Merge branch 'for-linus' of git://git.infradead.org/users/eparis/notify
[pandora-kernel.git] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/tcp.h>
40 #include <linux/ipv6.h>
41 #include <linux/slab.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <linux/mii.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos_params.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52
53 #include "e1000.h"
54
55 #define DRV_EXTRAVERSION "-k2"
56
57 #define DRV_VERSION "1.2.7" DRV_EXTRAVERSION
58 char e1000e_driver_name[] = "e1000e";
59 const char e1000e_driver_version[] = DRV_VERSION;
60
61 static const struct e1000_info *e1000_info_tbl[] = {
62         [board_82571]           = &e1000_82571_info,
63         [board_82572]           = &e1000_82572_info,
64         [board_82573]           = &e1000_82573_info,
65         [board_82574]           = &e1000_82574_info,
66         [board_82583]           = &e1000_82583_info,
67         [board_80003es2lan]     = &e1000_es2_info,
68         [board_ich8lan]         = &e1000_ich8_info,
69         [board_ich9lan]         = &e1000_ich9_info,
70         [board_ich10lan]        = &e1000_ich10_info,
71         [board_pchlan]          = &e1000_pch_info,
72         [board_pch2lan]         = &e1000_pch2_info,
73 };
74
75 struct e1000_reg_info {
76         u32 ofs;
77         char *name;
78 };
79
80 #define E1000_RDFH      0x02410 /* Rx Data FIFO Head - RW */
81 #define E1000_RDFT      0x02418 /* Rx Data FIFO Tail - RW */
82 #define E1000_RDFHS     0x02420 /* Rx Data FIFO Head Saved - RW */
83 #define E1000_RDFTS     0x02428 /* Rx Data FIFO Tail Saved - RW */
84 #define E1000_RDFPC     0x02430 /* Rx Data FIFO Packet Count - RW */
85
86 #define E1000_TDFH      0x03410 /* Tx Data FIFO Head - RW */
87 #define E1000_TDFT      0x03418 /* Tx Data FIFO Tail - RW */
88 #define E1000_TDFHS     0x03420 /* Tx Data FIFO Head Saved - RW */
89 #define E1000_TDFTS     0x03428 /* Tx Data FIFO Tail Saved - RW */
90 #define E1000_TDFPC     0x03430 /* Tx Data FIFO Packet Count - RW */
91
92 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
93
94         /* General Registers */
95         {E1000_CTRL, "CTRL"},
96         {E1000_STATUS, "STATUS"},
97         {E1000_CTRL_EXT, "CTRL_EXT"},
98
99         /* Interrupt Registers */
100         {E1000_ICR, "ICR"},
101
102         /* RX Registers */
103         {E1000_RCTL, "RCTL"},
104         {E1000_RDLEN, "RDLEN"},
105         {E1000_RDH, "RDH"},
106         {E1000_RDT, "RDT"},
107         {E1000_RDTR, "RDTR"},
108         {E1000_RXDCTL(0), "RXDCTL"},
109         {E1000_ERT, "ERT"},
110         {E1000_RDBAL, "RDBAL"},
111         {E1000_RDBAH, "RDBAH"},
112         {E1000_RDFH, "RDFH"},
113         {E1000_RDFT, "RDFT"},
114         {E1000_RDFHS, "RDFHS"},
115         {E1000_RDFTS, "RDFTS"},
116         {E1000_RDFPC, "RDFPC"},
117
118         /* TX Registers */
119         {E1000_TCTL, "TCTL"},
120         {E1000_TDBAL, "TDBAL"},
121         {E1000_TDBAH, "TDBAH"},
122         {E1000_TDLEN, "TDLEN"},
123         {E1000_TDH, "TDH"},
124         {E1000_TDT, "TDT"},
125         {E1000_TIDV, "TIDV"},
126         {E1000_TXDCTL(0), "TXDCTL"},
127         {E1000_TADV, "TADV"},
128         {E1000_TARC(0), "TARC"},
129         {E1000_TDFH, "TDFH"},
130         {E1000_TDFT, "TDFT"},
131         {E1000_TDFHS, "TDFHS"},
132         {E1000_TDFTS, "TDFTS"},
133         {E1000_TDFPC, "TDFPC"},
134
135         /* List Terminator */
136         {}
137 };
138
139 /*
140  * e1000_regdump - register printout routine
141  */
142 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
143 {
144         int n = 0;
145         char rname[16];
146         u32 regs[8];
147
148         switch (reginfo->ofs) {
149         case E1000_RXDCTL(0):
150                 for (n = 0; n < 2; n++)
151                         regs[n] = __er32(hw, E1000_RXDCTL(n));
152                 break;
153         case E1000_TXDCTL(0):
154                 for (n = 0; n < 2; n++)
155                         regs[n] = __er32(hw, E1000_TXDCTL(n));
156                 break;
157         case E1000_TARC(0):
158                 for (n = 0; n < 2; n++)
159                         regs[n] = __er32(hw, E1000_TARC(n));
160                 break;
161         default:
162                 printk(KERN_INFO "%-15s %08x\n",
163                         reginfo->name, __er32(hw, reginfo->ofs));
164                 return;
165         }
166
167         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
168         printk(KERN_INFO "%-15s ", rname);
169         for (n = 0; n < 2; n++)
170                 printk(KERN_CONT "%08x ", regs[n]);
171         printk(KERN_CONT "\n");
172 }
173
174
175 /*
176  * e1000e_dump - Print registers, tx-ring and rx-ring
177  */
178 static void e1000e_dump(struct e1000_adapter *adapter)
179 {
180         struct net_device *netdev = adapter->netdev;
181         struct e1000_hw *hw = &adapter->hw;
182         struct e1000_reg_info *reginfo;
183         struct e1000_ring *tx_ring = adapter->tx_ring;
184         struct e1000_tx_desc *tx_desc;
185         struct my_u0 { u64 a; u64 b; } *u0;
186         struct e1000_buffer *buffer_info;
187         struct e1000_ring *rx_ring = adapter->rx_ring;
188         union e1000_rx_desc_packet_split *rx_desc_ps;
189         struct e1000_rx_desc *rx_desc;
190         struct my_u1 { u64 a; u64 b; u64 c; u64 d; } *u1;
191         u32 staterr;
192         int i = 0;
193
194         if (!netif_msg_hw(adapter))
195                 return;
196
197         /* Print netdevice Info */
198         if (netdev) {
199                 dev_info(&adapter->pdev->dev, "Net device Info\n");
200                 printk(KERN_INFO "Device Name     state            "
201                         "trans_start      last_rx\n");
202                 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
203                         netdev->name,
204                         netdev->state,
205                         netdev->trans_start,
206                         netdev->last_rx);
207         }
208
209         /* Print Registers */
210         dev_info(&adapter->pdev->dev, "Register Dump\n");
211         printk(KERN_INFO " Register Name   Value\n");
212         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
213              reginfo->name; reginfo++) {
214                 e1000_regdump(hw, reginfo);
215         }
216
217         /* Print TX Ring Summary */
218         if (!netdev || !netif_running(netdev))
219                 goto exit;
220
221         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
222         printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
223                 " leng ntw timestamp\n");
224         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
225         printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
226                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
227                 (unsigned long long)buffer_info->dma,
228                 buffer_info->length,
229                 buffer_info->next_to_watch,
230                 (unsigned long long)buffer_info->time_stamp);
231
232         /* Print TX Rings */
233         if (!netif_msg_tx_done(adapter))
234                 goto rx_ring_summary;
235
236         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
237
238         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
239          *
240          * Legacy Transmit Descriptor
241          *   +--------------------------------------------------------------+
242          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
243          *   +--------------------------------------------------------------+
244          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
245          *   +--------------------------------------------------------------+
246          *   63       48 47        36 35    32 31     24 23    16 15        0
247          *
248          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
249          *   63      48 47    40 39       32 31             16 15    8 7      0
250          *   +----------------------------------------------------------------+
251          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
252          *   +----------------------------------------------------------------+
253          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
254          *   +----------------------------------------------------------------+
255          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
256          *
257          * Extended Data Descriptor (DTYP=0x1)
258          *   +----------------------------------------------------------------+
259          * 0 |                     Buffer Address [63:0]                      |
260          *   +----------------------------------------------------------------+
261          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
262          *   +----------------------------------------------------------------+
263          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
264          */
265         printk(KERN_INFO "Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen]"
266                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
267                 "<-- Legacy format\n");
268         printk(KERN_INFO "Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
269                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
270                 "<-- Ext Context format\n");
271         printk(KERN_INFO "Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen]"
272                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
273                 "<-- Ext Data format\n");
274         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
275                 tx_desc = E1000_TX_DESC(*tx_ring, i);
276                 buffer_info = &tx_ring->buffer_info[i];
277                 u0 = (struct my_u0 *)tx_desc;
278                 printk(KERN_INFO "T%c[0x%03X]    %016llX %016llX %016llX "
279                         "%04X  %3X %016llX %p",
280                        (!(le64_to_cpu(u0->b) & (1<<29)) ? 'l' :
281                         ((le64_to_cpu(u0->b) & (1<<20)) ? 'd' : 'c')), i,
282                        (unsigned long long)le64_to_cpu(u0->a),
283                        (unsigned long long)le64_to_cpu(u0->b),
284                        (unsigned long long)buffer_info->dma,
285                        buffer_info->length, buffer_info->next_to_watch,
286                        (unsigned long long)buffer_info->time_stamp,
287                        buffer_info->skb);
288                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
289                         printk(KERN_CONT " NTC/U\n");
290                 else if (i == tx_ring->next_to_use)
291                         printk(KERN_CONT " NTU\n");
292                 else if (i == tx_ring->next_to_clean)
293                         printk(KERN_CONT " NTC\n");
294                 else
295                         printk(KERN_CONT "\n");
296
297                 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
298                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
299                                         16, 1, phys_to_virt(buffer_info->dma),
300                                         buffer_info->length, true);
301         }
302
303         /* Print RX Rings Summary */
304 rx_ring_summary:
305         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
306         printk(KERN_INFO "Queue [NTU] [NTC]\n");
307         printk(KERN_INFO " %5d %5X %5X\n", 0,
308                 rx_ring->next_to_use, rx_ring->next_to_clean);
309
310         /* Print RX Rings */
311         if (!netif_msg_rx_status(adapter))
312                 goto exit;
313
314         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
315         switch (adapter->rx_ps_pages) {
316         case 1:
317         case 2:
318         case 3:
319                 /* [Extended] Packet Split Receive Descriptor Format
320                  *
321                  *    +-----------------------------------------------------+
322                  *  0 |                Buffer Address 0 [63:0]              |
323                  *    +-----------------------------------------------------+
324                  *  8 |                Buffer Address 1 [63:0]              |
325                  *    +-----------------------------------------------------+
326                  * 16 |                Buffer Address 2 [63:0]              |
327                  *    +-----------------------------------------------------+
328                  * 24 |                Buffer Address 3 [63:0]              |
329                  *    +-----------------------------------------------------+
330                  */
331                 printk(KERN_INFO "R  [desc]      [buffer 0 63:0 ] "
332                         "[buffer 1 63:0 ] "
333                        "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] "
334                        "[bi->skb] <-- Ext Pkt Split format\n");
335                 /* [Extended] Receive Descriptor (Write-Back) Format
336                  *
337                  *   63       48 47    32 31     13 12    8 7    4 3        0
338                  *   +------------------------------------------------------+
339                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
340                  *   | Checksum | Ident  |         | Queue |      |  Type   |
341                  *   +------------------------------------------------------+
342                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
343                  *   +------------------------------------------------------+
344                  *   63       48 47    32 31            20 19               0
345                  */
346                 printk(KERN_INFO "RWB[desc]      [ck ipid mrqhsh] "
347                         "[vl   l0 ee  es] "
348                        "[ l3  l2  l1 hs] [reserved      ] ---------------- "
349                        "[bi->skb] <-- Ext Rx Write-Back format\n");
350                 for (i = 0; i < rx_ring->count; i++) {
351                         buffer_info = &rx_ring->buffer_info[i];
352                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
353                         u1 = (struct my_u1 *)rx_desc_ps;
354                         staterr =
355                                 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
356                         if (staterr & E1000_RXD_STAT_DD) {
357                                 /* Descriptor Done */
358                                 printk(KERN_INFO "RWB[0x%03X]     %016llX "
359                                         "%016llX %016llX %016llX "
360                                         "---------------- %p", i,
361                                         (unsigned long long)le64_to_cpu(u1->a),
362                                         (unsigned long long)le64_to_cpu(u1->b),
363                                         (unsigned long long)le64_to_cpu(u1->c),
364                                         (unsigned long long)le64_to_cpu(u1->d),
365                                         buffer_info->skb);
366                         } else {
367                                 printk(KERN_INFO "R  [0x%03X]     %016llX "
368                                         "%016llX %016llX %016llX %016llX %p", i,
369                                         (unsigned long long)le64_to_cpu(u1->a),
370                                         (unsigned long long)le64_to_cpu(u1->b),
371                                         (unsigned long long)le64_to_cpu(u1->c),
372                                         (unsigned long long)le64_to_cpu(u1->d),
373                                         (unsigned long long)buffer_info->dma,
374                                         buffer_info->skb);
375
376                                 if (netif_msg_pktdata(adapter))
377                                         print_hex_dump(KERN_INFO, "",
378                                                 DUMP_PREFIX_ADDRESS, 16, 1,
379                                                 phys_to_virt(buffer_info->dma),
380                                                 adapter->rx_ps_bsize0, true);
381                         }
382
383                         if (i == rx_ring->next_to_use)
384                                 printk(KERN_CONT " NTU\n");
385                         else if (i == rx_ring->next_to_clean)
386                                 printk(KERN_CONT " NTC\n");
387                         else
388                                 printk(KERN_CONT "\n");
389                 }
390                 break;
391         default:
392         case 0:
393                 /* Legacy Receive Descriptor Format
394                  *
395                  * +-----------------------------------------------------+
396                  * |                Buffer Address [63:0]                |
397                  * +-----------------------------------------------------+
398                  * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
399                  * +-----------------------------------------------------+
400                  * 63       48 47    40 39      32 31         16 15      0
401                  */
402                 printk(KERN_INFO "Rl[desc]     [address 63:0  ] "
403                         "[vl er S cks ln] [bi->dma       ] [bi->skb] "
404                         "<-- Legacy format\n");
405                 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
406                         rx_desc = E1000_RX_DESC(*rx_ring, i);
407                         buffer_info = &rx_ring->buffer_info[i];
408                         u0 = (struct my_u0 *)rx_desc;
409                         printk(KERN_INFO "Rl[0x%03X]    %016llX %016llX "
410                                 "%016llX %p", i,
411                                 (unsigned long long)le64_to_cpu(u0->a),
412                                 (unsigned long long)le64_to_cpu(u0->b),
413                                 (unsigned long long)buffer_info->dma,
414                                 buffer_info->skb);
415                         if (i == rx_ring->next_to_use)
416                                 printk(KERN_CONT " NTU\n");
417                         else if (i == rx_ring->next_to_clean)
418                                 printk(KERN_CONT " NTC\n");
419                         else
420                                 printk(KERN_CONT "\n");
421
422                         if (netif_msg_pktdata(adapter))
423                                 print_hex_dump(KERN_INFO, "",
424                                         DUMP_PREFIX_ADDRESS,
425                                         16, 1, phys_to_virt(buffer_info->dma),
426                                         adapter->rx_buffer_len, true);
427                 }
428         }
429
430 exit:
431         return;
432 }
433
434 /**
435  * e1000_desc_unused - calculate if we have unused descriptors
436  **/
437 static int e1000_desc_unused(struct e1000_ring *ring)
438 {
439         if (ring->next_to_clean > ring->next_to_use)
440                 return ring->next_to_clean - ring->next_to_use - 1;
441
442         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
443 }
444
445 /**
446  * e1000_receive_skb - helper function to handle Rx indications
447  * @adapter: board private structure
448  * @status: descriptor status field as written by hardware
449  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
450  * @skb: pointer to sk_buff to be indicated to stack
451  **/
452 static void e1000_receive_skb(struct e1000_adapter *adapter,
453                               struct net_device *netdev,
454                               struct sk_buff *skb,
455                               u8 status, __le16 vlan)
456 {
457         skb->protocol = eth_type_trans(skb, netdev);
458
459         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
460                 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
461                                  le16_to_cpu(vlan), skb);
462         else
463                 napi_gro_receive(&adapter->napi, skb);
464 }
465
466 /**
467  * e1000_rx_checksum - Receive Checksum Offload for 82543
468  * @adapter:     board private structure
469  * @status_err:  receive descriptor status and error fields
470  * @csum:       receive descriptor csum field
471  * @sk_buff:     socket buffer with received data
472  **/
473 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
474                               u32 csum, struct sk_buff *skb)
475 {
476         u16 status = (u16)status_err;
477         u8 errors = (u8)(status_err >> 24);
478
479         skb_checksum_none_assert(skb);
480
481         /* Ignore Checksum bit is set */
482         if (status & E1000_RXD_STAT_IXSM)
483                 return;
484         /* TCP/UDP checksum error bit is set */
485         if (errors & E1000_RXD_ERR_TCPE) {
486                 /* let the stack verify checksum errors */
487                 adapter->hw_csum_err++;
488                 return;
489         }
490
491         /* TCP/UDP Checksum has not been calculated */
492         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
493                 return;
494
495         /* It must be a TCP or UDP packet with a valid checksum */
496         if (status & E1000_RXD_STAT_TCPCS) {
497                 /* TCP checksum is good */
498                 skb->ip_summed = CHECKSUM_UNNECESSARY;
499         } else {
500                 /*
501                  * IP fragment with UDP payload
502                  * Hardware complements the payload checksum, so we undo it
503                  * and then put the value in host order for further stack use.
504                  */
505                 __sum16 sum = (__force __sum16)htons(csum);
506                 skb->csum = csum_unfold(~sum);
507                 skb->ip_summed = CHECKSUM_COMPLETE;
508         }
509         adapter->hw_csum_good++;
510 }
511
512 /**
513  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
514  * @adapter: address of board private structure
515  **/
516 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
517                                    int cleaned_count)
518 {
519         struct net_device *netdev = adapter->netdev;
520         struct pci_dev *pdev = adapter->pdev;
521         struct e1000_ring *rx_ring = adapter->rx_ring;
522         struct e1000_rx_desc *rx_desc;
523         struct e1000_buffer *buffer_info;
524         struct sk_buff *skb;
525         unsigned int i;
526         unsigned int bufsz = adapter->rx_buffer_len;
527
528         i = rx_ring->next_to_use;
529         buffer_info = &rx_ring->buffer_info[i];
530
531         while (cleaned_count--) {
532                 skb = buffer_info->skb;
533                 if (skb) {
534                         skb_trim(skb, 0);
535                         goto map_skb;
536                 }
537
538                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
539                 if (!skb) {
540                         /* Better luck next round */
541                         adapter->alloc_rx_buff_failed++;
542                         break;
543                 }
544
545                 buffer_info->skb = skb;
546 map_skb:
547                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
548                                                   adapter->rx_buffer_len,
549                                                   DMA_FROM_DEVICE);
550                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
551                         dev_err(&pdev->dev, "RX DMA map failed\n");
552                         adapter->rx_dma_failed++;
553                         break;
554                 }
555
556                 rx_desc = E1000_RX_DESC(*rx_ring, i);
557                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
558
559                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
560                         /*
561                          * Force memory writes to complete before letting h/w
562                          * know there are new descriptors to fetch.  (Only
563                          * applicable for weak-ordered memory model archs,
564                          * such as IA-64).
565                          */
566                         wmb();
567                         writel(i, adapter->hw.hw_addr + rx_ring->tail);
568                 }
569                 i++;
570                 if (i == rx_ring->count)
571                         i = 0;
572                 buffer_info = &rx_ring->buffer_info[i];
573         }
574
575         rx_ring->next_to_use = i;
576 }
577
578 /**
579  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
580  * @adapter: address of board private structure
581  **/
582 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
583                                       int cleaned_count)
584 {
585         struct net_device *netdev = adapter->netdev;
586         struct pci_dev *pdev = adapter->pdev;
587         union e1000_rx_desc_packet_split *rx_desc;
588         struct e1000_ring *rx_ring = adapter->rx_ring;
589         struct e1000_buffer *buffer_info;
590         struct e1000_ps_page *ps_page;
591         struct sk_buff *skb;
592         unsigned int i, j;
593
594         i = rx_ring->next_to_use;
595         buffer_info = &rx_ring->buffer_info[i];
596
597         while (cleaned_count--) {
598                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
599
600                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
601                         ps_page = &buffer_info->ps_pages[j];
602                         if (j >= adapter->rx_ps_pages) {
603                                 /* all unused desc entries get hw null ptr */
604                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
605                                 continue;
606                         }
607                         if (!ps_page->page) {
608                                 ps_page->page = alloc_page(GFP_ATOMIC);
609                                 if (!ps_page->page) {
610                                         adapter->alloc_rx_buff_failed++;
611                                         goto no_buffers;
612                                 }
613                                 ps_page->dma = dma_map_page(&pdev->dev,
614                                                             ps_page->page,
615                                                             0, PAGE_SIZE,
616                                                             DMA_FROM_DEVICE);
617                                 if (dma_mapping_error(&pdev->dev,
618                                                       ps_page->dma)) {
619                                         dev_err(&adapter->pdev->dev,
620                                           "RX DMA page map failed\n");
621                                         adapter->rx_dma_failed++;
622                                         goto no_buffers;
623                                 }
624                         }
625                         /*
626                          * Refresh the desc even if buffer_addrs
627                          * didn't change because each write-back
628                          * erases this info.
629                          */
630                         rx_desc->read.buffer_addr[j+1] =
631                              cpu_to_le64(ps_page->dma);
632                 }
633
634                 skb = netdev_alloc_skb_ip_align(netdev,
635                                                 adapter->rx_ps_bsize0);
636
637                 if (!skb) {
638                         adapter->alloc_rx_buff_failed++;
639                         break;
640                 }
641
642                 buffer_info->skb = skb;
643                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
644                                                   adapter->rx_ps_bsize0,
645                                                   DMA_FROM_DEVICE);
646                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
647                         dev_err(&pdev->dev, "RX DMA map failed\n");
648                         adapter->rx_dma_failed++;
649                         /* cleanup skb */
650                         dev_kfree_skb_any(skb);
651                         buffer_info->skb = NULL;
652                         break;
653                 }
654
655                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
656
657                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
658                         /*
659                          * Force memory writes to complete before letting h/w
660                          * know there are new descriptors to fetch.  (Only
661                          * applicable for weak-ordered memory model archs,
662                          * such as IA-64).
