Merge branch 'devel-stable' of master.kernel.org:/home/rmk/linux-2.6-arm
[pandora-kernel.git] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2011 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36
37 #include "e1000.h"
38
39 enum {NETDEV_STATS, E1000_STATS};
40
41 struct e1000_stats {
42         char stat_string[ETH_GSTRING_LEN];
43         int type;
44         int sizeof_stat;
45         int stat_offset;
46 };
47
48 #define E1000_STAT(str, m) { \
49                         .stat_string = str, \
50                         .type = E1000_STATS, \
51                         .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
52                         .stat_offset = offsetof(struct e1000_adapter, m) }
53 #define E1000_NETDEV_STAT(str, m) { \
54                         .stat_string = str, \
55                         .type = NETDEV_STATS, \
56                         .sizeof_stat = sizeof(((struct net_device *)0)->m), \
57                         .stat_offset = offsetof(struct net_device, m) }
58
59 static const struct e1000_stats e1000_gstrings_stats[] = {
60         E1000_STAT("rx_packets", stats.gprc),
61         E1000_STAT("tx_packets", stats.gptc),
62         E1000_STAT("rx_bytes", stats.gorc),
63         E1000_STAT("tx_bytes", stats.gotc),
64         E1000_STAT("rx_broadcast", stats.bprc),
65         E1000_STAT("tx_broadcast", stats.bptc),
66         E1000_STAT("rx_multicast", stats.mprc),
67         E1000_STAT("tx_multicast", stats.mptc),
68         E1000_NETDEV_STAT("rx_errors", stats.rx_errors),
69         E1000_NETDEV_STAT("tx_errors", stats.tx_errors),
70         E1000_NETDEV_STAT("tx_dropped", stats.tx_dropped),
71         E1000_STAT("multicast", stats.mprc),
72         E1000_STAT("collisions", stats.colc),
73         E1000_NETDEV_STAT("rx_length_errors", stats.rx_length_errors),
74         E1000_NETDEV_STAT("rx_over_errors", stats.rx_over_errors),
75         E1000_STAT("rx_crc_errors", stats.crcerrs),
76         E1000_NETDEV_STAT("rx_frame_errors", stats.rx_frame_errors),
77         E1000_STAT("rx_no_buffer_count", stats.rnbc),
78         E1000_STAT("rx_missed_errors", stats.mpc),
79         E1000_STAT("tx_aborted_errors", stats.ecol),
80         E1000_STAT("tx_carrier_errors", stats.tncrs),
81         E1000_NETDEV_STAT("tx_fifo_errors", stats.tx_fifo_errors),
82         E1000_NETDEV_STAT("tx_heartbeat_errors", stats.tx_heartbeat_errors),
83         E1000_STAT("tx_window_errors", stats.latecol),
84         E1000_STAT("tx_abort_late_coll", stats.latecol),
85         E1000_STAT("tx_deferred_ok", stats.dc),
86         E1000_STAT("tx_single_coll_ok", stats.scc),
87         E1000_STAT("tx_multi_coll_ok", stats.mcc),
88         E1000_STAT("tx_timeout_count", tx_timeout_count),
89         E1000_STAT("tx_restart_queue", restart_queue),
90         E1000_STAT("rx_long_length_errors", stats.roc),
91         E1000_STAT("rx_short_length_errors", stats.ruc),
92         E1000_STAT("rx_align_errors", stats.algnerrc),
93         E1000_STAT("tx_tcp_seg_good", stats.tsctc),
94         E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
95         E1000_STAT("rx_flow_control_xon", stats.xonrxc),
96         E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
97         E1000_STAT("tx_flow_control_xon", stats.xontxc),
98         E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
99         E1000_STAT("rx_long_byte_count", stats.gorc),
100         E1000_STAT("rx_csum_offload_good", hw_csum_good),
101         E1000_STAT("rx_csum_offload_errors", hw_csum_err),
102         E1000_STAT("rx_header_split", rx_hdr_split),
103         E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
104         E1000_STAT("tx_smbus", stats.mgptc),
105         E1000_STAT("rx_smbus", stats.mgprc),
106         E1000_STAT("dropped_smbus", stats.mgpdc),
107         E1000_STAT("rx_dma_failed", rx_dma_failed),
108         E1000_STAT("tx_dma_failed", tx_dma_failed),
109 };
110
111 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
112 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
113 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
114         "Register test  (offline)", "Eeprom test    (offline)",
115         "Interrupt test (offline)", "Loopback test  (offline)",
116         "Link test   (on/offline)"
117 };
118 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
119
120 static int e1000_get_settings(struct net_device *netdev,
121                               struct ethtool_cmd *ecmd)
122 {
123         struct e1000_adapter *adapter = netdev_priv(netdev);
124         struct e1000_hw *hw = &adapter->hw;
125
126         if (hw->phy.media_type == e1000_media_type_copper) {
127
128                 ecmd->supported = (SUPPORTED_10baseT_Half |
129                                    SUPPORTED_10baseT_Full |
