Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec
[pandora-kernel.git] / drivers / net / ethernet / intel / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32 #include <asm/uaccess.h>
33
34 enum {NETDEV_STATS, E1000_STATS};
35
36 struct e1000_stats {
37         char stat_string[ETH_GSTRING_LEN];
38         int type;
39         int sizeof_stat;
40         int stat_offset;
41 };
42
43 #define E1000_STAT(m)           E1000_STATS, \
44                                 sizeof(((struct e1000_adapter *)0)->m), \
45                                 offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
47                                 sizeof(((struct net_device *)0)->m), \
48                                 offsetof(struct net_device, m)
49
50 static const struct e1000_stats e1000_gstrings_stats[] = {
51         { "rx_packets", E1000_STAT(stats.gprc) },
52         { "tx_packets", E1000_STAT(stats.gptc) },
53         { "rx_bytes", E1000_STAT(stats.gorcl) },
54         { "tx_bytes", E1000_STAT(stats.gotcl) },
55         { "rx_broadcast", E1000_STAT(stats.bprc) },
56         { "tx_broadcast", E1000_STAT(stats.bptc) },
57         { "rx_multicast", E1000_STAT(stats.mprc) },
58         { "tx_multicast", E1000_STAT(stats.mptc) },
59         { "rx_errors", E1000_STAT(stats.rxerrc) },
60         { "tx_errors", E1000_STAT(stats.txerrc) },
61         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
62         { "multicast", E1000_STAT(stats.mprc) },
63         { "collisions", E1000_STAT(stats.colc) },
64         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
65         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
66         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
67         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
68         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
69         { "rx_missed_errors", E1000_STAT(stats.mpc) },
70         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
71         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
72         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
73         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
74         { "tx_window_errors", E1000_STAT(stats.latecol) },
75         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
76         { "tx_deferred_ok", E1000_STAT(stats.dc) },
77         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
78         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
79         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
80         { "tx_restart_queue", E1000_STAT(restart_queue) },
81         { "rx_long_length_errors", E1000_STAT(stats.roc) },
82         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
83         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
84         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
85         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
86         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
87         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
88         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
89         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
90         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
91         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
92         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
93         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
94         { "tx_smbus", E1000_STAT(stats.mgptc) },
95         { "rx_smbus", E1000_STAT(stats.mgprc) },
96         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
97 };
98
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103         "Register test  (offline)", "Eeprom test    (offline)",
104         "Interrupt test (offline)", "Loopback test  (offline)",
105         "Link test   (on/offline)"
106 };
107 #define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
108
109 static int e1000_get_settings(struct net_device *netdev,
110                               struct ethtool_cmd *ecmd)
111 {
112         struct e1000_adapter *adapter = netdev_priv(netdev);
113         struct e1000_hw *hw = &adapter->hw;
114
115         if (hw->media_type == e1000_media_type_copper) {
116
117                 ecmd->supported = (SUPPORTED_10baseT_Half |
118                                    SUPPORTED_10baseT_Full |
119                                    SUPPORTED_100baseT_Half |
120                                    SUPPORTED_100baseT_Full |
121                                    SUPPORTED_1000baseT_Full|
122                                    SUPPORTED_Autoneg |
123                                    SUPPORTED_TP);
124                 ecmd->advertising = ADVERTISED_TP;
125
126                 if (hw->autoneg == 1) {
127                         ecmd->advertising |= ADVERTISED_Autoneg;
128                         /* the e1000 autoneg seems to match ethtool nicely */
129                         ecmd->advertising |= hw->autoneg_advertised;
130                 }
131
132                 ecmd->port = PORT_TP;
133                 ecmd->phy_address = hw->phy_addr;
134
135                 if (hw->mac_type == e1000_82543)
136                         ecmd->transceiver = XCVR_EXTERNAL;
137                 else
138                         ecmd->transceiver = XCVR_INTERNAL;
139
140         } else {
141                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
142                                      SUPPORTED_FIBRE |
143                                      SUPPORTED_Autoneg);
144
145                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
146                                      ADVERTISED_FIBRE |
147                                      ADVERTISED_Autoneg);
148
149                 ecmd->port = PORT_FIBRE;
150
151                 if (hw->mac_type >= e1000_82545)
152                         ecmd->transceiver = XCVR_INTERNAL;
153                 else
154                         ecmd->transceiver = XCVR_EXTERNAL;
155         }
156
157         if (er32(STATUS) & E1000_STATUS_LU) {
158
159                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
160                                                    &adapter->link_duplex);
161                 ethtool_cmd_speed_set(ecmd, adapter->link_speed);
162
163                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
164                  * and HALF_DUPLEX != DUPLEX_HALF
165                  */
166                 if (adapter->link_duplex == FULL_DUPLEX)
167                         ecmd->duplex = DUPLEX_FULL;
168                 else
169                         ecmd->duplex = DUPLEX_HALF;
170         } else {
171                 ethtool_cmd_speed_set(ecmd, -1);
172                 ecmd->duplex = -1;
173         }
174
175         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
176                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
177
178         /* MDI-X => 1; MDI => 0 */
179         if ((hw->media_type == e1000_media_type_copper) &&
180             netif_carrier_ok(netdev))
181                 ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
182                                      ETH_TP_MDI_X : ETH_TP_MDI);
183         else
184                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
185
186         if (hw->mdix == AUTO_ALL_MODES)
187                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
188         else
189                 ecmd->eth_tp_mdix_ctrl = hw->mdix;
190         return 0;
191 }
192
193 static int e1000_set_settings(struct net_device *netdev,
194                               struct ethtool_cmd *ecmd)
195 {
196         struct e1000_adapter *adapter = netdev_priv(netdev);
197         struct e1000_hw *hw = &adapter->hw;
198
199         /* MDI setting is only allowed when autoneg enabled because
200          * some hardware doesn't allow MDI setting when speed or
201          * duplex is forced.
202          */
203         if (ecmd->eth_tp_mdix_ctrl) {
204                 if (hw->media_type != e1000_media_type_copper)
205                         return -EOPNOTSUPP;
206
207                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
208                     (ecmd->autoneg != AUTONEG_ENABLE)) {
209                         e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
210                         return -EINVAL;
211                 }
212         }
213
214         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
215                 msleep(1);
216
217         if (ecmd->autoneg == AUTONEG_ENABLE) {
218                 hw->autoneg = 1;
219                 if (hw->media_type == e1000_media_type_fiber)
220                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
221                                      ADVERTISED_FIBRE |
222                                      ADVERTISED_Autoneg;
223                 else
224                         hw->autoneg_advertised = ecmd->advertising |
225                                                  ADVERTISED_TP |
226                                                  ADVERTISED_Autoneg;
227                 ecmd->advertising = hw->autoneg_advertised;
228         } else {
229                 u32 speed = ethtool_cmd_speed(ecmd);
230                 /* calling this overrides forced MDI setting */
231                 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
232                         clear_bit(__E1000_RESETTING, &adapter->flags);
233                         return -EINVAL;
234                 }
235         }
236
237         /* MDI-X => 2; MDI => 1; Auto => 3 */
238         if (ecmd->eth_tp_mdix_ctrl) {
239                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
240                         hw->mdix = AUTO_ALL_MODES;
241                 else
242                         hw->mdix = ecmd->eth_tp_mdix_ctrl;
243         }
244
245         /* reset the link */
246
247         if (netif_running(adapter->netdev)) {
248                 e1000_down(adapter);
249                 e1000_up(adapter);
250         } else
251                 e1000_reset(adapter);
252
253         clear_bit(__E1000_RESETTING, &adapter->flags);
254         return 0;
255 }
256
257 static u32 e1000_get_link(struct net_device *netdev)
258 {
259         struct e1000_adapter *adapter = netdev_priv(netdev);
260
261         /* If the link is not reported up to netdev, interrupts are disabled,
262          * and so the physical link state may have changed since we last
263          * looked. Set get_link_status to make sure that the true link
264          * state is interrogated, rather than pulling a cached and possibly
265          * stale link state from the driver.
