RX_CFG);
572         /* Enable XOFF signal from RX FIFO (we enabled it during NIC
573          * initialisation but it may read back as 0) */
574         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
575         /* Unisolate the MAC -> RX */
576         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
577                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
578         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
579 }
580
581 static void falcon_stats_request(struct efx_nic *efx)
582 {
583         struct falcon_nic_data *nic_data = efx->nic_data;
584         efx_oword_t reg;
585
586         WARN_ON(nic_data->stats_pending);
587         WARN_ON(nic_data->stats_disable_count);
588
589         if (nic_data->stats_dma_done == NULL)
590                 return; /* no mac selected */
591
592         *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
593         nic_data->stats_pending = true;
594         wmb(); /* ensure done flag is clear */
595
596         /* Initiate DMA transfer of stats */
597         EFX_POPULATE_OWORD_2(reg,
598                              FRF_AB_MAC_STAT_DMA_CMD, 1,
599                              FRF_AB_MAC_STAT_DMA_ADR,
600                              efx->stats_buffer.dma_addr);
601         efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
602
603         mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
604 }
605
606 static void falcon_stats_complete(struct efx_nic *efx)
607 {
608         struct falcon_nic_data *nic_data = efx->nic_data;
609
610         if (!nic_data->stats_pending)
611                 return;
612
613         nic_data->stats_pending = 0;
614         if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
615                 rmb(); /* read the done flag before the stats */
616                 efx->mac_op->update_stats(efx);
617         } else {
618                 netif_err(efx, hw, efx->net_dev,
619                           "timed out waiting for statistics\n");
620         }
621 }
622
623 static void falcon_stats_timer_func(unsigned long context)
624 {
625         struct efx_nic *efx = (struct efx_nic *)context;
626         struct falcon_nic_data *nic_data = efx->nic_data;
627
628         spin_lock(&efx->stats_lock);
629
630         falcon_stats_complete(efx);
631         if (nic_data->stats_disable_count == 0)
632                 falcon_stats_request(efx);
633
634         spin_unlock(&efx->stats_lock);
635 }
636
637 static bool falcon_loopback_link_poll(struct efx_nic *efx)
638 {
639         struct efx_link_state old_state = efx->link_state;
640
641         WARN_ON(!mutex_is_locked(&efx->mac_lock));
642         WARN_ON(!LOOPBACK_INTERNAL(efx));
643
644         efx->link_state.fd = true;
645         efx->link_state.fc = efx->wanted_fc;
646         efx->link_state.up = true;
647         efx->link_state.speed = 10000;
648
649         return !efx_link_state_equal(&efx->link_state, &old_state);
650 }
651
652 static int falcon_reconfigure_port(struct efx_nic *efx)
653 {
654         int rc;
655
656         WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
657
658         /* Poll the PHY link state *before* reconfiguring it. This means we
659          * will pick up the correct speed (in loopback) to select the correct
660          * MAC.
661          */
662         if (LOOPBACK_INTERNAL(efx))
663                 falcon_loopback_link_poll(efx);
664         else
665                 efx->phy_op->poll(efx);
666
667         falcon_stop_nic_stats(efx);
668         falcon_deconfigure_mac_wrapper(efx);
669
670         falcon_reset_macs(efx);
671
672         efx->phy_op->reconfigure(efx);
673         rc = efx->mac_op->reconfigure(efx);
674         BUG_ON(rc);
675
676         falcon_start_nic_stats(efx);
677
678         /* Synchronise efx->link_state with the kernel */
679         efx_link_status_changed(efx);
680
681         return 0;
682 }
683
684 /**************************************************************************
685  *
686  * PHY access via GMII
687  *
688  **************************************************************************
689  */
690
691 /* Wait for GMII access to complete */
692 static int falcon_gmii_wait(struct efx_nic *efx)
693 {
694         efx_oword_t md_stat;
695         int count;
696
697         /* wait up to 50ms - taken max from datasheet */
698         for (count = 0; count < 5000; count++) {
699                 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
700                 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
701                         if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
702                             EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
703                                 netif_err(efx, hw, efx->net_dev,
704                                           "error from GMII access "
705                                           EFX_OWORD_FMT"\n",
706                                           EFX_OWORD_VAL(md_stat));
707                                 return -EIO;
708                         }
709                         return 0;
710                 }
711                 udelay(10);
712         }
713         netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
714         return -ETIMEDOUT;
715 }
716
717 /* Write an MDIO register of a PHY connected to Falcon. */
718 static int falcon_mdio_write(struct net_device *net_dev,
719                              int prtad, int devad, u16 addr, u16 value)
720 {
721         struct efx_nic *efx = netdev_priv(net_dev);
722         struct falcon_nic_data *nic_data = efx->nic_data;
723         efx_oword_t reg;
724         int rc;
725
726         netif_vdbg(efx, hw, efx->net_dev,
727                    "writing MDIO %d register %d.%d with 0x%04x\n",
728                     prtad, devad, addr, value);
729
730         mutex_lock(&nic_data->mdio_lock);
731
732         /* Check MDIO not currently being accessed */
733         rc = falcon_gmii_wait(efx);
734         if (rc)
735                 goto out;
736
737         /* Write the address/ID register */
738         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
739         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
740
741         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
742                              FRF_AB_MD_DEV_ADR, devad);
