Merge branch 'fixes-for-3.9' of git://gitorious.org/linux-can/linux-can
[pandora-kernel.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52 #include <linux/prefetch.h>
53
54 #include "e1000.h"
55
56 #define DRV_EXTRAVERSION "-k"
57
58 #define DRV_VERSION "2.2.14" DRV_EXTRAVERSION
59 char e1000e_driver_name[] = "e1000e";
60 const char e1000e_driver_version[] = DRV_VERSION;
61
62 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
63 static int debug = -1;
64 module_param(debug, int, 0);
65 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
66
67 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
68
69 static const struct e1000_info *e1000_info_tbl[] = {
70         [board_82571]           = &e1000_82571_info,
71         [board_82572]           = &e1000_82572_info,
72         [board_82573]           = &e1000_82573_info,
73         [board_82574]           = &e1000_82574_info,
74         [board_82583]           = &e1000_82583_info,
75         [board_80003es2lan]     = &e1000_es2_info,
76         [board_ich8lan]         = &e1000_ich8_info,
77         [board_ich9lan]         = &e1000_ich9_info,
78         [board_ich10lan]        = &e1000_ich10_info,
79         [board_pchlan]          = &e1000_pch_info,
80         [board_pch2lan]         = &e1000_pch2_info,
81         [board_pch_lpt]         = &e1000_pch_lpt_info,
82 };
83
84 struct e1000_reg_info {
85         u32 ofs;
86         char *name;
87 };
88
89 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
90         /* General Registers */
91         {E1000_CTRL, "CTRL"},
92         {E1000_STATUS, "STATUS"},
93         {E1000_CTRL_EXT, "CTRL_EXT"},
94
95         /* Interrupt Registers */
96         {E1000_ICR, "ICR"},
97
98         /* Rx Registers */
99         {E1000_RCTL, "RCTL"},
100         {E1000_RDLEN(0), "RDLEN"},
101         {E1000_RDH(0), "RDH"},
102         {E1000_RDT(0), "RDT"},
103         {E1000_RDTR, "RDTR"},
104         {E1000_RXDCTL(0), "RXDCTL"},
105         {E1000_ERT, "ERT"},
106         {E1000_RDBAL(0), "RDBAL"},
107         {E1000_RDBAH(0), "RDBAH"},
108         {E1000_RDFH, "RDFH"},
109         {E1000_RDFT, "RDFT"},
110         {E1000_RDFHS, "RDFHS"},
111         {E1000_RDFTS, "RDFTS"},
112         {E1000_RDFPC, "RDFPC"},
113
114         /* Tx Registers */
115         {E1000_TCTL, "TCTL"},
116         {E1000_TDBAL(0), "TDBAL"},
117         {E1000_TDBAH(0), "TDBAH"},
118         {E1000_TDLEN(0), "TDLEN"},
119         {E1000_TDH(0), "TDH"},
120         {E1000_TDT(0), "TDT"},
121         {E1000_TIDV, "TIDV"},
122         {E1000_TXDCTL(0), "TXDCTL"},
123         {E1000_TADV, "TADV"},
124         {E1000_TARC(0), "TARC"},
125         {E1000_TDFH, "TDFH"},
126         {E1000_TDFT, "TDFT"},
127         {E1000_TDFHS, "TDFHS"},
128         {E1000_TDFTS, "TDFTS"},
129         {E1000_TDFPC, "TDFPC"},
130
131         /* List Terminator */
132         {0, NULL}
133 };
134
135 /**
136  * e1000_regdump - register printout routine
137  * @hw: pointer to the HW structure
138  * @reginfo: pointer to the register info table
139  **/
140 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
141 {
142         int n = 0;
143         char rname[16];
144         u32 regs[8];
145
146         switch (reginfo->ofs) {
147         case E1000_RXDCTL(0):
148                 for (n = 0; n < 2; n++)
149                         regs[n] = __er32(hw, E1000_RXDCTL(n));
150                 break;
151         case E1000_TXDCTL(0):
152                 for (n = 0; n < 2; n++)
153                         regs[n] = __er32(hw, E1000_TXDCTL(n));
154                 break;
155         case E1000_TARC(0):
156                 for (n = 0; n < 2; n++)
157                         regs[n] = __er32(hw, E1000_TARC(n));
158                 break;
159         default:
160                 pr_info("%-15s %08x\n",
161                         reginfo->name, __er32(hw, reginfo->ofs));
162                 return;
163         }
164
165         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
166         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
167 }
168
169 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
170                                  struct e1000_buffer *bi)
171 {
172         int i;
173         struct e1000_ps_page *ps_page;
174
175         for (i = 0; i < adapter->rx_ps_pages; i++) {
176                 ps_page = &bi->ps_pages[i];
177
178                 if (ps_page->page) {
179                         pr_info("packet dump for ps_page %d:\n", i);
180                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
181                                        16, 1, page_address(ps_page->page),
182                                        PAGE_SIZE, true);
183                 }
184         }
185 }
186
187 /**
188  * e1000e_dump - Print registers, Tx-ring and Rx-ring
189  * @adapter: board private structure
190  **/
191 static void e1000e_dump(struct e1000_adapter *adapter)
192 {
193         struct net_device *netdev = adapter->netdev;
194         struct e1000_hw *hw = &adapter->hw;
195         struct e1000_reg_info *reginfo;
196         struct e1000_ring *tx_ring = adapter->tx_ring;
197         struct e1000_tx_desc *tx_desc;
198         struct my_u0 {
199                 __le64 a;
200                 __le64 b;
201         } *u0;
202         struct e1000_buffer *buffer_info;
203         struct e1000_ring *rx_ring = adapter->rx_ring;
204         union e1000_rx_desc_packet_split *rx_desc_ps;
205         union e1000_rx_desc_extended *rx_desc;
206         struct my_u1 {
207                 __le64 a;
208                 __le64 b;
209                 __le64 c;
210                 __le64 d;
211         } *u1;
212         u32 staterr;
213         int i = 0;
214
215         if (!netif_msg_hw(adapter))
216                 return;
217
218         /* Print netdevice Info */
219         if (netdev) {
220                 dev_info(&adapter->pdev->dev, "Net device Info\n");
221                 pr_info("Device Name     state            trans_start      last_rx\n");
222                 pr_info("%-15s %016lX %016lX %016lX\n",
223                         netdev->name, netdev->state, netdev->trans_start,
224                         netdev->last_rx);
225         }
226
227         /* Print Registers */
228         dev_info(&adapter->pdev->dev, "Register Dump\n");
229         pr_info(" Register Name   Value\n");
230         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
231              reginfo->name; reginfo++) {
232                 e1000_regdump(hw, reginfo);
233         }
234
235         /* Print Tx Ring Summary */
236         if (!netdev || !netif_running(netdev))
237                 return;
238
239         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
240         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
241         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
242         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
243                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
244                 (unsigned long long)buffer_info->dma,
245                 buffer_info->length,
246                 buffer_info->next_to_watch,
247                 (unsigned long long)buffer_info->time_stamp);
248
249         /* Print Tx Ring */
250         if (!netif_msg_tx_done(adapter))
251                 goto rx_ring_summary;
252
253         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
254
255         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
256          *
257          * Legacy Transmit Descriptor
258          *   +--------------------------------------------------------------+
259          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
260          *   +--------------------------------------------------------------+
261          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
262          *   +--------------------------------------------------------------+
263          *   63       48 47        36 35    32 31     24 23    16 15        0
264          *
265          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
266          *   63      48 47    40 39       32 31             16 15    8 7      0
267          *   +----------------------------------------------------------------+
268          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
269          *   +----------------------------------------------------------------+
270          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
271          *   +----------------------------------------------------------------+
272          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
273          *
274          * Extended Data Descriptor (DTYP=0x1)
275          *   +----------------------------------------------------------------+
276          * 0 |                     Buffer Address [63:0]                      |
277          *   +----------------------------------------------------------------+
278          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
279          *   +----------------------------------------------------------------+
280          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
281          */
282         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
283         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
284         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
285         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
286                 const char *next_desc;
287                 tx_desc = E1000_TX_DESC(*tx_ring, i);
288                 buffer_info = &tx_ring->buffer_info[i];
289                 u0 = (struct my_u0 *)tx_desc;
290                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
291                         next_desc = " NTC/U";
292                 else if (i == tx_ring->next_to_use)
293                         next_desc = " NTU";
294                 else if (i == tx_ring->next_to_clean)
295                         next_desc = " NTC";
296                 else
297                         next_desc = "";
298                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
299                         (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
300                          ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
301                         i,
302                         (unsigned long long)le64_to_cpu(u0->a),
303                         (unsigned long long)le64_to_cpu(u0->b),
304                         (unsigned long long)buffer_info->dma,
305                         buffer_info->length, buffer_info->next_to_watch,
306                         (unsigned long long)buffer_info->time_stamp,
307                         buffer_info->skb, next_desc);
308
309                 if (netif_msg_pktdata(adapter) && buffer_info->skb)
310                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
311                                        16, 1, buffer_info->skb->data,
312                                        buffer_info->skb->len, true);
313         }
314
315         /* Print Rx Ring Summary */
316 rx_ring_summary:
317         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
318         pr_info("Queue [NTU] [NTC]\n");
319         pr_info(" %5d %5X %5X\n",
320                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
321
322         /* Print Rx Ring */
323         if (!netif_msg_rx_status(adapter))
324                 return;
325
326         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
327         switch (adapter->rx_ps_pages) {
328         case 1:
329         case 2:
330         case 3:
331                 /* [Extended] Packet Split Receive Descriptor Format
332                  *
333                  *    +-----------------------------------------------------+
334                  *  0 |                Buffer Address 0 [63:0]              |
335                  *    +-----------------------------------------------------+
336                  *  8 |                Buffer Address 1 [63:0]              |
337                  *    +-----------------------------------------------------+
338                  * 16 |                Buffer Address 2 [63:0]              |
339                  *    +-----------------------------------------------------+
340                  * 24 |                Buffer Address 3 [63:0]              |
341                  *    +-----------------------------------------------------+
342                  */
343                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
344                 /* [Extended] Receive Descriptor (Write-Back) Format
345                  *
346                  *   63       48 47    32 31     13 12    8 7    4 3        0
347                  *   +------------------------------------------------------+
348                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
349                  *   | Checksum | Ident  |         | Queue |      |  Type   |
350                  *   +------------------------------------------------------+
351                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
352                  *   +------------------------------------------------------+
353                  *   63       48 47    32 31            20 19               0
354                  */
355                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
356                 for (i = 0; i < rx_ring->count; i++) {
357                         const char *next_desc;
358                         buffer_info = &rx_ring->buffer_info[i];
359                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
360                         u1 = (struct my_u1 *)rx_desc_ps;
361                         staterr =
362                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
363
364                         if (i == rx_ring->next_to_use)
365                                 next_desc = " NTU";
366                         else if (i == rx_ring->next_to_clean)
367                                 next_desc = " NTC";
368                         else
369                                 next_desc = "";
370
371                         if (staterr & E1000_RXD_STAT_DD) {
372                                 /* Descriptor Done */
373                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
374                                         "RWB", i,
375                                         (unsigned long long)le64_to_cpu(u1->a),
376                                         (unsigned long long)le64_to_cpu(u1->b),
377                                         (unsigned long long)le64_to_cpu(u1->c),
378                                         (unsigned long long)le64_to_cpu(u1->d),
379                                         buffer_info->skb, next_desc);
380                         } else {
381                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
382                                         "R  ", i,
383                                         (unsigned long long)le64_to_cpu(u1->a),
384                                         (unsigned long long)le64_to_cpu(u1->b),
385                                         (unsigned long long)le64_to_cpu(u1->c),
386                                         (unsigned long long)le64_to_cpu(u1->d),
387                                         (unsigned long long)buffer_info->dma,
388                                         buffer_info->skb, next_desc);
389
390                                 if (netif_msg_pktdata(adapter))
391                                         e1000e_dump_ps_pages(adapter,
392                                                              buffer_info);
393                         }
394                 }
395                 break;
396         default:
397         case 0:
398                 /* Extended Receive Descriptor (Read) Format
399                  *
400                  *   +-----------------------------------------------------+
401                  * 0 |                Buffer Address [63:0]                |
402                  *   +-----------------------------------------------------+
403                  * 8 |                      Reserved                       |
404                  *   +-----------------------------------------------------+
405                  */
406                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
407                 /* Extended Receive Descriptor (Write-Back) Format
408                  *
409                  *   63       48 47    32 31    24 23            4 3        0
410                  *   +------------------------------------------------------+
411                  *   |     RSS Hash      |        |               |         |
412                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
413                  *   | Packet   | IP     |        |               |  Type   |
414                  *   | Checksum | Ident  |        |               |         |
415                  *   +------------------------------------------------------+
416                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
417                  *   +------------------------------------------------------+
418                  *   63       48 47    32 31            20 19               0
419                  */
420                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
421
422                 for (i = 0; i < rx_ring->count; i++) {
423                         const char *next_desc;
424
425                         buffer_info = &rx_ring->buffer_info[i];
426                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
427                         u1 = (struct my_u1 *)rx_desc;
428                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
429
430                         if (i == rx_ring->next_to_use)
431                                 next_desc = " NTU";
432                         else if (i == rx_ring->next_to_clean)
433                                 next_desc = " NTC";
434                         else
435                                 next_desc = "";
436
437                         if (staterr & E1000_RXD_STAT_DD) {
438                                 /* Descriptor Done */
439                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
440                                         "RWB", i,
441                                         (unsigned long long)le64_to_cpu(u1->a),
442                                         (unsigned long long)le64_to_cpu(u1->b),
443                                         buffer_info->skb, next_desc);
444                         } else {
445                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
446                                         "R  ", i,
447                                         (unsigned long long)le64_to_cpu(u1->a),
448                                         (unsigned long long)le64_to_cpu(u1->b),
449                                         (unsigned long long)buffer_info->dma,
450                                         buffer_info->skb, next_desc);
451
452                                 if (netif_msg_pktdata(adapter) &&
453                                     buffer_info->skb)
454                                         print_hex_dump(KERN_INFO, "",
455                                                        DUMP_PREFIX_ADDRESS, 16,
456                                                        1,
457                                                        buffer_info->skb->data,
458                                                        adapter->rx_buffer_len,
459                                                        true);
460                         }
461                 }
462         }
463 }
464
465 /**
466  * e1000_desc_unused - calculate if we have unused descriptors
467  **/
468 static int e1000_desc_unused(struct e1000_ring *ring)
469 {
470         if (ring->next_to_clean > ring->next_to_use)
471                 return ring->next_to_clean - ring->next_to_use - 1;
472
473         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
474 }
475
476 /**
477  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
478  * @adapter: board private structure
479  * @hwtstamps: time stamp structure to update
480  * @systim: unsigned 64bit system time value.
481  *
482  * Convert the system time value stored in the RX/TXSTMP registers into a
483  * hwtstamp which can be used by the upper level time stamping functions.
484  *
485  * The 'systim_lock' spinlock is used to protect the consistency of the
486  * system time value. This is needed because reading the 64 bit time
487  * value involves reading two 32 bit registers. The first read latches the
488  * value.
489  **/
490 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
491                                       struct skb_shared_hwtstamps *hwtstamps,
492                                       u64 systim)
493 {
494         u64 ns;
495         unsigned long flags;
496
497         spin_lock_irqsave(&adapter->systim_lock, flags);
498         ns = timecounter_cyc2time(&adapter->tc, systim);
499         spin_unlock_irqrestore(&adapter->systim_lock, flags);
500
501         memset(hwtstamps, 0, sizeof(*hwtstamps));
502         hwtstamps->hwtstamp = ns_to_ktime(ns);
503 }
504
505 /**
506  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
507  * @adapter: board private structure
508  * @status: descriptor extended error and status field
509  * @skb: particular skb to include time stamp
510  *
511  * If the time stamp is valid, convert it into the timecounter ns value
512  * and store that result into the shhwtstamps structure which is passed
513  * up the network stack.
514  **/
515 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
516                                struct sk_buff *skb)
517 {
518         struct e1000_hw *hw = &adapter->hw;
519         u64 rxstmp;
520
521         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
522             !(status & E1000_RXDEXT_STATERR_TST) ||
523             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
524                 return;
525
526         /* The Rx time stamp registers contain the time stamp.  No other
527          * received packet will be time stamped until the Rx time stamp
528          * registers are read.  Because only one packet can be time stamped
529          * at a time, the register values must belong to this packet and
530          * therefore none of the other additional attributes need to be
531          * compared.
532          */
533         rxstmp = (u64)er32(RXSTMPL);
534         rxstmp |= (u64)er32(RXSTMPH) << 32;
535         e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
536
537         adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
538 }
539
540 /**
541  * e1000_receive_skb - helper function to handle Rx indications
542  * @adapter: board private structure
543  * @staterr: descriptor extended error and status field as written by hardware
544  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
545  * @skb: pointer to sk_buff to be indicated to stack
546  **/
547 static void e1000_receive_skb(struct e1000_adapter *adapter,
548                               struct net_device *netdev, struct sk_buff *skb,
549                               u32 staterr, __le16 vlan)
550 {
551         u16 tag = le16_to_cpu(vlan);
552
553         e1000e_rx_hwtstamp(adapter, staterr, skb);
554
555         skb->protocol = eth_type_trans(skb, netdev);
556
557         if (staterr & E1000_RXD_STAT_VP)
558                 __vlan_hwaccel_put_tag(skb, tag);
559
560         napi_gro_receive(&adapter->napi, skb);
561 }
562
563 /**
564  * e1000_rx_checksum - Receive Checksum Offload
565  * @adapter: board private structure
566  * @status_err: receive descriptor status and error fields
567  * @csum: receive descriptor csum field
568  * @sk_buff: socket buffer with received data
569  **/
570 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
571                               struct sk_buff *skb)
572 {
573         u16 status = (u16)status_err;
574         u8 errors = (u8)(status_err >> 24);
575
576         skb_checksum_none_assert(skb);
577
578         /* Rx checksum disabled */
579         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
580                 return;
581
582         /* Ignore Checksum bit is set */
583         if (status & E1000_RXD_STAT_IXSM)
584                 return;
585
586         /* TCP/UDP checksum error bit or IP checksum error bit is set */
587         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
588                 /* let the stack verify checksum errors */
589                 adapter->hw_csum_err++;
590                 return;
591         }
592
593         /* TCP/UDP Checksum has not been calculated */
594         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
595                 return;
596
597         /* It must be a TCP or UDP packet with a valid checksum */
598         skb->ip_summed = CHECKSUM_UNNECESSARY;
599         adapter->hw_csum_good++;
600 }
601
602 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
603 {
604         struct e1000_adapter *adapter = rx_ring->adapter;
605         struct e1000_hw *hw = &adapter->hw;
606         s32 ret_val = __ew32_prepare(hw);
607
608         writel(i, rx_ring->tail);
609
610         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
611                 u32 rctl = er32(RCTL);
612                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
613                 e_err("ME firmware caused invalid RDT - resetting\n");
614                 schedule_work(&adapter->reset_task);
615         }
616 }
617
618 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
619 {
620         struct e1000_adapter *adapter = tx_ring->adapter;
621         struct e1000_hw *hw = &adapter->hw;
622         s32 ret_val = __ew32_prepare(hw);
623
624         writel(i, tx_ring->tail);
625
626         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
627                 u32 tctl = er32(TCTL);
628                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
629                 e_err("ME firmware caused invalid TDT - resetting\n");
630                 schedule_work(&adapter->reset_task);
631         }
632 }
633
634 /**
635  * e1000_alloc_rx_buffers - Replace used receive buffers
636  * @rx_ring: Rx descriptor ring
637  **/
638 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
639                                    int cleaned_count, gfp_t gfp)
640 {
641         struct e1000_adapter *adapter = rx_ring->adapter;
642         struct net_device *netdev = adapter->netdev;
643         struct pci_dev *pdev = adapter->pdev;
644         union e1000_rx_desc_extended *rx_desc;
645         struct e1000_buffer *buffer_info;
646         struct sk_buff *skb;
647         unsigned int i;
648         unsigned int bufsz = adapter->rx_buffer_len;
649
650         i = rx_ring->next_to_use;
651         buffer_info = &rx_ring->buffer_info[i];
652
653         while (cleaned_count--) {
654                 skb = buffer_info->skb;
655                 if (skb) {
656                         skb_trim(skb, 0);
657                         goto map_skb;
658                 }
659
660                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
661                 if (!skb) {
662                         /* Better luck next round */
663                         adapter->alloc_rx_buff_failed++;
664                         break;
665                 }
666
667                 buffer_info->skb = skb;
668 map_skb:
669                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
670                                                   adapter->rx_buffer_len,
671                                                   DMA_FROM_DEVICE);
672                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
673                         dev_err(&pdev->dev, "Rx DMA map failed\n");
674                         adapter->rx_dma_failed++;
675                         break;
676                 }
677
678                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
679                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
680
681                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
682                         /* Force memory writes to complete before letting h/w
683                          * know there are new descriptors to fetch.  (Only
684                          * applicable for weak-ordered memory model archs,
685                          * such as IA-64).
686                          */
687                         wmb();
688                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
689                                 e1000e_update_rdt_wa(rx_ring, i);
690                         else
691                                 writel(i, rx_ring->tail);
692                 }
693                 i++;
694                 if (i == rx_ring->count)
695                         i = 0;
696                 buffer_info = &rx_ring->buffer_info[i];
697         }
698
699         rx_ring->next_to_use = i;
700 }
701
702 /**
703  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
704  * @rx_ring: Rx descriptor ring
705  **/
706 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
707                                       int cleaned_count, gfp_t gfp)
708 {
709         struct e1000_adapter *adapter = rx_ring->adapter;
710         struct net_device *netdev = adapter->netdev;
711         struct pci_dev *pdev = adapter->pdev;
712         union e1000_rx_desc_packet_split *rx_desc;
713         struct e1000_buffer *buffer_info;
714         struct e1000_ps_page *ps_page;
715         struct sk_buff *skb;
716         unsigned int i, j;
717
718         i = rx_ring->next_to_use;
719         buffer_info = &rx_ring->buffer_info[i];
720
721         while (cleaned_count--) {
722                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
723
724                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
725                         ps_page = &buffer_info->ps_pages[j];
726                         if (j >= adapter->rx_ps_pages) {
727                                 /* all unused desc entries get hw null ptr */
728                                 rx_desc->read.buffer_addr[j + 1] =
729                                     ~cpu_to_le64(0);
730                                 continue;
731                         }
732                         if (!ps_page->page) {
733                                 ps_page->page = alloc_page(gfp);
734                                 if (!ps_page->page) {
735                                         adapter->alloc_rx_buff_failed++;
736                                         goto no_buffers;
737                                 }
738                                 ps_page->dma = dma_map_page(&pdev->dev,
739                                                             ps_page->page,
740                                                             0, PAGE_SIZE,
741                                                             DMA_FROM_DEVICE);
742                                 if (dma_mapping_error(&pdev->dev,
743                                                       ps_page->dma)) {
744                                         dev_err(&adapter->pdev->dev,
745                                                 "Rx DMA page map failed\n");
746                                         adapter->rx_dma_failed++;
747                                         goto no_buffers;
748                                 }
749                         }
750                         /* Refresh the desc even if buffer_addrs
751                          * didn't change because each write-back
752                          * erases this info.
753                          */
754                         rx_desc->read.buffer_addr[j + 1] =
755                             cpu_to_le64(ps_page->dma);
756                 }
757
758                 skb = __netdev_alloc_skb_ip_align(netdev,
759                                                   adapter->rx_ps_bsize0,
760                                                   gfp);
761
762                 if (!skb) {
763                         adapter->alloc_rx_buff_failed++;
764                         break;
765                 }
766
767                 buffer_info->skb = skb;
768                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
769                                                   adapter->rx_ps_bsize0,
770                                                   DMA_FROM_DEVICE);
771                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
772                         dev_err(&pdev->dev, "Rx DMA map failed\n");
773                         adapter->rx_dma_failed++;
774                         /* cleanup skb */
775                         dev_kfree_skb_any(skb);
776                         buffer_info->skb = NULL;
777                         break;
778                 }
779
780                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
781
782                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
783                         /* Force memory writes to complete before letting h/w
784                          * know there are new descriptors to fetch.  (Only
785                          * applicable for weak-ordered memory model archs,
786                          * such as IA-64).
787                          */
788                         wmb();
789                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
790                                 e1000e_update_rdt_wa(rx_ring, i << 1);
791                         else
792                                 writel(i << 1, rx_ring->tail);
793                 }
794
795                 i++;
796                 if (i == rx_ring->count)
797                         i = 0;
798                 buffer_info = &rx_ring->buffer_info[i];
799         }
800
801 no_buffers:
802         rx_ring->next_to_use = i;
803 }
804
805 /**
806  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
807  * @rx_ring: Rx descriptor ring
808  * @cleaned_count: number of buffers to allocate this pass
809  **/
810
811 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
812                                          int cleaned_count, gfp_t gfp)
813 {
814         struct e1000_adapter *adapter = rx_ring->adapter;
815         struct net_device *netdev = adapter->netdev;
816         struct pci_dev *pdev = adapter->pdev;
817         union e1000_rx_desc_extended *rx_desc;
818         struct e1000_buffer *buffer_info;
819         struct sk_buff *skb;
820         unsigned int i;
821         unsigned int bufsz = 256 - 16;  /* for skb_reserve */
822
823         i = rx_ring->next_to_use;
824         buffer_info = &rx_ring->buffer_info[i];
825
826         while (cleaned_count--) {
827                 skb = buffer_info->skb;
828                 if (skb) {
829                         skb_trim(skb, 0);
830                         goto check_page;
831                 }
832
833                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
834                 if (unlikely(!skb)) {
835                         /* Better luck next round */
836                         adapter->alloc_rx_buff_failed++;
837                         break;
838                 }
839
840                 buffer_info->skb = skb;
841 check_page:
842                 /* allocate a new page if necessary */
843                 if (!buffer_info->page) {
844                         buffer_info->page = alloc_page(gfp);
845                         if (unlikely(!buffer_info->page)) {
846                                 adapter->alloc_rx_buff_failed++;
847                                 break;
848                         }
849                 }
850
851                 if (!buffer_info->dma) {
852                         buffer_info->dma = dma_map_page(&pdev->dev,
853                                                         buffer_info->page, 0,
854                                                         PAGE_SIZE,
855                                                         DMA_FROM_DEVICE);
856                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
857                                 adapter->alloc_rx_buff_failed++;
858                                 break;
859                         }
860                 }
861
862                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
863                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
864
865                 if (unlikely(++i == rx_ring->count))
866                         i = 0;
867                 buffer_info = &rx_ring->buffer_info[i];
868         }
869
870         if (likely(rx_ring->next_to_use != i)) {
871                 rx_ring->next_to_use = i;
872                 if (unlikely(i-- == 0))
873                         i = (rx_ring->count - 1);
874
875                 /* Force memory writes to complete before letting h/w
876                  * know there are new descriptors to fetch.  (Only
877                  * applicable for weak-ordered memory model archs,
878                  * such as IA-64).
