Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[pandora-kernel.git] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2011 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/tcp.h>
40 #include <linux/ipv6.h>
41 #include <linux/slab.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <linux/mii.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos_params.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52
53 #include "e1000.h"
54
55 #define DRV_EXTRAVERSION "-k2"
56
57 #define DRV_VERSION "1.2.20" DRV_EXTRAVERSION
58 char e1000e_driver_name[] = "e1000e";
59 const char e1000e_driver_version[] = DRV_VERSION;
60
61 static const struct e1000_info *e1000_info_tbl[] = {
62         [board_82571]           = &e1000_82571_info,
63         [board_82572]           = &e1000_82572_info,
64         [board_82573]           = &e1000_82573_info,
65         [board_82574]           = &e1000_82574_info,
66         [board_82583]           = &e1000_82583_info,
67         [board_80003es2lan]     = &e1000_es2_info,
68         [board_ich8lan]         = &e1000_ich8_info,
69         [board_ich9lan]         = &e1000_ich9_info,
70         [board_ich10lan]        = &e1000_ich10_info,
71         [board_pchlan]          = &e1000_pch_info,
72         [board_pch2lan]         = &e1000_pch2_info,
73 };
74
75 struct e1000_reg_info {
76         u32 ofs;
77         char *name;
78 };
79
80 #define E1000_RDFH      0x02410 /* Rx Data FIFO Head - RW */
81 #define E1000_RDFT      0x02418 /* Rx Data FIFO Tail - RW */
82 #define E1000_RDFHS     0x02420 /* Rx Data FIFO Head Saved - RW */
83 #define E1000_RDFTS     0x02428 /* Rx Data FIFO Tail Saved - RW */
84 #define E1000_RDFPC     0x02430 /* Rx Data FIFO Packet Count - RW */
85
86 #define E1000_TDFH      0x03410 /* Tx Data FIFO Head - RW */
87 #define E1000_TDFT      0x03418 /* Tx Data FIFO Tail - RW */
88 #define E1000_TDFHS     0x03420 /* Tx Data FIFO Head Saved - RW */
89 #define E1000_TDFTS     0x03428 /* Tx Data FIFO Tail Saved - RW */
90 #define E1000_TDFPC     0x03430 /* Tx Data FIFO Packet Count - RW */
91
92 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
93
94         /* General Registers */
95         {E1000_CTRL, "CTRL"},
96         {E1000_STATUS, "STATUS"},
97         {E1000_CTRL_EXT, "CTRL_EXT"},
98
99         /* Interrupt Registers */
100         {E1000_ICR, "ICR"},
101
102         /* Rx Registers */
103         {E1000_RCTL, "RCTL"},
104         {E1000_RDLEN, "RDLEN"},
105         {E1000_RDH, "RDH"},
106         {E1000_RDT, "RDT"},
107         {E1000_RDTR, "RDTR"},
108         {E1000_RXDCTL(0), "RXDCTL"},
109         {E1000_ERT, "ERT"},
110         {E1000_RDBAL, "RDBAL"},
111         {E1000_RDBAH, "RDBAH"},
112         {E1000_RDFH, "RDFH"},
113         {E1000_RDFT, "RDFT"},
114         {E1000_RDFHS, "RDFHS"},
115         {E1000_RDFTS, "RDFTS"},
116         {E1000_RDFPC, "RDFPC"},
117
118         /* Tx Registers */
119         {E1000_TCTL, "TCTL"},
120         {E1000_TDBAL, "TDBAL"},
121         {E1000_TDBAH, "TDBAH"},
122         {E1000_TDLEN, "TDLEN"},
123         {E1000_TDH, "TDH"},
124         {E1000_TDT, "TDT"},
125         {E1000_TIDV, "TIDV"},
126         {E1000_TXDCTL(0), "TXDCTL"},
127         {E1000_TADV, "TADV"},
128         {E1000_TARC(0), "TARC"},
129         {E1000_TDFH, "TDFH"},
130         {E1000_TDFT, "TDFT"},
131         {E1000_TDFHS, "TDFHS"},
132         {E1000_TDFTS, "TDFTS"},
133         {E1000_TDFPC, "TDFPC"},
134
135         /* List Terminator */
136         {}
137 };
138
139 /*
140  * e1000_regdump - register printout routine
141  */
142 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
143 {
144         int n = 0;
145         char rname[16];
146         u32 regs[8];
147
148         switch (reginfo->ofs) {
149         case E1000_RXDCTL(0):
150                 for (n = 0; n < 2; n++)
151                         regs[n] = __er32(hw, E1000_RXDCTL(n));
152                 break;
153         case E1000_TXDCTL(0):
154                 for (n = 0; n < 2; n++)
155                         regs[n] = __er32(hw, E1000_TXDCTL(n));
156                 break;
157         case E1000_TARC(0):
158                 for (n = 0; n < 2; n++)
159                         regs[n] = __er32(hw, E1000_TARC(n));
160                 break;
161         default:
162                 printk(KERN_INFO "%-15s %08x\n",
163                        reginfo->name, __er32(hw, reginfo->ofs));
164                 return;
165         }
166
167         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
168         printk(KERN_INFO "%-15s ", rname);
169         for (n = 0; n < 2; n++)
170                 printk(KERN_CONT "%08x ", regs[n]);
171         printk(KERN_CONT "\n");
172 }
173
174 /*
175  * e1000e_dump - Print registers, Tx-ring and Rx-ring
176  */
177 static void e1000e_dump(struct e1000_adapter *adapter)
178 {
179         struct net_device *netdev = adapter->netdev;
180         struct e1000_hw *hw = &adapter->hw;
181         struct e1000_reg_info *reginfo;
182         struct e1000_ring *tx_ring = adapter->tx_ring;
183         struct e1000_tx_desc *tx_desc;
184         struct my_u0 {
185                 u64 a;
186                 u64 b;
187         } *u0;
188         struct e1000_buffer *buffer_info;
189         struct e1000_ring *rx_ring = adapter->rx_ring;
190         union e1000_rx_desc_packet_split *rx_desc_ps;
191         struct e1000_rx_desc *rx_desc;
192         struct my_u1 {
193                 u64 a;
194                 u64 b;
195                 u64 c;
196                 u64 d;
197         } *u1;
198         u32 staterr;
199         int i = 0;
200
201         if (!netif_msg_hw(adapter))
202                 return;
203
204         /* Print netdevice Info */
205         if (netdev) {
206                 dev_info(&adapter->pdev->dev, "Net device Info\n");
207                 printk(KERN_INFO "Device Name     state            "
208                        "trans_start      last_rx\n");
209                 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
210                        netdev->name, netdev->state, netdev->trans_start,
211                        netdev->last_rx);
212         }
213
214         /* Print Registers */
215         dev_info(&adapter->pdev->dev, "Register Dump\n");
216         printk(KERN_INFO " Register Name   Value\n");
217         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
218              reginfo->name; reginfo++) {
219                 e1000_regdump(hw, reginfo);
220         }
221
222         /* Print Tx Ring Summary */
223         if (!netdev || !netif_running(netdev))
224                 goto exit;
225
226         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
227         printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
228                " leng ntw timestamp\n");
229         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
230         printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
231                0, tx_ring->next_to_use, tx_ring->next_to_clean,
232                (unsigned long long)buffer_info->dma,
233                buffer_info->length,
234                buffer_info->next_to_watch,
235                (unsigned long long)buffer_info->time_stamp);
236
237         /* Print Tx Ring */
238         if (!netif_msg_tx_done(adapter))
239                 goto rx_ring_summary;
240
241         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
242
243         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
244          *
245          * Legacy Transmit Descriptor
246          *   +--------------------------------------------------------------+
247          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
248          *   +--------------------------------------------------------------+
249          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
250          *   +--------------------------------------------------------------+
251          *   63       48 47        36 35    32 31     24 23    16 15        0
252          *
253          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
254          *   63      48 47    40 39       32 31             16 15    8 7      0
255          *   +----------------------------------------------------------------+
256          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
257          *   +----------------------------------------------------------------+
258          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
259          *   +----------------------------------------------------------------+
260          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
261          *
262          * Extended Data Descriptor (DTYP=0x1)
263          *   +----------------------------------------------------------------+
264          * 0 |                     Buffer Address [63:0]                      |
265          *   +----------------------------------------------------------------+
266          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
267          *   +----------------------------------------------------------------+
268          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
269          */
270         printk(KERN_INFO "Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen]"
271                " [bi->dma       ] leng  ntw timestamp        bi->skb "
272                "<-- Legacy format\n");
273         printk(KERN_INFO "Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
274                " [bi->dma       ] leng  ntw timestamp        bi->skb "
275                "<-- Ext Context format\n");
276         printk(KERN_INFO "Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen]"
277                " [bi->dma       ] leng  ntw timestamp        bi->skb "
278                "<-- Ext Data format\n");
279         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
280                 tx_desc = E1000_TX_DESC(*tx_ring, i);
281                 buffer_info = &tx_ring->buffer_info[i];
282                 u0 = (struct my_u0 *)tx_desc;
283                 printk(KERN_INFO "T%c[0x%03X]    %016llX %016llX %016llX "
284                        "%04X  %3X %016llX %p",
285                        (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
286                         ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), i,
287                        (unsigned long long)le64_to_cpu(u0->a),
288                        (unsigned long long)le64_to_cpu(u0->b),
289                        (unsigned long long)buffer_info->dma,
290                        buffer_info->length, buffer_info->next_to_watch,
291                        (unsigned long long)buffer_info->time_stamp,
292                        buffer_info->skb);
293                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
294                         printk(KERN_CONT " NTC/U\n");
295                 else if (i == tx_ring->next_to_use)
296                         printk(KERN_CONT " NTU\n");
297                 else if (i == tx_ring->next_to_clean)
298                         printk(KERN_CONT " NTC\n");
299                 else
300                         printk(KERN_CONT "\n");
301
302                 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
303                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
304                                        16, 1, phys_to_virt(buffer_info->dma),
305                                        buffer_info->length, true);
306         }
307
308         /* Print Rx Ring Summary */
309 rx_ring_summary:
310         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
311         printk(KERN_INFO "Queue [NTU] [NTC]\n");
312         printk(KERN_INFO " %5d %5X %5X\n", 0,
313                rx_ring->next_to_use, rx_ring->next_to_clean);
314
315         /* Print Rx Ring */
316         if (!netif_msg_rx_status(adapter))
317                 goto exit;
318
319         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
320         switch (adapter->rx_ps_pages) {
321         case 1:
322         case 2:
323         case 3:
324                 /* [Extended] Packet Split Receive Descriptor Format
325                  *
326                  *    +-----------------------------------------------------+
327                  *  0 |                Buffer Address 0 [63:0]              |
328                  *    +-----------------------------------------------------+
329                  *  8 |                Buffer Address 1 [63:0]              |
330                  *    +-----------------------------------------------------+
331                  * 16 |                Buffer Address 2 [63:0]              |
332                  *    +-----------------------------------------------------+
333                  * 24 |                Buffer Address 3 [63:0]              |
334                  *    +-----------------------------------------------------+
335                  */
336                 printk(KERN_INFO "R  [desc]      [buffer 0 63:0 ] "
337                        "[buffer 1 63:0 ] "
338                        "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] "
339                        "[bi->skb] <-- Ext Pkt Split format\n");
340                 /* [Extended] Receive Descriptor (Write-Back) Format
341                  *
342                  *   63       48 47    32 31     13 12    8 7    4 3        0
343                  *   +------------------------------------------------------+
344                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
345                  *   | Checksum | Ident  |         | Queue |      |  Type   |
346                  *   +------------------------------------------------------+
347                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
348                  *   +------------------------------------------------------+
349                  *   63       48 47    32 31            20 19               0
350                  */
351                 printk(KERN_INFO "RWB[desc]      [ck ipid mrqhsh] "
352                        "[vl   l0 ee  es] "
353                        "[ l3  l2  l1 hs] [reserved      ] ---------------- "
354                        "[bi->skb] <-- Ext Rx Write-Back format\n");
355                 for (i = 0; i < rx_ring->count; i++) {
356                         buffer_info = &rx_ring->buffer_info[i];
357                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
358                         u1 = (struct my_u1 *)rx_desc_ps;
359                         staterr =
360                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
361                         if (staterr & E1000_RXD_STAT_DD) {
362                                 /* Descriptor Done */
363                                 printk(KERN_INFO "RWB[0x%03X]     %016llX "
364                                        "%016llX %016llX %016llX "
365                                        "---------------- %p", i,
366                                        (unsigned long long)le64_to_cpu(u1->a),
367                                        (unsigned long long)le64_to_cpu(u1->b),
368                                        (unsigned long long)le64_to_cpu(u1->c),
369                                        (unsigned long long)le64_to_cpu(u1->d),
370                                        buffer_info->skb);
371                         } else {
372                                 printk(KERN_INFO "R  [0x%03X]     %016llX "
373                                        "%016llX %016llX %016llX %016llX %p", i,
374                                        (unsigned long long)le64_to_cpu(u1->a),
375                                        (unsigned long long)le64_to_cpu(u1->b),
376                                        (unsigned long long)le64_to_cpu(u1->c),
377                                        (unsigned long long)le64_to_cpu(u1->d),
378                                        (unsigned long long)buffer_info->dma,
379                                        buffer_info->skb);
380
381                                 if (netif_msg_pktdata(adapter))
382                                         print_hex_dump(KERN_INFO, "",
383                                                 DUMP_PREFIX_ADDRESS, 16, 1,
384                                                 phys_to_virt(buffer_info->dma),
385                                                 adapter->rx_ps_bsize0, true);
386                         }
387
388                         if (i == rx_ring->next_to_use)
389                                 printk(KERN_CONT " NTU\n");
390                         else if (i == rx_ring->next_to_clean)
391                                 printk(KERN_CONT " NTC\n");
392                         else
393                                 printk(KERN_CONT "\n");
394                 }
395                 break;
396         default:
397         case 0:
398                 /* Legacy Receive Descriptor Format
399                  *
400                  * +-----------------------------------------------------+
401                  * |                Buffer Address [63:0]                |
402                  * +-----------------------------------------------------+
403                  * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
404                  * +-----------------------------------------------------+
405                  * 63       48 47    40 39      32 31         16 15      0
406                  */
407                 printk(KERN_INFO "Rl[desc]     [address 63:0  ] "
408                        "[vl er S cks ln] [bi->dma       ] [bi->skb] "
409                        "<-- Legacy format\n");
410                 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
411                         rx_desc = E1000_RX_DESC(*rx_ring, i);
412                         buffer_info = &rx_ring->buffer_info[i];
413                         u0 = (struct my_u0 *)rx_desc;
414                         printk(KERN_INFO "Rl[0x%03X]    %016llX %016llX "
415                                "%016llX %p", i,
416                                (unsigned long long)le64_to_cpu(u0->a),
417                                (unsigned long long)le64_to_cpu(u0->b),
418                                (unsigned long long)buffer_info->dma,
419                                buffer_info->skb);
420                         if (i == rx_ring->next_to_use)
421                                 printk(KERN_CONT " NTU\n");
422                         else if (i == rx_ring->next_to_clean)
423                                 printk(KERN_CONT " NTC\n");
424                         else
425                                 printk(KERN_CONT "\n");
426
427                         if (netif_msg_pktdata(adapter))
428                                 print_hex_dump(KERN_INFO, "",
429                                                DUMP_PREFIX_ADDRESS,
430                                                16, 1,
431                                                phys_to_virt(buffer_info->dma),
432                                                adapter->rx_buffer_len, true);
433                 }
434         }
435
436 exit:
437         return;
438 }
439
440 /**
441  * e1000_desc_unused - calculate if we have unused descriptors
442  **/
443 static int e1000_desc_unused(struct e1000_ring *ring)
444 {
445         if (ring->next_to_clean > ring->next_to_use)
446                 return ring->next_to_clean - ring->next_to_use - 1;
447
448         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
449 }
450
451 /**
452  * e1000_receive_skb - helper function to handle Rx indications
453  * @adapter: board private structure
454  * @status: descriptor status field as written by hardware
455  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
456  * @skb: pointer to sk_buff to be indicated to stack
457  **/
458 static void e1000_receive_skb(struct e1000_adapter *adapter,
459                               struct net_device *netdev, struct sk_buff *skb,
460                               u8 status, __le16 vlan)
461 {
462         skb->protocol = eth_type_trans(skb, netdev);
463
464         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
465                 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
466                                  le16_to_cpu(vlan), skb);
467         else
468                 napi_gro_receive(&adapter->napi, skb);
469 }
470
471 /**
472  * e1000_rx_checksum - Receive Checksum Offload
473  * @adapter:     board private structure
474  * @status_err:  receive descriptor status and error fields
475  * @csum:       receive descriptor csum field
476  * @sk_buff:     socket buffer with received data
477  **/
478 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
479                               u32 csum, struct sk_buff *skb)
480 {
481         u16 status = (u16)status_err;
482         u8 errors = (u8)(status_err >> 24);
483
484         skb_checksum_none_assert(skb);
485
486         /* Ignore Checksum bit is set */
487         if (status & E1000_RXD_STAT_IXSM)
488                 return;
489         /* TCP/UDP checksum error bit is set */
490         if (errors & E1000_RXD_ERR_TCPE) {
491                 /* let the stack verify checksum errors */
492                 adapter->hw_csum_err++;
493                 return;
494         }
495
496         /* TCP/UDP Checksum has not been calculated */
497         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
498                 return;
499
500         /* It must be a TCP or UDP packet with a valid checksum */
501         if (status & E1000_RXD_STAT_TCPCS) {
502                 /* TCP checksum is good */
503                 skb->ip_summed = CHECKSUM_UNNECESSARY;
504         } else {
505                 /*
506                  * IP fragment with UDP payload
507                  * Hardware complements the payload checksum, so we undo it
508                  * and then put the value in host order for further stack use.
509                  */
510                 __sum16 sum = (__force __sum16)htons(csum);
511                 skb->csum = csum_unfold(~sum);
512                 skb->ip_summed = CHECKSUM_COMPLETE;
513         }
514         adapter->hw_csum_good++;
515 }
516
517 /**
518  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
519  * @adapter: address of board private structure
520  **/
521 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
522                                    int cleaned_count)
523 {
524         struct net_device *netdev = adapter->netdev;
525         struct pci_dev *pdev = adapter->pdev;
526         struct e1000_ring *rx_ring = adapter->rx_ring;
527         struct e1000_rx_desc *rx_desc;
528         struct e1000_buffer *buffer_info;
529         struct sk_buff *skb;
530         unsigned int i;
531         unsigned int bufsz = adapter->rx_buffer_len;
532
533         i = rx_ring->next_to_use;
534         buffer_info = &rx_ring->buffer_info[i];
535
536         while (cleaned_count--) {
537                 skb = buffer_info->skb;
538                 if (skb) {
539                         skb_trim(skb, 0);
540                         goto map_skb;
541                 }
542
543                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
544                 if (!skb) {
545                         /* Better luck next round */
546                         adapter->alloc_rx_buff_failed++;
547                         break;
548                 }
549
550                 buffer_info->skb = skb;
551 map_skb:
552                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
553                                                   adapter->rx_buffer_len,
554                                                   DMA_FROM_DEVICE);
555                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
556                         dev_err(&pdev->dev, "Rx DMA map failed\n");
557                         adapter->rx_dma_failed++;
558                         break;
559                 }
560
561                 rx_desc = E1000_RX_DESC(*rx_ring, i);
562                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
563
564                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
565                         /*
566                          * Force memory writes to complete before letting h/w
567                          * know there are new descriptors to fetch.  (Only
568                          * applicable for weak-ordered memory model archs,
569                          * such as IA-64).
570                          */
571                         wmb();
572                         writel(i, adapter->hw.hw_addr + rx_ring->tail);
573                 }
574                 i++;
575                 if (i == rx_ring->count)
576                         i = 0;
577                 buffer_info = &rx_ring->buffer_info[i];
578         }
579
580         rx_ring->next_to_use = i;
581 }
582
583 /**
584  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
585  * @adapter: address of board private structure
586  **/
587 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
588                                       int cleaned_count)
589 {
590         struct net_device *netdev = adapter->netdev;
591         struct pci_dev *pdev = adapter->pdev;
592         union e1000_rx_desc_packet_split *rx_desc;
593         struct e1000_ring *rx_ring = adapter->rx_ring;
594         struct e1000_buffer *buffer_info;
595         struct e1000_ps_page *ps_page;
596         struct sk_buff *skb;
597         unsigned int i, j;
598
599         i = rx_ring->next_to_use;
600         buffer_info = &rx_ring->buffer_info[i];
601
602         while (cleaned_count--) {
603                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
604
605                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
606                         ps_page = &buffer_info->ps_pages[j];
607                         if (j >= adapter->rx_ps_pages) {
608                                 /* all unused desc entries get hw null ptr */
609                                 rx_desc->read.buffer_addr[j + 1] =
610                                     ~cpu_to_le64(0);
611                                 continue;
612                         }
613                         if (!ps_page->page) {
614                                 ps_page->page = alloc_page(GFP_ATOMIC);
615                                 if (!ps_page->page) {
616                                         adapter->alloc_rx_buff_failed++;
617                                         goto no_buffers;
618                                 }
619                                 ps_page->dma = dma_map_page(&pdev->dev,
620                                                             ps_page->page,
621                                                             0, PAGE_SIZE,
622                                                             DMA_FROM_DEVICE);
623                                 if (dma_mapping_error(&pdev->dev,
624                                                       ps_page->dma)) {
625                                         dev_err(&adapter->pdev->dev,
626                                                 "Rx DMA page map failed\n");
627                                         adapter->rx_dma_failed++;
628                                         goto no_buffers;
629                                 }
630                         }
631                         /*
632                          * Refresh the desc even if buffer_addrs
633                          * didn't change because each write-back
634                          * erases this info.
635                          */
636                         rx_desc->read.buffer_addr[j + 1] =
637                             cpu_to_le64(ps_page->dma);
638                 }
639
640                 skb = netdev_alloc_skb_ip_align(netdev,
641                                                 adapter->rx_ps_bsize0);
642
643                 if (!skb) {
644                         adapter->alloc_rx_buff_failed++;
645                         break;
646                 }
647
648                 buffer_info->skb = skb;
649                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
650                                                   adapter->rx_ps_bsize0,
651                                                   DMA_FROM_DEVICE);
652                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
653                         dev_err(&pdev->dev, "Rx DMA map failed\n");
654                         adapter->rx_dma_failed++;
655                         /* cleanup skb */
656                         dev_kfree_skb_any(skb);
657                         buffer_info->skb = NULL;
658                         break;
659                 }
660
661                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
662
663                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
664                         /*
665                          * Force memory writes to complete before letting h/w
666                          * know there are new descriptors to fetch.  (Only
667                          * applicable for weak-ordered memory model archs,
668                          * such as IA-64).
