bnx2x: fix panic when TX ring is full
[pandora-kernel.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_init_ops.h
1 /* bnx2x_init_ops.h: Broadcom Everest network driver.
2  *               Static functions needed during the initialization.
3  *               This file is "included" in bnx2x_main.c.
4  *
5  * Copyright (c) 2007-2012 Broadcom Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
12  * Written by: Vladislav Zolotarov <vladz@broadcom.com>
13  */
14
15 #ifndef BNX2X_INIT_OPS_H
16 #define BNX2X_INIT_OPS_H
17
18
19 #ifndef BP_ILT
20 #define BP_ILT(bp)      NULL
21 #endif
22
23 #ifndef BP_FUNC
24 #define BP_FUNC(bp)     0
25 #endif
26
27 #ifndef BP_PORT
28 #define BP_PORT(bp)     0
29 #endif
30
31 #ifndef BNX2X_ILT_FREE
32 #define BNX2X_ILT_FREE(x, y, sz)
33 #endif
34
35 #ifndef BNX2X_ILT_ZALLOC
36 #define BNX2X_ILT_ZALLOC(x, y, sz)
37 #endif
38
39 #ifndef ILOG2
40 #define ILOG2(x)        x
41 #endif
42
43 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
44 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
45 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp,
46                                       dma_addr_t phys_addr, u32 addr,
47                                       u32 len);
48
49 static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr,
50                               const u32 *data, u32 len)
51 {
52         u32 i;
53
54         for (i = 0; i < len; i++)
55                 REG_WR(bp, addr + i*4, data[i]);
56 }
57
58 static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr,
59                               const u32 *data, u32 len)
60 {
61         u32 i;
62
63         for (i = 0; i < len; i++)
64                 bnx2x_reg_wr_ind(bp, addr + i*4, data[i]);
65 }
66
67 static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len,
68                                 u8 wb)
69 {
70         if (bp->dmae_ready)
71                 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
72
73         /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
74         else if (wb && CHIP_IS_E1(bp))
75                 bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
76
77         /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
78         else
79                 bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
80 }
81
82 static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill,
83                             u32 len, u8 wb)
84 {
85         u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
86         u32 buf_len32 = buf_len/4;
87         u32 i;
88
89         memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
90
91         for (i = 0; i < len; i += buf_len32) {
92                 u32 cur_len = min(buf_len32, len - i);
93
94                 bnx2x_write_big_buf(bp, addr + i*4, cur_len, wb);
95         }
96 }
97
98 static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
99 {
100         if (bp->dmae_ready)
101                 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
102
103         /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
104         else if (CHIP_IS_E1(bp))
105                 bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
106
107         /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
108         else
109                 bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
110 }
111
112 static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr,
113                              const u32 *data, u32 len64)
114 {
115         u32 buf_len32 = FW_BUF_SIZE/4;
116         u32 len = len64*2;
117         u64 data64 = 0;
118         u32 i;
119
120         /* 64 bit value is in a blob: first low DWORD, then high DWORD */
121         data64 = HILO_U64((*(data + 1)), (*data));
122
123         len64 = min((u32)(FW_BUF_SIZE/8), len64);
124         for (i = 0; i < len64; i++) {
125                 u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
126
127                 *pdata = data64;
128         }
129
130         for (i = 0; i < len; i += buf_len32) {
131                 u32 cur_len = min(buf_len32, len - i);
132
133                 bnx2x_write_big_buf_wb(bp, addr + i*4, cur_len);
134         }
135 }
136
137 /*********************************************************
138    There are different blobs for each PRAM section.
139    In addition, each blob write operation is divided into a few operations
140    in order to decrease the amount of phys. contiguous buffer needed.
141    Thus, when we select a blob the address may be with some offset
142    from the beginning of PRAM section.