879                  */
880                 wmb();
881                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
882                         e1000e_update_rdt_wa(rx_ring, i);
883                 else
884                         writel(i, rx_ring->tail);
885         }
886 }
887
888 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
889                                  struct sk_buff *skb)
890 {
891         if (netdev->features & NETIF_F_RXHASH)
892                 skb->rxhash = le32_to_cpu(rss);
893 }
894
895 /**
896  * e1000_clean_rx_irq - Send received data up the network stack
897  * @rx_ring: Rx descriptor ring
898  *
899  * the return value indicates whether actual cleaning was done, there
900  * is no guarantee that everything was cleaned
901  **/
902 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
903                                int work_to_do)
904 {
905         struct e1000_adapter *adapter = rx_ring->adapter;
906         struct net_device *netdev = adapter->netdev;
907         struct pci_dev *pdev = adapter->pdev;
908         struct e1000_hw *hw = &adapter->hw;
909         union e1000_rx_desc_extended *rx_desc, *next_rxd;
910         struct e1000_buffer *buffer_info, *next_buffer;
911         u32 length, staterr;
912         unsigned int i;
913         int cleaned_count = 0;
914         bool cleaned = false;
915         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
916
917         i = rx_ring->next_to_clean;
918         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
919         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
920         buffer_info = &rx_ring->buffer_info[i];
921
922         while (staterr & E1000_RXD_STAT_DD) {
923                 struct sk_buff *skb;
924
925                 if (*work_done >= work_to_do)
926                         break;
927                 (*work_done)++;
928                 rmb();  /* read descriptor and rx_buffer_info after status DD */
929
930                 skb = buffer_info->skb;
931                 buffer_info->skb = NULL;
932
933                 prefetch(skb->data - NET_IP_ALIGN);
934
935                 i++;
936                 if (i == rx_ring->count)
937                         i = 0;
938                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
939                 prefetch(next_rxd);
940
941                 next_buffer = &rx_ring->buffer_info[i];
942
943                 cleaned = true;
944                 cleaned_count++;
945                 dma_unmap_single(&pdev->dev,
946                                  buffer_info->dma,
947                                  adapter->rx_buffer_len,
948                                  DMA_FROM_DEVICE);
949                 buffer_info->dma = 0;
950
951                 length = le16_to_cpu(rx_desc->wb.upper.length);
952
953                 /* !EOP means multiple descriptors were used to store a single
954                  * packet, if that's the case we need to toss it.  In fact, we
955                  * need to toss every packet with the EOP bit clear and the
956                  * next frame that _does_ have the EOP bit set, as it is by
957                  * definition only a frame fragment
958                  */
959                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
960                         adapter->flags2 |= FLAG2_IS_DISCARDING;
961
962                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
963                         /* All receives must fit into a single buffer */
964                         e_dbg("Receive packet consumed multiple buffers\n");
965                         /* recycle */
966                         buffer_info->skb = skb;
967                         if (staterr & E1000_RXD_STAT_EOP)
968                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
969                         goto next_desc;
970                 }
971
972                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
973                              !(netdev->features & NETIF_F_RXALL))) {
974                         /* recycle */
975                         buffer_info->skb = skb;
976                         goto next_desc;
977                 }
978
979                 /* adjust length to remove Ethernet CRC */
980                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
981                         /* If configured to store CRC, don't subtract FCS,
982                          * but keep the FCS bytes out of the total_rx_bytes
983                          * counter
984                          */
985                         if (netdev->features & NETIF_F_RXFCS)
986                                 total_rx_bytes -= 4;
987                         else
988                                 length -= 4;
989                 }
990
991                 total_rx_bytes += length;
992                 total_rx_packets++;
993
994                 /* code added for copybreak, this should improve
995                  * performance for small packets with large amounts
996                  * of reassembly being done in the stack
997                  */
998                 if (length < copybreak) {
999                         struct sk_buff *new_skb =
1000                             netdev_alloc_skb_ip_align(netdev, length);
1001                         if (new_skb) {
1002                                 skb_copy_to_linear_data_offset(new_skb,
1003                                                                -NET_IP_ALIGN,
1004                                                                (skb->data -
1005                                                                 NET_IP_ALIGN),
1006                                                                (length +
1007                                                                 NET_IP_ALIGN));
1008                                 /* save the skb in buffer_info as good */
1009                                 buffer_info->skb = skb;
1010                                 skb = new_skb;
1011                         }
1012                         /* else just continue with the old one */
1013                 }
1014                 /* end copybreak code */
1015                 skb_put(skb, length);
1016
1017                 /* Receive Checksum Offload */
1018                 e1000_rx_checksum(adapter, staterr, skb);
1019
1020                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1021
1022                 e1000_receive_skb(adapter, netdev, skb, staterr,
1023                                   rx_desc->wb.upper.vlan);
1024
1025 next_desc:
1026                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1027
1028                 /* return some buffers to hardware, one at a time is too slow */
1029                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1030                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1031                                               GFP_ATOMIC);
1032                         cleaned_count = 0;
1033                 }
1034
1035                 /* use prefetched values */
1036                 rx_desc = next_rxd;
1037                 buffer_info = next_buffer;
1038
1039                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1040         }
1041         rx_ring->next_to_clean = i;
1042
1043         cleaned_count = e1000_desc_unused(rx_ring);
1044         if (cleaned_count)
1045                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1046
1047         adapter->total_rx_bytes += total_rx_bytes;
1048         adapter->total_rx_packets += total_rx_packets;
1049         return cleaned;
1050 }
1051
1052 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1053                             struct e1000_buffer *buffer_info)
1054 {
1055         struct e1000_adapter *adapter = tx_ring->adapter;
1056
1057         if (buffer_info->dma) {
1058                 if (buffer_info->mapped_as_page)
1059                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1060                                        buffer_info->length, DMA_TO_DEVICE);
1061                 else
1062                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1063                                          buffer_info->length, DMA_TO_DEVICE);
1064                 buffer_info->dma = 0;
1065         }
1066         if (buffer_info->skb) {
1067                 dev_kfree_skb_any(buffer_info->skb);
1068                 buffer_info->skb = NULL;
1069         }
1070         buffer_info->time_stamp = 0;
1071 }
1072
1073 static void e1000_print_hw_hang(struct work_struct *work)
1074 {
1075         struct e1000_adapter *adapter = container_of(work,
1076                                                      struct e1000_adapter,
1077                                                      print_hang_task);
1078         struct net_device *netdev = adapter->netdev;
1079         struct e1000_ring *tx_ring = adapter->tx_ring;
1080         unsigned int i = tx_ring->next_to_clean;
1081         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1082         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1083         struct e1000_hw *hw = &adapter->hw;
1084         u16 phy_status, phy_1000t_status, phy_ext_status;
1085         u16 pci_status;
1086
1087         if (test_bit(__E1000_DOWN, &adapter->state))
1088                 return;
1089
1090         if (!adapter->tx_hang_recheck &&
1091             (adapter->flags2 & FLAG2_DMA_BURST)) {
1092                 /* May be block on write-back, flush and detect again
1093                  * flush pending descriptor writebacks to memory
1094                  */
1095                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1096                 /* execute the writes immediately */
1097                 e1e_flush();
1098                 /* Due to rare timing issues, write to TIDV again to ensure
1099                  * the write is successful
1100                  */
1101                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1102                 /* execute the writes immediately */
1103                 e1e_flush();
1104                 adapter->tx_hang_recheck = true;
1105                 return;
1106         }
1107         /* Real hang detected */
1108         adapter->tx_hang_recheck = false;
1109         netif_stop_queue(netdev);
1110
1111         e1e_rphy(hw, MII_BMSR, &phy_status);
1112         e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1113         e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1114
1115         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1116
1117         /* detected Hardware unit hang */
1118         e_err("Detected Hardware Unit Hang:\n"
1119               "  TDH                  <%x>\n"
1120               "  TDT                  <%x>\n"
1121               "  next_to_use          <%x>\n"
1122               "  next_to_clean        <%x>\n"
1123               "buffer_info[next_to_clean]:\n"
1124               "  time_stamp           <%lx>\n"
1125               "  next_to_watch        <%x>\n"
1126               "  jiffies              <%lx>\n"
1127               "  next_to_watch.status <%x>\n"
1128               "MAC Status             <%x>\n"
1129               "PHY Status             <%x>\n"
1130               "PHY 1000BASE-T Status  <%x>\n"
1131               "PHY Extended Status    <%x>\n"
1132               "PCI Status             <%x>\n",
1133               readl(tx_ring->head),
1134               readl(tx_ring->tail),
1135               tx_ring->next_to_use,
1136               tx_ring->next_to_clean,
1137               tx_ring->buffer_info[eop].time_stamp,
1138               eop,
1139               jiffies,
1140               eop_desc->upper.fields.status,
1141               er32(STATUS),
1142               phy_status,
1143               phy_1000t_status,
1144               phy_ext_status,
1145               pci_status);
1146
1147         /* Suggest workaround for known h/w issue */
1148         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1149                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1150 }
1151
1152 /**
1153  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1154  * @work: pointer to work struct
1155  *
1156  * This work function polls the TSYNCTXCTL valid bit to determine when a
1157  * timestamp has been taken for the current stored skb.  The timestamp must
1158  * be for this skb because only one such packet is allowed in the queue.
1159  */
1160 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1161 {
1162         struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1163                                                      tx_hwtstamp_work);
1164         struct e1000_hw *hw = &adapter->hw;
1165
1166         if (!adapter->tx_hwtstamp_skb)
1167                 return;
1168
1169         if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1170                 struct skb_shared_hwtstamps shhwtstamps;
1171                 u64 txstmp;
1172
1173                 txstmp = er32(TXSTMPL);
1174                 txstmp |= (u64)er32(TXSTMPH) << 32;
1175
1176                 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1177
1178                 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1179                 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1180                 adapter->tx_hwtstamp_skb = NULL;
1181         } else {
1182                 /* reschedule to check later */
1183                 schedule_work(&adapter->tx_hwtstamp_work);
1184         }
1185 }
1186
1187 /**
1188  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1189  * @tx_ring: Tx descriptor ring
1190  *
1191  * the return value indicates whether actual cleaning was done, there
1192  * is no guarantee that everything was cleaned
1193  **/
1194 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1195 {
1196         struct e1000_adapter *adapter = tx_ring->adapter;
1197         struct net_device *netdev = adapter->netdev;
1198         struct e1000_hw *hw = &adapter->hw;
1199         struct e1000_tx_desc *tx_desc, *eop_desc;
1200         struct e1000_buffer *buffer_info;
1201         unsigned int i, eop;
1202         unsigned int count = 0;
1203         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1204         unsigned int bytes_compl = 0, pkts_compl = 0;
1205
1206         i = tx_ring->next_to_clean;
1207         eop = tx_ring->buffer_info[i].next_to_watch;
1208         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1209
1210         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1211                (count < tx_ring->count)) {
1212                 bool cleaned = false;
1213                 rmb(); /* read buffer_info after eop_desc */
1214                 for (; !cleaned; count++) {
1215                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1216                         buffer_info = &tx_ring->buffer_info[i];
1217                         cleaned = (i == eop);
1218
1219                         if (cleaned) {
1220                                 total_tx_packets += buffer_info->segs;
1221                                 total_tx_bytes += buffer_info->bytecount;
1222                                 if (buffer_info->skb) {
1223                                         bytes_compl += buffer_info->skb->len;
1224                                         pkts_compl++;
1225                                 }
1226                         }
1227
1228                         e1000_put_txbuf(tx_ring, buffer_info);
1229                         tx_desc->upper.data = 0;
1230
1231                         i++;
1232                         if (i == tx_ring->count)
1233                                 i = 0;
1234                 }
1235
1236                 if (i == tx_ring->next_to_use)
1237                         break;
1238                 eop = tx_ring->buffer_info[i].next_to_watch;
1239                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1240         }
1241
1242         tx_ring->next_to_clean = i;
1243
1244         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1245
1246 #define TX_WAKE_THRESHOLD 32
1247         if (count && netif_carrier_ok(netdev) &&
1248             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1249                 /* Make sure that anybody stopping the queue after this
1250                  * sees the new next_to_clean.
1251                  */
1252                 smp_mb();
1253
1254                 if (netif_queue_stopped(netdev) &&
1255                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1256                         netif_wake_queue(netdev);
1257                         ++adapter->restart_queue;
1258                 }
1259         }
1260
1261         if (adapter->detect_tx_hung) {
1262                 /* Detect a transmit hang in hardware, this serializes the
1263                  * check with the clearing of time_stamp and movement of i
1264                  */
1265                 adapter->detect_tx_hung = false;
1266                 if (tx_ring->buffer_info[i].time_stamp &&
1267                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1268                                + (adapter->tx_timeout_factor * HZ)) &&
1269                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1270                         schedule_work(&adapter->print_hang_task);
1271                 else
1272                         adapter->tx_hang_recheck = false;
1273         }
1274         adapter->total_tx_bytes += total_tx_bytes;
1275         adapter->total_tx_packets += total_tx_packets;
1276         return count < tx_ring->count;
1277 }
1278
1279 /**
1280  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1281  * @rx_ring: Rx descriptor ring
1282  *
1283  * the return value indicates whether actual cleaning was done, there
1284  * is no guarantee that everything was cleaned
1285  **/
1286 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1287                                   int work_to_do)
1288 {
1289         struct e1000_adapter *adapter = rx_ring->adapter;
1290         struct e1000_hw *hw = &adapter->hw;
1291         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1292         struct net_device *netdev = adapter->netdev;
1293         struct pci_dev *pdev = adapter->pdev;
1294         struct e1000_buffer *buffer_info, *next_buffer;
1295         struct e1000_ps_page *ps_page;
1296         struct sk_buff *skb;
1297         unsigned int i, j;
1298         u32 length, staterr;
1299         int cleaned_count = 0;
1300         bool cleaned = false;
1301         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1302
1303         i = rx_ring->next_to_clean;
1304         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1305         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1306         buffer_info = &rx_ring->buffer_info[i];
1307
1308         while (staterr & E1000_RXD_STAT_DD) {
1309                 if (*work_done >= work_to_do)
1310                         break;
1311                 (*work_done)++;
1312                 skb = buffer_info->skb;
1313                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1314
1315                 /* in the packet split case this is header only */
1316                 prefetch(skb->data - NET_IP_ALIGN);
1317
1318                 i++;
1319                 if (i == rx_ring->count)
1320                         i = 0;
1321                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1322                 prefetch(next_rxd);
1323
1324                 next_buffer = &rx_ring->buffer_info[i];
1325
1326                 cleaned = true;
1327                 cleaned_count++;
1328                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1329                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1330                 buffer_info->dma = 0;
1331
1332                 /* see !EOP comment in other Rx routine */
1333                 if (!(staterr & E1000_RXD_STAT_EOP))
1334                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1335
1336                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1337                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1338                         dev_kfree_skb_irq(skb);
1339                         if (staterr & E1000_RXD_STAT_EOP)
1340                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1341                         goto next_desc;
1342                 }
1343
1344                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1345                              !(netdev->features & NETIF_F_RXALL))) {
1346                         dev_kfree_skb_irq(skb);
1347                         goto next_desc;
1348                 }
1349
1350                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1351
1352                 if (!length) {
1353                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1354                         dev_kfree_skb_irq(skb);
1355                         goto next_desc;
1356                 }
1357
1358                 /* Good Receive */
1359                 skb_put(skb, length);
1360
1361                 {
1362                         /* this looks ugly, but it seems compiler issues make
1363                          * it more efficient than reusing j
1364                          */
1365                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1366
1367                         /* page alloc/put takes too long and effects small
1368                          * packet throughput, so unsplit small packets and
1369                          * save the alloc/put only valid in softirq (napi)
1370                          * context to call kmap_*
1371                          */
1372                         if (l1 && (l1 <= copybreak) &&
1373                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1374                                 u8 *vaddr;
1375
1376                                 ps_page = &buffer_info->ps_pages[0];
1377
1378                                 /* there is no documentation about how to call
1379                                  * kmap_atomic, so we can't hold the mapping
1380                                  * very long
1381                                  */
1382                                 dma_sync_single_for_cpu(&pdev->dev,
1383                                                         ps_page->dma,
1384                                                         PAGE_SIZE,
1385                                                         DMA_FROM_DEVICE);
1386                                 vaddr = kmap_atomic(ps_page->page);
1387                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1388                                 kunmap_atomic(vaddr);
1389                                 dma_sync_single_for_device(&pdev->dev,
1390                                                            ps_page->dma,
1391                                                            PAGE_SIZE,
1392                                                            DMA_FROM_DEVICE);
1393
1394                                 /* remove the CRC */
1395                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1396                                         if (!(netdev->features & NETIF_F_RXFCS))
1397                                                 l1 -= 4;
1398                                 }
1399
1400                                 skb_put(skb, l1);
1401                                 goto copydone;
1402                         } /* if */
1403                 }
1404
1405                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1406                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1407                         if (!length)
1408                                 break;
1409
1410                         ps_page = &buffer_info->ps_pages[j];
1411                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1412                                        DMA_FROM_DEVICE);
1413                         ps_page->dma = 0;
1414                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1415                         ps_page->page = NULL;
1416                         skb->len += length;
1417                         skb->data_len += length;
1418                         skb->truesize += PAGE_SIZE;
1419                 }
1420
1421                 /* strip the ethernet crc, problem is we're using pages now so
1422                  * this whole operation can get a little cpu intensive
1423                  */
1424                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1425                         if (!(netdev->features & NETIF_F_RXFCS))
1426                                 pskb_trim(skb, skb->len - 4);
1427                 }
1428
1429 copydone:
1430                 total_rx_bytes += skb->len;
1431                 total_rx_packets++;
1432
1433                 e1000_rx_checksum(adapter, staterr, skb);
1434
1435                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1436
1437                 if (rx_desc->wb.upper.header_status &
1438                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1439                         adapter->rx_hdr_split++;
1440
1441                 e1000_receive_skb(adapter, netdev, skb, staterr,
1442                                   rx_desc->wb.middle.vlan);
1443
1444 next_desc:
1445                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1446                 buffer_info->skb = NULL;
1447
1448                 /* return some buffers to hardware, one at a time is too slow */
1449                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1450                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1451                                               GFP_ATOMIC);
1452                         cleaned_count = 0;
1453                 }
1454
1455                 /* use prefetched values */
1456                 rx_desc = next_rxd;
1457                 buffer_info = next_buffer;
1458
1459                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1460         }
1461         rx_ring->next_to_clean = i;
1462
1463         cleaned_count = e1000_desc_unused(rx_ring);
1464         if (cleaned_count)
1465                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1466
1467         adapter->total_rx_bytes += total_rx_bytes;
1468         adapter->total_rx_packets += total_rx_packets;
1469         return cleaned;
1470 }
1471
1472 /**
1473  * e1000_consume_page - helper function
1474  **/
1475 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1476                                u16 length)
1477 {
1478         bi->page = NULL;
1479         skb->len += length;
1480         skb->data_len += length;
1481         skb->truesize += PAGE_SIZE;
1482 }
1483
1484 /**
1485  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1486  * @adapter: board private structure
1487  *
1488  * the return value indicates whether actual cleaning was done, there
1489  * is no guarantee that everything was cleaned
1490  **/
1491 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1492                                      int work_to_do)
1493 {
1494         struct e1000_adapter *adapter = rx_ring->adapter;
1495         struct net_device *netdev = adapter->netdev;
1496         struct pci_dev *pdev = adapter->pdev;
1497         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1498         struct e1000_buffer *buffer_info, *next_buffer;
1499         u32 length, staterr;
1500         unsigned int i;
1501         int cleaned_count = 0;
1502         bool cleaned = false;
1503         unsigned int total_rx_bytes=0, total_rx_packets=0;
1504
1505         i = rx_ring->next_to_clean;
1506         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1507         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1508         buffer_info = &rx_ring->buffer_info[i];
1509
1510         while (staterr & E1000_RXD_STAT_DD) {
1511                 struct sk_buff *skb;
1512
1513                 if (*work_done >= work_to_do)
1514                         break;
1515                 (*work_done)++;
1516                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1517
1518                 skb = buffer_info->skb;
1519                 buffer_info->skb = NULL;
1520
1521                 ++i;
1522                 if (i == rx_ring->count)
1523                         i = 0;
1524                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1525                 prefetch(next_rxd);
1526
1527                 next_buffer = &rx_ring->buffer_info[i];
1528
1529                 cleaned = true;
1530                 cleaned_count++;
1531                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1532                                DMA_FROM_DEVICE);
1533                 buffer_info->dma = 0;
1534
1535                 length = le16_to_cpu(rx_desc->wb.upper.length);
1536
1537                 /* errors is only valid for DD + EOP descriptors */
1538                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1539                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1540                               !(netdev->features & NETIF_F_RXALL)))) {
1541                         /* recycle both page and skb */
1542                         buffer_info->skb = skb;
1543                         /* an error means any chain goes out the window too */
1544                         if (rx_ring->rx_skb_top)
1545                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1546                         rx_ring->rx_skb_top = NULL;
1547                         goto next_desc;
1548                 }
1549
1550 #define rxtop (rx_ring->rx_skb_top)
1551                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1552                         /* this descriptor is only the beginning (or middle) */
1553                         if (!rxtop) {
1554                                 /* this is the beginning of a chain */
1555                                 rxtop = skb;
1556                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1557                                                    0, length);
1558                         } else {
1559                                 /* this is the middle of a chain */
1560                                 skb_fill_page_desc(rxtop,
1561                                     skb_shinfo(rxtop)->nr_frags,
1562                                     buffer_info->page, 0, length);
1563                                 /* re-use the skb, only consumed the page */
1564                                 buffer_info->skb = skb;
1565                         }
1566                         e1000_consume_page(buffer_info, rxtop, length);
1567                         goto next_desc;
1568                 } else {
1569                         if (rxtop) {
1570                                 /* end of the chain */
1571                                 skb_fill_page_desc(rxtop,
1572                                     skb_shinfo(rxtop)->nr_frags,
1573                                     buffer_info->page, 0, length);
1574                                 /* re-use the current skb, we only consumed the
1575                                  * page
1576                                  */
1577                                 buffer_info->skb = skb;
1578                                 skb = rxtop;
1579                                 rxtop = NULL;
1580                                 e1000_consume_page(buffer_info, skb, length);
1581                         } else {
1582                                 /* no chain, got EOP, this buf is the packet
1583                                  * copybreak to save the put_page/alloc_page
1584                                  */
1585                                 if (length <= copybreak &&
1586                                     skb_tailroom(skb) >= length) {
1587                                         u8 *vaddr;
1588                                         vaddr = kmap_atomic(buffer_info->page);
1589                                         memcpy(skb_tail_pointer(skb), vaddr,
1590                                                length);
1591                                         kunmap_atomic(vaddr);
1592                                         /* re-use the page, so don't erase
1593                                          * buffer_info->page
1594                                          */
1595                                         skb_put(skb, length);
1596                                 } else {
1597                                         skb_fill_page_desc(skb, 0,
1598                                                            buffer_info->page, 0,
1599                                                            length);
1600                                         e1000_consume_page(buffer_info, skb,
1601                                                            length);
1602                                 }
1603                         }
1604                 }
1605
1606                 /* Receive Checksum Offload */
1607                 e1000_rx_checksum(adapter, staterr, skb);
1608
1609                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1610
1611                 /* probably a little skewed due to removing CRC */
1612                 total_rx_bytes += skb->len;
1613                 total_rx_packets++;
1614
1615                 /* eth type trans needs skb->data to point to something */
1616                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1617                         e_err("pskb_may_pull failed.\n");
1618                         dev_kfree_skb_irq(skb);
1619                         goto next_desc;
1620                 }
1621
1622                 e1000_receive_skb(adapter, netdev, skb, staterr,
1623                                   rx_desc->wb.upper.vlan);
1624
1625 next_desc:
1626                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1627
1628                 /* return some buffers to hardware, one at a time is too slow */
1629                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1630                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1631                                               GFP_ATOMIC);
1632                         cleaned_count = 0;
1633                 }
1634
1635                 /* use prefetched values */
1636                 rx_desc = next_rxd;
1637                 buffer_info = next_buffer;
1638
1639                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1640         }
1641         rx_ring->next_to_clean = i;
1642
1643         cleaned_count = e1000_desc_unused(rx_ring);
1644         if (cleaned_count)
1645                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1646
1647         adapter->total_rx_bytes += total_rx_bytes;
1648         adapter->total_rx_packets += total_rx_packets;
1649         return cleaned;
1650 }
1651
1652 /**
1653  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1654  * @rx_ring: Rx descriptor ring
1655  **/
1656 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1657 {
1658         struct e1000_adapter *adapter = rx_ring->adapter;
1659         struct e1000_buffer *buffer_info;
1660         struct e1000_ps_page *ps_page;
1661         struct pci_dev *pdev = adapter->pdev;
1662         unsigned int i, j;
1663
1664         /* Free all the Rx ring sk_buffs */
1665         for (i = 0; i < rx_ring->count; i++) {
1666                 buffer_info = &rx_ring->buffer_info[i];
1667                 if (buffer_info->dma) {
1668                         if (adapter->clean_rx == e1000_clean_rx_irq)
1669                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1670                                                  adapter->rx_buffer_len,
1671                                                  DMA_FROM_DEVICE);
1672                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1673                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1674                                                PAGE_SIZE,
1675                                                DMA_FROM_DEVICE);
1676                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1677                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1678                                                  adapter->rx_ps_bsize0,
1679                                                  DMA_FROM_DEVICE);
1680                         buffer_info->dma = 0;
1681                 }
1682
1683                 if (buffer_info->page) {
1684                         put_page(buffer_info->page);
1685                         buffer_info->page = NULL;
1686                 }
1687
1688                 if (buffer_info->skb) {
1689                         dev_kfree_skb(buffer_info->skb);
1690                         buffer_info->skb = NULL;
1691                 }
1692
1693                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1694                         ps_page = &buffer_info->ps_pages[j];
1695                         if (!ps_page->page)
1696                                 break;
1697                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1698                                        DMA_FROM_DEVICE);
1699                         ps_page->dma = 0;
1700                         put_page(ps_page->page);
1701                         ps_page->page = NULL;
1702                 }
1703         }
1704
1705         /* there also may be some cached data from a chained receive */
1706         if (rx_ring->rx_skb_top) {
1707                 dev_kfree_skb(rx_ring->rx_skb_top);
1708                 rx_ring->rx_skb_top = NULL;
1709         }
1710
1711         /* Zero out the descriptor ring */
1712         memset(rx_ring->desc, 0, rx_ring->size);
1713
1714         rx_ring->next_to_clean = 0;
1715         rx_ring->next_to_use = 0;
1716         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1717
1718         writel(0, rx_ring->head);
1719         if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1720                 e1000e_update_rdt_wa(rx_ring, 0);
1721         else
1722                 writel(0, rx_ring->tail);
1723 }
1724
1725 static void e1000e_downshift_workaround(struct work_struct *work)
1726 {
1727         struct e1000_adapter *adapter = container_of(work,
1728                                         struct e1000_adapter, downshift_task);
1729
1730         if (test_bit(__E1000_DOWN, &adapter->state))
1731                 return;
1732
1733         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1734 }
1735
1736 /**
1737  * e1000_intr_msi - Interrupt Handler
1738  * @irq: interrupt number
1739  * @data: pointer to a network interface device structure
1740  **/
1741 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1742 {
1743         struct net_device *netdev = data;
1744         struct e1000_adapter *adapter = netdev_priv(netdev);
1745         struct e1000_hw *hw = &adapter->hw;
1746         u32 icr = er32(ICR);
1747
1748         /* read ICR disables interrupts using IAM */
1749         if (icr & E1000_ICR_LSC) {
1750                 hw->mac.get_link_status = true;
1751                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1752                  * disconnect (LSC) before accessing any PHY registers
1753                  */
1754                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1755                     (!(er32(STATUS) & E1000_STATUS_LU)))
1756                         schedule_work(&adapter->downshift_task);
1757
1758                 /* 80003ES2LAN workaround-- For packet buffer work-around on
1759                  * link down event; disable receives here in the ISR and reset
1760                  * adapter in watchdog
1761                  */
1762                 if (netif_carrier_ok(netdev) &&
1763                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1764                         /* disable receives */
1765                         u32 rctl = er32(RCTL);
1766                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1767                         adapter->flags |= FLAG_RESTART_NOW;
1768                 }
1769                 /* guard against interrupt when we're going down */
1770                 if (!test_bit(__E1000_DOWN, &adapter->state))
1771                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1772         }
1773
1774         /* Reset on uncorrectable ECC error */
1775         if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1776                 u32 pbeccsts = er32(PBECCSTS);
1777
1778                 adapter->corr_errors +=
1779                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1780                 adapter->uncorr_errors +=
1781                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1782                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1783
1784                 /* Do the reset outside of interrupt context */
1785                 schedule_work(&adapter->reset_task);
1786
1787                 /* return immediately since reset is imminent */
1788                 return IRQ_HANDLED;
1789         }
1790
1791         if (napi_schedule_prep(&adapter->napi)) {
1792                 adapter->total_tx_bytes = 0;
1793                 adapter->total_tx_packets = 0;
1794                 adapter->total_rx_bytes = 0;
1795                 adapter->total_rx_packets = 0;
1796                 __napi_schedule(&adapter->napi);
1797         }
1798
1799         return IRQ_HANDLED;
1800 }
1801
1802 /**
1803  * e1000_intr - Interrupt Handler
1804  * @irq: interrupt number
1805  * @data: pointer to a network interface device structure
1806  **/
1807 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1808 {
1809         struct net_device *netdev = data;
1810         struct e1000_adapter *adapter = netdev_priv(netdev);
1811         struct e1000_hw *hw = &adapter->hw;
1812         u32 rctl, icr = er32(ICR);
1813
1814         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1815                 return IRQ_NONE;  /* Not our interrupt */
1816
1817         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1818          * not set, then the adapter didn't send an interrupt
1819          */
1820         if (!(icr & E1000_ICR_INT_ASSERTED))
1821                 return IRQ_NONE;
1822
1823         /* Interrupt Auto-Mask...upon reading ICR,
1824          * interrupts are masked.  No need for the
1825          * IMC write
1826          */
1827
1828         if (icr & E1000_ICR_LSC) {
1829                 hw->mac.get_link_status = true;
1830                 /* ICH8 workaround-- Call gig speed drop workaround on cable
1831                  * disconnect (LSC) before accessing any PHY registers
1832                  */
1833                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1834                     (!(er32(STATUS) & E1000_STATUS_LU)))
1835                         schedule_work(&adapter->downshift_task);
1836
1837                 /* 80003ES2LAN workaround--
1838                  * For packet buffer work-around on link down event;
1839                  * disable receives here in the ISR and
1840                  * reset adapter in watchdog
1841                  */
1842                 if (netif_carrier_ok(netdev) &&
1843                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1844                         /* disable receives */
1845                         rctl = er32(RCTL);
1846                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1847                         adapter->flags |= FLAG_RESTART_NOW;
1848                 }
1849                 /* guard against interrupt when we're going down */
1850                 if (!test_bit(__E1000_DOWN, &adapter->state))
1851                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1852         }
1853
1854         /* Reset on uncorrectable ECC error */
1855         if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1856                 u32 pbeccsts = er32(PBECCSTS);
1857
1858                 adapter->corr_errors +=
1859                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1860                 adapter->uncorr_errors +=
1861                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1862                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1863
1864                 /* Do the reset outside of interrupt context */
1865                 schedule_work(&adapter->reset_task);
1866
1867                 /* return immediately since reset is imminent */
1868                 return IRQ_HANDLED;
1869         }
1870
1871         if (napi_schedule_prep(&adapter->napi)) {
1872                 adapter->total_tx_bytes = 0;
1873                 adapter->total_tx_packets = 0;
1874                 adapter->total_rx_bytes = 0;
1875                 adapter->total_rx_packets = 0;
1876                 __napi_schedule(&adapter->napi);
1877         }
1878
1879         return IRQ_HANDLED;
1880 }
1881
1882 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1883 {
1884         struct net_device *netdev = data;
1885         struct e1000_adapter *adapter = netdev_priv(netdev);
1886         struct e1000_hw *hw = &adapter->hw;
1887         u32 icr = er32(ICR);
1888
1889         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1890                 if (!test_bit(__E1000_DOWN, &adapter->state))
1891                         ew32(IMS, E1000_IMS_OTHER);
1892                 return IRQ_NONE;
1893         }
1894
1895         if (icr & adapter->eiac_mask)
1896                 ew32(ICS, (icr & adapter->eiac_mask));
1897
1898         if (icr & E1000_ICR_OTHER) {
1899                 if (!(icr & E1000_ICR_LSC))
1900                         goto no_link_interrupt;
1901                 hw->mac.get_link_status = true;
1902                 /* guard against interrupt when we're going down */
1903                 if (!test_bit(__E1000_DOWN, &adapter->state))
1904                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1905         }
1906
1907 no_link_interrupt:
1908         if (!test_bit(__E1000_DOWN, &adapter->state))
1909                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1910
1911         return IRQ_HANDLED;
1912 }
1913
1914 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1915 {
1916         struct net_device *netdev = data;
1917         struct e1000_adapter *adapter = netdev_priv(netdev);
1918         struct e1000_hw *hw = &adapter->hw;
1919         struct e1000_ring *tx_ring = adapter->tx_ring;
1920
1921
1922         adapter->total_tx_bytes = 0;
1923         adapter->total_tx_packets = 0;
1924
1925         if (!e1000_clean_tx_irq(tx_ring))
1926                 /* Ring was not completely cleaned, so fire another interrupt */
1927                 ew32(ICS, tx_ring->ims_val);
1928
1929         return IRQ_HANDLED;
1930 }
1931
1932 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1933 {
1934         struct net_device *netdev = data;
1935         struct e1000_adapter *adapter = netdev_priv(netdev);
1936         struct e1000_ring *rx_ring = adapter->rx_ring;
1937
1938         /* Write the ITR value calculated at the end of the
1939          * previous interrupt.
