igbvf: convert to ndo_fix_features
[pandora-kernel.git] / drivers / net / ethernet / intel / igbvf / netdev.c
1 /*******************************************************************************
2
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/tcp.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/prefetch.h>
45
46 #include "igbvf.h"
47
48 #define DRV_VERSION "2.0.0-k"
49 char igbvf_driver_name[] = "igbvf";
50 const char igbvf_driver_version[] = DRV_VERSION;
51 static const char igbvf_driver_string[] =
52                                 "Intel(R) Virtual Function Network Driver";
53 static const char igbvf_copyright[] =
54                                 "Copyright (c) 2009 - 2010 Intel Corporation.";
55
56 static int igbvf_poll(struct napi_struct *napi, int budget);
57 static void igbvf_reset(struct igbvf_adapter *);
58 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
59 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
60
61 static struct igbvf_info igbvf_vf_info = {
62         .mac                    = e1000_vfadapt,
63         .flags                  = 0,
64         .pba                    = 10,
65         .init_ops               = e1000_init_function_pointers_vf,
66 };
67
68 static struct igbvf_info igbvf_i350_vf_info = {
69         .mac                    = e1000_vfadapt_i350,
70         .flags                  = 0,
71         .pba                    = 10,
72         .init_ops               = e1000_init_function_pointers_vf,
73 };
74
75 static const struct igbvf_info *igbvf_info_tbl[] = {
76         [board_vf]              = &igbvf_vf_info,
77         [board_i350_vf]         = &igbvf_i350_vf_info,
78 };
79
80 /**
81  * igbvf_desc_unused - calculate if we have unused descriptors
82  **/
83 static int igbvf_desc_unused(struct igbvf_ring *ring)
84 {
85         if (ring->next_to_clean > ring->next_to_use)
86                 return ring->next_to_clean - ring->next_to_use - 1;
87
88         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
89 }
90
91 /**
92  * igbvf_receive_skb - helper function to handle Rx indications
93  * @adapter: board private structure
94  * @status: descriptor status field as written by hardware
95  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
96  * @skb: pointer to sk_buff to be indicated to stack
97  **/
98 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
99                               struct net_device *netdev,
100                               struct sk_buff *skb,
101                               u32 status, u16 vlan)
102 {
103         if (status & E1000_RXD_STAT_VP) {
104                 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
105
106                 __vlan_hwaccel_put_tag(skb, vid);
107         }
108         netif_receive_skb(skb);
109 }
110
111 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
112                                          u32 status_err, struct sk_buff *skb)
113 {
114         skb_checksum_none_assert(skb);
115
116         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
117         if ((status_err & E1000_RXD_STAT_IXSM) ||
118             (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
119                 return;
120
121         /* TCP/UDP checksum error bit is set */
122         if (status_err &
123             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
124                 /* let the stack verify checksum errors */
125                 adapter->hw_csum_err++;
126                 return;
127         }
128
129         /* It must be a TCP or UDP packet with a valid checksum */
130         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
131                 skb->ip_summed = CHECKSUM_UNNECESSARY;
132
133         adapter->hw_csum_good++;
134 }
135
136 /**
137  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
138  * @rx_ring: address of ring structure to repopulate
139  * @cleaned_count: number of buffers to repopulate
140  **/
141 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
142                                    int cleaned_count)
143 {
144         struct igbvf_adapter *adapter = rx_ring->adapter;
145         struct net_device *netdev = adapter->netdev;
146         struct pci_dev *pdev = adapter->pdev;
147         union e1000_adv_rx_desc *rx_desc;
148         struct igbvf_buffer *buffer_info;
149         struct sk_buff *skb;
150         unsigned int i;
151         int bufsz;
152
153         i = rx_ring->next_to_use;
154         buffer_info = &rx_ring->buffer_info[i];
155
156         if (adapter->rx_ps_hdr_size)
157                 bufsz = adapter->rx_ps_hdr_size;
158         else
159                 bufsz = adapter->rx_buffer_len;
160
161         while (cleaned_count--) {
162                 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
163
164                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
165                         if (!buffer_info->page) {
166                                 buffer_info->page = alloc_page(GFP_ATOMIC);
167                                 if (!buffer_info->page) {
168                                         adapter->alloc_rx_buff_failed++;
169                                         goto no_buffers;
170                                 }
171                                 buffer_info->page_offset = 0;
172                         } else {
173                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
174                         }
175                         buffer_info->page_dma =
176                                 dma_map_page(&pdev->dev, buffer_info->page,
177                                              buffer_info->page_offset,
178                                              PAGE_SIZE / 2,
179                                              DMA_FROM_DEVICE);
180                 }
181
182                 if (!buffer_info->skb) {
183                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
184                         if (!skb) {
185                                 adapter->alloc_rx_buff_failed++;
186                                 goto no_buffers;
187                         }
188
189                         buffer_info->skb = skb;
190                         buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
191                                                           bufsz,
192                                                           DMA_FROM_DEVICE);
193                 }
194                 /* Refresh the desc even if buffer_addrs didn't change because
195                  * each write-back erases this info. */
196                 if (adapter->rx_ps_hdr_size) {
197                         rx_desc->read.pkt_addr =
198                              cpu_to_le64(buffer_info->page_dma);
199                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
200                 } else {
201                         rx_desc->read.pkt_addr =
202                              cpu_to_le64(buffer_info->dma);
203                         rx_desc->read.hdr_addr = 0;
204                 }
205
206                 i++;
207                 if (i == rx_ring->count)
208                         i = 0;
209                 buffer_info = &rx_ring->buffer_info[i];
210         }
211
212 no_buffers:
213         if (rx_ring->next_to_use != i) {
214                 rx_ring->next_to_use = i;
215                 if (i == 0)
216                         i = (rx_ring->count - 1);
217                 else
218                         i--;
219
220                 /* Force memory writes to complete before letting h/w
221                  * know there are new descriptors to fetch.  (Only
222                  * applicable for weak-ordered memory model archs,
223                  * such as IA-64). */
224                 wmb();
225                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
226         }
227 }
228
229 /**
230  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
231  * @adapter: board private structure
232  *
233  * the return value indicates whether actual cleaning was done, there
234  * is no guarantee that everything was cleaned
235  **/
236 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
237                                int *work_done, int work_to_do)
238 {
239         struct igbvf_ring *rx_ring = adapter->rx_ring;
240         struct net_device *netdev = adapter->netdev;
241         struct pci_dev *pdev = adapter->pdev;
242         union e1000_adv_rx_desc *rx_desc, *next_rxd;
243         struct igbvf_buffer *buffer_info, *next_buffer;
244         struct sk_buff *skb;
245         bool cleaned = false;
246         int cleaned_count = 0;
247         unsigned int total_bytes = 0, total_packets = 0;
248         unsigned int i;
249         u32 length, hlen, staterr;
250
251         i = rx_ring->next_to_clean;
252         rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
253         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
254
255         while (staterr & E1000_RXD_STAT_DD) {
256                 if (*work_done >= work_to_do)
257                         break;
258                 (*work_done)++;
259                 rmb(); /* read descriptor and rx_buffer_info after status DD */
260
261                 buffer_info = &rx_ring->buffer_info[i];
262
263                 /* HW will not DMA in data larger than the given buffer, even
264                  * if it parses the (NFS, of course) header to be larger.  In
265                  * that case, it fills the header buffer and spills the rest
266                  * into the page.
267                  */
268                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
269                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
270                 if (hlen > adapter->rx_ps_hdr_size)
271                         hlen = adapter->rx_ps_hdr_size;
272
273                 length = le16_to_cpu(rx_desc->wb.upper.length);
274                 cleaned = true;
275                 cleaned_count++;
276
277                 skb = buffer_info->skb;
278                 prefetch(skb->data - NET_IP_ALIGN);
279                 buffer_info->skb = NULL;
280                 if (!adapter->rx_ps_hdr_size) {
281                         dma_unmap_single(&pdev->dev, buffer_info->dma,
282                                          adapter->rx_buffer_len,
283                                          DMA_FROM_DEVICE);
284                         buffer_info->dma = 0;
285                         skb_put(skb, length);
286                         goto send_up;
287                 }
288
289                 if (!skb_shinfo(skb)->nr_frags) {
290                         dma_unmap_single(&pdev->dev, buffer_info->dma,
291                                          adapter->rx_ps_hdr_size,
292                                          DMA_FROM_DEVICE);
293                         skb_put(skb, hlen);
294                 }
295
296                 if (length) {
297                         dma_unmap_page(&pdev->dev, buffer_info->page_dma,
298                                        PAGE_SIZE / 2,
299                                        DMA_FROM_DEVICE);
300                         buffer_info->page_dma = 0;
301
302                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
303                                            buffer_info->page,
304                                            buffer_info->page_offset,
305                                            length);
306
307                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
308                             (page_count(buffer_info->page) != 1))
309                                 buffer_info->page = NULL;
310                         else
311                                 get_page(buffer_info->page);
312
313                         skb->len += length;
314                         skb->data_len += length;
315                         skb->truesize += length;
316                 }
317 send_up:
318                 i++;
319                 if (i == rx_ring->count)
320                         i = 0;
321                 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
322                 prefetch(next_rxd);
323                 next_buffer = &rx_ring->buffer_info[i];
324
325                 if (!(staterr & E1000_RXD_STAT_EOP)) {
326                         buffer_info->skb = next_buffer->skb;
327                         buffer_info->dma = next_buffer->dma;
328                         next_buffer->skb = skb;
329                         next_buffer->dma = 0;
330                         goto next_desc;
331                 }
332
333                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
334                         dev_kfree_skb_irq(skb);
335                         goto next_desc;
336                 }
337
338                 total_bytes += skb->len;
339                 total_packets++;
340
341                 igbvf_rx_checksum_adv(adapter, staterr, skb);
342
343                 skb->protocol = eth_type_trans(skb, netdev);
344
345                 igbvf_receive_skb(adapter, netdev, skb, staterr,
346                                   rx_desc->wb.upper.vlan);
347
348 next_desc:
349                 rx_desc->wb.upper.status_error = 0;
350
351                 /* return some buffers to hardware, one at a time is too slow */
352                 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
353                         igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
354                         cleaned_count = 0;
355                 }
356
357                 /* use prefetched values */
358                 rx_desc = next_rxd;
359                 buffer_info = next_buffer;
360
361                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
362         }