266          */
267         if (!netif_carrier_ok(netdev))
268                 adapter->hw.get_link_status = 1;
269
270         return e1000_has_link(adapter);
271 }
272
273 static void e1000_get_pauseparam(struct net_device *netdev,
274                                  struct ethtool_pauseparam *pause)
275 {
276         struct e1000_adapter *adapter = netdev_priv(netdev);
277         struct e1000_hw *hw = &adapter->hw;
278
279         pause->autoneg =
280                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
281
282         if (hw->fc == E1000_FC_RX_PAUSE)
283                 pause->rx_pause = 1;
284         else if (hw->fc == E1000_FC_TX_PAUSE)
285                 pause->tx_pause = 1;
286         else if (hw->fc == E1000_FC_FULL) {
287                 pause->rx_pause = 1;
288                 pause->tx_pause = 1;
289         }
290 }
291
292 static int e1000_set_pauseparam(struct net_device *netdev,
293                                 struct ethtool_pauseparam *pause)
294 {
295         struct e1000_adapter *adapter = netdev_priv(netdev);
296         struct e1000_hw *hw = &adapter->hw;
297         int retval = 0;
298
299         adapter->fc_autoneg = pause->autoneg;
300
301         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
302                 msleep(1);
303
304         if (pause->rx_pause && pause->tx_pause)
305                 hw->fc = E1000_FC_FULL;
306         else if (pause->rx_pause && !pause->tx_pause)
307                 hw->fc = E1000_FC_RX_PAUSE;
308         else if (!pause->rx_pause && pause->tx_pause)
309                 hw->fc = E1000_FC_TX_PAUSE;
310         else if (!pause->rx_pause && !pause->tx_pause)
311                 hw->fc = E1000_FC_NONE;
312
313         hw->original_fc = hw->fc;
314
315         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
316                 if (netif_running(adapter->netdev)) {
317                         e1000_down(adapter);
318                         e1000_up(adapter);
319                 } else
320                         e1000_reset(adapter);
321         } else
322                 retval = ((hw->media_type == e1000_media_type_fiber) ?
323                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
324
325         clear_bit(__E1000_RESETTING, &adapter->flags);
326         return retval;
327 }
328
329 static u32 e1000_get_msglevel(struct net_device *netdev)
330 {
331         struct e1000_adapter *adapter = netdev_priv(netdev);
332         return adapter->msg_enable;
333 }
334
335 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
336 {
337         struct e1000_adapter *adapter = netdev_priv(netdev);
338         adapter->msg_enable = data;
339 }
340
341 static int e1000_get_regs_len(struct net_device *netdev)
342 {
343 #define E1000_REGS_LEN 32
344         return E1000_REGS_LEN * sizeof(u32);
345 }
346
347 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
348                            void *p)
349 {
350         struct e1000_adapter *adapter = netdev_priv(netdev);
351         struct e1000_hw *hw = &adapter->hw;
352         u32 *regs_buff = p;
353         u16 phy_data;
354
355         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
356
357         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
358
359         regs_buff[0]  = er32(CTRL);
360         regs_buff[1]  = er32(STATUS);
361
362         regs_buff[2]  = er32(RCTL);
363         regs_buff[3]  = er32(RDLEN);
364         regs_buff[4]  = er32(RDH);
365         regs_buff[5]  = er32(RDT);
366         regs_buff[6]  = er32(RDTR);
367
368         regs_buff[7]  = er32(TCTL);
369         regs_buff[8]  = er32(TDLEN);
370         regs_buff[9]  = er32(TDH);
371         regs_buff[10] = er32(TDT);
372         regs_buff[11] = er32(TIDV);
373
374         regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
375         if (hw->phy_type == e1000_phy_igp) {
376                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
377                                     IGP01E1000_PHY_AGC_A);
378                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
379                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
380                 regs_buff[13] = (u32)phy_data; /* cable length */
381                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
382                                     IGP01E1000_PHY_AGC_B);
383                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
384                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
385                 regs_buff[14] = (u32)phy_data; /* cable length */
386                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
387                                     IGP01E1000_PHY_AGC_C);
388                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
389                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
390                 regs_buff[15] = (u32)phy_data; /* cable length */
391                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
392                                     IGP01E1000_PHY_AGC_D);
393                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
394                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
395                 regs_buff[16] = (u32)phy_data; /* cable length */
396                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
397                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
398                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
399                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
400                 regs_buff[18] = (u32)phy_data; /* cable polarity */
401                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
402                                     IGP01E1000_PHY_PCS_INIT_REG);
403                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
404                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
405                 regs_buff[19] = (u32)phy_data; /* cable polarity */
406                 regs_buff[20] = 0; /* polarity correction enabled (always) */
407                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
408                 regs_buff[23] = regs_buff[18]; /* mdix mode */
409                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
410         } else {
411                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
412                 regs_buff[13] = (u32)phy_data; /* cable length */
413                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
414                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
415                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
416                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
417                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
418                 regs_buff[18] = regs_buff[13]; /* cable polarity */
419                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
420                 regs_buff[20] = regs_buff[17]; /* polarity correction */
421                 /* phy receive errors */
422                 regs_buff[22] = adapter->phy_stats.receive_errors;
423                 regs_buff[23] = regs_buff[13]; /* mdix mode */
424         }
425         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
426         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
427         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
428         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
429         if (hw->mac_type >= e1000_82540 &&
430             hw->media_type == e1000_media_type_copper) {
431                 regs_buff[26] = er32(MANC);
432         }
433 }
434
435 static int e1000_get_eeprom_len(struct net_device *netdev)
436 {
437         struct e1000_adapter *adapter = netdev_priv(netdev);
438         struct e1000_hw *hw = &adapter->hw;
439
440         return hw->eeprom.word_size * 2;
441 }
442
443 static int e1000_get_eeprom(struct net_device *netdev,
444                             struct ethtool_eeprom *eeprom, u8 *bytes)
445 {
446         struct e1000_adapter *adapter = netdev_priv(netdev);
447         struct e1000_hw *hw = &adapter->hw;
448         u16 *eeprom_buff;
449         int first_word, last_word;
450         int ret_val = 0;
451         u16 i;
452
453         if (eeprom->len == 0)
454                 return -EINVAL;
455
456         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
457
458         first_word = eeprom->offset >> 1;
459         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
460
461         eeprom_buff = kmalloc(sizeof(u16) *
462                         (last_word - first_word + 1), GFP_KERNEL);
463         if (!eeprom_buff)
464                 return -ENOMEM;
465
466         if (hw->eeprom.type == e1000_eeprom_spi)
467                 ret_val = e1000_read_eeprom(hw, first_word,
468                                             last_word - first_word + 1,
469                                             eeprom_buff);
470         else {
471                 for (i = 0; i < last_word - first_word + 1; i++) {
472                         ret_val = e1000_read_eeprom(hw, first_word + i, 1,
473                                                     &eeprom_buff[i]);
474                         if (ret_val)
475                                 break;
476                 }
477         }
478
479         /* Device's eeprom is always little-endian, word addressable */
480         for (i = 0; i < last_word - first_word + 1; i++)
481                 le16_to_cpus(&eeprom_buff[i]);
482
483         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
484                eeprom->len);
485         kfree(eeprom_buff);
486
487         return ret_val;
488 }
489
490 static int e1000_set_eeprom(struct net_device *netdev,
491                             struct ethtool_eeprom *eeprom, u8 *bytes)
492 {
493         struct e1000_adapter *adapter = netdev_priv(netdev);
494         struct e1000_hw *hw = &adapter->hw;
495         u16 *eeprom_buff;
496         void *ptr;
497         int max_len, first_word, last_word, ret_val = 0;