669                          */
670                         wmb();
671                         writel(i << 1, adapter->hw.hw_addr + rx_ring->tail);
672                 }
673
674                 i++;
675                 if (i == rx_ring->count)
676                         i = 0;
677                 buffer_info = &rx_ring->buffer_info[i];
678         }
679
680 no_buffers:
681         rx_ring->next_to_use = i;
682 }
683
684 /**
685  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
686  * @adapter: address of board private structure
687  * @cleaned_count: number of buffers to allocate this pass
688  **/
689
690 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
691                                          int cleaned_count)
692 {
693         struct net_device *netdev = adapter->netdev;
694         struct pci_dev *pdev = adapter->pdev;
695         struct e1000_rx_desc *rx_desc;
696         struct e1000_ring *rx_ring = adapter->rx_ring;
697         struct e1000_buffer *buffer_info;
698         struct sk_buff *skb;
699         unsigned int i;
700         unsigned int bufsz = 256 - 16 /* for skb_reserve */;
701
702         i = rx_ring->next_to_use;
703         buffer_info = &rx_ring->buffer_info[i];
704
705         while (cleaned_count--) {
706                 skb = buffer_info->skb;
707                 if (skb) {
708                         skb_trim(skb, 0);
709                         goto check_page;
710                 }
711
712                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
713                 if (unlikely(!skb)) {
714                         /* Better luck next round */
715                         adapter->alloc_rx_buff_failed++;
716                         break;
717                 }
718
719                 buffer_info->skb = skb;
720 check_page:
721                 /* allocate a new page if necessary */
722                 if (!buffer_info->page) {
723                         buffer_info->page = alloc_page(GFP_ATOMIC);
724                         if (unlikely(!buffer_info->page)) {
725                                 adapter->alloc_rx_buff_failed++;
726                                 break;
727                         }
728                 }
729
730                 if (!buffer_info->dma)
731                         buffer_info->dma = dma_map_page(&pdev->dev,
732                                                         buffer_info->page, 0,
733                                                         PAGE_SIZE,
734                                                         DMA_FROM_DEVICE);
735
736                 rx_desc = E1000_RX_DESC(*rx_ring, i);
737                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
738
739                 if (unlikely(++i == rx_ring->count))
740                         i = 0;
741                 buffer_info = &rx_ring->buffer_info[i];
742         }
743
744         if (likely(rx_ring->next_to_use != i)) {
745                 rx_ring->next_to_use = i;
746                 if (unlikely(i-- == 0))
747                         i = (rx_ring->count - 1);
748
749                 /* Force memory writes to complete before letting h/w
750                  * know there are new descriptors to fetch.  (Only
751                  * applicable for weak-ordered memory model archs,
752                  * such as IA-64). */
753                 wmb();
754                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
755         }
756 }
757
758 /**
759  * e1000_clean_rx_irq - Send received data up the network stack; legacy
760  * @adapter: board private structure
761  *
762  * the return value indicates whether actual cleaning was done, there
763  * is no guarantee that everything was cleaned
764  **/
765 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
766                                int *work_done, int work_to_do)
767 {
768         struct net_device *netdev = adapter->netdev;
769         struct pci_dev *pdev = adapter->pdev;
770         struct e1000_hw *hw = &adapter->hw;
771         struct e1000_ring *rx_ring = adapter->rx_ring;
772         struct e1000_rx_desc *rx_desc, *next_rxd;
773         struct e1000_buffer *buffer_info, *next_buffer;
774         u32 length;
775         unsigned int i;
776         int cleaned_count = 0;
777         bool cleaned = 0;
778         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
779
780         i = rx_ring->next_to_clean;
781         rx_desc = E1000_RX_DESC(*rx_ring, i);
782         buffer_info = &rx_ring->buffer_info[i];
783
784         while (rx_desc->status & E1000_RXD_STAT_DD) {
785                 struct sk_buff *skb;
786                 u8 status;
787
788                 if (*work_done >= work_to_do)
789                         break;
790                 (*work_done)++;
791                 rmb();  /* read descriptor and rx_buffer_info after status DD */
792
793                 status = rx_desc->status;
794                 skb = buffer_info->skb;
795                 buffer_info->skb = NULL;
796
797                 prefetch(skb->data - NET_IP_ALIGN);
798
799                 i++;
800                 if (i == rx_ring->count)
801                         i = 0;
802                 next_rxd = E1000_RX_DESC(*rx_ring, i);
803                 prefetch(next_rxd);
804
805                 next_buffer = &rx_ring->buffer_info[i];
806
807                 cleaned = 1;
808                 cleaned_count++;
809                 dma_unmap_single(&pdev->dev,
810                                  buffer_info->dma,
811                                  adapter->rx_buffer_len,
812                                  DMA_FROM_DEVICE);
813                 buffer_info->dma = 0;
814
815                 length = le16_to_cpu(rx_desc->length);
816
817                 /*
818                  * !EOP means multiple descriptors were used to store a single
819                  * packet, if that's the case we need to toss it.  In fact, we
820                  * need to toss every packet with the EOP bit clear and the
821                  * next frame that _does_ have the EOP bit set, as it is by
822                  * definition only a frame fragment
823                  */
824                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
825                         adapter->flags2 |= FLAG2_IS_DISCARDING;
826
827                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
828                         /* All receives must fit into a single buffer */
829                         e_dbg("Receive packet consumed multiple buffers\n");
830                         /* recycle */
831                         buffer_info->skb = skb;
832                         if (status & E1000_RXD_STAT_EOP)
833                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
834                         goto next_desc;
835                 }
836
837                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
838                         /* recycle */
839                         buffer_info->skb = skb;
840                         goto next_desc;
841                 }
842
843                 /* adjust length to remove Ethernet CRC */
844                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
845                         length -= 4;
846
847                 total_rx_bytes += length;
848                 total_rx_packets++;
849
850                 /*
851                  * code added for copybreak, this should improve
852                  * performance for small packets with large amounts
853                  * of reassembly being done in the stack
854                  */
855                 if (length < copybreak) {
856                         struct sk_buff *new_skb =
857                             netdev_alloc_skb_ip_align(netdev, length);
858                         if (new_skb) {
859                                 skb_copy_to_linear_data_offset(new_skb,
860                                                                -NET_IP_ALIGN,
861                                                                (skb->data -
862                                                                 NET_IP_ALIGN),
863                                                                (length +
864                                                                 NET_IP_ALIGN));
865                                 /* save the skb in buffer_info as good */
866                                 buffer_info->skb = skb;
867                                 skb = new_skb;
868                         }
869                         /* else just continue with the old one */
870                 }
871                 /* end copybreak code */
872                 skb_put(skb, length);
873
874                 /* Receive Checksum Offload */
875                 e1000_rx_checksum(adapter,
876                                   (u32)(status) |
877                                   ((u32)(rx_desc->errors) << 24),
878                                   le16_to_cpu(rx_desc->csum), skb);
879
880                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
881
882 next_desc:
883                 rx_desc->status = 0;
884
885                 /* return some buffers to hardware, one at a time is too slow */
886                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
887                         adapter->alloc_rx_buf(adapter, cleaned_count);
888                         cleaned_count = 0;
889                 }
890
891                 /* use prefetched values */
892                 rx_desc = next_rxd;
893                 buffer_info = next_buffer;
894         }
895         rx_ring->next_to_clean = i;
896
897         cleaned_count = e1000_desc_unused(rx_ring);
898         if (cleaned_count)
899                 adapter->alloc_rx_buf(adapter, cleaned_count);
900
901         adapter->total_rx_bytes += total_rx_bytes;
902         adapter->total_rx_packets += total_rx_packets;
903         netdev->stats.rx_bytes += total_rx_bytes;
904         netdev->stats.rx_packets += total_rx_packets;
905         return cleaned;
906 }
907
908 static void e1000_put_txbuf(struct e1000_adapter *adapter,
909                              struct e1000_buffer *buffer_info)
910 {
911         if (buffer_info->dma) {
912                 if (buffer_info->mapped_as_page)
913                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
914                                        buffer_info->length, DMA_TO_DEVICE);
915                 else
916                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
917                                          buffer_info->length, DMA_TO_DEVICE);
918                 buffer_info->dma = 0;
919         }
920         if (buffer_info->skb) {
921                 dev_kfree_skb_any(buffer_info->skb);
922                 buffer_info->skb = NULL;
923         }
924         buffer_info->time_stamp = 0;
925 }
926
927 static void e1000_print_hw_hang(struct work_struct *work)
928 {
929         struct e1000_adapter *adapter = container_of(work,
930                                                      struct e1000_adapter,
931                                                      print_hang_task);
932         struct e1000_ring *tx_ring = adapter->tx_ring;
933         unsigned int i = tx_ring->next_to_clean;
934         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
935         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
936         struct e1000_hw *hw = &adapter->hw;
937         u16 phy_status, phy_1000t_status, phy_ext_status;
938         u16 pci_status;
939
940         if (test_bit(__E1000_DOWN, &adapter->state))
941                 return;
942
943         e1e_rphy(hw, PHY_STATUS, &phy_status);
944         e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
945         e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
946
947         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
948
949         /* detected Hardware unit hang */
950         e_err("Detected Hardware Unit Hang:\n"
951               "  TDH                  <%x>\n"
952               "  TDT                  <%x>\n"
953               "  next_to_use          <%x>\n"
954               "  next_to_clean        <%x>\n"
955               "buffer_info[next_to_clean]:\n"
956               "  time_stamp           <%lx>\n"
957               "  next_to_watch        <%x>\n"
958               "  jiffies              <%lx>\n"
959               "  next_to_watch.status <%x>\n"
960               "MAC Status             <%x>\n"
961               "PHY Status             <%x>\n"
962               "PHY 1000BASE-T Status  <%x>\n"
963               "PHY Extended Status    <%x>\n"
964               "PCI Status             <%x>\n",
965               readl(adapter->hw.hw_addr + tx_ring->head),
966               readl(adapter->hw.hw_addr + tx_ring->tail),
967               tx_ring->next_to_use,
968               tx_ring->next_to_clean,
969               tx_ring->buffer_info[eop].time_stamp,
970               eop,
971               jiffies,
972               eop_desc->upper.fields.status,
973               er32(STATUS),
974               phy_status,
975               phy_1000t_status,
976               phy_ext_status,
977               pci_status);
978 }
979
980 /**
981  * e1000_clean_tx_irq - Reclaim resources after transmit completes
982  * @adapter: board private structure
983  *
984  * the return value indicates whether actual cleaning was done, there
985  * is no guarantee that everything was cleaned
986  **/
987 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
988 {
989         struct net_device *netdev = adapter->netdev;
990         struct e1000_hw *hw = &adapter->hw;
991         struct e1000_ring *tx_ring = adapter->tx_ring;
992         struct e1000_tx_desc *tx_desc, *eop_desc;
993         struct e1000_buffer *buffer_info;
994         unsigned int i, eop;
995         unsigned int count = 0;
996         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
997
998         i = tx_ring->next_to_clean;
999         eop = tx_ring->buffer_info[i].next_to_watch;
1000         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1001
1002         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1003                (count < tx_ring->count)) {
1004                 bool cleaned = false;
1005                 rmb(); /* read buffer_info after eop_desc */
1006                 for (; !cleaned; count++) {
1007                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1008                         buffer_info = &tx_ring->buffer_info[i];
1009                         cleaned = (i == eop);
1010
1011                         if (cleaned) {
1012                                 total_tx_packets += buffer_info->segs;
1013                                 total_tx_bytes += buffer_info->bytecount;
1014                         }
1015
1016                         e1000_put_txbuf(adapter, buffer_info);
1017                         tx_desc->upper.data = 0;
1018
1019                         i++;
1020                         if (i == tx_ring->count)
1021                                 i = 0;
1022                 }
1023
1024                 if (i == tx_ring->next_to_use)
1025                         break;
1026                 eop = tx_ring->buffer_info[i].next_to_watch;
1027                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1028         }
1029
1030         tx_ring->next_to_clean = i;
1031
1032 #define TX_WAKE_THRESHOLD 32
1033         if (count && netif_carrier_ok(netdev) &&
1034             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1035                 /* Make sure that anybody stopping the queue after this
1036                  * sees the new next_to_clean.
1037                  */
1038                 smp_mb();
1039
1040                 if (netif_queue_stopped(netdev) &&
1041                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1042                         netif_wake_queue(netdev);
1043                         ++adapter->restart_queue;
1044                 }
1045         }
1046
1047         if (adapter->detect_tx_hung) {
1048                 /*
1049                  * Detect a transmit hang in hardware, this serializes the
1050                  * check with the clearing of time_stamp and movement of i
1051                  */
1052                 adapter->detect_tx_hung = 0;
1053                 if (tx_ring->buffer_info[i].time_stamp &&
1054                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1055                                + (adapter->tx_timeout_factor * HZ)) &&
1056                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1057                         schedule_work(&adapter->print_hang_task);
1058                         netif_stop_queue(netdev);
1059                 }
1060         }
1061         adapter->total_tx_bytes += total_tx_bytes;
1062         adapter->total_tx_packets += total_tx_packets;
1063         netdev->stats.tx_bytes += total_tx_bytes;
1064         netdev->stats.tx_packets += total_tx_packets;
1065         return count < tx_ring->count;
1066 }
1067
1068 /**
1069  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1070  * @adapter: board private structure
1071  *
1072  * the return value indicates whether actual cleaning was done, there
1073  * is no guarantee that everything was cleaned
1074  **/
1075 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
1076                                   int *work_done, int work_to_do)
1077 {
1078         struct e1000_hw *hw = &adapter->hw;
1079         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1080         struct net_device *netdev = adapter->netdev;
1081         struct pci_dev *pdev = adapter->pdev;
1082         struct e1000_ring *rx_ring = adapter->rx_ring;
1083         struct e1000_buffer *buffer_info, *next_buffer;
1084         struct e1000_ps_page *ps_page;
1085         struct sk_buff *skb;
1086         unsigned int i, j;
1087         u32 length, staterr;
1088         int cleaned_count = 0;
1089         bool cleaned = 0;
1090         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1091
1092         i = rx_ring->next_to_clean;
1093         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1094         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1095         buffer_info = &rx_ring->buffer_info[i];
1096
1097         while (staterr & E1000_RXD_STAT_DD) {
1098                 if (*work_done >= work_to_do)
1099                         break;
1100                 (*work_done)++;
1101                 skb = buffer_info->skb;
1102                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1103
1104                 /* in the packet split case this is header only */
1105                 prefetch(skb->data - NET_IP_ALIGN);
1106
1107                 i++;
1108                 if (i == rx_ring->count)
1109                         i = 0;
1110                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1111                 prefetch(next_rxd);
1112
1113                 next_buffer = &rx_ring->buffer_info[i];
1114
1115                 cleaned = 1;
1116                 cleaned_count++;
1117                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1118                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1119                 buffer_info->dma = 0;
1120
1121                 /* see !EOP comment in other Rx routine */
1122                 if (!(staterr & E1000_RXD_STAT_EOP))
1123                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1124
1125                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1126                         e_dbg("Packet Split buffers didn't pick up the full "
1127                               "packet\n");
1128                         dev_kfree_skb_irq(skb);
1129                         if (staterr & E1000_RXD_STAT_EOP)
1130                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1131                         goto next_desc;
1132                 }
1133
1134                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
1135                         dev_kfree_skb_irq(skb);
1136                         goto next_desc;
1137                 }
1138
1139                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1140
1141                 if (!length) {
1142                         e_dbg("Last part of the packet spanning multiple "
1143                               "descriptors\n");
1144                         dev_kfree_skb_irq(skb);
1145                         goto next_desc;
1146                 }
1147
1148                 /* Good Receive */
1149                 skb_put(skb, length);
1150
1151                 {
1152                 /*
1153                  * this looks ugly, but it seems compiler issues make it
1154                  * more efficient than reusing j
1155                  */
1156                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1157
1158                 /*
1159                  * page alloc/put takes too long and effects small packet
1160                  * throughput, so unsplit small packets and save the alloc/put
1161                  * only valid in softirq (napi) context to call kmap_*
1162                  */
1163                 if (l1 && (l1 <= copybreak) &&
1164                     ((length + l1) <= adapter->rx_ps_bsize0)) {
1165                         u8 *vaddr;
1166
1167                         ps_page = &buffer_info->ps_pages[0];
1168
1169                         /*
1170                          * there is no documentation about how to call
1171                          * kmap_atomic, so we can't hold the mapping
1172                          * very long
1173                          */
1174                         dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
1175                                                 PAGE_SIZE, DMA_FROM_DEVICE);
1176                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
1177                         memcpy(skb_tail_pointer(skb), vaddr, l1);
1178                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1179                         dma_sync_single_for_device(&pdev->dev, ps_page->dma,
1180                                                    PAGE_SIZE, DMA_FROM_DEVICE);
1181
1182                         /* remove the CRC */
1183                         if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1184                                 l1 -= 4;
1185
1186                         skb_put(skb, l1);
1187                         goto copydone;
1188                 } /* if */
1189                 }
1190
1191                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1192                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1193                         if (!length)
1194                                 break;
1195
1196                         ps_page = &buffer_info->ps_pages[j];
1197                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1198                                        DMA_FROM_DEVICE);
1199                         ps_page->dma = 0;
1200                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1201                         ps_page->page = NULL;
1202                         skb->len += length;
1203                         skb->data_len += length;
1204                         skb->truesize += length;
1205                 }
1206
1207                 /* strip the ethernet crc, problem is we're using pages now so
1208                  * this whole operation can get a little cpu intensive
1209                  */
1210                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1211                         pskb_trim(skb, skb->len - 4);
1212
1213 copydone:
1214                 total_rx_bytes += skb->len;
1215                 total_rx_packets++;
1216
1217                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
1218                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
1219
1220                 if (rx_desc->wb.upper.header_status &
1221                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1222                         adapter->rx_hdr_split++;
1223
1224                 e1000_receive_skb(adapter, netdev, skb,
1225                                   staterr, rx_desc->wb.middle.vlan);
1226
1227 next_desc:
1228                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1229                 buffer_info->skb = NULL;
1230
1231                 /* return some buffers to hardware, one at a time is too slow */
1232                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1233                         adapter->alloc_rx_buf(adapter, cleaned_count);
1234                         cleaned_count = 0;
1235                 }
1236
1237                 /* use prefetched values */
1238                 rx_desc = next_rxd;
1239                 buffer_info = next_buffer;
1240
1241                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1242         }
1243         rx_ring->next_to_clean = i;
1244
1245         cleaned_count = e1000_desc_unused(rx_ring);
1246         if (cleaned_count)
1247                 adapter->alloc_rx_buf(adapter, cleaned_count);
1248
1249         adapter->total_rx_bytes += total_rx_bytes;
1250         adapter->total_rx_packets += total_rx_packets;
1251         netdev->stats.rx_bytes += total_rx_bytes;
1252         netdev->stats.rx_packets += total_rx_packets;
1253         return cleaned;
1254 }
1255
1256 /**
1257  * e1000_consume_page - helper function
1258  **/
1259 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1260                                u16 length)
1261 {
1262         bi->page = NULL;
1263         skb->len += length;
1264         skb->data_len += length;
1265         skb->truesize += length;
1266 }
1267
1268 /**
1269  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1270  * @adapter: board private structure
1271  *
1272  * the return value indicates whether actual cleaning was done, there
1273  * is no guarantee that everything was cleaned
1274  **/
1275
1276 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
1277                                      int *work_done, int work_to_do)
1278 {
1279         struct net_device *netdev = adapter->netdev;
1280         struct pci_dev *pdev = adapter->pdev;
1281         struct e1000_ring *rx_ring = adapter->rx_ring;
1282         struct e1000_rx_desc *rx_desc, *next_rxd;
1283         struct e1000_buffer *buffer_info, *next_buffer;
1284         u32 length;
1285         unsigned int i;
1286         int cleaned_count = 0;
1287         bool cleaned = false;
1288         unsigned int total_rx_bytes=0, total_rx_packets=0;
1289
1290         i = rx_ring->next_to_clean;
1291         rx_desc = E1000_RX_DESC(*rx_ring, i);
1292         buffer_info = &rx_ring->buffer_info[i];
1293
1294         while (rx_desc->status & E1000_RXD_STAT_DD) {
1295                 struct sk_buff *skb;
1296                 u8 status;
1297
1298                 if (*work_done >= work_to_do)
1299                         break;
1300                 (*work_done)++;
1301                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1302
1303                 status = rx_desc->status;
1304                 skb = buffer_info->skb;
1305                 buffer_info->skb = NULL;
1306
1307                 ++i;
1308                 if (i == rx_ring->count)
1309                         i = 0;
1310                 next_rxd = E1000_RX_DESC(*rx_ring, i);
1311                 prefetch(next_rxd);
1312
1313                 next_buffer = &rx_ring->buffer_info[i];
1314
1315                 cleaned = true;
1316                 cleaned_count++;
1317                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1318                                DMA_FROM_DEVICE);
1319                 buffer_info->dma = 0;
1320
1321                 length = le16_to_cpu(rx_desc->length);
1322
1323                 /* errors is only valid for DD + EOP descriptors */
1324                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
1325                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
1326                                 /* recycle both page and skb */
1327                                 buffer_info->skb = skb;
1328                                 /* an error means any chain goes out the window
1329                                  * too */
1330                                 if (rx_ring->rx_skb_top)
1331                                         dev_kfree_skb(rx_ring->rx_skb_top);
1332                                 rx_ring->rx_skb_top = NULL;
1333                                 goto next_desc;
1334                 }
1335
1336 #define rxtop (rx_ring->rx_skb_top)
1337                 if (!(status & E1000_RXD_STAT_EOP)) {
1338                         /* this descriptor is only the beginning (or middle) */
1339                         if (!rxtop) {
1340                                 /* this is the beginning of a chain */
1341                                 rxtop = skb;
1342                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1343                                                    0, length);
1344                         } else {
1345                                 /* this is the middle of a chain */
1346                                 skb_fill_page_desc(rxtop,
1347                                     skb_shinfo(rxtop)->nr_frags,
1348                                     buffer_info->page, 0, length);
1349                                 /* re-use the skb, only consumed the page */
1350                                 buffer_info->skb = skb;
1351                         }
1352                         e1000_consume_page(buffer_info, rxtop, length);
1353                         goto next_desc;
1354                 } else {
1355                         if (rxtop) {
1356                                 /* end of the chain */
1357                                 skb_fill_page_desc(rxtop,
1358                                     skb_shinfo(rxtop)->nr_frags,
1359                                     buffer_info->page, 0, length);
1360                                 /* re-use the current skb, we only consumed the
1361                                  * page */
1362                                 buffer_info->skb = skb;
1363                                 skb = rxtop;
1364                                 rxtop = NULL;
1365                                 e1000_consume_page(buffer_info, skb, length);
1366                         } else {
1367                                 /* no chain, got EOP, this buf is the packet
1368                                  * copybreak to save the put_page/alloc_page */
1369                                 if (length <= copybreak &&
1370                                     skb_tailroom(skb) >= length) {
1371                                         u8 *vaddr;
1372                                         vaddr = kmap_atomic(buffer_info->page,
1373                                                            KM_SKB_DATA_SOFTIRQ);
1374                                         memcpy(skb_tail_pointer(skb), vaddr,
1375                                                length);
1376                                         kunmap_atomic(vaddr,
1377                                                       KM_SKB_DATA_SOFTIRQ);
1378                                         /* re-use the page, so don't erase
1379                                          * buffer_info->page */
1380                                         skb_put(skb, length);
1381                                 } else {
1382                                         skb_fill_page_desc(skb, 0,
1383                                                            buffer_info->page, 0,
1384                                                            length);
1385                                         e1000_consume_page(buffer_info, skb,
1386                                                            length);
1387                                 }
1388                         }
1389                 }
1390
1391                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1392                 e1000_rx_checksum(adapter,
1393                                   (u32)(status) |
1394                                   ((u32)(rx_desc->errors) << 24),
1395                                   le16_to_cpu(rx_desc->csum), skb);
1396
1397                 /* probably a little skewed due to removing CRC */
1398                 total_rx_bytes += skb->len;
1399                 total_rx_packets++;
1400
1401                 /* eth type trans needs skb->data to point to something */
1402                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1403                         e_err("pskb_may_pull failed.\n");
1404                         dev_kfree_skb(skb);
1405                         goto next_desc;
1406                 }
1407
1408                 e1000_receive_skb(adapter, netdev, skb, status,
1409                                   rx_desc->special);
1410
1411 next_desc:
1412                 rx_desc->status = 0;
1413
1414                 /* return some buffers to hardware, one at a time is too slow */
1415                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1416                         adapter->alloc_rx_buf(adapter, cleaned_count);
1417                         cleaned_count = 0;
1418                 }
1419
1420                 /* use prefetched values */
1421                 rx_desc = next_rxd;
1422                 buffer_info = next_buffer;
1423         }
1424         rx_ring->next_to_clean = i;
1425
1426         cleaned_count = e1000_desc_unused(rx_ring);
1427         if (cleaned_count)
1428                 adapter->alloc_rx_buf(adapter, cleaned_count);
1429
1430         adapter->total_rx_bytes += total_rx_bytes;
1431         adapter->total_rx_packets += total_rx_packets;
1432         netdev->stats.rx_bytes += total_rx_bytes;
1433         netdev->stats.rx_packets += total_rx_packets;
1434         return cleaned;
1435 }
1436
1437 /**
1438  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1439  * @adapter: board private structure
1440  **/
1441 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1442 {
1443         struct e1000_ring *rx_ring = adapter->rx_ring;
1444         struct e1000_buffer *buffer_info;
1445         struct e1000_ps_page *ps_page;
1446         struct pci_dev *pdev = adapter->pdev;
1447         unsigned int i, j;
1448
1449         /* Free all the Rx ring sk_buffs */
1450         for (i = 0; i < rx_ring->count; i++) {
1451                 buffer_info = &rx_ring->buffer_info[i];
1452                 if (buffer_info->dma) {
1453                         if (adapter->clean_rx == e1000_clean_rx_irq)
1454                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1455                                                  adapter->rx_buffer_len,
1456                                                  DMA_FROM_DEVICE);
1457                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1458                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1459                                                PAGE_SIZE,
1460                                                DMA_FROM_DEVICE);
1461                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1462                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1463                                                  adapter->rx_ps_bsize0,
1464                                                  DMA_FROM_DEVICE);
1465                         buffer_info->dma = 0;
1466                 }
1467
1468                 if (buffer_info->page) {
1469                         put_page(buffer_info->page);
1470                         buffer_info->page = NULL;
1471                 }
1472
1473                 if (buffer_info->skb) {
1474                         dev_kfree_skb(buffer_info->skb);
1475                         buffer_info->skb = NULL;
1476                 }
1477
1478                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1479                         ps_page = &buffer_info->ps_pages[j];
1480                         if (!ps_page->page)
1481                                 break;
1482                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1483                                        DMA_FROM_DEVICE);
1484                         ps_page->dma = 0;
1485                         put_page(ps_page->page);
1486                         ps_page->page = NULL;
1487                 }
1488         }
1489
1490         /* there also may be some cached data from a chained receive */
1491         if (rx_ring->rx_skb_top) {
1492                 dev_kfree_skb(rx_ring->rx_skb_top);
1493                 rx_ring->rx_skb_top = NULL;
1494         }
1495
1496         /* Zero out the descriptor ring */
1497         memset(rx_ring->desc, 0, rx_ring->size);
1498
1499         rx_ring->next_to_clean = 0;
1500         rx_ring->next_to_use = 0;
1501         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1502
1503         writel(0, adapter->hw.hw_addr + rx_ring->head);
1504         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1505 }
1506
1507 static void e1000e_downshift_workaround(struct work_struct *work)
1508 {
1509         struct e1000_adapter *adapter = container_of(work,
1510                                         struct e1000_adapter, downshift_task);
1511
1512         if (test_bit(__E1000_DOWN, &adapter->state))
1513                 return;
1514
1515         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1516 }
1517
1518 /**
1519  * e1000_intr_msi - Interrupt Handler
1520  * @irq: interrupt number
1521  * @data: pointer to a network interface device structure
1522  **/
1523 static irqreturn_t e1000_intr_msi(int irq, void *data)
1524 {
1525         struct net_device *netdev = data;
1526         struct e1000_adapter *adapter = netdev_priv(netdev);
1527         struct e1000_hw *hw = &adapter->hw;
1528         u32 icr = er32(ICR);
1529
1530         /*
1531          * read ICR disables interrupts using IAM
1532          */
1533
1534         if (icr & E1000_ICR_LSC) {
1535                 hw->mac.get_link_status = 1;
1536                 /*
1537                  * ICH8 workaround-- Call gig speed drop workaround on cable
1538                  * disconnect (LSC) before accessing any PHY registers
1539                  */
1540                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1541                     (!(er32(STATUS) & E1000_STATUS_LU)))
1542                         schedule_work(&adapter->downshift_task);
1543
1544                 /*
1545                  * 80003ES2LAN workaround-- For packet buffer work-around on
1546                  * link down event; disable receives here in the ISR and reset
1547                  * adapter in watchdog
1548                  */
1549                 if (netif_carrier_ok(netdev) &&
1550                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1551                         /* disable receives */
1552                         u32 rctl = er32(RCTL);
1553                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1554                         adapter->flags |= FLAG_RX_RESTART_NOW;
1555                 }
1556                 /* guard against interrupt when we're going down */
1557                 if (!test_bit(__E1000_DOWN, &adapter->state))
1558                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1559         }
1560
1561         if (napi_schedule_prep(&adapter->napi)) {
1562                 adapter->total_tx_bytes = 0;
1563                 adapter->total_tx_packets = 0;
1564                 adapter->total_rx_bytes = 0;
1565                 adapter->total_rx_packets = 0;
1566                 __napi_schedule(&adapter->napi);
1567         }
1568
1569         return IRQ_HANDLED;
1570 }
1571
1572 /**
1573  * e1000_intr - Interrupt Handler
1574  * @irq: interrupt number
1575  * @data: pointer to a network interface device structure
1576  **/
1577 static irqreturn_t e1000_intr(int irq, void *data)
1578 {
1579         struct net_device *netdev = data;
1580         struct e1000_adapter *adapter = netdev_priv(netdev);
1581         struct e1000_hw *hw = &adapter->hw;
1582         u32 rctl, icr = er32(ICR);
1583
1584         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1585                 return IRQ_NONE;  /* Not our interrupt */
1586
1587         /*
1588          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1589          * not set, then the adapter didn't send an interrupt
1590          */
1591         if (!(icr & E1000_ICR_INT_ASSERTED))
1592                 return IRQ_NONE;
1593
1594         /*
1595          * Interrupt Auto-Mask...upon reading ICR,
1596          * interrupts are masked.  No need for the
1597          * IMC write
1598          */
1599
1600         if (icr & E1000_ICR_LSC) {
1601                 hw->mac.get_link_status = 1;
1602                 /*
1603                  * ICH8 workaround-- Call gig speed drop workaround on cable
1604                  * disconnect (LSC) before accessing any PHY registers
1605                  */
1606                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1607                     (!(er32(STATUS) & E1000_STATUS_LU)))
1608                         schedule_work(&adapter->downshift_task);
1609
1610                 /*
1611                  * 80003ES2LAN workaround--
1612                  * For packet buffer work-around on link down event;
1613                  * disable receives here in the ISR and
1614                  * reset adapter in watchdog
1615                  */
1616                 if (netif_carrier_ok(netdev) &&
1617                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1618                         /* disable receives */
1619                         rctl = er32(RCTL);
1620                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1621                         adapter->flags |= FLAG_RX_RESTART_NOW;
1622                 }
1623                 /* guard against interrupt when we're going down */
1624                 if (!test_bit(__E1000_DOWN, &adapter->state))
1625                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1626         }
1627
1628         if (napi_schedule_prep(&adapter->napi)) {
1629                 adapter->total_tx_bytes = 0;
1630                 adapter->total_tx_packets = 0;
1631                 adapter->total_rx_bytes = 0;
1632                 adapter->total_rx_packets = 0;
1633                 __napi_schedule(&adapter->napi);
1634         }
1635
1636         return IRQ_HANDLED;
1637 }
1638
1639 static irqreturn_t e1000_msix_other(int irq, void *data)
1640 {
1641         struct net_device *netdev = data;
1642         struct e1000_adapter *adapter = netdev_priv(netdev);
1643         struct e1000_hw *hw = &adapter->hw;
1644         u32 icr = er32(ICR);
1645
1646         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1647                 if (!test_bit(__E1000_DOWN, &adapter->state))
1648                         ew32(IMS, E1000_IMS_OTHER);
1649                 return IRQ_NONE;
1650         }
1651
1652         if (icr & adapter->eiac_mask)
1653                 ew32(ICS, (icr & adapter->eiac_mask));
1654
1655         if (icr & E1000_ICR_OTHER) {
1656                 if (!(icr & E1000_ICR_LSC))
1657                         goto no_link_interrupt;
1658                 hw->mac.get_link_status = 1;
1659                 /* guard against interrupt when we're going down */
1660                 if (!test_bit(__E1000_DOWN, &adapter->state))
1661                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1662         }
1663
1664 no_link_interrupt:
1665         if (!test_bit(__E1000_DOWN, &adapter->state))
1666                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1667
1668         return IRQ_HANDLED;
1669 }
1670
1671
1672 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1673 {
1674         struct net_device *netdev = data;
1675         struct e1000_adapter *adapter = netdev_priv(netdev);
1676         struct e1000_hw *hw = &adapter->hw;
1677         struct e1000_ring *tx_ring = adapter->tx_ring;
1678
1679
1680         adapter->total_tx_bytes = 0;
1681         adapter->total_tx_packets = 0;
1682
1683         if (!e1000_clean_tx_irq(adapter))
1684                 /* Ring was not completely cleaned, so fire another interrupt */
1685                 ew32(ICS, tx_ring->ims_val);
1686
1687         return IRQ_HANDLED;
1688 }
1689
1690 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1691 {
1692         struct net_device *netdev = data;
1693         struct e1000_adapter *adapter = netdev_priv(netdev);
1694
1695         /* Write the ITR value calculated at the end of the
1696          * previous interrupt.