363
364         rx_ring->next_to_clean = i;
365         cleaned_count = igbvf_desc_unused(rx_ring);
366
367         if (cleaned_count)
368                 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
369
370         adapter->total_rx_packets += total_packets;
371         adapter->total_rx_bytes += total_bytes;
372         adapter->net_stats.rx_bytes += total_bytes;
373         adapter->net_stats.rx_packets += total_packets;
374         return cleaned;
375 }
376
377 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
378                             struct igbvf_buffer *buffer_info)
379 {
380         if (buffer_info->dma) {
381                 if (buffer_info->mapped_as_page)
382                         dma_unmap_page(&adapter->pdev->dev,
383                                        buffer_info->dma,
384                                        buffer_info->length,
385                                        DMA_TO_DEVICE);
386                 else
387                         dma_unmap_single(&adapter->pdev->dev,
388                                          buffer_info->dma,
389                                          buffer_info->length,
390                                          DMA_TO_DEVICE);
391                 buffer_info->dma = 0;
392         }
393         if (buffer_info->skb) {
394                 dev_kfree_skb_any(buffer_info->skb);
395                 buffer_info->skb = NULL;
396         }
397         buffer_info->time_stamp = 0;
398 }
399
400 /**
401  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
402  * @adapter: board private structure
403  *
404  * Return 0 on success, negative on failure
405  **/
406 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
407                              struct igbvf_ring *tx_ring)
408 {
409         struct pci_dev *pdev = adapter->pdev;
410         int size;
411
412         size = sizeof(struct igbvf_buffer) * tx_ring->count;
413         tx_ring->buffer_info = vzalloc(size);
414         if (!tx_ring->buffer_info)
415                 goto err;
416
417         /* round up to nearest 4K */
418         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
419         tx_ring->size = ALIGN(tx_ring->size, 4096);
420
421         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
422                                            &tx_ring->dma, GFP_KERNEL);
423
424         if (!tx_ring->desc)
425                 goto err;
426
427         tx_ring->adapter = adapter;
428         tx_ring->next_to_use = 0;
429         tx_ring->next_to_clean = 0;
430
431         return 0;
432 err:
433         vfree(tx_ring->buffer_info);
434         dev_err(&adapter->pdev->dev,
435                 "Unable to allocate memory for the transmit descriptor ring\n");
436         return -ENOMEM;
437 }
438
439 /**
440  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
441  * @adapter: board private structure
442  *
443  * Returns 0 on success, negative on failure
444  **/
445 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
446                              struct igbvf_ring *rx_ring)
447 {
448         struct pci_dev *pdev = adapter->pdev;
449         int size, desc_len;
450
451         size = sizeof(struct igbvf_buffer) * rx_ring->count;
452         rx_ring->buffer_info = vzalloc(size);
453         if (!rx_ring->buffer_info)
454                 goto err;
455
456         desc_len = sizeof(union e1000_adv_rx_desc);
457
458         /* Round up to nearest 4K */
459         rx_ring->size = rx_ring->count * desc_len;
460         rx_ring->size = ALIGN(rx_ring->size, 4096);
461
462         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
463                                            &rx_ring->dma, GFP_KERNEL);
464
465         if (!rx_ring->desc)
466                 goto err;
467
468         rx_ring->next_to_clean = 0;
469         rx_ring->next_to_use = 0;
470
471         rx_ring->adapter = adapter;
472
473         return 0;
474
475 err:
476         vfree(rx_ring->buffer_info);
477         rx_ring->buffer_info = NULL;
478         dev_err(&adapter->pdev->dev,
479                 "Unable to allocate memory for the receive descriptor ring\n");
480         return -ENOMEM;
481 }
482
483 /**
484  * igbvf_clean_tx_ring - Free Tx Buffers
485  * @tx_ring: ring to be cleaned
486  **/
487 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
488 {
489         struct igbvf_adapter *adapter = tx_ring->adapter;
490         struct igbvf_buffer *buffer_info;
491         unsigned long size;
492         unsigned int i;
493
494         if (!tx_ring->buffer_info)
495                 return;
496
497         /* Free all the Tx ring sk_buffs */
498         for (i = 0; i < tx_ring->count; i++) {
499                 buffer_info = &tx_ring->buffer_info[i];
500                 igbvf_put_txbuf(adapter, buffer_info);
501         }
502
503         size = sizeof(struct igbvf_buffer) * tx_ring->count;
504         memset(tx_ring->buffer_info, 0, size);
505
506         /* Zero out the descriptor ring */
507         memset(tx_ring->desc, 0, tx_ring->size);
508
509         tx_ring->next_to_use = 0;
510         tx_ring->next_to_clean = 0;
511
512         writel(0, adapter->hw.hw_addr + tx_ring->head);
513         writel(0, adapter->hw.hw_addr + tx_ring->tail);
514 }
515
516 /**
517  * igbvf_free_tx_resources - Free Tx Resources per Queue
518  * @tx_ring: ring to free resources from
519  *
520  * Free all transmit software resources
521  **/
522 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
523 {
524         struct pci_dev *pdev = tx_ring->adapter->pdev;
525
526         igbvf_clean_tx_ring(tx_ring);
527
528         vfree(tx_ring->buffer_info);
529         tx_ring->buffer_info = NULL;
530
531         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
532                           tx_ring->dma);
533
534         tx_ring->desc = NULL;
535 }
536
537 /**
538  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
539  * @adapter: board private structure
540  **/
541 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
542 {
543         struct igbvf_adapter *adapter = rx_ring->adapter;
544         struct igbvf_buffer *buffer_info;
545         struct pci_dev *pdev = adapter->pdev;
546         unsigned long size;
547         unsigned int i;
548
549         if (!rx_ring->buffer_info)
550                 return;
551
552         /* Free all the Rx ring sk_buffs */
553         for (i = 0; i < rx_ring->count; i++) {
554                 buffer_info = &rx_ring->buffer_info[i];
555                 if (buffer_info->dma) {
556                         if (adapter->rx_ps_hdr_size){
557                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
558                                                  adapter->rx_ps_hdr_size,
559                                                  DMA_FROM_DEVICE);
560                         } else {
561                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
562                                                  adapter->rx_buffer_len,
563                                                  DMA_FROM_DEVICE);
564                         }
565                         buffer_info->dma = 0;
566                 }
567
568                 if (buffer_info->skb) {
569                         dev_kfree_skb(buffer_info->skb);
570                         buffer_info->skb = NULL;
571                 }
572
573                 if (buffer_info->page) {
574                         if (buffer_info->page_dma)
575                                 dma_unmap_page(&pdev->dev,
576                                                buffer_info->page_dma,
577                                                PAGE_SIZE / 2,
578                                                DMA_FROM_DEVICE);
579                         put_page(buffer_info->page);
580                         buffer_info->page = NULL;
581                         buffer_info->page_dma = 0;
582                         buffer_info->page_offset = 0;
583                 }
584         }
585
586         size = sizeof(struct igbvf_buffer) * rx_ring->count;
587         memset(rx_ring->buffer_info, 0, size);
588
589         /* Zero out the descriptor ring */
590         memset(rx_ring->desc, 0, rx_ring->size);
591
592         rx_ring->next_to_clean = 0;
593         rx_ring->next_to_use = 0;
594
595         writel(0, adapter->hw.hw_addr + rx_ring->head);
596         writel(0, adapter->hw.hw_addr + rx_ring->tail);
597 }
598
599 /**
600  * igbvf_free_rx_resources - Free Rx Resources
601  * @rx_ring: ring to clean the resources from
602  *
603  * Free all receive software resources
604  **/
605
606 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
607 {
608         struct pci_dev *pdev = rx_ring->adapter->pdev;
609
610         igbvf_clean_rx_ring(rx_ring);
611
612         vfree(rx_ring->buffer_info);
613         rx_ring->buffer_info = NULL;
614
615         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
616                           rx_ring->dma);
617         rx_ring->desc = NULL;
618 }
619
620 /**
621  * igbvf_update_itr - update the dynamic ITR value based on statistics
622  * @adapter: pointer to adapter
623  * @itr_setting: current adapter->itr
624  * @packets: the number of packets during this measurement interval
625  * @bytes: the number of bytes during this measurement interval
626  *
627  *      Stores a new ITR value based on packets and byte
628  *      counts during the last interrupt.  The advantage of per interrupt
629  *      computation is faster updates and more accurate ITR for the current
630  *      traffic pattern.  Constants in this function were computed
631  *      based on theoretical maximum wire speed and thresholds were set based
632  *      on testing data as well as attempting to minimize response time
633  *      while increasing bulk throughput.  This functionality is controlled
634  *      by the InterruptThrottleRate module parameter.
635  **/
636 static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
637                                      u16 itr_setting, int packets,
638                                      int bytes)
639 {
640         unsigned int retval = itr_setting;
641
642         if (packets == 0)
643                 goto update_itr_done;
644
645         switch (itr_setting) {
646         case lowest_latency:
647                 /* handle TSO and jumbo frames */
648                 if (bytes/packets > 8000)
649                         retval = bulk_latency;
650                 else if ((packets < 5) && (bytes > 512))
651                         retval = low_latency;
652                 break;
653         case low_latency:  /* 50 usec aka 20000 ints/s */
654                 if (bytes > 10000) {
655                         /* this if handles the TSO accounting */
656                         if (bytes/packets > 8000)
657                                 retval = bulk_latency;
658                         else if ((packets < 10) || ((bytes/packets) > 1200))
659                                 retval = bulk_latency;
660                         else if ((packets > 35))
661                                 retval = lowest_latency;
662                 } else if (bytes/packets > 2000) {
663                         retval = bulk_latency;
664                 } else if (packets <= 2 && bytes < 512) {
665                         retval = lowest_latency;
666                 }
667                 break;
668         case bulk_latency: /* 250 usec aka 4000 ints/s */
669                 if (bytes > 25000) {
670                         if (packets > 35)
671                                 retval = low_latency;
672                 } else if (bytes < 6000) {
673                         retval = low_latency;
674                 }
675                 break;
676         }
677
678 update_itr_done:
679         return retval;
680 }
681
682 static void igbvf_set_itr(struct igbvf_adapter *adapter)
683 {
684         struct e1000_hw *hw = &adapter->hw;
685         u16 current_itr;
686         u32 new_itr = adapter->itr;
687
688         adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
689                                            adapter->total_tx_packets,
690                                            adapter->total_tx_bytes);
691         /* conservative mode (itr 3) eliminates the lowest_latency setting */
692         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
693                 adapter->tx_itr = low_latency;
694
695         adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
696                                            adapter->total_rx_packets,
697                                            adapter->total_rx_bytes);
698         /* conservative mode (itr 3) eliminates the lowest_latency setting */
699         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
700                 adapter->rx_itr = low_latency;
701
702         current_itr = max(adapter->rx_itr, adapter->tx_itr);
703
704         switch (current_itr) {
705         /* counts and packets in update_itr are dependent on these numbers */
706         case lowest_latency:
707                 new_itr = 70000;
708                 break;
709         case low_latency:
710                 new_itr = 20000; /* aka hwitr = ~200 */
711                 break;
712         case bulk_latency:
713                 new_itr = 4000;
714                 break;
715         default:
716                 break;
717         }
718
719         if (new_itr != adapter->itr) {
720                 /*
721                  * this attempts to bias the interrupt rate towards Bulk
722                  * by adding intermediate steps when interrupt rate is
723                  * increasing
724                  */
725                 new_itr = new_itr > adapter->itr ?