498         u16 i;
499
500         if (eeprom->len == 0)
501                 return -EOPNOTSUPP;
502
503         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
504                 return -EFAULT;
505
506         max_len = hw->eeprom.word_size * 2;
507
508         first_word = eeprom->offset >> 1;
509         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
510         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
511         if (!eeprom_buff)
512                 return -ENOMEM;
513
514         ptr = (void *)eeprom_buff;
515
516         if (eeprom->offset & 1) {
517                 /* need read/modify/write of first changed EEPROM word
518                  * only the second byte of the word is being modified
519                  */
520                 ret_val = e1000_read_eeprom(hw, first_word, 1,
521                                             &eeprom_buff[0]);
522                 ptr++;
523         }
524         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
525                 /* need read/modify/write of last changed EEPROM word
526                  * only the first byte of the word is being modified
527                  */
528                 ret_val = e1000_read_eeprom(hw, last_word, 1,
529                                   &eeprom_buff[last_word - first_word]);
530         }
531
532         /* Device's eeprom is always little-endian, word addressable */
533         for (i = 0; i < last_word - first_word + 1; i++)
534                 le16_to_cpus(&eeprom_buff[i]);
535
536         memcpy(ptr, bytes, eeprom->len);
537
538         for (i = 0; i < last_word - first_word + 1; i++)
539                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
540
541         ret_val = e1000_write_eeprom(hw, first_word,
542                                      last_word - first_word + 1, eeprom_buff);
543
544         /* Update the checksum over the first part of the EEPROM if needed */
545         if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
546                 e1000_update_eeprom_checksum(hw);
547
548         kfree(eeprom_buff);
549         return ret_val;
550 }
551
552 static void e1000_get_drvinfo(struct net_device *netdev,
553                               struct ethtool_drvinfo *drvinfo)
554 {
555         struct e1000_adapter *adapter = netdev_priv(netdev);
556
557         strlcpy(drvinfo->driver,  e1000_driver_name,
558                 sizeof(drvinfo->driver));
559         strlcpy(drvinfo->version, e1000_driver_version,
560                 sizeof(drvinfo->version));
561
562         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
563                 sizeof(drvinfo->bus_info));
564         drvinfo->regdump_len = e1000_get_regs_len(netdev);
565         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
566 }
567
568 static void e1000_get_ringparam(struct net_device *netdev,
569                                 struct ethtool_ringparam *ring)
570 {
571         struct e1000_adapter *adapter = netdev_priv(netdev);
572         struct e1000_hw *hw = &adapter->hw;
573         e1000_mac_type mac_type = hw->mac_type;
574         struct e1000_tx_ring *txdr = adapter->tx_ring;
575         struct e1000_rx_ring *rxdr = adapter->rx_ring;
576
577         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
578                 E1000_MAX_82544_RXD;
579         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
580                 E1000_MAX_82544_TXD;
581         ring->rx_pending = rxdr->count;
582         ring->tx_pending = txdr->count;
583 }
584
585 static int e1000_set_ringparam(struct net_device *netdev,
586                                struct ethtool_ringparam *ring)
587 {
588         struct e1000_adapter *adapter = netdev_priv(netdev);
589         struct e1000_hw *hw = &adapter->hw;
590         e1000_mac_type mac_type = hw->mac_type;
591         struct e1000_tx_ring *txdr, *tx_old;
592         struct e1000_rx_ring *rxdr, *rx_old;
593         int i, err;
594
595         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
596                 return -EINVAL;
597
598         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
599                 msleep(1);
600
601         if (netif_running(adapter->netdev))
602                 e1000_down(adapter);
603
604         tx_old = adapter->tx_ring;
605         rx_old = adapter->rx_ring;
606
607         err = -ENOMEM;
608         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
609                        GFP_KERNEL);
610         if (!txdr)
611                 goto err_alloc_tx;
612
613         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
614                        GFP_KERNEL);
615         if (!rxdr)
616                 goto err_alloc_rx;
617
618         adapter->tx_ring = txdr;
619         adapter->rx_ring = rxdr;
620
621         rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
622         rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
623                           E1000_MAX_RXD : E1000_MAX_82544_RXD));
624         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
625
626         txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
627         txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
628                           E1000_MAX_TXD : E1000_MAX_82544_TXD));
629         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
630
631         for (i = 0; i < adapter->num_tx_queues; i++)
632                 txdr[i].count = txdr->count;
633         for (i = 0; i < adapter->num_rx_queues; i++)
634                 rxdr[i].count = rxdr->count;
635
636         if (netif_running(adapter->netdev)) {
637                 /* Try to get new resources before deleting old */
638                 err = e1000_setup_all_rx_resources(adapter);
639                 if (err)
640                         goto err_setup_rx;
641                 err = e1000_setup_all_tx_resources(adapter);
642                 if (err)
643                         goto err_setup_tx;
644
645                 /* save the new, restore the old in order to free it,
646                  * then restore the new back again
647                  */
648
649                 adapter->rx_ring = rx_old;
650                 adapter->tx_ring = tx_old;
651                 e1000_free_all_rx_resources(adapter);
652                 e1000_free_all_tx_resources(adapter);
653                 kfree(tx_old);
654                 kfree(rx_old);
655                 adapter->rx_ring = rxdr;
656                 adapter->tx_ring = txdr;
657                 err = e1000_up(adapter);
658                 if (err)
659                         goto err_setup;
660         }
661
662         clear_bit(__E1000_RESETTING, &adapter->flags);
663         return 0;
664 err_setup_tx:
665         e1000_free_all_rx_resources(adapter);
666 err_setup_rx:
667         adapter->rx_ring = rx_old;
668         adapter->tx_ring = tx_old;
669         kfree(rxdr);
670 err_alloc_rx:
671         kfree(txdr);
672 err_alloc_tx:
673         e1000_up(adapter);
674 err_setup:
675         clear_bit(__E1000_RESETTING, &adapter->flags);
676         return err;
677 }
678
679 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
680                              u32 mask, u32 write)
681 {
682         struct e1000_hw *hw = &adapter->hw;
683         static const u32 test[] =
684                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
685         u8 __iomem *address = hw->hw_addr + reg;
686         u32 read;
687         int i;
688
689         for (i = 0; i < ARRAY_SIZE(test); i++) {
690                 writel(write & test[i], address);
691                 read = readl(address);
692                 if (read != (write & test[i] & mask)) {
693                         e_err(drv, "pattern test reg %04X failed: "
694                               "got 0x%08X expected 0x%08X\n",
695                               reg, read, (write & test[i] & mask));
696                         *data = reg;
697                         return true;
698                 }
699         }
700         return false;
701 }
702
703 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
704                               u32 mask, u32 write)
705 {
706         struct e1000_hw *hw = &adapter->hw;
707         u8 __iomem *address = hw->hw_addr + reg;
708         u32 read;
709
710         writel(write & mask, address);
711         read = readl(address);
712         if ((read & mask) != (write & mask)) {
713                 e_err(drv, "set/check reg %04X test failed: "
714                       "got 0x%08X expected 0x%08X\n",
715                       reg, (read & mask), (write & mask));
716                 *data = reg;
717                 return true;
718         }
719         return false;
720 }
721
722 #define REG_PATTERN_TEST(reg, mask, write)                           \
723         do {                                                         \
724                 if (reg_pattern_test(adapter, data,                  \
725                              (hw->mac_type >= e1000_82543)   \
726                              ? E1000_##reg : E1000_82542_##reg,      \
727                              mask, write))                           \
728                         return 1;                                    \
729         } while (0)
730
731 #define REG_SET_AND_CHECK(reg, mask, write)                          \
732         do {                                                         \
733                 if (reg_set_and_check(adapter, data,                 \
734                               (hw->mac_type >= e1000_82543)  \
735                               ? E1000_##reg : E1000_82542_##reg,     \
736                               mask, write))                          \
737                         return 1;                                    \
738         } while (0)
739
740 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
741 {
742         u32 value, before, after;
743         u32 i, toggle;
744         struct e1000_hw *hw = &adapter->hw;
745
746         /* The status register is Read Only, so a write should fail.