1697          */
1698         if (adapter->rx_ring->set_itr) {
1699                 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1700                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1701                 adapter->rx_ring->set_itr = 0;
1702         }
1703
1704         if (napi_schedule_prep(&adapter->napi)) {
1705                 adapter->total_rx_bytes = 0;
1706                 adapter->total_rx_packets = 0;
1707                 __napi_schedule(&adapter->napi);
1708         }
1709         return IRQ_HANDLED;
1710 }
1711
1712 /**
1713  * e1000_configure_msix - Configure MSI-X hardware
1714  *
1715  * e1000_configure_msix sets up the hardware to properly
1716  * generate MSI-X interrupts.
1717  **/
1718 static void e1000_configure_msix(struct e1000_adapter *adapter)
1719 {
1720         struct e1000_hw *hw = &adapter->hw;
1721         struct e1000_ring *rx_ring = adapter->rx_ring;
1722         struct e1000_ring *tx_ring = adapter->tx_ring;
1723         int vector = 0;
1724         u32 ctrl_ext, ivar = 0;
1725
1726         adapter->eiac_mask = 0;
1727
1728         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1729         if (hw->mac.type == e1000_82574) {
1730                 u32 rfctl = er32(RFCTL);
1731                 rfctl |= E1000_RFCTL_ACK_DIS;
1732                 ew32(RFCTL, rfctl);
1733         }
1734
1735 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1736         /* Configure Rx vector */
1737         rx_ring->ims_val = E1000_IMS_RXQ0;
1738         adapter->eiac_mask |= rx_ring->ims_val;
1739         if (rx_ring->itr_val)
1740                 writel(1000000000 / (rx_ring->itr_val * 256),
1741                        hw->hw_addr + rx_ring->itr_register);
1742         else
1743                 writel(1, hw->hw_addr + rx_ring->itr_register);
1744         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1745
1746         /* Configure Tx vector */
1747         tx_ring->ims_val = E1000_IMS_TXQ0;
1748         vector++;
1749         if (tx_ring->itr_val)
1750                 writel(1000000000 / (tx_ring->itr_val * 256),
1751                        hw->hw_addr + tx_ring->itr_register);
1752         else
1753                 writel(1, hw->hw_addr + tx_ring->itr_register);
1754         adapter->eiac_mask |= tx_ring->ims_val;
1755         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1756
1757         /* set vector for Other Causes, e.g. link changes */
1758         vector++;
1759         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1760         if (rx_ring->itr_val)
1761                 writel(1000000000 / (rx_ring->itr_val * 256),
1762                        hw->hw_addr + E1000_EITR_82574(vector));
1763         else
1764                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1765
1766         /* Cause Tx interrupts on every write back */
1767         ivar |= (1 << 31);
1768
1769         ew32(IVAR, ivar);
1770
1771         /* enable MSI-X PBA support */
1772         ctrl_ext = er32(CTRL_EXT);
1773         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1774
1775         /* Auto-Mask Other interrupts upon ICR read */
1776 #define E1000_EIAC_MASK_82574   0x01F00000
1777         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1778         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1779         ew32(CTRL_EXT, ctrl_ext);
1780         e1e_flush();
1781 }
1782
1783 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1784 {
1785         if (adapter->msix_entries) {
1786                 pci_disable_msix(adapter->pdev);
1787                 kfree(adapter->msix_entries);
1788                 adapter->msix_entries = NULL;
1789         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1790                 pci_disable_msi(adapter->pdev);
1791                 adapter->flags &= ~FLAG_MSI_ENABLED;
1792         }
1793 }
1794
1795 /**
1796  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1797  *
1798  * Attempt to configure interrupts using the best available
1799  * capabilities of the hardware and kernel.
1800  **/
1801 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1802 {
1803         int err;
1804         int i;
1805
1806         switch (adapter->int_mode) {
1807         case E1000E_INT_MODE_MSIX:
1808                 if (adapter->flags & FLAG_HAS_MSIX) {
1809                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1810                         adapter->msix_entries = kcalloc(adapter->num_vectors,
1811                                                       sizeof(struct msix_entry),
1812                                                       GFP_KERNEL);
1813                         if (adapter->msix_entries) {
1814                                 for (i = 0; i < adapter->num_vectors; i++)
1815                                         adapter->msix_entries[i].entry = i;
1816
1817                                 err = pci_enable_msix(adapter->pdev,
1818                                                       adapter->msix_entries,
1819                                                       adapter->num_vectors);
1820                                 if (err == 0)
1821                                         return;
1822                         }
1823                         /* MSI-X failed, so fall through and try MSI */
1824                         e_err("Failed to initialize MSI-X interrupts.  "
1825                               "Falling back to MSI interrupts.\n");
1826                         e1000e_reset_interrupt_capability(adapter);
1827                 }
1828                 adapter->int_mode = E1000E_INT_MODE_MSI;
1829                 /* Fall through */
1830         case E1000E_INT_MODE_MSI:
1831                 if (!pci_enable_msi(adapter->pdev)) {
1832                         adapter->flags |= FLAG_MSI_ENABLED;
1833                 } else {
1834                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1835                         e_err("Failed to initialize MSI interrupts.  Falling "
1836                               "back to legacy interrupts.\n");
1837                 }
1838                 /* Fall through */
1839         case E1000E_INT_MODE_LEGACY:
1840                 /* Don't do anything; this is the system default */
1841                 break;
1842         }
1843
1844         /* store the number of vectors being used */
1845         adapter->num_vectors = 1;
1846 }
1847
1848 /**
1849  * e1000_request_msix - Initialize MSI-X interrupts
1850  *
1851  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1852  * kernel.
1853  **/
1854 static int e1000_request_msix(struct e1000_adapter *adapter)
1855 {
1856         struct net_device *netdev = adapter->netdev;
1857         int err = 0, vector = 0;
1858
1859         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1860                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1861         else
1862                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1863         err = request_irq(adapter->msix_entries[vector].vector,
1864                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1865                           netdev);
1866         if (err)
1867                 goto out;
1868         adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1869         adapter->rx_ring->itr_val = adapter->itr;
1870         vector++;
1871
1872         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1873                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1874         else
1875                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1876         err = request_irq(adapter->msix_entries[vector].vector,
1877                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1878                           netdev);
1879         if (err)
1880                 goto out;
1881         adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1882         adapter->tx_ring->itr_val = adapter->itr;
1883         vector++;
1884
1885         err = request_irq(adapter->msix_entries[vector].vector,
1886                           e1000_msix_other, 0, netdev->name, netdev);
1887         if (err)
1888                 goto out;
1889
1890         e1000_configure_msix(adapter);
1891         return 0;
1892 out:
1893         return err;
1894 }
1895
1896 /**
1897  * e1000_request_irq - initialize interrupts
1898  *
1899  * Attempts to configure interrupts using the best available
1900  * capabilities of the hardware and kernel.
1901  **/
1902 static int e1000_request_irq(struct e1000_adapter *adapter)
1903 {
1904         struct net_device *netdev = adapter->netdev;
1905         int err;
1906
1907         if (adapter->msix_entries) {
1908                 err = e1000_request_msix(adapter);
1909                 if (!err)
1910                         return err;
1911                 /* fall back to MSI */
1912                 e1000e_reset_interrupt_capability(adapter);
1913                 adapter->int_mode = E1000E_INT_MODE_MSI;
1914                 e1000e_set_interrupt_capability(adapter);
1915         }
1916         if (adapter->flags & FLAG_MSI_ENABLED) {
1917                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1918                                   netdev->name, netdev);
1919                 if (!err)
1920                         return err;
1921
1922                 /* fall back to legacy interrupt */
1923                 e1000e_reset_interrupt_capability(adapter);
1924                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1925         }
1926
1927         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1928                           netdev->name, netdev);
1929         if (err)
1930                 e_err("Unable to allocate interrupt, Error: %d\n", err);
1931
1932         return err;
1933 }
1934
1935 static void e1000_free_irq(struct e1000_adapter *adapter)
1936 {
1937         struct net_device *netdev = adapter->netdev;
1938
1939         if (adapter->msix_entries) {
1940                 int vector = 0;
1941
1942                 free_irq(adapter->msix_entries[vector].vector, netdev);
1943                 vector++;
1944
1945                 free_irq(adapter->msix_entries[vector].vector, netdev);
1946                 vector++;
1947
1948                 /* Other Causes interrupt vector */
1949                 free_irq(adapter->msix_entries[vector].vector, netdev);
1950                 return;
1951         }
1952
1953         free_irq(adapter->pdev->irq, netdev);
1954 }
1955
1956 /**
1957  * e1000_irq_disable - Mask off interrupt generation on the NIC
1958  **/
1959 static void e1000_irq_disable(struct e1000_adapter *adapter)
1960 {
1961         struct e1000_hw *hw = &adapter->hw;
1962
1963         ew32(IMC, ~0);
1964         if (adapter->msix_entries)
1965                 ew32(EIAC_82574, 0);
1966         e1e_flush();
1967
1968         if (adapter->msix_entries) {
1969                 int i;
1970                 for (i = 0; i < adapter->num_vectors; i++)
1971                         synchronize_irq(adapter->msix_entries[i].vector);
1972         } else {
1973                 synchronize_irq(adapter->pdev->irq);
1974         }
1975 }
1976
1977 /**
1978  * e1000_irq_enable - Enable default interrupt generation settings
1979  **/
1980 static void e1000_irq_enable(struct e1000_adapter *adapter)
1981 {
1982         struct e1000_hw *hw = &adapter->hw;
1983
1984         if (adapter->msix_entries) {
1985                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1986                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1987         } else {
1988                 ew32(IMS, IMS_ENABLE_MASK);
1989         }
1990         e1e_flush();
1991 }
1992
1993 /**
1994  * e1000e_get_hw_control - get control of the h/w from f/w
1995  * @adapter: address of board private structure
1996  *
1997  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1998  * For ASF and Pass Through versions of f/w this means that
1999  * the driver is loaded. For AMT version (only with 82573)
2000  * of the f/w this means that the network i/f is open.
2001  **/
2002 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2003 {
2004         struct e1000_hw *hw = &adapter->hw;
2005         u32 ctrl_ext;
2006         u32 swsm;
2007
2008         /* Let firmware know the driver has taken over */
2009         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2010                 swsm = er32(SWSM);
2011                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2012         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2013                 ctrl_ext = er32(CTRL_EXT);
2014                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2015         }
2016 }
2017
2018 /**
2019  * e1000e_release_hw_control - release control of the h/w to f/w
2020  * @adapter: address of board private structure
2021  *
2022  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2023  * For ASF and Pass Through versions of f/w this means that the
2024  * driver is no longer loaded. For AMT version (only with 82573) i
2025  * of the f/w this means that the network i/f is closed.
2026  *
2027  **/
2028 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2029 {
2030         struct e1000_hw *hw = &adapter->hw;
2031         u32 ctrl_ext;
2032         u32 swsm;
2033
2034         /* Let firmware taken over control of h/w */
2035         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2036                 swsm = er32(SWSM);
2037                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2038         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2039                 ctrl_ext = er32(CTRL_EXT);
2040                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2041         }
2042 }
2043
2044 /**
2045  * @e1000_alloc_ring - allocate memory for a ring structure
2046  **/
2047 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2048                                 struct e1000_ring *ring)
2049 {
2050         struct pci_dev *pdev = adapter->pdev;
2051
2052         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2053                                         GFP_KERNEL);
2054         if (!ring->desc)
2055                 return -ENOMEM;
2056
2057         return 0;
2058 }
2059
2060 /**
2061  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2062  * @adapter: board private structure
2063  *
2064  * Return 0 on success, negative on failure
2065  **/
2066 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
2067 {
2068         struct e1000_ring *tx_ring = adapter->tx_ring;
2069         int err = -ENOMEM, size;
2070
2071         size = sizeof(struct e1000_buffer) * tx_ring->count;
2072         tx_ring->buffer_info = vzalloc(size);
2073         if (!tx_ring->buffer_info)
2074                 goto err;
2075
2076         /* round up to nearest 4K */
2077         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2078         tx_ring->size = ALIGN(tx_ring->size, 4096);
2079
2080         err = e1000_alloc_ring_dma(adapter, tx_ring);
2081         if (err)
2082                 goto err;
2083
2084         tx_ring->next_to_use = 0;
2085         tx_ring->next_to_clean = 0;
2086
2087         return 0;
2088 err:
2089         vfree(tx_ring->buffer_info);
2090         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2091         return err;
2092 }
2093
2094 /**
2095  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2096  * @adapter: board private structure
2097  *
2098  * Returns 0 on success, negative on failure
2099  **/
2100 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
2101 {
2102         struct e1000_ring *rx_ring = adapter->rx_ring;
2103         struct e1000_buffer *buffer_info;
2104         int i, size, desc_len, err = -ENOMEM;
2105
2106         size = sizeof(struct e1000_buffer) * rx_ring->count;
2107         rx_ring->buffer_info = vzalloc(size);
2108         if (!rx_ring->buffer_info)
2109                 goto err;
2110
2111         for (i = 0; i < rx_ring->count; i++) {
2112                 buffer_info = &rx_ring->buffer_info[i];
2113                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2114                                                 sizeof(struct e1000_ps_page),
2115                                                 GFP_KERNEL);
2116                 if (!buffer_info->ps_pages)
2117                         goto err_pages;
2118         }
2119
2120         desc_len = sizeof(union e1000_rx_desc_packet_split);
2121
2122         /* Round up to nearest 4K */
2123         rx_ring->size = rx_ring->count * desc_len;
2124         rx_ring->size = ALIGN(rx_ring->size, 4096);
2125
2126         err = e1000_alloc_ring_dma(adapter, rx_ring);
2127         if (err)
2128                 goto err_pages;
2129
2130         rx_ring->next_to_clean = 0;
2131         rx_ring->next_to_use = 0;
2132         rx_ring->rx_skb_top = NULL;
2133
2134         return 0;
2135
2136 err_pages:
2137         for (i = 0; i < rx_ring->count; i++) {
2138                 buffer_info = &rx_ring->buffer_info[i];
2139                 kfree(buffer_info->ps_pages);
2140         }
2141 err:
2142         vfree(rx_ring->buffer_info);
2143         e_err("Unable to allocate memory for the receive descriptor ring\n");
2144         return err;
2145 }
2146
2147 /**
2148  * e1000_clean_tx_ring - Free Tx Buffers
2149  * @adapter: board private structure
2150  **/
2151 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
2152 {
2153         struct e1000_ring *tx_ring = adapter->tx_ring;
2154         struct e1000_buffer *buffer_info;
2155         unsigned long size;
2156         unsigned int i;
2157
2158         for (i = 0; i < tx_ring->count; i++) {
2159                 buffer_info = &tx_ring->buffer_info[i];
2160                 e1000_put_txbuf(adapter, buffer_info);
2161         }
2162
2163         size = sizeof(struct e1000_buffer) * tx_ring->count;
2164         memset(tx_ring->buffer_info, 0, size);
2165
2166         memset(tx_ring->desc, 0, tx_ring->size);
2167
2168         tx_ring->next_to_use = 0;
2169         tx_ring->next_to_clean = 0;
2170
2171         writel(0, adapter->hw.hw_addr + tx_ring->head);
2172         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2173 }
2174
2175 /**
2176  * e1000e_free_tx_resources - Free Tx Resources per Queue
2177  * @adapter: board private structure
2178  *
2179  * Free all transmit software resources
2180  **/
2181 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
2182 {
2183         struct pci_dev *pdev = adapter->pdev;
2184         struct e1000_ring *tx_ring = adapter->tx_ring;
2185
2186         e1000_clean_tx_ring(adapter);
2187
2188         vfree(tx_ring->buffer_info);
2189         tx_ring->buffer_info = NULL;
2190
2191         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2192                           tx_ring->dma);
2193         tx_ring->desc = NULL;
2194 }
2195
2196 /**
2197  * e1000e_free_rx_resources - Free Rx Resources
2198  * @adapter: board private structure
2199  *
2200  * Free all receive software resources
2201  **/
2202
2203 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
2204 {
2205         struct pci_dev *pdev = adapter->pdev;
2206         struct e1000_ring *rx_ring = adapter->rx_ring;
2207         int i;
2208
2209         e1000_clean_rx_ring(adapter);
2210
2211         for (i = 0; i < rx_ring->count; i++)
2212                 kfree(rx_ring->buffer_info[i].ps_pages);
2213
2214         vfree(rx_ring->buffer_info);
2215         rx_ring->buffer_info = NULL;
2216
2217         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2218                           rx_ring->dma);
2219         rx_ring->desc = NULL;
2220 }
2221
2222 /**
2223  * e1000_update_itr - update the dynamic ITR value based on statistics
2224  * @adapter: pointer to adapter
2225  * @itr_setting: current adapter->itr
2226  * @packets: the number of packets during this measurement interval
2227  * @bytes: the number of bytes during this measurement interval
2228  *
2229  *      Stores a new ITR value based on packets and byte
2230  *      counts during the last interrupt.  The advantage of per interrupt
2231  *      computation is faster updates and more accurate ITR for the current
2232  *      traffic pattern.  Constants in this function were computed
2233  *      based on theoretical maximum wire speed and thresholds were set based
2234  *      on testing data as well as attempting to minimize response time
2235  *      while increasing bulk throughput.  This functionality is controlled
2236  *      by the InterruptThrottleRate module parameter.
2237  **/
2238 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2239                                      u16 itr_setting, int packets,
2240                                      int bytes)
2241 {
2242         unsigned int retval = itr_setting;
2243
2244         if (packets == 0)
2245                 goto update_itr_done;
2246
2247         switch (itr_setting) {
2248         case lowest_latency:
2249                 /* handle TSO and jumbo frames */
2250                 if (bytes/packets > 8000)
2251                         retval = bulk_latency;
2252                 else if ((packets < 5) && (bytes > 512))
2253                         retval = low_latency;
2254                 break;
2255         case low_latency:  /* 50 usec aka 20000 ints/s */
2256                 if (bytes > 10000) {
2257                         /* this if handles the TSO accounting */
2258                         if (bytes/packets > 8000)
2259                                 retval = bulk_latency;
2260                         else if ((packets < 10) || ((bytes/packets) > 1200))
2261                                 retval = bulk_latency;
2262                         else if ((packets > 35))
2263                                 retval = lowest_latency;
2264                 } else if (bytes/packets > 2000) {
2265                         retval = bulk_latency;
2266                 } else if (packets <= 2 && bytes < 512) {
2267                         retval = lowest_latency;
2268                 }
2269                 break;
2270         case bulk_latency: /* 250 usec aka 4000 ints/s */
2271                 if (bytes > 25000) {
2272                         if (packets > 35)
2273                                 retval = low_latency;
2274                 } else if (bytes < 6000) {
2275                         retval = low_latency;
2276                 }
2277                 break;
2278         }
2279
2280 update_itr_done:
2281         return retval;
2282 }
2283
2284 static void e1000_set_itr(struct e1000_adapter *adapter)
2285 {
2286         struct e1000_hw *hw = &adapter->hw;
2287         u16 current_itr;
2288         u32 new_itr = adapter->itr;
2289
2290         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2291         if (adapter->link_speed != SPEED_1000) {
2292                 current_itr = 0;
2293                 new_itr = 4000;
2294                 goto set_itr_now;
2295         }
2296
2297         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2298                 new_itr = 0;
2299                 goto set_itr_now;
2300         }
2301
2302         adapter->tx_itr = e1000_update_itr(adapter,
2303                                     adapter->tx_itr,
2304                                     adapter->total_tx_packets,
2305                                     adapter->total_tx_bytes);
2306         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2307         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2308                 adapter->tx_itr = low_latency;
2309
2310         adapter->rx_itr = e1000_update_itr(adapter,
2311                                     adapter->rx_itr,
2312                                     adapter->total_rx_packets,
2313                                     adapter->total_rx_bytes);
2314         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2315         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2316                 adapter->rx_itr = low_latency;
2317
2318         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2319
2320         switch (current_itr) {
2321         /* counts and packets in update_itr are dependent on these numbers */
2322         case lowest_latency:
2323                 new_itr = 70000;
2324                 break;
2325         case low_latency:
2326                 new_itr = 20000; /* aka hwitr = ~200 */
2327                 break;
2328         case bulk_latency:
2329                 new_itr = 4000;
2330                 break;
2331         default:
2332                 break;
2333         }
2334
2335 set_itr_now:
2336         if (new_itr != adapter->itr) {
2337                 /*
2338                  * this attempts to bias the interrupt rate towards Bulk
2339                  * by adding intermediate steps when interrupt rate is
2340                  * increasing
2341                  */
2342                 new_itr = new_itr > adapter->itr ?