130                                    SUPPORTED_100baseT_Half |
131                                    SUPPORTED_100baseT_Full |
132                                    SUPPORTED_1000baseT_Full |
133                                    SUPPORTED_Autoneg |
134                                    SUPPORTED_TP);
135                 if (hw->phy.type == e1000_phy_ife)
136                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
137                 ecmd->advertising = ADVERTISED_TP;
138
139                 if (hw->mac.autoneg == 1) {
140                         ecmd->advertising |= ADVERTISED_Autoneg;
141                         /* the e1000 autoneg seems to match ethtool nicely */
142                         ecmd->advertising |= hw->phy.autoneg_advertised;
143                 }
144
145                 ecmd->port = PORT_TP;
146                 ecmd->phy_address = hw->phy.addr;
147                 ecmd->transceiver = XCVR_INTERNAL;
148
149         } else {
150                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
151                                      SUPPORTED_FIBRE |
152                                      SUPPORTED_Autoneg);
153
154                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
155                                      ADVERTISED_FIBRE |
156                                      ADVERTISED_Autoneg);
157
158                 ecmd->port = PORT_FIBRE;
159                 ecmd->transceiver = XCVR_EXTERNAL;
160         }
161
162         ecmd->speed = -1;
163         ecmd->duplex = -1;
164
165         if (netif_running(netdev)) {
166                 if (netif_carrier_ok(netdev)) {
167                         ecmd->speed = adapter->link_speed;
168                         ecmd->duplex = adapter->link_duplex - 1;
169                 }
170         } else {
171                 u32 status = er32(STATUS);
172                 if (status & E1000_STATUS_LU) {
173                         if (status & E1000_STATUS_SPEED_1000)
174                                 ecmd->speed = 1000;
175                         else if (status & E1000_STATUS_SPEED_100)
176                                 ecmd->speed = 100;
177                         else
178                                 ecmd->speed = 10;
179
180                         if (status & E1000_STATUS_FD)
181                                 ecmd->duplex = DUPLEX_FULL;
182                         else
183                                 ecmd->duplex = DUPLEX_HALF;
184                 }
185         }
186
187         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
188                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
189
190         /* MDI-X => 2; MDI =>1; Invalid =>0 */
191         if ((hw->phy.media_type == e1000_media_type_copper) &&
192             netif_carrier_ok(netdev))
193                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
194                                                       ETH_TP_MDI;
195         else
196                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
197
198         return 0;
199 }
200
201 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
202 {
203         struct e1000_mac_info *mac = &adapter->hw.mac;
204
205         mac->autoneg = 0;
206
207         /* Fiber NICs only allow 1000 gbps Full duplex */
208         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
209                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
210                 e_err("Unsupported Speed/Duplex configuration\n");
211                 return -EINVAL;
212         }
213
214         switch (spddplx) {
215         case SPEED_10 + DUPLEX_HALF:
216                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
217                 break;
218         case SPEED_10 + DUPLEX_FULL:
219                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
220                 break;
221         case SPEED_100 + DUPLEX_HALF:
222                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
223                 break;
224         case SPEED_100 + DUPLEX_FULL:
225                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
226                 break;
227         case SPEED_1000 + DUPLEX_FULL:
228                 mac->autoneg = 1;
229                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
230                 break;
231         case SPEED_1000 + DUPLEX_HALF: /* not supported */
232         default:
233                 e_err("Unsupported Speed/Duplex configuration\n");
234                 return -EINVAL;
235         }
236         return 0;
237 }
238
239 static int e1000_set_settings(struct net_device *netdev,
240                               struct ethtool_cmd *ecmd)
241 {