1940          */
1941         if (rx_ring->set_itr) {
1942                 writel(1000000000 / (rx_ring->itr_val * 256),
1943                        rx_ring->itr_register);
1944                 rx_ring->set_itr = 0;
1945         }
1946
1947         if (napi_schedule_prep(&adapter->napi)) {
1948                 adapter->total_rx_bytes = 0;
1949                 adapter->total_rx_packets = 0;
1950                 __napi_schedule(&adapter->napi);
1951         }
1952         return IRQ_HANDLED;
1953 }
1954
1955 /**
1956  * e1000_configure_msix - Configure MSI-X hardware
1957  *
1958  * e1000_configure_msix sets up the hardware to properly
1959  * generate MSI-X interrupts.
1960  **/
1961 static void e1000_configure_msix(struct e1000_adapter *adapter)
1962 {
1963         struct e1000_hw *hw = &adapter->hw;
1964         struct e1000_ring *rx_ring = adapter->rx_ring;
1965         struct e1000_ring *tx_ring = adapter->tx_ring;
1966         int vector = 0;
1967         u32 ctrl_ext, ivar = 0;
1968
1969         adapter->eiac_mask = 0;
1970
1971         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1972         if (hw->mac.type == e1000_82574) {
1973                 u32 rfctl = er32(RFCTL);
1974                 rfctl |= E1000_RFCTL_ACK_DIS;
1975                 ew32(RFCTL, rfctl);
1976         }
1977
1978 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1979         /* Configure Rx vector */
1980         rx_ring->ims_val = E1000_IMS_RXQ0;
1981         adapter->eiac_mask |= rx_ring->ims_val;
1982         if (rx_ring->itr_val)
1983                 writel(1000000000 / (rx_ring->itr_val * 256),
1984                        rx_ring->itr_register);
1985         else
1986                 writel(1, rx_ring->itr_register);
1987         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1988
1989         /* Configure Tx vector */
1990         tx_ring->ims_val = E1000_IMS_TXQ0;
1991         vector++;
1992         if (tx_ring->itr_val)
1993                 writel(1000000000 / (tx_ring->itr_val * 256),
1994                        tx_ring->itr_register);
1995         else
1996                 writel(1, tx_ring->itr_register);
1997         adapter->eiac_mask |= tx_ring->ims_val;
1998         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1999
2000         /* set vector for Other Causes, e.g. link changes */
2001         vector++;
2002         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2003         if (rx_ring->itr_val)
2004                 writel(1000000000 / (rx_ring->itr_val * 256),
2005                        hw->hw_addr + E1000_EITR_82574(vector));
2006         else
2007                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2008
2009         /* Cause Tx interrupts on every write back */
2010         ivar |= (1 << 31);
2011
2012         ew32(IVAR, ivar);
2013
2014         /* enable MSI-X PBA support */
2015         ctrl_ext = er32(CTRL_EXT);
2016         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2017
2018         /* Auto-Mask Other interrupts upon ICR read */
2019         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2020         ctrl_ext |= E1000_CTRL_EXT_EIAME;
2021         ew32(CTRL_EXT, ctrl_ext);
2022         e1e_flush();
2023 }
2024
2025 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2026 {
2027         if (adapter->msix_entries) {
2028                 pci_disable_msix(adapter->pdev);
2029                 kfree(adapter->msix_entries);
2030                 adapter->msix_entries = NULL;
2031         } else if (adapter->flags & FLAG_MSI_ENABLED) {
2032                 pci_disable_msi(adapter->pdev);
2033                 adapter->flags &= ~FLAG_MSI_ENABLED;
2034         }
2035 }
2036
2037 /**
2038  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2039  *
2040  * Attempt to configure interrupts using the best available
2041  * capabilities of the hardware and kernel.
2042  **/
2043 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2044 {
2045         int err;
2046         int i;
2047
2048         switch (adapter->int_mode) {
2049         case E1000E_INT_MODE_MSIX:
2050                 if (adapter->flags & FLAG_HAS_MSIX) {
2051                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2052                         adapter->msix_entries = kcalloc(adapter->num_vectors,
2053                                                       sizeof(struct msix_entry),
2054                                                       GFP_KERNEL);
2055                         if (adapter->msix_entries) {
2056                                 for (i = 0; i < adapter->num_vectors; i++)
2057                                         adapter->msix_entries[i].entry = i;
2058
2059                                 err = pci_enable_msix(adapter->pdev,
2060                                                       adapter->msix_entries,
2061                                                       adapter->num_vectors);
2062                                 if (err == 0)
2063                                         return;
2064                         }
2065                         /* MSI-X failed, so fall through and try MSI */
2066                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2067                         e1000e_reset_interrupt_capability(adapter);
2068                 }
2069                 adapter->int_mode = E1000E_INT_MODE_MSI;
2070                 /* Fall through */
2071         case E1000E_INT_MODE_MSI:
2072                 if (!pci_enable_msi(adapter->pdev)) {
2073                         adapter->flags |= FLAG_MSI_ENABLED;
2074                 } else {
2075                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
2076                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2077                 }
2078                 /* Fall through */
2079         case E1000E_INT_MODE_LEGACY:
2080                 /* Don't do anything; this is the system default */
2081                 break;
2082         }
2083
2084         /* store the number of vectors being used */
2085         adapter->num_vectors = 1;
2086 }
2087
2088 /**
2089  * e1000_request_msix - Initialize MSI-X interrupts
2090  *
2091  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2092  * kernel.
2093  **/
2094 static int e1000_request_msix(struct e1000_adapter *adapter)
2095 {
2096         struct net_device *netdev = adapter->netdev;
2097         int err = 0, vector = 0;
2098
2099         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2100                 snprintf(adapter->rx_ring->name,
2101                          sizeof(adapter->rx_ring->name) - 1,
2102                          "%s-rx-0", netdev->name);
2103         else
2104                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2105         err = request_irq(adapter->msix_entries[vector].vector,
2106                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2107                           netdev);
2108         if (err)
2109                 return err;
2110         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2111             E1000_EITR_82574(vector);
2112         adapter->rx_ring->itr_val = adapter->itr;
2113         vector++;
2114
2115         if (strlen(netdev->name) < (IFNAMSIZ - 5))
2116                 snprintf(adapter->tx_ring->name,
2117                          sizeof(adapter->tx_ring->name) - 1,
2118                          "%s-tx-0", netdev->name);
2119         else
2120                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2121         err = request_irq(adapter->msix_entries[vector].vector,
2122                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2123                           netdev);
2124         if (err)
2125                 return err;
2126         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2127             E1000_EITR_82574(vector);
2128         adapter->tx_ring->itr_val = adapter->itr;
2129         vector++;
2130
2131         err = request_irq(adapter->msix_entries[vector].vector,
2132                           e1000_msix_other, 0, netdev->name, netdev);
2133         if (err)
2134                 return err;
2135
2136         e1000_configure_msix(adapter);
2137
2138         return 0;
2139 }
2140
2141 /**
2142  * e1000_request_irq - initialize interrupts
2143  *
2144  * Attempts to configure interrupts using the best available
2145  * capabilities of the hardware and kernel.
2146  **/
2147 static int e1000_request_irq(struct e1000_adapter *adapter)
2148 {
2149         struct net_device *netdev = adapter->netdev;
2150         int err;
2151
2152         if (adapter->msix_entries) {
2153                 err = e1000_request_msix(adapter);
2154                 if (!err)
2155                         return err;
2156                 /* fall back to MSI */
2157                 e1000e_reset_interrupt_capability(adapter);
2158                 adapter->int_mode = E1000E_INT_MODE_MSI;
2159                 e1000e_set_interrupt_capability(adapter);
2160         }
2161         if (adapter->flags & FLAG_MSI_ENABLED) {
2162                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2163                                   netdev->name, netdev);
2164                 if (!err)
2165                         return err;
2166
2167                 /* fall back to legacy interrupt */
2168                 e1000e_reset_interrupt_capability(adapter);
2169                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2170         }
2171
2172         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2173                           netdev->name, netdev);
2174         if (err)
2175                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2176
2177         return err;
2178 }
2179
2180 static void e1000_free_irq(struct e1000_adapter *adapter)
2181 {
2182         struct net_device *netdev = adapter->netdev;
2183
2184         if (adapter->msix_entries) {
2185                 int vector = 0;
2186
2187                 free_irq(adapter->msix_entries[vector].vector, netdev);
2188                 vector++;
2189
2190                 free_irq(adapter->msix_entries[vector].vector, netdev);
2191                 vector++;
2192
2193                 /* Other Causes interrupt vector */
2194                 free_irq(adapter->msix_entries[vector].vector, netdev);
2195                 return;
2196         }
2197
2198         free_irq(adapter->pdev->irq, netdev);
2199 }
2200
2201 /**
2202  * e1000_irq_disable - Mask off interrupt generation on the NIC
2203  **/
2204 static void e1000_irq_disable(struct e1000_adapter *adapter)
2205 {
2206         struct e1000_hw *hw = &adapter->hw;
2207
2208         ew32(IMC, ~0);
2209         if (adapter->msix_entries)
2210                 ew32(EIAC_82574, 0);
2211         e1e_flush();
2212
2213         if (adapter->msix_entries) {
2214                 int i;
2215                 for (i = 0; i < adapter->num_vectors; i++)
2216                         synchronize_irq(adapter->msix_entries[i].vector);
2217         } else {
2218                 synchronize_irq(adapter->pdev->irq);
2219         }
2220 }
2221
2222 /**
2223  * e1000_irq_enable - Enable default interrupt generation settings
2224  **/
2225 static void e1000_irq_enable(struct e1000_adapter *adapter)
2226 {
2227         struct e1000_hw *hw = &adapter->hw;
2228
2229         if (adapter->msix_entries) {
2230                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2231                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2232         } else if (hw->mac.type == e1000_pch_lpt) {
2233                 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2234         } else {
2235                 ew32(IMS, IMS_ENABLE_MASK);
2236         }
2237         e1e_flush();
2238 }
2239
2240 /**
2241  * e1000e_get_hw_control - get control of the h/w from f/w
2242  * @adapter: address of board private structure
2243  *
2244  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2245  * For ASF and Pass Through versions of f/w this means that
2246  * the driver is loaded. For AMT version (only with 82573)
2247  * of the f/w this means that the network i/f is open.
2248  **/
2249 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2250 {
2251         struct e1000_hw *hw = &adapter->hw;
2252         u32 ctrl_ext;
2253         u32 swsm;
2254
2255         /* Let firmware know the driver has taken over */
2256         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2257                 swsm = er32(SWSM);
2258                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2259         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2260                 ctrl_ext = er32(CTRL_EXT);
2261                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2262         }
2263 }
2264
2265 /**
2266  * e1000e_release_hw_control - release control of the h/w to f/w
2267  * @adapter: address of board private structure
2268  *
2269  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2270  * For ASF and Pass Through versions of f/w this means that the
2271  * driver is no longer loaded. For AMT version (only with 82573) i
2272  * of the f/w this means that the network i/f is closed.
2273  *
2274  **/
2275 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2276 {
2277         struct e1000_hw *hw = &adapter->hw;
2278         u32 ctrl_ext;
2279         u32 swsm;
2280
2281         /* Let firmware taken over control of h/w */
2282         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2283                 swsm = er32(SWSM);
2284                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2285         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2286                 ctrl_ext = er32(CTRL_EXT);
2287                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2288         }
2289 }
2290
2291 /**
2292  * e1000_alloc_ring_dma - allocate memory for a ring structure
2293  **/
2294 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2295                                 struct e1000_ring *ring)
2296 {
2297         struct pci_dev *pdev = adapter->pdev;
2298
2299         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2300                                         GFP_KERNEL);
2301         if (!ring->desc)
2302                 return -ENOMEM;
2303
2304         return 0;
2305 }
2306
2307 /**
2308  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2309  * @tx_ring: Tx descriptor ring
2310  *
2311  * Return 0 on success, negative on failure
2312  **/
2313 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2314 {
2315         struct e1000_adapter *adapter = tx_ring->adapter;
2316         int err = -ENOMEM, size;
2317
2318         size = sizeof(struct e1000_buffer) * tx_ring->count;
2319         tx_ring->buffer_info = vzalloc(size);
2320         if (!tx_ring->buffer_info)
2321                 goto err;
2322
2323         /* round up to nearest 4K */
2324         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2325         tx_ring->size = ALIGN(tx_ring->size, 4096);
2326
2327         err = e1000_alloc_ring_dma(adapter, tx_ring);
2328         if (err)
2329                 goto err;
2330
2331         tx_ring->next_to_use = 0;
2332         tx_ring->next_to_clean = 0;
2333
2334         return 0;
2335 err:
2336         vfree(tx_ring->buffer_info);
2337         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2338         return err;
2339 }
2340
2341 /**
2342  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2343  * @rx_ring: Rx descriptor ring
2344  *
2345  * Returns 0 on success, negative on failure
2346  **/
2347 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2348 {
2349         struct e1000_adapter *adapter = rx_ring->adapter;
2350         struct e1000_buffer *buffer_info;
2351         int i, size, desc_len, err = -ENOMEM;
2352
2353         size = sizeof(struct e1000_buffer) * rx_ring->count;
2354         rx_ring->buffer_info = vzalloc(size);
2355         if (!rx_ring->buffer_info)
2356                 goto err;
2357
2358         for (i = 0; i < rx_ring->count; i++) {
2359                 buffer_info = &rx_ring->buffer_info[i];
2360                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2361                                                 sizeof(struct e1000_ps_page),
2362                                                 GFP_KERNEL);
2363                 if (!buffer_info->ps_pages)
2364                         goto err_pages;
2365         }
2366
2367         desc_len = sizeof(union e1000_rx_desc_packet_split);
2368
2369         /* Round up to nearest 4K */
2370         rx_ring->size = rx_ring->count * desc_len;
2371         rx_ring->size = ALIGN(rx_ring->size, 4096);
2372
2373         err = e1000_alloc_ring_dma(adapter, rx_ring);
2374         if (err)
2375                 goto err_pages;
2376
2377         rx_ring->next_to_clean = 0;
2378         rx_ring->next_to_use = 0;
2379         rx_ring->rx_skb_top = NULL;
2380
2381         return 0;
2382
2383 err_pages:
2384         for (i = 0; i < rx_ring->count; i++) {
2385                 buffer_info = &rx_ring->buffer_info[i];
2386                 kfree(buffer_info->ps_pages);
2387         }
2388 err:
2389         vfree(rx_ring->buffer_info);
2390         e_err("Unable to allocate memory for the receive descriptor ring\n");
2391         return err;
2392 }
2393
2394 /**
2395  * e1000_clean_tx_ring - Free Tx Buffers
2396  * @tx_ring: Tx descriptor ring
2397  **/
2398 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2399 {
2400         struct e1000_adapter *adapter = tx_ring->adapter;
2401         struct e1000_buffer *buffer_info;
2402         unsigned long size;
2403         unsigned int i;
2404
2405         for (i = 0; i < tx_ring->count; i++) {
2406                 buffer_info = &tx_ring->buffer_info[i];
2407                 e1000_put_txbuf(tx_ring, buffer_info);
2408         }
2409
2410         netdev_reset_queue(adapter->netdev);
2411         size = sizeof(struct e1000_buffer) * tx_ring->count;
2412         memset(tx_ring->buffer_info, 0, size);
2413
2414         memset(tx_ring->desc, 0, tx_ring->size);
2415
2416         tx_ring->next_to_use = 0;
2417         tx_ring->next_to_clean = 0;
2418
2419         writel(0, tx_ring->head);
2420         if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2421                 e1000e_update_tdt_wa(tx_ring, 0);
2422         else
2423                 writel(0, tx_ring->tail);
2424 }
2425
2426 /**
2427  * e1000e_free_tx_resources - Free Tx Resources per Queue
2428  * @tx_ring: Tx descriptor ring
2429  *
2430  * Free all transmit software resources
2431  **/
2432 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2433 {
2434         struct e1000_adapter *adapter = tx_ring->adapter;
2435         struct pci_dev *pdev = adapter->pdev;
2436
2437         e1000_clean_tx_ring(tx_ring);
2438
2439         vfree(tx_ring->buffer_info);
2440         tx_ring->buffer_info = NULL;
2441
2442         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2443                           tx_ring->dma);
2444         tx_ring->desc = NULL;
2445 }
2446
2447 /**
2448  * e1000e_free_rx_resources - Free Rx Resources
2449  * @rx_ring: Rx descriptor ring
2450  *
2451  * Free all receive software resources
2452  **/
2453 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2454 {
2455         struct e1000_adapter *adapter = rx_ring->adapter;
2456         struct pci_dev *pdev = adapter->pdev;
2457         int i;
2458
2459         e1000_clean_rx_ring(rx_ring);
2460
2461         for (i = 0; i < rx_ring->count; i++)
2462                 kfree(rx_ring->buffer_info[i].ps_pages);
2463
2464         vfree(rx_ring->buffer_info);
2465         rx_ring->buffer_info = NULL;
2466
2467         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2468                           rx_ring->dma);
2469         rx_ring->desc = NULL;
2470 }
2471
2472 /**
2473  * e1000_update_itr - update the dynamic ITR value based on statistics
2474  * @adapter: pointer to adapter
2475  * @itr_setting: current adapter->itr
2476  * @packets: the number of packets during this measurement interval
2477  * @bytes: the number of bytes during this measurement interval
2478  *
2479  *      Stores a new ITR value based on packets and byte
2480  *      counts during the last interrupt.  The advantage of per interrupt
2481  *      computation is faster updates and more accurate ITR for the current
2482  *      traffic pattern.  Constants in this function were computed
2483  *      based on theoretical maximum wire speed and thresholds were set based
2484  *      on testing data as well as attempting to minimize response time
2485  *      while increasing bulk throughput.  This functionality is controlled
2486  *      by the InterruptThrottleRate module parameter.
2487  **/
2488 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2489 {
2490         unsigned int retval = itr_setting;
2491
2492         if (packets == 0)
2493                 return itr_setting;
2494
2495         switch (itr_setting) {
2496         case lowest_latency:
2497                 /* handle TSO and jumbo frames */
2498                 if (bytes/packets > 8000)
2499                         retval = bulk_latency;
2500                 else if ((packets < 5) && (bytes > 512))
2501                         retval = low_latency;
2502                 break;
2503         case low_latency:  /* 50 usec aka 20000 ints/s */
2504                 if (bytes > 10000) {
2505                         /* this if handles the TSO accounting */
2506                         if (bytes/packets > 8000)
2507                                 retval = bulk_latency;
2508                         else if ((packets < 10) || ((bytes/packets) > 1200))
2509                                 retval = bulk_latency;
2510                         else if ((packets > 35))
2511                                 retval = lowest_latency;
2512                 } else if (bytes/packets > 2000) {
2513                         retval = bulk_latency;
2514                 } else if (packets <= 2 && bytes < 512) {
2515                         retval = lowest_latency;
2516                 }
2517                 break;
2518         case bulk_latency: /* 250 usec aka 4000 ints/s */
2519                 if (bytes > 25000) {
2520                         if (packets > 35)
2521                                 retval = low_latency;
2522                 } else if (bytes < 6000) {
2523                         retval = low_latency;
2524                 }
2525                 break;
2526         }
2527
2528         return retval;
2529 }
2530
2531 static void e1000_set_itr(struct e1000_adapter *adapter)
2532 {
2533         u16 current_itr;
2534         u32 new_itr = adapter->itr;
2535
2536         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2537         if (adapter->link_speed != SPEED_1000) {
2538                 current_itr = 0;
2539                 new_itr = 4000;
2540                 goto set_itr_now;
2541         }
2542
2543         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2544                 new_itr = 0;
2545                 goto set_itr_now;
2546         }
2547
2548         adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2549                                            adapter->total_tx_packets,
2550                                            adapter->total_tx_bytes);
2551         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2552         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2553                 adapter->tx_itr = low_latency;
2554
2555         adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2556                                            adapter->total_rx_packets,
2557                                            adapter->total_rx_bytes);
2558         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2559         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2560                 adapter->rx_itr = low_latency;
2561
2562         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2563
2564         switch (current_itr) {
2565         /* counts and packets in update_itr are dependent on these numbers */
2566         case lowest_latency:
2567                 new_itr = 70000;
2568                 break;
2569         case low_latency:
2570                 new_itr = 20000; /* aka hwitr = ~200 */
2571                 break;
2572         case bulk_latency:
2573                 new_itr = 4000;
2574                 break;
2575         default:
2576                 break;
2577         }
2578
2579 set_itr_now:
2580         if (new_itr != adapter->itr) {
2581                 /* this attempts to bias the interrupt rate towards Bulk
2582                  * by adding intermediate steps when interrupt rate is
2583                  * increasing
2584                  */
2585                 new_itr = new_itr > adapter->itr ?
2586                              min(adapter->itr + (new_itr >> 2), new_itr) :
2587                              new_itr;
2588                 adapter->itr = new_itr;
2589                 adapter->rx_ring->itr_val = new_itr;
2590                 if (adapter->msix_entries)
2591                         adapter->rx_ring->set_itr = 1;
2592                 else
2593                         e1000e_write_itr(adapter, new_itr);
2594         }
2595 }
2596
2597 /**
2598  * e1000e_write_itr - write the ITR value to the appropriate registers
2599  * @adapter: address of board private structure
2600  * @itr: new ITR value to program
2601  *
2602  * e1000e_write_itr determines if the adapter is in MSI-X mode
2603  * and, if so, writes the EITR registers with the ITR value.
2604  * Otherwise, it writes the ITR value into the ITR register.