663                          */
664                         wmb();
665                         writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
666                 }
667
668                 i++;
669                 if (i == rx_ring->count)
670                         i = 0;
671                 buffer_info = &rx_ring->buffer_info[i];
672         }
673
674 no_buffers:
675         rx_ring->next_to_use = i;
676 }
677
678 /**
679  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
680  * @adapter: address of board private structure
681  * @cleaned_count: number of buffers to allocate this pass
682  **/
683
684 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
685                                          int cleaned_count)
686 {
687         struct net_device *netdev = adapter->netdev;
688         struct pci_dev *pdev = adapter->pdev;
689         struct e1000_rx_desc *rx_desc;
690         struct e1000_ring *rx_ring = adapter->rx_ring;
691         struct e1000_buffer *buffer_info;
692         struct sk_buff *skb;
693         unsigned int i;
694         unsigned int bufsz = 256 - 16 /* for skb_reserve */;
695
696         i = rx_ring->next_to_use;
697         buffer_info = &rx_ring->buffer_info[i];
698
699         while (cleaned_count--) {
700                 skb = buffer_info->skb;
701                 if (skb) {
702                         skb_trim(skb, 0);
703                         goto check_page;
704                 }
705
706                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
707                 if (unlikely(!skb)) {
708                         /* Better luck next round */
709                         adapter->alloc_rx_buff_failed++;
710                         break;
711                 }
712
713                 buffer_info->skb = skb;
714 check_page:
715                 /* allocate a new page if necessary */
716                 if (!buffer_info->page) {
717                         buffer_info->page = alloc_page(GFP_ATOMIC);
718                         if (unlikely(!buffer_info->page)) {
719                                 adapter->alloc_rx_buff_failed++;
720                                 break;
721                         }
722                 }
723
724                 if (!buffer_info->dma)
725                         buffer_info->dma = dma_map_page(&pdev->dev,
726                                                         buffer_info->page, 0,
727                                                         PAGE_SIZE,
728                                                         DMA_FROM_DEVICE);
729
730                 rx_desc = E1000_RX_DESC(*rx_ring, i);
731                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
732
733                 if (unlikely(++i == rx_ring->count))
734                         i = 0;
735                 buffer_info = &rx_ring->buffer_info[i];
736         }
737
738         if (likely(rx_ring->next_to_use != i)) {
739                 rx_ring->next_to_use = i;
740                 if (unlikely(i-- == 0))
741                         i = (rx_ring->count - 1);
742
743                 /* Force memory writes to complete before letting h/w
744                  * know there are new descriptors to fetch.  (Only
745                  * applicable for weak-ordered memory model archs,
746                  * such as IA-64). */
747                 wmb();
748                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
749         }
750 }
751
752 /**
753  * e1000_clean_rx_irq - Send received data up the network stack; legacy
754  * @adapter: board private structure
755  *
756  * the return value indicates whether actual cleaning was done, there
757  * is no guarantee that everything was cleaned
758  **/
759 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
760                                int *work_done, int work_to_do)
761 {
762         struct net_device *netdev = adapter->netdev;
763         struct pci_dev *pdev = adapter->pdev;
764         struct e1000_hw *hw = &adapter->hw;
765         struct e1000_ring *rx_ring = adapter->rx_ring;
766         struct e1000_rx_desc *rx_desc, *next_rxd;
767         struct e1000_buffer *buffer_info, *next_buffer;
768         u32 length;
769         unsigned int i;
770         int cleaned_count = 0;
771         bool cleaned = 0;
772         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
773
774         i = rx_ring->next_to_clean;
775         rx_desc = E1000_RX_DESC(*rx_ring, i);
776         buffer_info = &rx_ring->buffer_info[i];
777
778         while (rx_desc->status & E1000_RXD_STAT_DD) {
779                 struct sk_buff *skb;
780                 u8 status;
781
782                 if (*work_done >= work_to_do)
783                         break;
784                 (*work_done)++;
785                 rmb();  /* read descriptor and rx_buffer_info after status DD */
786
787                 status = rx_desc->status;
788                 skb = buffer_info->skb;
789                 buffer_info->skb = NULL;
790
791                 prefetch(skb->data - NET_IP_ALIGN);
792
793                 i++;
794                 if (i == rx_ring->count)
795                         i = 0;
796                 next_rxd = E1000_RX_DESC(*rx_ring, i);
797                 prefetch(next_rxd);
798
799                 next_buffer = &rx_ring->buffer_info[i];
800
801                 cleaned = 1;
802                 cleaned_count++;
803                 dma_unmap_single(&pdev->dev,
804                                  buffer_info->dma,
805                                  adapter->rx_buffer_len,
806                                  DMA_FROM_DEVICE);
807                 buffer_info->dma = 0;
808
809                 length = le16_to_cpu(rx_desc->length);
810
811                 /*
812                  * !EOP means multiple descriptors were used to store a single
813                  * packet, if that's the case we need to toss it.  In fact, we
814                  * need to toss every packet with the EOP bit clear and the
815                  * next frame that _does_ have the EOP bit set, as it is by
816                  * definition only a frame fragment
817                  */
818                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
819                         adapter->flags2 |= FLAG2_IS_DISCARDING;
820
821                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
822                         /* All receives must fit into a single buffer */
823                         e_dbg("Receive packet consumed multiple buffers\n");
824                         /* recycle */
825                         buffer_info->skb = skb;
826                         if (status & E1000_RXD_STAT_EOP)
827                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
828                         goto next_desc;
829                 }
830
831                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
832                         /* recycle */
833                         buffer_info->skb = skb;
834                         goto next_desc;
835                 }
836
837                 /* adjust length to remove Ethernet CRC */
838                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
839                         length -= 4;
840
841                 total_rx_bytes += length;
842                 total_rx_packets++;
843
844                 /*
845                  * code added for copybreak, this should improve
846                  * performance for small packets with large amounts
847                  * of reassembly being done in the stack
848                  */
849                 if (length < copybreak) {
850                         struct sk_buff *new_skb =
851                             netdev_alloc_skb_ip_align(netdev, length);
852                         if (new_skb) {
853                                 skb_copy_to_linear_data_offset(new_skb,
854                                                                -NET_IP_ALIGN,
855                                                                (skb->data -
856                                                                 NET_IP_ALIGN),
857                                                                (length +
858                                                                 NET_IP_ALIGN));
859                                 /* save the skb in buffer_info as good */
860                                 buffer_info->skb = skb;
861                                 skb = new_skb;
862                         }
863                         /* else just continue with the old one */
864                 }
865                 /* end copybreak code */
866                 skb_put(skb, length);
867
868                 /* Receive Checksum Offload */
869                 e1000_rx_checksum(adapter,
870                                   (u32)(status) |
871                                   ((u32)(rx_desc->errors) << 24),
872                                   le16_to_cpu(rx_desc->csum), skb);
873
874                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
875
876 next_desc:
877                 rx_desc->status = 0;
878
879                 /* return some buffers to hardware, one at a time is too slow */
880                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
881                         adapter->alloc_rx_buf(adapter, cleaned_count);
882                         cleaned_count = 0;
883                 }
884
885                 /* use prefetched values */
886                 rx_desc = next_rxd;
887                 buffer_info = next_buffer;
888         }
889         rx_ring->next_to_clean = i;
890
891         cleaned_count = e1000_desc_unused(rx_ring);
892         if (cleaned_count)
893                 adapter->alloc_rx_buf(adapter, cleaned_count);
894
895         adapter->total_rx_bytes += total_rx_bytes;
896         adapter->total_rx_packets += total_rx_packets;
897         netdev->stats.rx_bytes += total_rx_bytes;
898         netdev->stats.rx_packets += total_rx_packets;
899         return cleaned;
900 }
901
902 static void e1000_put_txbuf(struct e1000_adapter *adapter,
903                              struct e1000_buffer *buffer_info)
904 {
905         if (buffer_info->dma) {
906                 if (buffer_info->mapped_as_page)
907                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
908                                        buffer_info->length, DMA_TO_DEVICE);
909                 else
910                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
911                                          buffer_info->length, DMA_TO_DEVICE);
912                 buffer_info->dma = 0;
913         }
914         if (buffer_info->skb) {
915                 dev_kfree_skb_any(buffer_info->skb);
916                 buffer_info->skb = NULL;
917         }
918         buffer_info->time_stamp = 0;
919 }
920
921 static void e1000_print_hw_hang(struct work_struct *work)
922 {
923         struct e1000_adapter *adapter = container_of(work,
924                                                      struct e1000_adapter,
925                                                      print_hang_task);
926         struct e1000_ring *tx_ring = adapter->tx_ring;
927         unsigned int i = tx_ring->next_to_clean;
928         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
929         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
930         struct e1000_hw *hw = &adapter->hw;
931         u16 phy_status, phy_1000t_status, phy_ext_status;
932         u16 pci_status;
933
934         e1e_rphy(hw, PHY_STATUS, &phy_status);
935         e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
936         e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
937
938         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
939
940         /* detected Hardware unit hang */
941         e_err("Detected Hardware Unit Hang:\n"
942               "  TDH                  <%x>\n"
943               "  TDT                  <%x>\n"
944               "  next_to_use          <%x>\n"
945               "  next_to_clean        <%x>\n"
946               "buffer_info[next_to_clean]:\n"
947               "  time_stamp           <%lx>\n"
948               "  next_to_watch        <%x>\n"
949               "  jiffies              <%lx>\n"
950               "  next_to_watch.status <%x>\n"
951               "MAC Status             <%x>\n"
952               "PHY Status             <%x>\n"
953               "PHY 1000BASE-T Status  <%x>\n"
954               "PHY Extended Status    <%x>\n"
955               "PCI Status             <%x>\n",
956               readl(adapter->hw.hw_addr + tx_ring->head),
957               readl(adapter->hw.hw_addr + tx_ring->tail),
958               tx_ring->next_to_use,
959               tx_ring->next_to_clean,
960               tx_ring->buffer_info[eop].time_stamp,
961               eop,
962               jiffies,
963               eop_desc->upper.fields.status,
964               er32(STATUS),
965               phy_status,
966               phy_1000t_status,
967               phy_ext_status,
968               pci_status);
969 }
970
971 /**
972  * e1000_clean_tx_irq - Reclaim resources after transmit completes
973  * @adapter: board private structure
974  *
975  * the return value indicates whether actual cleaning was done, there
976  * is no guarantee that everything was cleaned
977  **/
978 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
979 {
980         struct net_device *netdev = adapter->netdev;
981         struct e1000_hw *hw = &adapter->hw;
982         struct e1000_ring *tx_ring = adapter->tx_ring;
983         struct e1000_tx_desc *tx_desc, *eop_desc;
984         struct e1000_buffer *buffer_info;
985         unsigned int i, eop;
986         unsigned int count = 0;
987         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
988
989         i = tx_ring->next_to_clean;
990         eop = tx_ring->buffer_info[i].next_to_watch;
991         eop_desc = E1000_TX_DESC(*tx_ring, eop);
992
993         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
994                (count < tx_ring->count)) {
995                 bool cleaned = false;
996                 rmb(); /* read buffer_info after eop_desc */
997                 for (; !cleaned; count++) {
998                         tx_desc = E1000_TX_DESC(*tx_ring, i);
999                         buffer_info = &tx_ring->buffer_info[i];
1000                         cleaned = (i == eop);
1001
1002                         if (cleaned) {
1003                                 total_tx_packets += buffer_info->segs;
1004                                 total_tx_bytes += buffer_info->bytecount;
1005                         }
1006
1007                         e1000_put_txbuf(adapter, buffer_info);
1008                         tx_desc->upper.data = 0;
1009
1010                         i++;
1011                         if (i == tx_ring->count)
1012                                 i = 0;
1013                 }
1014
1015                 if (i == tx_ring->next_to_use)
1016                         break;
1017                 eop = tx_ring->buffer_info[i].next_to_watch;
1018                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1019         }
1020
1021         tx_ring->next_to_clean = i;
1022
1023 #define TX_WAKE_THRESHOLD 32
1024         if (count && netif_carrier_ok(netdev) &&
1025             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1026                 /* Make sure that anybody stopping the queue after this
1027                  * sees the new next_to_clean.
1028                  */
1029                 smp_mb();
1030
1031                 if (netif_queue_stopped(netdev) &&
1032                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1033                         netif_wake_queue(netdev);
1034                         ++adapter->restart_queue;
1035                 }
1036         }
1037
1038         if (adapter->detect_tx_hung) {
1039                 /*
1040                  * Detect a transmit hang in hardware, this serializes the
1041                  * check with the clearing of time_stamp and movement of i
1042                  */
1043                 adapter->detect_tx_hung = 0;
1044                 if (tx_ring->buffer_info[i].time_stamp &&
1045                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1046                                + (adapter->tx_timeout_factor * HZ)) &&
1047                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1048                         schedule_work(&adapter->print_hang_task);
1049                         netif_stop_queue(netdev);
1050                 }
1051         }
1052         adapter->total_tx_bytes += total_tx_bytes;
1053         adapter->total_tx_packets += total_tx_packets;
1054         netdev->stats.tx_bytes += total_tx_bytes;
1055         netdev->stats.tx_packets += total_tx_packets;
1056         return count < tx_ring->count;
1057 }
1058
1059 /**
1060  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1061  * @adapter: board private structure
1062  *
1063  * the return value indicates whether actual cleaning was done, there
1064  * is no guarantee that everything was cleaned
1065  **/
1066 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
1067                                   int *work_done, int work_to_do)
1068 {
1069         struct e1000_hw *hw = &adapter->hw;
1070         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1071         struct net_device *netdev = adapter->netdev;
1072         struct pci_dev *pdev = adapter->pdev;
1073         struct e1000_ring *rx_ring = adapter->rx_ring;
1074         struct e1000_buffer *buffer_info, *next_buffer;
1075         struct e1000_ps_page *ps_page;
1076         struct sk_buff *skb;
1077         unsigned int i, j;
1078         u32 length, staterr;
1079         int cleaned_count = 0;
1080         bool cleaned = 0;
1081         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1082
1083         i = rx_ring->next_to_clean;
1084         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1085         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1086         buffer_info = &rx_ring->buffer_info[i];
1087
1088         while (staterr & E1000_RXD_STAT_DD) {
1089                 if (*work_done >= work_to_do)
1090                         break;
1091                 (*work_done)++;
1092                 skb = buffer_info->skb;
1093                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1094
1095                 /* in the packet split case this is header only */
1096                 prefetch(skb->data - NET_IP_ALIGN);
1097
1098                 i++;
1099                 if (i == rx_ring->count)
1100                         i = 0;
1101                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1102                 prefetch(next_rxd);
1103
1104                 next_buffer = &rx_ring->buffer_info[i];
1105
1106                 cleaned = 1;
1107                 cleaned_count++;
1108                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1109                                  adapter->rx_ps_bsize0,
1110                                  DMA_FROM_DEVICE);
1111                 buffer_info->dma = 0;
1112
1113                 /* see !EOP comment in other rx routine */
1114                 if (!(staterr & E1000_RXD_STAT_EOP))
1115                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1116
1117                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1118                         e_dbg("Packet Split buffers didn't pick up the full "
1119                               "packet\n");
1120                         dev_kfree_skb_irq(skb);
1121                         if (staterr & E1000_RXD_STAT_EOP)
1122                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1123                         goto next_desc;
1124                 }
1125
1126                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
1127                         dev_kfree_skb_irq(skb);
1128                         goto next_desc;
1129                 }
1130
1131                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1132
1133                 if (!length) {
1134                         e_dbg("Last part of the packet spanning multiple "
1135                               "descriptors\n");
1136                         dev_kfree_skb_irq(skb);
1137                         goto next_desc;
1138                 }
1139
1140                 /* Good Receive */
1141                 skb_put(skb, length);
1142
1143                 {
1144                 /*
1145                  * this looks ugly, but it seems compiler issues make it
1146                  * more efficient than reusing j
1147                  */
1148                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1149
1150                 /*
1151                  * page alloc/put takes too long and effects small packet
1152                  * throughput, so unsplit small packets and save the alloc/put
1153                  * only valid in softirq (napi) context to call kmap_*
1154                  */
1155                 if (l1 && (l1 <= copybreak) &&
1156                     ((length + l1) <= adapter->rx_ps_bsize0)) {
1157                         u8 *vaddr;
1158
1159                         ps_page = &buffer_info->ps_pages[0];
1160
1161                         /*
1162                          * there is no documentation about how to call
1163                          * kmap_atomic, so we can't hold the mapping
1164                          * very long
1165                          */
1166                         dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
1167                                                 PAGE_SIZE, DMA_FROM_DEVICE);
1168                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
1169                         memcpy(skb_tail_pointer(skb), vaddr, l1);
1170                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1171                         dma_sync_single_for_device(&pdev->dev, ps_page->dma,
1172                                                    PAGE_SIZE, DMA_FROM_DEVICE);
1173
1174                         /* remove the CRC */
1175                         if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1176                                 l1 -= 4;
1177
1178                         skb_put(skb, l1);
1179                         goto copydone;
1180                 } /* if */
1181                 }
1182
1183                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1184                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1185                         if (!length)
1186                                 break;
1187
1188                         ps_page = &buffer_info->ps_pages[j];
1189                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1190                                        DMA_FROM_DEVICE);
1191                         ps_page->dma = 0;
1192                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1193                         ps_page->page = NULL;
1194                         skb->len += length;
1195                         skb->data_len += length;
1196                         skb->truesize += length;
1197                 }
1198
1199                 /* strip the ethernet crc, problem is we're using pages now so
1200                  * this whole operation can get a little cpu intensive
1201                  */
1202                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1203                         pskb_trim(skb, skb->len - 4);
1204
1205 copydone:
1206                 total_rx_bytes += skb->len;
1207                 total_rx_packets++;
1208
1209                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
1210                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
1211
1212                 if (rx_desc->wb.upper.header_status &
1213                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1214                         adapter->rx_hdr_split++;
1215
1216                 e1000_receive_skb(adapter, netdev, skb,
1217                                   staterr, rx_desc->wb.middle.vlan);
1218
1219 next_desc:
1220                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1221                 buffer_info->skb = NULL;
1222
1223                 /* return some buffers to hardware, one at a time is too slow */
1224                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1225                         adapter->alloc_rx_buf(adapter, cleaned_count);
1226                         cleaned_count = 0;
1227                 }
1228
1229                 /* use prefetched values */
1230                 rx_desc = next_rxd;
1231                 buffer_info = next_buffer;
1232
1233                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1234         }
1235         rx_ring->next_to_clean = i;
1236
1237         cleaned_count = e1000_desc_unused(rx_ring);
1238         if (cleaned_count)
1239                 adapter->alloc_rx_buf(adapter, cleaned_count);
1240
1241         adapter->total_rx_bytes += total_rx_bytes;
1242         adapter->total_rx_packets += total_rx_packets;
1243         netdev->stats.rx_bytes += total_rx_bytes;
1244         netdev->stats.rx_packets += total_rx_packets;
1245         return cleaned;
1246 }
1247
1248 /**
1249  * e1000_consume_page - helper function
1250  **/
1251 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1252                                u16 length)
1253 {
1254         bi->page = NULL;
1255         skb->len += length;
1256         skb->data_len += length;
1257         skb->truesize += length;
1258 }
1259
1260 /**
1261  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1262  * @adapter: board private structure
1263  *
1264  * the return value indicates whether actual cleaning was done, there
1265  * is no guarantee that everything was cleaned
1266  **/
1267
1268 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
1269                                      int *work_done, int work_to_do)
1270 {
1271         struct net_device *netdev = adapter->netdev;
1272         struct pci_dev *pdev = adapter->pdev;
1273         struct e1000_ring *rx_ring = adapter->rx_ring;
1274         struct e1000_rx_desc *rx_desc, *next_rxd;
1275         struct e1000_buffer *buffer_info, *next_buffer;
1276         u32 length;
1277         unsigned int i;
1278         int cleaned_count = 0;
1279         bool cleaned = false;
1280         unsigned int total_rx_bytes=0, total_rx_packets=0;
1281
1282         i = rx_ring->next_to_clean;
1283         rx_desc = E1000_RX_DESC(*rx_ring, i);
1284         buffer_info = &rx_ring->buffer_info[i];
1285
1286         while (rx_desc->status & E1000_RXD_STAT_DD) {
1287                 struct sk_buff *skb;
1288                 u8 status;
1289
1290                 if (*work_done >= work_to_do)
1291                         break;
1292                 (*work_done)++;
1293                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1294
1295                 status = rx_desc->status;
1296                 skb = buffer_info->skb;
1297                 buffer_info->skb = NULL;
1298
1299                 ++i;
1300                 if (i == rx_ring->count)
1301                         i = 0;
1302                 next_rxd = E1000_RX_DESC(*rx_ring, i);
1303                 prefetch(next_rxd);
1304
1305                 next_buffer = &rx_ring->buffer_info[i];
1306
1307                 cleaned = true;
1308                 cleaned_count++;
1309                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1310                                DMA_FROM_DEVICE);
1311                 buffer_info->dma = 0;
1312
1313                 length = le16_to_cpu(rx_desc->length);
1314
1315                 /* errors is only valid for DD + EOP descriptors */
1316                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
1317                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
1318                                 /* recycle both page and skb */
1319                                 buffer_info->skb = skb;
1320                                 /* an error means any chain goes out the window
1321                                  * too */
1322                                 if (rx_ring->rx_skb_top)
1323                                         dev_kfree_skb(rx_ring->rx_skb_top);
1324                                 rx_ring->rx_skb_top = NULL;
1325                                 goto next_desc;
1326                 }
1327
1328 #define rxtop rx_ring->rx_skb_top
1329                 if (!(status & E1000_RXD_STAT_EOP)) {
1330                         /* this descriptor is only the beginning (or middle) */
1331                         if (!rxtop) {
1332                                 /* this is the beginning of a chain */
1333                                 rxtop = skb;
1334                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1335                                                    0, length);
1336                         } else {
1337                                 /* this is the middle of a chain */
1338                                 skb_fill_page_desc(rxtop,
1339                                     skb_shinfo(rxtop)->nr_frags,
1340                                     buffer_info->page, 0, length);
1341                                 /* re-use the skb, only consumed the page */
1342                                 buffer_info->skb = skb;
1343                         }
1344                         e1000_consume_page(buffer_info, rxtop, length);
1345                         goto next_desc;
1346                 } else {
1347                         if (rxtop) {
1348                                 /* end of the chain */
1349                                 skb_fill_page_desc(rxtop,
1350                                     skb_shinfo(rxtop)->nr_frags,
1351                                     buffer_info->page, 0, length);
1352                                 /* re-use the current skb, we only consumed the
1353                                  * page */
1354                                 buffer_info->skb = skb;
1355                                 skb = rxtop;
1356                                 rxtop = NULL;
1357                                 e1000_consume_page(buffer_info, skb, length);
1358                         } else {
1359                                 /* no chain, got EOP, this buf is the packet
1360                                  * copybreak to save the put_page/alloc_page */
1361                                 if (length <= copybreak &&
1362                                     skb_tailroom(skb) >= length) {
1363                                         u8 *vaddr;
1364                                         vaddr = kmap_atomic(buffer_info->page,
1365                                                            KM_SKB_DATA_SOFTIRQ);
1366                                         memcpy(skb_tail_pointer(skb), vaddr,
1367                                                length);
1368                                         kunmap_atomic(vaddr,
1369                                                       KM_SKB_DATA_SOFTIRQ);
1370                                         /* re-use the page, so don't erase
1371                                          * buffer_info->page */
1372                                         skb_put(skb, length);
1373                                 } else {
1374                                         skb_fill_page_desc(skb, 0,
1375                                                            buffer_info->page, 0,
1376                                                            length);
1377                                         e1000_consume_page(buffer_info, skb,
1378                                                            length);
1379                                 }
1380                         }
1381                 }
1382
1383                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1384                 e1000_rx_checksum(adapter,
1385                                   (u32)(status) |
1386                                   ((u32)(rx_desc->errors) << 24),
1387                                   le16_to_cpu(rx_desc->csum), skb);
1388
1389                 /* probably a little skewed due to removing CRC */
1390                 total_rx_bytes += skb->len;
1391                 total_rx_packets++;
1392
1393                 /* eth type trans needs skb->data to point to something */
1394                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1395                         e_err("pskb_may_pull failed.\n");
1396                         dev_kfree_skb(skb);
1397                         goto next_desc;
1398                 }
1399
1400                 e1000_receive_skb(adapter, netdev, skb, status,
1401                                   rx_desc->special);
1402
1403 next_desc:
1404                 rx_desc->status = 0;
1405
1406                 /* return some buffers to hardware, one at a time is too slow */
1407                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1408                         adapter->alloc_rx_buf(adapter, cleaned_count);
1409                         cleaned_count = 0;
1410                 }
1411
1412                 /* use prefetched values */
1413                 rx_desc = next_rxd;
1414                 buffer_info = next_buffer;
1415         }
1416         rx_ring->next_to_clean = i;
1417
1418         cleaned_count = e1000_desc_unused(rx_ring);
1419         if (cleaned_count)
1420                 adapter->alloc_rx_buf(adapter, cleaned_count);
1421
1422         adapter->total_rx_bytes += total_rx_bytes;
1423         adapter->total_rx_packets += total_rx_packets;
1424         netdev->stats.rx_bytes += total_rx_bytes;
1425         netdev->stats.rx_packets += total_rx_packets;
1426         return cleaned;
1427 }
1428
1429 /**
1430  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1431  * @adapter: board private structure
1432  **/
1433 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1434 {
1435         struct e1000_ring *rx_ring = adapter->rx_ring;
1436         struct e1000_buffer *buffer_info;
1437         struct e1000_ps_page *ps_page;
1438         struct pci_dev *pdev = adapter->pdev;
1439         unsigned int i, j;
1440
1441         /* Free all the Rx ring sk_buffs */
1442         for (i = 0; i < rx_ring->count; i++) {
1443                 buffer_info = &rx_ring->buffer_info[i];
1444                 if (buffer_info->dma) {
1445                         if (adapter->clean_rx == e1000_clean_rx_irq)
1446                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1447                                                  adapter->rx_buffer_len,
1448                                                  DMA_FROM_DEVICE);
1449                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1450                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1451                                                PAGE_SIZE,
1452                                                DMA_FROM_DEVICE);
1453                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1454                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1455                                                  adapter->rx_ps_bsize0,
1456                                                  DMA_FROM_DEVICE);
1457                         buffer_info->dma = 0;
1458                 }
1459
1460                 if (buffer_info->page) {
1461                         put_page(buffer_info->page);
1462                         buffer_info->page = NULL;
1463                 }
1464
1465                 if (buffer_info->skb) {
1466                         dev_kfree_skb(buffer_info->skb);
1467                         buffer_info->skb = NULL;
1468                 }
1469
1470                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1471                         ps_page = &buffer_info->ps_pages[j];
1472                         if (!ps_page->page)
1473                                 break;
1474                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1475                                        DMA_FROM_DEVICE);
1476                         ps_page->dma = 0;
1477                         put_page(ps_page->page);
1478                         ps_page->page = NULL;
1479                 }
1480         }
1481
1482         /* there also may be some cached data from a chained receive */
1483         if (rx_ring->rx_skb_top) {
1484                 dev_kfree_skb(rx_ring->rx_skb_top);
1485                 rx_ring->rx_skb_top = NULL;
1486         }
1487
1488         /* Zero out the descriptor ring */
1489         memset(rx_ring->desc, 0, rx_ring->size);
1490
1491         rx_ring->next_to_clean = 0;
1492         rx_ring->next_to_use = 0;
1493         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1494
1495         writel(0, adapter->hw.hw_addr + rx_ring->head);
1496         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1497 }
1498
1499 static void e1000e_downshift_workaround(struct work_struct *work)
1500 {
1501         struct e1000_adapter *adapter = container_of(work,
1502                                         struct e1000_adapter, downshift_task);
1503
1504         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1505 }
1506
1507 /**
1508  * e1000_intr_msi - Interrupt Handler
1509  * @irq: interrupt number
1510  * @data: pointer to a network interface device structure
1511  **/
1512 static irqreturn_t e1000_intr_msi(int irq, void *data)
1513 {
1514         struct net_device *netdev = data;
1515         struct e1000_adapter *adapter = netdev_priv(netdev);
1516         struct e1000_hw *hw = &adapter->hw;
1517         u32 icr = er32(ICR);
1518
1519         /*
1520          * read ICR disables interrupts using IAM
1521          */
1522
1523         if (icr & E1000_ICR_LSC) {
1524                 hw->mac.get_link_status = 1;
1525                 /*
1526                  * ICH8 workaround-- Call gig speed drop workaround on cable
1527                  * disconnect (LSC) before accessing any PHY registers
1528                  */
1529                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1530                     (!(er32(STATUS) & E1000_STATUS_LU)))
1531                         schedule_work(&adapter->downshift_task);
1532
1533                 /*
1534                  * 80003ES2LAN workaround-- For packet buffer work-around on
1535                  * link down event; disable receives here in the ISR and reset
1536                  * adapter in watchdog
1537                  */
1538                 if (netif_carrier_ok(netdev) &&
1539                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1540                         /* disable receives */
1541                         u32 rctl = er32(RCTL);
1542                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1543                         adapter->flags |= FLAG_RX_RESTART_NOW;
1544                 }
1545                 /* guard against interrupt when we're going down */
1546                 if (!test_bit(__E1000_DOWN, &adapter->state))
1547                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1548         }
1549
1550         if (napi_schedule_prep(&adapter->napi)) {
1551                 adapter->total_tx_bytes = 0;
1552                 adapter->total_tx_packets = 0;
1553                 adapter->total_rx_bytes = 0;
1554                 adapter->total_rx_packets = 0;
1555                 __napi_schedule(&adapter->napi);
1556         }
1557
1558         return IRQ_HANDLED;
1559 }
1560
1561 /**
1562  * e1000_intr - Interrupt Handler
1563  * @irq: interrupt number
1564  * @data: pointer to a network interface device structure
1565  **/
1566 static irqreturn_t e1000_intr(int irq, void *data)
1567 {
1568         struct net_device *netdev = data;
1569         struct e1000_adapter *adapter = netdev_priv(netdev);
1570         struct e1000_hw *hw = &adapter->hw;
1571         u32 rctl, icr = er32(ICR);
1572
1573         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1574                 return IRQ_NONE;  /* Not our interrupt */
1575
1576         /*
1577          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1578          * not set, then the adapter didn't send an interrupt
1579          */
1580         if (!(icr & E1000_ICR_INT_ASSERTED))
1581                 return IRQ_NONE;
1582
1583         /*
1584          * Interrupt Auto-Mask...upon reading ICR,
1585          * interrupts are masked.  No need for the
1586          * IMC write
1587          */
1588
1589         if (icr & E1000_ICR_LSC) {
1590                 hw->mac.get_link_status = 1;
1591                 /*
1592                  * ICH8 workaround-- Call gig speed drop workaround on cable
1593                  * disconnect (LSC) before accessing any PHY registers
1594                  */
1595                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1596                     (!(er32(STATUS) & E1000_STATUS_LU)))
1597                         schedule_work(&adapter->downshift_task);
1598
1599                 /*
1600                  * 80003ES2LAN workaround--
1601                  * For packet buffer work-around on link down event;
1602                  * disable receives here in the ISR and
1603                  * reset adapter in watchdog
1604                  */
1605                 if (netif_carrier_ok(netdev) &&
1606                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1607                         /* disable receives */
1608                         rctl = er32(RCTL);
1609                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1610                         adapter->flags |= FLAG_RX_RESTART_NOW;
1611                 }
1612                 /* guard against interrupt when we're going down */
1613                 if (!test_bit(__E1000_DOWN, &adapter->state))
1614                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1615         }
1616
1617         if (napi_schedule_prep(&adapter->napi)) {
1618                 adapter->total_tx_bytes = 0;
1619                 adapter->total_tx_packets = 0;
1620                 adapter->total_rx_bytes = 0;
1621                 adapter->total_rx_packets = 0;
1622                 __napi_schedule(&adapter->napi);
1623         }
1624
1625         return IRQ_HANDLED;
1626 }
1627
1628 static irqreturn_t e1000_msix_other(int irq, void *data)
1629 {
1630         struct net_device *netdev = data;
1631         struct e1000_adapter *adapter = netdev_priv(netdev);
1632         struct e1000_hw *hw = &adapter->hw;
1633         u32 icr = er32(ICR);
1634
1635         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1636                 if (!test_bit(__E1000_DOWN, &adapter->state))
1637                         ew32(IMS, E1000_IMS_OTHER);
1638                 return IRQ_NONE;
1639         }
1640
1641         if (icr & adapter->eiac_mask)
1642                 ew32(ICS, (icr & adapter->eiac_mask));
1643
1644         if (icr & E1000_ICR_OTHER) {
1645                 if (!(icr & E1000_ICR_LSC))
1646                         goto no_link_interrupt;
1647                 hw->mac.get_link_status = 1;
1648                 /* guard against interrupt when we're going down */
1649                 if (!test_bit(__E1000_DOWN, &adapter->state))
1650                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1651         }
1652
1653 no_link_interrupt:
1654         if (!test_bit(__E1000_DOWN, &adapter->state))
1655                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1656
1657         return IRQ_HANDLED;
1658 }
1659
1660
1661 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1662 {
1663         struct net_device *netdev = data;
1664         struct e1000_adapter *adapter = netdev_priv(netdev);
1665         struct e1000_hw *hw = &adapter->hw;
1666         struct e1000_ring *tx_ring = adapter->tx_ring;
1667
1668
1669         adapter->total_tx_bytes = 0;
1670         adapter->total_tx_packets = 0;
1671
1672         if (!e1000_clean_tx_irq(adapter))
1673                 /* Ring was not completely cleaned, so fire another interrupt */
1674                 ew32(ICS, tx_ring->ims_val);
1675
1676         return IRQ_HANDLED;
1677 }
1678
1679 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1680 {
1681         struct net_device *netdev = data;
1682         struct e1000_adapter *adapter = netdev_priv(netdev);
1683
1684         /* Write the ITR value calculated at the end of the
1685          * previous interrupt.