747          * Some bits that get toggled are ignored.
748          */
749
750         /* there are several bits on newer hardware that are r/w */
751         toggle = 0xFFFFF833;
752
753         before = er32(STATUS);
754         value = (er32(STATUS) & toggle);
755         ew32(STATUS, toggle);
756         after = er32(STATUS) & toggle;
757         if (value != after) {
758                 e_err(drv, "failed STATUS register test got: "
759                       "0x%08X expected: 0x%08X\n", after, value);
760                 *data = 1;
761                 return 1;
762         }
763         /* restore previous status */
764         ew32(STATUS, before);
765
766         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
767         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
768         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
769         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
770
771         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
772         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
773         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
774         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
775         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
776         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
777         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
778         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
779         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
780         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
781
782         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
783
784         before = 0x06DFB3FE;
785         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
786         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
787
788         if (hw->mac_type >= e1000_82543) {
789                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
790                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
791                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
792                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
793                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
794                 value = E1000_RAR_ENTRIES;
795                 for (i = 0; i < value; i++) {
796                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
797                                          0xFFFFFFFF);
798                 }
799         } else {
800                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
801                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
802                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
803                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
804         }
805
806         value = E1000_MC_TBL_SIZE;
807         for (i = 0; i < value; i++)
808                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
809
810         *data = 0;
811         return 0;
812 }
813
814 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
815 {
816         struct e1000_hw *hw = &adapter->hw;
817         u16 temp;
818         u16 checksum = 0;
819         u16 i;
820
821         *data = 0;
822         /* Read and add up the contents of the EEPROM */
823         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
824                 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
825                         *data = 1;
826                         break;
827                 }
828                 checksum += temp;
829         }
830
831         /* If Checksum is not Correct return error else test passed */
832         if ((checksum != (u16)EEPROM_SUM) && !(*data))
833                 *data = 2;
834
835         return *data;
836 }
837
838 static irqreturn_t e1000_test_intr(int irq, void *data)
839 {
840         struct net_device *netdev = (struct net_device *)data;
841         struct e1000_adapter *adapter = netdev_priv(netdev);
842         struct e1000_hw *hw = &adapter->hw;
843
844         adapter->test_icr |= er32(ICR);
845
846         return IRQ_HANDLED;
847 }
848
849 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
850 {
851         struct net_device *netdev = adapter->netdev;
852         u32 mask, i = 0;
853         bool shared_int = true;
854         u32 irq = adapter->pdev->irq;
855         struct e1000_hw *hw = &adapter->hw;
856
857         *data = 0;
858
859         /* NOTE: we don't test MSI interrupts here, yet
860          * Hook up test interrupt handler just for this test
861          */
862         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
863                          netdev))
864                 shared_int = false;
865         else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
866                              netdev->name, netdev)) {
867                 *data = 1;
868                 return -1;
869         }
870         e_info(hw, "testing %s interrupt\n", (shared_int ?
871                "shared" : "unshared"));
872
873         /* Disable all the interrupts */
874         ew32(IMC, 0xFFFFFFFF);
875         E1000_WRITE_FLUSH();
876         msleep(10);
877
878         /* Test each interrupt */
879         for (; i < 10; i++) {
880
881                 /* Interrupt to test */
882                 mask = 1 << i;
883
884                 if (!shared_int) {
885                         /* Disable the interrupt to be reported in
886                          * the cause register and then force the same
887                          * interrupt and see if one gets posted.  If
888                          * an interrupt was posted to the bus, the
889                          * test failed.
890                          */
891                         adapter->test_icr = 0;
892                         ew32(IMC, mask);
893                         ew32(ICS, mask);
894                         E1000_WRITE_FLUSH();
895                         msleep(10);
896
897                         if (adapter->test_icr & mask) {
898                                 *data = 3;
899                                 break;
900                         }
901                 }
902
903                 /* Enable the interrupt to be reported in
904                  * the cause register and then force the same
905                  * interrupt and see if one gets posted.  If
906                  * an interrupt was not posted to the bus, the
907                  * test failed.
908                  */
909                 adapter->test_icr = 0;
910                 ew32(IMS, mask);
911                 ew32(ICS, mask);
912                 E1000_WRITE_FLUSH();
913                 msleep(10);
914
915                 if (!(adapter->test_icr & mask)) {
916                         *data = 4;
917                         break;
918                 }
919
920                 if (!shared_int) {
921                         /* Disable the other interrupts to be reported in
922                          * the cause register and then force the other
923                          * interrupts and see if any get posted.  If
924                          * an interrupt was posted to the bus, the
925                          * test failed.