2605  **/
2606 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2607 {
2608         struct e1000_hw *hw = &adapter->hw;
2609         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2610
2611         if (adapter->msix_entries) {
2612                 int vector;
2613
2614                 for (vector = 0; vector < adapter->num_vectors; vector++)
2615                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2616         } else {
2617                 ew32(ITR, new_itr);
2618         }
2619 }
2620
2621 /**
2622  * e1000_alloc_queues - Allocate memory for all rings
2623  * @adapter: board private structure to initialize
2624  **/
2625 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2626 {
2627         int size = sizeof(struct e1000_ring);
2628
2629         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2630         if (!adapter->tx_ring)
2631                 goto err;
2632         adapter->tx_ring->count = adapter->tx_ring_count;
2633         adapter->tx_ring->adapter = adapter;
2634
2635         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2636         if (!adapter->rx_ring)
2637                 goto err;
2638         adapter->rx_ring->count = adapter->rx_ring_count;
2639         adapter->rx_ring->adapter = adapter;
2640
2641         return 0;
2642 err:
2643         e_err("Unable to allocate memory for queues\n");
2644         kfree(adapter->rx_ring);
2645         kfree(adapter->tx_ring);
2646         return -ENOMEM;
2647 }
2648
2649 /**
2650  * e1000e_poll - NAPI Rx polling callback
2651  * @napi: struct associated with this polling callback
2652  * @weight: number of packets driver is allowed to process this poll
2653  **/
2654 static int e1000e_poll(struct napi_struct *napi, int weight)
2655 {
2656         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2657                                                      napi);
2658         struct e1000_hw *hw = &adapter->hw;
2659         struct net_device *poll_dev = adapter->netdev;
2660         int tx_cleaned = 1, work_done = 0;
2661
2662         adapter = netdev_priv(poll_dev);
2663
2664         if (!adapter->msix_entries ||
2665             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2666                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2667
2668         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2669
2670         if (!tx_cleaned)
2671                 work_done = weight;
2672
2673         /* If weight not fully consumed, exit the polling mode */
2674         if (work_done < weight) {
2675                 if (adapter->itr_setting & 3)
2676                         e1000_set_itr(adapter);
2677                 napi_complete(napi);
2678                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2679                         if (adapter->msix_entries)
2680                                 ew32(IMS, adapter->rx_ring->ims_val);
2681                         else
2682                                 e1000_irq_enable(adapter);
2683                 }
2684         }
2685
2686         return work_done;
2687 }
2688
2689 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2690 {
2691         struct e1000_adapter *adapter = netdev_priv(netdev);
2692         struct e1000_hw *hw = &adapter->hw;
2693         u32 vfta, index;
2694
2695         /* don't update vlan cookie if already programmed */
2696         if ((adapter->hw.mng_cookie.status &
2697              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2698             (vid == adapter->mng_vlan_id))
2699                 return 0;
2700
2701         /* add VID to filter table */
2702         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2703                 index = (vid >> 5) & 0x7F;
2704                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2705                 vfta |= (1 << (vid & 0x1F));
2706                 hw->mac.ops.write_vfta(hw, index, vfta);
2707         }
2708
2709         set_bit(vid, adapter->active_vlans);
2710
2711         return 0;
2712 }
2713
2714 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2715 {
2716         struct e1000_adapter *adapter = netdev_priv(netdev);
2717         struct e1000_hw *hw = &adapter->hw;
2718         u32 vfta, index;
2719
2720         if ((adapter->hw.mng_cookie.status &
2721              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2722             (vid == adapter->mng_vlan_id)) {
2723                 /* release control to f/w */
2724                 e1000e_release_hw_control(adapter);
2725                 return 0;
2726         }
2727
2728         /* remove VID from filter table */
2729         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2730                 index = (vid >> 5) & 0x7F;
2731                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2732                 vfta &= ~(1 << (vid & 0x1F));
2733                 hw->mac.ops.write_vfta(hw, index, vfta);
2734         }
2735
2736         clear_bit(vid, adapter->active_vlans);
2737
2738         return 0;
2739 }
2740
2741 /**
2742  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2743  * @adapter: board private structure to initialize
2744  **/
2745 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2746 {
2747         struct net_device *netdev = adapter->netdev;
2748         struct e1000_hw *hw = &adapter->hw;
2749         u32 rctl;
2750
2751         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2752                 /* disable VLAN receive filtering */
2753                 rctl = er32(RCTL);
2754                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2755                 ew32(RCTL, rctl);
2756
2757                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2758                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2759                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2760                 }
2761         }
2762 }
2763
2764 /**
2765  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2766  * @adapter: board private structure to initialize
2767  **/
2768 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2769 {
2770         struct e1000_hw *hw = &adapter->hw;
2771         u32 rctl;
2772
2773         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2774                 /* enable VLAN receive filtering */
2775                 rctl = er32(RCTL);
2776                 rctl |= E1000_RCTL_VFE;
2777                 rctl &= ~E1000_RCTL_CFIEN;
2778                 ew32(RCTL, rctl);
2779         }
2780 }
2781
2782 /**
2783  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2784  * @adapter: board private structure to initialize
2785  **/
2786 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2787 {
2788         struct e1000_hw *hw = &adapter->hw;
2789         u32 ctrl;
2790
2791         /* disable VLAN tag insert/strip */
2792         ctrl = er32(CTRL);
2793         ctrl &= ~E1000_CTRL_VME;
2794         ew32(CTRL, ctrl);
2795 }
2796
2797 /**
2798  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2799  * @adapter: board private structure to initialize
2800  **/
2801 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2802 {
2803         struct e1000_hw *hw = &adapter->hw;
2804         u32 ctrl;
2805
2806         /* enable VLAN tag insert/strip */
2807         ctrl = er32(CTRL);
2808         ctrl |= E1000_CTRL_VME;
2809         ew32(CTRL, ctrl);
2810 }
2811
2812 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2813 {
2814         struct net_device *netdev = adapter->netdev;
2815         u16 vid = adapter->hw.mng_cookie.vlan_id;
2816         u16 old_vid = adapter->mng_vlan_id;
2817
2818         if (adapter->hw.mng_cookie.status &
2819             E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2820                 e1000_vlan_rx_add_vid(netdev, vid);
2821                 adapter->mng_vlan_id = vid;
2822         }
2823
2824         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2825                 e1000_vlan_rx_kill_vid(netdev, old_vid);
2826 }
2827
2828 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2829 {
2830         u16 vid;
2831
2832         e1000_vlan_rx_add_vid(adapter->netdev, 0);
2833
2834         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2835                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2836 }
2837
2838 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2839 {
2840         struct e1000_hw *hw = &adapter->hw;
2841         u32 manc, manc2h, mdef, i, j;
2842
2843         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2844                 return;
2845
2846         manc = er32(MANC);
2847
2848         /* enable receiving management packets to the host. this will probably
2849          * generate destination unreachable messages from the host OS, but
2850          * the packets will be handled on SMBUS
2851          */
2852         manc |= E1000_MANC_EN_MNG2HOST;
2853         manc2h = er32(MANC2H);
2854
2855         switch (hw->mac.type) {
2856         default:
2857                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2858                 break;
2859         case e1000_82574:
2860         case e1000_82583:
2861                 /* Check if IPMI pass-through decision filter already exists;
2862                  * if so, enable it.
2863                  */
2864                 for (i = 0, j = 0; i < 8; i++) {
2865                         mdef = er32(MDEF(i));
2866
2867                         /* Ignore filters with anything other than IPMI ports */
2868                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2869                                 continue;
2870
2871                         /* Enable this decision filter in MANC2H */
2872                         if (mdef)
2873                                 manc2h |= (1 << i);
2874
2875                         j |= mdef;
2876                 }
2877
2878                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2879                         break;
2880
2881                 /* Create new decision filter in an empty filter */
2882                 for (i = 0, j = 0; i < 8; i++)
2883                         if (er32(MDEF(i)) == 0) {
2884                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2885                                                E1000_MDEF_PORT_664));
2886                                 manc2h |= (1 << 1);
2887                                 j++;
2888                                 break;
2889                         }
2890
2891                 if (!j)
2892                         e_warn("Unable to create IPMI pass-through filter\n");
2893                 break;
2894         }
2895
2896         ew32(MANC2H, manc2h);
2897         ew32(MANC, manc);
2898 }
2899
2900 /**
2901  * e1000_configure_tx - Configure Transmit Unit after Reset
2902  * @adapter: board private structure
2903  *
2904  * Configure the Tx unit of the MAC after a reset.
2905  **/
2906 static void e1000_configure_tx(struct e1000_adapter *adapter)
2907 {
2908         struct e1000_hw *hw = &adapter->hw;
2909         struct e1000_ring *tx_ring = adapter->tx_ring;
2910         u64 tdba;
2911         u32 tdlen, tarc;
2912
2913         /* Setup the HW Tx Head and Tail descriptor pointers */
2914         tdba = tx_ring->dma;
2915         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2916         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2917         ew32(TDBAH(0), (tdba >> 32));
2918         ew32(TDLEN(0), tdlen);
2919         ew32(TDH(0), 0);
2920         ew32(TDT(0), 0);
2921         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2922         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2923
2924         /* Set the Tx Interrupt Delay register */
2925         ew32(TIDV, adapter->tx_int_delay);
2926         /* Tx irq moderation */
2927         ew32(TADV, adapter->tx_abs_int_delay);
2928
2929         if (adapter->flags2 & FLAG2_DMA_BURST) {
2930                 u32 txdctl = er32(TXDCTL(0));
2931                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2932                             E1000_TXDCTL_WTHRESH);
2933                 /* set up some performance related parameters to encourage the
2934                  * hardware to use the bus more efficiently in bursts, depends
2935                  * on the tx_int_delay to be enabled,
2936                  * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2937                  * hthresh = 1 ==> prefetch when one or more available
2938                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2939                  * BEWARE: this seems to work but should be considered first if
2940                  * there are Tx hangs or other Tx related bugs
2941                  */
2942                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2943                 ew32(TXDCTL(0), txdctl);
2944         }
2945         /* erratum work around: set txdctl the same for both queues */
2946         ew32(TXDCTL(1), er32(TXDCTL(0)));
2947
2948         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2949                 tarc = er32(TARC(0));
2950                 /* set the speed mode bit, we'll clear it if we're not at
2951                  * gigabit link later
2952                  */
2953 #define SPEED_MODE_BIT (1 << 21)
2954                 tarc |= SPEED_MODE_BIT;
2955                 ew32(TARC(0), tarc);
2956         }
2957
2958         /* errata: program both queues to unweighted RR */
2959         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2960                 tarc = er32(TARC(0));
2961                 tarc |= 1;
2962                 ew32(TARC(0), tarc);
2963                 tarc = er32(TARC(1));
2964                 tarc |= 1;
2965                 ew32(TARC(1), tarc);
2966         }
2967
2968         /* Setup Transmit Descriptor Settings for eop descriptor */
2969         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2970
2971         /* only set IDE if we are delaying interrupts using the timers */
2972         if (adapter->tx_int_delay)
2973                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2974
2975         /* enable Report Status bit */
2976         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2977
2978         hw->mac.ops.config_collision_dist(hw);
2979 }
2980
2981 /**
2982  * e1000_setup_rctl - configure the receive control registers
2983  * @adapter: Board private structure
2984  **/
2985 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2986                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2987 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2988 {
2989         struct e1000_hw *hw = &adapter->hw;
2990         u32 rctl, rfctl;
2991         u32 pages = 0;
2992
2993         /* Workaround Si errata on PCHx - configure jumbo frame flow */
2994         if (hw->mac.type >= e1000_pch2lan) {
2995                 s32 ret_val;
2996
2997                 if (adapter->netdev->mtu > ETH_DATA_LEN)
2998                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2999                 else
3000                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3001
3002                 if (ret_val)
3003                         e_dbg("failed to enable jumbo frame workaround mode\n");
3004         }
3005
3006         /* Program MC offset vector base */
3007         rctl = er32(RCTL);
3008         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3009         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3010                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3011                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3012
3013         /* Do not Store bad packets */
3014         rctl &= ~E1000_RCTL_SBP;
3015
3016         /* Enable Long Packet receive */
3017         if (adapter->netdev->mtu <= ETH_DATA_LEN)
3018                 rctl &= ~E1000_RCTL_LPE;
3019         else
3020                 rctl |= E1000_RCTL_LPE;
3021
3022         /* Some systems expect that the CRC is included in SMBUS traffic. The
3023          * hardware strips the CRC before sending to both SMBUS (BMC) and to
3024          * host memory when this is enabled
3025          */
3026         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3027                 rctl |= E1000_RCTL_SECRC;
3028
3029         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3030         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3031                 u16 phy_data;
3032
3033                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3034                 phy_data &= 0xfff8;
3035                 phy_data |= (1 << 2);
3036                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3037
3038                 e1e_rphy(hw, 22, &phy_data);
3039                 phy_data &= 0x0fff;
3040                 phy_data |= (1 << 14);
3041                 e1e_wphy(hw, 0x10, 0x2823);
3042                 e1e_wphy(hw, 0x11, 0x0003);
3043                 e1e_wphy(hw, 22, phy_data);
3044         }
3045
3046         /* Setup buffer sizes */
3047         rctl &= ~E1000_RCTL_SZ_4096;
3048         rctl |= E1000_RCTL_BSEX;
3049         switch (adapter->rx_buffer_len) {
3050         case 2048:
3051         default:
3052                 rctl |= E1000_RCTL_SZ_2048;
3053                 rctl &= ~E1000_RCTL_BSEX;
3054                 break;
3055         case 4096:
3056                 rctl |= E1000_RCTL_SZ_4096;
3057                 break;
3058         case 8192:
3059                 rctl |= E1000_RCTL_SZ_8192;
3060                 break;
3061         case 16384:
3062                 rctl |= E1000_RCTL_SZ_16384;
3063                 break;
3064         }
3065
3066         /* Enable Extended Status in all Receive Descriptors */
3067         rfctl = er32(RFCTL);
3068         rfctl |= E1000_RFCTL_EXTEN;
3069         ew32(RFCTL, rfctl);
3070
3071         /* 82571 and greater support packet-split where the protocol
3072          * header is placed in skb->data and the packet data is
3073          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3074          * In the case of a non-split, skb->data is linearly filled,
3075          * followed by the page buffers.  Therefore, skb->data is
3076          * sized to hold the largest protocol header.
3077          *
3078          * allocations using alloc_page take too long for regular MTU
3079          * so only enable packet split for jumbo frames
3080          *
3081          * Using pages when the page size is greater than 16k wastes
3082          * a lot of memory, since we allocate 3 pages at all times
3083          * per packet.
3084          */
3085         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3086         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3087                 adapter->rx_ps_pages = pages;
3088         else
3089                 adapter->rx_ps_pages = 0;
3090
3091         if (adapter->rx_ps_pages) {
3092                 u32 psrctl = 0;
3093
3094                 /* Enable Packet split descriptors */
3095                 rctl |= E1000_RCTL_DTYP_PS;
3096
3097                 psrctl |= adapter->rx_ps_bsize0 >>
3098                         E1000_PSRCTL_BSIZE0_SHIFT;
3099
3100                 switch (adapter->rx_ps_pages) {
3101                 case 3:
3102                         psrctl |= PAGE_SIZE <<
3103                                 E1000_PSRCTL_BSIZE3_SHIFT;
3104                 case 2:
3105                         psrctl |= PAGE_SIZE <<
3106                                 E1000_PSRCTL_BSIZE2_SHIFT;
3107                 case 1:
3108                         psrctl |= PAGE_SIZE >>
3109                                 E1000_PSRCTL_BSIZE1_SHIFT;
3110                         break;
3111                 }
3112
3113                 ew32(PSRCTL, psrctl);
3114         }
3115
3116         /* This is useful for sniffing bad packets. */
3117         if (adapter->netdev->features & NETIF_F_RXALL) {
3118                 /* UPE and MPE will be handled by normal PROMISC logic
3119                  * in e1000e_set_rx_mode
3120                  */
3121                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3122                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3123                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3124
3125                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3126                           E1000_RCTL_DPF | /* Allow filtered pause */
3127                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3128                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3129                  * and that breaks VLANs.
3130                  */
3131         }
3132
3133         ew32(RCTL, rctl);
3134         /* just started the receive unit, no need to restart */
3135         adapter->flags &= ~FLAG_RESTART_NOW;
3136 }
3137
3138 /**
3139  * e1000_configure_rx - Configure Receive Unit after Reset
3140  * @adapter: board private structure
3141  *
3142  * Configure the Rx unit of the MAC after a reset.
3143  **/
3144 static void e1000_configure_rx(struct e1000_adapter *adapter)
3145 {
3146         struct e1000_hw *hw = &adapter->hw;
3147         struct e1000_ring *rx_ring = adapter->rx_ring;
3148         u64 rdba;
3149         u32 rdlen, rctl, rxcsum, ctrl_ext;
3150
3151         if (adapter->rx_ps_pages) {
3152                 /* this is a 32 byte descriptor */
3153                 rdlen = rx_ring->count *
3154                     sizeof(union e1000_rx_desc_packet_split);
3155                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3156                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3157         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3158                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3159                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3160                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3161         } else {
3162                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3163                 adapter->clean_rx = e1000_clean_rx_irq;
3164                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3165         }
3166
3167         /* disable receives while setting up the descriptors */
3168         rctl = er32(RCTL);
3169         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3170                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3171         e1e_flush();
3172         usleep_range(10000, 20000);
3173
3174         if (adapter->flags2 & FLAG2_DMA_BURST) {
3175                 /* set the writeback threshold (only takes effect if the RDTR
3176                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3177                  * enable prefetching of 0x20 Rx descriptors
3178                  * granularity = 01
3179                  * wthresh = 04,
3180                  * hthresh = 04,
3181                  * pthresh = 0x20
3182                  */
3183                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3184                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3185
3186                 /* override the delay timers for enabling bursting, only if
3187                  * the value was not set by the user via module options
3188                  */
3189                 if (adapter->rx_int_delay == DEFAULT_RDTR)
3190                         adapter->rx_int_delay = BURST_RDTR;
3191                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3192                         adapter->rx_abs_int_delay = BURST_RADV;
3193         }
3194
3195         /* set the Receive Delay Timer Register */
3196         ew32(RDTR, adapter->rx_int_delay);
3197
3198         /* irq moderation */
3199         ew32(RADV, adapter->rx_abs_int_delay);
3200         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3201                 e1000e_write_itr(adapter, adapter->itr);
3202
3203         ctrl_ext = er32(CTRL_EXT);
3204         /* Auto-Mask interrupts upon ICR access */
3205         ctrl_ext |= E1000_CTRL_EXT_IAME;
3206         ew32(IAM, 0xffffffff);
3207         ew32(CTRL_EXT, ctrl_ext);
3208         e1e_flush();
3209
3210         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3211          * the Base and Length of the Rx Descriptor Ring
3212          */
3213         rdba = rx_ring->dma;
3214         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3215         ew32(RDBAH(0), (rdba >> 32));
3216         ew32(RDLEN(0), rdlen);
3217         ew32(RDH(0), 0);
3218         ew32(RDT(0), 0);
3219         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3220         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3221
3222         /* Enable Receive Checksum Offload for TCP and UDP */
3223         rxcsum = er32(RXCSUM);
3224         if (adapter->netdev->features & NETIF_F_RXCSUM)
3225                 rxcsum |= E1000_RXCSUM_TUOFL;
3226         else
3227                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3228         ew32(RXCSUM, rxcsum);
3229
3230         /* With jumbo frames, excessive C-state transition latencies result
3231          * in dropped transactions.
3232          */
3233         if (adapter->netdev->mtu > ETH_DATA_LEN) {
3234                 u32 lat =
3235                     ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3236                      adapter->max_frame_size) * 8 / 1000;
3237
3238                 if (adapter->flags & FLAG_IS_ICH) {
3239                         u32 rxdctl = er32(RXDCTL(0));
3240                         ew32(RXDCTL(0), rxdctl | 0x3);
3241                 }
3242
3243                 pm_qos_update_request(&adapter->netdev->pm_qos_req, lat);
3244         } else {
3245                 pm_qos_update_request(&adapter->netdev->pm_qos_req,
3246                                       PM_QOS_DEFAULT_VALUE);
3247         }
3248
3249         /* Enable Receives */
3250         ew32(RCTL, rctl);
3251 }
3252
3253 /**
3254  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3255  * @netdev: network interface device structure
3256  *
3257  * Writes multicast address list to the MTA hash table.
3258  * Returns: -ENOMEM on failure
3259  *                0 on no addresses written
3260  *                X on writing X addresses to MTA
3261  */
3262 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3263 {
3264         struct e1000_adapter *adapter = netdev_priv(netdev);
3265         struct e1000_hw *hw = &adapter->hw;
3266         struct netdev_hw_addr *ha;
3267         u8 *mta_list;
3268         int i;
3269
3270         if (netdev_mc_empty(netdev)) {
3271                 /* nothing to program, so clear mc list */
3272                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3273                 return 0;
3274         }
3275
3276         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3277         if (!mta_list)
3278                 return -ENOMEM;
3279
3280         /* update_mc_addr_list expects a packed array of only addresses. */
3281         i = 0;
3282         netdev_for_each_mc_addr(ha, netdev)
3283                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3284
3285         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3286         kfree(mta_list);
3287
3288         return netdev_mc_count(netdev);
3289 }
3290
3291 /**
3292  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3293  * @netdev: network interface device structure
3294  *
3295  * Writes unicast address list to the RAR table.
3296  * Returns: -ENOMEM on failure/insufficient address space
3297  *                0 on no addresses written
3298  *                X on writing X addresses to the RAR table
3299  **/
3300 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3301 {
3302         struct e1000_adapter *adapter = netdev_priv(netdev);
3303         struct e1000_hw *hw = &adapter->hw;
3304         unsigned int rar_entries = hw->mac.rar_entry_count;
3305         int count = 0;
3306
3307         /* save a rar entry for our hardware address */
3308         rar_entries--;
3309
3310         /* save a rar entry for the LAA workaround */
3311         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3312                 rar_entries--;
3313
3314         /* return ENOMEM indicating insufficient memory for addresses */
3315         if (netdev_uc_count(netdev) > rar_entries)
3316                 return -ENOMEM;
3317
3318         if (!netdev_uc_empty(netdev) && rar_entries) {
3319                 struct netdev_hw_addr *ha;
3320
3321                 /* write the addresses in reverse order to avoid write
3322                  * combining
3323                  */
3324                 netdev_for_each_uc_addr(ha, netdev) {
3325                         if (!rar_entries)
3326                                 break;
3327                         hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3328                         count++;
3329                 }
3330         }
3331
3332         /* zero out the remaining RAR entries not used above */
3333         for (; rar_entries > 0; rar_entries--) {
3334                 ew32(RAH(rar_entries), 0);
3335                 ew32(RAL(rar_entries), 0);
3336         }
3337         e1e_flush();
3338
3339         return count;
3340 }
3341
3342 /**
3343  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3344  * @netdev: network interface device structure
3345  *
3346  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3347  * address list or the network interface flags are updated.  This routine is
3348  * responsible for configuring the hardware for proper unicast, multicast,
3349  * promiscuous mode, and all-multi behavior.
3350  **/
3351 static void e1000e_set_rx_mode(struct net_device *netdev)
3352 {
3353         struct e1000_adapter *adapter = netdev_priv(netdev);
3354         struct e1000_hw *hw = &adapter->hw;
3355         u32 rctl;
3356
3357         /* Check for Promiscuous and All Multicast modes */
3358         rctl = er32(RCTL);
3359
3360         /* clear the affected bits */
3361         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3362
3363         if (netdev->flags & IFF_PROMISC) {
3364                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3365                 /* Do not hardware filter VLANs in promisc mode */
3366                 e1000e_vlan_filter_disable(adapter);
3367         } else {
3368                 int count;
3369
3370                 if (netdev->flags & IFF_ALLMULTI) {
3371                         rctl |= E1000_RCTL_MPE;
3372                 } else {
3373                         /* Write addresses to the MTA, if the attempt fails
3374                          * then we should just turn on promiscuous mode so
3375                          * that we can at least receive multicast traffic
3376                          */
3377                         count = e1000e_write_mc_addr_list(netdev);
3378                         if (count < 0)
3379                                 rctl |= E1000_RCTL_MPE;
3380                 }
3381                 e1000e_vlan_filter_enable(adapter);
3382                 /* Write addresses to available RAR registers, if there is not
3383                  * sufficient space to store all the addresses then enable
3384                  * unicast promiscuous mode
3385                  */
3386                 count = e1000e_write_uc_addr_list(netdev);
3387                 if (count < 0)
3388                         rctl |= E1000_RCTL_UPE;
3389         }
3390
3391         ew32(RCTL, rctl);
3392
3393         if (netdev->features & NETIF_F_HW_VLAN_RX)
3394                 e1000e_vlan_strip_enable(adapter);
3395         else
3396                 e1000e_vlan_strip_disable(adapter);
3397 }
3398
3399 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3400 {
3401         struct e1000_hw *hw = &adapter->hw;
3402         u32 mrqc, rxcsum;
3403         int i;
3404         static const u32 rsskey[10] = {
3405                 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3406                 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3407         };
3408
3409         /* Fill out hash function seed */
3410         for (i = 0; i < 10; i++)
3411                 ew32(RSSRK(i), rsskey[i]);
3412
3413         /* Direct all traffic to queue 0 */
3414         for (i = 0; i < 32; i++)
3415                 ew32(RETA(i), 0);
3416
3417         /* Disable raw packet checksumming so that RSS hash is placed in
3418          * descriptor on writeback.
3419          */
3420         rxcsum = er32(RXCSUM);
3421         rxcsum |= E1000_RXCSUM_PCSD;
3422
3423         ew32(RXCSUM, rxcsum);
3424
3425         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3426                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3427                 E1000_MRQC_RSS_FIELD_IPV6 |
3428                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3429                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3430
3431         ew32(MRQC, mrqc);
3432 }
3433
3434 /**
3435  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3436  * @adapter: board private structure
3437  * @timinca: pointer to returned time increment attributes
3438  *
3439  * Get attributes for incrementing the System Time Register SYSTIML/H at
3440  * the default base frequency, and set the cyclecounter shift value.
3441  **/
3442 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3443 {
3444         struct e1000_hw *hw = &adapter->hw;
3445         u32 incvalue, incperiod, shift;
3446
3447         /* Make sure clock is enabled on I217 before checking the frequency */
3448         if ((hw->mac.type == e1000_pch_lpt) &&
3449             !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3450             !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3451                 u32 fextnvm7 = er32(FEXTNVM7);
3452
3453                 if (!(fextnvm7 & (1 << 0))) {
3454                         ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3455                         e1e_flush();
3456                 }
3457         }
3458
3459         switch (hw->mac.type) {
3460         case e1000_pch2lan:
3461         case e1000_pch_lpt:
3462                 /* On I217, the clock frequency is 25MHz or 96MHz as
3463                  * indicated by the System Clock Frequency Indication
3464                  */
3465                 if ((hw->mac.type != e1000_pch_lpt) ||
3466                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3467                         /* Stable 96MHz frequency */
3468                         incperiod = INCPERIOD_96MHz;
3469                         incvalue = INCVALUE_96MHz;
3470                         shift = INCVALUE_SHIFT_96MHz;
3471                         adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3472                         break;
3473                 }
3474                 /* fall-through */
3475         case e1000_82574:
3476         case e1000_82583:
3477                 /* Stable 25MHz frequency */
3478                 incperiod = INCPERIOD_25MHz;
3479                 incvalue = INCVALUE_25MHz;
3480                 shift = INCVALUE_SHIFT_25MHz;
3481                 adapter->cc.shift = shift;
3482                 break;
3483         default:
3484                 return -EINVAL;
3485         }
3486
3487         *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3488                     ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3489
3490         return 0;
3491 }
3492
3493 /**
3494  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3495  * @adapter: board private structure
3496  *
3497  * Outgoing time stamping can be enabled and disabled. Play nice and
3498  * disable it when requested, although it shouldn't cause any overhead
3499  * when no packet needs it. At most one packet in the queue may be
3500  * marked for time stamping, otherwise it would be impossible to tell
3501  * for sure to which packet the hardware time stamp belongs.
3502  *
3503  * Incoming time stamping has to be configured via the hardware filters.
3504  * Not all combinations are supported, in particular event type has to be
3505  * specified. Matching the kind of event packet is not supported, with the
3506  * exception of "all V2 events regardless of level 2 or 4".
3507  **/
3508 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter)
3509 {
3510         struct e1000_hw *hw = &adapter->hw;
3511         struct hwtstamp_config *config = &adapter->hwtstamp_config;
3512         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3513         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3514         u32 rxmtrl = 0;
3515         u16 rxudp = 0;
3516         bool is_l4 = false;
3517         bool is_l2 = false;
3518         u32 regval;
3519         s32 ret_val;
3520
3521         if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3522                 return -EINVAL;
3523
3524         /* flags reserved for future extensions - must be zero */
3525         if (config->flags)
3526                 return -EINVAL;
3527
3528         switch (config->tx_type) {
3529         case HWTSTAMP_TX_OFF:
3530                 tsync_tx_ctl = 0;
3531                 break;
3532         case HWTSTAMP_TX_ON:
3533                 break;
3534         default:
3535                 return -ERANGE;
3536         }
3537
3538         switch (config->rx_filter) {
3539         case HWTSTAMP_FILTER_NONE:
3540                 tsync_rx_ctl = 0;
3541                 break;
3542         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3543                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3544                 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3545                 is_l4 = true;
3546                 break;
3547         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3548                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3549                 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3550                 is_l4 = true;
3551                 break;
3552         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3553                 /* Also time stamps V2 L2 Path Delay Request/Response */
3554                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3555                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3556                 is_l2 = true;
3557                 break;
3558         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3559                 /* Also time stamps V2 L2 Path Delay Request/Response. */
3560                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3561                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3562                 is_l2 = true;
3563                 break;
3564         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3565                 /* Hardware cannot filter just V2 L4 Sync messages;
3566                  * fall-through to V2 (both L2 and L4) Sync.