143    The same holds for the INT_TABLE sections.
144 **********************************************************/
145 #define IF_IS_INT_TABLE_ADDR(base, addr) \
146                         if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
147
148 #define IF_IS_PRAM_ADDR(base, addr) \
149                         if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
150
151 static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr,
152                                 const u8 *data)
153 {
154         IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
155                 data = INIT_TSEM_INT_TABLE_DATA(bp);
156         else
157                 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
158                         data = INIT_CSEM_INT_TABLE_DATA(bp);
159         else
160                 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
161                         data = INIT_USEM_INT_TABLE_DATA(bp);
162         else
163                 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
164                         data = INIT_XSEM_INT_TABLE_DATA(bp);
165         else
166                 IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
167                         data = INIT_TSEM_PRAM_DATA(bp);
168         else
169                 IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
170                         data = INIT_CSEM_PRAM_DATA(bp);
171         else
172                 IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
173                         data = INIT_USEM_PRAM_DATA(bp);
174         else
175                 IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
176                         data = INIT_XSEM_PRAM_DATA(bp);
177
178         return data;
179 }
180
181 static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr,
182                              const u32 *data, u32 len)
183 {
184         if (bp->dmae_ready)
185                 VIRT_WR_DMAE_LEN(bp, data, addr, len, 0);
186
187         /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
188         else if (CHIP_IS_E1(bp))
189                 bnx2x_init_ind_wr(bp, addr, data, len);
190
191         /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
192         else
193                 bnx2x_init_str_wr(bp, addr, data, len);
194 }
195
196 static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo,
197                         u32 val_hi)
198 {
199         u32 wb_write[2];
200
201         wb_write[0] = val_lo;
202         wb_write[1] = val_hi;
203         REG_WR_DMAE_LEN(bp, reg, wb_write, 2);
204 }
205 static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len,
206                              u32 blob_off)
207 {
208         const u8 *data = NULL;
209         int rc;
210         u32 i;
211
212         data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
213
214         rc = bnx2x_gunzip(bp, data, len);
215         if (rc)
216                 return;
217
218         /* gunzip_outlen is in dwords */
219         len = GUNZIP_OUTLEN(bp);
220         for (i = 0; i < len; i++)
221                 ((u32 *)GUNZIP_BUF(bp))[i] =
222                                 cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
223
224         bnx2x_write_big_buf_wb(bp, addr, len);
225 }
226
227 static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
228 {
229         u16 op_start =
230                 INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
231                                                      STAGE_START)];
232         u16 op_end =
233                 INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
234                                                      STAGE_END)];
235         union init_op *op;
236         u32 op_idx, op_type, addr, len;
237         const u32 *data, *data_base;
238
239         /* If empty block */
240         if (op_start == op_end)
241                 return;
242
243         data_base = INIT_DATA(bp);
244
245         for (op_idx = op_start; op_idx < op_end; op_idx++) {
246
247                 op = (union init_op *)&(INIT_OPS(bp)[op_idx]);
248                 /* Get generic data */
249                 op_type = op->raw.op;
250                 addr = op->raw.offset;
251                 /* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
252                  * OP_WR64 (we assume that op_arr_write and op_write have the
253                  * same structure).
254                  */
255                 len = op->arr_wr.data_len;
256                 data = data_base + op->arr_wr.data_off;
257
258                 switch (op_type) {
259                 case OP_RD:
260                         REG_RD(bp, addr);
261                         break;
262                 case OP_WR:
263                         REG_WR(bp, addr, op->write.val);
264                         break;
265                 case OP_SW:
266                         bnx2x_init_str_wr(bp, addr, data, len);
267                         break;
268                 case OP_WB:
269                         bnx2x_init_wr_wb(bp, addr, data, len);
270                         break;
271                 case OP_ZR:
272                         bnx2x_init_fill(bp, addr, 0, op->zero.len, 0);
273                         break;
274                 case OP_WB_ZR:
275                         bnx2x_init_fill(bp, addr, 0, op->zero.len, 1);
276                         break;
277                 case OP_ZP:
278                         bnx2x_init_wr_zp(bp, addr, len,
279                                          op->arr_wr.data_off);
280                         break;
281                 case OP_WR_64:
282                         bnx2x_init_wr_64(bp, addr, data, len);
283                         break;
284                 case OP_IF_MODE_AND:
285                         /* if any of the flags doesn't match, skip the
286                          * conditional block.