2343                              min(adapter->itr + (new_itr >> 2), new_itr) :
2344                              new_itr;
2345                 adapter->itr = new_itr;
2346                 adapter->rx_ring->itr_val = new_itr;
2347                 if (adapter->msix_entries)
2348                         adapter->rx_ring->set_itr = 1;
2349                 else
2350                         if (new_itr)
2351                                 ew32(ITR, 1000000000 / (new_itr * 256));
2352                         else
2353                                 ew32(ITR, 0);
2354         }
2355 }
2356
2357 /**
2358  * e1000_alloc_queues - Allocate memory for all rings
2359  * @adapter: board private structure to initialize
2360  **/
2361 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2362 {
2363         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2364         if (!adapter->tx_ring)
2365                 goto err;
2366
2367         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2368         if (!adapter->rx_ring)
2369                 goto err;
2370
2371         return 0;
2372 err:
2373         e_err("Unable to allocate memory for queues\n");
2374         kfree(adapter->rx_ring);
2375         kfree(adapter->tx_ring);
2376         return -ENOMEM;
2377 }
2378
2379 /**
2380  * e1000_clean - NAPI Rx polling callback
2381  * @napi: struct associated with this polling callback
2382  * @budget: amount of packets driver is allowed to process this poll
2383  **/
2384 static int e1000_clean(struct napi_struct *napi, int budget)
2385 {
2386         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2387         struct e1000_hw *hw = &adapter->hw;
2388         struct net_device *poll_dev = adapter->netdev;
2389         int tx_cleaned = 1, work_done = 0;
2390
2391         adapter = netdev_priv(poll_dev);
2392
2393         if (adapter->msix_entries &&
2394             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2395                 goto clean_rx;
2396
2397         tx_cleaned = e1000_clean_tx_irq(adapter);
2398
2399 clean_rx:
2400         adapter->clean_rx(adapter, &work_done, budget);
2401
2402         if (!tx_cleaned)
2403                 work_done = budget;
2404
2405         /* If budget not fully consumed, exit the polling mode */
2406         if (work_done < budget) {
2407                 if (adapter->itr_setting & 3)
2408                         e1000_set_itr(adapter);
2409                 napi_complete(napi);
2410                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2411                         if (adapter->msix_entries)
2412                                 ew32(IMS, adapter->rx_ring->ims_val);
2413                         else
2414                                 e1000_irq_enable(adapter);
2415                 }
2416         }
2417
2418         return work_done;
2419 }
2420
2421 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2422 {
2423         struct e1000_adapter *adapter = netdev_priv(netdev);
2424         struct e1000_hw *hw = &adapter->hw;
2425         u32 vfta, index;
2426
2427         /* don't update vlan cookie if already programmed */
2428         if ((adapter->hw.mng_cookie.status &
2429              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2430             (vid == adapter->mng_vlan_id))
2431                 return;
2432
2433         /* add VID to filter table */
2434         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2435                 index = (vid >> 5) & 0x7F;
2436                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2437                 vfta |= (1 << (vid & 0x1F));
2438                 hw->mac.ops.write_vfta(hw, index, vfta);
2439         }
2440 }
2441
2442 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2443 {
2444         struct e1000_adapter *adapter = netdev_priv(netdev);
2445         struct e1000_hw *hw = &adapter->hw;
2446         u32 vfta, index;
2447
2448         if (!test_bit(__E1000_DOWN, &adapter->state))
2449                 e1000_irq_disable(adapter);
2450         vlan_group_set_device(adapter->vlgrp, vid, NULL);
2451
2452         if (!test_bit(__E1000_DOWN, &adapter->state))
2453                 e1000_irq_enable(adapter);
2454
2455         if ((adapter->hw.mng_cookie.status &
2456              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2457             (vid == adapter->mng_vlan_id)) {
2458                 /* release control to f/w */
2459                 e1000e_release_hw_control(adapter);
2460                 return;
2461         }
2462
2463         /* remove VID from filter table */
2464         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2465                 index = (vid >> 5) & 0x7F;
2466                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2467                 vfta &= ~(1 << (vid & 0x1F));
2468                 hw->mac.ops.write_vfta(hw, index, vfta);
2469         }
2470 }
2471
2472 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2473 {
2474         struct net_device *netdev = adapter->netdev;
2475         u16 vid = adapter->hw.mng_cookie.vlan_id;
2476         u16 old_vid = adapter->mng_vlan_id;
2477
2478         if (!adapter->vlgrp)
2479                 return;
2480
2481         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2482                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2483                 if (adapter->hw.mng_cookie.status &
2484                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2485                         e1000_vlan_rx_add_vid(netdev, vid);
2486                         adapter->mng_vlan_id = vid;
2487                 }
2488
2489                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2490                                 (vid != old_vid) &&
2491                     !vlan_group_get_device(adapter->vlgrp, old_vid))
2492                         e1000_vlan_rx_kill_vid(netdev, old_vid);
2493         } else {
2494                 adapter->mng_vlan_id = vid;
2495         }
2496 }
2497
2498
2499 static void e1000_vlan_rx_register(struct net_device *netdev,
2500                                    struct vlan_group *grp)
2501 {
2502         struct e1000_adapter *adapter = netdev_priv(netdev);
2503         struct e1000_hw *hw = &adapter->hw;
2504         u32 ctrl, rctl;
2505
2506         if (!test_bit(__E1000_DOWN, &adapter->state))
2507                 e1000_irq_disable(adapter);
2508         adapter->vlgrp = grp;
2509
2510         if (grp) {
2511                 /* enable VLAN tag insert/strip */
2512                 ctrl = er32(CTRL);
2513                 ctrl |= E1000_CTRL_VME;
2514                 ew32(CTRL, ctrl);
2515
2516                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2517                         /* enable VLAN receive filtering */
2518                         rctl = er32(RCTL);
2519                         rctl &= ~E1000_RCTL_CFIEN;
2520                         ew32(RCTL, rctl);
2521                         e1000_update_mng_vlan(adapter);
2522                 }
2523         } else {
2524                 /* disable VLAN tag insert/strip */
2525                 ctrl = er32(CTRL);
2526                 ctrl &= ~E1000_CTRL_VME;
2527                 ew32(CTRL, ctrl);
2528
2529                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2530                         if (adapter->mng_vlan_id !=
2531                             (u16)E1000_MNG_VLAN_NONE) {
2532                                 e1000_vlan_rx_kill_vid(netdev,
2533                                                        adapter->mng_vlan_id);
2534                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2535                         }
2536                 }
2537         }
2538
2539         if (!test_bit(__E1000_DOWN, &adapter->state))
2540                 e1000_irq_enable(adapter);
2541 }
2542
2543 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2544 {
2545         u16 vid;
2546
2547         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2548
2549         if (!adapter->vlgrp)
2550                 return;
2551
2552         for (vid = 0; vid < VLAN_N_VID; vid++) {
2553                 if (!vlan_group_get_device(adapter->vlgrp, vid))
2554                         continue;
2555                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2556         }
2557 }
2558
2559 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2560 {
2561         struct e1000_hw *hw = &adapter->hw;
2562         u32 manc, manc2h, mdef, i, j;
2563
2564         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2565                 return;
2566
2567         manc = er32(MANC);
2568
2569         /*
2570          * enable receiving management packets to the host. this will probably
2571          * generate destination unreachable messages from the host OS, but
2572          * the packets will be handled on SMBUS
2573          */
2574         manc |= E1000_MANC_EN_MNG2HOST;
2575         manc2h = er32(MANC2H);
2576
2577         switch (hw->mac.type) {
2578         default:
2579                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2580                 break;
2581         case e1000_82574:
2582         case e1000_82583:
2583                 /*
2584                  * Check if IPMI pass-through decision filter already exists;
2585                  * if so, enable it.
2586                  */
2587                 for (i = 0, j = 0; i < 8; i++) {
2588                         mdef = er32(MDEF(i));
2589
2590                         /* Ignore filters with anything other than IPMI ports */
2591                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2592                                 continue;
2593
2594                         /* Enable this decision filter in MANC2H */
2595                         if (mdef)
2596                                 manc2h |= (1 << i);
2597
2598                         j |= mdef;
2599                 }
2600
2601                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2602                         break;
2603
2604                 /* Create new decision filter in an empty filter */
2605                 for (i = 0, j = 0; i < 8; i++)
2606                         if (er32(MDEF(i)) == 0) {
2607                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2608                                                E1000_MDEF_PORT_664));
2609                                 manc2h |= (1 << 1);
2610                                 j++;
2611                                 break;
2612                         }
2613
2614                 if (!j)
2615                         e_warn("Unable to create IPMI pass-through filter\n");
2616                 break;
2617         }
2618
2619         ew32(MANC2H, manc2h);
2620         ew32(MANC, manc);
2621 }
2622
2623 /**
2624  * e1000_configure_tx - Configure Transmit Unit after Reset
2625  * @adapter: board private structure
2626  *
2627  * Configure the Tx unit of the MAC after a reset.
2628  **/
2629 static void e1000_configure_tx(struct e1000_adapter *adapter)
2630 {
2631         struct e1000_hw *hw = &adapter->hw;
2632         struct e1000_ring *tx_ring = adapter->tx_ring;
2633         u64 tdba;
2634         u32 tdlen, tctl, tipg, tarc;
2635         u32 ipgr1, ipgr2;
2636
2637         /* Setup the HW Tx Head and Tail descriptor pointers */
2638         tdba = tx_ring->dma;
2639         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2640         ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2641         ew32(TDBAH, (tdba >> 32));
2642         ew32(TDLEN, tdlen);
2643         ew32(TDH, 0);
2644         ew32(TDT, 0);
2645         tx_ring->head = E1000_TDH;
2646         tx_ring->tail = E1000_TDT;
2647
2648         /* Set the default values for the Tx Inter Packet Gap timer */
2649         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2650         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2651         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2652
2653         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2654                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2655
2656         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2657         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2658         ew32(TIPG, tipg);
2659
2660         /* Set the Tx Interrupt Delay register */
2661         ew32(TIDV, adapter->tx_int_delay);
2662         /* Tx irq moderation */
2663         ew32(TADV, adapter->tx_abs_int_delay);
2664
2665         if (adapter->flags2 & FLAG2_DMA_BURST) {
2666                 u32 txdctl = er32(TXDCTL(0));
2667                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2668                             E1000_TXDCTL_WTHRESH);
2669                 /*
2670                  * set up some performance related parameters to encourage the
2671                  * hardware to use the bus more efficiently in bursts, depends
2672                  * on the tx_int_delay to be enabled,
2673                  * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2674                  * hthresh = 1 ==> prefetch when one or more available
2675                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2676                  * BEWARE: this seems to work but should be considered first if
2677                  * there are Tx hangs or other Tx related bugs
2678                  */
2679                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2680                 ew32(TXDCTL(0), txdctl);
2681                 /* erratum work around: set txdctl the same for both queues */
2682                 ew32(TXDCTL(1), txdctl);
2683         }
2684
2685         /* Program the Transmit Control Register */
2686         tctl = er32(TCTL);
2687         tctl &= ~E1000_TCTL_CT;
2688         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2689                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2690
2691         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2692                 tarc = er32(TARC(0));
2693                 /*
2694                  * set the speed mode bit, we'll clear it if we're not at
2695                  * gigabit link later
2696                  */
2697 #define SPEED_MODE_BIT (1 << 21)
2698                 tarc |= SPEED_MODE_BIT;
2699                 ew32(TARC(0), tarc);
2700         }
2701
2702         /* errata: program both queues to unweighted RR */
2703         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2704                 tarc = er32(TARC(0));
2705                 tarc |= 1;
2706                 ew32(TARC(0), tarc);
2707                 tarc = er32(TARC(1));
2708                 tarc |= 1;
2709                 ew32(TARC(1), tarc);
2710         }
2711
2712         /* Setup Transmit Descriptor Settings for eop descriptor */
2713         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2714
2715         /* only set IDE if we are delaying interrupts using the timers */
2716         if (adapter->tx_int_delay)
2717                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2718
2719         /* enable Report Status bit */
2720         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2721
2722         ew32(TCTL, tctl);
2723
2724         e1000e_config_collision_dist(hw);
2725 }
2726
2727 /**
2728  * e1000_setup_rctl - configure the receive control registers
2729  * @adapter: Board private structure
2730  **/
2731 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2732                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2733 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2734 {
2735         struct e1000_hw *hw = &adapter->hw;
2736         u32 rctl, rfctl;
2737         u32 psrctl = 0;
2738         u32 pages = 0;
2739
2740         /* Workaround Si errata on 82579 - configure jumbo frame flow */
2741         if (hw->mac.type == e1000_pch2lan) {
2742                 s32 ret_val;
2743
2744                 if (adapter->netdev->mtu > ETH_DATA_LEN)
2745                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2746                 else
2747                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2748
2749                 if (ret_val)
2750                         e_dbg("failed to enable jumbo frame workaround mode\n");
2751         }
2752
2753         /* Program MC offset vector base */
2754         rctl = er32(RCTL);
2755         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2756         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2757                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2758                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2759
2760         /* Do not Store bad packets */
2761         rctl &= ~E1000_RCTL_SBP;
2762
2763         /* Enable Long Packet receive */
2764         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2765                 rctl &= ~E1000_RCTL_LPE;
2766         else
2767                 rctl |= E1000_RCTL_LPE;
2768
2769         /* Some systems expect that the CRC is included in SMBUS traffic. The
2770          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2771          * host memory when this is enabled
2772          */
2773         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2774                 rctl |= E1000_RCTL_SECRC;
2775
2776         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2777         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2778                 u16 phy_data;
2779
2780                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2781                 phy_data &= 0xfff8;
2782                 phy_data |= (1 << 2);
2783                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2784
2785                 e1e_rphy(hw, 22, &phy_data);
2786                 phy_data &= 0x0fff;
2787                 phy_data |= (1 << 14);
2788                 e1e_wphy(hw, 0x10, 0x2823);
2789                 e1e_wphy(hw, 0x11, 0x0003);
2790                 e1e_wphy(hw, 22, phy_data);
2791         }
2792
2793         /* Setup buffer sizes */
2794         rctl &= ~E1000_RCTL_SZ_4096;
2795         rctl |= E1000_RCTL_BSEX;
2796         switch (adapter->rx_buffer_len) {
2797         case 2048:
2798         default:
2799                 rctl |= E1000_RCTL_SZ_2048;
2800                 rctl &= ~E1000_RCTL_BSEX;
2801                 break;
2802         case 4096:
2803                 rctl |= E1000_RCTL_SZ_4096;
2804                 break;
2805         case 8192:
2806                 rctl |= E1000_RCTL_SZ_8192;
2807                 break;
2808         case 16384:
2809                 rctl |= E1000_RCTL_SZ_16384;
2810                 break;
2811         }
2812
2813         /*
2814          * 82571 and greater support packet-split where the protocol
2815          * header is placed in skb->data and the packet data is
2816          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2817          * In the case of a non-split, skb->data is linearly filled,
2818          * followed by the page buffers.  Therefore, skb->data is
2819          * sized to hold the largest protocol header.
2820          *
2821          * allocations using alloc_page take too long for regular MTU
2822          * so only enable packet split for jumbo frames
2823          *
2824          * Using pages when the page size is greater than 16k wastes
2825          * a lot of memory, since we allocate 3 pages at all times
2826          * per packet.
2827          */
2828         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2829         if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2830             (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2831                 adapter->rx_ps_pages = pages;
2832         else
2833                 adapter->rx_ps_pages = 0;
2834
2835         if (adapter->rx_ps_pages) {
2836                 /* Configure extra packet-split registers */
2837                 rfctl = er32(RFCTL);
2838                 rfctl |= E1000_RFCTL_EXTEN;
2839                 /*
2840                  * disable packet split support for IPv6 extension headers,
2841                  * because some malformed IPv6 headers can hang the Rx
2842                  */
2843                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2844                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2845
2846                 ew32(RFCTL, rfctl);
2847
2848                 /* Enable Packet split descriptors */
2849                 rctl |= E1000_RCTL_DTYP_PS;
2850
2851                 psrctl |= adapter->rx_ps_bsize0 >>
2852                         E1000_PSRCTL_BSIZE0_SHIFT;
2853
2854                 switch (adapter->rx_ps_pages) {
2855                 case 3:
2856                         psrctl |= PAGE_SIZE <<
2857                                 E1000_PSRCTL_BSIZE3_SHIFT;
2858                 case 2:
2859                         psrctl |= PAGE_SIZE <<
2860                                 E1000_PSRCTL_BSIZE2_SHIFT;
2861                 case 1:
2862                         psrctl |= PAGE_SIZE >>
2863                                 E1000_PSRCTL_BSIZE1_SHIFT;
2864                         break;
2865                 }
2866
2867                 ew32(PSRCTL, psrctl);
2868         }
2869
2870         ew32(RCTL, rctl);
2871         /* just started the receive unit, no need to restart */
2872         adapter->flags &= ~FLAG_RX_RESTART_NOW;
2873 }
2874
2875 /**
2876  * e1000_configure_rx - Configure Receive Unit after Reset
2877  * @adapter: board private structure
2878  *
2879  * Configure the Rx unit of the MAC after a reset.
2880  **/
2881 static void e1000_configure_rx(struct e1000_adapter *adapter)
2882 {
2883         struct e1000_hw *hw = &adapter->hw;
2884         struct e1000_ring *rx_ring = adapter->rx_ring;
2885         u64 rdba;
2886         u32 rdlen, rctl, rxcsum, ctrl_ext;
2887
2888         if (adapter->rx_ps_pages) {
2889                 /* this is a 32 byte descriptor */
2890                 rdlen = rx_ring->count *
2891                     sizeof(union e1000_rx_desc_packet_split);
2892                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2893                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2894         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2895                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2896                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2897                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2898         } else {
2899                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2900                 adapter->clean_rx = e1000_clean_rx_irq;
2901                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2902         }
2903
2904         /* disable receives while setting up the descriptors */
2905         rctl = er32(RCTL);
2906         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2907         e1e_flush();
2908         msleep(10);
2909
2910         if (adapter->flags2 & FLAG2_DMA_BURST) {
2911                 /*
2912                  * set the writeback threshold (only takes effect if the RDTR
2913                  * is set). set GRAN=1 and write back up to 0x4 worth, and
2914                  * enable prefetching of 0x20 Rx descriptors
2915                  * granularity = 01
2916                  * wthresh = 04,
2917                  * hthresh = 04,
2918                  * pthresh = 0x20
2919                  */
2920                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
2921                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
2922
2923                 /*
2924                  * override the delay timers for enabling bursting, only if
2925                  * the value was not set by the user via module options
2926                  */
2927                 if (adapter->rx_int_delay == DEFAULT_RDTR)
2928                         adapter->rx_int_delay = BURST_RDTR;
2929                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
2930                         adapter->rx_abs_int_delay = BURST_RADV;
2931         }
2932
2933         /* set the Receive Delay Timer Register */
2934         ew32(RDTR, adapter->rx_int_delay);
2935
2936         /* irq moderation */
2937         ew32(RADV, adapter->rx_abs_int_delay);
2938         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
2939                 ew32(ITR, 1000000000 / (adapter->itr * 256));
2940
2941         ctrl_ext = er32(CTRL_EXT);
2942         /* Auto-Mask interrupts upon ICR access */
2943         ctrl_ext |= E1000_CTRL_EXT_IAME;
2944         ew32(IAM, 0xffffffff);
2945         ew32(CTRL_EXT, ctrl_ext);
2946         e1e_flush();
2947
2948         /*
2949          * Setup the HW Rx Head and Tail Descriptor Pointers and
2950          * the Base and Length of the Rx Descriptor Ring
2951          */
2952         rdba = rx_ring->dma;
2953         ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2954         ew32(RDBAH, (rdba >> 32));
2955         ew32(RDLEN, rdlen);
2956         ew32(RDH, 0);
2957         ew32(RDT, 0);
2958         rx_ring->head = E1000_RDH;
2959         rx_ring->tail = E1000_RDT;
2960
2961         /* Enable Receive Checksum Offload for TCP and UDP */
2962         rxcsum = er32(RXCSUM);
2963         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2964                 rxcsum |= E1000_RXCSUM_TUOFL;
2965
2966                 /*
2967                  * IPv4 payload checksum for UDP fragments must be
2968                  * used in conjunction with packet-split.
2969                  */
2970                 if (adapter->rx_ps_pages)
2971                         rxcsum |= E1000_RXCSUM_IPPCSE;
2972         } else {
2973                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2974                 /* no need to clear IPPCSE as it defaults to 0 */
2975         }
2976         ew32(RXCSUM, rxcsum);
2977
2978         /*
2979          * Enable early receives on supported devices, only takes effect when
2980          * packet size is equal or larger than the specified value (in 8 byte
2981          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2982          */
2983         if ((adapter->flags & FLAG_HAS_ERT) ||
2984             (adapter->hw.mac.type == e1000_pch2lan)) {
2985                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2986                         u32 rxdctl = er32(RXDCTL(0));
2987                         ew32(RXDCTL(0), rxdctl | 0x3);
2988                         if (adapter->flags & FLAG_HAS_ERT)
2989                                 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2990                         /*
2991                          * With jumbo frames and early-receive enabled,
2992                          * excessive C-state transition latencies result in
2993                          * dropped transactions.
2994                          */
2995                         pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
2996                 } else {
2997                         pm_qos_update_request(&adapter->netdev->pm_qos_req,
2998                                               PM_QOS_DEFAULT_VALUE);
2999                 }
3000         }
3001
3002         /* Enable Receives */
3003         ew32(RCTL, rctl);
3004 }
3005
3006 /**
3007  *  e1000_update_mc_addr_list - Update Multicast addresses
3008  *  @hw: pointer to the HW structure
3009  *  @mc_addr_list: array of multicast addresses to program
3010  *  @mc_addr_count: number of multicast addresses to program
3011  *
3012  *  Updates the Multicast Table Array.
3013  *  The caller must have a packed mc_addr_list of multicast addresses.
3014  **/
3015 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
3016                                       u32 mc_addr_count)
3017 {
3018         hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
3019 }
3020
3021 /**
3022  * e1000_set_multi - Multicast and Promiscuous mode set
3023  * @netdev: network interface device structure
3024  *
3025  * The set_multi entry point is called whenever the multicast address
3026  * list or the network interface flags are updated.  This routine is
3027  * responsible for configuring the hardware for proper multicast,
3028  * promiscuous mode, and all-multi behavior.
3029  **/
3030 static void e1000_set_multi(struct net_device *netdev)
3031 {
3032         struct e1000_adapter *adapter = netdev_priv(netdev);
3033         struct e1000_hw *hw = &adapter->hw;
3034         struct netdev_hw_addr *ha;
3035         u8  *mta_list;
3036         u32 rctl;
3037         int i;
3038
3039         /* Check for Promiscuous and All Multicast modes */
3040
3041         rctl = er32(RCTL);
3042
3043         if (netdev->flags & IFF_PROMISC) {
3044                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3045                 rctl &= ~E1000_RCTL_VFE;
3046         } else {
3047                 if (netdev->flags & IFF_ALLMULTI) {
3048                         rctl |= E1000_RCTL_MPE;
3049                         rctl &= ~E1000_RCTL_UPE;
3050                 } else {
3051                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3052                 }
3053                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
3054                         rctl |= E1000_RCTL_VFE;
3055         }
3056
3057         ew32(RCTL, rctl);
3058
3059         if (!netdev_mc_empty(netdev)) {
3060                 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3061                 if (!mta_list)
3062                         return;
3063
3064                 /* prepare a packed array of only addresses. */
3065                 i = 0;
3066                 netdev_for_each_mc_addr(ha, netdev)
3067                         memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3068
3069                 e1000_update_mc_addr_list(hw, mta_list, i);
3070                 kfree(mta_list);
3071         } else {
3072                 /*
3073                  * if we're called from probe, we might not have
3074                  * anything to do here, so clear out the list
3075                  */
3076                 e1000_update_mc_addr_list(hw, NULL, 0);
3077         }
3078 }
3079
3080 /**
3081  * e1000_configure - configure the hardware for Rx and Tx
3082  * @adapter: private board structure
3083  **/
3084 static void e1000_configure(struct e1000_adapter *adapter)
3085 {
3086         e1000_set_multi(adapter->netdev);
3087
3088         e1000_restore_vlan(adapter);
3089         e1000_init_manageability_pt(adapter);
3090
3091         e1000_configure_tx(adapter);
3092         e1000_setup_rctl(adapter);
3093         e1000_configure_rx(adapter);
3094         adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
3095 }
3096
3097 /**
3098  * e1000e_power_up_phy - restore link in case the phy was powered down
3099  * @adapter: address of board private structure
3100  *
3101  * The phy may be powered down to save power and turn off link when the
3102  * driver is unloaded and wake on lan is not enabled (among others)
3103  * *** this routine MUST be followed by a call to e1000e_reset ***
3104  **/
3105 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3106 {
3107         if (adapter->hw.phy.ops.power_up)
3108                 adapter->hw.phy.ops.power_up(&adapter->hw);
3109
3110         adapter->hw.mac.ops.setup_link(&adapter->hw);
3111 }
3112
3113 /**
3114  * e1000_power_down_phy - Power down the PHY
3115  *
3116  * Power down the PHY so no link is implied when interface is down.
3117  * The PHY cannot be powered down if management or WoL is active.
3118  */
3119 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3120 {
3121         /* WoL is enabled */
3122         if (adapter->wol)
3123                 return;
3124
3125         if (adapter->hw.phy.ops.power_down)
3126                 adapter->hw.phy.ops.power_down(&adapter->hw);
3127 }
3128
3129 /**
3130  * e1000e_reset - bring the hardware into a known good state
3131  *
3132  * This function boots the hardware and enables some settings that
3133  * require a configuration cycle of the hardware - those cannot be
3134  * set/changed during runtime. After reset the device needs to be
3135  * properly configured for Rx, Tx etc.