926                          */
927                         adapter->test_icr = 0;
928                         ew32(IMC, ~mask & 0x00007FFF);
929                         ew32(ICS, ~mask & 0x00007FFF);
930                         E1000_WRITE_FLUSH();
931                         msleep(10);
932
933                         if (adapter->test_icr) {
934                                 *data = 5;
935                                 break;
936                         }
937                 }
938         }
939
940         /* Disable all the interrupts */
941         ew32(IMC, 0xFFFFFFFF);
942         E1000_WRITE_FLUSH();
943         msleep(10);
944
945         /* Unhook test interrupt handler */
946         free_irq(irq, netdev);
947
948         return *data;
949 }
950
951 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
952 {
953         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
954         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
955         struct pci_dev *pdev = adapter->pdev;
956         int i;
957
958         if (txdr->desc && txdr->buffer_info) {
959                 for (i = 0; i < txdr->count; i++) {
960                         if (txdr->buffer_info[i].dma)
961                                 dma_unmap_single(&pdev->dev,
962                                                  txdr->buffer_info[i].dma,
963                                                  txdr->buffer_info[i].length,
964                                                  DMA_TO_DEVICE);
965                         if (txdr->buffer_info[i].skb)
966                                 dev_kfree_skb(txdr->buffer_info[i].skb);
967                 }
968         }
969
970         if (rxdr->desc && rxdr->buffer_info) {
971                 for (i = 0; i < rxdr->count; i++) {
972                         if (rxdr->buffer_info[i].dma)
973                                 dma_unmap_single(&pdev->dev,
974                                                  rxdr->buffer_info[i].dma,
975                                                  rxdr->buffer_info[i].length,
976                                                  DMA_FROM_DEVICE);
977                         if (rxdr->buffer_info[i].skb)
978                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
979                 }
980         }
981
982         if (txdr->desc) {
983                 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
984                                   txdr->dma);
985                 txdr->desc = NULL;
986         }
987         if (rxdr->desc) {
988                 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
989                                   rxdr->dma);
990                 rxdr->desc = NULL;
991         }
992
993         kfree(txdr->buffer_info);
994         txdr->buffer_info = NULL;
995         kfree(rxdr->buffer_info);
996         rxdr->buffer_info = NULL;
997 }
998
999 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1000 {
1001         struct e1000_hw *hw = &adapter->hw;
1002         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1003         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1004         struct pci_dev *pdev = adapter->pdev;
1005         u32 rctl;
1006         int i, ret_val;
1007
1008         /* Setup Tx descriptor ring and Tx buffers */
1009
1010         if (!txdr->count)
1011                 txdr->count = E1000_DEFAULT_TXD;
1012
1013         txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
1014                                     GFP_KERNEL);
1015         if (!txdr->buffer_info) {
1016                 ret_val = 1;
1017                 goto err_nomem;
1018         }
1019
1020         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1021         txdr->size = ALIGN(txdr->size, 4096);
1022         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1023                                         GFP_KERNEL);
1024         if (!txdr->desc) {
1025                 ret_val = 2;
1026                 goto err_nomem;
1027         }
1028         memset(txdr->desc, 0, txdr->size);
1029         txdr->next_to_use = txdr->next_to_clean = 0;
1030
1031         ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1032         ew32(TDBAH, ((u64)txdr->dma >> 32));
1033         ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1034         ew32(TDH, 0);
1035         ew32(TDT, 0);
1036         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1037              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1038              E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1039
1040         for (i = 0; i < txdr->count; i++) {
1041                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1042                 struct sk_buff *skb;
1043                 unsigned int size = 1024;
1044
1045                 skb = alloc_skb(size, GFP_KERNEL);
1046                 if (!skb) {
1047                         ret_val = 3;
1048                         goto err_nomem;
1049                 }
1050                 skb_put(skb, size);
1051                 txdr->buffer_info[i].skb = skb;
1052                 txdr->buffer_info[i].length = skb->len;
1053                 txdr->buffer_info[i].dma =
1054                         dma_map_single(&pdev->dev, skb->data, skb->len,
1055                                        DMA_TO_DEVICE);
1056                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1057                 tx_desc->lower.data = cpu_to_le32(skb->len);
1058                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1059                                                    E1000_TXD_CMD_IFCS |
1060                                                    E1000_TXD_CMD_RPS);
1061                 tx_desc->upper.data = 0;
1062         }
1063
1064         /* Setup Rx descriptor ring and Rx buffers */
1065
1066         if (!rxdr->count)
1067                 rxdr->count = E1000_DEFAULT_RXD;
1068
1069         rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1070                                     GFP_KERNEL);
1071         if (!rxdr->buffer_info) {
1072                 ret_val = 4;
1073                 goto err_nomem;
1074         }
1075
1076         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1077         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1078                                         GFP_KERNEL);
1079         if (!rxdr->desc) {
1080                 ret_val = 5;
1081                 goto err_nomem;
1082         }
1083         memset(rxdr->desc, 0, rxdr->size);
1084         rxdr->next_to_use = rxdr->next_to_clean = 0;
1085
1086         rctl = er32(RCTL);
1087         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1088         ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1089         ew32(RDBAH, ((u64)rxdr->dma >> 32));
1090         ew32(RDLEN, rxdr->size);
1091         ew32(RDH, 0);
1092         ew32(RDT, 0);
1093         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1094                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1095                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1096         ew32(RCTL, rctl);
1097
1098         for (i = 0; i < rxdr->count; i++) {
1099                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1100                 struct sk_buff *skb;
1101
1102                 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1103                 if (!skb) {
1104                         ret_val = 6;
1105                         goto err_nomem;
1106                 }
1107                 skb_reserve(skb, NET_IP_ALIGN);
1108                 rxdr->buffer_info[i].skb = skb;
1109                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1110                 rxdr->buffer_info[i].dma =
1111                         dma_map_single(&pdev->dev, skb->data,
1112                                        E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1113                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1114                 memset(skb->data, 0x00, skb->len);
1115         }
1116
1117         return 0;
1118
1119 err_nomem:
1120         e1000_free_desc_rings(adapter);
1121         return ret_val;
1122 }
1123
1124 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1125 {
1126         struct e1000_hw *hw = &adapter->hw;
1127
1128         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1129         e1000_write_phy_reg(hw, 29, 0x001F);
1130         e1000_write_phy_reg(hw, 30, 0x8FFC);
1131         e1000_write_phy_reg(hw, 29, 0x001A);
1132         e1000_write_phy_reg(hw, 30, 0x8FF0);
1133 }
1134
1135 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1136 {
1137         struct e1000_hw *hw = &adapter->hw;
1138         u16 phy_reg;
1139
1140         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1141          * Extended PHY Specific Control Register to 25MHz clock.  This
1142          * value defaults back to a 2.5MHz clock when the PHY is reset.
1143          */
1144         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1145         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1146         e1000_write_phy_reg(hw,
1147                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1148
1149         /* In addition, because of the s/w reset above, we need to enable
1150          * CRS on TX.  This must be set for both full and half duplex
1151          * operation.
1152          */
1153         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1154         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1155         e1000_write_phy_reg(hw,
1156                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1157 }
1158
1159 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1160 {
1161         struct e1000_hw *hw = &adapter->hw;
1162         u32 ctrl_reg;
1163         u16 phy_reg;
1164
1165         /* Setup the Device Control Register for PHY loopback test. */
1166
1167         ctrl_reg = er32(CTRL);
1168         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1169                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1170                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1171                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1172                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1173
1174         ew32(CTRL, ctrl_reg);
1175
1176         /* Read the PHY Specific Control Register (0x10) */
1177         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1178
1179         /* Clear Auto-Crossover bits in PHY Specific Control Register
1180          * (bits 6:5).
1181          */
1182         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1183         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1184
1185         /* Perform software reset on the PHY */
1186         e1000_phy_reset(hw);
1187
1188         /* Have to setup TX_CLK and TX_CRS after software reset */
1189         e1000_phy_reset_clk_and_crs(adapter);
1190
1191         e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1192
1193         /* Wait for reset to complete. */
1194         udelay(500);
1195
1196         /* Have to setup TX_CLK and TX_CRS after software reset */
1197         e1000_phy_reset_clk_and_crs(adapter);
1198
1199         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1200         e1000_phy_disable_receiver(adapter);
1201
1202         /* Set the loopback bit in the PHY control register. */
1203         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1204         phy_reg |= MII_CR_LOOPBACK;
1205         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1206
1207         /* Setup TX_CLK and TX_CRS one more time. */
1208         e1000_phy_reset_clk_and_crs(adapter);
1209
1210         /* Check Phy Configuration */
1211         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1212         if (phy_reg != 0x4100)
1213                  return 9;
1214
1215         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1216         if (phy_reg != 0x0070)
1217                 return 10;
1218
1219         e1000_read_phy_reg(hw, 29, &phy_reg);
1220         if (phy_reg != 0x001A)
1221                 return 11;
1222
1223         return 0;
1224 }
1225
1226 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1227 {
1228         struct e1000_hw *hw = &adapter->hw;
1229         u32 ctrl_reg = 0;
1230         u32 stat_reg = 0;
1231
1232         hw->autoneg = false;
1233
1234         if (hw->phy_type == e1000_phy_m88) {
1235                 /* Auto-MDI/MDIX Off */
1236                 e1000_write_phy_reg(hw,
1237                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1238                 /* reset to update Auto-MDI/MDIX */
1239                 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1240                 /* autoneg off */
1241                 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1242         }
1243
1244         ctrl_reg = er32(CTRL);
1245
1246         /* force 1000, set loopback */
1247         e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1248
1249         /* Now set up the MAC to the same speed/duplex as the PHY. */
1250         ctrl_reg = er32(CTRL);
1251         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1252         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1253                         E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1254                         E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1255                         E1000_CTRL_FD); /* Force Duplex to FULL */
1256
1257         if (hw->media_type == e1000_media_type_copper &&
1258            hw->phy_type == e1000_phy_m88)
1259                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1260         else {
1261                 /* Set the ILOS bit on the fiber Nic is half
1262                  * duplex link is detected.