1686          */
1687         if (adapter->rx_ring->set_itr) {
1688                 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1689                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1690                 adapter->rx_ring->set_itr = 0;
1691         }
1692
1693         if (napi_schedule_prep(&adapter->napi)) {
1694                 adapter->total_rx_bytes = 0;
1695                 adapter->total_rx_packets = 0;
1696                 __napi_schedule(&adapter->napi);
1697         }
1698         return IRQ_HANDLED;
1699 }
1700
1701 /**
1702  * e1000_configure_msix - Configure MSI-X hardware
1703  *
1704  * e1000_configure_msix sets up the hardware to properly
1705  * generate MSI-X interrupts.
1706  **/
1707 static void e1000_configure_msix(struct e1000_adapter *adapter)
1708 {
1709         struct e1000_hw *hw = &adapter->hw;
1710         struct e1000_ring *rx_ring = adapter->rx_ring;
1711         struct e1000_ring *tx_ring = adapter->tx_ring;
1712         int vector = 0;
1713         u32 ctrl_ext, ivar = 0;
1714
1715         adapter->eiac_mask = 0;
1716
1717         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1718         if (hw->mac.type == e1000_82574) {
1719                 u32 rfctl = er32(RFCTL);
1720                 rfctl |= E1000_RFCTL_ACK_DIS;
1721                 ew32(RFCTL, rfctl);
1722         }
1723
1724 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1725         /* Configure Rx vector */
1726         rx_ring->ims_val = E1000_IMS_RXQ0;
1727         adapter->eiac_mask |= rx_ring->ims_val;
1728         if (rx_ring->itr_val)
1729                 writel(1000000000 / (rx_ring->itr_val * 256),
1730                        hw->hw_addr + rx_ring->itr_register);
1731         else
1732                 writel(1, hw->hw_addr + rx_ring->itr_register);
1733         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1734
1735         /* Configure Tx vector */
1736         tx_ring->ims_val = E1000_IMS_TXQ0;
1737         vector++;
1738         if (tx_ring->itr_val)
1739                 writel(1000000000 / (tx_ring->itr_val * 256),
1740                        hw->hw_addr + tx_ring->itr_register);
1741         else
1742                 writel(1, hw->hw_addr + tx_ring->itr_register);
1743         adapter->eiac_mask |= tx_ring->ims_val;
1744         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1745
1746         /* set vector for Other Causes, e.g. link changes */
1747         vector++;
1748         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1749         if (rx_ring->itr_val)
1750                 writel(1000000000 / (rx_ring->itr_val * 256),
1751                        hw->hw_addr + E1000_EITR_82574(vector));
1752         else
1753                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1754
1755         /* Cause Tx interrupts on every write back */
1756         ivar |= (1 << 31);
1757
1758         ew32(IVAR, ivar);
1759
1760         /* enable MSI-X PBA support */
1761         ctrl_ext = er32(CTRL_EXT);
1762         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1763
1764         /* Auto-Mask Other interrupts upon ICR read */
1765 #define E1000_EIAC_MASK_82574   0x01F00000
1766         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1767         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1768         ew32(CTRL_EXT, ctrl_ext);
1769         e1e_flush();
1770 }
1771
1772 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1773 {
1774         if (adapter->msix_entries) {
1775                 pci_disable_msix(adapter->pdev);
1776                 kfree(adapter->msix_entries);
1777                 adapter->msix_entries = NULL;
1778         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1779                 pci_disable_msi(adapter->pdev);
1780                 adapter->flags &= ~FLAG_MSI_ENABLED;
1781         }
1782 }
1783
1784 /**
1785  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1786  *
1787  * Attempt to configure interrupts using the best available
1788  * capabilities of the hardware and kernel.
1789  **/
1790 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1791 {
1792         int err;
1793         int i;
1794
1795         switch (adapter->int_mode) {
1796         case E1000E_INT_MODE_MSIX:
1797                 if (adapter->flags & FLAG_HAS_MSIX) {
1798                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1799                         adapter->msix_entries = kcalloc(adapter->num_vectors,
1800                                                       sizeof(struct msix_entry),
1801                                                       GFP_KERNEL);
1802                         if (adapter->msix_entries) {
1803                                 for (i = 0; i < adapter->num_vectors; i++)
1804                                         adapter->msix_entries[i].entry = i;
1805
1806                                 err = pci_enable_msix(adapter->pdev,
1807                                                       adapter->msix_entries,
1808                                                       adapter->num_vectors);
1809                                 if (err == 0) {
1810                                         return;
1811                                 }
1812                         }
1813                         /* MSI-X failed, so fall through and try MSI */
1814                         e_err("Failed to initialize MSI-X interrupts.  "
1815                               "Falling back to MSI interrupts.\n");
1816                         e1000e_reset_interrupt_capability(adapter);
1817                 }
1818                 adapter->int_mode = E1000E_INT_MODE_MSI;
1819                 /* Fall through */
1820         case E1000E_INT_MODE_MSI:
1821                 if (!pci_enable_msi(adapter->pdev)) {
1822                         adapter->flags |= FLAG_MSI_ENABLED;
1823                 } else {
1824                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1825                         e_err("Failed to initialize MSI interrupts.  Falling "
1826                               "back to legacy interrupts.\n");
1827                 }
1828                 /* Fall through */
1829         case E1000E_INT_MODE_LEGACY:
1830                 /* Don't do anything; this is the system default */
1831                 break;
1832         }
1833
1834         /* store the number of vectors being used */
1835         adapter->num_vectors = 1;
1836 }
1837
1838 /**
1839  * e1000_request_msix - Initialize MSI-X interrupts
1840  *
1841  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1842  * kernel.
1843  **/
1844 static int e1000_request_msix(struct e1000_adapter *adapter)
1845 {
1846         struct net_device *netdev = adapter->netdev;
1847         int err = 0, vector = 0;
1848
1849         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1850                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1851         else
1852                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1853         err = request_irq(adapter->msix_entries[vector].vector,
1854                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1855                           netdev);
1856         if (err)
1857                 goto out;
1858         adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1859         adapter->rx_ring->itr_val = adapter->itr;
1860         vector++;
1861
1862         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1863                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1864         else
1865                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1866         err = request_irq(adapter->msix_entries[vector].vector,
1867                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1868                           netdev);
1869         if (err)
1870                 goto out;
1871         adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1872         adapter->tx_ring->itr_val = adapter->itr;
1873         vector++;
1874
1875         err = request_irq(adapter->msix_entries[vector].vector,
1876                           e1000_msix_other, 0, netdev->name, netdev);
1877         if (err)
1878                 goto out;
1879
1880         e1000_configure_msix(adapter);
1881         return 0;
1882 out:
1883         return err;
1884 }
1885
1886 /**
1887  * e1000_request_irq - initialize interrupts
1888  *
1889  * Attempts to configure interrupts using the best available
1890  * capabilities of the hardware and kernel.
1891  **/
1892 static int e1000_request_irq(struct e1000_adapter *adapter)
1893 {
1894         struct net_device *netdev = adapter->netdev;
1895         int err;
1896
1897         if (adapter->msix_entries) {
1898                 err = e1000_request_msix(adapter);
1899                 if (!err)
1900                         return err;
1901                 /* fall back to MSI */
1902                 e1000e_reset_interrupt_capability(adapter);
1903                 adapter->int_mode = E1000E_INT_MODE_MSI;
1904                 e1000e_set_interrupt_capability(adapter);
1905         }
1906         if (adapter->flags & FLAG_MSI_ENABLED) {
1907                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1908                                   netdev->name, netdev);
1909                 if (!err)
1910                         return err;
1911
1912                 /* fall back to legacy interrupt */
1913                 e1000e_reset_interrupt_capability(adapter);
1914                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1915         }
1916
1917         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1918                           netdev->name, netdev);
1919         if (err)
1920                 e_err("Unable to allocate interrupt, Error: %d\n", err);
1921
1922         return err;
1923 }
1924
1925 static void e1000_free_irq(struct e1000_adapter *adapter)
1926 {
1927         struct net_device *netdev = adapter->netdev;
1928
1929         if (adapter->msix_entries) {
1930                 int vector = 0;
1931
1932                 free_irq(adapter->msix_entries[vector].vector, netdev);
1933                 vector++;
1934
1935                 free_irq(adapter->msix_entries[vector].vector, netdev);
1936                 vector++;
1937
1938                 /* Other Causes interrupt vector */
1939                 free_irq(adapter->msix_entries[vector].vector, netdev);
1940                 return;
1941         }
1942
1943         free_irq(adapter->pdev->irq, netdev);
1944 }
1945
1946 /**
1947  * e1000_irq_disable - Mask off interrupt generation on the NIC
1948  **/
1949 static void e1000_irq_disable(struct e1000_adapter *adapter)
1950 {
1951         struct e1000_hw *hw = &adapter->hw;
1952
1953         ew32(IMC, ~0);
1954         if (adapter->msix_entries)
1955                 ew32(EIAC_82574, 0);
1956         e1e_flush();
1957
1958         if (adapter->msix_entries) {
1959                 int i;
1960                 for (i = 0; i < adapter->num_vectors; i++)
1961                         synchronize_irq(adapter->msix_entries[i].vector);
1962         } else {
1963                 synchronize_irq(adapter->pdev->irq);
1964         }
1965 }
1966
1967 /**
1968  * e1000_irq_enable - Enable default interrupt generation settings
1969  **/
1970 static void e1000_irq_enable(struct e1000_adapter *adapter)
1971 {
1972         struct e1000_hw *hw = &adapter->hw;
1973
1974         if (adapter->msix_entries) {
1975                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1976                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1977         } else {
1978                 ew32(IMS, IMS_ENABLE_MASK);
1979         }
1980         e1e_flush();
1981 }
1982
1983 /**
1984  * e1000_get_hw_control - get control of the h/w from f/w
1985  * @adapter: address of board private structure
1986  *
1987  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1988  * For ASF and Pass Through versions of f/w this means that
1989  * the driver is loaded. For AMT version (only with 82573)
1990  * of the f/w this means that the network i/f is open.
1991  **/
1992 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1993 {
1994         struct e1000_hw *hw = &adapter->hw;
1995         u32 ctrl_ext;
1996         u32 swsm;
1997
1998         /* Let firmware know the driver has taken over */
1999         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2000                 swsm = er32(SWSM);
2001                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2002         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2003                 ctrl_ext = er32(CTRL_EXT);
2004                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2005         }
2006 }
2007
2008 /**
2009  * e1000_release_hw_control - release control of the h/w to f/w
2010  * @adapter: address of board private structure
2011  *
2012  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2013  * For ASF and Pass Through versions of f/w this means that the
2014  * driver is no longer loaded. For AMT version (only with 82573) i
2015  * of the f/w this means that the network i/f is closed.
2016  *
2017  **/
2018 static void e1000_release_hw_control(struct e1000_adapter *adapter)
2019 {
2020         struct e1000_hw *hw = &adapter->hw;
2021         u32 ctrl_ext;
2022         u32 swsm;
2023
2024         /* Let firmware taken over control of h/w */
2025         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2026                 swsm = er32(SWSM);
2027                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2028         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2029                 ctrl_ext = er32(CTRL_EXT);
2030                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2031         }
2032 }
2033
2034 /**
2035  * @e1000_alloc_ring - allocate memory for a ring structure
2036  **/
2037 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2038                                 struct e1000_ring *ring)
2039 {
2040         struct pci_dev *pdev = adapter->pdev;
2041
2042         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2043                                         GFP_KERNEL);
2044         if (!ring->desc)
2045                 return -ENOMEM;
2046
2047         return 0;
2048 }
2049
2050 /**
2051  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2052  * @adapter: board private structure
2053  *
2054  * Return 0 on success, negative on failure
2055  **/
2056 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
2057 {
2058         struct e1000_ring *tx_ring = adapter->tx_ring;
2059         int err = -ENOMEM, size;
2060
2061         size = sizeof(struct e1000_buffer) * tx_ring->count;
2062         tx_ring->buffer_info = vmalloc(size);
2063         if (!tx_ring->buffer_info)
2064                 goto err;
2065         memset(tx_ring->buffer_info, 0, size);
2066
2067         /* round up to nearest 4K */
2068         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2069         tx_ring->size = ALIGN(tx_ring->size, 4096);
2070
2071         err = e1000_alloc_ring_dma(adapter, tx_ring);
2072         if (err)
2073                 goto err;
2074
2075         tx_ring->next_to_use = 0;
2076         tx_ring->next_to_clean = 0;
2077
2078         return 0;
2079 err:
2080         vfree(tx_ring->buffer_info);
2081         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2082         return err;
2083 }
2084
2085 /**
2086  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2087  * @adapter: board private structure
2088  *
2089  * Returns 0 on success, negative on failure
2090  **/
2091 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
2092 {
2093         struct e1000_ring *rx_ring = adapter->rx_ring;
2094         struct e1000_buffer *buffer_info;
2095         int i, size, desc_len, err = -ENOMEM;
2096
2097         size = sizeof(struct e1000_buffer) * rx_ring->count;
2098         rx_ring->buffer_info = vmalloc(size);
2099         if (!rx_ring->buffer_info)
2100                 goto err;
2101         memset(rx_ring->buffer_info, 0, size);
2102
2103         for (i = 0; i < rx_ring->count; i++) {
2104                 buffer_info = &rx_ring->buffer_info[i];
2105                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2106                                                 sizeof(struct e1000_ps_page),
2107                                                 GFP_KERNEL);
2108                 if (!buffer_info->ps_pages)
2109                         goto err_pages;
2110         }
2111
2112         desc_len = sizeof(union e1000_rx_desc_packet_split);
2113
2114         /* Round up to nearest 4K */
2115         rx_ring->size = rx_ring->count * desc_len;
2116         rx_ring->size = ALIGN(rx_ring->size, 4096);
2117
2118         err = e1000_alloc_ring_dma(adapter, rx_ring);
2119         if (err)
2120                 goto err_pages;
2121
2122         rx_ring->next_to_clean = 0;
2123         rx_ring->next_to_use = 0;
2124         rx_ring->rx_skb_top = NULL;
2125
2126         return 0;
2127
2128 err_pages:
2129         for (i = 0; i < rx_ring->count; i++) {
2130                 buffer_info = &rx_ring->buffer_info[i];
2131                 kfree(buffer_info->ps_pages);
2132         }
2133 err:
2134         vfree(rx_ring->buffer_info);
2135         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2136         return err;
2137 }
2138
2139 /**
2140  * e1000_clean_tx_ring - Free Tx Buffers
2141  * @adapter: board private structure
2142  **/
2143 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
2144 {
2145         struct e1000_ring *tx_ring = adapter->tx_ring;
2146         struct e1000_buffer *buffer_info;
2147         unsigned long size;
2148         unsigned int i;
2149
2150         for (i = 0; i < tx_ring->count; i++) {
2151                 buffer_info = &tx_ring->buffer_info[i];
2152                 e1000_put_txbuf(adapter, buffer_info);
2153         }
2154
2155         size = sizeof(struct e1000_buffer) * tx_ring->count;
2156         memset(tx_ring->buffer_info, 0, size);
2157
2158         memset(tx_ring->desc, 0, tx_ring->size);
2159
2160         tx_ring->next_to_use = 0;
2161         tx_ring->next_to_clean = 0;
2162
2163         writel(0, adapter->hw.hw_addr + tx_ring->head);
2164         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2165 }
2166
2167 /**
2168  * e1000e_free_tx_resources - Free Tx Resources per Queue
2169  * @adapter: board private structure
2170  *
2171  * Free all transmit software resources
2172  **/
2173 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
2174 {
2175         struct pci_dev *pdev = adapter->pdev;
2176         struct e1000_ring *tx_ring = adapter->tx_ring;
2177
2178         e1000_clean_tx_ring(adapter);
2179
2180         vfree(tx_ring->buffer_info);
2181         tx_ring->buffer_info = NULL;
2182
2183         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2184                           tx_ring->dma);
2185         tx_ring->desc = NULL;
2186 }
2187
2188 /**
2189  * e1000e_free_rx_resources - Free Rx Resources
2190  * @adapter: board private structure
2191  *
2192  * Free all receive software resources
2193  **/
2194
2195 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
2196 {
2197         struct pci_dev *pdev = adapter->pdev;
2198         struct e1000_ring *rx_ring = adapter->rx_ring;
2199         int i;
2200
2201         e1000_clean_rx_ring(adapter);
2202
2203         for (i = 0; i < rx_ring->count; i++) {
2204                 kfree(rx_ring->buffer_info[i].ps_pages);
2205         }
2206
2207         vfree(rx_ring->buffer_info);
2208         rx_ring->buffer_info = NULL;
2209
2210         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2211                           rx_ring->dma);
2212         rx_ring->desc = NULL;
2213 }
2214
2215 /**
2216  * e1000_update_itr - update the dynamic ITR value based on statistics
2217  * @adapter: pointer to adapter
2218  * @itr_setting: current adapter->itr
2219  * @packets: the number of packets during this measurement interval
2220  * @bytes: the number of bytes during this measurement interval
2221  *
2222  *      Stores a new ITR value based on packets and byte
2223  *      counts during the last interrupt.  The advantage of per interrupt
2224  *      computation is faster updates and more accurate ITR for the current
2225  *      traffic pattern.  Constants in this function were computed
2226  *      based on theoretical maximum wire speed and thresholds were set based
2227  *      on testing data as well as attempting to minimize response time
2228  *      while increasing bulk throughput.  This functionality is controlled
2229  *      by the InterruptThrottleRate module parameter.
2230  **/
2231 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2232                                      u16 itr_setting, int packets,
2233                                      int bytes)
2234 {
2235         unsigned int retval = itr_setting;
2236
2237         if (packets == 0)
2238                 goto update_itr_done;
2239
2240         switch (itr_setting) {
2241         case lowest_latency:
2242                 /* handle TSO and jumbo frames */
2243                 if (bytes/packets > 8000)
2244                         retval = bulk_latency;
2245                 else if ((packets < 5) && (bytes > 512)) {
2246                         retval = low_latency;
2247                 }
2248                 break;
2249         case low_latency:  /* 50 usec aka 20000 ints/s */
2250                 if (bytes > 10000) {
2251                         /* this if handles the TSO accounting */
2252                         if (bytes/packets > 8000) {
2253                                 retval = bulk_latency;
2254                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2255                                 retval = bulk_latency;
2256                         } else if ((packets > 35)) {
2257                                 retval = lowest_latency;
2258                         }
2259                 } else if (bytes/packets > 2000) {
2260                         retval = bulk_latency;
2261                 } else if (packets <= 2 && bytes < 512) {
2262                         retval = lowest_latency;
2263                 }
2264                 break;
2265         case bulk_latency: /* 250 usec aka 4000 ints/s */
2266                 if (bytes > 25000) {
2267                         if (packets > 35) {
2268                                 retval = low_latency;
2269                         }
2270                 } else if (bytes < 6000) {
2271                         retval = low_latency;
2272                 }
2273                 break;
2274         }
2275
2276 update_itr_done:
2277         return retval;
2278 }
2279
2280 static void e1000_set_itr(struct e1000_adapter *adapter)
2281 {
2282         struct e1000_hw *hw = &adapter->hw;
2283         u16 current_itr;
2284         u32 new_itr = adapter->itr;
2285
2286         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2287         if (adapter->link_speed != SPEED_1000) {
2288                 current_itr = 0;
2289                 new_itr = 4000;
2290                 goto set_itr_now;
2291         }
2292
2293         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2294                 new_itr = 0;
2295                 goto set_itr_now;
2296         }
2297
2298         adapter->tx_itr = e1000_update_itr(adapter,
2299                                     adapter->tx_itr,
2300                                     adapter->total_tx_packets,
2301                                     adapter->total_tx_bytes);
2302         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2303         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2304                 adapter->tx_itr = low_latency;
2305
2306         adapter->rx_itr = e1000_update_itr(adapter,
2307                                     adapter->rx_itr,
2308                                     adapter->total_rx_packets,
2309                                     adapter->total_rx_bytes);
2310         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2311         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2312                 adapter->rx_itr = low_latency;
2313
2314         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2315
2316         switch (current_itr) {
2317         /* counts and packets in update_itr are dependent on these numbers */
2318         case lowest_latency:
2319                 new_itr = 70000;
2320                 break;
2321         case low_latency:
2322                 new_itr = 20000; /* aka hwitr = ~200 */
2323                 break;
2324         case bulk_latency:
2325                 new_itr = 4000;
2326                 break;
2327         default:
2328                 break;
2329         }
2330
2331 set_itr_now:
2332         if (new_itr != adapter->itr) {
2333                 /*
2334                  * this attempts to bias the interrupt rate towards Bulk
2335                  * by adding intermediate steps when interrupt rate is
2336                  * increasing
2337                  */
2338                 new_itr = new_itr > adapter->itr ?