3136  */
3137 void e1000e_reset(struct e1000_adapter *adapter)
3138 {
3139         struct e1000_mac_info *mac = &adapter->hw.mac;
3140         struct e1000_fc_info *fc = &adapter->hw.fc;
3141         struct e1000_hw *hw = &adapter->hw;
3142         u32 tx_space, min_tx_space, min_rx_space;
3143         u32 pba = adapter->pba;
3144         u16 hwm;
3145
3146         /* reset Packet Buffer Allocation to default */
3147         ew32(PBA, pba);
3148
3149         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3150                 /*
3151                  * To maintain wire speed transmits, the Tx FIFO should be
3152                  * large enough to accommodate two full transmit packets,
3153                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3154                  * the Rx FIFO should be large enough to accommodate at least
3155                  * one full receive packet and is similarly rounded up and
3156                  * expressed in KB.
3157                  */
3158                 pba = er32(PBA);
3159                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3160                 tx_space = pba >> 16;
3161                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3162                 pba &= 0xffff;
3163                 /*
3164                  * the Tx fifo also stores 16 bytes of information about the Tx
3165                  * but don't include ethernet FCS because hardware appends it
3166                  */
3167                 min_tx_space = (adapter->max_frame_size +
3168                                 sizeof(struct e1000_tx_desc) -
3169                                 ETH_FCS_LEN) * 2;
3170                 min_tx_space = ALIGN(min_tx_space, 1024);
3171                 min_tx_space >>= 10;
3172                 /* software strips receive CRC, so leave room for it */
3173                 min_rx_space = adapter->max_frame_size;
3174                 min_rx_space = ALIGN(min_rx_space, 1024);
3175                 min_rx_space >>= 10;
3176
3177                 /*
3178                  * If current Tx allocation is less than the min Tx FIFO size,
3179                  * and the min Tx FIFO size is less than the current Rx FIFO
3180                  * allocation, take space away from current Rx allocation
3181                  */
3182                 if ((tx_space < min_tx_space) &&
3183                     ((min_tx_space - tx_space) < pba)) {
3184                         pba -= min_tx_space - tx_space;
3185
3186                         /*
3187                          * if short on Rx space, Rx wins and must trump Tx
3188                          * adjustment or use Early Receive if available
3189                          */
3190                         if ((pba < min_rx_space) &&
3191                             (!(adapter->flags & FLAG_HAS_ERT)))
3192                                 /* ERT enabled in e1000_configure_rx */
3193                                 pba = min_rx_space;
3194                 }
3195
3196                 ew32(PBA, pba);
3197         }
3198
3199         /*
3200          * flow control settings
3201          *
3202          * The high water mark must be low enough to fit one full frame
3203          * (or the size used for early receive) above it in the Rx FIFO.
3204          * Set it to the lower of:
3205          * - 90% of the Rx FIFO size, and
3206          * - the full Rx FIFO size minus the early receive size (for parts
3207          *   with ERT support assuming ERT set to E1000_ERT_2048), or
3208          * - the full Rx FIFO size minus one full frame
3209          */
3210         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3211                 fc->pause_time = 0xFFFF;
3212         else
3213                 fc->pause_time = E1000_FC_PAUSE_TIME;
3214         fc->send_xon = 1;
3215         fc->current_mode = fc->requested_mode;
3216
3217         switch (hw->mac.type) {
3218         default:
3219                 if ((adapter->flags & FLAG_HAS_ERT) &&
3220                     (adapter->netdev->mtu > ETH_DATA_LEN))
3221                         hwm = min(((pba << 10) * 9 / 10),
3222                                   ((pba << 10) - (E1000_ERT_2048 << 3)));
3223                 else
3224                         hwm = min(((pba << 10) * 9 / 10),
3225                                   ((pba << 10) - adapter->max_frame_size));
3226
3227                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3228                 fc->low_water = fc->high_water - 8;
3229                 break;
3230         case e1000_pchlan:
3231                 /*
3232                  * Workaround PCH LOM adapter hangs with certain network
3233                  * loads.  If hangs persist, try disabling Tx flow control.
3234                  */
3235                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3236                         fc->high_water = 0x3500;
3237                         fc->low_water  = 0x1500;
3238                 } else {
3239                         fc->high_water = 0x5000;
3240                         fc->low_water  = 0x3000;
3241                 }
3242                 fc->refresh_time = 0x1000;
3243                 break;
3244         case e1000_pch2lan:
3245                 fc->high_water = 0x05C20;
3246                 fc->low_water = 0x05048;
3247                 fc->pause_time = 0x0650;
3248                 fc->refresh_time = 0x0400;
3249                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3250                         pba = 14;
3251                         ew32(PBA, pba);
3252                 }
3253                 break;
3254         }
3255
3256         /*
3257          * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3258          * fit in receive buffer and early-receive not supported.
3259          */
3260         if (adapter->itr_setting & 0x3) {
3261                 if (((adapter->max_frame_size * 2) > (pba << 10)) &&
3262                     !(adapter->flags & FLAG_HAS_ERT)) {
3263                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3264                                 dev_info(&adapter->pdev->dev,
3265                                         "Interrupt Throttle Rate turned off\n");
3266                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
3267                                 ew32(ITR, 0);
3268                         }
3269                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3270                         dev_info(&adapter->pdev->dev,
3271                                  "Interrupt Throttle Rate turned on\n");
3272                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3273                         adapter->itr = 20000;
3274                         ew32(ITR, 1000000000 / (adapter->itr * 256));
3275                 }
3276         }
3277
3278         /* Allow time for pending master requests to run */
3279         mac->ops.reset_hw(hw);
3280
3281         /*
3282          * For parts with AMT enabled, let the firmware know
3283          * that the network interface is in control
3284          */
3285         if (adapter->flags & FLAG_HAS_AMT)
3286                 e1000e_get_hw_control(adapter);
3287
3288         ew32(WUC, 0);
3289
3290         if (mac->ops.init_hw(hw))
3291                 e_err("Hardware Error\n");
3292
3293         e1000_update_mng_vlan(adapter);
3294
3295         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3296         ew32(VET, ETH_P_8021Q);
3297
3298         e1000e_reset_adaptive(hw);
3299
3300         if (!netif_running(adapter->netdev) &&
3301             !test_bit(__E1000_TESTING, &adapter->state)) {
3302                 e1000_power_down_phy(adapter);
3303                 return;
3304         }
3305
3306         e1000_get_phy_info(hw);
3307
3308         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3309             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3310                 u16 phy_data = 0;
3311                 /*
3312                  * speed up time to link by disabling smart power down, ignore
3313                  * the return value of this function because there is nothing
3314                  * different we would do if it failed
3315                  */
3316                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3317                 phy_data &= ~IGP02E1000_PM_SPD;
3318                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3319         }
3320 }
3321
3322 int e1000e_up(struct e1000_adapter *adapter)
3323 {
3324         struct e1000_hw *hw = &adapter->hw;
3325
3326         /* hardware has been reset, we need to reload some things */
3327         e1000_configure(adapter);
3328
3329         clear_bit(__E1000_DOWN, &adapter->state);
3330
3331         napi_enable(&adapter->napi);
3332         if (adapter->msix_entries)
3333                 e1000_configure_msix(adapter);
3334         e1000_irq_enable(adapter);
3335
3336         netif_wake_queue(adapter->netdev);
3337
3338         /* fire a link change interrupt to start the watchdog */
3339         if (adapter->msix_entries)
3340                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3341         else
3342                 ew32(ICS, E1000_ICS_LSC);
3343
3344         return 0;
3345 }
3346
3347 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3348 {
3349         struct e1000_hw *hw = &adapter->hw;
3350
3351         if (!(adapter->flags2 & FLAG2_DMA_BURST))
3352                 return;
3353
3354         /* flush pending descriptor writebacks to memory */
3355         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3356         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3357
3358         /* execute the writes immediately */
3359         e1e_flush();
3360 }
3361
3362 void e1000e_down(struct e1000_adapter *adapter)
3363 {
3364         struct net_device *netdev = adapter->netdev;
3365         struct e1000_hw *hw = &adapter->hw;
3366         u32 tctl, rctl;
3367
3368         /*
3369          * signal that we're down so the interrupt handler does not
3370          * reschedule our watchdog timer
3371          */
3372         set_bit(__E1000_DOWN, &adapter->state);
3373
3374         /* disable receives in the hardware */
3375         rctl = er32(RCTL);
3376         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3377         /* flush and sleep below */
3378
3379         netif_stop_queue(netdev);
3380
3381         /* disable transmits in the hardware */
3382         tctl = er32(TCTL);
3383         tctl &= ~E1000_TCTL_EN;
3384         ew32(TCTL, tctl);
3385         /* flush both disables and wait for them to finish */
3386         e1e_flush();
3387         msleep(10);
3388
3389         napi_disable(&adapter->napi);
3390         e1000_irq_disable(adapter);
3391
3392         del_timer_sync(&adapter->watchdog_timer);
3393         del_timer_sync(&adapter->phy_info_timer);
3394
3395         netif_carrier_off(netdev);
3396         adapter->link_speed = 0;
3397         adapter->link_duplex = 0;
3398
3399         if (!pci_channel_offline(adapter->pdev))
3400                 e1000e_reset(adapter);
3401
3402         e1000e_flush_descriptors(adapter);
3403
3404         e1000_clean_tx_ring(adapter);
3405         e1000_clean_rx_ring(adapter);
3406
3407         /*
3408          * TODO: for power management, we could drop the link and
3409          * pci_disable_device here.
3410          */
3411 }
3412
3413 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3414 {
3415         might_sleep();
3416         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3417                 msleep(1);
3418         e1000e_down(adapter);
3419         e1000e_up(adapter);
3420         clear_bit(__E1000_RESETTING, &adapter->state);
3421 }
3422
3423 /**
3424  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3425  * @adapter: board private structure to initialize
3426  *
3427  * e1000_sw_init initializes the Adapter private data structure.
3428  * Fields are initialized based on PCI device information and
3429  * OS network device settings (MTU size).
3430  **/
3431 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3432 {
3433         struct net_device *netdev = adapter->netdev;
3434
3435         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3436         adapter->rx_ps_bsize0 = 128;
3437         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3438         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3439
3440         e1000e_set_interrupt_capability(adapter);
3441
3442         if (e1000_alloc_queues(adapter))
3443                 return -ENOMEM;
3444
3445         /* Explicitly disable IRQ since the NIC can be in any state. */
3446         e1000_irq_disable(adapter);
3447
3448         set_bit(__E1000_DOWN, &adapter->state);
3449         return 0;
3450 }
3451
3452 /**
3453  * e1000_intr_msi_test - Interrupt Handler
3454  * @irq: interrupt number
3455  * @data: pointer to a network interface device structure
3456  **/
3457 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3458 {
3459         struct net_device *netdev = data;
3460         struct e1000_adapter *adapter = netdev_priv(netdev);
3461         struct e1000_hw *hw = &adapter->hw;
3462         u32 icr = er32(ICR);
3463
3464         e_dbg("icr is %08X\n", icr);
3465         if (icr & E1000_ICR_RXSEQ) {
3466                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3467                 wmb();
3468         }
3469
3470         return IRQ_HANDLED;
3471 }
3472
3473 /**
3474  * e1000_test_msi_interrupt - Returns 0 for successful test
3475  * @adapter: board private struct
3476  *
3477  * code flow taken from tg3.c
3478  **/
3479 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3480 {
3481         struct net_device *netdev = adapter->netdev;
3482         struct e1000_hw *hw = &adapter->hw;
3483         int err;
3484
3485         /* poll_enable hasn't been called yet, so don't need disable */
3486         /* clear any pending events */
3487         er32(ICR);
3488
3489         /* free the real vector and request a test handler */
3490         e1000_free_irq(adapter);
3491         e1000e_reset_interrupt_capability(adapter);
3492
3493         /* Assume that the test fails, if it succeeds then the test
3494          * MSI irq handler will unset this flag */
3495         adapter->flags |= FLAG_MSI_TEST_FAILED;
3496
3497         err = pci_enable_msi(adapter->pdev);
3498         if (err)
3499                 goto msi_test_failed;
3500
3501         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3502                           netdev->name, netdev);
3503         if (err) {
3504                 pci_disable_msi(adapter->pdev);
3505                 goto msi_test_failed;
3506         }
3507
3508         wmb();
3509
3510         e1000_irq_enable(adapter);
3511
3512         /* fire an unusual interrupt on the test handler */
3513         ew32(ICS, E1000_ICS_RXSEQ);
3514         e1e_flush();
3515         msleep(50);
3516
3517         e1000_irq_disable(adapter);
3518
3519         rmb();
3520
3521         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3522                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3523                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3524         } else
3525                 e_dbg("MSI interrupt test succeeded!\n");
3526
3527         free_irq(adapter->pdev->irq, netdev);
3528         pci_disable_msi(adapter->pdev);
3529
3530 msi_test_failed:
3531         e1000e_set_interrupt_capability(adapter);
3532         return e1000_request_irq(adapter);
3533 }
3534
3535 /**
3536  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3537  * @adapter: board private struct
3538  *
3539  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3540  **/
3541 static int e1000_test_msi(struct e1000_adapter *adapter)
3542 {
3543         int err;
3544         u16 pci_cmd;
3545
3546         if (!(adapter->flags & FLAG_MSI_ENABLED))
3547                 return 0;
3548
3549         /* disable SERR in case the MSI write causes a master abort */
3550         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3551         if (pci_cmd & PCI_COMMAND_SERR)
3552                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3553                                       pci_cmd & ~PCI_COMMAND_SERR);
3554
3555         err = e1000_test_msi_interrupt(adapter);
3556
3557         /* re-enable SERR */
3558         if (pci_cmd & PCI_COMMAND_SERR) {
3559                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3560                 pci_cmd |= PCI_COMMAND_SERR;
3561                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3562         }
3563
3564         return err;
3565 }
3566
3567 /**
3568  * e1000_open - Called when a network interface is made active
3569  * @netdev: network interface device structure
3570  *
3571  * Returns 0 on success, negative value on failure
3572  *
3573  * The open entry point is called when a network interface is made
3574  * active by the system (IFF_UP).  At this point all resources needed
3575  * for transmit and receive operations are allocated, the interrupt
3576  * handler is registered with the OS, the watchdog timer is started,
3577  * and the stack is notified that the interface is ready.
3578  **/
3579 static int e1000_open(struct net_device *netdev)
3580 {
3581         struct e1000_adapter *adapter = netdev_priv(netdev);
3582         struct e1000_hw *hw = &adapter->hw;
3583         struct pci_dev *pdev = adapter->pdev;
3584         int err;
3585
3586         /* disallow open during test */
3587         if (test_bit(__E1000_TESTING, &adapter->state))
3588                 return -EBUSY;
3589
3590         pm_runtime_get_sync(&pdev->dev);
3591
3592         netif_carrier_off(netdev);
3593
3594         /* allocate transmit descriptors */
3595         err = e1000e_setup_tx_resources(adapter);
3596         if (err)
3597                 goto err_setup_tx;
3598
3599         /* allocate receive descriptors */
3600         err = e1000e_setup_rx_resources(adapter);
3601         if (err)
3602                 goto err_setup_rx;
3603
3604         /*
3605          * If AMT is enabled, let the firmware know that the network
3606          * interface is now open and reset the part to a known state.
3607          */
3608         if (adapter->flags & FLAG_HAS_AMT) {
3609                 e1000e_get_hw_control(adapter);
3610                 e1000e_reset(adapter);
3611         }
3612
3613         e1000e_power_up_phy(adapter);
3614
3615         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3616         if ((adapter->hw.mng_cookie.status &
3617              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3618                 e1000_update_mng_vlan(adapter);
3619
3620         /* DMA latency requirement to workaround early-receive/jumbo issue */
3621         if ((adapter->flags & FLAG_HAS_ERT) ||
3622             (adapter->hw.mac.type == e1000_pch2lan))
3623                 pm_qos_add_request(&adapter->netdev->pm_qos_req,
3624                                    PM_QOS_CPU_DMA_LATENCY,
3625                                    PM_QOS_DEFAULT_VALUE);
3626
3627         /*
3628          * before we allocate an interrupt, we must be ready to handle it.
3629          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3630          * as soon as we call pci_request_irq, so we have to setup our
3631          * clean_rx handler before we do so.
3632          */
3633         e1000_configure(adapter);
3634
3635         err = e1000_request_irq(adapter);
3636         if (err)
3637                 goto err_req_irq;
3638
3639         /*
3640          * Work around PCIe errata with MSI interrupts causing some chipsets to
3641          * ignore e1000e MSI messages, which means we need to test our MSI
3642          * interrupt now
3643          */
3644         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3645                 err = e1000_test_msi(adapter);
3646                 if (err) {
3647                         e_err("Interrupt allocation failed\n");
3648                         goto err_req_irq;
3649                 }
3650         }
3651
3652         /* From here on the code is the same as e1000e_up() */
3653         clear_bit(__E1000_DOWN, &adapter->state);
3654
3655         napi_enable(&adapter->napi);
3656
3657         e1000_irq_enable(adapter);
3658
3659         netif_start_queue(netdev);
3660
3661         adapter->idle_check = true;
3662         pm_runtime_put(&pdev->dev);
3663
3664         /* fire a link status change interrupt to start the watchdog */
3665         if (adapter->msix_entries)
3666                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3667         else
3668                 ew32(ICS, E1000_ICS_LSC);
3669
3670         return 0;
3671
3672 err_req_irq:
3673         e1000e_release_hw_control(adapter);
3674         e1000_power_down_phy(adapter);
3675         e1000e_free_rx_resources(adapter);
3676 err_setup_rx:
3677         e1000e_free_tx_resources(adapter);
3678 err_setup_tx:
3679         e1000e_reset(adapter);
3680         pm_runtime_put_sync(&pdev->dev);
3681
3682         return err;
3683 }
3684
3685 /**
3686  * e1000_close - Disables a network interface
3687  * @netdev: network interface device structure
3688  *
3689  * Returns 0, this is not allowed to fail
3690  *
3691  * The close entry point is called when an interface is de-activated
3692  * by the OS.  The hardware is still under the drivers control, but
3693  * needs to be disabled.  A global MAC reset is issued to stop the
3694  * hardware, and all transmit and receive resources are freed.
3695  **/
3696 static int e1000_close(struct net_device *netdev)
3697 {
3698         struct e1000_adapter *adapter = netdev_priv(netdev);
3699         struct pci_dev *pdev = adapter->pdev;
3700
3701         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3702
3703         pm_runtime_get_sync(&pdev->dev);
3704
3705         if (!test_bit(__E1000_DOWN, &adapter->state)) {
3706                 e1000e_down(adapter);
3707                 e1000_free_irq(adapter);
3708         }
3709         e1000_power_down_phy(adapter);
3710
3711         e1000e_free_tx_resources(adapter);
3712         e1000e_free_rx_resources(adapter);
3713
3714         /*
3715          * kill manageability vlan ID if supported, but not if a vlan with
3716          * the same ID is registered on the host OS (let 8021q kill it)
3717          */
3718         if ((adapter->hw.mng_cookie.status &
3719                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3720              !(adapter->vlgrp &&
3721                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3722                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3723
3724         /*
3725          * If AMT is enabled, let the firmware know that the network
3726          * interface is now closed
3727          */
3728         if ((adapter->flags & FLAG_HAS_AMT) &&
3729             !test_bit(__E1000_TESTING, &adapter->state))
3730                 e1000e_release_hw_control(adapter);
3731
3732         if ((adapter->flags & FLAG_HAS_ERT) ||
3733             (adapter->hw.mac.type == e1000_pch2lan))
3734                 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3735
3736         pm_runtime_put_sync(&pdev->dev);
3737
3738         return 0;
3739 }
3740 /**
3741  * e1000_set_mac - Change the Ethernet Address of the NIC
3742  * @netdev: network interface device structure
3743  * @p: pointer to an address structure
3744  *
3745  * Returns 0 on success, negative on failure
3746  **/
3747 static int e1000_set_mac(struct net_device *netdev, void *p)
3748 {
3749         struct e1000_adapter *adapter = netdev_priv(netdev);
3750         struct sockaddr *addr = p;
3751
3752         if (!is_valid_ether_addr(addr->sa_data))
3753                 return -EADDRNOTAVAIL;
3754
3755         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3756         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3757
3758         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3759
3760         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3761                 /* activate the work around */
3762                 e1000e_set_laa_state_82571(&adapter->hw, 1);
3763
3764                 /*
3765                  * Hold a copy of the LAA in RAR[14] This is done so that
3766                  * between the time RAR[0] gets clobbered  and the time it
3767                  * gets fixed (in e1000_watchdog), the actual LAA is in one
3768                  * of the RARs and no incoming packets directed to this port
3769                  * are dropped. Eventually the LAA will be in RAR[0] and
3770                  * RAR[14]
3771                  */
3772                 e1000e_rar_set(&adapter->hw,
3773                               adapter->hw.mac.addr,
3774                               adapter->hw.mac.rar_entry_count - 1);
3775         }
3776
3777         return 0;
3778 }
3779
3780 /**
3781  * e1000e_update_phy_task - work thread to update phy
3782  * @work: pointer to our work struct
3783  *
3784  * this worker thread exists because we must acquire a
3785  * semaphore to read the phy, which we could msleep while
3786  * waiting for it, and we can't msleep in a timer.
3787  **/
3788 static void e1000e_update_phy_task(struct work_struct *work)
3789 {
3790         struct e1000_adapter *adapter = container_of(work,
3791                                         struct e1000_adapter, update_phy_task);
3792
3793         if (test_bit(__E1000_DOWN, &adapter->state))
3794                 return;
3795
3796         e1000_get_phy_info(&adapter->hw);
3797 }
3798
3799 /*
3800  * Need to wait a few seconds after link up to get diagnostic information from
3801  * the phy
3802  */
3803 static void e1000_update_phy_info(unsigned long data)
3804 {
3805         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3806
3807         if (test_bit(__E1000_DOWN, &adapter->state))
3808                 return;
3809
3810         schedule_work(&adapter->update_phy_task);
3811 }
3812
3813 /**
3814  * e1000e_update_phy_stats - Update the PHY statistics counters
3815  * @adapter: board private structure
3816  **/
3817 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
3818 {
3819         struct e1000_hw *hw = &adapter->hw;
3820         s32 ret_val;
3821         u16 phy_data;
3822
3823         ret_val = hw->phy.ops.acquire(hw);
3824         if (ret_val)
3825                 return;
3826
3827         hw->phy.addr = 1;
3828
3829 #define HV_PHY_STATS_PAGE       778
3830         /*
3831          * A page set is expensive so check if already on desired page.
3832          * If not, set to the page with the PHY status registers.
3833          */
3834         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3835                                            &phy_data);
3836         if (ret_val)
3837                 goto release;
3838         if (phy_data != (HV_PHY_STATS_PAGE << IGP_PAGE_SHIFT)) {
3839                 ret_val = e1000e_write_phy_reg_mdic(hw,
3840                                                     IGP01E1000_PHY_PAGE_SELECT,
3841                                                     (HV_PHY_STATS_PAGE <<
3842                                                      IGP_PAGE_SHIFT));
3843                 if (ret_val)
3844                         goto release;
3845         }
3846
3847         /* Read/clear the upper 16-bit registers and read/accumulate lower */
3848
3849         /* Single Collision Count */
3850         e1000e_read_phy_reg_mdic(hw, HV_SCC_UPPER & MAX_PHY_REG_ADDRESS,
3851                                  &phy_data);
3852         ret_val = e1000e_read_phy_reg_mdic(hw,
3853                                            HV_SCC_LOWER & MAX_PHY_REG_ADDRESS,
3854                                            &phy_data);
3855         if (!ret_val)
3856                 adapter->stats.scc += phy_data;
3857
3858         /* Excessive Collision Count */
3859         e1000e_read_phy_reg_mdic(hw, HV_ECOL_UPPER & MAX_PHY_REG_ADDRESS,
3860                                  &phy_data);
3861         ret_val = e1000e_read_phy_reg_mdic(hw,
3862                                            HV_ECOL_LOWER & MAX_PHY_REG_ADDRESS,
3863                                            &phy_data);
3864         if (!ret_val)
3865                 adapter->stats.ecol += phy_data;
3866
3867         /* Multiple Collision Count */
3868         e1000e_read_phy_reg_mdic(hw, HV_MCC_UPPER & MAX_PHY_REG_ADDRESS,
3869                                  &phy_data);
3870         ret_val = e1000e_read_phy_reg_mdic(hw,
3871                                            HV_MCC_LOWER & MAX_PHY_REG_ADDRESS,
3872                                            &phy_data);
3873         if (!ret_val)
3874                 adapter->stats.mcc += phy_data;
3875
3876         /* Late Collision Count */
3877         e1000e_read_phy_reg_mdic(hw, HV_LATECOL_UPPER & MAX_PHY_REG_ADDRESS,
3878                                  &phy_data);
3879         ret_val = e1000e_read_phy_reg_mdic(hw,
3880                                            HV_LATECOL_LOWER &
3881                                            MAX_PHY_REG_ADDRESS,
3882                                            &phy_data);
3883         if (!ret_val)
3884                 adapter->stats.latecol += phy_data;
3885
3886         /* Collision Count - also used for adaptive IFS */
3887         e1000e_read_phy_reg_mdic(hw, HV_COLC_UPPER & MAX_PHY_REG_ADDRESS,
3888                                  &phy_data);
3889         ret_val = e1000e_read_phy_reg_mdic(hw,
3890                                            HV_COLC_LOWER & MAX_PHY_REG_ADDRESS,
3891                                            &phy_data);
3892         if (!ret_val)
3893                 hw->mac.collision_delta = phy_data;
3894
3895         /* Defer Count */
3896         e1000e_read_phy_reg_mdic(hw, HV_DC_UPPER & MAX_PHY_REG_ADDRESS,
3897                                  &phy_data);
3898         ret_val = e1000e_read_phy_reg_mdic(hw,
3899                                            HV_DC_LOWER & MAX_PHY_REG_ADDRESS,
3900                                            &phy_data);
3901         if (!ret_val)
3902                 adapter->stats.dc += phy_data;
3903
3904         /* Transmit with no CRS */
3905         e1000e_read_phy_reg_mdic(hw, HV_TNCRS_UPPER & MAX_PHY_REG_ADDRESS,
3906                                  &phy_data);
3907         ret_val = e1000e_read_phy_reg_mdic(hw,
3908                                            HV_TNCRS_LOWER & MAX_PHY_REG_ADDRESS,
3909                                            &phy_data);
3910         if (!ret_val)
3911                 adapter->stats.tncrs += phy_data;
3912
3913 release:
3914         hw->phy.ops.release(hw);
3915 }
3916
3917 /**
3918  * e1000e_update_stats - Update the board statistics counters
3919  * @adapter: board private structure
3920  **/
3921 void e1000e_update_stats(struct e1000_adapter *adapter)
3922 {
3923         struct net_device *netdev = adapter->netdev;
3924         struct e1000_hw *hw = &adapter->hw;
3925         struct pci_dev *pdev = adapter->pdev;
3926
3927         /*
3928          * Prevent stats update while adapter is being reset, or if the pci
3929          * connection is down.