726                              min(adapter->itr + (new_itr >> 2), new_itr) :
727                              new_itr;
728                 adapter->itr = new_itr;
729                 adapter->rx_ring->itr_val = 1952;
730
731                 if (adapter->msix_entries)
732                         adapter->rx_ring->set_itr = 1;
733                 else
734                         ew32(ITR, 1952);
735         }
736 }
737
738 /**
739  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
740  * @adapter: board private structure
741  * returns true if ring is completely cleaned
742  **/
743 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
744 {
745         struct igbvf_adapter *adapter = tx_ring->adapter;
746         struct net_device *netdev = adapter->netdev;
747         struct igbvf_buffer *buffer_info;
748         struct sk_buff *skb;
749         union e1000_adv_tx_desc *tx_desc, *eop_desc;
750         unsigned int total_bytes = 0, total_packets = 0;
751         unsigned int i, eop, count = 0;
752         bool cleaned = false;
753
754         i = tx_ring->next_to_clean;
755         eop = tx_ring->buffer_info[i].next_to_watch;
756         eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
757
758         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
759                (count < tx_ring->count)) {
760                 rmb();  /* read buffer_info after eop_desc status */
761                 for (cleaned = false; !cleaned; count++) {
762                         tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
763                         buffer_info = &tx_ring->buffer_info[i];
764                         cleaned = (i == eop);
765                         skb = buffer_info->skb;
766
767                         if (skb) {
768                                 unsigned int segs, bytecount;
769
770                                 /* gso_segs is currently only valid for tcp */
771                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
772                                 /* multiply data chunks by size of headers */
773                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
774                                             skb->len;
775                                 total_packets += segs;
776                                 total_bytes += bytecount;
777                         }
778
779                         igbvf_put_txbuf(adapter, buffer_info);
780                         tx_desc->wb.status = 0;
781
782                         i++;
783                         if (i == tx_ring->count)
784                                 i = 0;
785                 }
786                 eop = tx_ring->buffer_info[i].next_to_watch;
787                 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
788         }
789
790         tx_ring->next_to_clean = i;
791
792         if (unlikely(count &&
793                      netif_carrier_ok(netdev) &&
794                      igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
795                 /* Make sure that anybody stopping the queue after this
796                  * sees the new next_to_clean.
797                  */
798                 smp_mb();
799                 if (netif_queue_stopped(netdev) &&
800                     !(test_bit(__IGBVF_DOWN, &adapter->state))) {
801                         netif_wake_queue(netdev);
802                         ++adapter->restart_queue;
803                 }
804         }
805
806         adapter->net_stats.tx_bytes += total_bytes;
807         adapter->net_stats.tx_packets += total_packets;
808         return count < tx_ring->count;
809 }
810
811 static irqreturn_t igbvf_msix_other(int irq, void *data)
812 {
813         struct net_device *netdev = data;
814         struct igbvf_adapter *adapter = netdev_priv(netdev);
815         struct e1000_hw *hw = &adapter->hw;
816
817         adapter->int_counter1++;
818
819         netif_carrier_off(netdev);
820         hw->mac.get_link_status = 1;
821         if (!test_bit(__IGBVF_DOWN, &adapter->state))
822                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
823
824         ew32(EIMS, adapter->eims_other);
825
826         return IRQ_HANDLED;
827 }
828
829 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
830 {
831         struct net_device *netdev = data;
832         struct igbvf_adapter *adapter = netdev_priv(netdev);
833         struct e1000_hw *hw = &adapter->hw;
834         struct igbvf_ring *tx_ring = adapter->tx_ring;
835
836
837         adapter->total_tx_bytes = 0;
838         adapter->total_tx_packets = 0;
839
840         /* auto mask will automatically reenable the interrupt when we write
841          * EICS */
842         if (!igbvf_clean_tx_irq(tx_ring))
843                 /* Ring was not completely cleaned, so fire another interrupt */
844                 ew32(EICS, tx_ring->eims_value);
845         else
846                 ew32(EIMS, tx_ring->eims_value);
847
848         return IRQ_HANDLED;
849 }
850
851 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
852 {
853         struct net_device *netdev = data;
854         struct igbvf_adapter *adapter = netdev_priv(netdev);
855
856         adapter->int_counter0++;
857
858         /* Write the ITR value calculated at the end of the
859          * previous interrupt.
860          */
861         if (adapter->rx_ring->set_itr) {
862                 writel(adapter->rx_ring->itr_val,
863                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
864                 adapter->rx_ring->set_itr = 0;
865         }
866
867         if (napi_schedule_prep(&adapter->rx_ring->napi)) {
868                 adapter->total_rx_bytes = 0;
869                 adapter->total_rx_packets = 0;
870                 __napi_schedule(&adapter->rx_ring->napi);
871         }
872
873         return IRQ_HANDLED;
874 }
875
876 #define IGBVF_NO_QUEUE -1
877
878 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
879                                 int tx_queue, int msix_vector)
880 {
881         struct e1000_hw *hw = &adapter->hw;
882         u32 ivar, index;
883
884         /* 82576 uses a table-based method for assigning vectors.
885            Each queue has a single entry in the table to which we write
886            a vector number along with a "valid" bit.  Sadly, the layout
887            of the table is somewhat counterintuitive. */
888         if (rx_queue > IGBVF_NO_QUEUE) {
889                 index = (rx_queue >> 1);
890                 ivar = array_er32(IVAR0, index);
891                 if (rx_queue & 0x1) {
892                         /* vector goes into third byte of register */
893                         ivar = ivar & 0xFF00FFFF;
894                         ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
895                 } else {
896                         /* vector goes into low byte of register */
897                         ivar = ivar & 0xFFFFFF00;
898                         ivar |= msix_vector | E1000_IVAR_VALID;
899                 }
900                 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
901                 array_ew32(IVAR0, index, ivar);
902         }
903         if (tx_queue > IGBVF_NO_QUEUE) {
904                 index = (tx_queue >> 1);
905                 ivar = array_er32(IVAR0, index);
906                 if (tx_queue & 0x1) {
907                         /* vector goes into high byte of register */
908                         ivar = ivar & 0x00FFFFFF;
909                         ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
910                 } else {
911                         /* vector goes into second byte of register */
912                         ivar = ivar & 0xFFFF00FF;
913                         ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
914                 }
915                 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
916                 array_ew32(IVAR0, index, ivar);
917         }
918 }
919
920 /**
921  * igbvf_configure_msix - Configure MSI-X hardware
922  *
923  * igbvf_configure_msix sets up the hardware to properly
924  * generate MSI-X interrupts.
925  **/
926 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
927 {
928         u32 tmp;
929         struct e1000_hw *hw = &adapter->hw;
930         struct igbvf_ring *tx_ring = adapter->tx_ring;
931         struct igbvf_ring *rx_ring = adapter->rx_ring;
932         int vector = 0;
933
934         adapter->eims_enable_mask = 0;
935
936         igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
937         adapter->eims_enable_mask |= tx_ring->eims_value;
938         if (tx_ring->itr_val)
939                 writel(tx_ring->itr_val,
940                        hw->hw_addr + tx_ring->itr_register);
941         else
942                 writel(1952, hw->hw_addr + tx_ring->itr_register);
943
944         igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
945         adapter->eims_enable_mask |= rx_ring->eims_value;
946         if (rx_ring->itr_val)
947                 writel(rx_ring->itr_val,
948                        hw->hw_addr + rx_ring->itr_register);
949         else
950                 writel(1952, hw->hw_addr + rx_ring->itr_register);
951
952         /* set vector for other causes, i.e. link changes */
953
954         tmp = (vector++ | E1000_IVAR_VALID);
955
956         ew32(IVAR_MISC, tmp);
957
958         adapter->eims_enable_mask = (1 << (vector)) - 1;
959         adapter->eims_other = 1 << (vector - 1);
960         e1e_flush();
961 }
962
963 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
964 {
965         if (adapter->msix_entries) {
966                 pci_disable_msix(adapter->pdev);
967                 kfree(adapter->msix_entries);
968                 adapter->msix_entries = NULL;
969         }
970 }
971
972 /**
973  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
974  *
975  * Attempt to configure interrupts using the best available
976  * capabilities of the hardware and kernel.
977  **/
978 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
979 {
980         int err = -ENOMEM;
981         int i;
982
983         /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
984         adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
985                                         GFP_KERNEL);
986         if (adapter->msix_entries) {
987                 for (i = 0; i < 3; i++)
988                         adapter->msix_entries[i].entry = i;
989
990                 err = pci_enable_msix(adapter->pdev,
991                                       adapter->msix_entries, 3);
992         }
993
994         if (err) {
995                 /* MSI-X failed */
996                 dev_err(&adapter->pdev->dev,
997                         "Failed to initialize MSI-X interrupts.\n");
998                 igbvf_reset_interrupt_capability(adapter);
999         }
1000 }
1001
1002 /**
1003  * igbvf_request_msix - Initialize MSI-X interrupts
1004  *
1005  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1006  * kernel.
1007  **/
1008 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1009 {
1010         struct net_device *netdev = adapter->netdev;
1011         int err = 0, vector = 0;
1012
1013         if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1014                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1015                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1016         } else {
1017                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1018                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1019         }
1020
1021         err = request_irq(adapter->msix_entries[vector].vector,
1022                           igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1023                           netdev);
1024         if (err)
1025                 goto out;
1026
1027         adapter->tx_ring->itr_register = E1000_EITR(vector);
1028         adapter->tx_ring->itr_val = 1952;
1029         vector++;
1030
1031         err = request_irq(adapter->msix_entries[vector].vector,
1032                           igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1033                           netdev);
1034         if (err)
1035                 goto out;
1036
1037         adapter->rx_ring->itr_register = E1000_EITR(vector);
1038         adapter->rx_ring->itr_val = 1952;
1039         vector++;
1040
1041         err = request_irq(adapter->msix_entries[vector].vector,
1042                           igbvf_msix_other, 0, netdev->name, netdev);
1043         if (err)
1044                 goto out;
1045
1046         igbvf_configure_msix(adapter);
1047         return 0;
1048 out:
1049         return err;
1050 }
1051
1052 /**
1053  * igbvf_alloc_queues - Allocate memory for all rings
1054  * @adapter: board private structure to initialize
1055  **/
1056 static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1057 {
1058         struct net_device *netdev = adapter->netdev;
1059
1060         adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1061         if (!adapter->tx_ring)
1062                 return -ENOMEM;
1063
1064         adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1065         if (!adapter->rx_ring) {
1066                 kfree(adapter->tx_ring);
1067                 return -ENOMEM;
1068         }
1069
1070         netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1071
1072         return 0;
1073 }
1074
1075 /**
1076  * igbvf_request_irq - initialize interrupts
1077  *
1078  * Attempts to configure interrupts using the best available
1079  * capabilities of the hardware and kernel.