3567                  */
3568         case HWTSTAMP_FILTER_PTP_V2_SYNC:
3569                 /* Also time stamps V2 Path Delay Request/Response. */
3570                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3571                 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3572                 is_l2 = true;
3573                 is_l4 = true;
3574                 break;
3575         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3576                 /* Hardware cannot filter just V2 L4 Delay Request messages;
3577                  * fall-through to V2 (both L2 and L4) Delay Request.
3578                  */
3579         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3580                 /* Also time stamps V2 Path Delay Request/Response. */
3581                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3582                 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3583                 is_l2 = true;
3584                 is_l4 = true;
3585                 break;
3586         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3587         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3588                 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3589                  * fall-through to all V2 (both L2 and L4) Events.
3590                  */
3591         case HWTSTAMP_FILTER_PTP_V2_EVENT:
3592                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3593                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3594                 is_l2 = true;
3595                 is_l4 = true;
3596                 break;
3597         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3598                 /* For V1, the hardware can only filter Sync messages or
3599                  * Delay Request messages but not both so fall-through to
3600                  * time stamp all packets.
3601                  */
3602         case HWTSTAMP_FILTER_ALL:
3603                 is_l2 = true;
3604                 is_l4 = true;
3605                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3606                 config->rx_filter = HWTSTAMP_FILTER_ALL;
3607                 break;
3608         default:
3609                 return -ERANGE;
3610         }
3611
3612         /* enable/disable Tx h/w time stamping */
3613         regval = er32(TSYNCTXCTL);
3614         regval &= ~E1000_TSYNCTXCTL_ENABLED;
3615         regval |= tsync_tx_ctl;
3616         ew32(TSYNCTXCTL, regval);
3617         if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3618             (regval & E1000_TSYNCTXCTL_ENABLED)) {
3619                 e_err("Timesync Tx Control register not set as expected\n");
3620                 return -EAGAIN;
3621         }
3622
3623         /* enable/disable Rx h/w time stamping */
3624         regval = er32(TSYNCRXCTL);
3625         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3626         regval |= tsync_rx_ctl;
3627         ew32(TSYNCRXCTL, regval);
3628         if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3629                                  E1000_TSYNCRXCTL_TYPE_MASK)) !=
3630             (regval & (E1000_TSYNCRXCTL_ENABLED |
3631                        E1000_TSYNCRXCTL_TYPE_MASK))) {
3632                 e_err("Timesync Rx Control register not set as expected\n");
3633                 return -EAGAIN;
3634         }
3635
3636         /* L2: define ethertype filter for time stamped packets */
3637         if (is_l2)
3638                 rxmtrl |= ETH_P_1588;
3639
3640         /* define which PTP packets get time stamped */
3641         ew32(RXMTRL, rxmtrl);
3642
3643         /* Filter by destination port */
3644         if (is_l4) {
3645                 rxudp = PTP_EV_PORT;
3646                 cpu_to_be16s(&rxudp);
3647         }
3648         ew32(RXUDP, rxudp);
3649
3650         e1e_flush();
3651
3652         /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3653         er32(RXSTMPH);
3654         er32(TXSTMPH);
3655
3656         /* Get and set the System Time Register SYSTIM base frequency */
3657         ret_val = e1000e_get_base_timinca(adapter, &regval);
3658         if (ret_val)
3659                 return ret_val;
3660         ew32(TIMINCA, regval);
3661
3662         /* reset the ns time counter */
3663         timecounter_init(&adapter->tc, &adapter->cc,
3664                          ktime_to_ns(ktime_get_real()));
3665
3666         return 0;
3667 }
3668
3669 /**
3670  * e1000_configure - configure the hardware for Rx and Tx
3671  * @adapter: private board structure
3672  **/
3673 static void e1000_configure(struct e1000_adapter *adapter)
3674 {
3675         struct e1000_ring *rx_ring = adapter->rx_ring;
3676
3677         e1000e_set_rx_mode(adapter->netdev);
3678
3679         e1000_restore_vlan(adapter);
3680         e1000_init_manageability_pt(adapter);
3681
3682         e1000_configure_tx(adapter);
3683
3684         if (adapter->netdev->features & NETIF_F_RXHASH)
3685                 e1000e_setup_rss_hash(adapter);
3686         e1000_setup_rctl(adapter);
3687         e1000_configure_rx(adapter);
3688         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3689 }
3690
3691 /**
3692  * e1000e_power_up_phy - restore link in case the phy was powered down
3693  * @adapter: address of board private structure
3694  *
3695  * The phy may be powered down to save power and turn off link when the
3696  * driver is unloaded and wake on lan is not enabled (among others)
3697  * *** this routine MUST be followed by a call to e1000e_reset ***
3698  **/
3699 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3700 {
3701         if (adapter->hw.phy.ops.power_up)
3702                 adapter->hw.phy.ops.power_up(&adapter->hw);
3703
3704         adapter->hw.mac.ops.setup_link(&adapter->hw);
3705 }
3706
3707 /**
3708  * e1000_power_down_phy - Power down the PHY
3709  *
3710  * Power down the PHY so no link is implied when interface is down.
3711  * The PHY cannot be powered down if management or WoL is active.
3712  */
3713 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3714 {
3715         /* WoL is enabled */
3716         if (adapter->wol)
3717                 return;
3718
3719         if (adapter->hw.phy.ops.power_down)
3720                 adapter->hw.phy.ops.power_down(&adapter->hw);
3721 }
3722
3723 /**
3724  * e1000e_reset - bring the hardware into a known good state
3725  *
3726  * This function boots the hardware and enables some settings that
3727  * require a configuration cycle of the hardware - those cannot be
3728  * set/changed during runtime. After reset the device needs to be
3729  * properly configured for Rx, Tx etc.
3730  */
3731 void e1000e_reset(struct e1000_adapter *adapter)
3732 {
3733         struct e1000_mac_info *mac = &adapter->hw.mac;
3734         struct e1000_fc_info *fc = &adapter->hw.fc;
3735         struct e1000_hw *hw = &adapter->hw;
3736         u32 tx_space, min_tx_space, min_rx_space;
3737         u32 pba = adapter->pba;
3738         u16 hwm;
3739
3740         /* reset Packet Buffer Allocation to default */
3741         ew32(PBA, pba);
3742
3743         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3744                 /* To maintain wire speed transmits, the Tx FIFO should be
3745                  * large enough to accommodate two full transmit packets,
3746                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3747                  * the Rx FIFO should be large enough to accommodate at least
3748                  * one full receive packet and is similarly rounded up and
3749                  * expressed in KB.
3750                  */
3751                 pba = er32(PBA);
3752                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3753                 tx_space = pba >> 16;
3754                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3755                 pba &= 0xffff;
3756                 /* the Tx fifo also stores 16 bytes of information about the Tx
3757                  * but don't include ethernet FCS because hardware appends it
3758                  */
3759                 min_tx_space = (adapter->max_frame_size +
3760                                 sizeof(struct e1000_tx_desc) -
3761                                 ETH_FCS_LEN) * 2;
3762                 min_tx_space = ALIGN(min_tx_space, 1024);
3763                 min_tx_space >>= 10;
3764                 /* software strips receive CRC, so leave room for it */
3765                 min_rx_space = adapter->max_frame_size;
3766                 min_rx_space = ALIGN(min_rx_space, 1024);
3767                 min_rx_space >>= 10;
3768
3769                 /* If current Tx allocation is less than the min Tx FIFO size,
3770                  * and the min Tx FIFO size is less than the current Rx FIFO
3771                  * allocation, take space away from current Rx allocation
3772                  */
3773                 if ((tx_space < min_tx_space) &&
3774                     ((min_tx_space - tx_space) < pba)) {
3775                         pba -= min_tx_space - tx_space;
3776
3777                         /* if short on Rx space, Rx wins and must trump Tx
3778                          * adjustment
3779                          */
3780                         if (pba < min_rx_space)
3781                                 pba = min_rx_space;
3782                 }
3783
3784                 ew32(PBA, pba);
3785         }
3786
3787         /* flow control settings
3788          *
3789          * The high water mark must be low enough to fit one full frame
3790          * (or the size used for early receive) above it in the Rx FIFO.
3791          * Set it to the lower of:
3792          * - 90% of the Rx FIFO size, and
3793          * - the full Rx FIFO size minus one full frame
3794          */
3795         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3796                 fc->pause_time = 0xFFFF;
3797         else
3798                 fc->pause_time = E1000_FC_PAUSE_TIME;
3799         fc->send_xon = true;
3800         fc->current_mode = fc->requested_mode;
3801
3802         switch (hw->mac.type) {
3803         case e1000_ich9lan:
3804         case e1000_ich10lan:
3805                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3806                         pba = 14;
3807                         ew32(PBA, pba);
3808                         fc->high_water = 0x2800;
3809                         fc->low_water = fc->high_water - 8;
3810                         break;
3811                 }
3812                 /* fall-through */
3813         default:
3814                 hwm = min(((pba << 10) * 9 / 10),
3815                           ((pba << 10) - adapter->max_frame_size));
3816
3817                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3818                 fc->low_water = fc->high_water - 8;
3819                 break;
3820         case e1000_pchlan:
3821                 /* Workaround PCH LOM adapter hangs with certain network
3822                  * loads.  If hangs persist, try disabling Tx flow control.
3823                  */
3824                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3825                         fc->high_water = 0x3500;
3826                         fc->low_water  = 0x1500;
3827                 } else {
3828                         fc->high_water = 0x5000;
3829                         fc->low_water  = 0x3000;
3830                 }
3831                 fc->refresh_time = 0x1000;
3832                 break;
3833         case e1000_pch2lan:
3834         case e1000_pch_lpt:
3835                 fc->refresh_time = 0x0400;
3836
3837                 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
3838                         fc->high_water = 0x05C20;
3839                         fc->low_water = 0x05048;
3840                         fc->pause_time = 0x0650;
3841                         break;
3842                 }
3843
3844                 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
3845                 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
3846                 break;
3847         }
3848
3849         /* Alignment of Tx data is on an arbitrary byte boundary with the
3850          * maximum size per Tx descriptor limited only to the transmit
3851          * allocation of the packet buffer minus 96 bytes with an upper
3852          * limit of 24KB due to receive synchronization limitations.
3853          */
3854         adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3855                                        24 << 10);
3856
3857         /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3858          * fit in receive buffer.
3859          */
3860         if (adapter->itr_setting & 0x3) {
3861                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3862                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3863                                 dev_info(&adapter->pdev->dev,
3864                                         "Interrupt Throttle Rate turned off\n");
3865                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
3866                                 e1000e_write_itr(adapter, 0);
3867                         }
3868                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3869                         dev_info(&adapter->pdev->dev,
3870                                  "Interrupt Throttle Rate turned on\n");
3871                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3872                         adapter->itr = 20000;
3873                         e1000e_write_itr(adapter, adapter->itr);
3874                 }
3875         }
3876
3877         /* Allow time for pending master requests to run */
3878         mac->ops.reset_hw(hw);
3879
3880         /* For parts with AMT enabled, let the firmware know
3881          * that the network interface is in control
3882          */
3883         if (adapter->flags & FLAG_HAS_AMT)
3884                 e1000e_get_hw_control(adapter);
3885
3886         ew32(WUC, 0);
3887
3888         if (mac->ops.init_hw(hw))
3889                 e_err("Hardware Error\n");
3890
3891         e1000_update_mng_vlan(adapter);
3892
3893         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3894         ew32(VET, ETH_P_8021Q);
3895
3896         e1000e_reset_adaptive(hw);
3897
3898         /* initialize systim and reset the ns time counter */
3899         e1000e_config_hwtstamp(adapter);
3900
3901         if (!netif_running(adapter->netdev) &&
3902             !test_bit(__E1000_TESTING, &adapter->state)) {
3903                 e1000_power_down_phy(adapter);
3904                 return;
3905         }
3906
3907         e1000_get_phy_info(hw);
3908
3909         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3910             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3911                 u16 phy_data = 0;
3912                 /* speed up time to link by disabling smart power down, ignore
3913                  * the return value of this function because there is nothing
3914                  * different we would do if it failed
3915                  */
3916                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3917                 phy_data &= ~IGP02E1000_PM_SPD;
3918                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3919         }
3920 }
3921
3922 int e1000e_up(struct e1000_adapter *adapter)
3923 {
3924         struct e1000_hw *hw = &adapter->hw;
3925
3926         /* hardware has been reset, we need to reload some things */
3927         e1000_configure(adapter);
3928
3929         clear_bit(__E1000_DOWN, &adapter->state);
3930
3931         if (adapter->msix_entries)
3932                 e1000_configure_msix(adapter);
3933         e1000_irq_enable(adapter);
3934
3935         netif_start_queue(adapter->netdev);
3936
3937         /* fire a link change interrupt to start the watchdog */
3938         if (adapter->msix_entries)
3939                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3940         else
3941                 ew32(ICS, E1000_ICS_LSC);
3942
3943         return 0;
3944 }
3945
3946 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3947 {
3948         struct e1000_hw *hw = &adapter->hw;
3949
3950         if (!(adapter->flags2 & FLAG2_DMA_BURST))
3951                 return;
3952
3953         /* flush pending descriptor writebacks to memory */
3954         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3955         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3956
3957         /* execute the writes immediately */
3958         e1e_flush();
3959
3960         /* due to rare timing issues, write to TIDV/RDTR again to ensure the
3961          * write is successful
3962          */
3963         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3964         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3965
3966         /* execute the writes immediately */
3967         e1e_flush();
3968 }
3969
3970 static void e1000e_update_stats(struct e1000_adapter *adapter);
3971
3972 void e1000e_down(struct e1000_adapter *adapter)
3973 {
3974         struct net_device *netdev = adapter->netdev;
3975         struct e1000_hw *hw = &adapter->hw;
3976         u32 tctl, rctl;
3977
3978         /* signal that we're down so the interrupt handler does not
3979          * reschedule our watchdog timer
3980          */
3981         set_bit(__E1000_DOWN, &adapter->state);
3982
3983         /* disable receives in the hardware */
3984         rctl = er32(RCTL);
3985         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3986                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3987         /* flush and sleep below */
3988
3989         netif_stop_queue(netdev);
3990
3991         /* disable transmits in the hardware */
3992         tctl = er32(TCTL);
3993         tctl &= ~E1000_TCTL_EN;
3994         ew32(TCTL, tctl);
3995
3996         /* flush both disables and wait for them to finish */
3997         e1e_flush();
3998         usleep_range(10000, 20000);
3999
4000         e1000_irq_disable(adapter);
4001
4002         del_timer_sync(&adapter->watchdog_timer);
4003         del_timer_sync(&adapter->phy_info_timer);
4004
4005         netif_carrier_off(netdev);
4006
4007         spin_lock(&adapter->stats64_lock);
4008         e1000e_update_stats(adapter);
4009         spin_unlock(&adapter->stats64_lock);
4010
4011         e1000e_flush_descriptors(adapter);
4012         e1000_clean_tx_ring(adapter->tx_ring);
4013         e1000_clean_rx_ring(adapter->rx_ring);
4014
4015         adapter->link_speed = 0;
4016         adapter->link_duplex = 0;
4017
4018         if (!pci_channel_offline(adapter->pdev))
4019                 e1000e_reset(adapter);
4020
4021         /* TODO: for power management, we could drop the link and
4022          * pci_disable_device here.
4023          */
4024 }
4025
4026 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4027 {
4028         might_sleep();
4029         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4030                 usleep_range(1000, 2000);
4031         e1000e_down(adapter);
4032         e1000e_up(adapter);
4033         clear_bit(__E1000_RESETTING, &adapter->state);
4034 }
4035
4036 /**
4037  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4038  * @cc: cyclecounter structure
4039  **/
4040 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4041 {
4042         struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4043                                                      cc);
4044         struct e1000_hw *hw = &adapter->hw;
4045         cycle_t systim;
4046
4047         /* latch SYSTIMH on read of SYSTIML */
4048         systim = (cycle_t)er32(SYSTIML);
4049         systim |= (cycle_t)er32(SYSTIMH) << 32;
4050
4051         return systim;
4052 }
4053
4054 /**
4055  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4056  * @adapter: board private structure to initialize
4057  *
4058  * e1000_sw_init initializes the Adapter private data structure.
4059  * Fields are initialized based on PCI device information and
4060  * OS network device settings (MTU size).
4061  **/
4062 static int e1000_sw_init(struct e1000_adapter *adapter)
4063 {
4064         struct net_device *netdev = adapter->netdev;
4065
4066         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
4067         adapter->rx_ps_bsize0 = 128;
4068         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
4069         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4070         adapter->tx_ring_count = E1000_DEFAULT_TXD;
4071         adapter->rx_ring_count = E1000_DEFAULT_RXD;
4072
4073         spin_lock_init(&adapter->stats64_lock);
4074
4075         e1000e_set_interrupt_capability(adapter);
4076
4077         if (e1000_alloc_queues(adapter))
4078                 return -ENOMEM;
4079
4080         /* Setup hardware time stamping cyclecounter */
4081         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4082                 adapter->cc.read = e1000e_cyclecounter_read;
4083                 adapter->cc.mask = CLOCKSOURCE_MASK(64);
4084                 adapter->cc.mult = 1;
4085                 /* cc.shift set in e1000e_get_base_tininca() */
4086
4087                 spin_lock_init(&adapter->systim_lock);
4088                 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4089         }
4090
4091         /* Explicitly disable IRQ since the NIC can be in any state. */
4092         e1000_irq_disable(adapter);
4093
4094         set_bit(__E1000_DOWN, &adapter->state);
4095         return 0;
4096 }
4097
4098 /**
4099  * e1000_intr_msi_test - Interrupt Handler
4100  * @irq: interrupt number
4101  * @data: pointer to a network interface device structure
4102  **/
4103 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4104 {
4105         struct net_device *netdev = data;
4106         struct e1000_adapter *adapter = netdev_priv(netdev);
4107         struct e1000_hw *hw = &adapter->hw;
4108         u32 icr = er32(ICR);
4109
4110         e_dbg("icr is %08X\n", icr);
4111         if (icr & E1000_ICR_RXSEQ) {
4112                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4113                 /* Force memory writes to complete before acknowledging the
4114                  * interrupt is handled.
4115                  */
4116                 wmb();
4117         }
4118
4119         return IRQ_HANDLED;
4120 }
4121
4122 /**
4123  * e1000_test_msi_interrupt - Returns 0 for successful test
4124  * @adapter: board private struct
4125  *
4126  * code flow taken from tg3.c
4127  **/
4128 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4129 {
4130         struct net_device *netdev = adapter->netdev;
4131         struct e1000_hw *hw = &adapter->hw;
4132         int err;
4133
4134         /* poll_enable hasn't been called yet, so don't need disable */
4135         /* clear any pending events */
4136         er32(ICR);
4137
4138         /* free the real vector and request a test handler */
4139         e1000_free_irq(adapter);
4140         e1000e_reset_interrupt_capability(adapter);
4141
4142         /* Assume that the test fails, if it succeeds then the test
4143          * MSI irq handler will unset this flag
4144          */
4145         adapter->flags |= FLAG_MSI_TEST_FAILED;
4146
4147         err = pci_enable_msi(adapter->pdev);
4148         if (err)
4149                 goto msi_test_failed;
4150
4151         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4152                           netdev->name, netdev);
4153         if (err) {
4154                 pci_disable_msi(adapter->pdev);
4155                 goto msi_test_failed;
4156         }
4157
4158         /* Force memory writes to complete before enabling and firing an
4159          * interrupt.
4160          */
4161         wmb();
4162
4163         e1000_irq_enable(adapter);
4164
4165         /* fire an unusual interrupt on the test handler */
4166         ew32(ICS, E1000_ICS_RXSEQ);
4167         e1e_flush();
4168         msleep(100);
4169
4170         e1000_irq_disable(adapter);
4171
4172         rmb();                  /* read flags after interrupt has been fired */
4173
4174         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4175                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4176                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4177         } else {
4178                 e_dbg("MSI interrupt test succeeded!\n");
4179         }
4180
4181         free_irq(adapter->pdev->irq, netdev);
4182         pci_disable_msi(adapter->pdev);
4183
4184 msi_test_failed:
4185         e1000e_set_interrupt_capability(adapter);
4186         return e1000_request_irq(adapter);
4187 }
4188
4189 /**
4190  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4191  * @adapter: board private struct
4192  *
4193  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4194  **/
4195 static int e1000_test_msi(struct e1000_adapter *adapter)
4196 {
4197         int err;
4198         u16 pci_cmd;
4199
4200         if (!(adapter->flags & FLAG_MSI_ENABLED))
4201                 return 0;
4202
4203         /* disable SERR in case the MSI write causes a master abort */
4204         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4205         if (pci_cmd & PCI_COMMAND_SERR)
4206                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4207                                       pci_cmd & ~PCI_COMMAND_SERR);
4208
4209         err = e1000_test_msi_interrupt(adapter);
4210
4211         /* re-enable SERR */
4212         if (pci_cmd & PCI_COMMAND_SERR) {
4213                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4214                 pci_cmd |= PCI_COMMAND_SERR;
4215                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4216         }
4217
4218         return err;
4219 }
4220
4221 /**
4222  * e1000_open - Called when a network interface is made active
4223  * @netdev: network interface device structure
4224  *
4225  * Returns 0 on success, negative value on failure
4226  *
4227  * The open entry point is called when a network interface is made
4228  * active by the system (IFF_UP).  At this point all resources needed
4229  * for transmit and receive operations are allocated, the interrupt
4230  * handler is registered with the OS, the watchdog timer is started,
4231  * and the stack is notified that the interface is ready.
4232  **/
4233 static int e1000_open(struct net_device *netdev)
4234 {
4235         struct e1000_adapter *adapter = netdev_priv(netdev);
4236         struct e1000_hw *hw = &adapter->hw;
4237         struct pci_dev *pdev = adapter->pdev;
4238         int err;
4239
4240         /* disallow open during test */
4241         if (test_bit(__E1000_TESTING, &adapter->state))
4242                 return -EBUSY;
4243
4244         pm_runtime_get_sync(&pdev->dev);
4245
4246         netif_carrier_off(netdev);
4247
4248         /* allocate transmit descriptors */
4249         err = e1000e_setup_tx_resources(adapter->tx_ring);
4250         if (err)
4251                 goto err_setup_tx;
4252
4253         /* allocate receive descriptors */
4254         err = e1000e_setup_rx_resources(adapter->rx_ring);
4255         if (err)
4256                 goto err_setup_rx;
4257
4258         /* If AMT is enabled, let the firmware know that the network
4259          * interface is now open and reset the part to a known state.
4260          */
4261         if (adapter->flags & FLAG_HAS_AMT) {
4262                 e1000e_get_hw_control(adapter);
4263                 e1000e_reset(adapter);
4264         }
4265
4266         e1000e_power_up_phy(adapter);
4267
4268         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4269         if ((adapter->hw.mng_cookie.status &
4270              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4271                 e1000_update_mng_vlan(adapter);
4272
4273         /* DMA latency requirement to workaround jumbo issue */
4274         pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4275                            PM_QOS_DEFAULT_VALUE);
4276
4277         /* before we allocate an interrupt, we must be ready to handle it.
4278          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4279          * as soon as we call pci_request_irq, so we have to setup our
4280          * clean_rx handler before we do so.
4281          */
4282         e1000_configure(adapter);
4283
4284         err = e1000_request_irq(adapter);
4285         if (err)
4286                 goto err_req_irq;
4287
4288         /* Work around PCIe errata with MSI interrupts causing some chipsets to
4289          * ignore e1000e MSI messages, which means we need to test our MSI
4290          * interrupt now
4291          */
4292         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4293                 err = e1000_test_msi(adapter);
4294                 if (err) {
4295                         e_err("Interrupt allocation failed\n");
4296                         goto err_req_irq;
4297                 }
4298         }
4299
4300         /* From here on the code is the same as e1000e_up() */
4301         clear_bit(__E1000_DOWN, &adapter->state);
4302
4303         napi_enable(&adapter->napi);
4304
4305         e1000_irq_enable(adapter);
4306
4307         adapter->tx_hang_recheck = false;
4308         netif_start_queue(netdev);
4309
4310         adapter->idle_check = true;
4311         hw->mac.get_link_status = true;
4312         pm_runtime_put(&pdev->dev);
4313
4314         /* fire a link status change interrupt to start the watchdog */
4315         if (adapter->msix_entries)
4316                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4317         else
4318                 ew32(ICS, E1000_ICS_LSC);
4319
4320         return 0;
4321
4322 err_req_irq:
4323         e1000e_release_hw_control(adapter);
4324         e1000_power_down_phy(adapter);
4325         e1000e_free_rx_resources(adapter->rx_ring);
4326 err_setup_rx:
4327         e1000e_free_tx_resources(adapter->tx_ring);
4328 err_setup_tx:
4329         e1000e_reset(adapter);
4330         pm_runtime_put_sync(&pdev->dev);
4331
4332         return err;
4333 }
4334
4335 /**
4336  * e1000_close - Disables a network interface
4337  * @netdev: network interface device structure
4338  *
4339  * Returns 0, this is not allowed to fail
4340  *
4341  * The close entry point is called when an interface is de-activated
4342  * by the OS.  The hardware is still under the drivers control, but
4343  * needs to be disabled.  A global MAC reset is issued to stop the
4344  * hardware, and all transmit and receive resources are freed.
4345  **/
4346 static int e1000_close(struct net_device *netdev)
4347 {
4348         struct e1000_adapter *adapter = netdev_priv(netdev);
4349         struct pci_dev *pdev = adapter->pdev;
4350         int count = E1000_CHECK_RESET_COUNT;
4351
4352         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4353                 usleep_range(10000, 20000);
4354
4355         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4356
4357         pm_runtime_get_sync(&pdev->dev);
4358
4359         napi_disable(&adapter->napi);
4360
4361         if (!test_bit(__E1000_DOWN, &adapter->state)) {
4362                 e1000e_down(adapter);
4363                 e1000_free_irq(adapter);
4364         }
4365         e1000_power_down_phy(adapter);
4366
4367         e1000e_free_tx_resources(adapter->tx_ring);
4368         e1000e_free_rx_resources(adapter->rx_ring);
4369
4370         /* kill manageability vlan ID if supported, but not if a vlan with
4371          * the same ID is registered on the host OS (let 8021q kill it)
4372          */
4373         if (adapter->hw.mng_cookie.status &
4374             E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4375                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4376
4377         /* If AMT is enabled, let the firmware know that the network
4378          * interface is now closed
4379          */
4380         if ((adapter->flags & FLAG_HAS_AMT) &&
4381             !test_bit(__E1000_TESTING, &adapter->state))
4382                 e1000e_release_hw_control(adapter);
4383
4384         pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4385
4386         pm_runtime_put_sync(&pdev->dev);
4387
4388         return 0;
4389 }
4390 /**
4391  * e1000_set_mac - Change the Ethernet Address of the NIC
4392  * @netdev: network interface device structure
4393  * @p: pointer to an address structure
4394  *
4395  * Returns 0 on success, negative on failure
4396  **/
4397 static int e1000_set_mac(struct net_device *netdev, void *p)
4398 {
4399         struct e1000_adapter *adapter = netdev_priv(netdev);
4400         struct e1000_hw *hw = &adapter->hw;
4401         struct sockaddr *addr = p;
4402
4403         if (!is_valid_ether_addr(addr->sa_data))
4404                 return -EADDRNOTAVAIL;
4405
4406         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4407         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4408
4409         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4410
4411         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4412                 /* activate the work around */
4413                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4414
4415                 /* Hold a copy of the LAA in RAR[14] This is done so that
4416                  * between the time RAR[0] gets clobbered  and the time it
4417                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4418                  * of the RARs and no incoming packets directed to this port
4419                  * are dropped. Eventually the LAA will be in RAR[0] and
4420                  * RAR[14]
4421                  */
4422                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4423                                     adapter->hw.mac.rar_entry_count - 1);
4424         }
4425
4426         return 0;
4427 }
4428
4429 /**
4430  * e1000e_update_phy_task - work thread to update phy
4431  * @work: pointer to our work struct
4432  *
4433  * this worker thread exists because we must acquire a
4434  * semaphore to read the phy, which we could msleep while
4435  * waiting for it, and we can't msleep in a timer.