2339                              min(adapter->itr + (new_itr >> 2), new_itr) :
2340                              new_itr;
2341                 adapter->itr = new_itr;
2342                 adapter->rx_ring->itr_val = new_itr;
2343                 if (adapter->msix_entries)
2344                         adapter->rx_ring->set_itr = 1;
2345                 else
2346                         if (new_itr)
2347                                 ew32(ITR, 1000000000 / (new_itr * 256));
2348                         else
2349                                 ew32(ITR, 0);
2350         }
2351 }
2352
2353 /**
2354  * e1000_alloc_queues - Allocate memory for all rings
2355  * @adapter: board private structure to initialize
2356  **/
2357 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2358 {
2359         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2360         if (!adapter->tx_ring)
2361                 goto err;
2362
2363         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2364         if (!adapter->rx_ring)
2365                 goto err;
2366
2367         return 0;
2368 err:
2369         e_err("Unable to allocate memory for queues\n");
2370         kfree(adapter->rx_ring);
2371         kfree(adapter->tx_ring);
2372         return -ENOMEM;
2373 }
2374
2375 /**
2376  * e1000_clean - NAPI Rx polling callback
2377  * @napi: struct associated with this polling callback
2378  * @budget: amount of packets driver is allowed to process this poll
2379  **/
2380 static int e1000_clean(struct napi_struct *napi, int budget)
2381 {
2382         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2383         struct e1000_hw *hw = &adapter->hw;
2384         struct net_device *poll_dev = adapter->netdev;
2385         int tx_cleaned = 1, work_done = 0;
2386
2387         adapter = netdev_priv(poll_dev);
2388
2389         if (adapter->msix_entries &&
2390             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2391                 goto clean_rx;
2392
2393         tx_cleaned = e1000_clean_tx_irq(adapter);
2394
2395 clean_rx:
2396         adapter->clean_rx(adapter, &work_done, budget);
2397
2398         if (!tx_cleaned)
2399                 work_done = budget;
2400
2401         /* If budget not fully consumed, exit the polling mode */
2402         if (work_done < budget) {
2403                 if (adapter->itr_setting & 3)
2404                         e1000_set_itr(adapter);
2405                 napi_complete(napi);
2406                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2407                         if (adapter->msix_entries)
2408                                 ew32(IMS, adapter->rx_ring->ims_val);
2409                         else
2410                                 e1000_irq_enable(adapter);
2411                 }
2412         }
2413
2414         return work_done;
2415 }
2416
2417 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2418 {
2419         struct e1000_adapter *adapter = netdev_priv(netdev);
2420         struct e1000_hw *hw = &adapter->hw;
2421         u32 vfta, index;
2422
2423         /* don't update vlan cookie if already programmed */
2424         if ((adapter->hw.mng_cookie.status &
2425              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2426             (vid == adapter->mng_vlan_id))
2427                 return;
2428
2429         /* add VID to filter table */
2430         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2431                 index = (vid >> 5) & 0x7F;
2432                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2433                 vfta |= (1 << (vid & 0x1F));
2434                 hw->mac.ops.write_vfta(hw, index, vfta);
2435         }
2436 }
2437
2438 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2439 {
2440         struct e1000_adapter *adapter = netdev_priv(netdev);
2441         struct e1000_hw *hw = &adapter->hw;
2442         u32 vfta, index;
2443
2444         if (!test_bit(__E1000_DOWN, &adapter->state))
2445                 e1000_irq_disable(adapter);
2446         vlan_group_set_device(adapter->vlgrp, vid, NULL);
2447
2448         if (!test_bit(__E1000_DOWN, &adapter->state))
2449                 e1000_irq_enable(adapter);
2450
2451         if ((adapter->hw.mng_cookie.status &
2452              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2453             (vid == adapter->mng_vlan_id)) {
2454                 /* release control to f/w */
2455                 e1000_release_hw_control(adapter);
2456                 return;
2457         }
2458
2459         /* remove VID from filter table */
2460         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2461                 index = (vid >> 5) & 0x7F;
2462                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2463                 vfta &= ~(1 << (vid & 0x1F));
2464                 hw->mac.ops.write_vfta(hw, index, vfta);
2465         }
2466 }
2467
2468 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2469 {
2470         struct net_device *netdev = adapter->netdev;
2471         u16 vid = adapter->hw.mng_cookie.vlan_id;
2472         u16 old_vid = adapter->mng_vlan_id;
2473
2474         if (!adapter->vlgrp)
2475                 return;
2476
2477         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2478                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2479                 if (adapter->hw.mng_cookie.status &
2480                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2481                         e1000_vlan_rx_add_vid(netdev, vid);
2482                         adapter->mng_vlan_id = vid;
2483                 }
2484
2485                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2486                                 (vid != old_vid) &&
2487                     !vlan_group_get_device(adapter->vlgrp, old_vid))
2488                         e1000_vlan_rx_kill_vid(netdev, old_vid);
2489         } else {
2490                 adapter->mng_vlan_id = vid;
2491         }
2492 }
2493
2494
2495 static void e1000_vlan_rx_register(struct net_device *netdev,
2496                                    struct vlan_group *grp)
2497 {
2498         struct e1000_adapter *adapter = netdev_priv(netdev);
2499         struct e1000_hw *hw = &adapter->hw;
2500         u32 ctrl, rctl;
2501
2502         if (!test_bit(__E1000_DOWN, &adapter->state))
2503                 e1000_irq_disable(adapter);
2504         adapter->vlgrp = grp;
2505
2506         if (grp) {
2507                 /* enable VLAN tag insert/strip */
2508                 ctrl = er32(CTRL);
2509                 ctrl |= E1000_CTRL_VME;
2510                 ew32(CTRL, ctrl);
2511
2512                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2513                         /* enable VLAN receive filtering */
2514                         rctl = er32(RCTL);
2515                         rctl &= ~E1000_RCTL_CFIEN;
2516                         ew32(RCTL, rctl);
2517                         e1000_update_mng_vlan(adapter);
2518                 }
2519         } else {
2520                 /* disable VLAN tag insert/strip */
2521                 ctrl = er32(CTRL);
2522                 ctrl &= ~E1000_CTRL_VME;
2523                 ew32(CTRL, ctrl);
2524
2525                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2526                         if (adapter->mng_vlan_id !=
2527                             (u16)E1000_MNG_VLAN_NONE) {
2528                                 e1000_vlan_rx_kill_vid(netdev,
2529                                                        adapter->mng_vlan_id);
2530                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2531                         }
2532                 }
2533         }
2534
2535         if (!test_bit(__E1000_DOWN, &adapter->state))
2536                 e1000_irq_enable(adapter);
2537 }
2538
2539 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2540 {
2541         u16 vid;
2542
2543         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2544
2545         if (!adapter->vlgrp)
2546                 return;
2547
2548         for (vid = 0; vid < VLAN_N_VID; vid++) {
2549                 if (!vlan_group_get_device(adapter->vlgrp, vid))
2550                         continue;
2551                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2552         }
2553 }
2554
2555 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2556 {
2557         struct e1000_hw *hw = &adapter->hw;
2558         u32 manc, manc2h, mdef, i, j;
2559
2560         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2561                 return;
2562
2563         manc = er32(MANC);
2564
2565         /*
2566          * enable receiving management packets to the host. this will probably
2567          * generate destination unreachable messages from the host OS, but
2568          * the packets will be handled on SMBUS
2569          */
2570         manc |= E1000_MANC_EN_MNG2HOST;
2571         manc2h = er32(MANC2H);
2572
2573         switch (hw->mac.type) {
2574         default:
2575                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2576                 break;
2577         case e1000_82574:
2578         case e1000_82583:
2579                 /*
2580                  * Check if IPMI pass-through decision filter already exists;
2581                  * if so, enable it.
2582                  */
2583                 for (i = 0, j = 0; i < 8; i++) {
2584                         mdef = er32(MDEF(i));
2585
2586                         /* Ignore filters with anything other than IPMI ports */
2587                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2588                                 continue;
2589
2590                         /* Enable this decision filter in MANC2H */
2591                         if (mdef)
2592                                 manc2h |= (1 << i);
2593
2594                         j |= mdef;
2595                 }
2596
2597                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2598                         break;
2599
2600                 /* Create new decision filter in an empty filter */
2601                 for (i = 0, j = 0; i < 8; i++)
2602                         if (er32(MDEF(i)) == 0) {
2603                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2604                                                E1000_MDEF_PORT_664));
2605                                 manc2h |= (1 << 1);
2606                                 j++;
2607                                 break;
2608                         }
2609
2610                 if (!j)
2611                         e_warn("Unable to create IPMI pass-through filter\n");
2612                 break;
2613         }
2614
2615         ew32(MANC2H, manc2h);
2616         ew32(MANC, manc);
2617 }
2618
2619 /**
2620  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2621  * @adapter: board private structure
2622  *
2623  * Configure the Tx unit of the MAC after a reset.
2624  **/
2625 static void e1000_configure_tx(struct e1000_adapter *adapter)
2626 {
2627         struct e1000_hw *hw = &adapter->hw;
2628         struct e1000_ring *tx_ring = adapter->tx_ring;
2629         u64 tdba;
2630         u32 tdlen, tctl, tipg, tarc;
2631         u32 ipgr1, ipgr2;
2632
2633         /* Setup the HW Tx Head and Tail descriptor pointers */
2634         tdba = tx_ring->dma;
2635         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2636         ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2637         ew32(TDBAH, (tdba >> 32));
2638         ew32(TDLEN, tdlen);
2639         ew32(TDH, 0);
2640         ew32(TDT, 0);
2641         tx_ring->head = E1000_TDH;
2642         tx_ring->tail = E1000_TDT;
2643
2644         /* Set the default values for the Tx Inter Packet Gap timer */
2645         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2646         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2647         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2648
2649         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2650                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2651
2652         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2653         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2654         ew32(TIPG, tipg);
2655
2656         /* Set the Tx Interrupt Delay register */
2657         ew32(TIDV, adapter->tx_int_delay);
2658         /* Tx irq moderation */
2659         ew32(TADV, adapter->tx_abs_int_delay);
2660
2661         if (adapter->flags2 & FLAG2_DMA_BURST) {
2662                 u32 txdctl = er32(TXDCTL(0));
2663                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2664                             E1000_TXDCTL_WTHRESH);
2665                 /*
2666                  * set up some performance related parameters to encourage the
2667                  * hardware to use the bus more efficiently in bursts, depends
2668                  * on the tx_int_delay to be enabled,
2669                  * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2670                  * hthresh = 1 ==> prefetch when one or more available
2671                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2672                  * BEWARE: this seems to work but should be considered first if
2673                  * there are tx hangs or other tx related bugs
2674                  */
2675                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2676                 ew32(TXDCTL(0), txdctl);
2677                 /* erratum work around: set txdctl the same for both queues */
2678                 ew32(TXDCTL(1), txdctl);
2679         }
2680
2681         /* Program the Transmit Control Register */
2682         tctl = er32(TCTL);
2683         tctl &= ~E1000_TCTL_CT;
2684         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2685                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2686
2687         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2688                 tarc = er32(TARC(0));
2689                 /*
2690                  * set the speed mode bit, we'll clear it if we're not at
2691                  * gigabit link later
2692                  */
2693 #define SPEED_MODE_BIT (1 << 21)
2694                 tarc |= SPEED_MODE_BIT;
2695                 ew32(TARC(0), tarc);
2696         }
2697
2698         /* errata: program both queues to unweighted RR */
2699         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2700                 tarc = er32(TARC(0));
2701                 tarc |= 1;
2702                 ew32(TARC(0), tarc);
2703                 tarc = er32(TARC(1));
2704                 tarc |= 1;
2705                 ew32(TARC(1), tarc);
2706         }
2707
2708         /* Setup Transmit Descriptor Settings for eop descriptor */
2709         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2710
2711         /* only set IDE if we are delaying interrupts using the timers */
2712         if (adapter->tx_int_delay)
2713                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2714
2715         /* enable Report Status bit */
2716         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2717
2718         ew32(TCTL, tctl);
2719
2720         e1000e_config_collision_dist(hw);
2721 }
2722
2723 /**
2724  * e1000_setup_rctl - configure the receive control registers
2725  * @adapter: Board private structure
2726  **/
2727 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2728                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2729 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2730 {
2731         struct e1000_hw *hw = &adapter->hw;
2732         u32 rctl, rfctl;
2733         u32 psrctl = 0;
2734         u32 pages = 0;
2735
2736         /* Workaround Si errata on 82579 - configure jumbo frame flow */
2737         if (hw->mac.type == e1000_pch2lan) {
2738                 s32 ret_val;
2739
2740                 if (adapter->netdev->mtu > ETH_DATA_LEN)
2741                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2742                 else
2743                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2744         }
2745
2746         /* Program MC offset vector base */
2747         rctl = er32(RCTL);
2748         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2749         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2750                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2751                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2752
2753         /* Do not Store bad packets */
2754         rctl &= ~E1000_RCTL_SBP;
2755
2756         /* Enable Long Packet receive */
2757         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2758                 rctl &= ~E1000_RCTL_LPE;
2759         else
2760                 rctl |= E1000_RCTL_LPE;
2761
2762         /* Some systems expect that the CRC is included in SMBUS traffic. The
2763          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2764          * host memory when this is enabled
2765          */
2766         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2767                 rctl |= E1000_RCTL_SECRC;
2768
2769         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2770         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2771                 u16 phy_data;
2772
2773                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2774                 phy_data &= 0xfff8;
2775                 phy_data |= (1 << 2);
2776                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2777
2778                 e1e_rphy(hw, 22, &phy_data);
2779                 phy_data &= 0x0fff;
2780                 phy_data |= (1 << 14);
2781                 e1e_wphy(hw, 0x10, 0x2823);
2782                 e1e_wphy(hw, 0x11, 0x0003);
2783                 e1e_wphy(hw, 22, phy_data);
2784         }
2785
2786         /* Setup buffer sizes */
2787         rctl &= ~E1000_RCTL_SZ_4096;
2788         rctl |= E1000_RCTL_BSEX;
2789         switch (adapter->rx_buffer_len) {
2790         case 2048:
2791         default:
2792                 rctl |= E1000_RCTL_SZ_2048;
2793                 rctl &= ~E1000_RCTL_BSEX;
2794                 break;
2795         case 4096:
2796                 rctl |= E1000_RCTL_SZ_4096;
2797                 break;
2798         case 8192:
2799                 rctl |= E1000_RCTL_SZ_8192;
2800                 break;
2801         case 16384:
2802                 rctl |= E1000_RCTL_SZ_16384;
2803                 break;
2804         }
2805
2806         /*
2807          * 82571 and greater support packet-split where the protocol
2808          * header is placed in skb->data and the packet data is
2809          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2810          * In the case of a non-split, skb->data is linearly filled,
2811          * followed by the page buffers.  Therefore, skb->data is
2812          * sized to hold the largest protocol header.
2813          *
2814          * allocations using alloc_page take too long for regular MTU
2815          * so only enable packet split for jumbo frames
2816          *
2817          * Using pages when the page size is greater than 16k wastes
2818          * a lot of memory, since we allocate 3 pages at all times
2819          * per packet.
2820          */
2821         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2822         if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2823             (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2824                 adapter->rx_ps_pages = pages;
2825         else
2826                 adapter->rx_ps_pages = 0;
2827
2828         if (adapter->rx_ps_pages) {
2829                 /* Configure extra packet-split registers */
2830                 rfctl = er32(RFCTL);
2831                 rfctl |= E1000_RFCTL_EXTEN;
2832                 /*
2833                  * disable packet split support for IPv6 extension headers,
2834                  * because some malformed IPv6 headers can hang the Rx
2835                  */
2836                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2837                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2838
2839                 ew32(RFCTL, rfctl);
2840
2841                 /* Enable Packet split descriptors */
2842                 rctl |= E1000_RCTL_DTYP_PS;
2843
2844                 psrctl |= adapter->rx_ps_bsize0 >>
2845                         E1000_PSRCTL_BSIZE0_SHIFT;
2846
2847                 switch (adapter->rx_ps_pages) {
2848                 case 3:
2849                         psrctl |= PAGE_SIZE <<
2850                                 E1000_PSRCTL_BSIZE3_SHIFT;
2851                 case 2:
2852                         psrctl |= PAGE_SIZE <<
2853                                 E1000_PSRCTL_BSIZE2_SHIFT;
2854                 case 1:
2855                         psrctl |= PAGE_SIZE >>
2856                                 E1000_PSRCTL_BSIZE1_SHIFT;
2857                         break;
2858                 }
2859
2860                 ew32(PSRCTL, psrctl);
2861         }
2862
2863         ew32(RCTL, rctl);
2864         /* just started the receive unit, no need to restart */
2865         adapter->flags &= ~FLAG_RX_RESTART_NOW;
2866 }
2867
2868 /**
2869  * e1000_configure_rx - Configure Receive Unit after Reset
2870  * @adapter: board private structure
2871  *
2872  * Configure the Rx unit of the MAC after a reset.
2873  **/
2874 static void e1000_configure_rx(struct e1000_adapter *adapter)
2875 {
2876         struct e1000_hw *hw = &adapter->hw;
2877         struct e1000_ring *rx_ring = adapter->rx_ring;
2878         u64 rdba;
2879         u32 rdlen, rctl, rxcsum, ctrl_ext;
2880
2881         if (adapter->rx_ps_pages) {
2882                 /* this is a 32 byte descriptor */
2883                 rdlen = rx_ring->count *
2884                         sizeof(union e1000_rx_desc_packet_split);
2885                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2886                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2887         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2888                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2889                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2890                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2891         } else {
2892                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2893                 adapter->clean_rx = e1000_clean_rx_irq;
2894                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2895         }
2896
2897         /* disable receives while setting up the descriptors */
2898         rctl = er32(RCTL);
2899         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2900         e1e_flush();
2901         msleep(10);
2902
2903         if (adapter->flags2 & FLAG2_DMA_BURST) {
2904                 /*
2905                  * set the writeback threshold (only takes effect if the RDTR
2906                  * is set). set GRAN=1 and write back up to 0x4 worth, and
2907                  * enable prefetching of 0x20 rx descriptors
2908                  * granularity = 01
2909                  * wthresh = 04,
2910                  * hthresh = 04,
2911                  * pthresh = 0x20
2912                  */
2913                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
2914                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
2915
2916                 /*
2917                  * override the delay timers for enabling bursting, only if
2918                  * the value was not set by the user via module options
2919                  */
2920                 if (adapter->rx_int_delay == DEFAULT_RDTR)
2921                         adapter->rx_int_delay = BURST_RDTR;
2922                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
2923                         adapter->rx_abs_int_delay = BURST_RADV;
2924         }
2925
2926         /* set the Receive Delay Timer Register */
2927         ew32(RDTR, adapter->rx_int_delay);
2928
2929         /* irq moderation */
2930         ew32(RADV, adapter->rx_abs_int_delay);
2931         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
2932                 ew32(ITR, 1000000000 / (adapter->itr * 256));
2933
2934         ctrl_ext = er32(CTRL_EXT);
2935         /* Auto-Mask interrupts upon ICR access */
2936         ctrl_ext |= E1000_CTRL_EXT_IAME;
2937         ew32(IAM, 0xffffffff);
2938         ew32(CTRL_EXT, ctrl_ext);
2939         e1e_flush();
2940
2941         /*
2942          * Setup the HW Rx Head and Tail Descriptor Pointers and
2943          * the Base and Length of the Rx Descriptor Ring
2944          */
2945         rdba = rx_ring->dma;
2946         ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2947         ew32(RDBAH, (rdba >> 32));
2948         ew32(RDLEN, rdlen);
2949         ew32(RDH, 0);
2950         ew32(RDT, 0);
2951         rx_ring->head = E1000_RDH;
2952         rx_ring->tail = E1000_RDT;
2953
2954         /* Enable Receive Checksum Offload for TCP and UDP */
2955         rxcsum = er32(RXCSUM);
2956         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2957                 rxcsum |= E1000_RXCSUM_TUOFL;
2958
2959                 /*
2960                  * IPv4 payload checksum for UDP fragments must be
2961                  * used in conjunction with packet-split.
2962                  */
2963                 if (adapter->rx_ps_pages)
2964                         rxcsum |= E1000_RXCSUM_IPPCSE;
2965         } else {
2966                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2967                 /* no need to clear IPPCSE as it defaults to 0 */
2968         }
2969         ew32(RXCSUM, rxcsum);
2970
2971         /*
2972          * Enable early receives on supported devices, only takes effect when
2973          * packet size is equal or larger than the specified value (in 8 byte
2974          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2975          */
2976         if ((adapter->flags & FLAG_HAS_ERT) ||
2977             (adapter->hw.mac.type == e1000_pch2lan)) {
2978                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2979                         u32 rxdctl = er32(RXDCTL(0));
2980                         ew32(RXDCTL(0), rxdctl | 0x3);
2981                         if (adapter->flags & FLAG_HAS_ERT)
2982                                 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2983                         /*
2984                          * With jumbo frames and early-receive enabled,
2985                          * excessive C-state transition latencies result in
2986                          * dropped transactions.
2987                          */
2988                         pm_qos_update_request(
2989                                 &adapter->netdev->pm_qos_req, 55);
2990                 } else {
2991                         pm_qos_update_request(
2992                                 &adapter->netdev->pm_qos_req,
2993                                 PM_QOS_DEFAULT_VALUE);
2994                 }
2995         }
2996
2997         /* Enable Receives */
2998         ew32(RCTL, rctl);
2999 }
3000
3001 /**
3002  *  e1000_update_mc_addr_list - Update Multicast addresses
3003  *  @hw: pointer to the HW structure
3004  *  @mc_addr_list: array of multicast addresses to program
3005  *  @mc_addr_count: number of multicast addresses to program
3006  *
3007  *  Updates the Multicast Table Array.
3008  *  The caller must have a packed mc_addr_list of multicast addresses.
3009  **/
3010 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
3011                                       u32 mc_addr_count)
3012 {
3013         hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
3014 }
3015
3016 /**
3017  * e1000_set_multi - Multicast and Promiscuous mode set
3018  * @netdev: network interface device structure
3019  *
3020  * The set_multi entry point is called whenever the multicast address
3021  * list or the network interface flags are updated.  This routine is
3022  * responsible for configuring the hardware for proper multicast,
3023  * promiscuous mode, and all-multi behavior.
3024  **/
3025 static void e1000_set_multi(struct net_device *netdev)
3026 {
3027         struct e1000_adapter *adapter = netdev_priv(netdev);
3028         struct e1000_hw *hw = &adapter->hw;
3029         struct netdev_hw_addr *ha;
3030         u8  *mta_list;
3031         u32 rctl;
3032         int i;
3033
3034         /* Check for Promiscuous and All Multicast modes */
3035
3036         rctl = er32(RCTL);
3037
3038         if (netdev->flags & IFF_PROMISC) {
3039                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3040                 rctl &= ~E1000_RCTL_VFE;
3041         } else {
3042                 if (netdev->flags & IFF_ALLMULTI) {
3043                         rctl |= E1000_RCTL_MPE;
3044                         rctl &= ~E1000_RCTL_UPE;
3045                 } else {
3046                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3047                 }
3048                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
3049                         rctl |= E1000_RCTL_VFE;
3050         }
3051
3052         ew32(RCTL, rctl);
3053
3054         if (!netdev_mc_empty(netdev)) {
3055                 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3056                 if (!mta_list)
3057                         return;
3058
3059                 /* prepare a packed array of only addresses. */
3060                 i = 0;
3061                 netdev_for_each_mc_addr(ha, netdev)
3062                         memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3063
3064                 e1000_update_mc_addr_list(hw, mta_list, i);
3065                 kfree(mta_list);
3066         } else {
3067                 /*
3068                  * if we're called from probe, we might not have
3069                  * anything to do here, so clear out the list
3070                  */
3071                 e1000_update_mc_addr_list(hw, NULL, 0);
3072         }
3073 }
3074
3075 /**
3076  * e1000_configure - configure the hardware for Rx and Tx
3077  * @adapter: private board structure
3078  **/
3079 static void e1000_configure(struct e1000_adapter *adapter)
3080 {
3081         e1000_set_multi(adapter->netdev);
3082
3083         e1000_restore_vlan(adapter);
3084         e1000_init_manageability_pt(adapter);
3085
3086         e1000_configure_tx(adapter);
3087         e1000_setup_rctl(adapter);
3088         e1000_configure_rx(adapter);
3089         adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
3090 }
3091
3092 /**
3093  * e1000e_power_up_phy - restore link in case the phy was powered down
3094  * @adapter: address of board private structure
3095  *
3096  * The phy may be powered down to save power and turn off link when the
3097  * driver is unloaded and wake on lan is not enabled (among others)
3098  * *** this routine MUST be followed by a call to e1000e_reset ***
3099  **/
3100 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3101 {
3102         if (adapter->hw.phy.ops.power_up)
3103                 adapter->hw.phy.ops.power_up(&adapter->hw);
3104
3105         adapter->hw.mac.ops.setup_link(&adapter->hw);
3106 }
3107
3108 /**
3109  * e1000_power_down_phy - Power down the PHY
3110  *
3111  * Power down the PHY so no link is implied when interface is down.