3930          */
3931         if (adapter->link_speed == 0)
3932                 return;
3933         if (pci_channel_offline(pdev))
3934                 return;
3935
3936         adapter->stats.crcerrs += er32(CRCERRS);
3937         adapter->stats.gprc += er32(GPRC);
3938         adapter->stats.gorc += er32(GORCL);
3939         er32(GORCH); /* Clear gorc */
3940         adapter->stats.bprc += er32(BPRC);
3941         adapter->stats.mprc += er32(MPRC);
3942         adapter->stats.roc += er32(ROC);
3943
3944         adapter->stats.mpc += er32(MPC);
3945
3946         /* Half-duplex statistics */
3947         if (adapter->link_duplex == HALF_DUPLEX) {
3948                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
3949                         e1000e_update_phy_stats(adapter);
3950                 } else {
3951                         adapter->stats.scc += er32(SCC);
3952                         adapter->stats.ecol += er32(ECOL);
3953                         adapter->stats.mcc += er32(MCC);
3954                         adapter->stats.latecol += er32(LATECOL);
3955                         adapter->stats.dc += er32(DC);
3956
3957                         hw->mac.collision_delta = er32(COLC);
3958
3959                         if ((hw->mac.type != e1000_82574) &&
3960                             (hw->mac.type != e1000_82583))
3961                                 adapter->stats.tncrs += er32(TNCRS);
3962                 }
3963                 adapter->stats.colc += hw->mac.collision_delta;
3964         }
3965
3966         adapter->stats.xonrxc += er32(XONRXC);
3967         adapter->stats.xontxc += er32(XONTXC);
3968         adapter->stats.xoffrxc += er32(XOFFRXC);
3969         adapter->stats.xofftxc += er32(XOFFTXC);
3970         adapter->stats.gptc += er32(GPTC);
3971         adapter->stats.gotc += er32(GOTCL);
3972         er32(GOTCH); /* Clear gotc */
3973         adapter->stats.rnbc += er32(RNBC);
3974         adapter->stats.ruc += er32(RUC);
3975
3976         adapter->stats.mptc += er32(MPTC);
3977         adapter->stats.bptc += er32(BPTC);
3978
3979         /* used for adaptive IFS */
3980
3981         hw->mac.tx_packet_delta = er32(TPT);
3982         adapter->stats.tpt += hw->mac.tx_packet_delta;
3983
3984         adapter->stats.algnerrc += er32(ALGNERRC);
3985         adapter->stats.rxerrc += er32(RXERRC);
3986         adapter->stats.cexterr += er32(CEXTERR);
3987         adapter->stats.tsctc += er32(TSCTC);
3988         adapter->stats.tsctfc += er32(TSCTFC);
3989
3990         /* Fill out the OS statistics structure */
3991         netdev->stats.multicast = adapter->stats.mprc;
3992         netdev->stats.collisions = adapter->stats.colc;
3993
3994         /* Rx Errors */
3995
3996         /*
3997          * RLEC on some newer hardware can be incorrect so build
3998          * our own version based on RUC and ROC
3999          */
4000         netdev->stats.rx_errors = adapter->stats.rxerrc +
4001                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4002                 adapter->stats.ruc + adapter->stats.roc +
4003                 adapter->stats.cexterr;
4004         netdev->stats.rx_length_errors = adapter->stats.ruc +
4005                                               adapter->stats.roc;
4006         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4007         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4008         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4009
4010         /* Tx Errors */
4011         netdev->stats.tx_errors = adapter->stats.ecol +
4012                                        adapter->stats.latecol;
4013         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4014         netdev->stats.tx_window_errors = adapter->stats.latecol;
4015         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4016
4017         /* Tx Dropped needs to be maintained elsewhere */
4018
4019         /* Management Stats */
4020         adapter->stats.mgptc += er32(MGTPTC);
4021         adapter->stats.mgprc += er32(MGTPRC);
4022         adapter->stats.mgpdc += er32(MGTPDC);
4023 }
4024
4025 /**
4026  * e1000_phy_read_status - Update the PHY register status snapshot
4027  * @adapter: board private structure
4028  **/
4029 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4030 {
4031         struct e1000_hw *hw = &adapter->hw;
4032         struct e1000_phy_regs *phy = &adapter->phy_regs;
4033         int ret_val;
4034
4035         if ((er32(STATUS) & E1000_STATUS_LU) &&
4036             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4037                 ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4038                 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4039                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4040                 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4041                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4042                 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4043                 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4044                 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4045                 if (ret_val)
4046                         e_warn("Error reading PHY register\n");
4047         } else {
4048                 /*
4049                  * Do not read PHY registers if link is not up
4050                  * Set values to typical power-on defaults
4051                  */
4052                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4053                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4054                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4055                              BMSR_ERCAP);
4056                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4057                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4058                 phy->lpa = 0;
4059                 phy->expansion = EXPANSION_ENABLENPAGE;
4060                 phy->ctrl1000 = ADVERTISE_1000FULL;
4061                 phy->stat1000 = 0;
4062                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4063         }
4064 }
4065
4066 static void e1000_print_link_info(struct e1000_adapter *adapter)
4067 {
4068         struct e1000_hw *hw = &adapter->hw;
4069         u32 ctrl = er32(CTRL);
4070
4071         /* Link status message must follow this format for user tools */
4072         printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
4073                "Flow Control: %s\n",
4074                adapter->netdev->name,
4075                adapter->link_speed,
4076                (adapter->link_duplex == FULL_DUPLEX) ?
4077                "Full Duplex" : "Half Duplex",
4078                ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
4079                "Rx/Tx" :
4080                ((ctrl & E1000_CTRL_RFCE) ? "Rx" :
4081                 ((ctrl & E1000_CTRL_TFCE) ? "Tx" : "None")));
4082 }
4083
4084 static bool e1000e_has_link(struct e1000_adapter *adapter)
4085 {
4086         struct e1000_hw *hw = &adapter->hw;
4087         bool link_active = 0;
4088         s32 ret_val = 0;
4089
4090         /*
4091          * get_link_status is set on LSC (link status) interrupt or
4092          * Rx sequence error interrupt.  get_link_status will stay
4093          * false until the check_for_link establishes link
4094          * for copper adapters ONLY
4095          */
4096         switch (hw->phy.media_type) {
4097         case e1000_media_type_copper:
4098                 if (hw->mac.get_link_status) {
4099                         ret_val = hw->mac.ops.check_for_link(hw);
4100                         link_active = !hw->mac.get_link_status;
4101                 } else {
4102                         link_active = 1;
4103                 }
4104                 break;
4105         case e1000_media_type_fiber:
4106                 ret_val = hw->mac.ops.check_for_link(hw);
4107                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4108                 break;
4109         case e1000_media_type_internal_serdes:
4110                 ret_val = hw->mac.ops.check_for_link(hw);
4111                 link_active = adapter->hw.mac.serdes_has_link;
4112                 break;
4113         default:
4114         case e1000_media_type_unknown:
4115                 break;
4116         }
4117
4118         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4119             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4120                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4121                 e_info("Gigabit has been disabled, downgrading speed\n");
4122         }
4123
4124         return link_active;
4125 }
4126
4127 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4128 {
4129         /* make sure the receive unit is started */
4130         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4131             (adapter->flags & FLAG_RX_RESTART_NOW)) {
4132                 struct e1000_hw *hw = &adapter->hw;
4133                 u32 rctl = er32(RCTL);
4134                 ew32(RCTL, rctl | E1000_RCTL_EN);
4135                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4136         }
4137 }
4138
4139 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4140 {
4141         struct e1000_hw *hw = &adapter->hw;
4142
4143         /*
4144          * With 82574 controllers, PHY needs to be checked periodically
4145          * for hung state and reset, if two calls return true
4146          */
4147         if (e1000_check_phy_82574(hw))
4148                 adapter->phy_hang_count++;
4149         else
4150                 adapter->phy_hang_count = 0;
4151
4152         if (adapter->phy_hang_count > 1) {
4153                 adapter->phy_hang_count = 0;
4154                 schedule_work(&adapter->reset_task);
4155         }
4156 }
4157
4158 /**
4159  * e1000_watchdog - Timer Call-back
4160  * @data: pointer to adapter cast into an unsigned long
4161  **/
4162 static void e1000_watchdog(unsigned long data)
4163 {
4164         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4165
4166         /* Do the rest outside of interrupt context */
4167         schedule_work(&adapter->watchdog_task);
4168
4169         /* TODO: make this use queue_delayed_work() */
4170 }
4171
4172 static void e1000_watchdog_task(struct work_struct *work)
4173 {
4174         struct e1000_adapter *adapter = container_of(work,
4175                                         struct e1000_adapter, watchdog_task);
4176         struct net_device *netdev = adapter->netdev;
4177         struct e1000_mac_info *mac = &adapter->hw.mac;
4178         struct e1000_phy_info *phy = &adapter->hw.phy;
4179         struct e1000_ring *tx_ring = adapter->tx_ring;
4180         struct e1000_hw *hw = &adapter->hw;
4181         u32 link, tctl;
4182         int tx_pending = 0;
4183
4184         if (test_bit(__E1000_DOWN, &adapter->state))
4185                 return;
4186
4187         link = e1000e_has_link(adapter);
4188         if ((netif_carrier_ok(netdev)) && link) {
4189                 /* Cancel scheduled suspend requests. */
4190                 pm_runtime_resume(netdev->dev.parent);
4191
4192                 e1000e_enable_receives(adapter);
4193                 goto link_up;
4194         }
4195
4196         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4197             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4198                 e1000_update_mng_vlan(adapter);
4199
4200         if (link) {
4201                 if (!netif_carrier_ok(netdev)) {
4202                         bool txb2b = 1;
4203
4204                         /* Cancel scheduled suspend requests. */
4205                         pm_runtime_resume(netdev->dev.parent);
4206
4207                         /* update snapshot of PHY registers on LSC */
4208                         e1000_phy_read_status(adapter);
4209                         mac->ops.get_link_up_info(&adapter->hw,
4210                                                    &adapter->link_speed,
4211                                                    &adapter->link_duplex);
4212                         e1000_print_link_info(adapter);
4213                         /*
4214                          * On supported PHYs, check for duplex mismatch only
4215                          * if link has autonegotiated at 10/100 half
4216                          */
4217                         if ((hw->phy.type == e1000_phy_igp_3 ||
4218                              hw->phy.type == e1000_phy_bm) &&
4219                             (hw->mac.autoneg == true) &&
4220                             (adapter->link_speed == SPEED_10 ||
4221                              adapter->link_speed == SPEED_100) &&
4222                             (adapter->link_duplex == HALF_DUPLEX)) {
4223                                 u16 autoneg_exp;
4224
4225                                 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4226
4227                                 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4228                                         e_info("Autonegotiated half duplex but"
4229                                                " link partner cannot autoneg. "
4230                                                " Try forcing full duplex if "
4231                                                "link gets many collisions.\n");
4232                         }
4233
4234                         /* adjust timeout factor according to speed/duplex */
4235                         adapter->tx_timeout_factor = 1;
4236                         switch (adapter->link_speed) {
4237                         case SPEED_10:
4238                                 txb2b = 0;
4239                                 adapter->tx_timeout_factor = 16;
4240                                 break;
4241                         case SPEED_100:
4242                                 txb2b = 0;
4243                                 adapter->tx_timeout_factor = 10;
4244                                 break;
4245                         }
4246
4247                         /*
4248                          * workaround: re-program speed mode bit after
4249                          * link-up event
4250                          */
4251                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4252                             !txb2b) {
4253                                 u32 tarc0;
4254                                 tarc0 = er32(TARC(0));
4255                                 tarc0 &= ~SPEED_MODE_BIT;
4256                                 ew32(TARC(0), tarc0);
4257                         }
4258
4259                         /*
4260                          * disable TSO for pcie and 10/100 speeds, to avoid
4261                          * some hardware issues
4262                          */
4263                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
4264                                 switch (adapter->link_speed) {
4265                                 case SPEED_10:
4266                                 case SPEED_100:
4267                                         e_info("10/100 speed: disabling TSO\n");
4268                                         netdev->features &= ~NETIF_F_TSO;
4269                                         netdev->features &= ~NETIF_F_TSO6;
4270                                         break;
4271                                 case SPEED_1000:
4272                                         netdev->features |= NETIF_F_TSO;
4273                                         netdev->features |= NETIF_F_TSO6;
4274                                         break;
4275                                 default:
4276                                         /* oops */
4277                                         break;
4278                                 }
4279                         }
4280
4281                         /*
4282                          * enable transmits in the hardware, need to do this
4283                          * after setting TARC(0)
4284                          */
4285                         tctl = er32(TCTL);
4286                         tctl |= E1000_TCTL_EN;
4287                         ew32(TCTL, tctl);
4288
4289                         /*
4290                          * Perform any post-link-up configuration before
4291                          * reporting link up.
4292                          */
4293                         if (phy->ops.cfg_on_link_up)
4294                                 phy->ops.cfg_on_link_up(hw);
4295
4296                         netif_carrier_on(netdev);
4297
4298                         if (!test_bit(__E1000_DOWN, &adapter->state))
4299                                 mod_timer(&adapter->phy_info_timer,
4300                                           round_jiffies(jiffies + 2 * HZ));
4301                 }
4302         } else {
4303                 if (netif_carrier_ok(netdev)) {
4304                         adapter->link_speed = 0;
4305                         adapter->link_duplex = 0;
4306                         /* Link status message must follow this format */
4307                         printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4308                                adapter->netdev->name);
4309                         netif_carrier_off(netdev);
4310                         if (!test_bit(__E1000_DOWN, &adapter->state))
4311                                 mod_timer(&adapter->phy_info_timer,
4312                                           round_jiffies(jiffies + 2 * HZ));
4313
4314                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4315                                 schedule_work(&adapter->reset_task);
4316                         else
4317                                 pm_schedule_suspend(netdev->dev.parent,
4318                                                         LINK_TIMEOUT);
4319                 }
4320         }
4321
4322 link_up:
4323         e1000e_update_stats(adapter);
4324
4325         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4326         adapter->tpt_old = adapter->stats.tpt;
4327         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4328         adapter->colc_old = adapter->stats.colc;
4329
4330         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4331         adapter->gorc_old = adapter->stats.gorc;
4332         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4333         adapter->gotc_old = adapter->stats.gotc;
4334
4335         e1000e_update_adaptive(&adapter->hw);
4336
4337         if (!netif_carrier_ok(netdev)) {
4338                 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
4339                                tx_ring->count);
4340                 if (tx_pending) {
4341                         /*
4342                          * We've lost link, so the controller stops DMA,
4343                          * but we've got queued Tx work that's never going
4344                          * to get done, so reset controller to flush Tx.
4345                          * (Do the reset outside of interrupt context).
4346                          */
4347                         schedule_work(&adapter->reset_task);
4348                         /* return immediately since reset is imminent */
4349                         return;
4350                 }
4351         }
4352
4353         /* Simple mode for Interrupt Throttle Rate (ITR) */
4354         if (adapter->itr_setting == 4) {
4355                 /*
4356                  * Symmetric Tx/Rx gets a reduced ITR=2000;
4357                  * Total asymmetrical Tx or Rx gets ITR=8000;
4358                  * everyone else is between 2000-8000.
4359                  */
4360                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4361                 u32 dif = (adapter->gotc > adapter->gorc ?
4362                             adapter->gotc - adapter->gorc :
4363                             adapter->gorc - adapter->gotc) / 10000;
4364                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4365
4366                 ew32(ITR, 1000000000 / (itr * 256));
4367         }
4368
4369         /* Cause software interrupt to ensure Rx ring is cleaned */
4370         if (adapter->msix_entries)
4371                 ew32(ICS, adapter->rx_ring->ims_val);
4372         else
4373                 ew32(ICS, E1000_ICS_RXDMT0);
4374
4375         /* flush pending descriptors to memory before detecting Tx hang */
4376         e1000e_flush_descriptors(adapter);
4377
4378         /* Force detection of hung controller every watchdog period */
4379         adapter->detect_tx_hung = 1;
4380
4381         /*
4382          * With 82571 controllers, LAA may be overwritten due to controller
4383          * reset from the other port. Set the appropriate LAA in RAR[0]
4384          */
4385         if (e1000e_get_laa_state_82571(hw))
4386                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
4387
4388         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4389                 e1000e_check_82574_phy_workaround(adapter);
4390
4391         /* Reset the timer */
4392         if (!test_bit(__E1000_DOWN, &adapter->state))
4393                 mod_timer(&adapter->watchdog_timer,
4394                           round_jiffies(jiffies + 2 * HZ));
4395 }
4396
4397 #define E1000_TX_FLAGS_CSUM             0x00000001
4398 #define E1000_TX_FLAGS_VLAN             0x00000002
4399 #define E1000_TX_FLAGS_TSO              0x00000004
4400 #define E1000_TX_FLAGS_IPV4             0x00000008
4401 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
4402 #define E1000_TX_FLAGS_VLAN_SHIFT       16
4403
4404 static int e1000_tso(struct e1000_adapter *adapter,
4405                      struct sk_buff *skb)
4406 {
4407         struct e1000_ring *tx_ring = adapter->tx_ring;
4408         struct e1000_context_desc *context_desc;
4409         struct e1000_buffer *buffer_info;
4410         unsigned int i;
4411         u32 cmd_length = 0;
4412         u16 ipcse = 0, tucse, mss;
4413         u8 ipcss, ipcso, tucss, tucso, hdr_len;
4414         int err;
4415
4416         if (!skb_is_gso(skb))
4417                 return 0;
4418
4419         if (skb_header_cloned(skb)) {
4420                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4421                 if (err)
4422                         return err;
4423         }
4424
4425         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4426         mss = skb_shinfo(skb)->gso_size;
4427         if (skb->protocol == htons(ETH_P_IP)) {
4428                 struct iphdr *iph = ip_hdr(skb);
4429                 iph->tot_len = 0;
4430                 iph->check = 0;
4431                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4432                                                          0, IPPROTO_TCP, 0);
4433                 cmd_length = E1000_TXD_CMD_IP;
4434                 ipcse = skb_transport_offset(skb) - 1;
4435         } else if (skb_is_gso_v6(skb)) {
4436                 ipv6_hdr(skb)->payload_len = 0;
4437                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4438                                                        &ipv6_hdr(skb)->daddr,
4439                                                        0, IPPROTO_TCP, 0);
4440                 ipcse = 0;
4441         }
4442         ipcss = skb_network_offset(skb);
4443         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4444         tucss = skb_transport_offset(skb);
4445         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4446         tucse = 0;
4447
4448         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4449                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4450
4451         i = tx_ring->next_to_use;
4452         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4453         buffer_info = &tx_ring->buffer_info[i];
4454
4455         context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4456         context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4457         context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4458         context_desc->upper_setup.tcp_fields.tucss = tucss;
4459         context_desc->upper_setup.tcp_fields.tucso = tucso;
4460         context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4461         context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4462         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4463         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4464
4465         buffer_info->time_stamp = jiffies;
4466         buffer_info->next_to_watch = i;
4467
4468         i++;
4469         if (i == tx_ring->count)
4470                 i = 0;
4471         tx_ring->next_to_use = i;
4472
4473         return 1;
4474 }
4475
4476 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
4477 {
4478         struct e1000_ring *tx_ring = adapter->tx_ring;
4479         struct e1000_context_desc *context_desc;
4480         struct e1000_buffer *buffer_info;
4481         unsigned int i;
4482         u8 css;
4483         u32 cmd_len = E1000_TXD_CMD_DEXT;
4484         __be16 protocol;
4485
4486         if (skb->ip_summed != CHECKSUM_PARTIAL)
4487                 return 0;
4488
4489         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4490                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4491         else
4492                 protocol = skb->protocol;
4493
4494         switch (protocol) {
4495         case cpu_to_be16(ETH_P_IP):
4496                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4497                         cmd_len |= E1000_TXD_CMD_TCP;
4498                 break;
4499         case cpu_to_be16(ETH_P_IPV6):
4500                 /* XXX not handling all IPV6 headers */
4501                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4502                         cmd_len |= E1000_TXD_CMD_TCP;
4503                 break;
4504         default:
4505                 if (unlikely(net_ratelimit()))
4506                         e_warn("checksum_partial proto=%x!\n",
4507                                be16_to_cpu(protocol));
4508                 break;
4509         }
4510
4511         css = skb_checksum_start_offset(skb);
4512
4513         i = tx_ring->next_to_use;
4514         buffer_info = &tx_ring->buffer_info[i];
4515         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4516
4517         context_desc->lower_setup.ip_config = 0;
4518         context_desc->upper_setup.tcp_fields.tucss = css;
4519         context_desc->upper_setup.tcp_fields.tucso =
4520                                 css + skb->csum_offset;
4521         context_desc->upper_setup.tcp_fields.tucse = 0;
4522         context_desc->tcp_seg_setup.data = 0;
4523         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4524
4525         buffer_info->time_stamp = jiffies;
4526         buffer_info->next_to_watch = i;
4527
4528         i++;
4529         if (i == tx_ring->count)
4530                 i = 0;
4531         tx_ring->next_to_use = i;
4532
4533         return 1;
4534 }
4535
4536 #define E1000_MAX_PER_TXD       8192
4537 #define E1000_MAX_TXD_PWR       12
4538
4539 static int e1000_tx_map(struct e1000_adapter *adapter,
4540                         struct sk_buff *skb, unsigned int first,
4541                         unsigned int max_per_txd, unsigned int nr_frags,
4542                         unsigned int mss)
4543 {
4544         struct e1000_ring *tx_ring = adapter->tx_ring;
4545         struct pci_dev *pdev = adapter->pdev;
4546         struct e1000_buffer *buffer_info;
4547         unsigned int len = skb_headlen(skb);
4548         unsigned int offset = 0, size, count = 0, i;
4549         unsigned int f, bytecount, segs;
4550
4551         i = tx_ring->next_to_use;
4552
4553         while (len) {
4554                 buffer_info = &tx_ring->buffer_info[i];
4555                 size = min(len, max_per_txd);
4556
4557                 buffer_info->length = size;
4558                 buffer_info->time_stamp = jiffies;
4559                 buffer_info->next_to_watch = i;
4560                 buffer_info->dma = dma_map_single(&pdev->dev,
4561                                                   skb->data + offset,
4562                                                   size, DMA_TO_DEVICE);
4563                 buffer_info->mapped_as_page = false;
4564                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4565                         goto dma_error;
4566
4567                 len -= size;
4568                 offset += size;
4569                 count++;
4570
4571                 if (len) {
4572                         i++;
4573                         if (i == tx_ring->count)
4574                                 i = 0;
4575                 }
4576         }
4577
4578         for (f = 0; f < nr_frags; f++) {
4579                 struct skb_frag_struct *frag;
4580
4581                 frag = &skb_shinfo(skb)->frags[f];
4582                 len = frag->size;
4583                 offset = frag->page_offset;
4584
4585                 while (len) {
4586                         i++;
4587                         if (i == tx_ring->count)
4588                                 i = 0;
4589
4590                         buffer_info = &tx_ring->buffer_info[i];
4591                         size = min(len, max_per_txd);
4592
4593                         buffer_info->length = size;
4594                         buffer_info->time_stamp = jiffies;
4595                         buffer_info->next_to_watch = i;
4596                         buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
4597                                                         offset, size,
4598                                                         DMA_TO_DEVICE);
4599                         buffer_info->mapped_as_page = true;
4600                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4601                                 goto dma_error;
4602
4603                         len -= size;
4604                         offset += size;
4605                         count++;
4606                 }
4607         }
4608
4609         segs = skb_shinfo(skb)->gso_segs ? : 1;
4610         /* multiply data chunks by size of headers */
4611         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4612
4613         tx_ring->buffer_info[i].skb = skb;
4614         tx_ring->buffer_info[i].segs = segs;
4615         tx_ring->buffer_info[i].bytecount = bytecount;
4616         tx_ring->buffer_info[first].next_to_watch = i;
4617
4618         return count;
4619
4620 dma_error:
4621         dev_err(&pdev->dev, "Tx DMA map failed\n");
4622         buffer_info->dma = 0;
4623         if (count)
4624                 count--;
4625
4626         while (count--) {
4627                 if (i == 0)
4628                         i += tx_ring->count;
4629                 i--;
4630                 buffer_info = &tx_ring->buffer_info[i];
4631                 e1000_put_txbuf(adapter, buffer_info);
4632         }
4633
4634         return 0;
4635 }
4636
4637 static void e1000_tx_queue(struct e1000_adapter *adapter,
4638                            int tx_flags, int count)
4639 {
4640         struct e1000_ring *tx_ring = adapter->tx_ring;
4641         struct e1000_tx_desc *tx_desc = NULL;
4642         struct e1000_buffer *buffer_info;
4643         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4644         unsigned int i;
4645
4646         if (tx_flags & E1000_TX_FLAGS_TSO) {
4647                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4648                              E1000_TXD_CMD_TSE;
4649                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4650
4651                 if (tx_flags & E1000_TX_FLAGS_IPV4)
4652                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4653         }
4654
4655         if (tx_flags & E1000_TX_FLAGS_CSUM) {
4656                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4657                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4658         }
4659
4660         if (tx_flags & E1000_TX_FLAGS_VLAN) {
4661                 txd_lower |= E1000_TXD_CMD_VLE;
4662                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4663         }
4664
4665         i = tx_ring->next_to_use;
4666
4667         do {
4668                 buffer_info = &tx_ring->buffer_info[i];
4669                 tx_desc = E1000_TX_DESC(*tx_ring, i);
4670                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4671                 tx_desc->lower.data =
4672                         cpu_to_le32(txd_lower | buffer_info->length);
4673                 tx_desc->upper.data = cpu_to_le32(txd_upper);
4674
4675                 i++;
4676                 if (i == tx_ring->count)
4677                         i = 0;
4678         } while (--count > 0);
4679
4680         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4681
4682         /*
4683          * Force memory writes to complete before letting h/w
4684          * know there are new descriptors to fetch.  (Only
4685          * applicable for weak-ordered memory model archs,
4686          * such as IA-64).