1080  **/
1081 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1082 {
1083         int err = -1;
1084
1085         /* igbvf supports msi-x only */
1086         if (adapter->msix_entries)
1087                 err = igbvf_request_msix(adapter);
1088
1089         if (!err)
1090                 return err;
1091
1092         dev_err(&adapter->pdev->dev,
1093                 "Unable to allocate interrupt, Error: %d\n", err);
1094
1095         return err;
1096 }
1097
1098 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1099 {
1100         struct net_device *netdev = adapter->netdev;
1101         int vector;
1102
1103         if (adapter->msix_entries) {
1104                 for (vector = 0; vector < 3; vector++)
1105                         free_irq(adapter->msix_entries[vector].vector, netdev);
1106         }
1107 }
1108
1109 /**
1110  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1111  **/
1112 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1113 {
1114         struct e1000_hw *hw = &adapter->hw;
1115
1116         ew32(EIMC, ~0);
1117
1118         if (adapter->msix_entries)
1119                 ew32(EIAC, 0);
1120 }
1121
1122 /**
1123  * igbvf_irq_enable - Enable default interrupt generation settings
1124  **/
1125 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1126 {
1127         struct e1000_hw *hw = &adapter->hw;
1128
1129         ew32(EIAC, adapter->eims_enable_mask);
1130         ew32(EIAM, adapter->eims_enable_mask);
1131         ew32(EIMS, adapter->eims_enable_mask);
1132 }
1133
1134 /**
1135  * igbvf_poll - NAPI Rx polling callback
1136  * @napi: struct associated with this polling callback
1137  * @budget: amount of packets driver is allowed to process this poll
1138  **/
1139 static int igbvf_poll(struct napi_struct *napi, int budget)
1140 {
1141         struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1142         struct igbvf_adapter *adapter = rx_ring->adapter;
1143         struct e1000_hw *hw = &adapter->hw;
1144         int work_done = 0;
1145
1146         igbvf_clean_rx_irq(adapter, &work_done, budget);
1147
1148         /* If not enough Rx work done, exit the polling mode */
1149         if (work_done < budget) {
1150                 napi_complete(napi);
1151
1152                 if (adapter->itr_setting & 3)
1153                         igbvf_set_itr(adapter);
1154
1155                 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1156                         ew32(EIMS, adapter->rx_ring->eims_value);
1157         }
1158
1159         return work_done;
1160 }
1161
1162 /**
1163  * igbvf_set_rlpml - set receive large packet maximum length
1164  * @adapter: board private structure
1165  *
1166  * Configure the maximum size of packets that will be received
1167  */
1168 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1169 {
1170         int max_frame_size;
1171         struct e1000_hw *hw = &adapter->hw;
1172
1173         max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1174         e1000_rlpml_set_vf(hw, max_frame_size);
1175 }
1176
1177 static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1178 {
1179         struct igbvf_adapter *adapter = netdev_priv(netdev);
1180         struct e1000_hw *hw = &adapter->hw;
1181
1182         if (hw->mac.ops.set_vfta(hw, vid, true))
1183                 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1184         else
1185                 set_bit(vid, adapter->active_vlans);
1186 }
1187
1188 static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1189 {
1190         struct igbvf_adapter *adapter = netdev_priv(netdev);
1191         struct e1000_hw *hw = &adapter->hw;
1192
1193         igbvf_irq_disable(adapter);
1194
1195         if (!test_bit(__IGBVF_DOWN, &adapter->state))
1196                 igbvf_irq_enable(adapter);
1197
1198         if (hw->mac.ops.set_vfta(hw, vid, false))
1199                 dev_err(&adapter->pdev->dev,
1200                         "Failed to remove vlan id %d\n", vid);
1201         else
1202                 clear_bit(vid, adapter->active_vlans);
1203 }
1204
1205 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1206 {
1207         u16 vid;
1208
1209         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1210                 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1211 }
1212
1213 /**
1214  * igbvf_configure_tx - Configure Transmit Unit after Reset
1215  * @adapter: board private structure
1216  *
1217  * Configure the Tx unit of the MAC after a reset.
1218  **/
1219 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1220 {
1221         struct e1000_hw *hw = &adapter->hw;
1222         struct igbvf_ring *tx_ring = adapter->tx_ring;
1223         u64 tdba;
1224         u32 txdctl, dca_txctrl;
1225
1226         /* disable transmits */
1227         txdctl = er32(TXDCTL(0));
1228         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1229         e1e_flush();
1230         msleep(10);
1231
1232         /* Setup the HW Tx Head and Tail descriptor pointers */
1233         ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1234         tdba = tx_ring->dma;
1235         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1236         ew32(TDBAH(0), (tdba >> 32));
1237         ew32(TDH(0), 0);
1238         ew32(TDT(0), 0);
1239         tx_ring->head = E1000_TDH(0);
1240         tx_ring->tail = E1000_TDT(0);
1241
1242         /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1243          * MUST be delivered in order or it will completely screw up
1244          * our bookeeping.
1245          */
1246         dca_txctrl = er32(DCA_TXCTRL(0));
1247         dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1248         ew32(DCA_TXCTRL(0), dca_txctrl);
1249
1250         /* enable transmits */
1251         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1252         ew32(TXDCTL(0), txdctl);
1253
1254         /* Setup Transmit Descriptor Settings for eop descriptor */
1255         adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1256
1257         /* enable Report Status bit */
1258         adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1259 }
1260
1261 /**
1262  * igbvf_setup_srrctl - configure the receive control registers
1263  * @adapter: Board private structure
1264  **/
1265 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1266 {
1267         struct e1000_hw *hw = &adapter->hw;
1268         u32 srrctl = 0;
1269
1270         srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1271                     E1000_SRRCTL_BSIZEHDR_MASK |
1272                     E1000_SRRCTL_BSIZEPKT_MASK);
1273
1274         /* Enable queue drop to avoid head of line blocking */
1275         srrctl |= E1000_SRRCTL_DROP_EN;
1276
1277         /* Setup buffer sizes */
1278         srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1279                   E1000_SRRCTL_BSIZEPKT_SHIFT;
1280
1281         if (adapter->rx_buffer_len < 2048) {
1282                 adapter->rx_ps_hdr_size = 0;
1283                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1284         } else {
1285                 adapter->rx_ps_hdr_size = 128;
1286                 srrctl |= adapter->rx_ps_hdr_size <<
1287                           E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1288                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1289         }
1290
1291         ew32(SRRCTL(0), srrctl);
1292 }
1293
1294 /**
1295  * igbvf_configure_rx - Configure Receive Unit after Reset
1296  * @adapter: board private structure
1297  *
1298  * Configure the Rx unit of the MAC after a reset.
1299  **/
1300 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1301 {
1302         struct e1000_hw *hw = &adapter->hw;
1303         struct igbvf_ring *rx_ring = adapter->rx_ring;
1304         u64 rdba;
1305         u32 rdlen, rxdctl;
1306
1307         /* disable receives */
1308         rxdctl = er32(RXDCTL(0));
1309         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1310         e1e_flush();
1311         msleep(10);
1312
1313         rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1314
1315         /*
1316          * Setup the HW Rx Head and Tail Descriptor Pointers and
1317          * the Base and Length of the Rx Descriptor Ring
1318          */
1319         rdba = rx_ring->dma;
1320         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1321         ew32(RDBAH(0), (rdba >> 32));
1322         ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1323         rx_ring->head = E1000_RDH(0);
1324         rx_ring->tail = E1000_RDT(0);
1325         ew32(RDH(0), 0);
1326         ew32(RDT(0), 0);
1327
1328         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1329         rxdctl &= 0xFFF00000;
1330         rxdctl |= IGBVF_RX_PTHRESH;
1331         rxdctl |= IGBVF_RX_HTHRESH << 8;
1332         rxdctl |= IGBVF_RX_WTHRESH << 16;
1333
1334         igbvf_set_rlpml(adapter);
1335
1336         /* enable receives */
1337         ew32(RXDCTL(0), rxdctl);
1338 }
1339
1340 /**
1341  * igbvf_set_multi - Multicast and Promiscuous mode set
1342  * @netdev: network interface device structure
1343  *
1344  * The set_multi entry point is called whenever the multicast address
1345  * list or the network interface flags are updated.  This routine is
1346  * responsible for configuring the hardware for proper multicast,
1347  * promiscuous mode, and all-multi behavior.
1348  **/
1349 static void igbvf_set_multi(struct net_device *netdev)
1350 {
1351         struct igbvf_adapter *adapter = netdev_priv(netdev);
1352         struct e1000_hw *hw = &adapter->hw;
1353         struct netdev_hw_addr *ha;
1354         u8  *mta_list = NULL;
1355         int i;
1356
1357         if (!netdev_mc_empty(netdev)) {
1358                 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1359                 if (!mta_list) {
1360                         dev_err(&adapter->pdev->dev,
1361                                 "failed to allocate multicast filter list\n");
1362                         return;
1363                 }
1364         }
1365
1366         /* prepare a packed array of only addresses. */
1367         i = 0;
1368         netdev_for_each_mc_addr(ha, netdev)
1369                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1370
1371         hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1372         kfree(mta_list);
1373 }
1374
1375 /**
1376  * igbvf_configure - configure the hardware for Rx and Tx
1377  * @adapter: private board structure
1378  **/
1379 static void igbvf_configure(struct igbvf_adapter *adapter)
1380 {
1381         igbvf_set_multi(adapter->netdev);
1382
1383         igbvf_restore_vlan(adapter);
1384
1385         igbvf_configure_tx(adapter);
1386         igbvf_setup_srrctl(adapter);
1387         igbvf_configure_rx(adapter);
1388         igbvf_alloc_rx_buffers(adapter->rx_ring,
1389                                igbvf_desc_unused(adapter->rx_ring));
1390 }
1391
1392 /* igbvf_reset - bring the hardware into a known good state
1393  *
1394  * This function boots the hardware and enables some settings that
1395  * require a configuration cycle of the hardware - those cannot be
1396  * set/changed during runtime. After reset the device needs to be
1397  * properly configured for Rx, Tx etc.
1398  */
1399 static void igbvf_reset(struct igbvf_adapter *adapter)
1400 {
1401         struct e1000_mac_info *mac = &adapter->hw.mac;
1402         struct net_device *netdev = adapter->netdev;
1403         struct e1000_hw *hw = &adapter->hw;
1404
1405         /* Allow time for pending master requests to run */
1406         if (mac->ops.reset_hw(hw))
1407                 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1408
1409         mac->ops.init_hw(hw);
1410
1411         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1412                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1413                        netdev->addr_len);
1414                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1415                        netdev->addr_len);
1416         }
1417
1418         adapter->last_reset = jiffies;
1419 }
1420
1421 int igbvf_up(struct igbvf_adapter *adapter)
1422 {
1423         struct e1000_hw *hw = &adapter->hw;
1424
1425         /* hardware has been reset, we need to reload some things */
1426         igbvf_configure(adapter);
1427
1428         clear_bit(__IGBVF_DOWN, &adapter->state);
1429
1430         napi_enable(&adapter->rx_ring->napi);
1431         if (adapter->msix_entries)
1432                 igbvf_configure_msix(adapter);
1433
1434         /* Clear any pending interrupts. */
1435         er32(EICR);
1436         igbvf_irq_enable(adapter);
1437
1438         /* start the watchdog */
1439         hw->mac.get_link_status = 1;
1440         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1441
1442
1443         return 0;
1444 }
1445
1446 void igbvf_down(struct igbvf_adapter *adapter)
1447 {
1448         struct net_device *netdev = adapter->netdev;
1449         struct e1000_hw *hw = &adapter->hw;
1450         u32 rxdctl, txdctl;
1451
1452         /*
1453          * signal that we're down so the interrupt handler does not
1454          * reschedule our watchdog timer
1455          */
1456         set_bit(__IGBVF_DOWN, &adapter->state);
1457
1458         /* disable receives in the hardware */
1459         rxdctl = er32(RXDCTL(0));
1460         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1461
1462         netif_stop_queue(netdev);
1463
1464         /* disable transmits in the hardware */
1465         txdctl = er32(TXDCTL(0));
1466         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1467
1468         /* flush both disables and wait for them to finish */
1469         e1e_flush();
1470         msleep(10);
1471
1472         napi_disable(&adapter->rx_ring->napi);
1473
1474         igbvf_irq_disable(adapter);
1475
1476         del_timer_sync(&adapter->watchdog_timer);
1477
1478         netif_carrier_off(netdev);
1479
1480         /* record the stats before reset*/
1481         igbvf_update_stats(adapter);
1482
1483         adapter->link_speed = 0;
1484         adapter->link_duplex = 0;
1485
1486         igbvf_reset(adapter);
1487         igbvf_clean_tx_ring(adapter->tx_ring);
1488         igbvf_clean_rx_ring(adapter->rx_ring);
1489 }
1490
1491 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1492 {
1493         might_sleep();
1494         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1495                 msleep(1);
1496         igbvf_down(adapter);
1497         igbvf_up(adapter);
1498         clear_bit(__IGBVF_RESETTING, &adapter->state);
1499 }
1500
1501 /**
1502  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1503  * @adapter: board private structure to initialize
1504  *
1505  * igbvf_sw_init initializes the Adapter private data structure.