3112  * The PHY cannot be powered down if management or WoL is active.
3113  */
3114 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3115 {
3116         /* WoL is enabled */
3117         if (adapter->wol)
3118                 return;
3119
3120         if (adapter->hw.phy.ops.power_down)
3121                 adapter->hw.phy.ops.power_down(&adapter->hw);
3122 }
3123
3124 /**
3125  * e1000e_reset - bring the hardware into a known good state
3126  *
3127  * This function boots the hardware and enables some settings that
3128  * require a configuration cycle of the hardware - those cannot be
3129  * set/changed during runtime. After reset the device needs to be
3130  * properly configured for Rx, Tx etc.
3131  */
3132 void e1000e_reset(struct e1000_adapter *adapter)
3133 {
3134         struct e1000_mac_info *mac = &adapter->hw.mac;
3135         struct e1000_fc_info *fc = &adapter->hw.fc;
3136         struct e1000_hw *hw = &adapter->hw;
3137         u32 tx_space, min_tx_space, min_rx_space;
3138         u32 pba = adapter->pba;
3139         u16 hwm;
3140
3141         /* reset Packet Buffer Allocation to default */
3142         ew32(PBA, pba);
3143
3144         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3145                 /*
3146                  * To maintain wire speed transmits, the Tx FIFO should be
3147                  * large enough to accommodate two full transmit packets,
3148                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3149                  * the Rx FIFO should be large enough to accommodate at least
3150                  * one full receive packet and is similarly rounded up and
3151                  * expressed in KB.
3152                  */
3153                 pba = er32(PBA);
3154                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3155                 tx_space = pba >> 16;
3156                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3157                 pba &= 0xffff;
3158                 /*
3159                  * the Tx fifo also stores 16 bytes of information about the tx
3160                  * but don't include ethernet FCS because hardware appends it
3161                  */
3162                 min_tx_space = (adapter->max_frame_size +
3163                                 sizeof(struct e1000_tx_desc) -
3164                                 ETH_FCS_LEN) * 2;
3165                 min_tx_space = ALIGN(min_tx_space, 1024);
3166                 min_tx_space >>= 10;
3167                 /* software strips receive CRC, so leave room for it */
3168                 min_rx_space = adapter->max_frame_size;
3169                 min_rx_space = ALIGN(min_rx_space, 1024);
3170                 min_rx_space >>= 10;
3171
3172                 /*
3173                  * If current Tx allocation is less than the min Tx FIFO size,
3174                  * and the min Tx FIFO size is less than the current Rx FIFO
3175                  * allocation, take space away from current Rx allocation
3176                  */
3177                 if ((tx_space < min_tx_space) &&
3178                     ((min_tx_space - tx_space) < pba)) {
3179                         pba -= min_tx_space - tx_space;
3180
3181                         /*
3182                          * if short on Rx space, Rx wins and must trump tx
3183                          * adjustment or use Early Receive if available
3184                          */
3185                         if ((pba < min_rx_space) &&
3186                             (!(adapter->flags & FLAG_HAS_ERT)))
3187                                 /* ERT enabled in e1000_configure_rx */
3188                                 pba = min_rx_space;
3189                 }
3190
3191                 ew32(PBA, pba);
3192         }
3193
3194
3195         /*
3196          * flow control settings
3197          *
3198          * The high water mark must be low enough to fit one full frame
3199          * (or the size used for early receive) above it in the Rx FIFO.
3200          * Set it to the lower of:
3201          * - 90% of the Rx FIFO size, and
3202          * - the full Rx FIFO size minus the early receive size (for parts
3203          *   with ERT support assuming ERT set to E1000_ERT_2048), or
3204          * - the full Rx FIFO size minus one full frame
3205          */
3206         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3207                 fc->pause_time = 0xFFFF;
3208         else
3209                 fc->pause_time = E1000_FC_PAUSE_TIME;
3210         fc->send_xon = 1;
3211         fc->current_mode = fc->requested_mode;
3212
3213         switch (hw->mac.type) {
3214         default:
3215                 if ((adapter->flags & FLAG_HAS_ERT) &&
3216                     (adapter->netdev->mtu > ETH_DATA_LEN))
3217                         hwm = min(((pba << 10) * 9 / 10),
3218                                   ((pba << 10) - (E1000_ERT_2048 << 3)));
3219                 else
3220                         hwm = min(((pba << 10) * 9 / 10),
3221                                   ((pba << 10) - adapter->max_frame_size));
3222
3223                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3224                 fc->low_water = fc->high_water - 8;
3225                 break;
3226         case e1000_pchlan:
3227                 /*
3228                  * Workaround PCH LOM adapter hangs with certain network
3229                  * loads.  If hangs persist, try disabling Tx flow control.
3230                  */
3231                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3232                         fc->high_water = 0x3500;
3233                         fc->low_water  = 0x1500;
3234                 } else {
3235                         fc->high_water = 0x5000;
3236                         fc->low_water  = 0x3000;
3237                 }
3238                 fc->refresh_time = 0x1000;
3239                 break;
3240         case e1000_pch2lan:
3241                 fc->high_water = 0x05C20;
3242                 fc->low_water = 0x05048;
3243                 fc->pause_time = 0x0650;
3244                 fc->refresh_time = 0x0400;
3245                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3246                         pba = 14;
3247                         ew32(PBA, pba);
3248                 }
3249                 break;
3250         }
3251
3252         /*
3253          * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3254          * fit in receive buffer and early-receive not supported.
3255          */
3256         if (adapter->itr_setting & 0x3) {
3257                 if (((adapter->max_frame_size * 2) > (pba << 10)) &&
3258                     !(adapter->flags & FLAG_HAS_ERT)) {
3259                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3260                                 dev_info(&adapter->pdev->dev,
3261                                         "Interrupt Throttle Rate turned off\n");
3262                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
3263                                 ew32(ITR, 0);
3264                         }
3265                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3266                         dev_info(&adapter->pdev->dev,
3267                                  "Interrupt Throttle Rate turned on\n");
3268                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3269                         adapter->itr = 20000;
3270                         ew32(ITR, 1000000000 / (adapter->itr * 256));
3271                 }
3272         }
3273
3274         /* Allow time for pending master requests to run */
3275         mac->ops.reset_hw(hw);
3276
3277         /*
3278          * For parts with AMT enabled, let the firmware know
3279          * that the network interface is in control
3280          */
3281         if (adapter->flags & FLAG_HAS_AMT)
3282                 e1000_get_hw_control(adapter);
3283
3284         ew32(WUC, 0);
3285
3286         if (mac->ops.init_hw(hw))
3287                 e_err("Hardware Error\n");
3288
3289         e1000_update_mng_vlan(adapter);
3290
3291         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3292         ew32(VET, ETH_P_8021Q);
3293
3294         e1000e_reset_adaptive(hw);
3295         e1000_get_phy_info(hw);
3296
3297         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3298             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3299                 u16 phy_data = 0;
3300                 /*
3301                  * speed up time to link by disabling smart power down, ignore
3302                  * the return value of this function because there is nothing
3303                  * different we would do if it failed
3304                  */
3305                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3306                 phy_data &= ~IGP02E1000_PM_SPD;
3307                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3308         }
3309 }
3310
3311 int e1000e_up(struct e1000_adapter *adapter)
3312 {
3313         struct e1000_hw *hw = &adapter->hw;
3314
3315         /* hardware has been reset, we need to reload some things */
3316         e1000_configure(adapter);
3317
3318         clear_bit(__E1000_DOWN, &adapter->state);
3319
3320         napi_enable(&adapter->napi);
3321         if (adapter->msix_entries)
3322                 e1000_configure_msix(adapter);
3323         e1000_irq_enable(adapter);
3324
3325         netif_wake_queue(adapter->netdev);
3326
3327         /* fire a link change interrupt to start the watchdog */
3328         if (adapter->msix_entries)
3329                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3330         else
3331                 ew32(ICS, E1000_ICS_LSC);
3332
3333         return 0;
3334 }
3335
3336 void e1000e_down(struct e1000_adapter *adapter)
3337 {
3338         struct net_device *netdev = adapter->netdev;
3339         struct e1000_hw *hw = &adapter->hw;
3340         u32 tctl, rctl;
3341
3342         /*
3343          * signal that we're down so the interrupt handler does not
3344          * reschedule our watchdog timer
3345          */
3346         set_bit(__E1000_DOWN, &adapter->state);
3347
3348         /* disable receives in the hardware */
3349         rctl = er32(RCTL);
3350         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3351         /* flush and sleep below */
3352
3353         netif_stop_queue(netdev);
3354
3355         /* disable transmits in the hardware */
3356         tctl = er32(TCTL);
3357         tctl &= ~E1000_TCTL_EN;
3358         ew32(TCTL, tctl);
3359         /* flush both disables and wait for them to finish */
3360         e1e_flush();
3361         msleep(10);
3362
3363         napi_disable(&adapter->napi);
3364         e1000_irq_disable(adapter);
3365
3366         del_timer_sync(&adapter->watchdog_timer);
3367         del_timer_sync(&adapter->phy_info_timer);
3368
3369         netif_carrier_off(netdev);
3370         adapter->link_speed = 0;
3371         adapter->link_duplex = 0;
3372
3373         if (!pci_channel_offline(adapter->pdev))
3374                 e1000e_reset(adapter);
3375         e1000_clean_tx_ring(adapter);
3376         e1000_clean_rx_ring(adapter);
3377
3378         /*
3379          * TODO: for power management, we could drop the link and
3380          * pci_disable_device here.
3381          */
3382 }
3383
3384 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3385 {
3386         might_sleep();
3387         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3388                 msleep(1);
3389         e1000e_down(adapter);
3390         e1000e_up(adapter);
3391         clear_bit(__E1000_RESETTING, &adapter->state);
3392 }
3393
3394 /**
3395  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3396  * @adapter: board private structure to initialize
3397  *
3398  * e1000_sw_init initializes the Adapter private data structure.
3399  * Fields are initialized based on PCI device information and
3400  * OS network device settings (MTU size).
3401  **/
3402 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3403 {
3404         struct net_device *netdev = adapter->netdev;
3405
3406         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3407         adapter->rx_ps_bsize0 = 128;
3408         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3409         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3410
3411         e1000e_set_interrupt_capability(adapter);
3412
3413         if (e1000_alloc_queues(adapter))
3414                 return -ENOMEM;
3415
3416         /* Explicitly disable IRQ since the NIC can be in any state. */
3417         e1000_irq_disable(adapter);
3418
3419         set_bit(__E1000_DOWN, &adapter->state);
3420         return 0;
3421 }
3422
3423 /**
3424  * e1000_intr_msi_test - Interrupt Handler
3425  * @irq: interrupt number
3426  * @data: pointer to a network interface device structure
3427  **/
3428 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3429 {
3430         struct net_device *netdev = data;
3431         struct e1000_adapter *adapter = netdev_priv(netdev);
3432         struct e1000_hw *hw = &adapter->hw;
3433         u32 icr = er32(ICR);
3434
3435         e_dbg("icr is %08X\n", icr);
3436         if (icr & E1000_ICR_RXSEQ) {
3437                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3438                 wmb();
3439         }
3440
3441         return IRQ_HANDLED;
3442 }
3443
3444 /**
3445  * e1000_test_msi_interrupt - Returns 0 for successful test
3446  * @adapter: board private struct
3447  *
3448  * code flow taken from tg3.c
3449  **/
3450 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3451 {
3452         struct net_device *netdev = adapter->netdev;
3453         struct e1000_hw *hw = &adapter->hw;
3454         int err;
3455
3456         /* poll_enable hasn't been called yet, so don't need disable */
3457         /* clear any pending events */
3458         er32(ICR);
3459
3460         /* free the real vector and request a test handler */
3461         e1000_free_irq(adapter);
3462         e1000e_reset_interrupt_capability(adapter);
3463
3464         /* Assume that the test fails, if it succeeds then the test
3465          * MSI irq handler will unset this flag */
3466         adapter->flags |= FLAG_MSI_TEST_FAILED;
3467
3468         err = pci_enable_msi(adapter->pdev);
3469         if (err)
3470                 goto msi_test_failed;
3471
3472         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3473                           netdev->name, netdev);
3474         if (err) {
3475                 pci_disable_msi(adapter->pdev);
3476                 goto msi_test_failed;
3477         }
3478
3479         wmb();
3480
3481         e1000_irq_enable(adapter);
3482
3483         /* fire an unusual interrupt on the test handler */
3484         ew32(ICS, E1000_ICS_RXSEQ);
3485         e1e_flush();
3486         msleep(50);
3487
3488         e1000_irq_disable(adapter);
3489
3490         rmb();
3491
3492         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3493                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3494                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3495         } else
3496                 e_dbg("MSI interrupt test succeeded!\n");
3497
3498         free_irq(adapter->pdev->irq, netdev);
3499         pci_disable_msi(adapter->pdev);
3500
3501 msi_test_failed:
3502         e1000e_set_interrupt_capability(adapter);
3503         return e1000_request_irq(adapter);
3504 }
3505
3506 /**
3507  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3508  * @adapter: board private struct
3509  *
3510  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3511  **/
3512 static int e1000_test_msi(struct e1000_adapter *adapter)
3513 {
3514         int err;
3515         u16 pci_cmd;
3516
3517         if (!(adapter->flags & FLAG_MSI_ENABLED))
3518                 return 0;
3519
3520         /* disable SERR in case the MSI write causes a master abort */
3521         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3522         if (pci_cmd & PCI_COMMAND_SERR)
3523                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3524                                       pci_cmd & ~PCI_COMMAND_SERR);
3525
3526         err = e1000_test_msi_interrupt(adapter);
3527
3528         /* re-enable SERR */
3529         if (pci_cmd & PCI_COMMAND_SERR) {
3530                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3531                 pci_cmd |= PCI_COMMAND_SERR;
3532                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3533         }
3534
3535         return err;
3536 }
3537
3538 /**
3539  * e1000_open - Called when a network interface is made active
3540  * @netdev: network interface device structure
3541  *
3542  * Returns 0 on success, negative value on failure
3543  *
3544  * The open entry point is called when a network interface is made
3545  * active by the system (IFF_UP).  At this point all resources needed
3546  * for transmit and receive operations are allocated, the interrupt
3547  * handler is registered with the OS, the watchdog timer is started,
3548  * and the stack is notified that the interface is ready.
3549  **/
3550 static int e1000_open(struct net_device *netdev)
3551 {
3552         struct e1000_adapter *adapter = netdev_priv(netdev);
3553         struct e1000_hw *hw = &adapter->hw;
3554         struct pci_dev *pdev = adapter->pdev;
3555         int err;
3556
3557         /* disallow open during test */
3558         if (test_bit(__E1000_TESTING, &adapter->state))
3559                 return -EBUSY;
3560
3561         pm_runtime_get_sync(&pdev->dev);
3562
3563         netif_carrier_off(netdev);
3564
3565         /* allocate transmit descriptors */
3566         err = e1000e_setup_tx_resources(adapter);
3567         if (err)
3568                 goto err_setup_tx;
3569
3570         /* allocate receive descriptors */
3571         err = e1000e_setup_rx_resources(adapter);
3572         if (err)
3573                 goto err_setup_rx;
3574
3575         /*
3576          * If AMT is enabled, let the firmware know that the network
3577          * interface is now open and reset the part to a known state.
3578          */
3579         if (adapter->flags & FLAG_HAS_AMT) {
3580                 e1000_get_hw_control(adapter);
3581                 e1000e_reset(adapter);
3582         }
3583
3584         e1000e_power_up_phy(adapter);
3585
3586         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3587         if ((adapter->hw.mng_cookie.status &
3588              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3589                 e1000_update_mng_vlan(adapter);
3590
3591         /* DMA latency requirement to workaround early-receive/jumbo issue */
3592         if ((adapter->flags & FLAG_HAS_ERT) ||
3593             (adapter->hw.mac.type == e1000_pch2lan))
3594                 pm_qos_add_request(&adapter->netdev->pm_qos_req,
3595                                    PM_QOS_CPU_DMA_LATENCY,
3596                                    PM_QOS_DEFAULT_VALUE);
3597
3598         /*
3599          * before we allocate an interrupt, we must be ready to handle it.
3600          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3601          * as soon as we call pci_request_irq, so we have to setup our
3602          * clean_rx handler before we do so.
3603          */
3604         e1000_configure(adapter);
3605
3606         err = e1000_request_irq(adapter);
3607         if (err)
3608                 goto err_req_irq;
3609
3610         /*
3611          * Work around PCIe errata with MSI interrupts causing some chipsets to
3612          * ignore e1000e MSI messages, which means we need to test our MSI
3613          * interrupt now
3614          */
3615         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3616                 err = e1000_test_msi(adapter);
3617                 if (err) {
3618                         e_err("Interrupt allocation failed\n");
3619                         goto err_req_irq;
3620                 }
3621         }
3622
3623         /* From here on the code is the same as e1000e_up() */
3624         clear_bit(__E1000_DOWN, &adapter->state);
3625
3626         napi_enable(&adapter->napi);
3627
3628         e1000_irq_enable(adapter);
3629
3630         netif_start_queue(netdev);
3631
3632         adapter->idle_check = true;
3633         pm_runtime_put(&pdev->dev);
3634
3635         /* fire a link status change interrupt to start the watchdog */
3636         if (adapter->msix_entries)
3637                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3638         else
3639                 ew32(ICS, E1000_ICS_LSC);
3640
3641         return 0;
3642
3643 err_req_irq:
3644         e1000_release_hw_control(adapter);
3645         e1000_power_down_phy(adapter);
3646         e1000e_free_rx_resources(adapter);
3647 err_setup_rx:
3648         e1000e_free_tx_resources(adapter);
3649 err_setup_tx:
3650         e1000e_reset(adapter);
3651         pm_runtime_put_sync(&pdev->dev);
3652
3653         return err;
3654 }
3655
3656 /**
3657  * e1000_close - Disables a network interface
3658  * @netdev: network interface device structure
3659  *
3660  * Returns 0, this is not allowed to fail
3661  *
3662  * The close entry point is called when an interface is de-activated
3663  * by the OS.  The hardware is still under the drivers control, but
3664  * needs to be disabled.  A global MAC reset is issued to stop the
3665  * hardware, and all transmit and receive resources are freed.
3666  **/
3667 static int e1000_close(struct net_device *netdev)
3668 {
3669         struct e1000_adapter *adapter = netdev_priv(netdev);
3670         struct pci_dev *pdev = adapter->pdev;
3671
3672         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3673
3674         pm_runtime_get_sync(&pdev->dev);
3675
3676         if (!test_bit(__E1000_DOWN, &adapter->state)) {
3677                 e1000e_down(adapter);
3678                 e1000_free_irq(adapter);
3679         }
3680         e1000_power_down_phy(adapter);
3681
3682         e1000e_free_tx_resources(adapter);
3683         e1000e_free_rx_resources(adapter);
3684
3685         /*
3686          * kill manageability vlan ID if supported, but not if a vlan with
3687          * the same ID is registered on the host OS (let 8021q kill it)
3688          */
3689         if ((adapter->hw.mng_cookie.status &
3690                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3691              !(adapter->vlgrp &&
3692                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3693                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3694
3695         /*
3696          * If AMT is enabled, let the firmware know that the network
3697          * interface is now closed
3698          */
3699         if (adapter->flags & FLAG_HAS_AMT)
3700                 e1000_release_hw_control(adapter);
3701
3702         if ((adapter->flags & FLAG_HAS_ERT) ||
3703             (adapter->hw.mac.type == e1000_pch2lan))
3704                 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3705
3706         pm_runtime_put_sync(&pdev->dev);
3707
3708         return 0;
3709 }
3710 /**
3711  * e1000_set_mac - Change the Ethernet Address of the NIC
3712  * @netdev: network interface device structure
3713  * @p: pointer to an address structure
3714  *
3715  * Returns 0 on success, negative on failure
3716  **/
3717 static int e1000_set_mac(struct net_device *netdev, void *p)
3718 {
3719         struct e1000_adapter *adapter = netdev_priv(netdev);
3720         struct sockaddr *addr = p;
3721
3722         if (!is_valid_ether_addr(addr->sa_data))
3723                 return -EADDRNOTAVAIL;
3724
3725         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3726         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3727
3728         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3729
3730         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3731                 /* activate the work around */
3732                 e1000e_set_laa_state_82571(&adapter->hw, 1);
3733
3734                 /*
3735                  * Hold a copy of the LAA in RAR[14] This is done so that
3736                  * between the time RAR[0] gets clobbered  and the time it
3737                  * gets fixed (in e1000_watchdog), the actual LAA is in one
3738                  * of the RARs and no incoming packets directed to this port
3739                  * are dropped. Eventually the LAA will be in RAR[0] and
3740                  * RAR[14]
3741                  */
3742                 e1000e_rar_set(&adapter->hw,
3743                               adapter->hw.mac.addr,
3744                               adapter->hw.mac.rar_entry_count - 1);
3745         }
3746
3747         return 0;
3748 }
3749
3750 /**
3751  * e1000e_update_phy_task - work thread to update phy
3752  * @work: pointer to our work struct
3753  *
3754  * this worker thread exists because we must acquire a
3755  * semaphore to read the phy, which we could msleep while
3756  * waiting for it, and we can't msleep in a timer.
3757  **/
3758 static void e1000e_update_phy_task(struct work_struct *work)
3759 {
3760         struct e1000_adapter *adapter = container_of(work,
3761                                         struct e1000_adapter, update_phy_task);
3762         e1000_get_phy_info(&adapter->hw);
3763 }
3764
3765 /*
3766  * Need to wait a few seconds after link up to get diagnostic information from
3767  * the phy
3768  */
3769 static void e1000_update_phy_info(unsigned long data)
3770 {
3771         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3772         schedule_work(&adapter->update_phy_task);
3773 }
3774
3775 /**
3776  * e1000e_update_phy_stats - Update the PHY statistics counters
3777  * @adapter: board private structure
3778  **/
3779 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
3780 {
3781         struct e1000_hw *hw = &adapter->hw;
3782         s32 ret_val;
3783         u16 phy_data;
3784
3785         ret_val = hw->phy.ops.acquire(hw);
3786         if (ret_val)
3787                 return;
3788
3789         hw->phy.addr = 1;
3790
3791 #define HV_PHY_STATS_PAGE       778
3792         /*
3793          * A page set is expensive so check if already on desired page.
3794          * If not, set to the page with the PHY status registers.
3795          */
3796         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3797                                            &phy_data);
3798         if (ret_val)
3799                 goto release;
3800         if (phy_data != (HV_PHY_STATS_PAGE << IGP_PAGE_SHIFT)) {
3801                 ret_val = e1000e_write_phy_reg_mdic(hw,
3802                                                     IGP01E1000_PHY_PAGE_SELECT,
3803                                                     (HV_PHY_STATS_PAGE <<
3804                                                      IGP_PAGE_SHIFT));
3805                 if (ret_val)
3806                         goto release;
3807         }
3808
3809         /* Read/clear the upper 16-bit registers and read/accumulate lower */
3810
3811         /* Single Collision Count */
3812         e1000e_read_phy_reg_mdic(hw, HV_SCC_UPPER & MAX_PHY_REG_ADDRESS,
3813                                  &phy_data);
3814         ret_val = e1000e_read_phy_reg_mdic(hw,
3815                                            HV_SCC_LOWER & MAX_PHY_REG_ADDRESS,
3816                                            &phy_data);
3817         if (!ret_val)
3818                 adapter->stats.scc += phy_data;
3819
3820         /* Excessive Collision Count */
3821         e1000e_read_phy_reg_mdic(hw, HV_ECOL_UPPER & MAX_PHY_REG_ADDRESS,
3822                                  &phy_data);
3823         ret_val = e1000e_read_phy_reg_mdic(hw,
3824                                            HV_ECOL_LOWER & MAX_PHY_REG_ADDRESS,
3825                                            &phy_data);
3826         if (!ret_val)
3827                 adapter->stats.ecol += phy_data;
3828
3829         /* Multiple Collision Count */
3830         e1000e_read_phy_reg_mdic(hw, HV_MCC_UPPER & MAX_PHY_REG_ADDRESS,
3831                                  &phy_data);
3832         ret_val = e1000e_read_phy_reg_mdic(hw,
3833                                            HV_MCC_LOWER & MAX_PHY_REG_ADDRESS,
3834                                            &phy_data);
3835         if (!ret_val)
3836                 adapter->stats.mcc += phy_data;
3837
3838         /* Late Collision Count */
3839         e1000e_read_phy_reg_mdic(hw, HV_LATECOL_UPPER & MAX_PHY_REG_ADDRESS,
3840                                  &phy_data);
3841         ret_val = e1000e_read_phy_reg_mdic(hw,
3842                                            HV_LATECOL_LOWER &
3843                                            MAX_PHY_REG_ADDRESS,
3844                                            &phy_data);
3845         if (!ret_val)
3846                 adapter->stats.latecol += phy_data;
3847
3848         /* Collision Count - also used for adaptive IFS */
3849         e1000e_read_phy_reg_mdic(hw, HV_COLC_UPPER & MAX_PHY_REG_ADDRESS,
3850                                  &phy_data);
3851         ret_val = e1000e_read_phy_reg_mdic(hw,
3852                                            HV_COLC_LOWER & MAX_PHY_REG_ADDRESS,
3853                                            &phy_data);
3854         if (!ret_val)
3855                 hw->mac.collision_delta = phy_data;
3856
3857         /* Defer Count */
3858         e1000e_read_phy_reg_mdic(hw, HV_DC_UPPER & MAX_PHY_REG_ADDRESS,
3859                                  &phy_data);
3860         ret_val = e1000e_read_phy_reg_mdic(hw,
3861                                            HV_DC_LOWER & MAX_PHY_REG_ADDRESS,
3862                                            &phy_data);
3863         if (!ret_val)
3864                 adapter->stats.dc += phy_data;
3865
3866         /* Transmit with no CRS */
3867         e1000e_read_phy_reg_mdic(hw, HV_TNCRS_UPPER & MAX_PHY_REG_ADDRESS,
3868                                  &phy_data);
3869         ret_val = e1000e_read_phy_reg_mdic(hw,
3870                                            HV_TNCRS_LOWER & MAX_PHY_REG_ADDRESS,
3871                                            &phy_data);
3872         if (!ret_val)
3873                 adapter->stats.tncrs += phy_data;
3874
3875 release:
3876         hw->phy.ops.release(hw);
3877 }
3878
3879 /**
3880  * e1000e_update_stats - Update the board statistics counters
3881  * @adapter: board private structure
3882  **/
3883 void e1000e_update_stats(struct e1000_adapter *adapter)
3884 {
3885         struct net_device *netdev = adapter->netdev;
3886         struct e1000_hw *hw = &adapter->hw;
3887         struct pci_dev *pdev = adapter->pdev;
3888
3889         /*
3890          * Prevent stats update while adapter is being reset, or if the pci
3891          * connection is down.