4687          */
4688         wmb();
4689
4690         tx_ring->next_to_use = i;
4691         writel(i, adapter->hw.hw_addr + tx_ring->tail);
4692         /*
4693          * we need this if more than one processor can write to our tail
4694          * at a time, it synchronizes IO on IA64/Altix systems
4695          */
4696         mmiowb();
4697 }
4698
4699 #define MINIMUM_DHCP_PACKET_SIZE 282
4700 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4701                                     struct sk_buff *skb)
4702 {
4703         struct e1000_hw *hw =  &adapter->hw;
4704         u16 length, offset;
4705
4706         if (vlan_tx_tag_present(skb)) {
4707                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4708                     (adapter->hw.mng_cookie.status &
4709                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4710                         return 0;
4711         }
4712
4713         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4714                 return 0;
4715
4716         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4717                 return 0;
4718
4719         {
4720                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4721                 struct udphdr *udp;
4722
4723                 if (ip->protocol != IPPROTO_UDP)
4724                         return 0;
4725
4726                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4727                 if (ntohs(udp->dest) != 67)
4728                         return 0;
4729
4730                 offset = (u8 *)udp + 8 - skb->data;
4731                 length = skb->len - offset;
4732                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4733         }
4734
4735         return 0;
4736 }
4737
4738 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4739 {
4740         struct e1000_adapter *adapter = netdev_priv(netdev);
4741
4742         netif_stop_queue(netdev);
4743         /*
4744          * Herbert's original patch had:
4745          *  smp_mb__after_netif_stop_queue();
4746          * but since that doesn't exist yet, just open code it.
4747          */
4748         smp_mb();
4749
4750         /*
4751          * We need to check again in a case another CPU has just
4752          * made room available.
4753          */
4754         if (e1000_desc_unused(adapter->tx_ring) < size)
4755                 return -EBUSY;
4756
4757         /* A reprieve! */
4758         netif_start_queue(netdev);
4759         ++adapter->restart_queue;
4760         return 0;
4761 }
4762
4763 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4764 {
4765         struct e1000_adapter *adapter = netdev_priv(netdev);
4766
4767         if (e1000_desc_unused(adapter->tx_ring) >= size)
4768                 return 0;
4769         return __e1000_maybe_stop_tx(netdev, size);
4770 }
4771
4772 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4773 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4774                                     struct net_device *netdev)
4775 {
4776         struct e1000_adapter *adapter = netdev_priv(netdev);
4777         struct e1000_ring *tx_ring = adapter->tx_ring;
4778         unsigned int first;
4779         unsigned int max_per_txd = E1000_MAX_PER_TXD;
4780         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4781         unsigned int tx_flags = 0;
4782         unsigned int len = skb_headlen(skb);
4783         unsigned int nr_frags;
4784         unsigned int mss;
4785         int count = 0;
4786         int tso;
4787         unsigned int f;
4788
4789         if (test_bit(__E1000_DOWN, &adapter->state)) {
4790                 dev_kfree_skb_any(skb);
4791                 return NETDEV_TX_OK;
4792         }
4793
4794         if (skb->len <= 0) {
4795                 dev_kfree_skb_any(skb);
4796                 return NETDEV_TX_OK;
4797         }
4798
4799         mss = skb_shinfo(skb)->gso_size;
4800         /*
4801          * The controller does a simple calculation to
4802          * make sure there is enough room in the FIFO before
4803          * initiating the DMA for each buffer.  The calc is:
4804          * 4 = ceil(buffer len/mss).  To make sure we don't
4805          * overrun the FIFO, adjust the max buffer len if mss
4806          * drops.
4807          */
4808         if (mss) {
4809                 u8 hdr_len;
4810                 max_per_txd = min(mss << 2, max_per_txd);
4811                 max_txd_pwr = fls(max_per_txd) - 1;
4812
4813                 /*
4814                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4815                  * points to just header, pull a few bytes of payload from
4816                  * frags into skb->data
4817                  */
4818                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4819                 /*
4820                  * we do this workaround for ES2LAN, but it is un-necessary,
4821                  * avoiding it could save a lot of cycles
4822                  */
4823                 if (skb->data_len && (hdr_len == len)) {
4824                         unsigned int pull_size;
4825
4826                         pull_size = min((unsigned int)4, skb->data_len);
4827                         if (!__pskb_pull_tail(skb, pull_size)) {
4828                                 e_err("__pskb_pull_tail failed.\n");
4829                                 dev_kfree_skb_any(skb);
4830                                 return NETDEV_TX_OK;
4831                         }
4832                         len = skb_headlen(skb);
4833                 }
4834         }
4835
4836         /* reserve a descriptor for the offload context */
4837         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4838                 count++;
4839         count++;
4840
4841         count += TXD_USE_COUNT(len, max_txd_pwr);
4842
4843         nr_frags = skb_shinfo(skb)->nr_frags;
4844         for (f = 0; f < nr_frags; f++)
4845                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4846                                        max_txd_pwr);
4847
4848         if (adapter->hw.mac.tx_pkt_filtering)
4849                 e1000_transfer_dhcp_info(adapter, skb);
4850
4851         /*
4852          * need: count + 2 desc gap to keep tail from touching
4853          * head, otherwise try next time
4854          */
4855         if (e1000_maybe_stop_tx(netdev, count + 2))
4856                 return NETDEV_TX_BUSY;
4857
4858         if (vlan_tx_tag_present(skb)) {
4859                 tx_flags |= E1000_TX_FLAGS_VLAN;
4860                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4861         }
4862
4863         first = tx_ring->next_to_use;
4864
4865         tso = e1000_tso(adapter, skb);
4866         if (tso < 0) {
4867                 dev_kfree_skb_any(skb);
4868                 return NETDEV_TX_OK;
4869         }
4870
4871         if (tso)
4872                 tx_flags |= E1000_TX_FLAGS_TSO;
4873         else if (e1000_tx_csum(adapter, skb))
4874                 tx_flags |= E1000_TX_FLAGS_CSUM;
4875
4876         /*
4877          * Old method was to assume IPv4 packet by default if TSO was enabled.
4878          * 82571 hardware supports TSO capabilities for IPv6 as well...
4879          * no longer assume, we must.
4880          */
4881         if (skb->protocol == htons(ETH_P_IP))
4882                 tx_flags |= E1000_TX_FLAGS_IPV4;
4883
4884         /* if count is 0 then mapping error has occured */
4885         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4886         if (count) {
4887                 e1000_tx_queue(adapter, tx_flags, count);
4888                 /* Make sure there is space in the ring for the next send. */
4889                 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4890
4891         } else {
4892                 dev_kfree_skb_any(skb);
4893                 tx_ring->buffer_info[first].time_stamp = 0;
4894                 tx_ring->next_to_use = first;
4895         }
4896
4897         return NETDEV_TX_OK;
4898 }
4899
4900 /**
4901  * e1000_tx_timeout - Respond to a Tx Hang
4902  * @netdev: network interface device structure
4903  **/
4904 static void e1000_tx_timeout(struct net_device *netdev)
4905 {
4906         struct e1000_adapter *adapter = netdev_priv(netdev);
4907
4908         /* Do the reset outside of interrupt context */
4909         adapter->tx_timeout_count++;
4910         schedule_work(&adapter->reset_task);
4911 }
4912
4913 static void e1000_reset_task(struct work_struct *work)
4914 {
4915         struct e1000_adapter *adapter;
4916         adapter = container_of(work, struct e1000_adapter, reset_task);
4917
4918         /* don't run the task if already down */
4919         if (test_bit(__E1000_DOWN, &adapter->state))
4920                 return;
4921
4922         if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4923               (adapter->flags & FLAG_RX_RESTART_NOW))) {
4924                 e1000e_dump(adapter);
4925                 e_err("Reset adapter\n");
4926         }
4927         e1000e_reinit_locked(adapter);
4928 }
4929
4930 /**
4931  * e1000_get_stats - Get System Network Statistics
4932  * @netdev: network interface device structure
4933  *
4934  * Returns the address of the device statistics structure.
4935  * The statistics are actually updated from the timer callback.
4936  **/
4937 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4938 {
4939         /* only return the current stats */
4940         return &netdev->stats;
4941 }
4942
4943 /**
4944  * e1000_change_mtu - Change the Maximum Transfer Unit
4945  * @netdev: network interface device structure
4946  * @new_mtu: new value for maximum frame size
4947  *
4948  * Returns 0 on success, negative on failure
4949  **/
4950 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4951 {
4952         struct e1000_adapter *adapter = netdev_priv(netdev);
4953         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4954
4955         /* Jumbo frame support */
4956         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
4957             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4958                 e_err("Jumbo Frames not supported.\n");
4959                 return -EINVAL;
4960         }
4961
4962         /* Supported frame sizes */
4963         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4964             (max_frame > adapter->max_hw_frame_size)) {
4965                 e_err("Unsupported MTU setting\n");
4966                 return -EINVAL;
4967         }
4968
4969         /* Jumbo frame workaround on 82579 requires CRC be stripped */
4970         if ((adapter->hw.mac.type == e1000_pch2lan) &&
4971             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
4972             (new_mtu > ETH_DATA_LEN)) {
4973                 e_err("Jumbo Frames not supported on 82579 when CRC "
4974                       "stripping is disabled.\n");
4975                 return -EINVAL;
4976         }
4977
4978         /* 82573 Errata 17 */
4979         if (((adapter->hw.mac.type == e1000_82573) ||
4980              (adapter->hw.mac.type == e1000_82574)) &&
4981             (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
4982                 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
4983                 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
4984         }
4985
4986         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4987                 msleep(1);
4988         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4989         adapter->max_frame_size = max_frame;
4990         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4991         netdev->mtu = new_mtu;
4992         if (netif_running(netdev))
4993                 e1000e_down(adapter);
4994
4995         /*
4996          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4997          * means we reserve 2 more, this pushes us to allocate from the next
4998          * larger slab size.
4999          * i.e. RXBUFFER_2048 --> size-4096 slab
5000          * However with the new *_jumbo_rx* routines, jumbo receives will use
5001          * fragmented skbs
5002          */
5003
5004         if (max_frame <= 2048)
5005                 adapter->rx_buffer_len = 2048;
5006         else
5007                 adapter->rx_buffer_len = 4096;
5008
5009         /* adjust allocation if LPE protects us, and we aren't using SBP */
5010         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5011              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5012                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5013                                          + ETH_FCS_LEN;
5014
5015         if (netif_running(netdev))
5016                 e1000e_up(adapter);
5017         else
5018                 e1000e_reset(adapter);
5019
5020         clear_bit(__E1000_RESETTING, &adapter->state);
5021
5022         return 0;
5023 }
5024
5025 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5026                            int cmd)
5027 {
5028         struct e1000_adapter *adapter = netdev_priv(netdev);
5029         struct mii_ioctl_data *data = if_mii(ifr);
5030
5031         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5032                 return -EOPNOTSUPP;
5033
5034         switch (cmd) {
5035         case SIOCGMIIPHY:
5036                 data->phy_id = adapter->hw.phy.addr;
5037                 break;
5038         case SIOCGMIIREG:
5039                 e1000_phy_read_status(adapter);
5040
5041                 switch (data->reg_num & 0x1F) {
5042                 case MII_BMCR:
5043                         data->val_out = adapter->phy_regs.bmcr;
5044                         break;
5045                 case MII_BMSR:
5046                         data->val_out = adapter->phy_regs.bmsr;
5047                         break;
5048                 case MII_PHYSID1:
5049                         data->val_out = (adapter->hw.phy.id >> 16);
5050                         break;
5051                 case MII_PHYSID2:
5052                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5053                         break;
5054                 case MII_ADVERTISE:
5055                         data->val_out = adapter->phy_regs.advertise;
5056                         break;
5057                 case MII_LPA:
5058                         data->val_out = adapter->phy_regs.lpa;
5059                         break;
5060                 case MII_EXPANSION:
5061                         data->val_out = adapter->phy_regs.expansion;
5062                         break;
5063                 case MII_CTRL1000:
5064                         data->val_out = adapter->phy_regs.ctrl1000;
5065                         break;
5066                 case MII_STAT1000:
5067                         data->val_out = adapter->phy_regs.stat1000;
5068                         break;
5069                 case MII_ESTATUS:
5070                         data->val_out = adapter->phy_regs.estatus;
5071                         break;
5072                 default:
5073                         return -EIO;
5074                 }
5075                 break;
5076         case SIOCSMIIREG:
5077         default:
5078                 return -EOPNOTSUPP;
5079         }
5080         return 0;
5081 }
5082
5083 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5084 {
5085         switch (cmd) {
5086         case SIOCGMIIPHY:
5087         case SIOCGMIIREG:
5088         case SIOCSMIIREG:
5089                 return e1000_mii_ioctl(netdev, ifr, cmd);
5090         default:
5091                 return -EOPNOTSUPP;
5092         }
5093 }
5094
5095 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5096 {
5097         struct e1000_hw *hw = &adapter->hw;
5098         u32 i, mac_reg;
5099         u16 phy_reg;
5100         int retval = 0;
5101
5102         /* copy MAC RARs to PHY RARs */
5103         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5104
5105         /* copy MAC MTA to PHY MTA */
5106         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5107                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5108                 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
5109                 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
5110         }
5111
5112         /* configure PHY Rx Control register */
5113         e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
5114         mac_reg = er32(RCTL);
5115         if (mac_reg & E1000_RCTL_UPE)
5116                 phy_reg |= BM_RCTL_UPE;
5117         if (mac_reg & E1000_RCTL_MPE)
5118                 phy_reg |= BM_RCTL_MPE;
5119         phy_reg &= ~(BM_RCTL_MO_MASK);
5120         if (mac_reg & E1000_RCTL_MO_3)
5121                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5122                                 << BM_RCTL_MO_SHIFT);
5123         if (mac_reg & E1000_RCTL_BAM)
5124                 phy_reg |= BM_RCTL_BAM;
5125         if (mac_reg & E1000_RCTL_PMCF)
5126                 phy_reg |= BM_RCTL_PMCF;
5127         mac_reg = er32(CTRL);
5128         if (mac_reg & E1000_CTRL_RFCE)
5129                 phy_reg |= BM_RCTL_RFCE;
5130         e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
5131
5132         /* enable PHY wakeup in MAC register */
5133         ew32(WUFC, wufc);
5134         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5135
5136         /* configure and enable PHY wakeup in PHY registers */
5137         e1e_wphy(&adapter->hw, BM_WUFC, wufc);
5138         e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5139
5140         /* activate PHY wakeup */
5141         retval = hw->phy.ops.acquire(hw);
5142         if (retval) {
5143                 e_err("Could not acquire PHY\n");
5144                 return retval;
5145         }
5146         e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
5147                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
5148         retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
5149         if (retval) {
5150                 e_err("Could not read PHY page 769\n");
5151                 goto out;
5152         }
5153         phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5154         retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
5155         if (retval)
5156                 e_err("Could not set PHY Host Wakeup bit\n");
5157 out:
5158         hw->phy.ops.release(hw);
5159
5160         return retval;
5161 }
5162
5163 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5164                             bool runtime)
5165 {
5166         struct net_device *netdev = pci_get_drvdata(pdev);
5167         struct e1000_adapter *adapter = netdev_priv(netdev);
5168         struct e1000_hw *hw = &adapter->hw;
5169         u32 ctrl, ctrl_ext, rctl, status;
5170         /* Runtime suspend should only enable wakeup for link changes */
5171         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5172         int retval = 0;
5173
5174         netif_device_detach(netdev);
5175
5176         if (netif_running(netdev)) {
5177                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5178                 e1000e_down(adapter);
5179                 e1000_free_irq(adapter);
5180         }
5181         e1000e_reset_interrupt_capability(adapter);
5182
5183         retval = pci_save_state(pdev);
5184         if (retval)
5185                 return retval;
5186
5187         status = er32(STATUS);
5188         if (status & E1000_STATUS_LU)
5189                 wufc &= ~E1000_WUFC_LNKC;
5190
5191         if (wufc) {
5192                 e1000_setup_rctl(adapter);
5193                 e1000_set_multi(netdev);
5194
5195                 /* turn on all-multi mode if wake on multicast is enabled */
5196                 if (wufc & E1000_WUFC_MC) {
5197                         rctl = er32(RCTL);
5198                         rctl |= E1000_RCTL_MPE;
5199                         ew32(RCTL, rctl);
5200                 }
5201
5202                 ctrl = er32(CTRL);
5203                 /* advertise wake from D3Cold */
5204                 #define E1000_CTRL_ADVD3WUC 0x00100000
5205                 /* phy power management enable */
5206                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5207                 ctrl |= E1000_CTRL_ADVD3WUC;
5208                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5209                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5210                 ew32(CTRL, ctrl);
5211
5212                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5213                     adapter->hw.phy.media_type ==
5214                     e1000_media_type_internal_serdes) {
5215                         /* keep the laser running in D3 */
5216                         ctrl_ext = er32(CTRL_EXT);
5217                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5218                         ew32(CTRL_EXT, ctrl_ext);
5219                 }
5220
5221                 if (adapter->flags & FLAG_IS_ICH)
5222                         e1000e_disable_gig_wol_ich8lan(&adapter->hw);
5223
5224                 /* Allow time for pending master requests to run */
5225                 e1000e_disable_pcie_master(&adapter->hw);
5226
5227                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5228                         /* enable wakeup by the PHY */
5229                         retval = e1000_init_phy_wakeup(adapter, wufc);
5230                         if (retval)
5231                                 return retval;
5232                 } else {
5233                         /* enable wakeup by the MAC */
5234                         ew32(WUFC, wufc);
5235                         ew32(WUC, E1000_WUC_PME_EN);
5236                 }
5237         } else {
5238                 ew32(WUC, 0);
5239                 ew32(WUFC, 0);
5240         }
5241
5242         *enable_wake = !!wufc;
5243
5244         /* make sure adapter isn't asleep if manageability is enabled */
5245         if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5246             (hw->mac.ops.check_mng_mode(hw)))
5247                 *enable_wake = true;
5248
5249         if (adapter->hw.phy.type == e1000_phy_igp_3)
5250                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5251
5252         /*
5253          * Release control of h/w to f/w.  If f/w is AMT enabled, this
5254          * would have already happened in close and is redundant.
5255          */
5256         e1000e_release_hw_control(adapter);
5257
5258         pci_disable_device(pdev);
5259
5260         return 0;
5261 }
5262
5263 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5264 {
5265         if (sleep && wake) {
5266                 pci_prepare_to_sleep(pdev);
5267                 return;
5268         }
5269
5270         pci_wake_from_d3(pdev, wake);
5271         pci_set_power_state(pdev, PCI_D3hot);
5272 }
5273
5274 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5275                                     bool wake)
5276 {
5277         struct net_device *netdev = pci_get_drvdata(pdev);
5278         struct e1000_adapter *adapter = netdev_priv(netdev);
5279
5280         /*
5281          * The pci-e switch on some quad port adapters will report a
5282          * correctable error when the MAC transitions from D0 to D3.  To
5283          * prevent this we need to mask off the correctable errors on the
5284          * downstream port of the pci-e switch.
5285          */
5286         if (adapter->flags & FLAG_IS_QUAD_PORT) {
5287                 struct pci_dev *us_dev = pdev->bus->self;
5288                 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
5289                 u16 devctl;
5290
5291                 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5292                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5293                                       (devctl & ~PCI_EXP_DEVCTL_CERE));
5294
5295                 e1000_power_off(pdev, sleep, wake);
5296
5297                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5298         } else {
5299                 e1000_power_off(pdev, sleep, wake);
5300         }
5301 }
5302
5303 #ifdef CONFIG_PCIEASPM
5304 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5305 {
5306         pci_disable_link_state(pdev, state);
5307 }
5308 #else
5309 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5310 {
5311         int pos;
5312         u16 reg16;
5313
5314         /*
5315          * Both device and parent should have the same ASPM setting.
5316          * Disable ASPM in downstream component first and then upstream.
5317          */
5318         pos = pci_pcie_cap(pdev);
5319         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5320         reg16 &= ~state;
5321         pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5322
5323         if (!pdev->bus->self)
5324                 return;
5325
5326         pos = pci_pcie_cap(pdev->bus->self);
5327         pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5328         reg16 &= ~state;
5329         pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5330 }
5331 #endif
5332 void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5333 {
5334         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5335                  (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5336                  (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5337
5338         __e1000e_disable_aspm(pdev, state);
5339 }
5340
5341 #ifdef CONFIG_PM_OPS
5342 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5343 {
5344         return !!adapter->tx_ring->buffer_info;
5345 }
5346
5347 static int __e1000_resume(struct pci_dev *pdev)
5348 {
5349         struct net_device *netdev = pci_get_drvdata(pdev);
5350         struct e1000_adapter *adapter = netdev_priv(netdev);
5351         struct e1000_hw *hw = &adapter->hw;
5352         u32 err;
5353
5354         pci_set_power_state(pdev, PCI_D0);
5355         pci_restore_state(pdev);
5356         pci_save_state(pdev);
5357         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5358                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5359
5360         e1000e_set_interrupt_capability(adapter);
5361         if (netif_running(netdev)) {
5362                 err = e1000_request_irq(adapter);
5363                 if (err)
5364                         return err;
5365         }
5366
5367         e1000e_power_up_phy(adapter);
5368
5369         /* report the system wakeup cause from S3/S4 */
5370         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5371                 u16 phy_data;
5372
5373                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5374                 if (phy_data) {
5375                         e_info("PHY Wakeup cause - %s\n",
5376                                 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5377                                 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5378                                 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5379                                 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5380                                 phy_data & E1000_WUS_LNKC ? "Link Status "
5381                                 " Change" : "other");
5382                 }
5383                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5384         } else {
5385                 u32 wus = er32(WUS);
5386                 if (wus) {
5387                         e_info("MAC Wakeup cause - %s\n",
5388                                 wus & E1000_WUS_EX ? "Unicast Packet" :
5389                                 wus & E1000_WUS_MC ? "Multicast Packet" :
5390                                 wus & E1000_WUS_BC ? "Broadcast Packet" :
5391                                 wus & E1000_WUS_MAG ? "Magic Packet" :
5392                                 wus & E1000_WUS_LNKC ? "Link Status Change" :
5393                                 "other");
5394                 }
5395                 ew32(WUS, ~0);
5396         }
5397
5398         e1000e_reset(adapter);
5399
5400         e1000_init_manageability_pt(adapter);
5401
5402         if (netif_running(netdev))
5403                 e1000e_up(adapter);
5404
5405         netif_device_attach(netdev);
5406
5407         /*
5408          * If the controller has AMT, do not set DRV_LOAD until the interface
5409          * is up.  For all other cases, let the f/w know that the h/w is now
5410          * under the control of the driver.