1506  * Fields are initialized based on PCI device information and
1507  * OS network device settings (MTU size).
1508  **/
1509 static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1510 {
1511         struct net_device *netdev = adapter->netdev;
1512         s32 rc;
1513
1514         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1515         adapter->rx_ps_hdr_size = 0;
1516         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1517         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1518
1519         adapter->tx_int_delay = 8;
1520         adapter->tx_abs_int_delay = 32;
1521         adapter->rx_int_delay = 0;
1522         adapter->rx_abs_int_delay = 8;
1523         adapter->itr_setting = 3;
1524         adapter->itr = 20000;
1525
1526         /* Set various function pointers */
1527         adapter->ei->init_ops(&adapter->hw);
1528
1529         rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1530         if (rc)
1531                 return rc;
1532
1533         rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1534         if (rc)
1535                 return rc;
1536
1537         igbvf_set_interrupt_capability(adapter);
1538
1539         if (igbvf_alloc_queues(adapter))
1540                 return -ENOMEM;
1541
1542         spin_lock_init(&adapter->tx_queue_lock);
1543
1544         /* Explicitly disable IRQ since the NIC can be in any state. */
1545         igbvf_irq_disable(adapter);
1546
1547         spin_lock_init(&adapter->stats_lock);
1548
1549         set_bit(__IGBVF_DOWN, &adapter->state);
1550         return 0;
1551 }
1552
1553 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1554 {
1555         struct e1000_hw *hw = &adapter->hw;
1556
1557         adapter->stats.last_gprc = er32(VFGPRC);
1558         adapter->stats.last_gorc = er32(VFGORC);
1559         adapter->stats.last_gptc = er32(VFGPTC);
1560         adapter->stats.last_gotc = er32(VFGOTC);
1561         adapter->stats.last_mprc = er32(VFMPRC);
1562         adapter->stats.last_gotlbc = er32(VFGOTLBC);
1563         adapter->stats.last_gptlbc = er32(VFGPTLBC);
1564         adapter->stats.last_gorlbc = er32(VFGORLBC);
1565         adapter->stats.last_gprlbc = er32(VFGPRLBC);
1566
1567         adapter->stats.base_gprc = er32(VFGPRC);
1568         adapter->stats.base_gorc = er32(VFGORC);
1569         adapter->stats.base_gptc = er32(VFGPTC);
1570         adapter->stats.base_gotc = er32(VFGOTC);
1571         adapter->stats.base_mprc = er32(VFMPRC);
1572         adapter->stats.base_gotlbc = er32(VFGOTLBC);
1573         adapter->stats.base_gptlbc = er32(VFGPTLBC);
1574         adapter->stats.base_gorlbc = er32(VFGORLBC);
1575         adapter->stats.base_gprlbc = er32(VFGPRLBC);
1576 }
1577
1578 /**
1579  * igbvf_open - Called when a network interface is made active
1580  * @netdev: network interface device structure
1581  *
1582  * Returns 0 on success, negative value on failure
1583  *
1584  * The open entry point is called when a network interface is made
1585  * active by the system (IFF_UP).  At this point all resources needed
1586  * for transmit and receive operations are allocated, the interrupt
1587  * handler is registered with the OS, the watchdog timer is started,
1588  * and the stack is notified that the interface is ready.
1589  **/
1590 static int igbvf_open(struct net_device *netdev)
1591 {
1592         struct igbvf_adapter *adapter = netdev_priv(netdev);
1593         struct e1000_hw *hw = &adapter->hw;
1594         int err;
1595
1596         /* disallow open during test */
1597         if (test_bit(__IGBVF_TESTING, &adapter->state))
1598                 return -EBUSY;
1599
1600         /* allocate transmit descriptors */
1601         err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1602         if (err)
1603                 goto err_setup_tx;
1604
1605         /* allocate receive descriptors */
1606         err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1607         if (err)
1608                 goto err_setup_rx;
1609
1610         /*
1611          * before we allocate an interrupt, we must be ready to handle it.
1612          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1613          * as soon as we call pci_request_irq, so we have to setup our
1614          * clean_rx handler before we do so.
1615          */
1616         igbvf_configure(adapter);
1617
1618         err = igbvf_request_irq(adapter);
1619         if (err)
1620                 goto err_req_irq;
1621
1622         /* From here on the code is the same as igbvf_up() */
1623         clear_bit(__IGBVF_DOWN, &adapter->state);
1624
1625         napi_enable(&adapter->rx_ring->napi);
1626
1627         /* clear any pending interrupts */
1628         er32(EICR);
1629
1630         igbvf_irq_enable(adapter);
1631
1632         /* start the watchdog */
1633         hw->mac.get_link_status = 1;
1634         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1635
1636         return 0;
1637
1638 err_req_irq:
1639         igbvf_free_rx_resources(adapter->rx_ring);
1640 err_setup_rx:
1641         igbvf_free_tx_resources(adapter->tx_ring);
1642 err_setup_tx:
1643         igbvf_reset(adapter);
1644
1645         return err;
1646 }
1647
1648 /**
1649  * igbvf_close - Disables a network interface
1650  * @netdev: network interface device structure
1651  *
1652  * Returns 0, this is not allowed to fail
1653  *
1654  * The close entry point is called when an interface is de-activated
1655  * by the OS.  The hardware is still under the drivers control, but
1656  * needs to be disabled.  A global MAC reset is issued to stop the
1657  * hardware, and all transmit and receive resources are freed.
1658  **/
1659 static int igbvf_close(struct net_device *netdev)
1660 {
1661         struct igbvf_adapter *adapter = netdev_priv(netdev);
1662
1663         WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1664         igbvf_down(adapter);
1665
1666         igbvf_free_irq(adapter);
1667
1668         igbvf_free_tx_resources(adapter->tx_ring);
1669         igbvf_free_rx_resources(adapter->rx_ring);
1670
1671         return 0;
1672 }
1673 /**
1674  * igbvf_set_mac - Change the Ethernet Address of the NIC
1675  * @netdev: network interface device structure
1676  * @p: pointer to an address structure
1677  *
1678  * Returns 0 on success, negative on failure
1679  **/
1680 static int igbvf_set_mac(struct net_device *netdev, void *p)
1681 {
1682         struct igbvf_adapter *adapter = netdev_priv(netdev);
1683         struct e1000_hw *hw = &adapter->hw;
1684         struct sockaddr *addr = p;
1685
1686         if (!is_valid_ether_addr(addr->sa_data))
1687                 return -EADDRNOTAVAIL;
1688
1689         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1690
1691         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1692
1693         if (memcmp(addr->sa_data, hw->mac.addr, 6))
1694                 return -EADDRNOTAVAIL;
1695
1696         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1697
1698         return 0;
1699 }
1700
1701 #define UPDATE_VF_COUNTER(reg, name)                                    \
1702         {                                                               \
1703                 u32 current_counter = er32(reg);                        \
1704                 if (current_counter < adapter->stats.last_##name)       \
1705                         adapter->stats.name += 0x100000000LL;           \
1706                 adapter->stats.last_##name = current_counter;           \
1707                 adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
1708                 adapter->stats.name |= current_counter;                 \
1709         }
1710
1711 /**
1712  * igbvf_update_stats - Update the board statistics counters
1713  * @adapter: board private structure
1714 **/
1715 void igbvf_update_stats(struct igbvf_adapter *adapter)
1716 {
1717         struct e1000_hw *hw = &adapter->hw;
1718         struct pci_dev *pdev = adapter->pdev;
1719
1720         /*
1721          * Prevent stats update while adapter is being reset, link is down
1722          * or if the pci connection is down.
1723          */
1724         if (adapter->link_speed == 0)
1725                 return;
1726
1727         if (test_bit(__IGBVF_RESETTING, &adapter->state))
1728                 return;
1729
1730         if (pci_channel_offline(pdev))
1731                 return;
1732
1733         UPDATE_VF_COUNTER(VFGPRC, gprc);
1734         UPDATE_VF_COUNTER(VFGORC, gorc);
1735         UPDATE_VF_COUNTER(VFGPTC, gptc);
1736         UPDATE_VF_COUNTER(VFGOTC, gotc);
1737         UPDATE_VF_COUNTER(VFMPRC, mprc);
1738         UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1739         UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1740         UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1741         UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1742
1743         /* Fill out the OS statistics structure */
1744         adapter->net_stats.multicast = adapter->stats.mprc;
1745 }
1746
1747 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1748 {
1749         dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1750                  adapter->link_speed,
1751                  ((adapter->link_duplex == FULL_DUPLEX) ?
1752                   "Full Duplex" : "Half Duplex"));
1753 }
1754
1755 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1756 {
1757         struct e1000_hw *hw = &adapter->hw;
1758         s32 ret_val = E1000_SUCCESS;
1759         bool link_active;
1760
1761         /* If interface is down, stay link down */
1762         if (test_bit(__IGBVF_DOWN, &adapter->state))
1763                 return false;
1764
1765         ret_val = hw->mac.ops.check_for_link(hw);
1766         link_active = !hw->mac.get_link_status;
1767
1768         /* if check for link returns error we will need to reset */
1769         if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1770                 schedule_work(&adapter->reset_task);
1771
1772         return link_active;
1773 }
1774
1775 /**
1776  * igbvf_watchdog - Timer Call-back
1777  * @data: pointer to adapter cast into an unsigned long
1778  **/
1779 static void igbvf_watchdog(unsigned long data)
1780 {
1781         struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1782
1783         /* Do the rest outside of interrupt context */
1784         schedule_work(&adapter->watchdog_task);
1785 }
1786
1787 static void igbvf_watchdog_task(struct work_struct *work)
1788 {
1789         struct igbvf_adapter *adapter = container_of(work,
1790                                                      struct igbvf_adapter,
1791                                                      watchdog_task);
1792         struct net_device *netdev = adapter->netdev;
1793         struct e1000_mac_info *mac = &adapter->hw.mac;
1794         struct igbvf_ring *tx_ring = adapter->tx_ring;
1795         struct e1000_hw *hw = &adapter->hw;
1796         u32 link;
1797         int tx_pending = 0;
1798
1799         link = igbvf_has_link(adapter);
1800
1801         if (link) {
1802                 if (!netif_carrier_ok(netdev)) {
1803                         mac->ops.get_link_up_info(&adapter->hw,
1804                                                   &adapter->link_speed,
1805                                                   &adapter->link_duplex);
1806                         igbvf_print_link_info(adapter);
1807
1808                         netif_carrier_on(netdev);
1809                         netif_wake_queue(netdev);
1810                 }
1811         } else {
1812                 if (netif_carrier_ok(netdev)) {
1813                         adapter->link_speed = 0;
1814                         adapter->link_duplex = 0;
1815                         dev_info(&adapter->pdev->dev, "Link is Down\n");
1816                         netif_carrier_off(netdev);
1817                         netif_stop_queue(netdev);
1818                 }
1819         }
1820
1821         if (netif_carrier_ok(netdev)) {
1822                 igbvf_update_stats(adapter);
1823         } else {
1824                 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1825                               tx_ring->count);
1826                 if (tx_pending) {
1827                         /*
1828                          * We've lost link, so the controller stops DMA,
1829                          * but we've got queued Tx work that's never going
1830                          * to get done, so reset controller to flush Tx.