3892          */
3893         if (adapter->link_speed == 0)
3894                 return;
3895         if (pci_channel_offline(pdev))
3896                 return;
3897
3898         adapter->stats.crcerrs += er32(CRCERRS);
3899         adapter->stats.gprc += er32(GPRC);
3900         adapter->stats.gorc += er32(GORCL);
3901         er32(GORCH); /* Clear gorc */
3902         adapter->stats.bprc += er32(BPRC);
3903         adapter->stats.mprc += er32(MPRC);
3904         adapter->stats.roc += er32(ROC);
3905
3906         adapter->stats.mpc += er32(MPC);
3907
3908         /* Half-duplex statistics */
3909         if (adapter->link_duplex == HALF_DUPLEX) {
3910                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
3911                         e1000e_update_phy_stats(adapter);
3912                 } else {
3913                         adapter->stats.scc += er32(SCC);
3914                         adapter->stats.ecol += er32(ECOL);
3915                         adapter->stats.mcc += er32(MCC);
3916                         adapter->stats.latecol += er32(LATECOL);
3917                         adapter->stats.dc += er32(DC);
3918
3919                         hw->mac.collision_delta = er32(COLC);
3920
3921                         if ((hw->mac.type != e1000_82574) &&
3922                             (hw->mac.type != e1000_82583))
3923                                 adapter->stats.tncrs += er32(TNCRS);
3924                 }
3925                 adapter->stats.colc += hw->mac.collision_delta;
3926         }
3927
3928         adapter->stats.xonrxc += er32(XONRXC);
3929         adapter->stats.xontxc += er32(XONTXC);
3930         adapter->stats.xoffrxc += er32(XOFFRXC);
3931         adapter->stats.xofftxc += er32(XOFFTXC);
3932         adapter->stats.gptc += er32(GPTC);
3933         adapter->stats.gotc += er32(GOTCL);
3934         er32(GOTCH); /* Clear gotc */
3935         adapter->stats.rnbc += er32(RNBC);
3936         adapter->stats.ruc += er32(RUC);
3937
3938         adapter->stats.mptc += er32(MPTC);
3939         adapter->stats.bptc += er32(BPTC);
3940
3941         /* used for adaptive IFS */
3942
3943         hw->mac.tx_packet_delta = er32(TPT);
3944         adapter->stats.tpt += hw->mac.tx_packet_delta;
3945
3946         adapter->stats.algnerrc += er32(ALGNERRC);
3947         adapter->stats.rxerrc += er32(RXERRC);
3948         adapter->stats.cexterr += er32(CEXTERR);
3949         adapter->stats.tsctc += er32(TSCTC);
3950         adapter->stats.tsctfc += er32(TSCTFC);
3951
3952         /* Fill out the OS statistics structure */
3953         netdev->stats.multicast = adapter->stats.mprc;
3954         netdev->stats.collisions = adapter->stats.colc;
3955
3956         /* Rx Errors */
3957
3958         /*
3959          * RLEC on some newer hardware can be incorrect so build
3960          * our own version based on RUC and ROC
3961          */
3962         netdev->stats.rx_errors = adapter->stats.rxerrc +
3963                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3964                 adapter->stats.ruc + adapter->stats.roc +
3965                 adapter->stats.cexterr;
3966         netdev->stats.rx_length_errors = adapter->stats.ruc +
3967                                               adapter->stats.roc;
3968         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3969         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3970         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3971
3972         /* Tx Errors */
3973         netdev->stats.tx_errors = adapter->stats.ecol +
3974                                        adapter->stats.latecol;
3975         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3976         netdev->stats.tx_window_errors = adapter->stats.latecol;
3977         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3978
3979         /* Tx Dropped needs to be maintained elsewhere */
3980
3981         /* Management Stats */
3982         adapter->stats.mgptc += er32(MGTPTC);
3983         adapter->stats.mgprc += er32(MGTPRC);
3984         adapter->stats.mgpdc += er32(MGTPDC);
3985 }
3986
3987 /**
3988  * e1000_phy_read_status - Update the PHY register status snapshot
3989  * @adapter: board private structure
3990  **/
3991 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3992 {
3993         struct e1000_hw *hw = &adapter->hw;
3994         struct e1000_phy_regs *phy = &adapter->phy_regs;
3995         int ret_val;
3996
3997         if ((er32(STATUS) & E1000_STATUS_LU) &&
3998             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3999                 ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4000                 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4001                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4002                 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4003                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4004                 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4005                 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4006                 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4007                 if (ret_val)
4008                         e_warn("Error reading PHY register\n");
4009         } else {
4010                 /*
4011                  * Do not read PHY registers if link is not up
4012                  * Set values to typical power-on defaults
4013                  */
4014                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4015                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4016                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4017                              BMSR_ERCAP);
4018                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4019                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4020                 phy->lpa = 0;
4021                 phy->expansion = EXPANSION_ENABLENPAGE;
4022                 phy->ctrl1000 = ADVERTISE_1000FULL;
4023                 phy->stat1000 = 0;
4024                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4025         }
4026 }
4027
4028 static void e1000_print_link_info(struct e1000_adapter *adapter)
4029 {
4030         struct e1000_hw *hw = &adapter->hw;
4031         u32 ctrl = er32(CTRL);
4032
4033         /* Link status message must follow this format for user tools */
4034         printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
4035                "Flow Control: %s\n",
4036                adapter->netdev->name,
4037                adapter->link_speed,
4038                (adapter->link_duplex == FULL_DUPLEX) ?
4039                                 "Full Duplex" : "Half Duplex",
4040                ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
4041                                 "RX/TX" :
4042                ((ctrl & E1000_CTRL_RFCE) ? "RX" :
4043                ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
4044 }
4045
4046 static bool e1000e_has_link(struct e1000_adapter *adapter)
4047 {
4048         struct e1000_hw *hw = &adapter->hw;
4049         bool link_active = 0;
4050         s32 ret_val = 0;
4051
4052         /*
4053          * get_link_status is set on LSC (link status) interrupt or
4054          * Rx sequence error interrupt.  get_link_status will stay
4055          * false until the check_for_link establishes link
4056          * for copper adapters ONLY
4057          */
4058         switch (hw->phy.media_type) {
4059         case e1000_media_type_copper:
4060                 if (hw->mac.get_link_status) {
4061                         ret_val = hw->mac.ops.check_for_link(hw);
4062                         link_active = !hw->mac.get_link_status;
4063                 } else {
4064                         link_active = 1;
4065                 }
4066                 break;
4067         case e1000_media_type_fiber:
4068                 ret_val = hw->mac.ops.check_for_link(hw);
4069                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4070                 break;
4071         case e1000_media_type_internal_serdes:
4072                 ret_val = hw->mac.ops.check_for_link(hw);
4073                 link_active = adapter->hw.mac.serdes_has_link;
4074                 break;
4075         default:
4076         case e1000_media_type_unknown:
4077                 break;
4078         }
4079
4080         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4081             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4082                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4083                 e_info("Gigabit has been disabled, downgrading speed\n");
4084         }
4085
4086         return link_active;
4087 }
4088
4089 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4090 {
4091         /* make sure the receive unit is started */
4092         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4093             (adapter->flags & FLAG_RX_RESTART_NOW)) {
4094                 struct e1000_hw *hw = &adapter->hw;
4095                 u32 rctl = er32(RCTL);
4096                 ew32(RCTL, rctl | E1000_RCTL_EN);
4097                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4098         }
4099 }
4100
4101 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4102 {
4103         struct e1000_hw *hw = &adapter->hw;
4104
4105         /*
4106          * With 82574 controllers, PHY needs to be checked periodically
4107          * for hung state and reset, if two calls return true
4108          */
4109         if (e1000_check_phy_82574(hw))
4110                 adapter->phy_hang_count++;
4111         else
4112                 adapter->phy_hang_count = 0;
4113
4114         if (adapter->phy_hang_count > 1) {
4115                 adapter->phy_hang_count = 0;
4116                 schedule_work(&adapter->reset_task);
4117         }
4118 }
4119
4120 /**
4121  * e1000_watchdog - Timer Call-back
4122  * @data: pointer to adapter cast into an unsigned long
4123  **/
4124 static void e1000_watchdog(unsigned long data)
4125 {
4126         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4127
4128         /* Do the rest outside of interrupt context */
4129         schedule_work(&adapter->watchdog_task);
4130
4131         /* TODO: make this use queue_delayed_work() */
4132 }
4133
4134 static void e1000_watchdog_task(struct work_struct *work)
4135 {
4136         struct e1000_adapter *adapter = container_of(work,
4137                                         struct e1000_adapter, watchdog_task);
4138         struct net_device *netdev = adapter->netdev;
4139         struct e1000_mac_info *mac = &adapter->hw.mac;
4140         struct e1000_phy_info *phy = &adapter->hw.phy;
4141         struct e1000_ring *tx_ring = adapter->tx_ring;
4142         struct e1000_hw *hw = &adapter->hw;
4143         u32 link, tctl;
4144         int tx_pending = 0;
4145
4146         link = e1000e_has_link(adapter);
4147         if ((netif_carrier_ok(netdev)) && link) {
4148                 /* Cancel scheduled suspend requests. */
4149                 pm_runtime_resume(netdev->dev.parent);
4150
4151                 e1000e_enable_receives(adapter);
4152                 goto link_up;
4153         }
4154
4155         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4156             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4157                 e1000_update_mng_vlan(adapter);
4158
4159         if (link) {
4160                 if (!netif_carrier_ok(netdev)) {
4161                         bool txb2b = 1;
4162
4163                         /* Cancel scheduled suspend requests. */
4164                         pm_runtime_resume(netdev->dev.parent);
4165
4166                         /* update snapshot of PHY registers on LSC */
4167                         e1000_phy_read_status(adapter);
4168                         mac->ops.get_link_up_info(&adapter->hw,
4169                                                    &adapter->link_speed,
4170                                                    &adapter->link_duplex);
4171                         e1000_print_link_info(adapter);
4172                         /*
4173                          * On supported PHYs, check for duplex mismatch only
4174                          * if link has autonegotiated at 10/100 half
4175                          */
4176                         if ((hw->phy.type == e1000_phy_igp_3 ||
4177                              hw->phy.type == e1000_phy_bm) &&
4178                             (hw->mac.autoneg == true) &&
4179                             (adapter->link_speed == SPEED_10 ||
4180                              adapter->link_speed == SPEED_100) &&
4181                             (adapter->link_duplex == HALF_DUPLEX)) {
4182                                 u16 autoneg_exp;
4183
4184                                 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4185
4186                                 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4187                                         e_info("Autonegotiated half duplex but"
4188                                                " link partner cannot autoneg. "
4189                                                " Try forcing full duplex if "
4190                                                "link gets many collisions.\n");
4191                         }
4192
4193                         /* adjust timeout factor according to speed/duplex */
4194                         adapter->tx_timeout_factor = 1;
4195                         switch (adapter->link_speed) {
4196                         case SPEED_10:
4197                                 txb2b = 0;
4198                                 adapter->tx_timeout_factor = 16;
4199                                 break;
4200                         case SPEED_100:
4201                                 txb2b = 0;
4202                                 adapter->tx_timeout_factor = 10;
4203                                 break;
4204                         }
4205
4206                         /*
4207                          * workaround: re-program speed mode bit after
4208                          * link-up event
4209                          */
4210                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4211                             !txb2b) {
4212                                 u32 tarc0;
4213                                 tarc0 = er32(TARC(0));
4214                                 tarc0 &= ~SPEED_MODE_BIT;
4215                                 ew32(TARC(0), tarc0);
4216                         }
4217
4218                         /*
4219                          * disable TSO for pcie and 10/100 speeds, to avoid
4220                          * some hardware issues
4221                          */
4222                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
4223                                 switch (adapter->link_speed) {
4224                                 case SPEED_10:
4225                                 case SPEED_100:
4226                                         e_info("10/100 speed: disabling TSO\n");
4227                                         netdev->features &= ~NETIF_F_TSO;
4228                                         netdev->features &= ~NETIF_F_TSO6;
4229                                         break;
4230                                 case SPEED_1000:
4231                                         netdev->features |= NETIF_F_TSO;
4232                                         netdev->features |= NETIF_F_TSO6;
4233                                         break;
4234                                 default:
4235                                         /* oops */
4236                                         break;
4237                                 }
4238                         }
4239
4240                         /*
4241                          * enable transmits in the hardware, need to do this
4242                          * after setting TARC(0)
4243                          */
4244                         tctl = er32(TCTL);
4245                         tctl |= E1000_TCTL_EN;
4246                         ew32(TCTL, tctl);
4247
4248                         /*
4249                          * Perform any post-link-up configuration before
4250                          * reporting link up.
4251                          */
4252                         if (phy->ops.cfg_on_link_up)
4253                                 phy->ops.cfg_on_link_up(hw);
4254
4255                         netif_carrier_on(netdev);
4256
4257                         if (!test_bit(__E1000_DOWN, &adapter->state))
4258                                 mod_timer(&adapter->phy_info_timer,
4259                                           round_jiffies(jiffies + 2 * HZ));
4260                 }
4261         } else {
4262                 if (netif_carrier_ok(netdev)) {
4263                         adapter->link_speed = 0;
4264                         adapter->link_duplex = 0;
4265                         /* Link status message must follow this format */
4266                         printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4267                                adapter->netdev->name);
4268                         netif_carrier_off(netdev);
4269                         if (!test_bit(__E1000_DOWN, &adapter->state))
4270                                 mod_timer(&adapter->phy_info_timer,
4271                                           round_jiffies(jiffies + 2 * HZ));
4272
4273                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4274                                 schedule_work(&adapter->reset_task);
4275                         else
4276                                 pm_schedule_suspend(netdev->dev.parent,
4277                                                         LINK_TIMEOUT);
4278                 }
4279         }
4280
4281 link_up:
4282         e1000e_update_stats(adapter);
4283
4284         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4285         adapter->tpt_old = adapter->stats.tpt;
4286         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4287         adapter->colc_old = adapter->stats.colc;
4288
4289         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4290         adapter->gorc_old = adapter->stats.gorc;
4291         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4292         adapter->gotc_old = adapter->stats.gotc;
4293
4294         e1000e_update_adaptive(&adapter->hw);
4295
4296         if (!netif_carrier_ok(netdev)) {
4297                 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
4298                                tx_ring->count);
4299                 if (tx_pending) {
4300                         /*
4301                          * We've lost link, so the controller stops DMA,
4302                          * but we've got queued Tx work that's never going
4303                          * to get done, so reset controller to flush Tx.
4304                          * (Do the reset outside of interrupt context).
4305                          */
4306                         adapter->tx_timeout_count++;
4307                         schedule_work(&adapter->reset_task);
4308                         /* return immediately since reset is imminent */
4309                         return;
4310                 }
4311         }
4312
4313         /* Simple mode for Interrupt Throttle Rate (ITR) */
4314         if (adapter->itr_setting == 4) {
4315                 /*
4316                  * Symmetric Tx/Rx gets a reduced ITR=2000;
4317                  * Total asymmetrical Tx or Rx gets ITR=8000;
4318                  * everyone else is between 2000-8000.
4319                  */
4320                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4321                 u32 dif = (adapter->gotc > adapter->gorc ?
4322                             adapter->gotc - adapter->gorc :
4323                             adapter->gorc - adapter->gotc) / 10000;
4324                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4325
4326                 ew32(ITR, 1000000000 / (itr * 256));
4327         }
4328
4329         /* Cause software interrupt to ensure Rx ring is cleaned */
4330         if (adapter->msix_entries)
4331                 ew32(ICS, adapter->rx_ring->ims_val);
4332         else
4333                 ew32(ICS, E1000_ICS_RXDMT0);
4334
4335         /* Force detection of hung controller every watchdog period */
4336         adapter->detect_tx_hung = 1;
4337
4338         /* flush partial descriptors to memory before detecting tx hang */
4339         if (adapter->flags2 & FLAG2_DMA_BURST) {
4340                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4341                 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4342                 /*
4343                  * no need to flush the writes because the timeout code does
4344                  * an er32 first thing
4345                  */
4346         }
4347
4348         /*
4349          * With 82571 controllers, LAA may be overwritten due to controller
4350          * reset from the other port. Set the appropriate LAA in RAR[0]
4351          */
4352         if (e1000e_get_laa_state_82571(hw))
4353                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
4354
4355         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4356                 e1000e_check_82574_phy_workaround(adapter);
4357
4358         /* Reset the timer */
4359         if (!test_bit(__E1000_DOWN, &adapter->state))
4360                 mod_timer(&adapter->watchdog_timer,
4361                           round_jiffies(jiffies + 2 * HZ));
4362 }
4363
4364 #define E1000_TX_FLAGS_CSUM             0x00000001
4365 #define E1000_TX_FLAGS_VLAN             0x00000002
4366 #define E1000_TX_FLAGS_TSO              0x00000004
4367 #define E1000_TX_FLAGS_IPV4             0x00000008
4368 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
4369 #define E1000_TX_FLAGS_VLAN_SHIFT       16
4370
4371 static int e1000_tso(struct e1000_adapter *adapter,
4372                      struct sk_buff *skb)
4373 {
4374         struct e1000_ring *tx_ring = adapter->tx_ring;
4375         struct e1000_context_desc *context_desc;
4376         struct e1000_buffer *buffer_info;
4377         unsigned int i;
4378         u32 cmd_length = 0;
4379         u16 ipcse = 0, tucse, mss;
4380         u8 ipcss, ipcso, tucss, tucso, hdr_len;
4381         int err;
4382
4383         if (!skb_is_gso(skb))
4384                 return 0;
4385
4386         if (skb_header_cloned(skb)) {
4387                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4388                 if (err)
4389                         return err;
4390         }
4391
4392         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4393         mss = skb_shinfo(skb)->gso_size;
4394         if (skb->protocol == htons(ETH_P_IP)) {
4395                 struct iphdr *iph = ip_hdr(skb);
4396                 iph->tot_len = 0;
4397                 iph->check = 0;
4398                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4399                                                          0, IPPROTO_TCP, 0);
4400                 cmd_length = E1000_TXD_CMD_IP;
4401                 ipcse = skb_transport_offset(skb) - 1;
4402         } else if (skb_is_gso_v6(skb)) {
4403                 ipv6_hdr(skb)->payload_len = 0;
4404                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4405                                                        &ipv6_hdr(skb)->daddr,
4406                                                        0, IPPROTO_TCP, 0);
4407                 ipcse = 0;
4408         }
4409         ipcss = skb_network_offset(skb);
4410         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4411         tucss = skb_transport_offset(skb);
4412         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4413         tucse = 0;
4414
4415         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4416                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4417
4418         i = tx_ring->next_to_use;
4419         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4420         buffer_info = &tx_ring->buffer_info[i];
4421
4422         context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4423         context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4424         context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4425         context_desc->upper_setup.tcp_fields.tucss = tucss;
4426         context_desc->upper_setup.tcp_fields.tucso = tucso;
4427         context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4428         context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4429         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4430         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4431
4432         buffer_info->time_stamp = jiffies;
4433         buffer_info->next_to_watch = i;
4434
4435         i++;
4436         if (i == tx_ring->count)
4437                 i = 0;
4438         tx_ring->next_to_use = i;
4439
4440         return 1;
4441 }
4442
4443 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
4444 {
4445         struct e1000_ring *tx_ring = adapter->tx_ring;
4446         struct e1000_context_desc *context_desc;
4447         struct e1000_buffer *buffer_info;
4448         unsigned int i;
4449         u8 css;
4450         u32 cmd_len = E1000_TXD_CMD_DEXT;
4451         __be16 protocol;
4452
4453         if (skb->ip_summed != CHECKSUM_PARTIAL)
4454                 return 0;
4455
4456         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4457                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4458         else
4459                 protocol = skb->protocol;
4460
4461         switch (protocol) {
4462         case cpu_to_be16(ETH_P_IP):
4463                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4464                         cmd_len |= E1000_TXD_CMD_TCP;
4465                 break;
4466         case cpu_to_be16(ETH_P_IPV6):
4467                 /* XXX not handling all IPV6 headers */
4468                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4469                         cmd_len |= E1000_TXD_CMD_TCP;
4470                 break;
4471         default:
4472                 if (unlikely(net_ratelimit()))
4473                         e_warn("checksum_partial proto=%x!\n",
4474                                be16_to_cpu(protocol));
4475                 break;
4476         }
4477
4478         css = skb_transport_offset(skb);
4479
4480         i = tx_ring->next_to_use;
4481         buffer_info = &tx_ring->buffer_info[i];
4482         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4483
4484         context_desc->lower_setup.ip_config = 0;
4485         context_desc->upper_setup.tcp_fields.tucss = css;
4486         context_desc->upper_setup.tcp_fields.tucso =
4487                                 css + skb->csum_offset;
4488         context_desc->upper_setup.tcp_fields.tucse = 0;
4489         context_desc->tcp_seg_setup.data = 0;
4490         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4491
4492         buffer_info->time_stamp = jiffies;
4493         buffer_info->next_to_watch = i;
4494
4495         i++;
4496         if (i == tx_ring->count)
4497                 i = 0;
4498         tx_ring->next_to_use = i;
4499
4500         return 1;
4501 }
4502
4503 #define E1000_MAX_PER_TXD       8192
4504 #define E1000_MAX_TXD_PWR       12
4505
4506 static int e1000_tx_map(struct e1000_adapter *adapter,
4507                         struct sk_buff *skb, unsigned int first,
4508                         unsigned int max_per_txd, unsigned int nr_frags,
4509                         unsigned int mss)
4510 {
4511         struct e1000_ring *tx_ring = adapter->tx_ring;
4512         struct pci_dev *pdev = adapter->pdev;
4513         struct e1000_buffer *buffer_info;
4514         unsigned int len = skb_headlen(skb);
4515         unsigned int offset = 0, size, count = 0, i;
4516         unsigned int f, bytecount, segs;
4517
4518         i = tx_ring->next_to_use;
4519
4520         while (len) {
4521                 buffer_info = &tx_ring->buffer_info[i];
4522                 size = min(len, max_per_txd);
4523
4524                 buffer_info->length = size;
4525                 buffer_info->time_stamp = jiffies;
4526                 buffer_info->next_to_watch = i;
4527                 buffer_info->dma = dma_map_single(&pdev->dev,
4528                                                   skb->data + offset,
4529                                                   size, DMA_TO_DEVICE);
4530                 buffer_info->mapped_as_page = false;
4531                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4532                         goto dma_error;
4533
4534                 len -= size;
4535                 offset += size;
4536                 count++;
4537
4538                 if (len) {
4539                         i++;
4540                         if (i == tx_ring->count)
4541                                 i = 0;
4542                 }
4543         }
4544
4545         for (f = 0; f < nr_frags; f++) {
4546                 struct skb_frag_struct *frag;
4547
4548                 frag = &skb_shinfo(skb)->frags[f];
4549                 len = frag->size;
4550                 offset = frag->page_offset;
4551
4552                 while (len) {
4553                         i++;
4554                         if (i == tx_ring->count)
4555                                 i = 0;
4556
4557                         buffer_info = &tx_ring->buffer_info[i];
4558                         size = min(len, max_per_txd);
4559
4560                         buffer_info->length = size;
4561                         buffer_info->time_stamp = jiffies;
4562                         buffer_info->next_to_watch = i;
4563                         buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
4564                                                         offset, size,
4565                                                         DMA_TO_DEVICE);
4566                         buffer_info->mapped_as_page = true;
4567                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4568                                 goto dma_error;
4569
4570                         len -= size;
4571                         offset += size;
4572                         count++;
4573                 }
4574         }
4575
4576         segs = skb_shinfo(skb)->gso_segs ?: 1;
4577         /* multiply data chunks by size of headers */
4578         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4579
4580         tx_ring->buffer_info[i].skb = skb;
4581         tx_ring->buffer_info[i].segs = segs;
4582         tx_ring->buffer_info[i].bytecount = bytecount;
4583         tx_ring->buffer_info[first].next_to_watch = i;
4584
4585         return count;
4586
4587 dma_error:
4588         dev_err(&pdev->dev, "TX DMA map failed\n");
4589         buffer_info->dma = 0;
4590         if (count)
4591                 count--;
4592
4593         while (count--) {
4594                 if (i==0)
4595                         i += tx_ring->count;
4596                 i--;
4597                 buffer_info = &tx_ring->buffer_info[i];
4598                 e1000_put_txbuf(adapter, buffer_info);;
4599         }
4600
4601         return 0;
4602 }
4603
4604 static void e1000_tx_queue(struct e1000_adapter *adapter,
4605                            int tx_flags, int count)
4606 {
4607         struct e1000_ring *tx_ring = adapter->tx_ring;
4608         struct e1000_tx_desc *tx_desc = NULL;
4609         struct e1000_buffer *buffer_info;
4610         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4611         unsigned int i;
4612
4613         if (tx_flags & E1000_TX_FLAGS_TSO) {
4614                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4615                              E1000_TXD_CMD_TSE;
4616                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4617
4618                 if (tx_flags & E1000_TX_FLAGS_IPV4)
4619                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4620         }
4621
4622         if (tx_flags & E1000_TX_FLAGS_CSUM) {
4623                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4624                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4625         }
4626
4627         if (tx_flags & E1000_TX_FLAGS_VLAN) {
4628                 txd_lower |= E1000_TXD_CMD_VLE;
4629                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4630         }
4631
4632         i = tx_ring->next_to_use;
4633
4634         while (count--) {
4635                 buffer_info = &tx_ring->buffer_info[i];
4636                 tx_desc = E1000_TX_DESC(*tx_ring, i);
4637                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4638                 tx_desc->lower.data =
4639                         cpu_to_le32(txd_lower | buffer_info->length);
4640                 tx_desc->upper.data = cpu_to_le32(txd_upper);
4641
4642                 i++;
4643                 if (i == tx_ring->count)
4644                         i = 0;
4645         }
4646
4647         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4648
4649         /*
4650          * Force memory writes to complete before letting h/w
4651          * know there are new descriptors to fetch.  (Only
4652          * applicable for weak-ordered memory model archs,
4653          * such as IA-64).