743         efx_writeo(efx, &reg, FR_AB_MD_ID);
744
745         /* Write data */
746         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
747         efx_writeo(efx, &reg, FR_AB_MD_TXD);
748
749         EFX_POPULATE_OWORD_2(reg,
750                              FRF_AB_MD_WRC, 1,
751                              FRF_AB_MD_GC, 0);
752         efx_writeo(efx, &reg, FR_AB_MD_CS);
753
754         /* Wait for data to be written */
755         rc = falcon_gmii_wait(efx);
756         if (rc) {
757                 /* Abort the write operation */
758                 EFX_POPULATE_OWORD_2(reg,
759                                      FRF_AB_MD_WRC, 0,
760                                      FRF_AB_MD_GC, 1);
761                 efx_writeo(efx, &reg, FR_AB_MD_CS);
762                 udelay(10);
763         }
764
765 out:
766         mutex_unlock(&nic_data->mdio_lock);
767         return rc;
768 }
769
770 /* Read an MDIO register of a PHY connected to Falcon. */
771 static int falcon_mdio_read(struct net_device *net_dev,
772                             int prtad, int devad, u16 addr)
773 {
774         struct efx_nic *efx = netdev_priv(net_dev);
775         struct falcon_nic_data *nic_data = efx->nic_data;
776         efx_oword_t reg;
777         int rc;
778
779         mutex_lock(&nic_data->mdio_lock);
780
781         /* Check MDIO not currently being accessed */
782         rc = falcon_gmii_wait(efx);
783         if (rc)
784                 goto out;
785
786         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
787         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
788
789         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
790                              FRF_AB_MD_DEV_ADR, devad);
791         efx_writeo(efx, &reg, FR_AB_MD_ID);
792
793         /* Request data to be read */
794         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
795         efx_writeo(efx, &reg, FR_AB_MD_CS);
796
797         /* Wait for data to become available */
798         rc = falcon_gmii_wait(efx);
799         if (rc == 0) {
800                 efx_reado(efx, &reg, FR_AB_MD_RXD);
801                 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
802                 netif_vdbg(efx, hw, efx->net_dev,
803                            "read from MDIO %d register %d.%d, got %04x\n",
804                            prtad, devad, addr, rc);
805         } else {
806                 /* Abort the read operation */
807                 EFX_POPULATE_OWORD_2(reg,
808                                      FRF_AB_MD_RIC, 0,
809                                      FRF_AB_MD_GC, 1);
810                 efx_writeo(efx, &reg, FR_AB_MD_CS);
811
812                 netif_dbg(efx, hw, efx->net_dev,
813                           "read from MDIO %d register %d.%d, got error %d\n",
814                           prtad, devad, addr, rc);
815         }
816
817 out:
818         mutex_unlock(&nic_data->mdio_lock);
819         return rc;
820 }
821
822 /* This call is responsible for hooking in the MAC and PHY operations */
823 static int falcon_probe_port(struct efx_nic *efx)
824 {
825         struct falcon_nic_data *nic_data = efx->nic_data;
826         int rc;
827
828         switch (efx->phy_type) {
829         case PHY_TYPE_SFX7101:
830                 efx->phy_op = &falcon_sfx7101_phy_ops;
831                 break;
832         case PHY_TYPE_QT2022C2:
833         case PHY_TYPE_QT2025C:
834                 efx->phy_op = &falcon_qt202x_phy_ops;
835                 break;
836         case PHY_TYPE_TXC43128:
837                 efx->phy_op = &falcon_txc_phy_ops;
838                 break;
839         default:
840                 netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
841                           efx->phy_type);
842                 return -ENODEV;
843         }
844
845         /* Fill out MDIO structure and loopback modes */
846         mutex_init(&nic_data->mdio_lock);
847         efx->mdio.mdio_read = falcon_mdio_read;
848         efx->mdio.mdio_write = falcon_mdio_write;
849         rc = efx->phy_op->probe(efx);
850         if (rc != 0)
851                 return rc;
852
853         /* Initial assumption */
854         efx->link_state.speed = 10000;
855         efx->link_state.fd = true;
856
857         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
858         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
859                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
860         else
861                 efx->wanted_fc = EFX_FC_RX;
862         if (efx->mdio.mmds & MDIO_DEVS_AN)
863                 efx->wanted_fc |= EFX_FC_AUTO;
864
865         /* Allocate buffer for stats */
866         rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
867                                   FALCON_MAC_STATS_SIZE);
868         if (rc)
869                 return rc;
870         netif_dbg(efx, probe, efx->net_dev,
871                   "stats buffer at %llx (virt %p phys %llx)\n",
872                   (u64)efx->stats_buffer.dma_addr,
873                   efx->stats_buffer.addr,
874                   (u64)virt_to_phys(efx->stats_buffer.addr));
875         nic_data->stats_dma_done = efx->stats_buffer.addr + XgDmaDone_offset;
876
877         return 0;
878 }
879
880 static void falcon_remove_port(struct efx_nic *efx)
881 {
882         efx->phy_op->remove(efx);
883         efx_nic_free_buffer(efx, &efx->stats_buffer);
884 }
885
886 /* Global events are basically PHY events */
887 static bool
888 falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
889 {
890         struct efx_nic *efx = channel->efx;
891         struct falcon_nic_data *nic_data = efx->nic_data;
892
893         if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
894             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
895             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
896                 /* Ignored */
897                 return true;
898
899         if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
900             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
901                 nic_data->xmac_poll_required = true;
902                 return true;
903         }
904
905         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