287                          */
288                         if ((INIT_MODE_FLAGS(bp) &
289                                 op->if_mode.mode_bit_map) !=
290                                 op->if_mode.mode_bit_map)
291                                 op_idx += op->if_mode.cmd_offset;
292                         break;
293                 case OP_IF_MODE_OR:
294                         /* if all the flags don't match, skip the conditional
295                          * block.
296                          */
297                         if ((INIT_MODE_FLAGS(bp) &
298                                 op->if_mode.mode_bit_map) == 0)
299                                 op_idx += op->if_mode.cmd_offset;
300                         break;
301                 default:
302                         /* Should never get here! */
303
304                         break;
305                 }
306         }
307 }
308
309
310 /****************************************************************************
311 * PXP Arbiter
312 ****************************************************************************/
313 /*
314  * This code configures the PCI read/write arbiter
315  * which implements a weighted round robin
316  * between the virtual queues in the chip.
317  *
318  * The values were derived for each PCI max payload and max request size.
319  * since max payload and max request size are only known at run time,
320  * this is done as a separate init stage.
321  */
322
323 #define NUM_WR_Q                        13
324 #define NUM_RD_Q                        29
325 #define MAX_RD_ORD                      3
326 #define MAX_WR_ORD                      2
327
328 /* configuration for one arbiter queue */
329 struct arb_line {
330         int l;
331         int add;
332         int ubound;
333 };
334
335 /* derived configuration for each read queue for each max request size */
336 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
337 /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
338         { {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
339         { {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
340         { {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
341         { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
342         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
343         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
344         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
345         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
346 /* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
347         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
348         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
349         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
350         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
351         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
352         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
353         { {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
354         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
355         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
356 /* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
357         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
358         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
359         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
360         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
361         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
362         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
363         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
364         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
365         { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
366 };
367
368 /* derived configuration for each write queue for each max request size */
369 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
370 /* 1 */ { {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
371         { {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
372         { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
373         { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
374         { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
375         { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
376         { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
377         { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
378         { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
379 /* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
380         { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
381         { {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
382         { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
383 };
384
385 /* register addresses for read queues */
386 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
387 /* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
388                 PXP2_REG_RQ_BW_RD_UBOUND0},
389         {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
390                 PXP2_REG_PSWRQ_BW_UB1},
391         {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
392                 PXP2_REG_PSWRQ_BW_UB2},
393         {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
394                 PXP2_REG_PSWRQ_BW_UB3},
395         {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
396                 PXP2_REG_RQ_BW_RD_UBOUND4},
397         {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
398                 PXP2_REG_RQ_BW_RD_UBOUND5},
399         {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