1263                  */
1264                 stat_reg = er32(STATUS);
1265                 if ((stat_reg & E1000_STATUS_FD) == 0)
1266                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1267         }
1268
1269         ew32(CTRL, ctrl_reg);
1270
1271         /* Disable the receiver on the PHY so when a cable is plugged in, the
1272          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1273          */
1274         if (hw->phy_type == e1000_phy_m88)
1275                 e1000_phy_disable_receiver(adapter);
1276
1277         udelay(500);
1278
1279         return 0;
1280 }
1281
1282 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1283 {
1284         struct e1000_hw *hw = &adapter->hw;
1285         u16 phy_reg = 0;
1286         u16 count = 0;
1287
1288         switch (hw->mac_type) {
1289         case e1000_82543:
1290                 if (hw->media_type == e1000_media_type_copper) {
1291                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1292                          * Some PHY registers get corrupted at random, so
1293                          * attempt this 10 times.
1294                          */
1295                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1296                               count++ < 10);
1297                         if (count < 11)
1298                                 return 0;
1299                 }
1300                 break;
1301
1302         case e1000_82544:
1303         case e1000_82540:
1304         case e1000_82545:
1305         case e1000_82545_rev_3:
1306         case e1000_82546:
1307         case e1000_82546_rev_3:
1308         case e1000_82541:
1309         case e1000_82541_rev_2:
1310         case e1000_82547:
1311         case e1000_82547_rev_2:
1312                 return e1000_integrated_phy_loopback(adapter);
1313                 break;
1314         default:
1315                 /* Default PHY loopback work is to read the MII
1316                  * control register and assert bit 14 (loopback mode).
1317                  */
1318                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1319                 phy_reg |= MII_CR_LOOPBACK;
1320                 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1321                 return 0;
1322                 break;
1323         }
1324
1325         return 8;
1326 }
1327
1328 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1329 {
1330         struct e1000_hw *hw = &adapter->hw;
1331         u32 rctl;
1332
1333         if (hw->media_type == e1000_media_type_fiber ||
1334             hw->media_type == e1000_media_type_internal_serdes) {
1335                 switch (hw->mac_type) {
1336                 case e1000_82545:
1337                 case e1000_82546:
1338                 case e1000_82545_rev_3:
1339                 case e1000_82546_rev_3:
1340                         return e1000_set_phy_loopback(adapter);
1341                         break;
1342                 default:
1343                         rctl = er32(RCTL);
1344                         rctl |= E1000_RCTL_LBM_TCVR;
1345                         ew32(RCTL, rctl);
1346                         return 0;
1347                 }
1348         } else if (hw->media_type == e1000_media_type_copper)
1349                 return e1000_set_phy_loopback(adapter);
1350
1351         return 7;
1352 }
1353
1354 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1355 {
1356         struct e1000_hw *hw = &adapter->hw;
1357         u32 rctl;
1358         u16 phy_reg;
1359
1360         rctl = er32(RCTL);
1361         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1362         ew32(RCTL, rctl);
1363
1364         switch (hw->mac_type) {
1365         case e1000_82545:
1366         case e1000_82546:
1367         case e1000_82545_rev_3:
1368         case e1000_82546_rev_3:
1369         default:
1370                 hw->autoneg = true;
1371                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1372                 if (phy_reg & MII_CR_LOOPBACK) {
1373                         phy_reg &= ~MII_CR_LOOPBACK;
1374                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1375                         e1000_phy_reset(hw);
1376                 }
1377                 break;
1378         }
1379 }
1380
1381 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1382                                       unsigned int frame_size)
1383 {
1384         memset(skb->data, 0xFF, frame_size);
1385         frame_size &= ~1;
1386         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1387         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1388         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1389 }
1390
1391 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1392                                     unsigned int frame_size)
1393 {
1394         frame_size &= ~1;
1395         if (*(skb->data + 3) == 0xFF) {
1396                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1397                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1398                         return 0;
1399                 }
1400         }
1401         return 13;
1402 }
1403
1404 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1405 {
1406         struct e1000_hw *hw = &adapter->hw;
1407         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1408         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1409         struct pci_dev *pdev = adapter->pdev;
1410         int i, j, k, l, lc, good_cnt, ret_val=0;
1411         unsigned long time;
1412
1413         ew32(RDT, rxdr->count - 1);
1414
1415         /* Calculate the loop count based on the largest descriptor ring
1416          * The idea is to wrap the largest ring a number of times using 64
1417          * send/receive pairs during each loop
1418          */
1419
1420         if (rxdr->count <= txdr->count)
1421                 lc = ((txdr->count / 64) * 2) + 1;
1422         else
1423                 lc = ((rxdr->count / 64) * 2) + 1;
1424
1425         k = l = 0;
1426         for (j = 0; j <= lc; j++) { /* loop count loop */
1427                 for (i = 0; i < 64; i++) { /* send the packets */
1428                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1429                                         1024);
1430                         dma_sync_single_for_device(&pdev->dev,
1431                                                    txdr->buffer_info[k].dma,
1432                                                    txdr->buffer_info[k].length,
1433                                                    DMA_TO_DEVICE);
1434                         if (unlikely(++k == txdr->count)) k = 0;
1435                 }
1436                 ew32(TDT, k);
1437                 E1000_WRITE_FLUSH();
1438                 msleep(200);
1439                 time = jiffies; /* set the start time for the receive */
1440                 good_cnt = 0;
1441                 do { /* receive the sent packets */
1442                         dma_sync_single_for_cpu(&pdev->dev,
1443                                                 rxdr->buffer_info[l].dma,
1444                                                 rxdr->buffer_info[l].length,
1445                                                 DMA_FROM_DEVICE);
1446
1447                         ret_val = e1000_check_lbtest_frame(
1448                                         rxdr->buffer_info[l].skb,
1449                                         1024);
1450                         if (!ret_val)
1451                                 good_cnt++;
1452                         if (unlikely(++l == rxdr->count)) l = 0;
1453                         /* time + 20 msecs (200 msecs on 2.4) is more than
1454                          * enough time to complete the receives, if it's
1455                          * exceeded, break and error off
1456                          */
1457                 } while (good_cnt < 64 && jiffies < (time + 20));
1458                 if (good_cnt != 64) {
1459                         ret_val = 13; /* ret_val is the same as mis-compare */
1460                         break;
1461                 }
1462                 if (jiffies >= (time + 2)) {
1463                         ret_val = 14; /* error code for time out error */
1464                         break;
1465                 }
1466         } /* end loop count loop */
1467         return ret_val;
1468 }
1469
1470 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1471 {
1472         *data = e1000_setup_desc_rings(adapter);