906             EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
907             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
908                 netif_err(efx, rx_err, efx->net_dev,
909                           "channel %d seen global RX_RESET event. Resetting.\n",
910                           channel->channel);
911
912                 atomic_inc(&efx->rx_reset);
913                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
914                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
915                 return true;
916         }
917
918         return false;
919 }
920
921 /**************************************************************************
922  *
923  * Falcon test code
924  *
925  **************************************************************************/
926
927 static int
928 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
929 {
930         struct falcon_nic_data *nic_data = efx->nic_data;
931         struct falcon_nvconfig *nvconfig;
932         struct efx_spi_device *spi;
933         void *region;
934         int rc, magic_num, struct_ver;
935         __le16 *word, *limit;
936         u32 csum;
937
938         if (efx_spi_present(&nic_data->spi_flash))
939                 spi = &nic_data->spi_flash;
940         else if (efx_spi_present(&nic_data->spi_eeprom))
941                 spi = &nic_data->spi_eeprom;
942         else
943                 return -EINVAL;
944
945         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
946         if (!region)
947                 return -ENOMEM;
948         nvconfig = region + FALCON_NVCONFIG_OFFSET;
949
950         mutex_lock(&nic_data->spi_lock);
951         rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
952         mutex_unlock(&nic_data->spi_lock);
953         if (rc) {
954                 netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
955                           efx_spi_present(&nic_data->spi_flash) ?
956                           "flash" : "EEPROM");
957                 rc = -EIO;
958                 goto out;
959         }
960
961         magic_num = le16_to_cpu(nvconfig->board_magic_num);
962         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
963
964         rc = -EINVAL;
965         if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
966                 netif_err(efx, hw, efx->net_dev,
967                           "NVRAM bad magic 0x%x\n", magic_num);
968                 goto out;
969         }
970         if (struct_ver < 2) {
971                 netif_err(efx, hw, efx->net_dev,
972                           "NVRAM has ancient version 0x%x\n", struct_ver);
973                 goto out;
974         } else if (struct_ver < 4) {
975                 word = &nvconfig->board_magic_num;
976                 limit = (__le16 *) (nvconfig + 1);
977         } else {
978                 word = region;
979                 limit = region + FALCON_NVCONFIG_END;
980         }
981         for (csum = 0; word < limit; ++word)
982                 csum += le16_to_cpu(*word);
983
984         if (~csum & 0xffff) {
985                 netif_err(efx, hw, efx->net_dev,
986                           "NVRAM has incorrect checksum\n");
987                 goto out;
988         }
989
990         rc = 0;
991         if (nvconfig_out)
992                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
993
994  out:
995         kfree(region);
996         return rc;
997 }
998
999 static int falcon_test_nvram(struct efx_nic *efx)
1000 {
1001         return falcon_read_nvram(efx, NULL);
1002 }
1003
1004 static const struct efx_nic_register_test falcon_b0_register_tests[] = {
1005         { FR_AZ_ADR_REGION,
1006           EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1007         { FR_AZ_RX_CFG,
1008           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1009         { FR_AZ_TX_CFG,
1010           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1011         { FR_AZ_TX_RESERVED,
1012           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1013         { FR_AB_MAC_CTRL,
1014           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1015         { FR_AZ_SRM_TX_DC_CFG,
1016           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1017         { FR_AZ_RX_DC_CFG,
1018           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1019         { FR_AZ_RX_DC_PF_WM,
1020           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1021         { FR_BZ_DP_CTRL,
1022           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1023         { FR_AB_GM_CFG2,
1024           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1025         { FR_AB_GMF_CFG0,
1026           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1027         { FR_AB_XM_GLB_CFG,
1028           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1029         { FR_AB_XM_TX_CFG,
1030           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1031         { FR_AB_XM_RX_CFG,
1032           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1033         { FR_AB_XM_RX_PARAM,
1034           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1035         { FR_AB_XM_FC,
1036           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1037         { FR_AB_XM_ADR_LO,
1038           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1039         { FR_AB_XX_SD_CTL,
1040           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1041 };
1042
1043 static int falcon_b0_test_registers(struct efx_nic *efx)
1044 {
1045         return efx_nic_test_registers(efx, falcon_b0_register_tests,
1046                                       ARRAY_SIZE(falcon_b0_register_tests));
1047 }
1048
1049 /**************************************************************************
1050  *
1051  * Device reset
1052  *
1053  **************************************************************************
1054  */
1055
1056 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1057 {
1058         switch (reason) {
1059         case RESET_TYPE_RX_RECOVERY:
1060         case RESET_TYPE_RX_DESC_FETCH:
1061         case RESET_TYPE_TX_DESC_FETCH:
1062         case RESET_TYPE_TX_SKIP:
1063                 /* These can occasionally occur due to hardware bugs.
1064                  * We try to reset without disrupting the link.