400                 PXP2_REG_PSWRQ_BW_UB6},
401         {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
402                 PXP2_REG_PSWRQ_BW_UB7},
403         {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
404                 PXP2_REG_PSWRQ_BW_UB8},
405 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
406                 PXP2_REG_PSWRQ_BW_UB9},
407         {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
408                 PXP2_REG_PSWRQ_BW_UB10},
409         {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
410                 PXP2_REG_PSWRQ_BW_UB11},
411         {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
412                 PXP2_REG_RQ_BW_RD_UBOUND12},
413         {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
414                 PXP2_REG_RQ_BW_RD_UBOUND13},
415         {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
416                 PXP2_REG_RQ_BW_RD_UBOUND14},
417         {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
418                 PXP2_REG_RQ_BW_RD_UBOUND15},
419         {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
420                 PXP2_REG_RQ_BW_RD_UBOUND16},
421         {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
422                 PXP2_REG_RQ_BW_RD_UBOUND17},
423         {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
424                 PXP2_REG_RQ_BW_RD_UBOUND18},
425 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
426                 PXP2_REG_RQ_BW_RD_UBOUND19},
427         {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
428                 PXP2_REG_RQ_BW_RD_UBOUND20},
429         {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
430                 PXP2_REG_RQ_BW_RD_UBOUND22},
431         {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
432                 PXP2_REG_RQ_BW_RD_UBOUND23},
433         {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
434                 PXP2_REG_RQ_BW_RD_UBOUND24},
435         {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
436                 PXP2_REG_RQ_BW_RD_UBOUND25},
437         {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
438                 PXP2_REG_RQ_BW_RD_UBOUND26},
439         {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
440                 PXP2_REG_RQ_BW_RD_UBOUND27},
441         {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
442                 PXP2_REG_PSWRQ_BW_UB28}
443 };
444
445 /* register addresses for write queues */
446 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
447 /* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
448                 PXP2_REG_PSWRQ_BW_UB1},
449         {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
450                 PXP2_REG_PSWRQ_BW_UB2},
451         {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
452                 PXP2_REG_PSWRQ_BW_UB3},
453         {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
454                 PXP2_REG_PSWRQ_BW_UB6},
455         {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
456                 PXP2_REG_PSWRQ_BW_UB7},
457         {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
458                 PXP2_REG_PSWRQ_BW_UB8},
459         {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
460                 PXP2_REG_PSWRQ_BW_UB9},
461         {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
462                 PXP2_REG_PSWRQ_BW_UB10},
463         {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
464                 PXP2_REG_PSWRQ_BW_UB11},
465 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
466                 PXP2_REG_PSWRQ_BW_UB28},
467         {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
468                 PXP2_REG_RQ_BW_WR_UBOUND29},
469         {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
470                 PXP2_REG_RQ_BW_WR_UBOUND30}
471 };
472
473 static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order,
474                                int w_order)
475 {
476         u32 val, i;
477
478         if (r_order > MAX_RD_ORD) {
479                 DP(NETIF_MSG_HW, "read order of %d  order adjusted to %d\n",
480                    r_order, MAX_RD_ORD);
481                 r_order = MAX_RD_ORD;
482         }
483         if (w_order > MAX_WR_ORD) {
484                 DP(NETIF_MSG_HW, "write order of %d  order adjusted to %d\n",
485                    w_order, MAX_WR_ORD);
486                 w_order = MAX_WR_ORD;
487         }
488         if (CHIP_REV_IS_FPGA(bp)) {
489                 DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
490                 w_order = 0;
491         }
492         DP(NETIF_MSG_HW, "read order %d  write order %d\n", r_order, w_order);
493
494         for (i = 0; i < NUM_RD_Q-1; i++) {
495                 REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
496                 REG_WR(bp, read_arb_addr[i].add,
497                        read_arb_data[i][r_order].add);
498                 REG_WR(bp, read_arb_addr[i].ubound,
499                        read_arb_data[i][r_order].ubound);
500         }
501
502         for (i = 0; i < NUM_WR_Q-1; i++) {
503                 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
504                     (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
505
506                         REG_WR(bp, write_arb_addr[i].l,
507                                write_arb_data[i][w_order].l);
508
509                         REG_WR(bp, write_arb_addr[i].add,
510                                write_arb_data[i][w_order].add);
511
512                         REG_WR(bp, write_arb_addr[i].ubound,
513                                write_arb_data[i][w_order].ubound);