4436  **/
4437 static void e1000e_update_phy_task(struct work_struct *work)
4438 {
4439         struct e1000_adapter *adapter = container_of(work,
4440                                         struct e1000_adapter, update_phy_task);
4441
4442         if (test_bit(__E1000_DOWN, &adapter->state))
4443                 return;
4444
4445         e1000_get_phy_info(&adapter->hw);
4446 }
4447
4448 /**
4449  * e1000_update_phy_info - timre call-back to update PHY info
4450  * @data: pointer to adapter cast into an unsigned long
4451  *
4452  * Need to wait a few seconds after link up to get diagnostic information from
4453  * the phy
4454  **/
4455 static void e1000_update_phy_info(unsigned long data)
4456 {
4457         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4458
4459         if (test_bit(__E1000_DOWN, &adapter->state))
4460                 return;
4461
4462         schedule_work(&adapter->update_phy_task);
4463 }
4464
4465 /**
4466  * e1000e_update_phy_stats - Update the PHY statistics counters
4467  * @adapter: board private structure
4468  *
4469  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4470  **/
4471 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4472 {
4473         struct e1000_hw *hw = &adapter->hw;
4474         s32 ret_val;
4475         u16 phy_data;
4476
4477         ret_val = hw->phy.ops.acquire(hw);
4478         if (ret_val)
4479                 return;
4480
4481         /* A page set is expensive so check if already on desired page.
4482          * If not, set to the page with the PHY status registers.
4483          */
4484         hw->phy.addr = 1;
4485         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4486                                            &phy_data);
4487         if (ret_val)
4488                 goto release;
4489         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4490                 ret_val = hw->phy.ops.set_page(hw,
4491                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4492                 if (ret_val)
4493                         goto release;
4494         }
4495
4496         /* Single Collision Count */
4497         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4498         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4499         if (!ret_val)
4500                 adapter->stats.scc += phy_data;
4501
4502         /* Excessive Collision Count */
4503         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4504         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4505         if (!ret_val)
4506                 adapter->stats.ecol += phy_data;
4507
4508         /* Multiple Collision Count */
4509         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4510         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4511         if (!ret_val)
4512                 adapter->stats.mcc += phy_data;
4513
4514         /* Late Collision Count */
4515         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4516         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4517         if (!ret_val)
4518                 adapter->stats.latecol += phy_data;
4519
4520         /* Collision Count - also used for adaptive IFS */
4521         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4522         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4523         if (!ret_val)
4524                 hw->mac.collision_delta = phy_data;
4525
4526         /* Defer Count */
4527         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4528         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4529         if (!ret_val)
4530                 adapter->stats.dc += phy_data;
4531
4532         /* Transmit with no CRS */
4533         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4534         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4535         if (!ret_val)
4536                 adapter->stats.tncrs += phy_data;
4537
4538 release:
4539         hw->phy.ops.release(hw);
4540 }
4541
4542 /**
4543  * e1000e_update_stats - Update the board statistics counters
4544  * @adapter: board private structure
4545  **/
4546 static void e1000e_update_stats(struct e1000_adapter *adapter)
4547 {
4548         struct net_device *netdev = adapter->netdev;
4549         struct e1000_hw *hw = &adapter->hw;
4550         struct pci_dev *pdev = adapter->pdev;
4551
4552         /* Prevent stats update while adapter is being reset, or if the pci
4553          * connection is down.
4554          */
4555         if (adapter->link_speed == 0)
4556                 return;
4557         if (pci_channel_offline(pdev))
4558                 return;
4559
4560         adapter->stats.crcerrs += er32(CRCERRS);
4561         adapter->stats.gprc += er32(GPRC);
4562         adapter->stats.gorc += er32(GORCL);
4563         er32(GORCH); /* Clear gorc */
4564         adapter->stats.bprc += er32(BPRC);
4565         adapter->stats.mprc += er32(MPRC);
4566         adapter->stats.roc += er32(ROC);
4567
4568         adapter->stats.mpc += er32(MPC);
4569
4570         /* Half-duplex statistics */
4571         if (adapter->link_duplex == HALF_DUPLEX) {
4572                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4573                         e1000e_update_phy_stats(adapter);
4574                 } else {
4575                         adapter->stats.scc += er32(SCC);
4576                         adapter->stats.ecol += er32(ECOL);
4577                         adapter->stats.mcc += er32(MCC);
4578                         adapter->stats.latecol += er32(LATECOL);
4579                         adapter->stats.dc += er32(DC);
4580
4581                         hw->mac.collision_delta = er32(COLC);
4582
4583                         if ((hw->mac.type != e1000_82574) &&
4584                             (hw->mac.type != e1000_82583))
4585                                 adapter->stats.tncrs += er32(TNCRS);
4586                 }
4587                 adapter->stats.colc += hw->mac.collision_delta;
4588         }
4589
4590         adapter->stats.xonrxc += er32(XONRXC);
4591         adapter->stats.xontxc += er32(XONTXC);
4592         adapter->stats.xoffrxc += er32(XOFFRXC);
4593         adapter->stats.xofftxc += er32(XOFFTXC);
4594         adapter->stats.gptc += er32(GPTC);
4595         adapter->stats.gotc += er32(GOTCL);
4596         er32(GOTCH); /* Clear gotc */
4597         adapter->stats.rnbc += er32(RNBC);
4598         adapter->stats.ruc += er32(RUC);
4599
4600         adapter->stats.mptc += er32(MPTC);
4601         adapter->stats.bptc += er32(BPTC);
4602
4603         /* used for adaptive IFS */
4604
4605         hw->mac.tx_packet_delta = er32(TPT);
4606         adapter->stats.tpt += hw->mac.tx_packet_delta;
4607
4608         adapter->stats.algnerrc += er32(ALGNERRC);
4609         adapter->stats.rxerrc += er32(RXERRC);
4610         adapter->stats.cexterr += er32(CEXTERR);
4611         adapter->stats.tsctc += er32(TSCTC);
4612         adapter->stats.tsctfc += er32(TSCTFC);
4613
4614         /* Fill out the OS statistics structure */
4615         netdev->stats.multicast = adapter->stats.mprc;
4616         netdev->stats.collisions = adapter->stats.colc;
4617
4618         /* Rx Errors */
4619
4620         /* RLEC on some newer hardware can be incorrect so build
4621          * our own version based on RUC and ROC
4622          */
4623         netdev->stats.rx_errors = adapter->stats.rxerrc +
4624                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4625                 adapter->stats.ruc + adapter->stats.roc +
4626                 adapter->stats.cexterr;
4627         netdev->stats.rx_length_errors = adapter->stats.ruc +
4628                                               adapter->stats.roc;
4629         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4630         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4631         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4632
4633         /* Tx Errors */
4634         netdev->stats.tx_errors = adapter->stats.ecol +
4635                                        adapter->stats.latecol;
4636         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4637         netdev->stats.tx_window_errors = adapter->stats.latecol;
4638         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4639
4640         /* Tx Dropped needs to be maintained elsewhere */
4641
4642         /* Management Stats */
4643         adapter->stats.mgptc += er32(MGTPTC);
4644         adapter->stats.mgprc += er32(MGTPRC);
4645         adapter->stats.mgpdc += er32(MGTPDC);
4646
4647         /* Correctable ECC Errors */
4648         if (hw->mac.type == e1000_pch_lpt) {
4649                 u32 pbeccsts = er32(PBECCSTS);
4650                 adapter->corr_errors +=
4651                     pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4652                 adapter->uncorr_errors +=
4653                     (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4654                     E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4655         }
4656 }
4657
4658 /**
4659  * e1000_phy_read_status - Update the PHY register status snapshot
4660  * @adapter: board private structure
4661  **/
4662 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4663 {
4664         struct e1000_hw *hw = &adapter->hw;
4665         struct e1000_phy_regs *phy = &adapter->phy_regs;
4666
4667         if ((er32(STATUS) & E1000_STATUS_LU) &&
4668             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4669                 int ret_val;
4670
4671                 pm_runtime_get_sync(&adapter->pdev->dev);
4672                 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4673                 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4674                 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4675                 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4676                 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4677                 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4678                 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4679                 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4680                 if (ret_val)
4681                         e_warn("Error reading PHY register\n");
4682                 pm_runtime_put_sync(&adapter->pdev->dev);
4683         } else {
4684                 /* Do not read PHY registers if link is not up
4685                  * Set values to typical power-on defaults
4686                  */
4687                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4688                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4689                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4690                              BMSR_ERCAP);
4691                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4692                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4693                 phy->lpa = 0;
4694                 phy->expansion = EXPANSION_ENABLENPAGE;
4695                 phy->ctrl1000 = ADVERTISE_1000FULL;
4696                 phy->stat1000 = 0;
4697                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4698         }
4699 }
4700
4701 static void e1000_print_link_info(struct e1000_adapter *adapter)
4702 {
4703         struct e1000_hw *hw = &adapter->hw;
4704         u32 ctrl = er32(CTRL);
4705
4706         /* Link status message must follow this format for user tools */
4707         pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4708                 adapter->netdev->name, adapter->link_speed,
4709                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4710                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4711                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4712                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4713 }
4714
4715 static bool e1000e_has_link(struct e1000_adapter *adapter)
4716 {
4717         struct e1000_hw *hw = &adapter->hw;
4718         bool link_active = false;
4719         s32 ret_val = 0;
4720
4721         /* get_link_status is set on LSC (link status) interrupt or
4722          * Rx sequence error interrupt.  get_link_status will stay
4723          * false until the check_for_link establishes link
4724          * for copper adapters ONLY
4725          */
4726         switch (hw->phy.media_type) {
4727         case e1000_media_type_copper:
4728                 if (hw->mac.get_link_status) {
4729                         ret_val = hw->mac.ops.check_for_link(hw);
4730                         link_active = !hw->mac.get_link_status;
4731                 } else {
4732                         link_active = true;
4733                 }
4734                 break;
4735         case e1000_media_type_fiber:
4736                 ret_val = hw->mac.ops.check_for_link(hw);
4737                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4738                 break;
4739         case e1000_media_type_internal_serdes:
4740                 ret_val = hw->mac.ops.check_for_link(hw);
4741                 link_active = adapter->hw.mac.serdes_has_link;
4742                 break;
4743         default:
4744         case e1000_media_type_unknown:
4745                 break;
4746         }
4747
4748         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4749             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4750                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4751                 e_info("Gigabit has been disabled, downgrading speed\n");
4752         }
4753
4754         return link_active;
4755 }
4756
4757 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4758 {
4759         /* make sure the receive unit is started */
4760         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4761             (adapter->flags & FLAG_RESTART_NOW)) {
4762                 struct e1000_hw *hw = &adapter->hw;
4763                 u32 rctl = er32(RCTL);
4764                 ew32(RCTL, rctl | E1000_RCTL_EN);
4765                 adapter->flags &= ~FLAG_RESTART_NOW;
4766         }
4767 }
4768
4769 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4770 {
4771         struct e1000_hw *hw = &adapter->hw;
4772
4773         /* With 82574 controllers, PHY needs to be checked periodically
4774          * for hung state and reset, if two calls return true
4775          */
4776         if (e1000_check_phy_82574(hw))
4777                 adapter->phy_hang_count++;
4778         else
4779                 adapter->phy_hang_count = 0;
4780
4781         if (adapter->phy_hang_count > 1) {
4782                 adapter->phy_hang_count = 0;
4783                 schedule_work(&adapter->reset_task);
4784         }
4785 }
4786
4787 /**
4788  * e1000_watchdog - Timer Call-back
4789  * @data: pointer to adapter cast into an unsigned long
4790  **/
4791 static void e1000_watchdog(unsigned long data)
4792 {
4793         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4794
4795         /* Do the rest outside of interrupt context */
4796         schedule_work(&adapter->watchdog_task);
4797
4798         /* TODO: make this use queue_delayed_work() */
4799 }
4800
4801 static void e1000_watchdog_task(struct work_struct *work)
4802 {
4803         struct e1000_adapter *adapter = container_of(work,
4804                                         struct e1000_adapter, watchdog_task);
4805         struct net_device *netdev = adapter->netdev;
4806         struct e1000_mac_info *mac = &adapter->hw.mac;
4807         struct e1000_phy_info *phy = &adapter->hw.phy;
4808         struct e1000_ring *tx_ring = adapter->tx_ring;
4809         struct e1000_hw *hw = &adapter->hw;
4810         u32 link, tctl;
4811
4812         if (test_bit(__E1000_DOWN, &adapter->state))
4813                 return;
4814
4815         link = e1000e_has_link(adapter);
4816         if ((netif_carrier_ok(netdev)) && link) {
4817                 /* Cancel scheduled suspend requests. */
4818                 pm_runtime_resume(netdev->dev.parent);
4819
4820                 e1000e_enable_receives(adapter);
4821                 goto link_up;
4822         }
4823
4824         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4825             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4826                 e1000_update_mng_vlan(adapter);
4827
4828         if (link) {
4829                 if (!netif_carrier_ok(netdev)) {
4830                         bool txb2b = true;
4831
4832                         /* Cancel scheduled suspend requests. */
4833                         pm_runtime_resume(netdev->dev.parent);
4834
4835                         /* update snapshot of PHY registers on LSC */
4836                         e1000_phy_read_status(adapter);
4837                         mac->ops.get_link_up_info(&adapter->hw,
4838                                                    &adapter->link_speed,
4839                                                    &adapter->link_duplex);
4840                         e1000_print_link_info(adapter);
4841
4842                         /* check if SmartSpeed worked */
4843                         e1000e_check_downshift(hw);
4844                         if (phy->speed_downgraded)
4845                                 netdev_warn(netdev,
4846                                             "Link Speed was downgraded by SmartSpeed\n");
4847
4848                         /* On supported PHYs, check for duplex mismatch only
4849                          * if link has autonegotiated at 10/100 half
4850                          */
4851                         if ((hw->phy.type == e1000_phy_igp_3 ||
4852                              hw->phy.type == e1000_phy_bm) &&
4853                             (hw->mac.autoneg == true) &&
4854                             (adapter->link_speed == SPEED_10 ||
4855                              adapter->link_speed == SPEED_100) &&
4856                             (adapter->link_duplex == HALF_DUPLEX)) {
4857                                 u16 autoneg_exp;
4858
4859                                 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
4860
4861                                 if (!(autoneg_exp & EXPANSION_NWAY))
4862                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4863                         }
4864
4865                         /* adjust timeout factor according to speed/duplex */
4866                         adapter->tx_timeout_factor = 1;
4867                         switch (adapter->link_speed) {
4868                         case SPEED_10:
4869                                 txb2b = false;
4870                                 adapter->tx_timeout_factor = 16;
4871                                 break;
4872                         case SPEED_100:
4873                                 txb2b = false;
4874                                 adapter->tx_timeout_factor = 10;
4875                                 break;
4876                         }
4877
4878                         /* workaround: re-program speed mode bit after
4879                          * link-up event
4880                          */
4881                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4882                             !txb2b) {
4883                                 u32 tarc0;
4884                                 tarc0 = er32(TARC(0));
4885                                 tarc0 &= ~SPEED_MODE_BIT;
4886                                 ew32(TARC(0), tarc0);
4887                         }
4888
4889                         /* disable TSO for pcie and 10/100 speeds, to avoid
4890                          * some hardware issues
4891                          */
4892                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
4893                                 switch (adapter->link_speed) {
4894                                 case SPEED_10:
4895                                 case SPEED_100:
4896                                         e_info("10/100 speed: disabling TSO\n");
4897                                         netdev->features &= ~NETIF_F_TSO;
4898                                         netdev->features &= ~NETIF_F_TSO6;
4899                                         break;
4900                                 case SPEED_1000:
4901                                         netdev->features |= NETIF_F_TSO;
4902                                         netdev->features |= NETIF_F_TSO6;
4903                                         break;
4904                                 default:
4905                                         /* oops */
4906                                         break;
4907                                 }
4908                         }
4909
4910                         /* enable transmits in the hardware, need to do this
4911                          * after setting TARC(0)
4912                          */
4913                         tctl = er32(TCTL);
4914                         tctl |= E1000_TCTL_EN;
4915                         ew32(TCTL, tctl);
4916
4917                         /* Perform any post-link-up configuration before
4918                          * reporting link up.
4919                          */
4920                         if (phy->ops.cfg_on_link_up)
4921                                 phy->ops.cfg_on_link_up(hw);
4922
4923                         netif_carrier_on(netdev);
4924
4925                         if (!test_bit(__E1000_DOWN, &adapter->state))
4926                                 mod_timer(&adapter->phy_info_timer,
4927                                           round_jiffies(jiffies + 2 * HZ));
4928                 }
4929         } else {
4930                 if (netif_carrier_ok(netdev)) {
4931                         adapter->link_speed = 0;
4932                         adapter->link_duplex = 0;
4933                         /* Link status message must follow this format */
4934                         pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4935                         netif_carrier_off(netdev);
4936                         if (!test_bit(__E1000_DOWN, &adapter->state))
4937                                 mod_timer(&adapter->phy_info_timer,
4938                                           round_jiffies(jiffies + 2 * HZ));
4939
4940                         /* The link is lost so the controller stops DMA.
4941                          * If there is queued Tx work that cannot be done
4942                          * or if on an 8000ES2LAN which requires a Rx packet
4943                          * buffer work-around on link down event, reset the
4944                          * controller to flush the Tx/Rx packet buffers.
4945                          * (Do the reset outside of interrupt context).
4946                          */
4947                         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) ||
4948                             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
4949                                 adapter->flags |= FLAG_RESTART_NOW;
4950                         else
4951                                 pm_schedule_suspend(netdev->dev.parent,
4952                                                         LINK_TIMEOUT);
4953                 }
4954         }
4955
4956 link_up:
4957         spin_lock(&adapter->stats64_lock);
4958         e1000e_update_stats(adapter);
4959
4960         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4961         adapter->tpt_old = adapter->stats.tpt;
4962         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4963         adapter->colc_old = adapter->stats.colc;
4964
4965         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4966         adapter->gorc_old = adapter->stats.gorc;
4967         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4968         adapter->gotc_old = adapter->stats.gotc;
4969         spin_unlock(&adapter->stats64_lock);
4970
4971         if (adapter->flags & FLAG_RESTART_NOW) {
4972                 schedule_work(&adapter->reset_task);
4973                 /* return immediately since reset is imminent */
4974                 return;
4975         }
4976
4977         e1000e_update_adaptive(&adapter->hw);
4978
4979         /* Simple mode for Interrupt Throttle Rate (ITR) */
4980         if (adapter->itr_setting == 4) {
4981                 /* Symmetric Tx/Rx gets a reduced ITR=2000;
4982                  * Total asymmetrical Tx or Rx gets ITR=8000;
4983                  * everyone else is between 2000-8000.
4984                  */
4985                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4986                 u32 dif = (adapter->gotc > adapter->gorc ?
4987                             adapter->gotc - adapter->gorc :
4988                             adapter->gorc - adapter->gotc) / 10000;
4989                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4990
4991                 e1000e_write_itr(adapter, itr);
4992         }
4993
4994         /* Cause software interrupt to ensure Rx ring is cleaned */
4995         if (adapter->msix_entries)
4996                 ew32(ICS, adapter->rx_ring->ims_val);
4997         else
4998                 ew32(ICS, E1000_ICS_RXDMT0);
4999
5000         /* flush pending descriptors to memory before detecting Tx hang */
5001         e1000e_flush_descriptors(adapter);
5002
5003         /* Force detection of hung controller every watchdog period */
5004         adapter->detect_tx_hung = true;
5005
5006         /* With 82571 controllers, LAA may be overwritten due to controller
5007          * reset from the other port. Set the appropriate LAA in RAR[0]
5008          */
5009         if (e1000e_get_laa_state_82571(hw))
5010                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5011
5012         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5013                 e1000e_check_82574_phy_workaround(adapter);
5014
5015         /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5016         if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5017                 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5018                     (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5019                         er32(RXSTMPH);
5020                         adapter->rx_hwtstamp_cleared++;
5021                 } else {
5022                         adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5023                 }
5024         }
5025
5026         /* Reset the timer */
5027         if (!test_bit(__E1000_DOWN, &adapter->state))
5028                 mod_timer(&adapter->watchdog_timer,
5029                           round_jiffies(jiffies + 2 * HZ));
5030 }
5031
5032 #define E1000_TX_FLAGS_CSUM             0x00000001
5033 #define E1000_TX_FLAGS_VLAN             0x00000002
5034 #define E1000_TX_FLAGS_TSO              0x00000004
5035 #define E1000_TX_FLAGS_IPV4             0x00000008
5036 #define E1000_TX_FLAGS_NO_FCS           0x00000010
5037 #define E1000_TX_FLAGS_HWTSTAMP         0x00000020
5038 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
5039 #define E1000_TX_FLAGS_VLAN_SHIFT       16
5040
5041 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
5042 {
5043         struct e1000_context_desc *context_desc;
5044         struct e1000_buffer *buffer_info;
5045         unsigned int i;
5046         u32 cmd_length = 0;
5047         u16 ipcse = 0, mss;
5048         u8 ipcss, ipcso, tucss, tucso, hdr_len;
5049
5050         if (!skb_is_gso(skb))
5051                 return 0;
5052
5053         if (skb_header_cloned(skb)) {
5054                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5055
5056                 if (err)
5057                         return err;
5058         }
5059
5060         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5061         mss = skb_shinfo(skb)->gso_size;
5062         if (skb->protocol == htons(ETH_P_IP)) {
5063                 struct iphdr *iph = ip_hdr(skb);
5064                 iph->tot_len = 0;
5065                 iph->check = 0;
5066                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5067                                                          0, IPPROTO_TCP, 0);
5068                 cmd_length = E1000_TXD_CMD_IP;
5069                 ipcse = skb_transport_offset(skb) - 1;
5070         } else if (skb_is_gso_v6(skb)) {
5071                 ipv6_hdr(skb)->payload_len = 0;
5072                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5073                                                        &ipv6_hdr(skb)->daddr,
5074                                                        0, IPPROTO_TCP, 0);
5075                 ipcse = 0;
5076         }
5077         ipcss = skb_network_offset(skb);
5078         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5079         tucss = skb_transport_offset(skb);
5080         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5081
5082         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5083                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5084
5085         i = tx_ring->next_to_use;
5086         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5087         buffer_info = &tx_ring->buffer_info[i];
5088
5089         context_desc->lower_setup.ip_fields.ipcss  = ipcss;
5090         context_desc->lower_setup.ip_fields.ipcso  = ipcso;
5091         context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
5092         context_desc->upper_setup.tcp_fields.tucss = tucss;
5093         context_desc->upper_setup.tcp_fields.tucso = tucso;
5094         context_desc->upper_setup.tcp_fields.tucse = 0;
5095         context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
5096         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5097         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5098
5099         buffer_info->time_stamp = jiffies;
5100         buffer_info->next_to_watch = i;
5101
5102         i++;
5103         if (i == tx_ring->count)
5104                 i = 0;
5105         tx_ring->next_to_use = i;
5106
5107         return 1;
5108 }
5109
5110 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
5111 {
5112         struct e1000_adapter *adapter = tx_ring->adapter;
5113         struct e1000_context_desc *context_desc;
5114         struct e1000_buffer *buffer_info;
5115         unsigned int i;
5116         u8 css;
5117         u32 cmd_len = E1000_TXD_CMD_DEXT;
5118         __be16 protocol;
5119
5120         if (skb->ip_summed != CHECKSUM_PARTIAL)
5121                 return 0;
5122
5123         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
5124                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
5125         else
5126                 protocol = skb->protocol;
5127
5128         switch (protocol) {
5129         case cpu_to_be16(ETH_P_IP):
5130                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5131                         cmd_len |= E1000_TXD_CMD_TCP;
5132                 break;
5133         case cpu_to_be16(ETH_P_IPV6):
5134                 /* XXX not handling all IPV6 headers */
5135                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5136                         cmd_len |= E1000_TXD_CMD_TCP;
5137                 break;
5138         default:
5139                 if (unlikely(net_ratelimit()))
5140                         e_warn("checksum_partial proto=%x!\n",
5141                                be16_to_cpu(protocol));
5142                 break;
5143         }
5144
5145         css = skb_checksum_start_offset(skb);
5146
5147         i = tx_ring->next_to_use;
5148         buffer_info = &tx_ring->buffer_info[i];
5149         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5150
5151         context_desc->lower_setup.ip_config = 0;
5152         context_desc->upper_setup.tcp_fields.tucss = css;
5153         context_desc->upper_setup.tcp_fields.tucso =
5154                                 css + skb->csum_offset;
5155         context_desc->upper_setup.tcp_fields.tucse = 0;
5156         context_desc->tcp_seg_setup.data = 0;
5157         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5158
5159         buffer_info->time_stamp = jiffies;
5160         buffer_info->next_to_watch = i;
5161
5162         i++;
5163         if (i == tx_ring->count)
5164                 i = 0;
5165         tx_ring->next_to_use = i;
5166
5167         return 1;
5168 }
5169
5170 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5171                         unsigned int first, unsigned int max_per_txd,
5172                         unsigned int nr_frags)
5173 {
5174         struct e1000_adapter *adapter = tx_ring->adapter;
5175         struct pci_dev *pdev = adapter->pdev;
5176         struct e1000_buffer *buffer_info;
5177         unsigned int len = skb_headlen(skb);
5178         unsigned int offset = 0, size, count = 0, i;
5179         unsigned int f, bytecount, segs;
5180
5181         i = tx_ring->next_to_use;
5182
5183         while (len) {
5184                 buffer_info = &tx_ring->buffer_info[i];
5185                 size = min(len, max_per_txd);
5186
5187                 buffer_info->length = size;
5188                 buffer_info->time_stamp = jiffies;
5189                 buffer_info->next_to_watch = i;
5190                 buffer_info->dma = dma_map_single(&pdev->dev,
5191                                                   skb->data + offset,
5192                                                   size, DMA_TO_DEVICE);
5193                 buffer_info->mapped_as_page = false;
5194                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5195                         goto dma_error;
5196
5197                 len -= size;
5198                 offset += size;
5199                 count++;
5200
5201                 if (len) {
5202                         i++;
5203                         if (i == tx_ring->count)
5204                                 i = 0;
5205                 }
5206         }
5207
5208         for (f = 0; f < nr_frags; f++) {
5209                 const struct skb_frag_struct *frag;
5210
5211                 frag = &skb_shinfo(skb)->frags[f];
5212                 len = skb_frag_size(frag);
5213                 offset = 0;
5214
5215                 while (len) {
5216                         i++;
5217                         if (i == tx_ring->count)
5218                                 i = 0;
5219
5220                         buffer_info = &tx_ring->buffer_info[i];
5221                         size = min(len, max_per_txd);
5222
5223                         buffer_info->length = size;
5224                         buffer_info->time_stamp = jiffies;
5225                         buffer_info->next_to_watch = i;
5226                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5227                                                 offset, size, DMA_TO_DEVICE);
5228                         buffer_info->mapped_as_page = true;
5229                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5230                                 goto dma_error;
5231
5232                         len -= size;
5233                         offset += size;
5234                         count++;
5235                 }
5236         }
5237
5238         segs = skb_shinfo(skb)->gso_segs ? : 1;
5239         /* multiply data chunks by size of headers */
5240         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5241
5242         tx_ring->buffer_info[i].skb = skb;
5243         tx_ring->buffer_info[i].segs = segs;
5244         tx_ring->buffer_info[i].bytecount = bytecount;
5245         tx_ring->buffer_info[first].next_to_watch = i;
5246
5247         return count;
5248
5249 dma_error:
5250         dev_err(&pdev->dev, "Tx DMA map failed\n");
5251         buffer_info->dma = 0;
5252         if (count)
5253                 count--;
5254
5255         while (count--) {
5256                 if (i == 0)
5257                         i += tx_ring->count;
5258                 i--;
5259                 buffer_info = &tx_ring->buffer_info[i];
5260                 e1000_put_txbuf(tx_ring, buffer_info);
5261         }
5262
5263         return 0;
5264 }
5265
5266 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5267 {
5268         struct e1000_adapter *adapter = tx_ring->adapter;
5269         struct e1000_tx_desc *tx_desc = NULL;
5270         struct e1000_buffer *buffer_info;
5271         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5272         unsigned int i;
5273
5274         if (tx_flags & E1000_TX_FLAGS_TSO) {
5275                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5276                              E1000_TXD_CMD_TSE;
5277                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5278
5279                 if (tx_flags & E1000_TX_FLAGS_IPV4)
5280                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5281         }
5282
5283         if (tx_flags & E1000_TX_FLAGS_CSUM) {
5284                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5285                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5286         }
5287
5288         if (tx_flags & E1000_TX_FLAGS_VLAN) {
5289                 txd_lower |= E1000_TXD_CMD_VLE;
5290                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5291         }
5292
5293         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5294                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5295
5296         if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5297                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5298                 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5299         }
5300
5301         i = tx_ring->next_to_use;
5302
5303         do {
5304                 buffer_info = &tx_ring->buffer_info[i];
5305                 tx_desc = E1000_TX_DESC(*tx_ring, i);
5306                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5307                 tx_desc->lower.data =
5308                         cpu_to_le32(txd_lower | buffer_info->length);
5309                 tx_desc->upper.data = cpu_to_le32(txd_upper);
5310
5311                 i++;
5312                 if (i == tx_ring->count)
5313                         i = 0;
5314         } while (--count > 0);
5315
5316         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5317
5318         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5319         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5320                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5321
5322         /* Force memory writes to complete before letting h/w
5323          * know there are new descriptors to fetch.  (Only
5324          * applicable for weak-ordered memory model archs,
5325          * such as IA-64).