1065                  */
1066                 return RESET_TYPE_INVISIBLE;
1067         default:
1068                 return RESET_TYPE_ALL;
1069         }
1070 }
1071
1072 static int falcon_map_reset_flags(u32 *flags)
1073 {
1074         enum {
1075                 FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1076                                           ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1077                 FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1078                 FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1079         };
1080
1081         if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1082                 *flags &= ~FALCON_RESET_WORLD;
1083                 return RESET_TYPE_WORLD;
1084         }
1085
1086         if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1087                 *flags &= ~FALCON_RESET_ALL;
1088                 return RESET_TYPE_ALL;
1089         }
1090
1091         if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1092                 *flags &= ~FALCON_RESET_INVISIBLE;
1093                 return RESET_TYPE_INVISIBLE;
1094         }
1095
1096         return -EINVAL;
1097 }
1098
1099 /* Resets NIC to known state.  This routine must be called in process
1100  * context and is allowed to sleep. */
1101 static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1102 {
1103         struct falcon_nic_data *nic_data = efx->nic_data;
1104         efx_oword_t glb_ctl_reg_ker;
1105         int rc;
1106
1107         netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1108                   RESET_TYPE(method));
1109
1110         /* Initiate device reset */
1111         if (method == RESET_TYPE_WORLD) {
1112                 rc = pci_save_state(efx->pci_dev);
1113                 if (rc) {
1114                         netif_err(efx, drv, efx->net_dev,
1115                                   "failed to backup PCI state of primary "
1116                                   "function prior to hardware reset\n");
1117                         goto fail1;
1118                 }
1119                 if (efx_nic_is_dual_func(efx)) {
1120                         rc = pci_save_state(nic_data->pci_dev2);
1121                         if (rc) {
1122                                 netif_err(efx, drv, efx->net_dev,
1123                                           "failed to backup PCI state of "
1124                                           "secondary function prior to "
1125                                           "hardware reset\n");
1126                                 goto fail2;
1127                         }
1128                 }
1129
1130                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1131                                      FRF_AB_EXT_PHY_RST_DUR,
1132                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
1133                                      FRF_AB_SWRST, 1);
1134         } else {
1135                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1136                                      /* exclude PHY from "invisible" reset */
1137                                      FRF_AB_EXT_PHY_RST_CTL,
1138                                      method == RESET_TYPE_INVISIBLE,
1139                                      /* exclude EEPROM/flash and PCIe */
1140                                      FRF_AB_PCIE_CORE_RST_CTL, 1,
1141                                      FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1142                                      FRF_AB_PCIE_SD_RST_CTL, 1,
1143                                      FRF_AB_EE_RST_CTL, 1,
1144                                      FRF_AB_EXT_PHY_RST_DUR,
1145                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
1146                                      FRF_AB_SWRST, 1);
1147         }
1148         efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1149
1150         netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
1151         schedule_timeout_uninterruptible(HZ / 20);
1152
1153         /* Restore PCI configuration if needed */
1154         if (method == RESET_TYPE_WORLD) {
1155                 if (efx_nic_is_dual_func(efx))
1156                         pci_restore_state(nic_data->pci_dev2);
1157                 pci_restore_state(efx->pci_dev);
1158                 netif_dbg(efx, drv, efx->net_dev,
1159                           "successfully restored PCI config\n");
1160         }
1161
1162         /* Assert that reset complete */
1163         efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1164         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
1165                 rc = -ETIMEDOUT;
1166                 netif_err(efx, hw, efx->net_dev,
1167                           "timed out waiting for hardware reset\n");
1168                 goto fail3;
1169         }
1170         netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
1171
1172         return 0;
1173
1174         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
1175 fail2:
1176         pci_restore_state(efx->pci_dev);
1177 fail1:
1178 fail3:
1179         return rc;
1180 }
1181
1182 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1183 {
1184         struct falcon_nic_data *nic_data = efx->nic_data;
1185         int rc;
1186
1187         mutex_lock(&nic_data->spi_lock);
1188         rc = __falcon_reset_hw(efx, method);
1189         mutex_unlock(&nic_data->spi_lock);
1190
1191         return rc;
1192 }
1193
1194 static void falcon_monitor(struct efx_nic *efx)
1195 {
1196         bool link_changed;
1197         int rc;
1198
1199         BUG_ON(!mutex_is_locked(&efx->mac_lock));
1200
1201         rc = falcon_board(efx)->type->monitor(efx);
1202         if (rc) {
1203                 netif_err(efx, hw, efx->net_dev,
1204                           "Board sensor %s; shutting down PHY\n",
1205                           (rc == -ERANGE) ? "reported fault" : "failed");
1206                 efx->phy_mode |= PHY_MODE_LOW_POWER;
1207                 rc = __efx_reconfigure_port(efx);
1208                 WARN_ON(rc);
1209         }
1210
1211         if (LOOPBACK_INTERNAL(efx))
1212                 link_changed = falcon_loopback_link_poll(efx);
1213         else
1214                 link_changed = efx->phy_op->poll(efx);
1215
1216         if (link_changed) {
1217                 falcon_stop_nic_stats(efx);
1218                 falcon_deconfigure_mac_wrapper(efx);
1219
1220                 falcon_reset_macs(efx);
1221                 rc = efx->mac_op->reconfigure(efx);
1222                 BUG_ON(rc);
1223
1224                 falcon_start_nic_stats(efx);
1225
1226                 efx_link_status_changed(efx);
1227         }
1228
1229         falcon_poll_xmac(efx);
1230 }
1231
1232 /* Zeroes out the SRAM contents.  This routine must be called in
1233  * process context and is allowed to sleep.