242         struct e1000_adapter *adapter = netdev_priv(netdev);
243         struct e1000_hw *hw = &adapter->hw;
244
245         /*
246          * When SoL/IDER sessions are active, autoneg/speed/duplex
247          * cannot be changed
248          */
249         if (e1000_check_reset_block(hw)) {
250                 e_err("Cannot change link characteristics when SoL/IDER is "
251                       "active.\n");
252                 return -EINVAL;
253         }
254
255         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
256                 msleep(1);
257
258         if (ecmd->autoneg == AUTONEG_ENABLE) {
259                 hw->mac.autoneg = 1;
260                 if (hw->phy.media_type == e1000_media_type_fiber)
261                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
262                                                      ADVERTISED_FIBRE |
263                                                      ADVERTISED_Autoneg;
264                 else
265                         hw->phy.autoneg_advertised = ecmd->advertising |
266                                                      ADVERTISED_TP |
267                                                      ADVERTISED_Autoneg;
268                 ecmd->advertising = hw->phy.autoneg_advertised;
269                 if (adapter->fc_autoneg)
270                         hw->fc.requested_mode = e1000_fc_default;
271         } else {
272                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
273                         clear_bit(__E1000_RESETTING, &adapter->state);
274                         return -EINVAL;
275                 }
276         }
277
278         /* reset the link */
279
280         if (netif_running(adapter->netdev)) {
281                 e1000e_down(adapter);
282                 e1000e_up(adapter);
283         } else {
284                 e1000e_reset(adapter);
285         }
286
287         clear_bit(__E1000_RESETTING, &adapter->state);
288         return 0;
289 }
290
291 static void e1000_get_pauseparam(struct net_device *netdev,
292                                  struct ethtool_pauseparam *pause)
293 {
294         struct e1000_adapter *adapter = netdev_priv(netdev);
295         struct e1000_hw *hw = &adapter->hw;
296
297         pause->autoneg =
298                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
299
300         if (hw->fc.current_mode == e1000_fc_rx_pause) {
301                 pause->rx_pause = 1;
302         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
303                 pause->tx_pause = 1;
304         } else if (hw->fc.current_mode == e1000_fc_full) {
305                 pause->rx_pause = 1;
306                 pause->tx_pause = 1;
307         }
308 }
309
310 static int e1000_set_pauseparam(struct net_device *netdev,
311                                 struct ethtool_pauseparam *pause)
312 {
313         struct e1000_adapter *adapter = netdev_priv(netdev);
314         struct e1000_hw *hw = &adapter->hw;
315         int retval = 0;
316
317         adapter->fc_autoneg = pause->autoneg;
318
319         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
320                 msleep(1);
321
322         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
323                 hw->fc.requested_mode = e1000_fc_default;
324                 if (netif_running(adapter->netdev)) {
325                         e1000e_down(adapter);
326                         e1000e_up(adapter);
327                 } else {
328                         e1000e_reset(adapter);
329                 }
330         } else {
331                 if (pause->rx_pause && pause->tx_pause)
332                         hw->fc.requested_mode = e1000_fc_full;
333                 else if (pause->rx_pause && !pause->tx_pause)
334                         hw->fc.requested_mode = e1000_fc_rx_pause;
335                 else if (!pause->rx_pause && pause->tx_pause)
336                         hw->fc.requested_mode = e1000_fc_tx_pause;
337                 else if (!pause->rx_pause && !pause->tx_pause)
338                         hw->fc.requested_mode = e1000_fc_none;
339
340                 hw->fc.current_mode = hw->fc.requested_mode;
341
342                 if (hw->phy.media_type == e1000_media_type_fiber) {
343                         retval = hw->mac.ops.setup_link(hw);
344                         /* implicit goto out */
345                 } else {
346                         retval = e1000e_force_mac_fc(hw);
347                         if (retval)
348                                 goto out;
349                         e1000e_set_fc_watermarks(hw);
350                 }
351         }
352
353 out:
354         clear_bit(__E1000_RESETTING, &adapter->state);
355         return retval;
356 }
357