5326          */
5327         wmb();
5328
5329         tx_ring->next_to_use = i;
5330
5331         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5332                 e1000e_update_tdt_wa(tx_ring, i);
5333         else
5334                 writel(i, tx_ring->tail);
5335
5336         /* we need this if more than one processor can write to our tail
5337          * at a time, it synchronizes IO on IA64/Altix systems
5338          */
5339         mmiowb();
5340 }
5341
5342 #define MINIMUM_DHCP_PACKET_SIZE 282
5343 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5344                                     struct sk_buff *skb)
5345 {
5346         struct e1000_hw *hw =  &adapter->hw;
5347         u16 length, offset;
5348
5349         if (vlan_tx_tag_present(skb) &&
5350             !((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5351               (adapter->hw.mng_cookie.status &
5352                E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5353                 return 0;
5354
5355         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5356                 return 0;
5357
5358         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
5359                 return 0;
5360
5361         {
5362                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
5363                 struct udphdr *udp;
5364
5365                 if (ip->protocol != IPPROTO_UDP)
5366                         return 0;
5367
5368                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5369                 if (ntohs(udp->dest) != 67)
5370                         return 0;
5371
5372                 offset = (u8 *)udp + 8 - skb->data;
5373                 length = skb->len - offset;
5374                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5375         }
5376
5377         return 0;
5378 }
5379
5380 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5381 {
5382         struct e1000_adapter *adapter = tx_ring->adapter;
5383
5384         netif_stop_queue(adapter->netdev);
5385         /* Herbert's original patch had:
5386          *  smp_mb__after_netif_stop_queue();
5387          * but since that doesn't exist yet, just open code it.
5388          */
5389         smp_mb();
5390
5391         /* We need to check again in a case another CPU has just
5392          * made room available.
5393          */
5394         if (e1000_desc_unused(tx_ring) < size)
5395                 return -EBUSY;
5396
5397         /* A reprieve! */
5398         netif_start_queue(adapter->netdev);
5399         ++adapter->restart_queue;
5400         return 0;
5401 }
5402
5403 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5404 {
5405         BUG_ON(size > tx_ring->count);
5406
5407         if (e1000_desc_unused(tx_ring) >= size)
5408                 return 0;
5409         return __e1000_maybe_stop_tx(tx_ring, size);
5410 }
5411
5412 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5413                                     struct net_device *netdev)
5414 {
5415         struct e1000_adapter *adapter = netdev_priv(netdev);
5416         struct e1000_ring *tx_ring = adapter->tx_ring;
5417         unsigned int first;
5418         unsigned int tx_flags = 0;
5419         unsigned int len = skb_headlen(skb);
5420         unsigned int nr_frags;
5421         unsigned int mss;
5422         int count = 0;
5423         int tso;
5424         unsigned int f;
5425
5426         if (test_bit(__E1000_DOWN, &adapter->state)) {
5427                 dev_kfree_skb_any(skb);
5428                 return NETDEV_TX_OK;
5429         }
5430
5431         if (skb->len <= 0) {
5432                 dev_kfree_skb_any(skb);
5433                 return NETDEV_TX_OK;
5434         }
5435
5436         /* The minimum packet size with TCTL.PSP set is 17 bytes so
5437          * pad skb in order to meet this minimum size requirement
5438          */
5439         if (unlikely(skb->len < 17)) {
5440                 if (skb_pad(skb, 17 - skb->len))
5441                         return NETDEV_TX_OK;
5442                 skb->len = 17;
5443                 skb_set_tail_pointer(skb, 17);
5444         }
5445
5446         mss = skb_shinfo(skb)->gso_size;
5447         if (mss) {
5448                 u8 hdr_len;
5449
5450                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5451                  * points to just header, pull a few bytes of payload from
5452                  * frags into skb->data
5453                  */
5454                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5455                 /* we do this workaround for ES2LAN, but it is un-necessary,
5456                  * avoiding it could save a lot of cycles
5457                  */
5458                 if (skb->data_len && (hdr_len == len)) {
5459                         unsigned int pull_size;
5460
5461                         pull_size = min_t(unsigned int, 4, skb->data_len);
5462                         if (!__pskb_pull_tail(skb, pull_size)) {
5463                                 e_err("__pskb_pull_tail failed.\n");
5464                                 dev_kfree_skb_any(skb);
5465                                 return NETDEV_TX_OK;
5466                         }
5467                         len = skb_headlen(skb);
5468                 }
5469         }
5470
5471         /* reserve a descriptor for the offload context */
5472         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5473                 count++;
5474         count++;
5475
5476         count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5477
5478         nr_frags = skb_shinfo(skb)->nr_frags;
5479         for (f = 0; f < nr_frags; f++)
5480                 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5481                                       adapter->tx_fifo_limit);
5482
5483         if (adapter->hw.mac.tx_pkt_filtering)
5484                 e1000_transfer_dhcp_info(adapter, skb);
5485
5486         /* need: count + 2 desc gap to keep tail from touching
5487          * head, otherwise try next time
5488          */
5489         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5490                 return NETDEV_TX_BUSY;
5491
5492         if (vlan_tx_tag_present(skb)) {
5493                 tx_flags |= E1000_TX_FLAGS_VLAN;
5494                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5495         }
5496
5497         first = tx_ring->next_to_use;
5498
5499         tso = e1000_tso(tx_ring, skb);
5500         if (tso < 0) {
5501                 dev_kfree_skb_any(skb);
5502                 return NETDEV_TX_OK;
5503         }
5504
5505         if (tso)
5506                 tx_flags |= E1000_TX_FLAGS_TSO;
5507         else if (e1000_tx_csum(tx_ring, skb))
5508                 tx_flags |= E1000_TX_FLAGS_CSUM;
5509
5510         /* Old method was to assume IPv4 packet by default if TSO was enabled.
5511          * 82571 hardware supports TSO capabilities for IPv6 as well...
5512          * no longer assume, we must.
5513          */
5514         if (skb->protocol == htons(ETH_P_IP))
5515                 tx_flags |= E1000_TX_FLAGS_IPV4;
5516
5517         if (unlikely(skb->no_fcs))
5518                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5519
5520         /* if count is 0 then mapping error has occurred */
5521         count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5522                              nr_frags);
5523         if (count) {
5524                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5525                              !adapter->tx_hwtstamp_skb)) {
5526                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5527                         tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5528                         adapter->tx_hwtstamp_skb = skb_get(skb);
5529                         schedule_work(&adapter->tx_hwtstamp_work);
5530                 } else {
5531                         skb_tx_timestamp(skb);
5532                 }
5533
5534                 netdev_sent_queue(netdev, skb->len);
5535                 e1000_tx_queue(tx_ring, tx_flags, count);
5536                 /* Make sure there is space in the ring for the next send. */
5537                 e1000_maybe_stop_tx(tx_ring,
5538                                     (MAX_SKB_FRAGS *
5539                                      DIV_ROUND_UP(PAGE_SIZE,
5540                                                   adapter->tx_fifo_limit) + 2));
5541         } else {
5542                 dev_kfree_skb_any(skb);
5543                 tx_ring->buffer_info[first].time_stamp = 0;
5544                 tx_ring->next_to_use = first;
5545         }
5546
5547         return NETDEV_TX_OK;
5548 }
5549
5550 /**
5551  * e1000_tx_timeout - Respond to a Tx Hang
5552  * @netdev: network interface device structure
5553  **/
5554 static void e1000_tx_timeout(struct net_device *netdev)
5555 {
5556         struct e1000_adapter *adapter = netdev_priv(netdev);
5557
5558         /* Do the reset outside of interrupt context */
5559         adapter->tx_timeout_count++;
5560         schedule_work(&adapter->reset_task);
5561 }
5562
5563 static void e1000_reset_task(struct work_struct *work)
5564 {
5565         struct e1000_adapter *adapter;
5566         adapter = container_of(work, struct e1000_adapter, reset_task);
5567
5568         /* don't run the task if already down */
5569         if (test_bit(__E1000_DOWN, &adapter->state))
5570                 return;
5571
5572         if (!(adapter->flags & FLAG_RESTART_NOW)) {
5573                 e1000e_dump(adapter);
5574                 e_err("Reset adapter unexpectedly\n");
5575         }
5576         e1000e_reinit_locked(adapter);
5577 }
5578
5579 /**
5580  * e1000_get_stats64 - Get System Network Statistics
5581  * @netdev: network interface device structure
5582  * @stats: rtnl_link_stats64 pointer
5583  *
5584  * Returns the address of the device statistics structure.
5585  **/
5586 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5587                                              struct rtnl_link_stats64 *stats)
5588 {
5589         struct e1000_adapter *adapter = netdev_priv(netdev);
5590
5591         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5592         spin_lock(&adapter->stats64_lock);
5593         e1000e_update_stats(adapter);
5594         /* Fill out the OS statistics structure */
5595         stats->rx_bytes = adapter->stats.gorc;
5596         stats->rx_packets = adapter->stats.gprc;
5597         stats->tx_bytes = adapter->stats.gotc;
5598         stats->tx_packets = adapter->stats.gptc;
5599         stats->multicast = adapter->stats.mprc;
5600         stats->collisions = adapter->stats.colc;
5601
5602         /* Rx Errors */
5603
5604         /* RLEC on some newer hardware can be incorrect so build
5605          * our own version based on RUC and ROC
5606          */
5607         stats->rx_errors = adapter->stats.rxerrc +
5608                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5609                 adapter->stats.ruc + adapter->stats.roc +
5610                 adapter->stats.cexterr;
5611         stats->rx_length_errors = adapter->stats.ruc +
5612                                               adapter->stats.roc;
5613         stats->rx_crc_errors = adapter->stats.crcerrs;
5614         stats->rx_frame_errors = adapter->stats.algnerrc;
5615         stats->rx_missed_errors = adapter->stats.mpc;
5616
5617         /* Tx Errors */
5618         stats->tx_errors = adapter->stats.ecol +
5619                                        adapter->stats.latecol;
5620         stats->tx_aborted_errors = adapter->stats.ecol;
5621         stats->tx_window_errors = adapter->stats.latecol;
5622         stats->tx_carrier_errors = adapter->stats.tncrs;
5623
5624         /* Tx Dropped needs to be maintained elsewhere */
5625
5626         spin_unlock(&adapter->stats64_lock);
5627         return stats;
5628 }
5629
5630 /**
5631  * e1000_change_mtu - Change the Maximum Transfer Unit
5632  * @netdev: network interface device structure
5633  * @new_mtu: new value for maximum frame size
5634  *
5635  * Returns 0 on success, negative on failure
5636  **/
5637 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5638 {
5639         struct e1000_adapter *adapter = netdev_priv(netdev);
5640         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5641
5642         /* Jumbo frame support */
5643         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5644             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5645                 e_err("Jumbo Frames not supported.\n");
5646                 return -EINVAL;
5647         }
5648
5649         /* Supported frame sizes */
5650         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5651             (max_frame > adapter->max_hw_frame_size)) {
5652                 e_err("Unsupported MTU setting\n");
5653                 return -EINVAL;
5654         }
5655
5656         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5657         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5658             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5659             (new_mtu > ETH_DATA_LEN)) {
5660                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5661                 return -EINVAL;
5662         }
5663
5664         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5665                 usleep_range(1000, 2000);
5666         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5667         adapter->max_frame_size = max_frame;
5668         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5669         netdev->mtu = new_mtu;
5670         if (netif_running(netdev))
5671                 e1000e_down(adapter);
5672
5673         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5674          * means we reserve 2 more, this pushes us to allocate from the next
5675          * larger slab size.
5676          * i.e. RXBUFFER_2048 --> size-4096 slab
5677          * However with the new *_jumbo_rx* routines, jumbo receives will use
5678          * fragmented skbs
5679          */
5680
5681         if (max_frame <= 2048)
5682                 adapter->rx_buffer_len = 2048;
5683         else
5684                 adapter->rx_buffer_len = 4096;
5685
5686         /* adjust allocation if LPE protects us, and we aren't using SBP */
5687         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5688              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5689                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5690                                          + ETH_FCS_LEN;
5691
5692         if (netif_running(netdev))
5693                 e1000e_up(adapter);
5694         else
5695                 e1000e_reset(adapter);
5696
5697         clear_bit(__E1000_RESETTING, &adapter->state);
5698
5699         return 0;
5700 }
5701
5702 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5703                            int cmd)
5704 {
5705         struct e1000_adapter *adapter = netdev_priv(netdev);
5706         struct mii_ioctl_data *data = if_mii(ifr);
5707
5708         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5709                 return -EOPNOTSUPP;
5710
5711         switch (cmd) {
5712         case SIOCGMIIPHY:
5713                 data->phy_id = adapter->hw.phy.addr;
5714                 break;
5715         case SIOCGMIIREG:
5716                 e1000_phy_read_status(adapter);
5717
5718                 switch (data->reg_num & 0x1F) {
5719                 case MII_BMCR:
5720                         data->val_out = adapter->phy_regs.bmcr;
5721                         break;
5722                 case MII_BMSR:
5723                         data->val_out = adapter->phy_regs.bmsr;
5724                         break;
5725                 case MII_PHYSID1:
5726                         data->val_out = (adapter->hw.phy.id >> 16);
5727                         break;
5728                 case MII_PHYSID2:
5729                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5730                         break;
5731                 case MII_ADVERTISE:
5732                         data->val_out = adapter->phy_regs.advertise;
5733                         break;
5734                 case MII_LPA:
5735                         data->val_out = adapter->phy_regs.lpa;
5736                         break;
5737                 case MII_EXPANSION:
5738                         data->val_out = adapter->phy_regs.expansion;
5739                         break;
5740                 case MII_CTRL1000:
5741                         data->val_out = adapter->phy_regs.ctrl1000;
5742                         break;
5743                 case MII_STAT1000:
5744                         data->val_out = adapter->phy_regs.stat1000;
5745                         break;
5746                 case MII_ESTATUS:
5747                         data->val_out = adapter->phy_regs.estatus;
5748                         break;
5749                 default:
5750                         return -EIO;
5751                 }
5752                 break;
5753         case SIOCSMIIREG:
5754         default:
5755                 return -EOPNOTSUPP;
5756         }
5757         return 0;
5758 }
5759
5760 /**
5761  * e1000e_hwtstamp_ioctl - control hardware time stamping
5762  * @netdev: network interface device structure
5763  * @ifreq: interface request
5764  *
5765  * Outgoing time stamping can be enabled and disabled. Play nice and
5766  * disable it when requested, although it shouldn't cause any overhead
5767  * when no packet needs it. At most one packet in the queue may be
5768  * marked for time stamping, otherwise it would be impossible to tell
5769  * for sure to which packet the hardware time stamp belongs.
5770  *
5771  * Incoming time stamping has to be configured via the hardware filters.
5772  * Not all combinations are supported, in particular event type has to be
5773  * specified. Matching the kind of event packet is not supported, with the
5774  * exception of "all V2 events regardless of level 2 or 4".
5775  **/
5776 static int e1000e_hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr)
5777 {
5778         struct e1000_adapter *adapter = netdev_priv(netdev);
5779         struct hwtstamp_config config;
5780         int ret_val;
5781
5782         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5783                 return -EFAULT;
5784
5785         adapter->hwtstamp_config = config;
5786
5787         ret_val = e1000e_config_hwtstamp(adapter);
5788         if (ret_val)
5789                 return ret_val;
5790
5791         config = adapter->hwtstamp_config;
5792
5793         switch (config.rx_filter) {
5794         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5795         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5796         case HWTSTAMP_FILTER_PTP_V2_SYNC:
5797         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5798         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5799         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5800                 /* With V2 type filters which specify a Sync or Delay Request,
5801                  * Path Delay Request/Response messages are also time stamped
5802                  * by hardware so notify the caller the requested packets plus
5803                  * some others are time stamped.
5804                  */
5805                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5806                 break;
5807         default:
5808                 break;
5809         }
5810
5811         return copy_to_user(ifr->ifr_data, &config,
5812                             sizeof(config)) ? -EFAULT : 0;
5813 }
5814
5815 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5816 {
5817         switch (cmd) {
5818         case SIOCGMIIPHY:
5819         case SIOCGMIIREG:
5820         case SIOCSMIIREG:
5821                 return e1000_mii_ioctl(netdev, ifr, cmd);
5822         case SIOCSHWTSTAMP:
5823                 return e1000e_hwtstamp_ioctl(netdev, ifr);
5824         default:
5825                 return -EOPNOTSUPP;
5826         }
5827 }
5828
5829 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5830 {
5831         struct e1000_hw *hw = &adapter->hw;
5832         u32 i, mac_reg;
5833         u16 phy_reg, wuc_enable;
5834         int retval;
5835
5836         /* copy MAC RARs to PHY RARs */
5837         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5838
5839         retval = hw->phy.ops.acquire(hw);
5840         if (retval) {
5841                 e_err("Could not acquire PHY\n");
5842                 return retval;
5843         }
5844
5845         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5846         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5847         if (retval)
5848                 goto release;
5849
5850         /* copy MAC MTA to PHY MTA - only needed for pchlan */
5851         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5852                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5853                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5854                                            (u16)(mac_reg & 0xFFFF));
5855                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5856                                            (u16)((mac_reg >> 16) & 0xFFFF));
5857         }
5858
5859         /* configure PHY Rx Control register */
5860         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5861         mac_reg = er32(RCTL);
5862         if (mac_reg & E1000_RCTL_UPE)
5863                 phy_reg |= BM_RCTL_UPE;
5864         if (mac_reg & E1000_RCTL_MPE)
5865                 phy_reg |= BM_RCTL_MPE;
5866         phy_reg &= ~(BM_RCTL_MO_MASK);
5867         if (mac_reg & E1000_RCTL_MO_3)
5868                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5869                                 << BM_RCTL_MO_SHIFT);
5870         if (mac_reg & E1000_RCTL_BAM)
5871                 phy_reg |= BM_RCTL_BAM;
5872         if (mac_reg & E1000_RCTL_PMCF)
5873                 phy_reg |= BM_RCTL_PMCF;
5874         mac_reg = er32(CTRL);
5875         if (mac_reg & E1000_CTRL_RFCE)
5876                 phy_reg |= BM_RCTL_RFCE;
5877         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5878
5879         /* enable PHY wakeup in MAC register */
5880         ew32(WUFC, wufc);
5881         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5882
5883         /* configure and enable PHY wakeup in PHY registers */
5884         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5885         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5886
5887         /* activate PHY wakeup */
5888         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5889         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5890         if (retval)
5891                 e_err("Could not set PHY Host Wakeup bit\n");
5892 release:
5893         hw->phy.ops.release(hw);
5894
5895         return retval;
5896 }
5897
5898 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
5899 {
5900         struct net_device *netdev = pci_get_drvdata(pdev);
5901         struct e1000_adapter *adapter = netdev_priv(netdev);
5902         struct e1000_hw *hw = &adapter->hw;
5903         u32 ctrl, ctrl_ext, rctl, status;
5904         /* Runtime suspend should only enable wakeup for link changes */
5905         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5906         int retval = 0;
5907
5908         netif_device_detach(netdev);
5909
5910         if (netif_running(netdev)) {
5911                 int count = E1000_CHECK_RESET_COUNT;
5912
5913                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5914                         usleep_range(10000, 20000);
5915
5916                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5917                 e1000e_down(adapter);
5918                 e1000_free_irq(adapter);
5919         }
5920         e1000e_reset_interrupt_capability(adapter);
5921
5922         status = er32(STATUS);
5923         if (status & E1000_STATUS_LU)
5924                 wufc &= ~E1000_WUFC_LNKC;
5925
5926         if (wufc) {
5927                 e1000_setup_rctl(adapter);
5928                 e1000e_set_rx_mode(netdev);
5929
5930                 /* turn on all-multi mode if wake on multicast is enabled */
5931                 if (wufc & E1000_WUFC_MC) {
5932                         rctl = er32(RCTL);
5933                         rctl |= E1000_RCTL_MPE;
5934                         ew32(RCTL, rctl);
5935                 }
5936
5937                 ctrl = er32(CTRL);
5938                 /* advertise wake from D3Cold */
5939                 #define E1000_CTRL_ADVD3WUC 0x00100000
5940                 /* phy power management enable */
5941                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5942                 ctrl |= E1000_CTRL_ADVD3WUC;
5943                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5944                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5945                 ew32(CTRL, ctrl);
5946
5947                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5948                     adapter->hw.phy.media_type ==
5949                     e1000_media_type_internal_serdes) {
5950                         /* keep the laser running in D3 */
5951                         ctrl_ext = er32(CTRL_EXT);
5952                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5953                         ew32(CTRL_EXT, ctrl_ext);
5954                 }
5955
5956                 if (adapter->flags & FLAG_IS_ICH)
5957                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
5958
5959                 /* Allow time for pending master requests to run */
5960                 e1000e_disable_pcie_master(&adapter->hw);
5961
5962                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5963                         /* enable wakeup by the PHY */
5964                         retval = e1000_init_phy_wakeup(adapter, wufc);
5965                         if (retval)
5966                                 return retval;
5967                 } else {
5968                         /* enable wakeup by the MAC */
5969                         ew32(WUFC, wufc);
5970                         ew32(WUC, E1000_WUC_PME_EN);
5971                 }
5972         } else {
5973                 ew32(WUC, 0);
5974                 ew32(WUFC, 0);
5975         }
5976
5977         if (adapter->hw.phy.type == e1000_phy_igp_3)
5978                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5979
5980         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5981          * would have already happened in close and is redundant.
5982          */
5983         e1000e_release_hw_control(adapter);
5984
5985         pci_clear_master(pdev);
5986
5987         /* The pci-e switch on some quad port adapters will report a
5988          * correctable error when the MAC transitions from D0 to D3.  To
5989          * prevent this we need to mask off the correctable errors on the
5990          * downstream port of the pci-e switch.
5991          */
5992         if (adapter->flags & FLAG_IS_QUAD_PORT) {
5993                 struct pci_dev *us_dev = pdev->bus->self;
5994                 u16 devctl;
5995
5996                 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
5997                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
5998                                            (devctl & ~PCI_EXP_DEVCTL_CERE));
5999
6000                 pci_save_state(pdev);
6001                 pci_prepare_to_sleep(pdev);
6002
6003                 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6004         }
6005
6006         return 0;
6007 }
6008
6009 #ifdef CONFIG_PCIEASPM
6010 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6011 {
6012         pci_disable_link_state_locked(pdev, state);
6013 }
6014 #else
6015 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6016 {
6017         u16 aspm_ctl = 0;
6018
6019         if (state & PCIE_LINK_STATE_L0S)
6020                 aspm_ctl |= PCI_EXP_LNKCTL_ASPM_L0S;
6021         if (state & PCIE_LINK_STATE_L1)
6022                 aspm_ctl |= PCI_EXP_LNKCTL_ASPM_L1;
6023
6024         /* Both device and parent should have the same ASPM setting.
6025          * Disable ASPM in downstream component first and then upstream.
6026          */
6027         pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_ctl);
6028
6029         if (pdev->bus->self)
6030                 pcie_capability_clear_word(pdev->bus->self, PCI_EXP_LNKCTL,
6031                                            aspm_ctl);
6032 }
6033 #endif
6034 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6035 {
6036         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6037                  (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
6038                  (state & PCIE_LINK_STATE_L1) ? "L1" : "");
6039
6040         __e1000e_disable_aspm(pdev, state);
6041 }
6042
6043 #ifdef CONFIG_PM
6044 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
6045 {
6046         return !!adapter->tx_ring->buffer_info;
6047 }
6048
6049 static int __e1000_resume(struct pci_dev *pdev)
6050 {
6051         struct net_device *netdev = pci_get_drvdata(pdev);
6052         struct e1000_adapter *adapter = netdev_priv(netdev);
6053         struct e1000_hw *hw = &adapter->hw;
6054         u16 aspm_disable_flag = 0;
6055         u32 err;
6056
6057         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6058                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6059         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6060                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6061         if (aspm_disable_flag)
6062                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6063
6064         pci_set_master(pdev);
6065
6066         e1000e_set_interrupt_capability(adapter);
6067         if (netif_running(netdev)) {
6068                 err = e1000_request_irq(adapter);
6069                 if (err)
6070                         return err;
6071         }
6072
6073         if (hw->mac.type >= e1000_pch2lan)
6074                 e1000_resume_workarounds_pchlan(&adapter->hw);
6075
6076         e1000e_power_up_phy(adapter);
6077
6078         /* report the system wakeup cause from S3/S4 */
6079         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6080                 u16 phy_data;
6081
6082                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6083                 if (phy_data) {
6084                         e_info("PHY Wakeup cause - %s\n",
6085                                 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6086                                 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6087                                 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6088                                 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6089                                 phy_data & E1000_WUS_LNKC ?
6090                                 "Link Status Change" : "other");
6091                 }
6092                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6093         } else {
6094                 u32 wus = er32(WUS);
6095                 if (wus) {
6096                         e_info("MAC Wakeup cause - %s\n",
6097                                 wus & E1000_WUS_EX ? "Unicast Packet" :
6098                                 wus & E1000_WUS_MC ? "Multicast Packet" :
6099                                 wus & E1000_WUS_BC ? "Broadcast Packet" :
6100                                 wus & E1000_WUS_MAG ? "Magic Packet" :
6101                                 wus & E1000_WUS_LNKC ? "Link Status Change" :
6102                                 "other");
6103                 }
6104                 ew32(WUS, ~0);
6105         }
6106
6107         e1000e_reset(adapter);
6108
6109         e1000_init_manageability_pt(adapter);
6110
6111         if (netif_running(netdev))
6112                 e1000e_up(adapter);
6113
6114         netif_device_attach(netdev);
6115
6116         /* If the controller has AMT, do not set DRV_LOAD until the interface
6117          * is up.  For all other cases, let the f/w know that the h/w is now
6118          * under the control of the driver.