1234  */
1235 static int falcon_reset_sram(struct efx_nic *efx)
1236 {
1237         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
1238         int count;
1239
1240         /* Set the SRAM wake/sleep GPIO appropriately. */
1241         efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1242         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
1243         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
1244         efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1245
1246         /* Initiate SRAM reset */
1247         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
1248                              FRF_AZ_SRM_INIT_EN, 1,
1249                              FRF_AZ_SRM_NB_SZ, 0);
1250         efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1251
1252         /* Wait for SRAM reset to complete */
1253         count = 0;
1254         do {
1255                 netif_dbg(efx, hw, efx->net_dev,
1256                           "waiting for SRAM reset (attempt %d)...\n", count);
1257
1258                 /* SRAM reset is slow; expect around 16ms */
1259                 schedule_timeout_uninterruptible(HZ / 50);
1260
1261                 /* Check for reset complete */
1262                 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1263                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
1264                         netif_dbg(efx, hw, efx->net_dev,
1265                                   "SRAM reset complete\n");
1266
1267                         return 0;
1268                 }
1269         } while (++count < 20); /* wait up to 0.4 sec */
1270
1271         netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
1272         return -ETIMEDOUT;
1273 }
1274
1275 static void falcon_spi_device_init(struct efx_nic *efx,
1276                                   struct efx_spi_device *spi_device,
1277                                   unsigned int device_id, u32 device_type)
1278 {
1279         if (device_type != 0) {
1280                 spi_device->device_id = device_id;
1281                 spi_device->size =
1282                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
1283                 spi_device->addr_len =
1284                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
1285                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
1286                                              spi_device->addr_len == 1);
1287                 spi_device->erase_command =
1288                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
1289                 spi_device->erase_size =
1290                         1 << SPI_DEV_TYPE_FIELD(device_type,
1291                                                 SPI_DEV_TYPE_ERASE_SIZE);
1292                 spi_device->block_size =
1293                         1 << SPI_DEV_TYPE_FIELD(device_type,
1294                                                 SPI_DEV_TYPE_BLOCK_SIZE);
1295         } else {
1296                 spi_device->size = 0;
1297         }
1298 }
1299
1300 /* Extract non-volatile configuration */
1301 static int falcon_probe_nvconfig(struct efx_nic *efx)
1302 {
1303         struct falcon_nic_data *nic_data = efx->nic_data;
1304         struct falcon_nvconfig *nvconfig;
1305         int rc;
1306
1307         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
1308         if (!nvconfig)
1309                 return -ENOMEM;
1310
1311         rc = falcon_read_nvram(efx, nvconfig);
1312         if (rc)
1313                 goto out;
1314
1315         efx->phy_type = nvconfig->board_v2.port0_phy_type;
1316         efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
1317
1318         if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
1319                 falcon_spi_device_init(
1320                         efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
1321                         le32_to_cpu(nvconfig->board_v3
1322                                     .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
1323                 falcon_spi_device_init(
1324                         efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
1325                         le32_to_cpu(nvconfig->board_v3
1326                                     .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
1327         }
1328
1329         /* Read the MAC addresses */
1330         memcpy(efx->net_dev->perm_addr, nvconfig->mac_address[0], ETH_ALEN);
1331
1332         netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
1333                   efx->phy_type, efx->mdio.prtad);
1334
1335         rc = falcon_probe_board(efx,
1336                                 le16_to_cpu(nvconfig->board_v2.board_revision));
1337 out:
1338         kfree(nvconfig);
1339         return rc;
1340 }
1341
1342 /* Probe all SPI devices on the NIC */
1343 static void falcon_probe_spi_devices(struct efx_nic *efx)
1344 {
1345         struct falcon_nic_data *nic_data = efx->nic_data;
1346         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
1347         int boot_dev;
1348
1349         efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
1350         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1351         efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1352
1353         if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
1354                 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
1355                             FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
1356                 netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
1357                           boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
1358                           "flash" : "EEPROM");
1359         } else {
1360                 /* Disable VPD and set clock dividers to safe
1361                  * values for initial programming. */
1362                 boot_dev = -1;
1363                 netif_dbg(efx, probe, efx->net_dev,
1364                           "Booted from internal ASIC settings;"
1365                           " setting SPI config\n");
1366                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
1367                                      /* 125 MHz / 7 ~= 20 MHz */
1368                                      FRF_AB_EE_SF_CLOCK_DIV, 7,
1369                                      /* 125 MHz / 63 ~= 2 MHz */
1370                                      FRF_AB_EE_EE_CLOCK_DIV, 63);
1371                 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1372         }
1373
1374         mutex_init(&nic_data->spi_lock);
1375
1376         if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
1377                 falcon_spi_device_init(efx, &nic_data->spi_flash,
1378                                        FFE_AB_SPI_DEVICE_FLASH,
1379                                        default_flash_type);
1380         if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
1381                 falcon_spi_device_init(efx, &nic_data->spi_eeprom,
1382                                        FFE_AB_SPI_DEVICE_EEPROM,
1383                                        large_eeprom_type);
1384 }
1385
1386 static int falcon_probe_nic(struct efx_nic *efx)
1387 {
1388         struct falcon_nic_data *nic_data;
1389         struct falcon_board *board;
1390         int rc;
1391
1392         /* Allocate storage for hardware specific data */
1393         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1394         if (!nic_data)
1395                 return -ENOMEM;
1396         efx->nic_data = nic_data;
1397
1398         rc = -ENODEV;
1399
1400         if (efx_nic_fpga_ver(efx) != 0) {