1473         if (*data)
1474                 goto out;
1475         *data = e1000_setup_loopback_test(adapter);
1476         if (*data)
1477                 goto err_loopback;
1478         *data = e1000_run_loopback_test(adapter);
1479         e1000_loopback_cleanup(adapter);
1480
1481 err_loopback:
1482         e1000_free_desc_rings(adapter);
1483 out:
1484         return *data;
1485 }
1486
1487 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1488 {
1489         struct e1000_hw *hw = &adapter->hw;
1490         *data = 0;
1491         if (hw->media_type == e1000_media_type_internal_serdes) {
1492                 int i = 0;
1493                 hw->serdes_has_link = false;
1494
1495                 /* On some blade server designs, link establishment
1496                  * could take as long as 2-3 minutes
1497                  */
1498                 do {
1499                         e1000_check_for_link(hw);
1500                         if (hw->serdes_has_link)
1501                                 return *data;
1502                         msleep(20);
1503                 } while (i++ < 3750);
1504
1505                 *data = 1;
1506         } else {
1507                 e1000_check_for_link(hw);
1508                 if (hw->autoneg)  /* if auto_neg is set wait for it */
1509                         msleep(4000);
1510
1511                 if (!(er32(STATUS) & E1000_STATUS_LU)) {
1512                         *data = 1;
1513                 }
1514         }
1515         return *data;
1516 }
1517
1518 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1519 {
1520         switch (sset) {
1521         case ETH_SS_TEST:
1522                 return E1000_TEST_LEN;
1523         case ETH_SS_STATS:
1524                 return E1000_STATS_LEN;
1525         default:
1526                 return -EOPNOTSUPP;
1527         }
1528 }
1529
1530 static void e1000_diag_test(struct net_device *netdev,
1531                             struct ethtool_test *eth_test, u64 *data)
1532 {
1533         struct e1000_adapter *adapter = netdev_priv(netdev);
1534         struct e1000_hw *hw = &adapter->hw;
1535         bool if_running = netif_running(netdev);
1536
1537         set_bit(__E1000_TESTING, &adapter->flags);
1538         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1539                 /* Offline tests */
1540
1541                 /* save speed, duplex, autoneg settings */
1542                 u16 autoneg_advertised = hw->autoneg_advertised;
1543                 u8 forced_speed_duplex = hw->forced_speed_duplex;
1544                 u8 autoneg = hw->autoneg;
1545
1546                 e_info(hw, "offline testing starting\n");
1547
1548                 /* Link test performed before hardware reset so autoneg doesn't
1549                  * interfere with test result
1550                  */
1551                 if (e1000_link_test(adapter, &data[4]))
1552                         eth_test->flags |= ETH_TEST_FL_FAILED;
1553
1554                 if (if_running)
1555                         /* indicate we're in test mode */
1556                         dev_close(netdev);
1557                 else
1558                         e1000_reset(adapter);
1559
1560                 if (e1000_reg_test(adapter, &data[0]))
1561                         eth_test->flags |= ETH_TEST_FL_FAILED;
1562
1563                 e1000_reset(adapter);
1564                 if (e1000_eeprom_test(adapter, &data[1]))
1565                         eth_test->flags |= ETH_TEST_FL_FAILED;
1566
1567                 e1000_reset(adapter);
1568                 if (e1000_intr_test(adapter, &data[2]))
1569                         eth_test->flags |= ETH_TEST_FL_FAILED;
1570
1571                 e1000_reset(adapter);
1572                 /* make sure the phy is powered up */
1573                 e1000_power_up_phy(adapter);
1574                 if (e1000_loopback_test(adapter, &data[3]))
1575                         eth_test->flags |= ETH_TEST_FL_FAILED;
1576
1577                 /* restore speed, duplex, autoneg settings */
1578                 hw->autoneg_advertised = autoneg_advertised;
1579                 hw->forced_speed_duplex = forced_speed_duplex;
1580                 hw->autoneg = autoneg;
1581
1582                 e1000_reset(adapter);
1583                 clear_bit(__E1000_TESTING, &adapter->flags);
1584                 if (if_running)
1585                         dev_open(netdev);
1586         } else {
1587                 e_info(hw, "online testing starting\n");
1588                 /* Online tests */
1589                 if (e1000_link_test(adapter, &data[4]))
1590                         eth_test->flags |= ETH_TEST_FL_FAILED;
1591
1592                 /* Online tests aren't run; pass by default */
1593                 data[0] = 0;
1594                 data[1] = 0;
1595                 data[2] = 0;
1596                 data[3] = 0;
1597
1598                 clear_bit(__E1000_TESTING, &adapter->flags);
1599         }
1600         msleep_interruptible(4 * 1000);
1601 }
1602
1603 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1604                                struct ethtool_wolinfo *wol)
1605 {
1606         struct e1000_hw *hw = &adapter->hw;
1607         int retval = 1; /* fail by default */
1608
1609         switch (hw->device_id) {
1610         case E1000_DEV_ID_82542:
1611         case E1000_DEV_ID_82543GC_FIBER:
1612         case E1000_DEV_ID_82543GC_COPPER:
1613         case E1000_DEV_ID_82544EI_FIBER:
1614         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1615         case E1000_DEV_ID_82545EM_FIBER:
1616         case E1000_DEV_ID_82545EM_COPPER:
1617         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1618         case E1000_DEV_ID_82546GB_PCIE:
1619                 /* these don't support WoL at all */
1620                 wol->supported = 0;
1621                 break;
1622         case E1000_DEV_ID_82546EB_FIBER:
1623         case E1000_DEV_ID_82546GB_FIBER:
1624                 /* Wake events not supported on port B */
1625                 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1626                         wol->supported = 0;
1627                         break;
1628                 }
1629                 /* return success for non excluded adapter ports */
1630                 retval = 0;
1631                 break;
1632         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1633                 /* quad port adapters only support WoL on port A */
1634                 if (!adapter->quad_port_a) {
1635                         wol->supported = 0;
1636                         break;
1637                 }
1638                 /* return success for non excluded adapter ports */
1639                 retval = 0;
1640                 break;
1641         default:
1642                 /* dual port cards only support WoL on port A from now on
1643                  * unless it was enabled in the eeprom for port B
1644                  * so exclude FUNC_1 ports from having WoL enabled
1645                  */
1646                 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1647                     !adapter->eeprom_wol) {
1648                         wol->supported = 0;
1649                         break;
1650                 }
1651
1652                 retval = 0;
1653         }
1654
1655         return retval;
1656 }
1657
1658 static void e1000_get_wol(struct net_device *netdev,
1659                           struct ethtool_wolinfo *wol)
1660 {
1661         struct e1000_adapter *adapter = netdev_priv(netdev);
1662         struct e1000_hw *hw = &adapter->hw;
1663
1664         wol->supported = WAKE_UCAST | WAKE_MCAST |
1665                          WAKE_BCAST | WAKE_MAGIC;
1666         wol->wolopts = 0;
1667
1668         /* this function will set ->supported = 0 and return 1 if wol is not
1669          * supported by this hardware
1670          */
1671         if (e1000_wol_exclusion(adapter, wol) ||
1672             !device_can_wakeup(&adapter->pdev->dev))
1673                 return;
1674
1675         /* apply any specific unsupported masks here */
1676         switch (hw->device_id) {
1677         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1678                 /* KSP3 does not support UCAST wake-ups */
1679                 wol->supported &= ~WAKE_UCAST;
1680
1681                 if (adapter->wol & E1000_WUFC_EX)
1682                         e_err(drv, "Interface does not support directed "
1683                               "(unicast) frame wake-up packets\n");