4654          */
4655         wmb();
4656
4657         tx_ring->next_to_use = i;
4658         writel(i, adapter->hw.hw_addr + tx_ring->tail);
4659         /*
4660          * we need this if more than one processor can write to our tail
4661          * at a time, it synchronizes IO on IA64/Altix systems
4662          */
4663         mmiowb();
4664 }
4665
4666 #define MINIMUM_DHCP_PACKET_SIZE 282
4667 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4668                                     struct sk_buff *skb)
4669 {
4670         struct e1000_hw *hw =  &adapter->hw;
4671         u16 length, offset;
4672
4673         if (vlan_tx_tag_present(skb)) {
4674                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4675                     (adapter->hw.mng_cookie.status &
4676                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4677                         return 0;
4678         }
4679
4680         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4681                 return 0;
4682
4683         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4684                 return 0;
4685
4686         {
4687                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4688                 struct udphdr *udp;
4689
4690                 if (ip->protocol != IPPROTO_UDP)
4691                         return 0;
4692
4693                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4694                 if (ntohs(udp->dest) != 67)
4695                         return 0;
4696
4697                 offset = (u8 *)udp + 8 - skb->data;
4698                 length = skb->len - offset;
4699                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4700         }
4701
4702         return 0;
4703 }
4704
4705 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4706 {
4707         struct e1000_adapter *adapter = netdev_priv(netdev);
4708
4709         netif_stop_queue(netdev);
4710         /*
4711          * Herbert's original patch had:
4712          *  smp_mb__after_netif_stop_queue();
4713          * but since that doesn't exist yet, just open code it.
4714          */
4715         smp_mb();
4716
4717         /*
4718          * We need to check again in a case another CPU has just
4719          * made room available.
4720          */
4721         if (e1000_desc_unused(adapter->tx_ring) < size)
4722                 return -EBUSY;
4723
4724         /* A reprieve! */
4725         netif_start_queue(netdev);
4726         ++adapter->restart_queue;
4727         return 0;
4728 }
4729
4730 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4731 {
4732         struct e1000_adapter *adapter = netdev_priv(netdev);
4733
4734         if (e1000_desc_unused(adapter->tx_ring) >= size)
4735                 return 0;
4736         return __e1000_maybe_stop_tx(netdev, size);
4737 }
4738
4739 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4740 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4741                                     struct net_device *netdev)
4742 {
4743         struct e1000_adapter *adapter = netdev_priv(netdev);
4744         struct e1000_ring *tx_ring = adapter->tx_ring;
4745         unsigned int first;
4746         unsigned int max_per_txd = E1000_MAX_PER_TXD;
4747         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4748         unsigned int tx_flags = 0;
4749         unsigned int len = skb_headlen(skb);
4750         unsigned int nr_frags;
4751         unsigned int mss;
4752         int count = 0;
4753         int tso;
4754         unsigned int f;
4755
4756         if (test_bit(__E1000_DOWN, &adapter->state)) {
4757                 dev_kfree_skb_any(skb);
4758                 return NETDEV_TX_OK;
4759         }
4760
4761         if (skb->len <= 0) {
4762                 dev_kfree_skb_any(skb);
4763                 return NETDEV_TX_OK;
4764         }
4765
4766         mss = skb_shinfo(skb)->gso_size;
4767         /*
4768          * The controller does a simple calculation to
4769          * make sure there is enough room in the FIFO before
4770          * initiating the DMA for each buffer.  The calc is:
4771          * 4 = ceil(buffer len/mss).  To make sure we don't
4772          * overrun the FIFO, adjust the max buffer len if mss
4773          * drops.
4774          */
4775         if (mss) {
4776                 u8 hdr_len;
4777                 max_per_txd = min(mss << 2, max_per_txd);
4778                 max_txd_pwr = fls(max_per_txd) - 1;
4779
4780                 /*
4781                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4782                  * points to just header, pull a few bytes of payload from
4783                  * frags into skb->data
4784                  */
4785                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4786                 /*
4787                  * we do this workaround for ES2LAN, but it is un-necessary,
4788                  * avoiding it could save a lot of cycles
4789                  */
4790                 if (skb->data_len && (hdr_len == len)) {
4791                         unsigned int pull_size;
4792
4793                         pull_size = min((unsigned int)4, skb->data_len);
4794                         if (!__pskb_pull_tail(skb, pull_size)) {
4795                                 e_err("__pskb_pull_tail failed.\n");
4796                                 dev_kfree_skb_any(skb);
4797                                 return NETDEV_TX_OK;
4798                         }
4799                         len = skb_headlen(skb);
4800                 }
4801         }
4802
4803         /* reserve a descriptor for the offload context */
4804         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4805                 count++;
4806         count++;
4807
4808         count += TXD_USE_COUNT(len, max_txd_pwr);
4809
4810         nr_frags = skb_shinfo(skb)->nr_frags;
4811         for (f = 0; f < nr_frags; f++)
4812                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4813                                        max_txd_pwr);
4814
4815         if (adapter->hw.mac.tx_pkt_filtering)
4816                 e1000_transfer_dhcp_info(adapter, skb);
4817
4818         /*
4819          * need: count + 2 desc gap to keep tail from touching
4820          * head, otherwise try next time
4821          */
4822         if (e1000_maybe_stop_tx(netdev, count + 2))
4823                 return NETDEV_TX_BUSY;
4824
4825         if (vlan_tx_tag_present(skb)) {
4826                 tx_flags |= E1000_TX_FLAGS_VLAN;
4827                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4828         }
4829
4830         first = tx_ring->next_to_use;
4831
4832         tso = e1000_tso(adapter, skb);
4833         if (tso < 0) {
4834                 dev_kfree_skb_any(skb);
4835                 return NETDEV_TX_OK;
4836         }
4837
4838         if (tso)
4839                 tx_flags |= E1000_TX_FLAGS_TSO;
4840         else if (e1000_tx_csum(adapter, skb))
4841                 tx_flags |= E1000_TX_FLAGS_CSUM;
4842
4843         /*
4844          * Old method was to assume IPv4 packet by default if TSO was enabled.
4845          * 82571 hardware supports TSO capabilities for IPv6 as well...
4846          * no longer assume, we must.
4847          */
4848         if (skb->protocol == htons(ETH_P_IP))
4849                 tx_flags |= E1000_TX_FLAGS_IPV4;
4850
4851         /* if count is 0 then mapping error has occured */
4852         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4853         if (count) {
4854                 e1000_tx_queue(adapter, tx_flags, count);
4855                 /* Make sure there is space in the ring for the next send. */
4856                 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4857
4858         } else {
4859                 dev_kfree_skb_any(skb);
4860                 tx_ring->buffer_info[first].time_stamp = 0;
4861                 tx_ring->next_to_use = first;
4862         }
4863
4864         return NETDEV_TX_OK;
4865 }
4866
4867 /**
4868  * e1000_tx_timeout - Respond to a Tx Hang
4869  * @netdev: network interface device structure
4870  **/
4871 static void e1000_tx_timeout(struct net_device *netdev)
4872 {
4873         struct e1000_adapter *adapter = netdev_priv(netdev);
4874
4875         /* Do the reset outside of interrupt context */
4876         adapter->tx_timeout_count++;
4877         schedule_work(&adapter->reset_task);
4878 }
4879
4880 static void e1000_reset_task(struct work_struct *work)
4881 {
4882         struct e1000_adapter *adapter;
4883         adapter = container_of(work, struct e1000_adapter, reset_task);
4884
4885         if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4886               (adapter->flags & FLAG_RX_RESTART_NOW))) {
4887                 e1000e_dump(adapter);
4888                 e_err("Reset adapter\n");
4889         }
4890         e1000e_reinit_locked(adapter);
4891 }
4892
4893 /**
4894  * e1000_get_stats - Get System Network Statistics
4895  * @netdev: network interface device structure
4896  *
4897  * Returns the address of the device statistics structure.
4898  * The statistics are actually updated from the timer callback.
4899  **/
4900 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4901 {
4902         /* only return the current stats */
4903         return &netdev->stats;
4904 }
4905
4906 /**
4907  * e1000_change_mtu - Change the Maximum Transfer Unit
4908  * @netdev: network interface device structure
4909  * @new_mtu: new value for maximum frame size
4910  *
4911  * Returns 0 on success, negative on failure
4912  **/
4913 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4914 {
4915         struct e1000_adapter *adapter = netdev_priv(netdev);
4916         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4917
4918         /* Jumbo frame support */
4919         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
4920             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4921                 e_err("Jumbo Frames not supported.\n");
4922                 return -EINVAL;
4923         }
4924
4925         /* Supported frame sizes */
4926         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4927             (max_frame > adapter->max_hw_frame_size)) {
4928                 e_err("Unsupported MTU setting\n");
4929                 return -EINVAL;
4930         }
4931
4932         /* Jumbo frame workaround on 82579 requires CRC be stripped */
4933         if ((adapter->hw.mac.type == e1000_pch2lan) &&
4934             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
4935             (new_mtu > ETH_DATA_LEN)) {
4936                 e_err("Jumbo Frames not supported on 82579 when CRC "
4937                       "stripping is disabled.\n");
4938                 return -EINVAL;
4939         }
4940
4941         /* 82573 Errata 17 */
4942         if (((adapter->hw.mac.type == e1000_82573) ||
4943              (adapter->hw.mac.type == e1000_82574)) &&
4944             (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
4945                 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
4946                 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
4947         }
4948
4949         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4950                 msleep(1);
4951         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4952         adapter->max_frame_size = max_frame;
4953         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4954         netdev->mtu = new_mtu;
4955         if (netif_running(netdev))
4956                 e1000e_down(adapter);
4957
4958         /*
4959          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4960          * means we reserve 2 more, this pushes us to allocate from the next
4961          * larger slab size.
4962          * i.e. RXBUFFER_2048 --> size-4096 slab
4963          * However with the new *_jumbo_rx* routines, jumbo receives will use
4964          * fragmented skbs
4965          */
4966
4967         if (max_frame <= 2048)
4968                 adapter->rx_buffer_len = 2048;
4969         else
4970                 adapter->rx_buffer_len = 4096;
4971
4972         /* adjust allocation if LPE protects us, and we aren't using SBP */
4973         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4974              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4975                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4976                                          + ETH_FCS_LEN;
4977
4978         if (netif_running(netdev))
4979                 e1000e_up(adapter);
4980         else
4981                 e1000e_reset(adapter);
4982
4983         clear_bit(__E1000_RESETTING, &adapter->state);
4984
4985         return 0;
4986 }
4987
4988 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4989                            int cmd)
4990 {
4991         struct e1000_adapter *adapter = netdev_priv(netdev);
4992         struct mii_ioctl_data *data = if_mii(ifr);
4993
4994         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4995                 return -EOPNOTSUPP;
4996
4997         switch (cmd) {
4998         case SIOCGMIIPHY:
4999                 data->phy_id = adapter->hw.phy.addr;
5000                 break;
5001         case SIOCGMIIREG:
5002                 e1000_phy_read_status(adapter);
5003
5004                 switch (data->reg_num & 0x1F) {
5005                 case MII_BMCR:
5006                         data->val_out = adapter->phy_regs.bmcr;
5007                         break;
5008                 case MII_BMSR:
5009                         data->val_out = adapter->phy_regs.bmsr;
5010                         break;
5011                 case MII_PHYSID1:
5012                         data->val_out = (adapter->hw.phy.id >> 16);
5013                         break;
5014                 case MII_PHYSID2:
5015                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5016                         break;
5017                 case MII_ADVERTISE:
5018                         data->val_out = adapter->phy_regs.advertise;
5019                         break;
5020                 case MII_LPA:
5021                         data->val_out = adapter->phy_regs.lpa;
5022                         break;
5023                 case MII_EXPANSION:
5024                         data->val_out = adapter->phy_regs.expansion;
5025                         break;
5026                 case MII_CTRL1000:
5027                         data->val_out = adapter->phy_regs.ctrl1000;
5028                         break;
5029                 case MII_STAT1000:
5030                         data->val_out = adapter->phy_regs.stat1000;
5031                         break;
5032                 case MII_ESTATUS:
5033                         data->val_out = adapter->phy_regs.estatus;
5034                         break;
5035                 default:
5036                         return -EIO;
5037                 }
5038                 break;
5039         case SIOCSMIIREG:
5040         default:
5041                 return -EOPNOTSUPP;
5042         }
5043         return 0;
5044 }
5045
5046 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5047 {
5048         switch (cmd) {
5049         case SIOCGMIIPHY:
5050         case SIOCGMIIREG:
5051         case SIOCSMIIREG:
5052                 return e1000_mii_ioctl(netdev, ifr, cmd);
5053         default:
5054                 return -EOPNOTSUPP;
5055         }
5056 }
5057
5058 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5059 {
5060         struct e1000_hw *hw = &adapter->hw;
5061         u32 i, mac_reg;
5062         u16 phy_reg;
5063         int retval = 0;
5064
5065         /* copy MAC RARs to PHY RARs */
5066         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5067
5068         /* copy MAC MTA to PHY MTA */
5069         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5070                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5071                 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
5072                 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
5073         }
5074
5075         /* configure PHY Rx Control register */
5076         e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
5077         mac_reg = er32(RCTL);
5078         if (mac_reg & E1000_RCTL_UPE)
5079                 phy_reg |= BM_RCTL_UPE;
5080         if (mac_reg & E1000_RCTL_MPE)
5081                 phy_reg |= BM_RCTL_MPE;
5082         phy_reg &= ~(BM_RCTL_MO_MASK);
5083         if (mac_reg & E1000_RCTL_MO_3)
5084                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5085                                 << BM_RCTL_MO_SHIFT);
5086         if (mac_reg & E1000_RCTL_BAM)
5087                 phy_reg |= BM_RCTL_BAM;
5088         if (mac_reg & E1000_RCTL_PMCF)
5089                 phy_reg |= BM_RCTL_PMCF;
5090         mac_reg = er32(CTRL);
5091         if (mac_reg & E1000_CTRL_RFCE)
5092                 phy_reg |= BM_RCTL_RFCE;
5093         e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
5094
5095         /* enable PHY wakeup in MAC register */
5096         ew32(WUFC, wufc);
5097         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5098
5099         /* configure and enable PHY wakeup in PHY registers */
5100         e1e_wphy(&adapter->hw, BM_WUFC, wufc);
5101         e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5102
5103         /* activate PHY wakeup */
5104         retval = hw->phy.ops.acquire(hw);
5105         if (retval) {
5106                 e_err("Could not acquire PHY\n");
5107                 return retval;
5108         }
5109         e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
5110                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
5111         retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
5112         if (retval) {
5113                 e_err("Could not read PHY page 769\n");
5114                 goto out;
5115         }
5116         phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5117         retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
5118         if (retval)
5119                 e_err("Could not set PHY Host Wakeup bit\n");
5120 out:
5121         hw->phy.ops.release(hw);
5122
5123         return retval;
5124 }
5125
5126 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5127                             bool runtime)
5128 {
5129         struct net_device *netdev = pci_get_drvdata(pdev);
5130         struct e1000_adapter *adapter = netdev_priv(netdev);
5131         struct e1000_hw *hw = &adapter->hw;
5132         u32 ctrl, ctrl_ext, rctl, status;
5133         /* Runtime suspend should only enable wakeup for link changes */
5134         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5135         int retval = 0;
5136
5137         netif_device_detach(netdev);
5138
5139         if (netif_running(netdev)) {
5140                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5141                 e1000e_down(adapter);
5142                 e1000_free_irq(adapter);
5143         }
5144         e1000e_reset_interrupt_capability(adapter);
5145
5146         retval = pci_save_state(pdev);
5147         if (retval)
5148                 return retval;
5149
5150         status = er32(STATUS);
5151         if (status & E1000_STATUS_LU)
5152                 wufc &= ~E1000_WUFC_LNKC;
5153
5154         if (wufc) {
5155                 e1000_setup_rctl(adapter);
5156                 e1000_set_multi(netdev);
5157
5158                 /* turn on all-multi mode if wake on multicast is enabled */
5159                 if (wufc & E1000_WUFC_MC) {
5160                         rctl = er32(RCTL);
5161                         rctl |= E1000_RCTL_MPE;
5162                         ew32(RCTL, rctl);
5163                 }
5164
5165                 ctrl = er32(CTRL);
5166                 /* advertise wake from D3Cold */
5167                 #define E1000_CTRL_ADVD3WUC 0x00100000
5168                 /* phy power management enable */
5169                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5170                 ctrl |= E1000_CTRL_ADVD3WUC;
5171                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5172                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5173                 ew32(CTRL, ctrl);
5174
5175                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5176                     adapter->hw.phy.media_type ==
5177                     e1000_media_type_internal_serdes) {
5178                         /* keep the laser running in D3 */
5179                         ctrl_ext = er32(CTRL_EXT);
5180                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5181                         ew32(CTRL_EXT, ctrl_ext);
5182                 }
5183
5184                 if (adapter->flags & FLAG_IS_ICH)
5185                         e1000e_disable_gig_wol_ich8lan(&adapter->hw);
5186
5187                 /* Allow time for pending master requests to run */
5188                 e1000e_disable_pcie_master(&adapter->hw);
5189
5190                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5191                         /* enable wakeup by the PHY */
5192                         retval = e1000_init_phy_wakeup(adapter, wufc);
5193                         if (retval)
5194                                 return retval;
5195                 } else {
5196                         /* enable wakeup by the MAC */
5197                         ew32(WUFC, wufc);
5198                         ew32(WUC, E1000_WUC_PME_EN);
5199                 }
5200         } else {
5201                 ew32(WUC, 0);
5202                 ew32(WUFC, 0);
5203         }
5204
5205         *enable_wake = !!wufc;
5206
5207         /* make sure adapter isn't asleep if manageability is enabled */
5208         if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5209             (hw->mac.ops.check_mng_mode(hw)))
5210                 *enable_wake = true;
5211
5212         if (adapter->hw.phy.type == e1000_phy_igp_3)
5213                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5214
5215         /*
5216          * Release control of h/w to f/w.  If f/w is AMT enabled, this
5217          * would have already happened in close and is redundant.
5218          */
5219         e1000_release_hw_control(adapter);
5220
5221         pci_disable_device(pdev);
5222
5223         return 0;
5224 }
5225
5226 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5227 {
5228         if (sleep && wake) {
5229                 pci_prepare_to_sleep(pdev);
5230                 return;
5231         }
5232
5233         pci_wake_from_d3(pdev, wake);
5234         pci_set_power_state(pdev, PCI_D3hot);
5235 }
5236
5237 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5238                                     bool wake)
5239 {
5240         struct net_device *netdev = pci_get_drvdata(pdev);
5241         struct e1000_adapter *adapter = netdev_priv(netdev);
5242
5243         /*
5244          * The pci-e switch on some quad port adapters will report a
5245          * correctable error when the MAC transitions from D0 to D3.  To
5246          * prevent this we need to mask off the correctable errors on the
5247          * downstream port of the pci-e switch.
5248          */
5249         if (adapter->flags & FLAG_IS_QUAD_PORT) {
5250                 struct pci_dev *us_dev = pdev->bus->self;
5251                 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
5252                 u16 devctl;
5253
5254                 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5255                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5256                                       (devctl & ~PCI_EXP_DEVCTL_CERE));
5257
5258                 e1000_power_off(pdev, sleep, wake);
5259
5260                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5261         } else {
5262                 e1000_power_off(pdev, sleep, wake);
5263         }
5264 }
5265
5266 #ifdef CONFIG_PCIEASPM
5267 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5268 {
5269         pci_disable_link_state(pdev, state);
5270 }
5271 #else
5272 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5273 {
5274         int pos;
5275         u16 reg16;
5276
5277         /*
5278          * Both device and parent should have the same ASPM setting.
5279          * Disable ASPM in downstream component first and then upstream.
5280          */
5281         pos = pci_pcie_cap(pdev);
5282         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5283         reg16 &= ~state;
5284         pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5285
5286         if (!pdev->bus->self)
5287                 return;
5288
5289         pos = pci_pcie_cap(pdev->bus->self);
5290         pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5291         reg16 &= ~state;
5292         pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5293 }
5294 #endif
5295 void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5296 {
5297         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5298                  (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5299                  (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5300
5301         __e1000e_disable_aspm(pdev, state);
5302 }
5303
5304 #ifdef CONFIG_PM_OPS
5305 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5306 {
5307         return !!adapter->tx_ring->buffer_info;
5308 }
5309
5310 static int __e1000_resume(struct pci_dev *pdev)
5311 {
5312         struct net_device *netdev = pci_get_drvdata(pdev);
5313         struct e1000_adapter *adapter = netdev_priv(netdev);
5314         struct e1000_hw *hw = &adapter->hw;
5315         u32 err;
5316
5317         pci_set_power_state(pdev, PCI_D0);
5318         pci_restore_state(pdev);
5319         pci_save_state(pdev);
5320         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5321                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5322
5323         e1000e_set_interrupt_capability(adapter);
5324         if (netif_running(netdev)) {
5325                 err = e1000_request_irq(adapter);
5326                 if (err)
5327                         return err;
5328         }
5329
5330         e1000e_power_up_phy(adapter);
5331
5332         /* report the system wakeup cause from S3/S4 */
5333         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5334                 u16 phy_data;
5335
5336                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5337                 if (phy_data) {
5338                         e_info("PHY Wakeup cause - %s\n",
5339                                 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5340                                 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5341                                 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5342                                 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5343                                 phy_data & E1000_WUS_LNKC ? "Link Status "
5344                                 " Change" : "other");
5345                 }
5346                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5347         } else {
5348                 u32 wus = er32(WUS);
5349                 if (wus) {
5350                         e_info("MAC Wakeup cause - %s\n",
5351                                 wus & E1000_WUS_EX ? "Unicast Packet" :
5352                                 wus & E1000_WUS_MC ? "Multicast Packet" :
5353                                 wus & E1000_WUS_BC ? "Broadcast Packet" :
5354                                 wus & E1000_WUS_MAG ? "Magic Packet" :
5355                                 wus & E1000_WUS_LNKC ? "Link Status Change" :
5356                                 "other");
5357                 }
5358                 ew32(WUS, ~0);
5359         }
5360
5361         e1000e_reset(adapter);
5362
5363         e1000_init_manageability_pt(adapter);
5364
5365         if (netif_running(netdev))
5366                 e1000e_up(adapter);
5367
5368         netif_device_attach(netdev);
5369
5370         /*
5371          * If the controller has AMT, do not set DRV_LOAD until the interface
5372          * is up.  For all other cases, let the f/w know that the h/w is now
5373          * under the control of the driver.