1831                          * (Do the reset outside of interrupt context).
1832                          */
1833                         adapter->tx_timeout_count++;
1834                         schedule_work(&adapter->reset_task);
1835                 }
1836         }
1837
1838         /* Cause software interrupt to ensure Rx ring is cleaned */
1839         ew32(EICS, adapter->rx_ring->eims_value);
1840
1841         /* Reset the timer */
1842         if (!test_bit(__IGBVF_DOWN, &adapter->state))
1843                 mod_timer(&adapter->watchdog_timer,
1844                           round_jiffies(jiffies + (2 * HZ)));
1845 }
1846
1847 #define IGBVF_TX_FLAGS_CSUM             0x00000001
1848 #define IGBVF_TX_FLAGS_VLAN             0x00000002
1849 #define IGBVF_TX_FLAGS_TSO              0x00000004
1850 #define IGBVF_TX_FLAGS_IPV4             0x00000008
1851 #define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1852 #define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1853
1854 static int igbvf_tso(struct igbvf_adapter *adapter,
1855                      struct igbvf_ring *tx_ring,
1856                      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1857 {
1858         struct e1000_adv_tx_context_desc *context_desc;
1859         unsigned int i;
1860         int err;
1861         struct igbvf_buffer *buffer_info;
1862         u32 info = 0, tu_cmd = 0;
1863         u32 mss_l4len_idx, l4len;
1864         *hdr_len = 0;
1865
1866         if (skb_header_cloned(skb)) {
1867                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1868                 if (err) {
1869                         dev_err(&adapter->pdev->dev,
1870                                 "igbvf_tso returning an error\n");
1871                         return err;
1872                 }
1873         }
1874
1875         l4len = tcp_hdrlen(skb);
1876         *hdr_len += l4len;
1877
1878         if (skb->protocol == htons(ETH_P_IP)) {
1879                 struct iphdr *iph = ip_hdr(skb);
1880                 iph->tot_len = 0;
1881                 iph->check = 0;
1882                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1883                                                          iph->daddr, 0,
1884                                                          IPPROTO_TCP,
1885                                                          0);
1886         } else if (skb_is_gso_v6(skb)) {
1887                 ipv6_hdr(skb)->payload_len = 0;
1888                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1889                                                        &ipv6_hdr(skb)->daddr,
1890                                                        0, IPPROTO_TCP, 0);
1891         }
1892
1893         i = tx_ring->next_to_use;
1894
1895         buffer_info = &tx_ring->buffer_info[i];
1896         context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1897         /* VLAN MACLEN IPLEN */
1898         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1899                 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1900         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1901         *hdr_len += skb_network_offset(skb);
1902         info |= (skb_transport_header(skb) - skb_network_header(skb));
1903         *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1904         context_desc->vlan_macip_lens = cpu_to_le32(info);
1905
1906         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1907         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1908
1909         if (skb->protocol == htons(ETH_P_IP))
1910                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1911         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1912
1913         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1914
1915         /* MSS L4LEN IDX */
1916         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1917         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1918
1919         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1920         context_desc->seqnum_seed = 0;
1921
1922         buffer_info->time_stamp = jiffies;
1923         buffer_info->next_to_watch = i;
1924         buffer_info->dma = 0;
1925         i++;
1926         if (i == tx_ring->count)
1927                 i = 0;
1928
1929         tx_ring->next_to_use = i;
1930
1931         return true;
1932 }
1933
1934 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1935                                  struct igbvf_ring *tx_ring,
1936                                  struct sk_buff *skb, u32 tx_flags)
1937 {
1938         struct e1000_adv_tx_context_desc *context_desc;
1939         unsigned int i;
1940         struct igbvf_buffer *buffer_info;
1941         u32 info = 0, tu_cmd = 0;
1942
1943         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1944             (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1945                 i = tx_ring->next_to_use;
1946                 buffer_info = &tx_ring->buffer_info[i];
1947                 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1948
1949                 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1950                         info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1951
1952                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1953                 if (skb->ip_summed == CHECKSUM_PARTIAL)
1954                         info |= (skb_transport_header(skb) -
1955                                  skb_network_header(skb));
1956
1957
1958                 context_desc->vlan_macip_lens = cpu_to_le32(info);
1959
1960                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1961
1962                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1963                         switch (skb->protocol) {
1964                         case __constant_htons(ETH_P_IP):
1965                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1966                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
1967                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1968                                 break;
1969                         case __constant_htons(ETH_P_IPV6):
1970                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
1971                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1972                                 break;
1973                         default:
1974                                 break;
1975                         }
1976                 }
1977
1978                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1979                 context_desc->seqnum_seed = 0;
1980                 context_desc->mss_l4len_idx = 0;
1981
1982                 buffer_info->time_stamp = jiffies;
1983                 buffer_info->next_to_watch = i;
1984                 buffer_info->dma = 0;
1985                 i++;
1986                 if (i == tx_ring->count)
1987                         i = 0;
1988                 tx_ring->next_to_use = i;
1989
1990                 return true;
1991         }
1992
1993         return false;
1994 }
1995
1996 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
1997 {
1998         struct igbvf_adapter *adapter = netdev_priv(netdev);
1999
2000         /* there is enough descriptors then we don't need to worry  */
2001         if (igbvf_desc_unused(adapter->tx_ring) >= size)
2002                 return 0;
2003
2004         netif_stop_queue(netdev);
2005
2006         smp_mb();
2007
2008         /* We need to check again just in case room has been made available */
2009         if (igbvf_desc_unused(adapter->tx_ring) < size)
2010                 return -EBUSY;
2011
2012         netif_wake_queue(netdev);
2013
2014         ++adapter->restart_queue;
2015         return 0;
2016 }
2017
2018 #define IGBVF_MAX_TXD_PWR       16
2019 #define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2020
2021 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2022                                    struct igbvf_ring *tx_ring,
2023                                    struct sk_buff *skb,
2024                                    unsigned int first)
2025 {
2026         struct igbvf_buffer *buffer_info;
2027         struct pci_dev *pdev = adapter->pdev;
2028         unsigned int len = skb_headlen(skb);
2029         unsigned int count = 0, i;
2030         unsigned int f;
2031
2032         i = tx_ring->next_to_use;
2033
2034         buffer_info = &tx_ring->buffer_info[i];
2035         BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2036         buffer_info->length = len;
2037         /* set time_stamp *before* dma to help avoid a possible race */
2038         buffer_info->time_stamp = jiffies;
2039         buffer_info->next_to_watch = i;
2040         buffer_info->mapped_as_page = false;
2041         buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2042                                           DMA_TO_DEVICE);
2043         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2044                 goto dma_error;
2045
2046
2047         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2048                 struct skb_frag_struct *frag;
2049
2050                 count++;
2051                 i++;
2052                 if (i == tx_ring->count)
2053                         i = 0;
2054
2055                 frag = &skb_shinfo(skb)->frags[f];
2056                 len = frag->size;
2057
2058                 buffer_info = &tx_ring->buffer_info[i];
2059                 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2060                 buffer_info->length = len;
2061                 buffer_info->time_stamp = jiffies;
2062                 buffer_info->next_to_watch = i;
2063                 buffer_info->mapped_as_page = true;
2064                 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2065                                                 DMA_TO_DEVICE);
2066                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2067                         goto dma_error;
2068         }
2069
2070         tx_ring->buffer_info[i].skb = skb;
2071         tx_ring->buffer_info[first].next_to_watch = i;
2072
2073         return ++count;
2074
2075 dma_error:
2076         dev_err(&pdev->dev, "TX DMA map failed\n");
2077
2078         /* clear timestamp and dma mappings for failed buffer_info mapping */
2079         buffer_info->dma = 0;
2080         buffer_info->time_stamp = 0;
2081         buffer_info->length = 0;
2082         buffer_info->next_to_watch = 0;
2083         buffer_info->mapped_as_page = false;
2084         if (count)
2085                 count--;
2086
2087         /* clear timestamp and dma mappings for remaining portion of packet */
2088         while (count--) {
2089                 if (i==0)
2090                         i += tx_ring->count;
2091                 i--;
2092                 buffer_info = &tx_ring->buffer_info[i];
2093                 igbvf_put_txbuf(adapter, buffer_info);
2094         }
2095
2096         return 0;
2097 }
2098
2099 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2100                                       struct igbvf_ring *tx_ring,
2101                                       int tx_flags, int count, u32 paylen,
2102                                       u8 hdr_len)
2103 {
2104         union e1000_adv_tx_desc *tx_desc = NULL;
2105         struct igbvf_buffer *buffer_info;
2106         u32 olinfo_status = 0, cmd_type_len;
2107         unsigned int i;
2108
2109         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2110                         E1000_ADVTXD_DCMD_DEXT);
2111
2112         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2113                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2114
2115         if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2116                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2117
2118                 /* insert tcp checksum */
2119                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2120
2121                 /* insert ip checksum */
2122                 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2123                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2124
2125         } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2126                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2127         }
2128
2129         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2130
2131         i = tx_ring->next_to_use;
2132         while (count--) {
2133                 buffer_info = &tx_ring->buffer_info[i];
2134                 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2135                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2136                 tx_desc->read.cmd_type_len =
2137                          cpu_to_le32(cmd_type_len | buffer_info->length);
2138                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2139                 i++;
2140                 if (i == tx_ring->count)
2141                         i = 0;
2142         }
2143
2144         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2145         /* Force memory writes to complete before letting h/w
2146          * know there are new descriptors to fetch.  (Only
2147          * applicable for weak-ordered memory model archs,
2148          * such as IA-64). */
2149         wmb();
2150
2151         tx_ring->next_to_use = i;
2152         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2153         /* we need this if more than one processor can write to our tail
2154          * at a time, it syncronizes IO on IA64/Altix systems */
2155         mmiowb();
2156 }
2157
2158 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2159                                              struct net_device *netdev,
2160                                              struct igbvf_ring *tx_ring)
2161 {
2162         struct igbvf_adapter *adapter = netdev_priv(netdev);
2163         unsigned int first, tx_flags = 0;
2164         u8 hdr_len = 0;
2165         int count = 0;
2166         int tso = 0;
2167
2168         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2169                 dev_kfree_skb_any(skb);
2170                 return NETDEV_TX_OK;
2171         }
2172
2173         if (skb->len <= 0) {
2174                 dev_kfree_skb_any(skb);
2175                 return NETDEV_TX_OK;
2176         }
2177
2178         /*
2179          * need: count + 4 desc gap to keep tail from touching
2180          *       + 2 desc gap to keep tail from touching head,
2181          *       + 1 desc for skb->data,
2182          *       + 1 desc for context descriptor,
2183          * head, otherwise try next time
2184          */
2185         if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2186                 /* this is a hard error */
2187                 return NETDEV_TX_BUSY;
2188         }
2189
2190         if (vlan_tx_tag_present(skb)) {
2191                 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2192                 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2193         }
2194
2195         if (skb->protocol == htons(ETH_P_IP))
2196                 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2197
2198         first = tx_ring->next_to_use;
2199
2200         tso = skb_is_gso(skb) ?