1684                 break;
1685         default:
1686                 break;
1687         }
1688
1689         if (adapter->wol & E1000_WUFC_EX)
1690                 wol->wolopts |= WAKE_UCAST;
1691         if (adapter->wol & E1000_WUFC_MC)
1692                 wol->wolopts |= WAKE_MCAST;
1693         if (adapter->wol & E1000_WUFC_BC)
1694                 wol->wolopts |= WAKE_BCAST;
1695         if (adapter->wol & E1000_WUFC_MAG)
1696                 wol->wolopts |= WAKE_MAGIC;
1697 }
1698
1699 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1700 {
1701         struct e1000_adapter *adapter = netdev_priv(netdev);
1702         struct e1000_hw *hw = &adapter->hw;
1703
1704         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1705                 return -EOPNOTSUPP;
1706
1707         if (e1000_wol_exclusion(adapter, wol) ||
1708             !device_can_wakeup(&adapter->pdev->dev))
1709                 return wol->wolopts ? -EOPNOTSUPP : 0;
1710
1711         switch (hw->device_id) {
1712         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1713                 if (wol->wolopts & WAKE_UCAST) {
1714                         e_err(drv, "Interface does not support directed "
1715                               "(unicast) frame wake-up packets\n");
1716                         return -EOPNOTSUPP;
1717                 }
1718                 break;
1719         default:
1720                 break;
1721         }
1722
1723         /* these settings will always override what we currently have */
1724         adapter->wol = 0;
1725
1726         if (wol->wolopts & WAKE_UCAST)
1727                 adapter->wol |= E1000_WUFC_EX;
1728         if (wol->wolopts & WAKE_MCAST)
1729                 adapter->wol |= E1000_WUFC_MC;
1730         if (wol->wolopts & WAKE_BCAST)
1731                 adapter->wol |= E1000_WUFC_BC;
1732         if (wol->wolopts & WAKE_MAGIC)
1733                 adapter->wol |= E1000_WUFC_MAG;
1734
1735         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1736
1737         return 0;
1738 }
1739
1740 static int e1000_set_phys_id(struct net_device *netdev,
1741                              enum ethtool_phys_id_state state)
1742 {
1743         struct e1000_adapter *adapter = netdev_priv(netdev);
1744         struct e1000_hw *hw = &adapter->hw;
1745
1746         switch (state) {
1747         case ETHTOOL_ID_ACTIVE:
1748                 e1000_setup_led(hw);
1749                 return 2;
1750
1751         case ETHTOOL_ID_ON:
1752                 e1000_led_on(hw);
1753                 break;
1754
1755         case ETHTOOL_ID_OFF:
1756                 e1000_led_off(hw);
1757                 break;
1758
1759         case ETHTOOL_ID_INACTIVE:
1760                 e1000_cleanup_led(hw);
1761         }
1762
1763         return 0;
1764 }
1765
1766 static int e1000_get_coalesce(struct net_device *netdev,
1767                               struct ethtool_coalesce *ec)
1768 {
1769         struct e1000_adapter *adapter = netdev_priv(netdev);
1770
1771         if (adapter->hw.mac_type < e1000_82545)
1772                 return -EOPNOTSUPP;
1773
1774         if (adapter->itr_setting <= 4)
1775                 ec->rx_coalesce_usecs = adapter->itr_setting;
1776         else
1777                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1778
1779         return 0;
1780 }
1781
1782 static int e1000_set_coalesce(struct net_device *netdev,
1783                               struct ethtool_coalesce *ec)
1784 {
1785         struct e1000_adapter *adapter = netdev_priv(netdev);
1786         struct e1000_hw *hw = &adapter->hw;
1787
1788         if (hw->mac_type < e1000_82545)
1789                 return -EOPNOTSUPP;
1790
1791         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1792             ((ec->rx_coalesce_usecs > 4) &&
1793              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1794             (ec->rx_coalesce_usecs == 2))
1795                 return -EINVAL;
1796
1797         if (ec->rx_coalesce_usecs == 4) {
1798                 adapter->itr = adapter->itr_setting = 4;
1799         } else if (ec->rx_coalesce_usecs <= 3) {
1800                 adapter->itr = 20000;
1801                 adapter->itr_setting = ec->rx_coalesce_usecs;
1802         } else {
1803                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1804                 adapter->itr_setting = adapter->itr & ~3;
1805         }
1806
1807         if (adapter->itr_setting != 0)
1808                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1809         else
1810                 ew32(ITR, 0);
1811
1812         return 0;
1813 }
1814
1815 static int e1000_nway_reset(struct net_device *netdev)
1816 {
1817         struct e1000_adapter *adapter = netdev_priv(netdev);
1818         if (netif_running(netdev))
1819                 e1000_reinit_locked(adapter);
1820         return 0;
1821 }
1822
1823 static void e1000_get_ethtool_stats(struct net_device *netdev,
1824                                     struct ethtool_stats *stats, u64 *data)
1825 {
1826         struct e1000_adapter *adapter = netdev_priv(netdev);
1827         int i;
1828         char *p = NULL;
1829
1830         e1000_update_stats(adapter);
1831         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1832                 switch (e1000_gstrings_stats[i].type) {
1833                 case NETDEV_STATS:
1834                         p = (char *) netdev +
1835                                         e1000_gstrings_stats[i].stat_offset;
1836                         break;
1837                 case E1000_STATS:
1838                         p = (char *) adapter +
1839                                         e1000_gstrings_stats[i].stat_offset;
1840                         break;
1841                 }
1842
1843                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1844                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1845         }
1846 /* BUG_ON(i != E1000_STATS_LEN); */
1847 }
1848
1849 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1850                               u8 *data)
1851 {
1852         u8 *p = data;
1853         int i;
1854
1855         switch (stringset) {
1856         case ETH_SS_TEST:
1857                 memcpy(data, *e1000_gstrings_test,
1858                         sizeof(e1000_gstrings_test));
1859                 break;
1860         case ETH_SS_STATS:
1861                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1862                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1863                                ETH_GSTRING_LEN);
1864                         p += ETH_GSTRING_LEN;
1865                 }
1866                 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1867                 break;
1868         }
1869 }
1870
1871 static const struct ethtool_ops e1000_ethtool_ops = {
1872         .get_settings           = e1000_get_settings,
1873         .set_settings           = e1000_set_settings,
1874         .get_drvinfo            = e1000_get_drvinfo,
1875         .get_regs_len           = e1000_get_regs_len,
1876         .get_regs               = e1000_get_regs,
1877         .get_wol                = e1000_get_wol,
1878         .set_wol                = e1000_set_wol,
1879         .get_msglevel           = e1000_get_msglevel,
1880         .set_msglevel           = e1000_set_msglevel,
1881         .nway_reset             = e1000_nway_reset,
1882         .get_link               = e1000_get_link,
1883         .get_eeprom_len         = e1000_get_eeprom_len,
1884         .get_eeprom             = e1000_get_eeprom,
1885         .set_eeprom             = e1000_set_eeprom,
1886         .get_ringparam          = e1000_get_ringparam,
1887         .set_ringparam          = e1000_set_ringparam,
1888         .get_pauseparam         = e1000_get_pauseparam,
1889         .set_pauseparam         = e1000_set_pauseparam,
1890         .self_test              = e1000_diag_test,
1891         .get_strings            = e1000_get_strings,
1892         .set_phys_id            = e1000_set_phys_id,
1893         .get_ethtool_stats      = e1000_get_ethtool_stats,
1894         .get_sset_count         = e1000_get_sset_count,
1895         .get_coalesce           = e1000_get_coalesce,
1896         .set_coalesce           = e1000_set_coalesce,
1897         .get_ts_info            = ethtool_op_get_ts_info,
1898 };
1899
1900 void e1000_set_ethtool_ops(struct net_device *netdev)
1901 {
1902         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1903 }