514                 } else {
515
516                         val = REG_RD(bp, write_arb_addr[i].l);
517                         REG_WR(bp, write_arb_addr[i].l,
518                                val | (write_arb_data[i][w_order].l << 10));
519
520                         val = REG_RD(bp, write_arb_addr[i].add);
521                         REG_WR(bp, write_arb_addr[i].add,
522                                val | (write_arb_data[i][w_order].add << 10));
523
524                         val = REG_RD(bp, write_arb_addr[i].ubound);
525                         REG_WR(bp, write_arb_addr[i].ubound,
526                                val | (write_arb_data[i][w_order].ubound << 7));
527                 }
528         }
529
530         val =  write_arb_data[NUM_WR_Q-1][w_order].add;
531         val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
532         val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
533         REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
534
535         val =  read_arb_data[NUM_RD_Q-1][r_order].add;
536         val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
537         val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
538         REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
539
540         REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
541         REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
542         REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
543         REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
544
545         if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD))
546                 REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
547
548         if (CHIP_IS_E3(bp))
549                 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
550         else if (CHIP_IS_E2(bp))
551                 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
552         else
553                 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
554
555         if (!CHIP_IS_E1(bp)) {
556                 /*    MPS      w_order     optimal TH      presently TH
557                  *    128         0             0               2
558                  *    256         1             1               3
559                  *    >=512       2             2               3
560                  */
561                 /* DMAE is special */
562                 if (!CHIP_IS_E1H(bp)) {
563                         /* E2 can use optimal TH */
564                         val = w_order;
565                         REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val);
566                 } else {
567                         val = ((w_order == 0) ? 2 : 3);
568                         REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2);
569                 }
570
571                 REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
572                 REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
573                 REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
574                 REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
575                 REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
576                 REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
577                 REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
578                 REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
579                 REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
580                 REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
581         }
582
583         /* Validate number of tags suppoted by device */
584 #define PCIE_REG_PCIER_TL_HDR_FC_ST             0x2980
585         val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST);
586         val &= 0xFF;
587         if (val <= 0x20)
588                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
589 }
590
591 /****************************************************************************
592 * ILT management
593 ****************************************************************************/
594 /*
595  * This codes hides the low level HW interaction for ILT management and
596  * configuration. The API consists of a shadow ILT table which is set by the
597  * driver and a set of routines to use it to configure the HW.
598  *
599  */
600
601 /* ILT HW init operations */
602
603 /* ILT memory management operations */
604 #define ILT_MEMOP_ALLOC         0
605 #define ILT_MEMOP_FREE          1
606
607 /* the phys address is shifted right 12 bits and has an added
608  * 1=valid bit added to the 53rd bit
609  * then since this is a wide register(TM)
610  * we split it into two 32 bit writes
611  */
612 #define ILT_ADDR1(x)            ((u32)(((u64)x >> 12) & 0xFFFFFFFF))
613 #define ILT_ADDR2(x)            ((u32)((1 << 20) | ((u64)x >> 44)))
614 #define ILT_RANGE(f, l)         (((l) << 10) | f)
615
616 static int bnx2x_ilt_line_mem_op(struct bnx2x *bp,
617                                  struct ilt_line *line, u32 size, u8 memop)
618 {
619         if (memop == ILT_MEMOP_FREE) {
620                 BNX2X_ILT_FREE(line->page, line->page_mapping, line->size);
621                 return 0;
622         }
623         BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size);
624         if (!line->page)
625                 return -1;
626         line->size = size;
627         return 0;
628 }
629
630
631 static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num,
632                                    u8 memop)
633 {
634         int i, rc;
635         struct bnx2x_ilt *ilt = BP_ILT(bp);
636         struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
637