1401                 netif_err(efx, probe, efx->net_dev,
1402                           "Falcon FPGA not supported\n");
1403                 goto fail1;
1404         }
1405
1406         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1407                 efx_oword_t nic_stat;
1408                 struct pci_dev *dev;
1409                 u8 pci_rev = efx->pci_dev->revision;
1410
1411                 if ((pci_rev == 0xff) || (pci_rev == 0)) {
1412                         netif_err(efx, probe, efx->net_dev,
1413                                   "Falcon rev A0 not supported\n");
1414                         goto fail1;
1415                 }
1416                 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1417                 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
1418                         netif_err(efx, probe, efx->net_dev,
1419                                   "Falcon rev A1 1G not supported\n");
1420                         goto fail1;
1421                 }
1422                 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
1423                         netif_err(efx, probe, efx->net_dev,
1424                                   "Falcon rev A1 PCI-X not supported\n");
1425                         goto fail1;
1426                 }
1427
1428                 dev = pci_dev_get(efx->pci_dev);
1429                 while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
1430                                              PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
1431                                              dev))) {
1432                         if (dev->bus == efx->pci_dev->bus &&
1433                             dev->devfn == efx->pci_dev->devfn + 1) {
1434                                 nic_data->pci_dev2 = dev;
1435                                 break;
1436                         }
1437                 }
1438                 if (!nic_data->pci_dev2) {
1439                         netif_err(efx, probe, efx->net_dev,
1440                                   "failed to find secondary function\n");
1441                         rc = -ENODEV;
1442                         goto fail2;
1443                 }
1444         }
1445
1446         /* Now we can reset the NIC */
1447         rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
1448         if (rc) {
1449                 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
1450                 goto fail3;
1451         }
1452
1453         /* Allocate memory for INT_KER */
1454         rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
1455         if (rc)
1456                 goto fail4;
1457         BUG_ON(efx->irq_status.dma_addr & 0x0f);
1458
1459         netif_dbg(efx, probe, efx->net_dev,
1460                   "INT_KER at %llx (virt %p phys %llx)\n",
1461                   (u64)efx->irq_status.dma_addr,
1462                   efx->irq_status.addr,
1463                   (u64)virt_to_phys(efx->irq_status.addr));
1464
1465         falcon_probe_spi_devices(efx);
1466
1467         /* Read in the non-volatile configuration */
1468         rc = falcon_probe_nvconfig(efx);
1469         if (rc) {
1470                 if (rc == -EINVAL)
1471                         netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
1472                 goto fail5;
1473         }
1474
1475         /* Initialise I2C adapter */
1476         board = falcon_board(efx);
1477         board->i2c_adap.owner = THIS_MODULE;
1478         board->i2c_data = falcon_i2c_bit_operations;
1479         board->i2c_data.data = efx;
1480         board->i2c_adap.algo_data = &board->i2c_data;
1481         board->i2c_adap.dev.parent = &efx->pci_dev->dev;
1482         strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
1483                 sizeof(board->i2c_adap.name));
1484         rc = i2c_bit_add_bus(&board->i2c_adap);
1485         if (rc)
1486                 goto fail5;
1487
1488         rc = falcon_board(efx)->type->init(efx);
1489         if (rc) {
1490                 netif_err(efx, probe, efx->net_dev,
1491                           "failed to initialise board\n");
1492                 goto fail6;
1493         }
1494
1495         nic_data->stats_disable_count = 1;
1496         setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
1497                     (unsigned long)efx);
1498
1499         return 0;
1500
1501  fail6:
1502         BUG_ON(i2c_del_adapter(&board->i2c_adap));
1503         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1504  fail5:
1505         efx_nic_free_buffer(efx, &efx->irq_status);
1506  fail4:
1507  fail3:
1508         if (nic_data->pci_dev2) {
1509                 pci_dev_put(nic_data->pci_dev2);
1510                 nic_data->pci_dev2 = NULL;
1511         }
1512  fail2:
1513  fail1:
1514         kfree(efx->nic_data);
1515         return rc;
1516 }
1517
1518 static void falcon_init_rx_cfg(struct efx_nic *efx)
1519 {
1520         /* Prior to Siena the RX DMA engine will split each frame at
1521          * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1522          * be so large that that never happens. */
1523         const unsigned huge_buf_size = (3 * 4096) >> 5;
1524         /* RX control FIFO thresholds (32 entries) */
1525         const unsigned ctrl_xon_thr = 20;
1526         const unsigned ctrl_xoff_thr = 25;
1527         efx_oword_t reg;
1528
1529         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1530         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1531                 /* Data FIFO size is 5.5K */
1532                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
1533                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
1534                                     huge_buf_size);
1535                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
1536                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
1537                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
1538                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
1539         } else {
1540                 /* Data FIFO size is 80K; register fields moved */
1541                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
1542                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
1543                                     huge_buf_size);
1544                 /* Send XON and XOFF at ~3 * max MTU away from empty/full */
1545                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
1546                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
1547                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
1548                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
1549                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1550
1551                 /* Enable hash insertion. This is broken for the
1552                  * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
1553                  * IPv4 hashes. */
1554                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
1555                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
1556                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
1557         }
1558         /* Always enable XOFF signal from RX FIFO.  We enable
1559          * or disable transmission of pause frames at the MAC. */
1560         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1561         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1562 }
1563
1564 /* This call performs hardware-specific global initialisation, such as
1565  * defining the descriptor cache sizes and number of RSS channels.