358 static u32 e1000_get_rx_csum(struct net_device *netdev)
359 {
360         struct e1000_adapter *adapter = netdev_priv(netdev);
361         return adapter->flags & FLAG_RX_CSUM_ENABLED;
362 }
363
364 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
365 {
366         struct e1000_adapter *adapter = netdev_priv(netdev);
367
368         if (data)
369                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
370         else
371                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
372
373         if (netif_running(netdev))
374                 e1000e_reinit_locked(adapter);
375         else
376                 e1000e_reset(adapter);
377         return 0;
378 }
379
380 static u32 e1000_get_tx_csum(struct net_device *netdev)
381 {
382         return (netdev->features & NETIF_F_HW_CSUM) != 0;
383 }
384
385 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
386 {
387         if (data)
388                 netdev->features |= NETIF_F_HW_CSUM;
389         else
390                 netdev->features &= ~NETIF_F_HW_CSUM;
391
392         return 0;
393 }
394
395 static int e1000_set_tso(struct net_device *netdev, u32 data)
396 {
397         struct e1000_adapter *adapter = netdev_priv(netdev);
398
399         if (data) {
400                 netdev->features |= NETIF_F_TSO;
401                 netdev->features |= NETIF_F_TSO6;
402         } else {
403                 netdev->features &= ~NETIF_F_TSO;
404                 netdev->features &= ~NETIF_F_TSO6;
405         }
406
407         adapter->flags |= FLAG_TSO_FORCE;
408         return 0;
409 }
410
411 static u32 e1000_get_msglevel(struct net_device *netdev)
412 {
413         struct e1000_adapter *adapter = netdev_priv(netdev);
414         return adapter->msg_enable;
415 }
416
417 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
418 {
419         struct e1000_adapter *adapter = netdev_priv(netdev);
420         adapter->msg_enable = data;
421 }
422
423 static int e1000_get_regs_len(struct net_device *netdev)
424 {
425 #define E1000_REGS_LEN 32 /* overestimate */
426         return E1000_REGS_LEN * sizeof(u32);
427 }
428
429 static void e1000_get_regs(struct net_device *netdev,
430                            struct ethtool_regs *regs, void *p)
431 {
432         struct e1000_adapter *adapter = netdev_priv(netdev);
433         struct e1000_hw *hw = &adapter->hw;
434         u32 *regs_buff = p;
435         u16 phy_data;
436         u8 revision_id;
437
438         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
439
440         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
441
442         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
443
444         regs_buff[0]  = er32(CTRL);
445         regs_buff[1]  = er32(STATUS);
446
447         regs_buff[2]  = er32(RCTL);
448         regs_buff[3]  = er32(RDLEN);
449         regs_buff[4]  = er32(RDH);
450         regs_buff[5]  = er32(RDT);
451         regs_buff[6]  = er32(RDTR);
452
453         regs_buff[7]  = er32(TCTL);
454         regs_buff[8]  = er32(TDLEN);
455         regs_buff[9]  = er32(TDH);
456         regs_buff[10] = er32(TDT);
457         regs_buff[11] = er32(TIDV);
458
459         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
460
461         /* ethtool doesn't use anything past this point, so all this
462          * code is likely legacy junk for apps that may or may not
463          * exist */
464         if (hw->phy.type == e1000_phy_m88) {
465                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
466                 regs_buff[13] = (u32)phy_data; /* cable length */
467                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
468                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
469                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
470                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
471                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
472                 regs_buff[18] = regs_buff[13]; /* cable polarity */
473                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
474                 regs_buff[20] = regs_buff[17]; /* polarity correction */
475                 /* phy receive errors */
476                 regs_buff[22] = adapter->phy_stats.receive_errors;
477                 regs_buff[23] = regs_buff[13]; /* mdix mode */
478         }
479         regs_buff[21] = 0; /* was idle_errors */
480         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
481         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
482         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
483 }
484
485 static int e1000_get_eeprom_len(struct net_device *netdev)
486 {
487         struct e1000_adapter *adapter = netdev_priv(netdev);