2201                 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2202         if (unlikely(tso < 0)) {
2203                 dev_kfree_skb_any(skb);
2204                 return NETDEV_TX_OK;
2205         }
2206
2207         if (tso)
2208                 tx_flags |= IGBVF_TX_FLAGS_TSO;
2209         else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2210                  (skb->ip_summed == CHECKSUM_PARTIAL))
2211                 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2212
2213         /*
2214          * count reflects descriptors mapped, if 0 then mapping error
2215          * has occurred and we need to rewind the descriptor queue
2216          */
2217         count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2218
2219         if (count) {
2220                 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2221                                    skb->len, hdr_len);
2222                 /* Make sure there is space in the ring for the next send. */
2223                 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2224         } else {
2225                 dev_kfree_skb_any(skb);
2226                 tx_ring->buffer_info[first].time_stamp = 0;
2227                 tx_ring->next_to_use = first;
2228         }
2229
2230         return NETDEV_TX_OK;
2231 }
2232
2233 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2234                                     struct net_device *netdev)
2235 {
2236         struct igbvf_adapter *adapter = netdev_priv(netdev);
2237         struct igbvf_ring *tx_ring;
2238
2239         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2240                 dev_kfree_skb_any(skb);
2241                 return NETDEV_TX_OK;
2242         }
2243
2244         tx_ring = &adapter->tx_ring[0];
2245
2246         return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2247 }
2248
2249 /**
2250  * igbvf_tx_timeout - Respond to a Tx Hang
2251  * @netdev: network interface device structure
2252  **/
2253 static void igbvf_tx_timeout(struct net_device *netdev)
2254 {
2255         struct igbvf_adapter *adapter = netdev_priv(netdev);
2256
2257         /* Do the reset outside of interrupt context */
2258         adapter->tx_timeout_count++;
2259         schedule_work(&adapter->reset_task);
2260 }
2261
2262 static void igbvf_reset_task(struct work_struct *work)
2263 {
2264         struct igbvf_adapter *adapter;
2265         adapter = container_of(work, struct igbvf_adapter, reset_task);
2266
2267         igbvf_reinit_locked(adapter);
2268 }
2269
2270 /**
2271  * igbvf_get_stats - Get System Network Statistics
2272  * @netdev: network interface device structure
2273  *
2274  * Returns the address of the device statistics structure.
2275  * The statistics are actually updated from the timer callback.
2276  **/
2277 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2278 {
2279         struct igbvf_adapter *adapter = netdev_priv(netdev);
2280
2281         /* only return the current stats */
2282         return &adapter->net_stats;
2283 }
2284
2285 /**
2286  * igbvf_change_mtu - Change the Maximum Transfer Unit
2287  * @netdev: network interface device structure
2288  * @new_mtu: new value for maximum frame size
2289  *
2290  * Returns 0 on success, negative on failure
2291  **/
2292 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2293 {
2294         struct igbvf_adapter *adapter = netdev_priv(netdev);
2295         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2296
2297         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2298                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2299                 return -EINVAL;
2300         }
2301
2302 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2303         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2304                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2305                 return -EINVAL;
2306         }
2307
2308         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2309                 msleep(1);
2310         /* igbvf_down has a dependency on max_frame_size */
2311         adapter->max_frame_size = max_frame;
2312         if (netif_running(netdev))
2313                 igbvf_down(adapter);
2314
2315         /*
2316          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2317          * means we reserve 2 more, this pushes us to allocate from the next
2318          * larger slab size.
2319          * i.e. RXBUFFER_2048 --> size-4096 slab
2320          * However with the new *_jumbo_rx* routines, jumbo receives will use
2321          * fragmented skbs
2322          */
2323
2324         if (max_frame <= 1024)
2325                 adapter->rx_buffer_len = 1024;
2326         else if (max_frame <= 2048)
2327                 adapter->rx_buffer_len = 2048;
2328         else
2329 #if (PAGE_SIZE / 2) > 16384
2330                 adapter->rx_buffer_len = 16384;
2331 #else
2332                 adapter->rx_buffer_len = PAGE_SIZE / 2;
2333 #endif
2334
2335
2336         /* adjust allocation if LPE protects us, and we aren't using SBP */
2337         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2338              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2339                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2340                                          ETH_FCS_LEN;
2341
2342         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2343                  netdev->mtu, new_mtu);
2344         netdev->mtu = new_mtu;
2345
2346         if (netif_running(netdev))
2347                 igbvf_up(adapter);
2348         else
2349                 igbvf_reset(adapter);
2350
2351         clear_bit(__IGBVF_RESETTING, &adapter->state);
2352
2353         return 0;
2354 }
2355
2356 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2357 {
2358         switch (cmd) {
2359         default:
2360                 return -EOPNOTSUPP;
2361         }
2362 }
2363
2364 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2365 {
2366         struct net_device *netdev = pci_get_drvdata(pdev);
2367         struct igbvf_adapter *adapter = netdev_priv(netdev);
2368 #ifdef CONFIG_PM
2369         int retval = 0;
2370 #endif
2371
2372         netif_device_detach(netdev);
2373
2374         if (netif_running(netdev)) {
2375                 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2376                 igbvf_down(adapter);
2377                 igbvf_free_irq(adapter);
2378         }
2379
2380 #ifdef CONFIG_PM
2381         retval = pci_save_state(pdev);
2382         if (retval)
2383                 return retval;
2384 #endif
2385
2386         pci_disable_device(pdev);
2387
2388         return 0;
2389 }
2390
2391 #ifdef CONFIG_PM
2392 static int igbvf_resume(struct pci_dev *pdev)
2393 {
2394         struct net_device *netdev = pci_get_drvdata(pdev);
2395         struct igbvf_adapter *adapter = netdev_priv(netdev);
2396         u32 err;
2397
2398         pci_restore_state(pdev);
2399         err = pci_enable_device_mem(pdev);
2400         if (err) {
2401                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2402                 return err;
2403         }
2404
2405         pci_set_master(pdev);
2406
2407         if (netif_running(netdev)) {
2408                 err = igbvf_request_irq(adapter);
2409                 if (err)
2410                         return err;
2411         }
2412
2413         igbvf_reset(adapter);
2414
2415         if (netif_running(netdev))
2416                 igbvf_up(adapter);
2417
2418         netif_device_attach(netdev);
2419
2420         return 0;
2421 }
2422 #endif
2423
2424 static void igbvf_shutdown(struct pci_dev *pdev)
2425 {
2426         igbvf_suspend(pdev, PMSG_SUSPEND);
2427 }
2428
2429 #ifdef CONFIG_NET_POLL_CONTROLLER
2430 /*
2431  * Polling 'interrupt' - used by things like netconsole to send skbs
2432  * without having to re-enable interrupts. It's not called while
2433  * the interrupt routine is executing.
2434  */
2435 static void igbvf_netpoll(struct net_device *netdev)
2436 {
2437         struct igbvf_adapter *adapter = netdev_priv(netdev);
2438
2439         disable_irq(adapter->pdev->irq);
2440
2441         igbvf_clean_tx_irq(adapter->tx_ring);
2442
2443         enable_irq(adapter->pdev->irq);
2444 }
2445 #endif
2446
2447 /**
2448  * igbvf_io_error_detected - called when PCI error is detected
2449  * @pdev: Pointer to PCI device
2450  * @state: The current pci connection state
2451  *
2452  * This function is called after a PCI bus error affecting
2453  * this device has been detected.
2454  */
2455 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2456                                                 pci_channel_state_t state)
2457 {
2458         struct net_device *netdev = pci_get_drvdata(pdev);
2459         struct igbvf_adapter *adapter = netdev_priv(netdev);
2460
2461         netif_device_detach(netdev);
2462
2463         if (state == pci_channel_io_perm_failure)
2464                 return PCI_ERS_RESULT_DISCONNECT;
2465
2466         if (netif_running(netdev))
2467                 igbvf_down(adapter);
2468         pci_disable_device(pdev);
2469
2470         /* Request a slot slot reset. */
2471         return PCI_ERS_RESULT_NEED_RESET;
2472 }
2473
2474 /**
2475  * igbvf_io_slot_reset - called after the pci bus has been reset.
2476  * @pdev: Pointer to PCI device
2477  *
2478  * Restart the card from scratch, as if from a cold-boot. Implementation
2479  * resembles the first-half of the igbvf_resume routine.
2480  */
2481 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2482 {
2483         struct net_device *netdev = pci_get_drvdata(pdev);
2484         struct igbvf_adapter *adapter = netdev_priv(netdev);
2485
2486         if (pci_enable_device_mem(pdev)) {
2487                 dev_err(&pdev->dev,
2488                         "Cannot re-enable PCI device after reset.\n");
2489                 return PCI_ERS_RESULT_DISCONNECT;
2490         }
2491         pci_set_master(pdev);
2492
2493         igbvf_reset(adapter);
2494
2495         return PCI_ERS_RESULT_RECOVERED;
2496 }
2497
2498 /**
2499  * igbvf_io_resume - called when traffic can start flowing again.
2500  * @pdev: Pointer to PCI device
2501  *
2502  * This callback is called when the error recovery driver tells us that
2503  * its OK to resume normal operation. Implementation resembles the
2504  * second-half of the igbvf_resume routine.