1566  * It does not set up any buffers, descriptor rings or event queues.
1567  */
1568 static int falcon_init_nic(struct efx_nic *efx)
1569 {
1570         efx_oword_t temp;
1571         int rc;
1572
1573         /* Use on-chip SRAM */
1574         efx_reado(efx, &temp, FR_AB_NIC_STAT);
1575         EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
1576         efx_writeo(efx, &temp, FR_AB_NIC_STAT);
1577
1578         rc = falcon_reset_sram(efx);
1579         if (rc)
1580                 return rc;
1581
1582         /* Clear the parity enables on the TX data fifos as
1583          * they produce false parity errors because of timing issues
1584          */
1585         if (EFX_WORKAROUND_5129(efx)) {
1586                 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
1587                 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
1588                 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
1589         }
1590
1591         if (EFX_WORKAROUND_7244(efx)) {
1592                 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
1593                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
1594                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
1595                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
1596                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
1597                 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
1598         }
1599
1600         /* XXX This is documented only for Falcon A0/A1 */
1601         /* Setup RX.  Wait for descriptor is broken and must
1602          * be disabled.  RXDP recovery shouldn't be needed, but is.
1603          */
1604         efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
1605         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
1606         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
1607         if (EFX_WORKAROUND_5583(efx))
1608                 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
1609         efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
1610
1611         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1612          * descriptors (which is bad).
1613          */
1614         efx_reado(efx, &temp, FR_AZ_TX_CFG);
1615         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
1616         efx_writeo(efx, &temp, FR_AZ_TX_CFG);
1617
1618         falcon_init_rx_cfg(efx);
1619
1620         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1621                 /* Set hash key for IPv4 */
1622                 memcpy(&temp, efx->rx_hash_key, sizeof(temp));
1623                 efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
1624
1625                 /* Set destination of both TX and RX Flush events */
1626                 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
1627                 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
1628         }
1629
1630         efx_nic_init_common(efx);
1631
1632         return 0;
1633 }
1634
1635 static void falcon_remove_nic(struct efx_nic *efx)
1636 {
1637         struct falcon_nic_data *nic_data = efx->nic_data;
1638         struct falcon_board *board = falcon_board(efx);
1639         int rc;
1640
1641         board->type->fini(efx);
1642
1643         /* Remove I2C adapter and clear it in preparation for a retry */
1644         rc = i2c_del_adapter(&board->i2c_adap);
1645         BUG_ON(rc);
1646         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1647
1648         efx_nic_free_buffer(efx, &efx->irq_status);
1649
1650         __falcon_reset_hw(efx, RESET_TYPE_ALL);
1651
1652         /* Release the second function after the reset */
1653         if (nic_data->pci_dev2) {
1654                 pci_dev_put(nic_data->pci_dev2);
1655                 nic_data->pci_dev2 = NULL;
1656         }
1657
1658         /* Tear down the private nic state */
1659         kfree(efx->nic_data);
1660         efx->nic_data = NULL;
1661 }
1662
1663 static void falcon_update_nic_stats(struct efx_nic *efx)
1664 {
1665         struct falcon_nic_data *nic_data = efx->nic_data;
1666         efx_oword_t cnt;
1667
1668         if (nic_data->stats_disable_count)
1669                 return;
1670
1671         efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
1672         efx->n_rx_nodesc_drop_cnt +=
1673                 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
1674
1675         if (nic_data->stats_pending &&
1676             *nic_data->stats_dma_done == FALCON_STATS_DONE) {
1677                 nic_data->stats_pending = false;
1678                 rmb(); /* read the done flag before the stats */
1679                 efx->mac_op->update_stats(efx);
1680         }
1681 }
1682
1683 void falcon_start_nic_stats(struct efx_nic *efx)
1684 {
1685         struct falcon_nic_data *nic_data = efx->nic_data;
1686
1687         spin_lock_bh(&efx->stats_lock);
1688         if (--nic_data->stats_disable_count == 0)
1689                 falcon_stats_request(efx);
1690         spin_unlock_bh(&efx->stats_lock);
1691 }
1692
1693 void falcon_stop_nic_stats(struct efx_nic *efx)
1694 {
1695         struct falcon_nic_data *nic_data = efx->nic_data;
1696         int i;
1697
1698         might_sleep();
1699
1700         spin_lock_bh(&efx->stats_lock);
1701         ++nic_data->stats_disable_count;
1702         spin_unlock_bh(&efx->stats_lock);
1703
1704         del_timer_sync(&nic_data->stats_timer);
1705
1706         /* Wait enough time for the most recent transfer to
1707          * complete. */
1708         for (i = 0; i < 4 && nic_data->stats_pending; i++) {
1709                 if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
1710                         break;
1711                 msleep(1);
1712         }