488         return adapter->hw.nvm.word_size * 2;
489 }
490
491 static int e1000_get_eeprom(struct net_device *netdev,
492                             struct ethtool_eeprom *eeprom, u8 *bytes)
493 {
494         struct e1000_adapter *adapter = netdev_priv(netdev);
495         struct e1000_hw *hw = &adapter->hw;
496         u16 *eeprom_buff;
497         int first_word;
498         int last_word;
499         int ret_val = 0;
500         u16 i;
501
502         if (eeprom->len == 0)
503                 return -EINVAL;
504
505         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
506
507         first_word = eeprom->offset >> 1;
508         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
509
510         eeprom_buff = kmalloc(sizeof(u16) *
511                         (last_word - first_word + 1), GFP_KERNEL);
512         if (!eeprom_buff)
513                 return -ENOMEM;
514
515         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
516                 ret_val = e1000_read_nvm(hw, first_word,
517                                          last_word - first_word + 1,
518                                          eeprom_buff);
519         } else {
520                 for (i = 0; i < last_word - first_word + 1; i++) {
521                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
522                                                       &eeprom_buff[i]);
523                         if (ret_val)
524                                 break;
525                 }
526         }
527
528         if (ret_val) {
529                 /* a read error occurred, throw away the result */
530                 memset(eeprom_buff, 0xff, sizeof(u16) *
531                        (last_word - first_word + 1));
532         } else {
533                 /* Device's eeprom is always little-endian, word addressable */
534                 for (i = 0; i < last_word - first_word + 1; i++)
535                         le16_to_cpus(&eeprom_buff[i]);
536         }
537
538         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
539         kfree(eeprom_buff);
540
541         return ret_val;
542 }
543
544 static int e1000_set_eeprom(struct net_device *netdev,
545                             struct ethtool_eeprom *eeprom, u8 *bytes)
546 {
547         struct e1000_adapter *adapter = netdev_priv(netdev);
548         struct e1000_hw *hw = &adapter->hw;
549         u16 *eeprom_buff;
550         void *ptr;
551         int max_len;
552         int first_word;
553         int last_word;
554         int ret_val = 0;
555         u16 i;
556
557         if (eeprom->len == 0)
558                 return -EOPNOTSUPP;
559
560         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
561                 return -EFAULT;
562
563         if (adapter->flags & FLAG_READ_ONLY_NVM)
564                 return -EINVAL;
565
566         max_len = hw->nvm.word_size * 2;
567
568         first_word = eeprom->offset >> 1;
569         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
570         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
571         if (!eeprom_buff)
572                 return -ENOMEM;
573
574         ptr = (void *)eeprom_buff;
575
576         if (eeprom->offset & 1) {
577                 /* need read/modify/write of first changed EEPROM word */
578                 /* only the second byte of the word is being modified */
579                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
580                 ptr++;
581         }
582         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
583                 /* need read/modify/write of last changed EEPROM word */
584                 /* only the first byte of the word is being modified */
585                 ret_val = e1000_read_nvm(hw, last_word, 1,
586                                   &eeprom_buff[last_word - first_word]);
587
588         if (ret_val)
589                 goto out;
590
591         /* Device's eeprom is always little-endian, word addressable */
592         for (i = 0; i < last_word - first_word + 1; i++)
593                 le16_to_cpus(&eeprom_buff[i]);
594
595         memcpy(ptr, bytes, eeprom->len);
596
597         for (i = 0; i < last_word - first_word + 1; i++)
598                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
599
600         ret_val = e1000_write_nvm(hw, first_word,
601                                   last_word - first_word + 1, eeprom_buff);
602
603         if (ret_val)
604                 goto out;
605
606         /*
607          * Update the checksum over the first part of the EEPROM if needed
608          * and flush shadow RAM for applicable controllers
609          */
610         if ((first_word <= NVM_CHECKSUM_REG) ||
611             (hw->mac.type == e1000_82583) ||