2505  */
2506 static void igbvf_io_resume(struct pci_dev *pdev)
2507 {
2508         struct net_device *netdev = pci_get_drvdata(pdev);
2509         struct igbvf_adapter *adapter = netdev_priv(netdev);
2510
2511         if (netif_running(netdev)) {
2512                 if (igbvf_up(adapter)) {
2513                         dev_err(&pdev->dev,
2514                                 "can't bring device back up after reset\n");
2515                         return;
2516                 }
2517         }
2518
2519         netif_device_attach(netdev);
2520 }
2521
2522 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2523 {
2524         struct e1000_hw *hw = &adapter->hw;
2525         struct net_device *netdev = adapter->netdev;
2526         struct pci_dev *pdev = adapter->pdev;
2527
2528         dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2529         dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2530         dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
2531 }
2532
2533 static int igbvf_set_features(struct net_device *netdev, u32 features)
2534 {
2535         struct igbvf_adapter *adapter = netdev_priv(netdev);
2536
2537         if (features & NETIF_F_RXCSUM)
2538                 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2539         else
2540                 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2541
2542         return 0;
2543 }
2544
2545 static const struct net_device_ops igbvf_netdev_ops = {
2546         .ndo_open                       = igbvf_open,
2547         .ndo_stop                       = igbvf_close,
2548         .ndo_start_xmit                 = igbvf_xmit_frame,
2549         .ndo_get_stats                  = igbvf_get_stats,
2550         .ndo_set_rx_mode                = igbvf_set_multi,
2551         .ndo_set_mac_address            = igbvf_set_mac,
2552         .ndo_change_mtu                 = igbvf_change_mtu,
2553         .ndo_do_ioctl                   = igbvf_ioctl,
2554         .ndo_tx_timeout                 = igbvf_tx_timeout,
2555         .ndo_vlan_rx_add_vid            = igbvf_vlan_rx_add_vid,
2556         .ndo_vlan_rx_kill_vid           = igbvf_vlan_rx_kill_vid,
2557 #ifdef CONFIG_NET_POLL_CONTROLLER
2558         .ndo_poll_controller            = igbvf_netpoll,
2559 #endif
2560         .ndo_set_features               = igbvf_set_features,
2561 };
2562
2563 /**
2564  * igbvf_probe - Device Initialization Routine
2565  * @pdev: PCI device information struct
2566  * @ent: entry in igbvf_pci_tbl
2567  *
2568  * Returns 0 on success, negative on failure
2569  *
2570  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2571  * The OS initialization, configuring of the adapter private structure,
2572  * and a hardware reset occur.
2573  **/
2574 static int __devinit igbvf_probe(struct pci_dev *pdev,
2575                                  const struct pci_device_id *ent)
2576 {
2577         struct net_device *netdev;
2578         struct igbvf_adapter *adapter;
2579         struct e1000_hw *hw;
2580         const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2581
2582         static int cards_found;
2583         int err, pci_using_dac;
2584
2585         err = pci_enable_device_mem(pdev);
2586         if (err)
2587                 return err;
2588
2589         pci_using_dac = 0;
2590         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2591         if (!err) {
2592                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2593                 if (!err)
2594                         pci_using_dac = 1;
2595         } else {
2596                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2597                 if (err) {
2598                         err = dma_set_coherent_mask(&pdev->dev,
2599                                                     DMA_BIT_MASK(32));
2600                         if (err) {
2601                                 dev_err(&pdev->dev, "No usable DMA "
2602                                         "configuration, aborting\n");
2603                                 goto err_dma;
2604                         }
2605                 }
2606         }
2607
2608         err = pci_request_regions(pdev, igbvf_driver_name);
2609         if (err)
2610                 goto err_pci_reg;
2611
2612         pci_set_master(pdev);
2613
2614         err = -ENOMEM;
2615         netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2616         if (!netdev)
2617                 goto err_alloc_etherdev;
2618
2619         SET_NETDEV_DEV(netdev, &pdev->dev);
2620
2621         pci_set_drvdata(pdev, netdev);
2622         adapter = netdev_priv(netdev);
2623         hw = &adapter->hw;
2624         adapter->netdev = netdev;
2625         adapter->pdev = pdev;
2626         adapter->ei = ei;
2627         adapter->pba = ei->pba;
2628         adapter->flags = ei->flags;
2629         adapter->hw.back = adapter;
2630         adapter->hw.mac.type = ei->mac;
2631         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2632
2633         /* PCI config space info */
2634
2635         hw->vendor_id = pdev->vendor;
2636         hw->device_id = pdev->device;
2637         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2638         hw->subsystem_device_id = pdev->subsystem_device;
2639         hw->revision_id = pdev->revision;
2640
2641         err = -EIO;
2642         adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2643                                       pci_resource_len(pdev, 0));
2644
2645         if (!adapter->hw.hw_addr)
2646                 goto err_ioremap;
2647
2648         if (ei->get_variants) {
2649                 err = ei->get_variants(adapter);
2650                 if (err)
2651                         goto err_ioremap;
2652         }
2653
2654         /* setup adapter struct */
2655         err = igbvf_sw_init(adapter);
2656         if (err)
2657                 goto err_sw_init;
2658
2659         /* construct the net_device struct */
2660         netdev->netdev_ops = &igbvf_netdev_ops;
2661
2662         igbvf_set_ethtool_ops(netdev);
2663         netdev->watchdog_timeo = 5 * HZ;
2664         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2665
2666         adapter->bd_number = cards_found++;
2667
2668         netdev->hw_features = NETIF_F_SG |
2669                            NETIF_F_IP_CSUM |
2670                            NETIF_F_IPV6_CSUM |
2671                            NETIF_F_TSO |
2672                            NETIF_F_TSO6 |
2673                            NETIF_F_RXCSUM;
2674
2675         netdev->features = netdev->hw_features |
2676                            NETIF_F_HW_VLAN_TX |
2677                            NETIF_F_HW_VLAN_RX |
2678                            NETIF_F_HW_VLAN_FILTER;
2679
2680         if (pci_using_dac)
2681                 netdev->features |= NETIF_F_HIGHDMA;
2682
2683         netdev->vlan_features |= NETIF_F_TSO;
2684         netdev->vlan_features |= NETIF_F_TSO6;
2685         netdev->vlan_features |= NETIF_F_IP_CSUM;
2686         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2687         netdev->vlan_features |= NETIF_F_SG;
2688
2689         /*reset the controller to put the device in a known good state */
2690         err = hw->mac.ops.reset_hw(hw);
2691         if (err) {
2692                 dev_info(&pdev->dev,
2693                          "PF still in reset state, assigning new address."
2694                          " Is the PF interface up?\n");
2695                 dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2696         } else {
2697                 err = hw->mac.ops.read_mac_addr(hw);
2698                 if (err) {
2699                         dev_err(&pdev->dev, "Error reading MAC address\n");
2700                         goto err_hw_init;
2701                 }
2702         }
2703
2704         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2705         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2706
2707         if (!is_valid_ether_addr(netdev->perm_addr)) {
2708                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2709                         netdev->dev_addr);
2710                 err = -EIO;
2711                 goto err_hw_init;
2712         }
2713
2714         setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2715                     (unsigned long) adapter);
2716
2717         INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2718         INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2719
2720         /* ring size defaults */
2721         adapter->rx_ring->count = 1024;
2722         adapter->tx_ring->count = 1024;
2723
2724         /* reset the hardware with the new settings */
2725         igbvf_reset(adapter);
2726
2727         strcpy(netdev->name, "eth%d");
2728         err = register_netdev(netdev);
2729         if (err)
2730                 goto err_hw_init;
2731
2732         /* tell the stack to leave us alone until igbvf_open() is called */
2733         netif_carrier_off(netdev);
2734         netif_stop_queue(netdev);
2735
2736         igbvf_print_device_info(adapter);
2737
2738         igbvf_initialize_last_counter_stats(adapter);
2739
2740         return 0;
2741
2742 err_hw_init:
2743         kfree(adapter->tx_ring);
2744         kfree(adapter->rx_ring);
2745 err_sw_init:
2746         igbvf_reset_interrupt_capability(adapter);
2747         iounmap(adapter->hw.hw_addr);
2748 err_ioremap:
2749         free_netdev(netdev);
2750 err_alloc_etherdev:
2751         pci_release_regions(pdev);
2752 err_pci_reg:
2753 err_dma:
2754         pci_disable_device(pdev);
2755         return err;
2756 }
2757
2758 /**
2759  * igbvf_remove - Device Removal Routine
2760  * @pdev: PCI device information struct
2761  *
2762  * igbvf_remove is called by the PCI subsystem to alert the driver
2763  * that it should release a PCI device.  The could be caused by a
2764  * Hot-Plug event, or because the driver is going to be removed from
2765  * memory.
2766  **/
2767 static void __devexit igbvf_remove(struct pci_dev *pdev)
2768 {
2769         struct net_device *netdev = pci_get_drvdata(pdev);
2770         struct igbvf_adapter *adapter = netdev_priv(netdev);
2771         struct e1000_hw *hw = &adapter->hw;
2772
2773         /*
2774          * The watchdog timer may be rescheduled, so explicitly
2775          * disable it from being rescheduled.
2776          */
2777         set_bit(__IGBVF_DOWN, &adapter->state);
2778         del_timer_sync(&adapter->watchdog_timer);
2779
2780         cancel_work_sync(&adapter->reset_task);
2781         cancel_work_sync(&adapter->watchdog_task);
2782
2783         unregister_netdev(netdev);
2784
2785         igbvf_reset_interrupt_capability(adapter);
2786
2787         /*
2788          * it is important to delete the napi struct prior to freeing the
2789          * rx ring so that you do not end up with null pointer refs
2790          */
2791         netif_napi_del(&adapter->rx_ring->napi);
2792         kfree(adapter->tx_ring);
2793         kfree(adapter->rx_ring);
2794
2795         iounmap(hw->hw_addr);
2796         if (hw->flash_address)
2797                 iounmap(hw->flash_address);
2798         pci_release_regions(pdev);
2799
2800         free_netdev(netdev);
2801
2802         pci_disable_device(pdev);
2803 }
2804
2805 /* PCI Error Recovery (ERS) */
2806 static struct pci_error_handlers igbvf_err_handler = {
2807         .error_detected = igbvf_io_error_detected,
2808         .slot_reset = igbvf_io_slot_reset,
2809         .resume = igbvf_io_resume,
2810 };
2811
2812 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2813         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2814         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2815         { } /* terminate list */
2816 };
2817 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2818
2819 /* PCI Device API Driver */
2820 static struct pci_driver igbvf_driver = {
2821         .name     = igbvf_driver_name,
2822         .id_table = igbvf_pci_tbl,
2823         .probe    = igbvf_probe,
2824         .remove   = __devexit_p(igbvf_remove),
2825 #ifdef CONFIG_PM
2826         /* Power Management Hooks */
2827         .suspend  = igbvf_suspend,
2828         .resume   = igbvf_resume,
2829 #endif
2830         .shutdown = igbvf_shutdown,
2831         .err_handler = &igbvf_err_handler
2832 };
2833
2834 /**
2835  * igbvf_init_module - Driver Registration Routine
2836  *
2837  * igbvf_init_module is the first routine called when the driver is
2838  * loaded. All it does is register with the PCI subsystem.
2839  **/
2840 static int __init igbvf_init_module(void)
2841 {
2842         int ret;
2843         printk(KERN_INFO "%s - version %s\n",
2844                igbvf_driver_string, igbvf_driver_version);
2845         printk(KERN_INFO "%s\n", igbvf_copyright);
2846
2847         ret = pci_register_driver(&igbvf_driver);
2848
2849         return ret;
2850 }
2851 module_init(igbvf_init_module);
2852
2853 /**
2854  * igbvf_exit_module - Driver Exit Cleanup Routine
2855  *
2856  * igbvf_exit_module is called just before the driver is removed
2857  * from memory.
2858  **/
2859 static void __exit igbvf_exit_module(void)
2860 {
2861         pci_unregister_driver(&igbvf_driver);
2862 }
2863 module_exit(igbvf_exit_module);
2864
2865
2866 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2867 MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2868 MODULE_LICENSE("GPL");
2869 MODULE_VERSION(DRV_VERSION);
2870
2871 /* netdev.c */