5374          */
5375         if (!(adapter->flags & FLAG_HAS_AMT))
5376                 e1000_get_hw_control(adapter);
5377
5378         return 0;
5379 }
5380
5381 #ifdef CONFIG_PM_SLEEP
5382 static int e1000_suspend(struct device *dev)
5383 {
5384         struct pci_dev *pdev = to_pci_dev(dev);
5385         int retval;
5386         bool wake;
5387
5388         retval = __e1000_shutdown(pdev, &wake, false);
5389         if (!retval)
5390                 e1000_complete_shutdown(pdev, true, wake);
5391
5392         return retval;
5393 }
5394
5395 static int e1000_resume(struct device *dev)
5396 {
5397         struct pci_dev *pdev = to_pci_dev(dev);
5398         struct net_device *netdev = pci_get_drvdata(pdev);
5399         struct e1000_adapter *adapter = netdev_priv(netdev);
5400
5401         if (e1000e_pm_ready(adapter))
5402                 adapter->idle_check = true;
5403
5404         return __e1000_resume(pdev);
5405 }
5406 #endif /* CONFIG_PM_SLEEP */
5407
5408 #ifdef CONFIG_PM_RUNTIME
5409 static int e1000_runtime_suspend(struct device *dev)
5410 {
5411         struct pci_dev *pdev = to_pci_dev(dev);
5412         struct net_device *netdev = pci_get_drvdata(pdev);
5413         struct e1000_adapter *adapter = netdev_priv(netdev);
5414
5415         if (e1000e_pm_ready(adapter)) {
5416                 bool wake;
5417
5418                 __e1000_shutdown(pdev, &wake, true);
5419         }
5420
5421         return 0;
5422 }
5423
5424 static int e1000_idle(struct device *dev)
5425 {
5426         struct pci_dev *pdev = to_pci_dev(dev);
5427         struct net_device *netdev = pci_get_drvdata(pdev);
5428         struct e1000_adapter *adapter = netdev_priv(netdev);
5429
5430         if (!e1000e_pm_ready(adapter))
5431                 return 0;
5432
5433         if (adapter->idle_check) {
5434                 adapter->idle_check = false;
5435                 if (!e1000e_has_link(adapter))
5436                         pm_schedule_suspend(dev, MSEC_PER_SEC);
5437         }
5438
5439         return -EBUSY;
5440 }
5441
5442 static int e1000_runtime_resume(struct device *dev)
5443 {
5444         struct pci_dev *pdev = to_pci_dev(dev);
5445         struct net_device *netdev = pci_get_drvdata(pdev);
5446         struct e1000_adapter *adapter = netdev_priv(netdev);
5447
5448         if (!e1000e_pm_ready(adapter))
5449                 return 0;
5450
5451         adapter->idle_check = !dev->power.runtime_auto;
5452         return __e1000_resume(pdev);
5453 }
5454 #endif /* CONFIG_PM_RUNTIME */
5455 #endif /* CONFIG_PM_OPS */
5456
5457 static void e1000_shutdown(struct pci_dev *pdev)
5458 {
5459         bool wake = false;
5460
5461         __e1000_shutdown(pdev, &wake, false);
5462
5463         if (system_state == SYSTEM_POWER_OFF)
5464                 e1000_complete_shutdown(pdev, false, wake);
5465 }
5466
5467 #ifdef CONFIG_NET_POLL_CONTROLLER
5468 /*
5469  * Polling 'interrupt' - used by things like netconsole to send skbs
5470  * without having to re-enable interrupts. It's not called while
5471  * the interrupt routine is executing.
5472  */
5473 static void e1000_netpoll(struct net_device *netdev)
5474 {
5475         struct e1000_adapter *adapter = netdev_priv(netdev);
5476
5477         disable_irq(adapter->pdev->irq);
5478         e1000_intr(adapter->pdev->irq, netdev);
5479
5480         enable_irq(adapter->pdev->irq);
5481 }
5482 #endif
5483
5484 /**
5485  * e1000_io_error_detected - called when PCI error is detected
5486  * @pdev: Pointer to PCI device
5487  * @state: The current pci connection state
5488  *
5489  * This function is called after a PCI bus error affecting
5490  * this device has been detected.
5491  */
5492 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5493                                                 pci_channel_state_t state)
5494 {
5495         struct net_device *netdev = pci_get_drvdata(pdev);
5496         struct e1000_adapter *adapter = netdev_priv(netdev);
5497
5498         netif_device_detach(netdev);
5499
5500         if (state == pci_channel_io_perm_failure)
5501                 return PCI_ERS_RESULT_DISCONNECT;
5502
5503         if (netif_running(netdev))
5504                 e1000e_down(adapter);
5505         pci_disable_device(pdev);
5506
5507         /* Request a slot slot reset. */
5508         return PCI_ERS_RESULT_NEED_RESET;
5509 }
5510
5511 /**
5512  * e1000_io_slot_reset - called after the pci bus has been reset.
5513  * @pdev: Pointer to PCI device
5514  *
5515  * Restart the card from scratch, as if from a cold-boot. Implementation
5516  * resembles the first-half of the e1000_resume routine.
5517  */
5518 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5519 {
5520         struct net_device *netdev = pci_get_drvdata(pdev);
5521         struct e1000_adapter *adapter = netdev_priv(netdev);
5522         struct e1000_hw *hw = &adapter->hw;
5523         int err;
5524         pci_ers_result_t result;
5525
5526         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5527                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5528         err = pci_enable_device_mem(pdev);
5529         if (err) {
5530                 dev_err(&pdev->dev,
5531                         "Cannot re-enable PCI device after reset.\n");
5532                 result = PCI_ERS_RESULT_DISCONNECT;
5533         } else {
5534                 pci_set_master(pdev);
5535                 pdev->state_saved = true;
5536                 pci_restore_state(pdev);
5537
5538                 pci_enable_wake(pdev, PCI_D3hot, 0);
5539                 pci_enable_wake(pdev, PCI_D3cold, 0);
5540
5541                 e1000e_reset(adapter);
5542                 ew32(WUS, ~0);
5543                 result = PCI_ERS_RESULT_RECOVERED;
5544         }
5545
5546         pci_cleanup_aer_uncorrect_error_status(pdev);
5547
5548         return result;
5549 }
5550
5551 /**
5552  * e1000_io_resume - called when traffic can start flowing again.
5553  * @pdev: Pointer to PCI device
5554  *
5555  * This callback is called when the error recovery driver tells us that
5556  * its OK to resume normal operation. Implementation resembles the
5557  * second-half of the e1000_resume routine.
5558  */
5559 static void e1000_io_resume(struct pci_dev *pdev)
5560 {
5561         struct net_device *netdev = pci_get_drvdata(pdev);
5562         struct e1000_adapter *adapter = netdev_priv(netdev);
5563
5564         e1000_init_manageability_pt(adapter);
5565
5566         if (netif_running(netdev)) {
5567                 if (e1000e_up(adapter)) {
5568                         dev_err(&pdev->dev,
5569                                 "can't bring device back up after reset\n");
5570                         return;
5571                 }
5572         }
5573
5574         netif_device_attach(netdev);
5575
5576         /*
5577          * If the controller has AMT, do not set DRV_LOAD until the interface
5578          * is up.  For all other cases, let the f/w know that the h/w is now
5579          * under the control of the driver.
5580          */
5581         if (!(adapter->flags & FLAG_HAS_AMT))
5582                 e1000_get_hw_control(adapter);
5583
5584 }
5585
5586 static void e1000_print_device_info(struct e1000_adapter *adapter)
5587 {
5588         struct e1000_hw *hw = &adapter->hw;
5589         struct net_device *netdev = adapter->netdev;
5590         u32 pba_num;
5591
5592         /* print bus type/speed/width info */
5593         e_info("(PCI Express:2.5GB/s:%s) %pM\n",
5594                /* bus width */
5595                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5596                 "Width x1"),
5597                /* MAC address */
5598                netdev->dev_addr);
5599         e_info("Intel(R) PRO/%s Network Connection\n",
5600                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5601         e1000e_read_pba_num(hw, &pba_num);
5602         e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
5603                hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
5604 }
5605
5606 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5607 {
5608         struct e1000_hw *hw = &adapter->hw;
5609         int ret_val;
5610         u16 buf = 0;
5611
5612         if (hw->mac.type != e1000_82573)
5613                 return;
5614
5615         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5616         if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5617                 /* Deep Smart Power Down (DSPD) */
5618                 dev_warn(&adapter->pdev->dev,
5619                          "Warning: detected DSPD enabled in EEPROM\n");
5620         }
5621 }
5622
5623 static const struct net_device_ops e1000e_netdev_ops = {
5624         .ndo_open               = e1000_open,
5625         .ndo_stop               = e1000_close,
5626         .ndo_start_xmit         = e1000_xmit_frame,
5627         .ndo_get_stats          = e1000_get_stats,
5628         .ndo_set_multicast_list = e1000_set_multi,
5629         .ndo_set_mac_address    = e1000_set_mac,
5630         .ndo_change_mtu         = e1000_change_mtu,
5631         .ndo_do_ioctl           = e1000_ioctl,
5632         .ndo_tx_timeout         = e1000_tx_timeout,
5633         .ndo_validate_addr      = eth_validate_addr,
5634
5635         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
5636         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
5637         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
5638 #ifdef CONFIG_NET_POLL_CONTROLLER
5639         .ndo_poll_controller    = e1000_netpoll,
5640 #endif
5641 };
5642
5643 /**
5644  * e1000_probe - Device Initialization Routine
5645  * @pdev: PCI device information struct
5646  * @ent: entry in e1000_pci_tbl
5647  *
5648  * Returns 0 on success, negative on failure
5649  *
5650  * e1000_probe initializes an adapter identified by a pci_dev structure.
5651  * The OS initialization, configuring of the adapter private structure,
5652  * and a hardware reset occur.
5653  **/
5654 static int __devinit e1000_probe(struct pci_dev *pdev,
5655                                  const struct pci_device_id *ent)
5656 {
5657         struct net_device *netdev;
5658         struct e1000_adapter *adapter;
5659         struct e1000_hw *hw;
5660         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5661         resource_size_t mmio_start, mmio_len;
5662         resource_size_t flash_start, flash_len;
5663
5664         static int cards_found;
5665         int i, err, pci_using_dac;
5666         u16 eeprom_data = 0;
5667         u16 eeprom_apme_mask = E1000_EEPROM_APME;
5668
5669         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
5670                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5671
5672         err = pci_enable_device_mem(pdev);
5673         if (err)
5674                 return err;
5675
5676         pci_using_dac = 0;
5677         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
5678         if (!err) {
5679                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5680                 if (!err)
5681                         pci_using_dac = 1;
5682         } else {
5683                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
5684                 if (err) {
5685                         err = dma_set_coherent_mask(&pdev->dev,
5686                                                     DMA_BIT_MASK(32));
5687                         if (err) {
5688                                 dev_err(&pdev->dev, "No usable DMA "
5689                                         "configuration, aborting\n");
5690                                 goto err_dma;
5691                         }
5692                 }
5693         }
5694
5695         err = pci_request_selected_regions_exclusive(pdev,
5696                                           pci_select_bars(pdev, IORESOURCE_MEM),
5697                                           e1000e_driver_name);
5698         if (err)
5699                 goto err_pci_reg;
5700
5701         /* AER (Advanced Error Reporting) hooks */
5702         pci_enable_pcie_error_reporting(pdev);
5703
5704         pci_set_master(pdev);
5705         /* PCI config space info */
5706         err = pci_save_state(pdev);
5707         if (err)
5708                 goto err_alloc_etherdev;
5709
5710         err = -ENOMEM;
5711         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
5712         if (!netdev)
5713                 goto err_alloc_etherdev;
5714
5715         SET_NETDEV_DEV(netdev, &pdev->dev);
5716
5717         netdev->irq = pdev->irq;
5718
5719         pci_set_drvdata(pdev, netdev);
5720         adapter = netdev_priv(netdev);
5721         hw = &adapter->hw;
5722         adapter->netdev = netdev;
5723         adapter->pdev = pdev;
5724         adapter->ei = ei;
5725         adapter->pba = ei->pba;
5726         adapter->flags = ei->flags;
5727         adapter->flags2 = ei->flags2;
5728         adapter->hw.adapter = adapter;
5729         adapter->hw.mac.type = ei->mac;
5730         adapter->max_hw_frame_size = ei->max_hw_frame_size;
5731         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5732
5733         mmio_start = pci_resource_start(pdev, 0);
5734         mmio_len = pci_resource_len(pdev, 0);
5735
5736         err = -EIO;
5737         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
5738         if (!adapter->hw.hw_addr)
5739                 goto err_ioremap;
5740
5741         if ((adapter->flags & FLAG_HAS_FLASH) &&
5742             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
5743                 flash_start = pci_resource_start(pdev, 1);
5744                 flash_len = pci_resource_len(pdev, 1);
5745                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5746                 if (!adapter->hw.flash_address)
5747                         goto err_flashmap;
5748         }
5749
5750         /* construct the net_device struct */
5751         netdev->netdev_ops              = &e1000e_netdev_ops;
5752         e1000e_set_ethtool_ops(netdev);
5753         netdev->watchdog_timeo          = 5 * HZ;
5754         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
5755         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5756
5757         netdev->mem_start = mmio_start;
5758         netdev->mem_end = mmio_start + mmio_len;
5759
5760         adapter->bd_number = cards_found++;
5761
5762         e1000e_check_options(adapter);
5763
5764         /* setup adapter struct */
5765         err = e1000_sw_init(adapter);
5766         if (err)
5767                 goto err_sw_init;
5768
5769         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5770         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5771         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5772
5773         err = ei->get_variants(adapter);
5774         if (err)
5775                 goto err_hw_init;
5776
5777         if ((adapter->flags & FLAG_IS_ICH) &&
5778             (adapter->flags & FLAG_READ_ONLY_NVM))
5779                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5780
5781         hw->mac.ops.get_bus_info(&adapter->hw);
5782
5783         adapter->hw.phy.autoneg_wait_to_complete = 0;
5784
5785         /* Copper options */
5786         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5787                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5788                 adapter->hw.phy.disable_polarity_correction = 0;
5789                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5790         }
5791
5792         if (e1000_check_reset_block(&adapter->hw))
5793                 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5794
5795         netdev->features = NETIF_F_SG |
5796                            NETIF_F_HW_CSUM |
5797                            NETIF_F_HW_VLAN_TX |
5798                            NETIF_F_HW_VLAN_RX;
5799
5800         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5801                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5802
5803         netdev->features |= NETIF_F_TSO;
5804         netdev->features |= NETIF_F_TSO6;
5805
5806         netdev->vlan_features |= NETIF_F_TSO;
5807         netdev->vlan_features |= NETIF_F_TSO6;
5808         netdev->vlan_features |= NETIF_F_HW_CSUM;
5809         netdev->vlan_features |= NETIF_F_SG;
5810
5811         if (pci_using_dac) {
5812                 netdev->features |= NETIF_F_HIGHDMA;
5813                 netdev->vlan_features |= NETIF_F_HIGHDMA;
5814         }
5815
5816         if (e1000e_enable_mng_pass_thru(&adapter->hw))
5817                 adapter->flags |= FLAG_MNG_PT_ENABLED;
5818
5819         /*
5820          * before reading the NVM, reset the controller to
5821          * put the device in a known good starting state
5822          */
5823         adapter->hw.mac.ops.reset_hw(&adapter->hw);
5824
5825         /*
5826          * systems with ASPM and others may see the checksum fail on the first
5827          * attempt. Let's give it a few tries
5828          */
5829         for (i = 0;; i++) {
5830                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5831                         break;
5832                 if (i == 2) {
5833                         e_err("The NVM Checksum Is Not Valid\n");
5834                         err = -EIO;
5835                         goto err_eeprom;
5836                 }
5837         }
5838
5839         e1000_eeprom_checks(adapter);
5840
5841         /* copy the MAC address */
5842         if (e1000e_read_mac_addr(&adapter->hw))
5843                 e_err("NVM Read Error while reading MAC address\n");
5844
5845         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
5846         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
5847
5848         if (!is_valid_ether_addr(netdev->perm_addr)) {
5849                 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5850                 err = -EIO;
5851                 goto err_eeprom;
5852         }
5853
5854         init_timer(&adapter->watchdog_timer);
5855         adapter->watchdog_timer.function = e1000_watchdog;
5856         adapter->watchdog_timer.data = (unsigned long) adapter;
5857
5858         init_timer(&adapter->phy_info_timer);
5859         adapter->phy_info_timer.function = e1000_update_phy_info;
5860         adapter->phy_info_timer.data = (unsigned long) adapter;
5861
5862         INIT_WORK(&adapter->reset_task, e1000_reset_task);
5863         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5864         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
5865         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5866         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
5867
5868         /* Initialize link parameters. User can change them with ethtool */
5869         adapter->hw.mac.autoneg = 1;
5870         adapter->fc_autoneg = 1;
5871         adapter->hw.fc.requested_mode = e1000_fc_default;
5872         adapter->hw.fc.current_mode = e1000_fc_default;
5873         adapter->hw.phy.autoneg_advertised = 0x2f;
5874
5875         /* ring size defaults */
5876         adapter->rx_ring->count = 256;
5877         adapter->tx_ring->count = 256;
5878
5879         /*
5880          * Initial Wake on LAN setting - If APM wake is enabled in
5881          * the EEPROM, enable the ACPI Magic Packet filter
5882          */
5883         if (adapter->flags & FLAG_APME_IN_WUC) {
5884                 /* APME bit in EEPROM is mapped to WUC.APME */
5885                 eeprom_data = er32(WUC);
5886                 eeprom_apme_mask = E1000_WUC_APME;
5887                 if (eeprom_data & E1000_WUC_PHY_WAKE)
5888                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5889         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5890                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5891                     (adapter->hw.bus.func == 1))
5892                         e1000_read_nvm(&adapter->hw,
5893                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5894                 else
5895                         e1000_read_nvm(&adapter->hw,
5896                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5897         }
5898
5899         /* fetch WoL from EEPROM */
5900         if (eeprom_data & eeprom_apme_mask)
5901                 adapter->eeprom_wol |= E1000_WUFC_MAG;
5902
5903         /*
5904          * now that we have the eeprom settings, apply the special cases
5905          * where the eeprom may be wrong or the board simply won't support
5906          * wake on lan on a particular port
5907          */
5908         if (!(adapter->flags & FLAG_HAS_WOL))
5909                 adapter->eeprom_wol = 0;
5910
5911         /* initialize the wol settings based on the eeprom settings */
5912         adapter->wol = adapter->eeprom_wol;
5913         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5914
5915         /* save off EEPROM version number */
5916         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5917
5918         /* reset the hardware with the new settings */
5919         e1000e_reset(adapter);
5920
5921         /*
5922          * If the controller has AMT, do not set DRV_LOAD until the interface
5923          * is up.  For all other cases, let the f/w know that the h/w is now
5924          * under the control of the driver.
5925          */
5926         if (!(adapter->flags & FLAG_HAS_AMT))
5927                 e1000_get_hw_control(adapter);
5928
5929         strcpy(netdev->name, "eth%d");
5930         err = register_netdev(netdev);
5931         if (err)
5932                 goto err_register;
5933
5934         /* carrier off reporting is important to ethtool even BEFORE open */
5935         netif_carrier_off(netdev);
5936
5937         e1000_print_device_info(adapter);
5938
5939         if (pci_dev_run_wake(pdev))
5940                 pm_runtime_put_noidle(&pdev->dev);
5941
5942         return 0;
5943
5944 err_register:
5945         if (!(adapter->flags & FLAG_HAS_AMT))
5946                 e1000_release_hw_control(adapter);
5947 err_eeprom:
5948         if (!e1000_check_reset_block(&adapter->hw))
5949                 e1000_phy_hw_reset(&adapter->hw);
5950 err_hw_init:
5951
5952         kfree(adapter->tx_ring);
5953         kfree(adapter->rx_ring);
5954 err_sw_init:
5955         if (adapter->hw.flash_address)
5956                 iounmap(adapter->hw.flash_address);
5957         e1000e_reset_interrupt_capability(adapter);
5958 err_flashmap:
5959         iounmap(adapter->hw.hw_addr);
5960 err_ioremap:
5961         free_netdev(netdev);
5962 err_alloc_etherdev:
5963         pci_release_selected_regions(pdev,
5964                                      pci_select_bars(pdev, IORESOURCE_MEM));
5965 err_pci_reg:
5966 err_dma:
5967         pci_disable_device(pdev);
5968         return err;
5969 }
5970
5971 /**
5972  * e1000_remove - Device Removal Routine
5973  * @pdev: PCI device information struct
5974  *
5975  * e1000_remove is called by the PCI subsystem to alert the driver
5976  * that it should release a PCI device.  The could be caused by a
5977  * Hot-Plug event, or because the driver is going to be removed from
5978  * memory.
5979  **/
5980 static void __devexit e1000_remove(struct pci_dev *pdev)
5981 {
5982         struct net_device *netdev = pci_get_drvdata(pdev);
5983         struct e1000_adapter *adapter = netdev_priv(netdev);
5984         bool down = test_bit(__E1000_DOWN, &adapter->state);
5985
5986         /*
5987          * flush_scheduled work may reschedule our watchdog task, so
5988          * explicitly disable watchdog tasks from being rescheduled
5989          */
5990         if (!down)
5991                 set_bit(__E1000_DOWN, &adapter->state);
5992         del_timer_sync(&adapter->watchdog_timer);
5993         del_timer_sync(&adapter->phy_info_timer);
5994
5995         cancel_work_sync(&adapter->reset_task);
5996         cancel_work_sync(&adapter->watchdog_task);
5997         cancel_work_sync(&adapter->downshift_task);
5998         cancel_work_sync(&adapter->update_phy_task);
5999         cancel_work_sync(&adapter->print_hang_task);
6000         flush_scheduled_work();
6001
6002         if (!(netdev->flags & IFF_UP))
6003                 e1000_power_down_phy(adapter);
6004
6005         /* Don't lie to e1000_close() down the road. */
6006         if (!down)
6007                 clear_bit(__E1000_DOWN, &adapter->state);
6008         unregister_netdev(netdev);
6009
6010         if (pci_dev_run_wake(pdev))
6011                 pm_runtime_get_noresume(&pdev->dev);
6012
6013         /*
6014          * Release control of h/w to f/w.  If f/w is AMT enabled, this
6015          * would have already happened in close and is redundant.
6016          */
6017         e1000_release_hw_control(adapter);
6018
6019         e1000e_reset_interrupt_capability(adapter);
6020         kfree(adapter->tx_ring);
6021         kfree(adapter->rx_ring);
6022
6023         iounmap(adapter->hw.hw_addr);
6024         if (adapter->hw.flash_address)
6025                 iounmap(adapter->hw.flash_address);
6026         pci_release_selected_regions(pdev,
6027                                      pci_select_bars(pdev, IORESOURCE_MEM));
6028
6029         free_netdev(netdev);
6030
6031         /* AER disable */
6032         pci_disable_pcie_error_reporting(pdev);
6033
6034         pci_disable_device(pdev);
6035 }
6036
6037 /* PCI Error Recovery (ERS) */
6038 static struct pci_error_handlers e1000_err_handler = {
6039         .error_detected = e1000_io_error_detected,
6040         .slot_reset = e1000_io_slot_reset,
6041         .resume = e1000_io_resume,
6042 };
6043
6044 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6045         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6046         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6047         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6048         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6049         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6050         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6051         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6052         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6053         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6054
6055         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6056         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6057         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6058         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6059
6060         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6061         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6062         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6063
6064         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6065         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6066         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6067
6068         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6069           board_80003es2lan },
6070         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6071           board_80003es2lan },
6072         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6073           board_80003es2lan },
6074         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6075           board_80003es2lan },
6076
6077         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6078         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6079         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6080         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6081         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6082         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6083         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6084         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6085
6086         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6087         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6088         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6089         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6090         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6091         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6092         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6093         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6094         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6095
6096         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6097         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6098         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6099
6100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6103
6104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6108
6109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6111
6112         { }     /* terminate list */
6113 };
6114 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6115
6116 #ifdef CONFIG_PM_OPS
6117 static const struct dev_pm_ops e1000_pm_ops = {
6118         SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6119         SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6120                                 e1000_runtime_resume, e1000_idle)
6121 };
6122 #endif
6123
6124 /* PCI Device API Driver */
6125 static struct pci_driver e1000_driver = {
6126         .name     = e1000e_driver_name,
6127         .id_table = e1000_pci_tbl,
6128         .probe    = e1000_probe,
6129         .remove   = __devexit_p(e1000_remove),
6130 #ifdef CONFIG_PM_OPS
6131         .driver.pm = &e1000_pm_ops,
6132 #endif
6133         .shutdown = e1000_shutdown,
6134         .err_handler = &e1000_err_handler
6135 };
6136
6137 /**
6138  * e1000_init_module - Driver Registration Routine
6139  *
6140  * e1000_init_module is the first routine called when the driver is
6141  * loaded. All it does is register with the PCI subsystem.
6142  **/
6143 static int __init e1000_init_module(void)
6144 {
6145         int ret;
6146         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6147                 e1000e_driver_version);
6148         pr_info("Copyright (c) 1999 - 2010 Intel Corporation.\n");
6149         ret = pci_register_driver(&e1000_driver);
6150
6151         return ret;
6152 }
6153 module_init(e1000_init_module);
6154
6155 /**
6156  * e1000_exit_module - Driver Exit Cleanup Routine
6157  *
6158  * e1000_exit_module is called just before the driver is removed
6159  * from memory.
6160  **/
6161 static void __exit e1000_exit_module(void)
6162 {
6163         pci_unregister_driver(&e1000_driver);
6164 }
6165 module_exit(e1000_exit_module);
6166
6167
6168 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6169 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6170 MODULE_LICENSE("GPL");
6171 MODULE_VERSION(DRV_VERSION);
6172
6173 /* e1000_main.c */