638         if (!ilt || !ilt->lines)
639                 return -1;
640
641         if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
642                 return 0;
643
644         for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
645                 rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i],
646                                            ilt_cli->page_size, memop);
647         }
648         return rc;
649 }
650
651 static int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop)
652 {
653         int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop);
654         if (!rc)
655                 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop);
656         if (!rc)
657                 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
658         if (!rc)
659                 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop);
660
661         return rc;
662 }
663
664 static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx,
665                               dma_addr_t page_mapping)
666 {
667         u32 reg;
668
669         if (CHIP_IS_E1(bp))
670                 reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
671         else
672                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
673
674         bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
675 }
676
677 static void bnx2x_ilt_line_init_op(struct bnx2x *bp,
678                                    struct bnx2x_ilt *ilt, int idx, u8 initop)
679 {
680         dma_addr_t      null_mapping;
681         int abs_idx = ilt->start_line + idx;
682
683
684         switch (initop) {
685         case INITOP_INIT:
686                 /* set in the init-value array */
687         case INITOP_SET:
688                 bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping);
689                 break;
690         case INITOP_CLEAR:
691                 null_mapping = 0;
692                 bnx2x_ilt_line_wr(bp, abs_idx, null_mapping);
693                 break;
694         }
695 }
696
697 static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp,
698                                       struct ilt_client_info *ilt_cli,
699                                       u32 ilt_start, u8 initop)
700 {
701         u32 start_reg = 0;
702         u32 end_reg = 0;
703
704         /* The boundary is either SET or INIT,
705            CLEAR => SET and for now SET ~~ INIT */
706
707         /* find the appropriate regs */
708         if (CHIP_IS_E1(bp)) {
709                 switch (ilt_cli->client_num) {
710                 case ILT_CLIENT_CDU:
711                         start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
712                         break;
713                 case ILT_CLIENT_QM:
714                         start_reg = PXP2_REG_PSWRQ_QM0_L2P;
715                         break;
716                 case ILT_CLIENT_SRC:
717                         start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
718                         break;
719                 case ILT_CLIENT_TM:
720                         start_reg = PXP2_REG_PSWRQ_TM0_L2P;
721                         break;
722                 }
723                 REG_WR(bp, start_reg + BP_FUNC(bp)*4,
724                        ILT_RANGE((ilt_start + ilt_cli->start),
725                                  (ilt_start + ilt_cli->end)));
726         } else {
727                 switch (ilt_cli->client_num) {
728                 case ILT_CLIENT_CDU:
729                         start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
730                         end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
731                         break;
732                 case ILT_CLIENT_QM:
733                         start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
734                         end_reg = PXP2_REG_RQ_QM_LAST_ILT;
735                         break;
736                 case ILT_CLIENT_SRC:
737                         start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
738                         end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
739                         break;
740                 case ILT_CLIENT_TM:
741                         start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
742                         end_reg = PXP2_REG_RQ_TM_LAST_ILT;
743                         break;
744                 }
745                 REG_WR(bp, start_reg, (ilt_start + ilt_cli->start));
746                 REG_WR(bp, end_reg, (ilt_start + ilt_cli->end));
747         }
748 }
749
750 static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp,
751                                          struct bnx2x_ilt *ilt,
752                                          struct ilt_client_info *ilt_cli,
753                                          u8 initop)
754 {
755         int i;
756
757         if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
758                 return;
759
760         for (i = ilt_cli->start; i <= ilt_cli->end; i++)
761                 bnx2x_ilt_line_init_op(bp, ilt, i, initop);
762
763         /* init/clear the ILT boundries */
764         bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop);
765 }
766
767 static void bnx2x_ilt_client_init_op(struct bnx2x *bp,
768                                      struct ilt_client_info *ilt_cli, u8 initop)
769 {
770         struct bnx2x_ilt *ilt = BP_ILT(bp);
771
772         bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop);
773 }
774
775 static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp,
776                                         int cli_num, u8 initop)
777 {
778         struct bnx2x_ilt *ilt = BP_ILT(bp);