1713
1714         spin_lock_bh(&efx->stats_lock);
1715         falcon_stats_complete(efx);
1716         spin_unlock_bh(&efx->stats_lock);
1717 }
1718
1719 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1720 {
1721         falcon_board(efx)->type->set_id_led(efx, mode);
1722 }
1723
1724 /**************************************************************************
1725  *
1726  * Wake on LAN
1727  *
1728  **************************************************************************
1729  */
1730
1731 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1732 {
1733         wol->supported = 0;
1734         wol->wolopts = 0;
1735         memset(&wol->sopass, 0, sizeof(wol->sopass));
1736 }
1737
1738 static int falcon_set_wol(struct efx_nic *efx, u32 type)
1739 {
1740         if (type != 0)
1741                 return -EINVAL;
1742         return 0;
1743 }
1744
1745 /**************************************************************************
1746  *
1747  * Revision-dependent attributes used by efx.c and nic.c
1748  *
1749  **************************************************************************
1750  */
1751
1752 const struct efx_nic_type falcon_a1_nic_type = {
1753         .probe = falcon_probe_nic,
1754         .remove = falcon_remove_nic,
1755         .init = falcon_init_nic,
1756         .fini = efx_port_dummy_op_void,
1757         .monitor = falcon_monitor,
1758         .map_reset_reason = falcon_map_reset_reason,
1759         .map_reset_flags = falcon_map_reset_flags,
1760         .reset = falcon_reset_hw,
1761         .probe_port = falcon_probe_port,
1762         .remove_port = falcon_remove_port,
1763         .handle_global_event = falcon_handle_global_event,
1764         .prepare_flush = falcon_prepare_flush,
1765         .update_stats = falcon_update_nic_stats,
1766         .start_stats = falcon_start_nic_stats,
1767         .stop_stats = falcon_stop_nic_stats,
1768         .set_id_led = falcon_set_id_led,
1769         .push_irq_moderation = falcon_push_irq_moderation,
1770         .push_multicast_hash = falcon_push_multicast_hash,
1771         .reconfigure_port = falcon_reconfigure_port,
1772         .get_wol = falcon_get_wol,
1773         .set_wol = falcon_set_wol,
1774         .resume_wol = efx_port_dummy_op_void,
1775         .test_nvram = falcon_test_nvram,
1776         .default_mac_ops = &falcon_xmac_operations,
1777
1778         .revision = EFX_REV_FALCON_A1,
1779         .mem_map_size = 0x20000,
1780         .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
1781         .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
1782         .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
1783         .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
1784         .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
1785         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1786         .rx_buffer_padding = 0x24,
1787         .max_interrupt_mode = EFX_INT_MODE_MSI,
1788         .phys_addr_channels = 4,
1789         .tx_dc_base = 0x130000,
1790         .rx_dc_base = 0x100000,
1791         .offload_features = NETIF_F_IP_CSUM,
1792 };
1793
1794 const struct efx_nic_type falcon_b0_nic_type = {
1795         .probe = falcon_probe_nic,
1796         .remove = falcon_remove_nic,
1797         .init = falcon_init_nic,
1798         .fini = efx_port_dummy_op_void,
1799         .monitor = falcon_monitor,
1800         .map_reset_reason = falcon_map_reset_reason,
1801         .map_reset_flags = falcon_map_reset_flags,
1802         .reset = falcon_reset_hw,
1803         .probe_port = falcon_probe_port,
1804         .remove_port = falcon_remove_port,
1805         .handle_global_event = falcon_handle_global_event,
1806         .prepare_flush = falcon_prepare_flush,
1807         .update_stats = falcon_update_nic_stats,
1808         .start_stats = falcon_start_nic_stats,
1809         .stop_stats = falcon_stop_nic_stats,
1810         .set_id_led = falcon_set_id_led,
1811         .push_irq_moderation = falcon_push_irq_moderation,
1812         .push_multicast_hash = falcon_push_multicast_hash,
1813         .reconfigure_port = falcon_reconfigure_port,
1814         .get_wol = falcon_get_wol,
1815         .set_wol = falcon_set_wol,
1816         .resume_wol = efx_port_dummy_op_void,
1817         .test_registers = falcon_b0_test_registers,
1818         .test_nvram = falcon_test_nvram,
1819         .default_mac_ops = &falcon_xmac_operations,
1820
1821         .revision = EFX_REV_FALCON_B0,
1822         /* Map everything up to and including the RSS indirection
1823          * table.  Don't map MSI-X table, MSI-X PBA since Linux
1824          * requires that they not be mapped.  */
1825         .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
1826                          FR_BZ_RX_INDIRECTION_TBL_STEP *
1827                          FR_BZ_RX_INDIRECTION_TBL_ROWS),
1828         .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
1829         .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
1830         .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
1831         .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
1832         .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
1833         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1834         .rx_buffer_hash_size = 0x10,
1835         .rx_buffer_padding = 0,
1836         .max_interrupt_mode = EFX_INT_MODE_MSIX,
1837         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
1838                                    * interrupt handler only supports 32
1839                                    * channels */
1840         .tx_dc_base = 0x130000,
1841         .rx_dc_base = 0x100000,
1842         .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
1843 };
1844