6119          */
6120         if (!(adapter->flags & FLAG_HAS_AMT))
6121                 e1000e_get_hw_control(adapter);
6122
6123         return 0;
6124 }
6125
6126 #ifdef CONFIG_PM_SLEEP
6127 static int e1000_suspend(struct device *dev)
6128 {
6129         struct pci_dev *pdev = to_pci_dev(dev);
6130
6131         return __e1000_shutdown(pdev, false);
6132 }
6133
6134 static int e1000_resume(struct device *dev)
6135 {
6136         struct pci_dev *pdev = to_pci_dev(dev);
6137         struct net_device *netdev = pci_get_drvdata(pdev);
6138         struct e1000_adapter *adapter = netdev_priv(netdev);
6139
6140         if (e1000e_pm_ready(adapter))
6141                 adapter->idle_check = true;
6142
6143         return __e1000_resume(pdev);
6144 }
6145 #endif /* CONFIG_PM_SLEEP */
6146
6147 #ifdef CONFIG_PM_RUNTIME
6148 static int e1000_runtime_suspend(struct device *dev)
6149 {
6150         struct pci_dev *pdev = to_pci_dev(dev);
6151         struct net_device *netdev = pci_get_drvdata(pdev);
6152         struct e1000_adapter *adapter = netdev_priv(netdev);
6153
6154         if (!e1000e_pm_ready(adapter))
6155                 return 0;
6156
6157         return __e1000_shutdown(pdev, true);
6158 }
6159
6160 static int e1000_idle(struct device *dev)
6161 {
6162         struct pci_dev *pdev = to_pci_dev(dev);
6163         struct net_device *netdev = pci_get_drvdata(pdev);
6164         struct e1000_adapter *adapter = netdev_priv(netdev);
6165
6166         if (!e1000e_pm_ready(adapter))
6167                 return 0;
6168
6169         if (adapter->idle_check) {
6170                 adapter->idle_check = false;
6171                 if (!e1000e_has_link(adapter))
6172                         pm_schedule_suspend(dev, MSEC_PER_SEC);
6173         }
6174
6175         return -EBUSY;
6176 }
6177
6178 static int e1000_runtime_resume(struct device *dev)
6179 {
6180         struct pci_dev *pdev = to_pci_dev(dev);
6181         struct net_device *netdev = pci_get_drvdata(pdev);
6182         struct e1000_adapter *adapter = netdev_priv(netdev);
6183
6184         if (!e1000e_pm_ready(adapter))
6185                 return 0;
6186
6187         adapter->idle_check = !dev->power.runtime_auto;
6188         return __e1000_resume(pdev);
6189 }
6190 #endif /* CONFIG_PM_RUNTIME */
6191 #endif /* CONFIG_PM */
6192
6193 static void e1000_shutdown(struct pci_dev *pdev)
6194 {
6195         __e1000_shutdown(pdev, false);
6196 }
6197
6198 #ifdef CONFIG_NET_POLL_CONTROLLER
6199
6200 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6201 {
6202         struct net_device *netdev = data;
6203         struct e1000_adapter *adapter = netdev_priv(netdev);
6204
6205         if (adapter->msix_entries) {
6206                 int vector, msix_irq;
6207
6208                 vector = 0;
6209                 msix_irq = adapter->msix_entries[vector].vector;
6210                 disable_irq(msix_irq);
6211                 e1000_intr_msix_rx(msix_irq, netdev);
6212                 enable_irq(msix_irq);
6213
6214                 vector++;
6215                 msix_irq = adapter->msix_entries[vector].vector;
6216                 disable_irq(msix_irq);
6217                 e1000_intr_msix_tx(msix_irq, netdev);
6218                 enable_irq(msix_irq);
6219
6220                 vector++;
6221                 msix_irq = adapter->msix_entries[vector].vector;
6222                 disable_irq(msix_irq);
6223                 e1000_msix_other(msix_irq, netdev);
6224                 enable_irq(msix_irq);
6225         }
6226
6227         return IRQ_HANDLED;
6228 }
6229
6230 /**
6231  * e1000_netpoll
6232  * @netdev: network interface device structure
6233  *
6234  * Polling 'interrupt' - used by things like netconsole to send skbs
6235  * without having to re-enable interrupts. It's not called while
6236  * the interrupt routine is executing.
6237  */
6238 static void e1000_netpoll(struct net_device *netdev)
6239 {
6240         struct e1000_adapter *adapter = netdev_priv(netdev);
6241
6242         switch (adapter->int_mode) {
6243         case E1000E_INT_MODE_MSIX:
6244                 e1000_intr_msix(adapter->pdev->irq, netdev);
6245                 break;
6246         case E1000E_INT_MODE_MSI:
6247                 disable_irq(adapter->pdev->irq);
6248                 e1000_intr_msi(adapter->pdev->irq, netdev);
6249                 enable_irq(adapter->pdev->irq);
6250                 break;
6251         default: /* E1000E_INT_MODE_LEGACY */
6252                 disable_irq(adapter->pdev->irq);
6253                 e1000_intr(adapter->pdev->irq, netdev);
6254                 enable_irq(adapter->pdev->irq);
6255                 break;
6256         }
6257 }
6258 #endif
6259
6260 /**
6261  * e1000_io_error_detected - called when PCI error is detected
6262  * @pdev: Pointer to PCI device
6263  * @state: The current pci connection state
6264  *
6265  * This function is called after a PCI bus error affecting
6266  * this device has been detected.
6267  */
6268 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6269                                                 pci_channel_state_t state)
6270 {
6271         struct net_device *netdev = pci_get_drvdata(pdev);
6272         struct e1000_adapter *adapter = netdev_priv(netdev);
6273
6274         netif_device_detach(netdev);
6275
6276         if (state == pci_channel_io_perm_failure)
6277                 return PCI_ERS_RESULT_DISCONNECT;
6278
6279         if (netif_running(netdev))
6280                 e1000e_down(adapter);
6281         pci_disable_device(pdev);
6282
6283         /* Request a slot slot reset. */
6284         return PCI_ERS_RESULT_NEED_RESET;
6285 }
6286
6287 /**
6288  * e1000_io_slot_reset - called after the pci bus has been reset.
6289  * @pdev: Pointer to PCI device
6290  *
6291  * Restart the card from scratch, as if from a cold-boot. Implementation
6292  * resembles the first-half of the e1000_resume routine.
6293  */
6294 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6295 {
6296         struct net_device *netdev = pci_get_drvdata(pdev);
6297         struct e1000_adapter *adapter = netdev_priv(netdev);
6298         struct e1000_hw *hw = &adapter->hw;
6299         u16 aspm_disable_flag = 0;
6300         int err;
6301         pci_ers_result_t result;
6302
6303         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6304                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6305         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6306                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6307         if (aspm_disable_flag)
6308                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6309
6310         err = pci_enable_device_mem(pdev);
6311         if (err) {
6312                 dev_err(&pdev->dev,
6313                         "Cannot re-enable PCI device after reset.\n");
6314                 result = PCI_ERS_RESULT_DISCONNECT;
6315         } else {
6316                 pdev->state_saved = true;
6317                 pci_restore_state(pdev);
6318                 pci_set_master(pdev);
6319
6320                 pci_enable_wake(pdev, PCI_D3hot, 0);
6321                 pci_enable_wake(pdev, PCI_D3cold, 0);
6322
6323                 e1000e_reset(adapter);
6324                 ew32(WUS, ~0);
6325                 result = PCI_ERS_RESULT_RECOVERED;
6326         }
6327
6328         pci_cleanup_aer_uncorrect_error_status(pdev);
6329
6330         return result;
6331 }
6332
6333 /**
6334  * e1000_io_resume - called when traffic can start flowing again.
6335  * @pdev: Pointer to PCI device
6336  *
6337  * This callback is called when the error recovery driver tells us that
6338  * its OK to resume normal operation. Implementation resembles the
6339  * second-half of the e1000_resume routine.
6340  */
6341 static void e1000_io_resume(struct pci_dev *pdev)
6342 {
6343         struct net_device *netdev = pci_get_drvdata(pdev);
6344         struct e1000_adapter *adapter = netdev_priv(netdev);
6345
6346         e1000_init_manageability_pt(adapter);
6347
6348         if (netif_running(netdev)) {
6349                 if (e1000e_up(adapter)) {
6350                         dev_err(&pdev->dev,
6351                                 "can't bring device back up after reset\n");
6352                         return;
6353                 }
6354         }
6355
6356         netif_device_attach(netdev);
6357
6358         /* If the controller has AMT, do not set DRV_LOAD until the interface
6359          * is up.  For all other cases, let the f/w know that the h/w is now
6360          * under the control of the driver.
6361          */
6362         if (!(adapter->flags & FLAG_HAS_AMT))
6363                 e1000e_get_hw_control(adapter);
6364 }
6365
6366 static void e1000_print_device_info(struct e1000_adapter *adapter)
6367 {
6368         struct e1000_hw *hw = &adapter->hw;
6369         struct net_device *netdev = adapter->netdev;
6370         u32 ret_val;
6371         u8 pba_str[E1000_PBANUM_LENGTH];
6372
6373         /* print bus type/speed/width info */
6374         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6375                /* bus width */
6376                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6377                 "Width x1"),
6378                /* MAC address */
6379                netdev->dev_addr);
6380         e_info("Intel(R) PRO/%s Network Connection\n",
6381                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6382         ret_val = e1000_read_pba_string_generic(hw, pba_str,
6383                                                 E1000_PBANUM_LENGTH);
6384         if (ret_val)
6385                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6386         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6387                hw->mac.type, hw->phy.type, pba_str);
6388 }
6389
6390 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6391 {
6392         struct e1000_hw *hw = &adapter->hw;
6393         int ret_val;
6394         u16 buf = 0;
6395
6396         if (hw->mac.type != e1000_82573)
6397                 return;
6398
6399         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6400         le16_to_cpus(&buf);
6401         if (!ret_val && (!(buf & (1 << 0)))) {
6402                 /* Deep Smart Power Down (DSPD) */
6403                 dev_warn(&adapter->pdev->dev,
6404                          "Warning: detected DSPD enabled in EEPROM\n");
6405         }
6406 }
6407
6408 static int e1000_set_features(struct net_device *netdev,
6409                               netdev_features_t features)
6410 {
6411         struct e1000_adapter *adapter = netdev_priv(netdev);
6412         netdev_features_t changed = features ^ netdev->features;
6413
6414         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6415                 adapter->flags |= FLAG_TSO_FORCE;
6416
6417         if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
6418                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6419                          NETIF_F_RXALL)))
6420                 return 0;
6421
6422         if (changed & NETIF_F_RXFCS) {
6423                 if (features & NETIF_F_RXFCS) {
6424                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6425                 } else {
6426                         /* We need to take it back to defaults, which might mean
6427                          * stripping is still disabled at the adapter level.
6428                          */
6429                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6430                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6431                         else
6432                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6433                 }
6434         }
6435
6436         netdev->features = features;
6437
6438         if (netif_running(netdev))
6439                 e1000e_reinit_locked(adapter);
6440         else
6441                 e1000e_reset(adapter);
6442
6443         return 0;
6444 }
6445
6446 static const struct net_device_ops e1000e_netdev_ops = {
6447         .ndo_open               = e1000_open,
6448         .ndo_stop               = e1000_close,
6449         .ndo_start_xmit         = e1000_xmit_frame,
6450         .ndo_get_stats64        = e1000e_get_stats64,
6451         .ndo_set_rx_mode        = e1000e_set_rx_mode,
6452         .ndo_set_mac_address    = e1000_set_mac,
6453         .ndo_change_mtu         = e1000_change_mtu,
6454         .ndo_do_ioctl           = e1000_ioctl,
6455         .ndo_tx_timeout         = e1000_tx_timeout,
6456         .ndo_validate_addr      = eth_validate_addr,
6457
6458         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
6459         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
6460 #ifdef CONFIG_NET_POLL_CONTROLLER
6461         .ndo_poll_controller    = e1000_netpoll,
6462 #endif
6463         .ndo_set_features = e1000_set_features,
6464 };
6465
6466 /**
6467  * e1000_probe - Device Initialization Routine
6468  * @pdev: PCI device information struct
6469  * @ent: entry in e1000_pci_tbl
6470  *
6471  * Returns 0 on success, negative on failure
6472  *
6473  * e1000_probe initializes an adapter identified by a pci_dev structure.
6474  * The OS initialization, configuring of the adapter private structure,
6475  * and a hardware reset occur.
6476  **/
6477 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6478 {
6479         struct net_device *netdev;
6480         struct e1000_adapter *adapter;
6481         struct e1000_hw *hw;
6482         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6483         resource_size_t mmio_start, mmio_len;
6484         resource_size_t flash_start, flash_len;
6485         static int cards_found;
6486         u16 aspm_disable_flag = 0;
6487         int i, err, pci_using_dac;
6488         u16 eeprom_data = 0;
6489         u16 eeprom_apme_mask = E1000_EEPROM_APME;
6490
6491         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6492                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6493         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6494                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6495         if (aspm_disable_flag)
6496                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6497
6498         err = pci_enable_device_mem(pdev);
6499         if (err)
6500                 return err;
6501
6502         pci_using_dac = 0;
6503         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6504         if (!err) {
6505                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6506                 if (!err)
6507                         pci_using_dac = 1;
6508         } else {
6509                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6510                 if (err) {
6511                         err = dma_set_coherent_mask(&pdev->dev,
6512                                                     DMA_BIT_MASK(32));
6513                         if (err) {
6514                                 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6515                                 goto err_dma;
6516                         }
6517                 }
6518         }
6519
6520         err = pci_request_selected_regions_exclusive(pdev,
6521                                           pci_select_bars(pdev, IORESOURCE_MEM),
6522                                           e1000e_driver_name);
6523         if (err)
6524                 goto err_pci_reg;
6525
6526         /* AER (Advanced Error Reporting) hooks */
6527         pci_enable_pcie_error_reporting(pdev);
6528
6529         pci_set_master(pdev);
6530         /* PCI config space info */
6531         err = pci_save_state(pdev);
6532         if (err)
6533                 goto err_alloc_etherdev;
6534
6535         err = -ENOMEM;
6536         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6537         if (!netdev)
6538                 goto err_alloc_etherdev;
6539
6540         SET_NETDEV_DEV(netdev, &pdev->dev);
6541
6542         netdev->irq = pdev->irq;
6543
6544         pci_set_drvdata(pdev, netdev);
6545         adapter = netdev_priv(netdev);
6546         hw = &adapter->hw;
6547         adapter->netdev = netdev;
6548         adapter->pdev = pdev;
6549         adapter->ei = ei;
6550         adapter->pba = ei->pba;
6551         adapter->flags = ei->flags;
6552         adapter->flags2 = ei->flags2;
6553         adapter->hw.adapter = adapter;
6554         adapter->hw.mac.type = ei->mac;
6555         adapter->max_hw_frame_size = ei->max_hw_frame_size;
6556         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6557
6558         mmio_start = pci_resource_start(pdev, 0);
6559         mmio_len = pci_resource_len(pdev, 0);
6560
6561         err = -EIO;
6562         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6563         if (!adapter->hw.hw_addr)
6564                 goto err_ioremap;
6565
6566         if ((adapter->flags & FLAG_HAS_FLASH) &&
6567             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6568                 flash_start = pci_resource_start(pdev, 1);
6569                 flash_len = pci_resource_len(pdev, 1);
6570                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6571                 if (!adapter->hw.flash_address)
6572                         goto err_flashmap;
6573         }
6574
6575         /* construct the net_device struct */
6576         netdev->netdev_ops              = &e1000e_netdev_ops;
6577         e1000e_set_ethtool_ops(netdev);
6578         netdev->watchdog_timeo          = 5 * HZ;
6579         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6580         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6581
6582         netdev->mem_start = mmio_start;
6583         netdev->mem_end = mmio_start + mmio_len;
6584
6585         adapter->bd_number = cards_found++;
6586
6587         e1000e_check_options(adapter);
6588
6589         /* setup adapter struct */
6590         err = e1000_sw_init(adapter);
6591         if (err)
6592                 goto err_sw_init;
6593
6594         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6595         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6596         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6597
6598         err = ei->get_variants(adapter);
6599         if (err)
6600                 goto err_hw_init;
6601
6602         if ((adapter->flags & FLAG_IS_ICH) &&
6603             (adapter->flags & FLAG_READ_ONLY_NVM))
6604                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6605
6606         hw->mac.ops.get_bus_info(&adapter->hw);
6607
6608         adapter->hw.phy.autoneg_wait_to_complete = 0;
6609
6610         /* Copper options */
6611         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6612                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6613                 adapter->hw.phy.disable_polarity_correction = 0;
6614                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6615         }
6616
6617         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6618                 dev_info(&pdev->dev,
6619                          "PHY reset is blocked due to SOL/IDER session.\n");
6620
6621         /* Set initial default active device features */
6622         netdev->features = (NETIF_F_SG |
6623                             NETIF_F_HW_VLAN_RX |
6624                             NETIF_F_HW_VLAN_TX |
6625                             NETIF_F_TSO |
6626                             NETIF_F_TSO6 |
6627                             NETIF_F_RXHASH |
6628                             NETIF_F_RXCSUM |
6629                             NETIF_F_HW_CSUM);
6630
6631         /* Set user-changeable features (subset of all device features) */
6632         netdev->hw_features = netdev->features;
6633         netdev->hw_features |= NETIF_F_RXFCS;
6634         netdev->priv_flags |= IFF_SUPP_NOFCS;
6635         netdev->hw_features |= NETIF_F_RXALL;
6636
6637         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6638                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
6639
6640         netdev->vlan_features |= (NETIF_F_SG |
6641                                   NETIF_F_TSO |
6642                                   NETIF_F_TSO6 |
6643                                   NETIF_F_HW_CSUM);
6644
6645         netdev->priv_flags |= IFF_UNICAST_FLT;
6646
6647         if (pci_using_dac) {
6648                 netdev->features |= NETIF_F_HIGHDMA;
6649                 netdev->vlan_features |= NETIF_F_HIGHDMA;
6650         }
6651
6652         if (e1000e_enable_mng_pass_thru(&adapter->hw))
6653                 adapter->flags |= FLAG_MNG_PT_ENABLED;
6654
6655         /* before reading the NVM, reset the controller to
6656          * put the device in a known good starting state
6657          */
6658         adapter->hw.mac.ops.reset_hw(&adapter->hw);
6659
6660         /* systems with ASPM and others may see the checksum fail on the first
6661          * attempt. Let's give it a few tries
6662          */
6663         for (i = 0;; i++) {
6664                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6665                         break;
6666                 if (i == 2) {
6667                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6668                         err = -EIO;
6669                         goto err_eeprom;
6670                 }
6671         }
6672
6673         e1000_eeprom_checks(adapter);
6674
6675         /* copy the MAC address */
6676         if (e1000e_read_mac_addr(&adapter->hw))
6677                 dev_err(&pdev->dev,
6678                         "NVM Read Error while reading MAC address\n");
6679
6680         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6681
6682         if (!is_valid_ether_addr(netdev->dev_addr)) {
6683                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6684                         netdev->dev_addr);
6685                 err = -EIO;
6686                 goto err_eeprom;
6687         }
6688
6689         init_timer(&adapter->watchdog_timer);
6690         adapter->watchdog_timer.function = e1000_watchdog;
6691         adapter->watchdog_timer.data = (unsigned long) adapter;
6692
6693         init_timer(&adapter->phy_info_timer);
6694         adapter->phy_info_timer.function = e1000_update_phy_info;
6695         adapter->phy_info_timer.data = (unsigned long) adapter;
6696
6697         INIT_WORK(&adapter->reset_task, e1000_reset_task);
6698         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6699         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6700         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6701         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6702
6703         /* Initialize link parameters. User can change them with ethtool */
6704         adapter->hw.mac.autoneg = 1;
6705         adapter->fc_autoneg = true;
6706         adapter->hw.fc.requested_mode = e1000_fc_default;
6707         adapter->hw.fc.current_mode = e1000_fc_default;
6708         adapter->hw.phy.autoneg_advertised = 0x2f;
6709
6710         /* ring size defaults */
6711         adapter->rx_ring->count = E1000_DEFAULT_RXD;
6712         adapter->tx_ring->count = E1000_DEFAULT_TXD;
6713
6714         /* Initial Wake on LAN setting - If APM wake is enabled in
6715          * the EEPROM, enable the ACPI Magic Packet filter
6716          */
6717         if (adapter->flags & FLAG_APME_IN_WUC) {
6718                 /* APME bit in EEPROM is mapped to WUC.APME */
6719                 eeprom_data = er32(WUC);
6720                 eeprom_apme_mask = E1000_WUC_APME;
6721                 if ((hw->mac.type > e1000_ich10lan) &&
6722                     (eeprom_data & E1000_WUC_PHY_WAKE))
6723                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6724         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6725                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6726                     (adapter->hw.bus.func == 1))
6727                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6728                                        1, &eeprom_data);
6729                 else
6730                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6731                                        1, &eeprom_data);
6732         }
6733
6734         /* fetch WoL from EEPROM */
6735         if (eeprom_data & eeprom_apme_mask)
6736                 adapter->eeprom_wol |= E1000_WUFC_MAG;
6737
6738         /* now that we have the eeprom settings, apply the special cases
6739          * where the eeprom may be wrong or the board simply won't support
6740          * wake on lan on a particular port
6741          */
6742         if (!(adapter->flags & FLAG_HAS_WOL))
6743                 adapter->eeprom_wol = 0;
6744
6745         /* initialize the wol settings based on the eeprom settings */
6746         adapter->wol = adapter->eeprom_wol;
6747
6748         /* make sure adapter isn't asleep if manageability is enabled */
6749         if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
6750             (hw->mac.ops.check_mng_mode(hw)))
6751                 device_wakeup_enable(&pdev->dev);
6752
6753         /* save off EEPROM version number */
6754         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6755
6756         /* reset the hardware with the new settings */
6757         e1000e_reset(adapter);
6758
6759         /* If the controller has AMT, do not set DRV_LOAD until the interface
6760          * is up.  For all other cases, let the f/w know that the h/w is now
6761          * under the control of the driver.
6762          */
6763         if (!(adapter->flags & FLAG_HAS_AMT))
6764                 e1000e_get_hw_control(adapter);
6765
6766         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6767         err = register_netdev(netdev);
6768         if (err)
6769                 goto err_register;
6770
6771         /* carrier off reporting is important to ethtool even BEFORE open */
6772         netif_carrier_off(netdev);
6773
6774         /* init PTP hardware clock */
6775         e1000e_ptp_init(adapter);
6776
6777         e1000_print_device_info(adapter);
6778
6779         if (pci_dev_run_wake(pdev))
6780                 pm_runtime_put_noidle(&pdev->dev);
6781
6782         return 0;
6783
6784 err_register:
6785         if (!(adapter->flags & FLAG_HAS_AMT))
6786                 e1000e_release_hw_control(adapter);
6787 err_eeprom:
6788         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6789                 e1000_phy_hw_reset(&adapter->hw);
6790 err_hw_init:
6791         kfree(adapter->tx_ring);
6792         kfree(adapter->rx_ring);
6793 err_sw_init:
6794         if (adapter->hw.flash_address)
6795                 iounmap(adapter->hw.flash_address);
6796         e1000e_reset_interrupt_capability(adapter);
6797 err_flashmap:
6798         iounmap(adapter->hw.hw_addr);
6799 err_ioremap:
6800         free_netdev(netdev);
6801 err_alloc_etherdev:
6802         pci_release_selected_regions(pdev,
6803                                      pci_select_bars(pdev, IORESOURCE_MEM));
6804 err_pci_reg:
6805 err_dma:
6806         pci_disable_device(pdev);
6807         return err;
6808 }
6809
6810 /**
6811  * e1000_remove - Device Removal Routine
6812  * @pdev: PCI device information struct
6813  *
6814  * e1000_remove is called by the PCI subsystem to alert the driver
6815  * that it should release a PCI device.  The could be caused by a
6816  * Hot-Plug event, or because the driver is going to be removed from
6817  * memory.
6818  **/
6819 static void e1000_remove(struct pci_dev *pdev)
6820 {
6821         struct net_device *netdev = pci_get_drvdata(pdev);
6822         struct e1000_adapter *adapter = netdev_priv(netdev);
6823         bool down = test_bit(__E1000_DOWN, &adapter->state);
6824
6825         e1000e_ptp_remove(adapter);
6826
6827         /* The timers may be rescheduled, so explicitly disable them
6828          * from being rescheduled.
6829          */
6830         if (!down)
6831                 set_bit(__E1000_DOWN, &adapter->state);
6832         del_timer_sync(&adapter->watchdog_timer);
6833         del_timer_sync(&adapter->phy_info_timer);
6834
6835         cancel_work_sync(&adapter->reset_task);
6836         cancel_work_sync(&adapter->watchdog_task);
6837         cancel_work_sync(&adapter->downshift_task);
6838         cancel_work_sync(&adapter->update_phy_task);
6839         cancel_work_sync(&adapter->print_hang_task);
6840
6841         if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
6842                 cancel_work_sync(&adapter->tx_hwtstamp_work);
6843                 if (adapter->tx_hwtstamp_skb) {
6844                         dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
6845                         adapter->tx_hwtstamp_skb = NULL;
6846                 }
6847         }
6848
6849         if (!(netdev->flags & IFF_UP))
6850                 e1000_power_down_phy(adapter);
6851
6852         /* Don't lie to e1000_close() down the road. */
6853         if (!down)
6854                 clear_bit(__E1000_DOWN, &adapter->state);
6855         unregister_netdev(netdev);
6856
6857         if (pci_dev_run_wake(pdev))
6858                 pm_runtime_get_noresume(&pdev->dev);
6859
6860         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
6861          * would have already happened in close and is redundant.
6862          */
6863         e1000e_release_hw_control(adapter);
6864
6865         e1000e_reset_interrupt_capability(adapter);
6866         kfree(adapter->tx_ring);
6867         kfree(adapter->rx_ring);
6868
6869         iounmap(adapter->hw.hw_addr);
6870         if (adapter->hw.flash_address)
6871                 iounmap(adapter->hw.flash_address);
6872         pci_release_selected_regions(pdev,
6873                                      pci_select_bars(pdev, IORESOURCE_MEM));
6874
6875         free_netdev(netdev);
6876
6877         /* AER disable */
6878         pci_disable_pcie_error_reporting(pdev);
6879
6880         pci_disable_device(pdev);
6881 }
6882
6883 /* PCI Error Recovery (ERS) */
6884 static const struct pci_error_handlers e1000_err_handler = {
6885         .error_detected = e1000_io_error_detected,
6886         .slot_reset = e1000_io_slot_reset,
6887         .resume = e1000_io_resume,
6888 };
6889
6890 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6891         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6892         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6893         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6894         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6895         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6896         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6897         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6898         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6899         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6900
6901         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6902         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6903         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6904         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6905
6906         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6907         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6908         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6909
6910         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6911         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6912         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6913
6914         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6915           board_80003es2lan },
6916         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6917           board_80003es2lan },
6918         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6919           board_80003es2lan },
6920         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6921           board_80003es2lan },
6922
6923         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6924         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6925         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6926         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6927         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6928         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6929         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6930         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6931
6932         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6933         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6934         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6935         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6936         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6937         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6938         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6939         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6940         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6941
6942         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6943         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6944         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6945
6946         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6947         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6948         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6949
6950         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6951         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6952         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6953         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6954
6955         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6956         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6957
6958         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
6959         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
6960         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
6961         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
6962
6963         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
6964 };
6965 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6966
6967 #ifdef CONFIG_PM
6968 static const struct dev_pm_ops e1000_pm_ops = {
6969         SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6970         SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6971                                 e1000_runtime_resume, e1000_idle)
6972 };
6973 #endif
6974
6975 /* PCI Device API Driver */
6976 static struct pci_driver e1000_driver = {
6977         .name     = e1000e_driver_name,
6978         .id_table = e1000_pci_tbl,
6979         .probe    = e1000_probe,
6980         .remove   = e1000_remove,
6981 #ifdef CONFIG_PM
6982         .driver   = {
6983                 .pm = &e1000_pm_ops,
6984         },
6985 #endif
6986         .shutdown = e1000_shutdown,
6987         .err_handler = &e1000_err_handler
6988 };
6989
6990 /**
6991  * e1000_init_module - Driver Registration Routine
6992  *
6993  * e1000_init_module is the first routine called when the driver is
6994  * loaded. All it does is register with the PCI subsystem.
6995  **/
6996 static int __init e1000_init_module(void)
6997 {
6998         int ret;
6999         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7000                 e1000e_driver_version);
7001         pr_info("Copyright(c) 1999 - 2013 Intel Corporation.\n");
7002         ret = pci_register_driver(&e1000_driver);
7003
7004         return ret;
7005 }
7006 module_init(e1000_init_module);
7007
7008 /**
7009  * e1000_exit_module - Driver Exit Cleanup Routine
7010  *
7011  * e1000_exit_module is called just before the driver is removed
7012  * from memory.
7013  **/
7014 static void __exit e1000_exit_module(void)
7015 {
7016         pci_unregister_driver(&e1000_driver);
7017 }
7018 module_exit(e1000_exit_module);
7019
7020
7021 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7022 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7023 MODULE_LICENSE("GPL");
7024 MODULE_VERSION(DRV_VERSION);
7025
7026 /* netdev.c */