779         struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
780
781         bnx2x_ilt_client_init_op(bp, ilt_cli, initop);
782 }
783
784 static void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop)
785 {
786         bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop);
787         bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop);
788         bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
789         bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop);
790 }
791
792 static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num,
793                                       u32 psz_reg, u8 initop)
794 {
795         struct bnx2x_ilt *ilt = BP_ILT(bp);
796         struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
797
798         if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
799                 return;
800
801         switch (initop) {
802         case INITOP_INIT:
803                 /* set in the init-value array */
804         case INITOP_SET:
805                 REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12));
806                 break;
807         case INITOP_CLEAR:
808                 break;
809         }
810 }
811
812 /*
813  * called during init common stage, ilt clients should be initialized
814  * prioir to calling this function
815  */
816 static void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop)
817 {
818         bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU,
819                                   PXP2_REG_RQ_CDU_P_SIZE, initop);
820         bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM,
821                                   PXP2_REG_RQ_QM_P_SIZE, initop);
822         bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC,
823                                   PXP2_REG_RQ_SRC_P_SIZE, initop);
824         bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM,
825                                   PXP2_REG_RQ_TM_P_SIZE, initop);
826 }
827
828 /****************************************************************************
829 * QM initializations
830 ****************************************************************************/
831 #define QM_QUEUES_PER_FUNC      16 /* E1 has 32, but only 16 are used */
832 #define QM_INIT_MIN_CID_COUNT   31
833 #define QM_INIT(cid_cnt)        (cid_cnt > QM_INIT_MIN_CID_COUNT)
834
835 /* called during init port stage */
836 static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count,
837                                     u8 initop)
838 {
839         int port = BP_PORT(bp);
840
841         if (QM_INIT(qm_cid_count)) {
842                 switch (initop) {
843                 case INITOP_INIT:
844                         /* set in the init-value array */
845                 case INITOP_SET:
846                         REG_WR(bp, QM_REG_CONNNUM_0 + port*4,
847                                qm_cid_count/16 - 1);
848                         break;
849                 case INITOP_CLEAR:
850                         break;
851                 }
852         }
853 }
854
855 static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count,
856                                    u32 base_reg, u32 reg)
857 {
858         int i;
859         u32 wb_data[2] = {0, 0};
860         for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
861                 REG_WR(bp, base_reg + i*4,
862                        qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
863                 bnx2x_init_wr_wb(bp, reg + i*8,  wb_data, 2);
864         }
865 }
866
867 /* called during init common stage */
868 static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count,
869                                     u8 initop)
870 {
871         if (!QM_INIT(qm_cid_count))
872                 return;
873
874         switch (initop) {
875         case INITOP_INIT:
876                 /* set in the init-value array */
877         case INITOP_SET:
878                 bnx2x_qm_set_ptr_table(bp, qm_cid_count,
879                                        QM_REG_BASEADDR, QM_REG_PTRTBL);
880                 if (CHIP_IS_E1H(bp))
881                         bnx2x_qm_set_ptr_table(bp, qm_cid_count,
882                                                QM_REG_BASEADDR_EXT_A,
883                                                QM_REG_PTRTBL_EXT_A);
884                 break;
885         case INITOP_CLEAR:
886                 break;
887         }
888 }
889
890 /****************************************************************************
891 * SRC initializations
892 ****************************************************************************/
893 #ifdef BCM_CNIC
894 /* called during init func stage */
895 static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2,
896                               dma_addr_t t2_mapping, int src_cid_count)
897 {
898         int i;
899         int port = BP_PORT(bp);
900
901         /* Initialize T2 */
902         for (i = 0; i < src_cid_count-1; i++)
903                 t2[i].next = (u64)(t2_mapping +
904                              (i+1)*sizeof(struct src_ent));
905
906         /* tell the searcher where the T2 table is */
907         REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
908
909         bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16,
910                     U64_LO(t2_mapping), U64_HI(t2_mapping));
911
912         bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16,
913                     U64_LO((u64)t2_mapping +
914                            (src_cid_count-1) * sizeof(struct src_ent)),
915                     U64_HI((u64)t2_mapping +
916                            (src_cid_count-1) * sizeof(struct src_ent)));
917 }
918 #endif
919 #endif /* BNX2X_INIT_OPS_H */