5411          */
5412         if (!(adapter->flags & FLAG_HAS_AMT))
5413                 e1000e_get_hw_control(adapter);
5414
5415         return 0;
5416 }
5417
5418 #ifdef CONFIG_PM_SLEEP
5419 static int e1000_suspend(struct device *dev)
5420 {
5421         struct pci_dev *pdev = to_pci_dev(dev);
5422         int retval;
5423         bool wake;
5424
5425         retval = __e1000_shutdown(pdev, &wake, false);
5426         if (!retval)
5427                 e1000_complete_shutdown(pdev, true, wake);
5428
5429         return retval;
5430 }
5431
5432 static int e1000_resume(struct device *dev)
5433 {
5434         struct pci_dev *pdev = to_pci_dev(dev);
5435         struct net_device *netdev = pci_get_drvdata(pdev);
5436         struct e1000_adapter *adapter = netdev_priv(netdev);
5437
5438         if (e1000e_pm_ready(adapter))
5439                 adapter->idle_check = true;
5440
5441         return __e1000_resume(pdev);
5442 }
5443 #endif /* CONFIG_PM_SLEEP */
5444
5445 #ifdef CONFIG_PM_RUNTIME
5446 static int e1000_runtime_suspend(struct device *dev)
5447 {
5448         struct pci_dev *pdev = to_pci_dev(dev);
5449         struct net_device *netdev = pci_get_drvdata(pdev);
5450         struct e1000_adapter *adapter = netdev_priv(netdev);
5451
5452         if (e1000e_pm_ready(adapter)) {
5453                 bool wake;
5454
5455                 __e1000_shutdown(pdev, &wake, true);
5456         }
5457
5458         return 0;
5459 }
5460
5461 static int e1000_idle(struct device *dev)
5462 {
5463         struct pci_dev *pdev = to_pci_dev(dev);
5464         struct net_device *netdev = pci_get_drvdata(pdev);
5465         struct e1000_adapter *adapter = netdev_priv(netdev);
5466
5467         if (!e1000e_pm_ready(adapter))
5468                 return 0;
5469
5470         if (adapter->idle_check) {
5471                 adapter->idle_check = false;
5472                 if (!e1000e_has_link(adapter))
5473                         pm_schedule_suspend(dev, MSEC_PER_SEC);
5474         }
5475
5476         return -EBUSY;
5477 }
5478
5479 static int e1000_runtime_resume(struct device *dev)
5480 {
5481         struct pci_dev *pdev = to_pci_dev(dev);
5482         struct net_device *netdev = pci_get_drvdata(pdev);
5483         struct e1000_adapter *adapter = netdev_priv(netdev);
5484
5485         if (!e1000e_pm_ready(adapter))
5486                 return 0;
5487
5488         adapter->idle_check = !dev->power.runtime_auto;
5489         return __e1000_resume(pdev);
5490 }
5491 #endif /* CONFIG_PM_RUNTIME */
5492 #endif /* CONFIG_PM_OPS */
5493
5494 static void e1000_shutdown(struct pci_dev *pdev)
5495 {
5496         bool wake = false;
5497
5498         __e1000_shutdown(pdev, &wake, false);
5499
5500         if (system_state == SYSTEM_POWER_OFF)
5501                 e1000_complete_shutdown(pdev, false, wake);
5502 }
5503
5504 #ifdef CONFIG_NET_POLL_CONTROLLER
5505
5506 static irqreturn_t e1000_intr_msix(int irq, void *data)
5507 {
5508         struct net_device *netdev = data;
5509         struct e1000_adapter *adapter = netdev_priv(netdev);
5510         int vector, msix_irq;
5511
5512         if (adapter->msix_entries) {
5513                 vector = 0;
5514                 msix_irq = adapter->msix_entries[vector].vector;
5515                 disable_irq(msix_irq);
5516                 e1000_intr_msix_rx(msix_irq, netdev);
5517                 enable_irq(msix_irq);
5518
5519                 vector++;
5520                 msix_irq = adapter->msix_entries[vector].vector;
5521                 disable_irq(msix_irq);
5522                 e1000_intr_msix_tx(msix_irq, netdev);
5523                 enable_irq(msix_irq);
5524
5525                 vector++;
5526                 msix_irq = adapter->msix_entries[vector].vector;
5527                 disable_irq(msix_irq);
5528                 e1000_msix_other(msix_irq, netdev);
5529                 enable_irq(msix_irq);
5530         }
5531
5532         return IRQ_HANDLED;
5533 }
5534
5535 /*
5536  * Polling 'interrupt' - used by things like netconsole to send skbs
5537  * without having to re-enable interrupts. It's not called while
5538  * the interrupt routine is executing.
5539  */
5540 static void e1000_netpoll(struct net_device *netdev)
5541 {
5542         struct e1000_adapter *adapter = netdev_priv(netdev);
5543
5544         switch (adapter->int_mode) {
5545         case E1000E_INT_MODE_MSIX:
5546                 e1000_intr_msix(adapter->pdev->irq, netdev);
5547                 break;
5548         case E1000E_INT_MODE_MSI:
5549                 disable_irq(adapter->pdev->irq);
5550                 e1000_intr_msi(adapter->pdev->irq, netdev);
5551                 enable_irq(adapter->pdev->irq);
5552                 break;
5553         default: /* E1000E_INT_MODE_LEGACY */
5554                 disable_irq(adapter->pdev->irq);
5555                 e1000_intr(adapter->pdev->irq, netdev);
5556                 enable_irq(adapter->pdev->irq);
5557                 break;
5558         }
5559 }
5560 #endif
5561
5562 /**
5563  * e1000_io_error_detected - called when PCI error is detected
5564  * @pdev: Pointer to PCI device
5565  * @state: The current pci connection state
5566  *
5567  * This function is called after a PCI bus error affecting
5568  * this device has been detected.
5569  */
5570 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5571                                                 pci_channel_state_t state)
5572 {
5573         struct net_device *netdev = pci_get_drvdata(pdev);
5574         struct e1000_adapter *adapter = netdev_priv(netdev);
5575
5576         netif_device_detach(netdev);
5577
5578         if (state == pci_channel_io_perm_failure)
5579                 return PCI_ERS_RESULT_DISCONNECT;
5580
5581         if (netif_running(netdev))
5582                 e1000e_down(adapter);
5583         pci_disable_device(pdev);
5584
5585         /* Request a slot slot reset. */
5586         return PCI_ERS_RESULT_NEED_RESET;
5587 }
5588
5589 /**
5590  * e1000_io_slot_reset - called after the pci bus has been reset.
5591  * @pdev: Pointer to PCI device
5592  *
5593  * Restart the card from scratch, as if from a cold-boot. Implementation
5594  * resembles the first-half of the e1000_resume routine.
5595  */
5596 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5597 {
5598         struct net_device *netdev = pci_get_drvdata(pdev);
5599         struct e1000_adapter *adapter = netdev_priv(netdev);
5600         struct e1000_hw *hw = &adapter->hw;
5601         int err;
5602         pci_ers_result_t result;
5603
5604         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5605                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5606         err = pci_enable_device_mem(pdev);
5607         if (err) {
5608                 dev_err(&pdev->dev,
5609                         "Cannot re-enable PCI device after reset.\n");
5610                 result = PCI_ERS_RESULT_DISCONNECT;
5611         } else {
5612                 pci_set_master(pdev);
5613                 pdev->state_saved = true;
5614                 pci_restore_state(pdev);
5615
5616                 pci_enable_wake(pdev, PCI_D3hot, 0);
5617                 pci_enable_wake(pdev, PCI_D3cold, 0);
5618
5619                 e1000e_reset(adapter);
5620                 ew32(WUS, ~0);
5621                 result = PCI_ERS_RESULT_RECOVERED;
5622         }
5623
5624         pci_cleanup_aer_uncorrect_error_status(pdev);
5625
5626         return result;
5627 }
5628
5629 /**
5630  * e1000_io_resume - called when traffic can start flowing again.
5631  * @pdev: Pointer to PCI device
5632  *
5633  * This callback is called when the error recovery driver tells us that
5634  * its OK to resume normal operation. Implementation resembles the
5635  * second-half of the e1000_resume routine.
5636  */
5637 static void e1000_io_resume(struct pci_dev *pdev)
5638 {
5639         struct net_device *netdev = pci_get_drvdata(pdev);
5640         struct e1000_adapter *adapter = netdev_priv(netdev);
5641
5642         e1000_init_manageability_pt(adapter);
5643
5644         if (netif_running(netdev)) {
5645                 if (e1000e_up(adapter)) {
5646                         dev_err(&pdev->dev,
5647                                 "can't bring device back up after reset\n");
5648                         return;
5649                 }
5650         }
5651
5652         netif_device_attach(netdev);
5653
5654         /*
5655          * If the controller has AMT, do not set DRV_LOAD until the interface
5656          * is up.  For all other cases, let the f/w know that the h/w is now
5657          * under the control of the driver.
5658          */
5659         if (!(adapter->flags & FLAG_HAS_AMT))
5660                 e1000e_get_hw_control(adapter);
5661
5662 }
5663
5664 static void e1000_print_device_info(struct e1000_adapter *adapter)
5665 {
5666         struct e1000_hw *hw = &adapter->hw;
5667         struct net_device *netdev = adapter->netdev;
5668         u32 ret_val;
5669         u8 pba_str[E1000_PBANUM_LENGTH];
5670
5671         /* print bus type/speed/width info */
5672         e_info("(PCI Express:2.5GB/s:%s) %pM\n",
5673                /* bus width */
5674                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5675                 "Width x1"),
5676                /* MAC address */
5677                netdev->dev_addr);
5678         e_info("Intel(R) PRO/%s Network Connection\n",
5679                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5680         ret_val = e1000_read_pba_string_generic(hw, pba_str,
5681                                                 E1000_PBANUM_LENGTH);
5682         if (ret_val)
5683                 strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1);
5684         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5685                hw->mac.type, hw->phy.type, pba_str);
5686 }
5687
5688 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5689 {
5690         struct e1000_hw *hw = &adapter->hw;
5691         int ret_val;
5692         u16 buf = 0;
5693
5694         if (hw->mac.type != e1000_82573)
5695                 return;
5696
5697         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5698         if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5699                 /* Deep Smart Power Down (DSPD) */
5700                 dev_warn(&adapter->pdev->dev,
5701                          "Warning: detected DSPD enabled in EEPROM\n");
5702         }
5703 }
5704
5705 static const struct net_device_ops e1000e_netdev_ops = {
5706         .ndo_open               = e1000_open,
5707         .ndo_stop               = e1000_close,
5708         .ndo_start_xmit         = e1000_xmit_frame,
5709         .ndo_get_stats          = e1000_get_stats,
5710         .ndo_set_multicast_list = e1000_set_multi,
5711         .ndo_set_mac_address    = e1000_set_mac,
5712         .ndo_change_mtu         = e1000_change_mtu,
5713         .ndo_do_ioctl           = e1000_ioctl,
5714         .ndo_tx_timeout         = e1000_tx_timeout,
5715         .ndo_validate_addr      = eth_validate_addr,
5716
5717         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
5718         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
5719         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
5720 #ifdef CONFIG_NET_POLL_CONTROLLER
5721         .ndo_poll_controller    = e1000_netpoll,
5722 #endif
5723 };
5724
5725 /**
5726  * e1000_probe - Device Initialization Routine
5727  * @pdev: PCI device information struct
5728  * @ent: entry in e1000_pci_tbl
5729  *
5730  * Returns 0 on success, negative on failure
5731  *
5732  * e1000_probe initializes an adapter identified by a pci_dev structure.
5733  * The OS initialization, configuring of the adapter private structure,
5734  * and a hardware reset occur.
5735  **/
5736 static int __devinit e1000_probe(struct pci_dev *pdev,
5737                                  const struct pci_device_id *ent)
5738 {
5739         struct net_device *netdev;
5740         struct e1000_adapter *adapter;
5741         struct e1000_hw *hw;
5742         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5743         resource_size_t mmio_start, mmio_len;
5744         resource_size_t flash_start, flash_len;
5745
5746         static int cards_found;
5747         int i, err, pci_using_dac;
5748         u16 eeprom_data = 0;
5749         u16 eeprom_apme_mask = E1000_EEPROM_APME;
5750
5751         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
5752                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5753
5754         err = pci_enable_device_mem(pdev);
5755         if (err)
5756                 return err;
5757
5758         pci_using_dac = 0;
5759         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
5760         if (!err) {
5761                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5762                 if (!err)
5763                         pci_using_dac = 1;
5764         } else {
5765                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
5766                 if (err) {
5767                         err = dma_set_coherent_mask(&pdev->dev,
5768                                                     DMA_BIT_MASK(32));
5769                         if (err) {
5770                                 dev_err(&pdev->dev, "No usable DMA "
5771                                         "configuration, aborting\n");
5772                                 goto err_dma;
5773                         }
5774                 }
5775         }
5776
5777         err = pci_request_selected_regions_exclusive(pdev,
5778                                           pci_select_bars(pdev, IORESOURCE_MEM),
5779                                           e1000e_driver_name);
5780         if (err)
5781                 goto err_pci_reg;
5782
5783         /* AER (Advanced Error Reporting) hooks */
5784         pci_enable_pcie_error_reporting(pdev);
5785
5786         pci_set_master(pdev);
5787         /* PCI config space info */
5788         err = pci_save_state(pdev);
5789         if (err)
5790                 goto err_alloc_etherdev;
5791
5792         err = -ENOMEM;
5793         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
5794         if (!netdev)
5795                 goto err_alloc_etherdev;
5796
5797         SET_NETDEV_DEV(netdev, &pdev->dev);
5798
5799         netdev->irq = pdev->irq;
5800
5801         pci_set_drvdata(pdev, netdev);
5802         adapter = netdev_priv(netdev);
5803         hw = &adapter->hw;
5804         adapter->netdev = netdev;
5805         adapter->pdev = pdev;
5806         adapter->ei = ei;
5807         adapter->pba = ei->pba;
5808         adapter->flags = ei->flags;
5809         adapter->flags2 = ei->flags2;
5810         adapter->hw.adapter = adapter;
5811         adapter->hw.mac.type = ei->mac;
5812         adapter->max_hw_frame_size = ei->max_hw_frame_size;
5813         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5814
5815         mmio_start = pci_resource_start(pdev, 0);
5816         mmio_len = pci_resource_len(pdev, 0);
5817
5818         err = -EIO;
5819         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
5820         if (!adapter->hw.hw_addr)
5821                 goto err_ioremap;
5822
5823         if ((adapter->flags & FLAG_HAS_FLASH) &&
5824             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
5825                 flash_start = pci_resource_start(pdev, 1);
5826                 flash_len = pci_resource_len(pdev, 1);
5827                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5828                 if (!adapter->hw.flash_address)
5829                         goto err_flashmap;
5830         }
5831
5832         /* construct the net_device struct */
5833         netdev->netdev_ops              = &e1000e_netdev_ops;
5834         e1000e_set_ethtool_ops(netdev);
5835         netdev->watchdog_timeo          = 5 * HZ;
5836         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
5837         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5838
5839         netdev->mem_start = mmio_start;
5840         netdev->mem_end = mmio_start + mmio_len;
5841
5842         adapter->bd_number = cards_found++;
5843
5844         e1000e_check_options(adapter);
5845
5846         /* setup adapter struct */
5847         err = e1000_sw_init(adapter);
5848         if (err)
5849                 goto err_sw_init;
5850
5851         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5852         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5853         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5854
5855         err = ei->get_variants(adapter);
5856         if (err)
5857                 goto err_hw_init;
5858
5859         if ((adapter->flags & FLAG_IS_ICH) &&
5860             (adapter->flags & FLAG_READ_ONLY_NVM))
5861                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5862
5863         hw->mac.ops.get_bus_info(&adapter->hw);
5864
5865         adapter->hw.phy.autoneg_wait_to_complete = 0;
5866
5867         /* Copper options */
5868         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5869                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5870                 adapter->hw.phy.disable_polarity_correction = 0;
5871                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5872         }
5873
5874         if (e1000_check_reset_block(&adapter->hw))
5875                 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5876
5877         netdev->features = NETIF_F_SG |
5878                            NETIF_F_HW_CSUM |
5879                            NETIF_F_HW_VLAN_TX |
5880                            NETIF_F_HW_VLAN_RX;
5881
5882         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5883                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5884
5885         netdev->features |= NETIF_F_TSO;
5886         netdev->features |= NETIF_F_TSO6;
5887
5888         netdev->vlan_features |= NETIF_F_TSO;
5889         netdev->vlan_features |= NETIF_F_TSO6;
5890         netdev->vlan_features |= NETIF_F_HW_CSUM;
5891         netdev->vlan_features |= NETIF_F_SG;
5892
5893         if (pci_using_dac) {
5894                 netdev->features |= NETIF_F_HIGHDMA;
5895                 netdev->vlan_features |= NETIF_F_HIGHDMA;
5896         }
5897
5898         if (e1000e_enable_mng_pass_thru(&adapter->hw))
5899                 adapter->flags |= FLAG_MNG_PT_ENABLED;
5900
5901         /*
5902          * before reading the NVM, reset the controller to
5903          * put the device in a known good starting state
5904          */
5905         adapter->hw.mac.ops.reset_hw(&adapter->hw);
5906
5907         /*
5908          * systems with ASPM and others may see the checksum fail on the first
5909          * attempt. Let's give it a few tries
5910          */
5911         for (i = 0;; i++) {
5912                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5913                         break;
5914                 if (i == 2) {
5915                         e_err("The NVM Checksum Is Not Valid\n");
5916                         err = -EIO;
5917                         goto err_eeprom;
5918                 }
5919         }
5920
5921         e1000_eeprom_checks(adapter);
5922
5923         /* copy the MAC address */
5924         if (e1000e_read_mac_addr(&adapter->hw))
5925                 e_err("NVM Read Error while reading MAC address\n");
5926
5927         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
5928         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
5929
5930         if (!is_valid_ether_addr(netdev->perm_addr)) {
5931                 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5932                 err = -EIO;
5933                 goto err_eeprom;
5934         }
5935
5936         init_timer(&adapter->watchdog_timer);
5937         adapter->watchdog_timer.function = e1000_watchdog;
5938         adapter->watchdog_timer.data = (unsigned long) adapter;
5939
5940         init_timer(&adapter->phy_info_timer);
5941         adapter->phy_info_timer.function = e1000_update_phy_info;
5942         adapter->phy_info_timer.data = (unsigned long) adapter;
5943
5944         INIT_WORK(&adapter->reset_task, e1000_reset_task);
5945         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5946         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
5947         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5948         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
5949         INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
5950
5951         /* Initialize link parameters. User can change them with ethtool */
5952         adapter->hw.mac.autoneg = 1;
5953         adapter->fc_autoneg = 1;
5954         adapter->hw.fc.requested_mode = e1000_fc_default;
5955         adapter->hw.fc.current_mode = e1000_fc_default;
5956         adapter->hw.phy.autoneg_advertised = 0x2f;
5957
5958         /* ring size defaults */
5959         adapter->rx_ring->count = 256;
5960         adapter->tx_ring->count = 256;
5961
5962         /*
5963          * Initial Wake on LAN setting - If APM wake is enabled in
5964          * the EEPROM, enable the ACPI Magic Packet filter
5965          */
5966         if (adapter->flags & FLAG_APME_IN_WUC) {
5967                 /* APME bit in EEPROM is mapped to WUC.APME */
5968                 eeprom_data = er32(WUC);
5969                 eeprom_apme_mask = E1000_WUC_APME;
5970                 if ((hw->mac.type > e1000_ich10lan) &&
5971                     (eeprom_data & E1000_WUC_PHY_WAKE))
5972                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5973         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5974                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5975                     (adapter->hw.bus.func == 1))
5976                         e1000_read_nvm(&adapter->hw,
5977                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5978                 else
5979                         e1000_read_nvm(&adapter->hw,
5980                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5981         }
5982
5983         /* fetch WoL from EEPROM */
5984         if (eeprom_data & eeprom_apme_mask)
5985                 adapter->eeprom_wol |= E1000_WUFC_MAG;
5986
5987         /*
5988          * now that we have the eeprom settings, apply the special cases
5989          * where the eeprom may be wrong or the board simply won't support
5990          * wake on lan on a particular port
5991          */
5992         if (!(adapter->flags & FLAG_HAS_WOL))
5993                 adapter->eeprom_wol = 0;
5994
5995         /* initialize the wol settings based on the eeprom settings */
5996         adapter->wol = adapter->eeprom_wol;
5997         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5998
5999         /* save off EEPROM version number */
6000         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6001
6002         /* reset the hardware with the new settings */
6003         e1000e_reset(adapter);
6004
6005         /*
6006          * If the controller has AMT, do not set DRV_LOAD until the interface
6007          * is up.  For all other cases, let the f/w know that the h/w is now
6008          * under the control of the driver.
6009          */
6010         if (!(adapter->flags & FLAG_HAS_AMT))
6011                 e1000e_get_hw_control(adapter);
6012
6013         strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1);
6014         err = register_netdev(netdev);
6015         if (err)
6016                 goto err_register;
6017
6018         /* carrier off reporting is important to ethtool even BEFORE open */
6019         netif_carrier_off(netdev);
6020
6021         e1000_print_device_info(adapter);
6022
6023         if (pci_dev_run_wake(pdev))
6024                 pm_runtime_put_noidle(&pdev->dev);
6025
6026         return 0;
6027
6028 err_register:
6029         if (!(adapter->flags & FLAG_HAS_AMT))
6030                 e1000e_release_hw_control(adapter);
6031 err_eeprom:
6032         if (!e1000_check_reset_block(&adapter->hw))
6033                 e1000_phy_hw_reset(&adapter->hw);
6034 err_hw_init:
6035         kfree(adapter->tx_ring);
6036         kfree(adapter->rx_ring);
6037 err_sw_init:
6038         if (adapter->hw.flash_address)
6039                 iounmap(adapter->hw.flash_address);
6040         e1000e_reset_interrupt_capability(adapter);
6041 err_flashmap:
6042         iounmap(adapter->hw.hw_addr);
6043 err_ioremap:
6044         free_netdev(netdev);
6045 err_alloc_etherdev:
6046         pci_release_selected_regions(pdev,
6047                                      pci_select_bars(pdev, IORESOURCE_MEM));
6048 err_pci_reg:
6049 err_dma:
6050         pci_disable_device(pdev);
6051         return err;
6052 }
6053
6054 /**
6055  * e1000_remove - Device Removal Routine
6056  * @pdev: PCI device information struct
6057  *
6058  * e1000_remove is called by the PCI subsystem to alert the driver
6059  * that it should release a PCI device.  The could be caused by a
6060  * Hot-Plug event, or because the driver is going to be removed from
6061  * memory.
6062  **/
6063 static void __devexit e1000_remove(struct pci_dev *pdev)
6064 {
6065         struct net_device *netdev = pci_get_drvdata(pdev);
6066         struct e1000_adapter *adapter = netdev_priv(netdev);
6067         bool down = test_bit(__E1000_DOWN, &adapter->state);
6068
6069         /*
6070          * The timers may be rescheduled, so explicitly disable them
6071          * from being rescheduled.
6072          */
6073         if (!down)
6074                 set_bit(__E1000_DOWN, &adapter->state);
6075         del_timer_sync(&adapter->watchdog_timer);
6076         del_timer_sync(&adapter->phy_info_timer);
6077
6078         cancel_work_sync(&adapter->reset_task);
6079         cancel_work_sync(&adapter->watchdog_task);
6080         cancel_work_sync(&adapter->downshift_task);
6081         cancel_work_sync(&adapter->update_phy_task);
6082         cancel_work_sync(&adapter->led_blink_task);
6083         cancel_work_sync(&adapter->print_hang_task);
6084
6085         if (!(netdev->flags & IFF_UP))
6086                 e1000_power_down_phy(adapter);
6087
6088         /* Don't lie to e1000_close() down the road. */
6089         if (!down)
6090                 clear_bit(__E1000_DOWN, &adapter->state);
6091         unregister_netdev(netdev);
6092
6093         if (pci_dev_run_wake(pdev))
6094                 pm_runtime_get_noresume(&pdev->dev);
6095
6096         /*
6097          * Release control of h/w to f/w.  If f/w is AMT enabled, this
6098          * would have already happened in close and is redundant.
6099          */
6100         e1000e_release_hw_control(adapter);
6101
6102         e1000e_reset_interrupt_capability(adapter);
6103         kfree(adapter->tx_ring);
6104         kfree(adapter->rx_ring);
6105
6106         iounmap(adapter->hw.hw_addr);
6107         if (adapter->hw.flash_address)
6108                 iounmap(adapter->hw.flash_address);
6109         pci_release_selected_regions(pdev,
6110                                      pci_select_bars(pdev, IORESOURCE_MEM));
6111
6112         free_netdev(netdev);
6113
6114         /* AER disable */
6115         pci_disable_pcie_error_reporting(pdev);
6116
6117         pci_disable_device(pdev);
6118 }
6119
6120 /* PCI Error Recovery (ERS) */
6121 static struct pci_error_handlers e1000_err_handler = {
6122         .error_detected = e1000_io_error_detected,
6123         .slot_reset = e1000_io_slot_reset,
6124         .resume = e1000_io_resume,
6125 };
6126
6127 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6128         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6129         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6130         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6131         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6132         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6133         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6134         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6135         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6136         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6137
6138         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6139         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6140         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6141         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6142
6143         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6144         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6145         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6146
6147         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6148         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6149         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6150
6151         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6152           board_80003es2lan },
6153         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6154           board_80003es2lan },
6155         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6156           board_80003es2lan },
6157         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6158           board_80003es2lan },
6159
6160         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6161         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6162         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6163         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6164         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6165         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6166         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6167         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6168
6169         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6170         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6171         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6172         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6173         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6174         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6175         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6176         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6177         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6178
6179         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6180         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6181         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6182
6183         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6184         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6185         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6186
6187         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6188         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6189         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6190         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6191
6192         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6193         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6194
6195         { }     /* terminate list */
6196 };
6197 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6198
6199 #ifdef CONFIG_PM_OPS
6200 static const struct dev_pm_ops e1000_pm_ops = {
6201         SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6202         SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6203                                 e1000_runtime_resume, e1000_idle)
6204 };
6205 #endif
6206
6207 /* PCI Device API Driver */
6208 static struct pci_driver e1000_driver = {
6209         .name     = e1000e_driver_name,
6210         .id_table = e1000_pci_tbl,
6211         .probe    = e1000_probe,
6212         .remove   = __devexit_p(e1000_remove),
6213 #ifdef CONFIG_PM_OPS
6214         .driver.pm = &e1000_pm_ops,
6215 #endif
6216         .shutdown = e1000_shutdown,
6217         .err_handler = &e1000_err_handler
6218 };
6219
6220 /**
6221  * e1000_init_module - Driver Registration Routine
6222  *
6223  * e1000_init_module is the first routine called when the driver is
6224  * loaded. All it does is register with the PCI subsystem.
6225  **/
6226 static int __init e1000_init_module(void)
6227 {
6228         int ret;
6229         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6230                 e1000e_driver_version);
6231         pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
6232         ret = pci_register_driver(&e1000_driver);
6233
6234         return ret;
6235 }
6236 module_init(e1000_init_module);
6237
6238 /**
6239  * e1000_exit_module - Driver Exit Cleanup Routine
6240  *
6241  * e1000_exit_module is called just before the driver is removed
6242  * from memory.
6243  **/
6244 static void __exit e1000_exit_module(void)
6245 {
6246         pci_unregister_driver(&e1000_driver);
6247 }
6248 module_exit(e1000_exit_module);
6249
6250
6251 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6252 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6253 MODULE_LICENSE("GPL");
6254 MODULE_VERSION(DRV_VERSION);
6255
6256 /* e1000_main.c */