612             (hw->mac.type == e1000_82574) ||
613             (hw->mac.type == e1000_82573))
614                 ret_val = e1000e_update_nvm_checksum(hw);
615
616 out:
617         kfree(eeprom_buff);
618         return ret_val;
619 }
620
621 static void e1000_get_drvinfo(struct net_device *netdev,
622                               struct ethtool_drvinfo *drvinfo)
623 {
624         struct e1000_adapter *adapter = netdev_priv(netdev);
625         char firmware_version[32];
626
627         strncpy(drvinfo->driver,  e1000e_driver_name,
628                 sizeof(drvinfo->driver) - 1);
629         strncpy(drvinfo->version, e1000e_driver_version,
630                 sizeof(drvinfo->version) - 1);
631
632         /*
633          * EEPROM image version # is reported as firmware version # for
634          * PCI-E controllers
635          */
636         snprintf(firmware_version, sizeof(firmware_version), "%d.%d-%d",
637                 (adapter->eeprom_vers & 0xF000) >> 12,
638                 (adapter->eeprom_vers & 0x0FF0) >> 4,
639                 (adapter->eeprom_vers & 0x000F));
640
641         strncpy(drvinfo->fw_version, firmware_version,
642                 sizeof(drvinfo->fw_version) - 1);
643         strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
644                 sizeof(drvinfo->bus_info) - 1);
645         drvinfo->regdump_len = e1000_get_regs_len(netdev);
646         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
647 }
648
649 static void e1000_get_ringparam(struct net_device *netdev,
650                                 struct ethtool_ringparam *ring)
651 {
652         struct e1000_adapter *adapter = netdev_priv(netdev);
653         struct e1000_ring *tx_ring = adapter->tx_ring;
654         struct e1000_ring *rx_ring = adapter->rx_ring;
655
656         ring->rx_max_pending = E1000_MAX_RXD;
657         ring->tx_max_pending = E1000_MAX_TXD;
658         ring->rx_mini_max_pending = 0;
659         ring->rx_jumbo_max_pending = 0;
660         ring->rx_pending = rx_ring->count;
661         ring->tx_pending = tx_ring->count;
662         ring->rx_mini_pending = 0;
663         ring->rx_jumbo_pending = 0;
664 }
665
666 static int e1000_set_ringparam(struct net_device *netdev,
667                                struct ethtool_ringparam *ring)
668 {
669         struct e1000_adapter *adapter = netdev_priv(netdev);
670         struct e1000_ring *tx_ring, *tx_old;
671         struct e1000_ring *rx_ring, *rx_old;
672         int err;
673
674         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
675                 return -EINVAL;
676
677         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
678                 msleep(1);
679
680         if (netif_running(adapter->netdev))
681                 e1000e_down(adapter);
682
683         tx_old = adapter->tx_ring;
684         rx_old = adapter->rx_ring;
685
686         err = -ENOMEM;
687         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
688         if (!tx_ring)
689                 goto err_alloc_tx;
690         /*
691          * use a memcpy to save any previously configured
692          * items like napi structs from having to be
693          * reinitialized
694          */
695         memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
696
697         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
698         if (!rx_ring)
699                 goto err_alloc_rx;
700         memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
701
702         adapter->tx_ring = tx_ring;
703         adapter->rx_ring = rx_ring;
704
705         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
706         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
707         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
708
709         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
710         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
711         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
712
713         if (netif_running(adapter->netdev)) {
714                 /* Try to get new resources before deleting old */
715                 err = e1000e_setup_rx_resources(adapter);
716                 if (err)
717                         goto err_setup_rx;
718                 err = e1000e_setup_tx_resources(adapter);
719                 if (err)
720                         goto err_setup_tx;
721
722                 /*
723                  * restore the old in order to free it,
724                  * then add in the new
725                  */
726                 adapter->rx_ring = rx_old;
727                 adapter->tx_ring = tx_old;
728                 e1000e_free_rx_resources(adapter);
729                 e1000e_free_tx_resources(adapter);
730                 kfree(tx_old);
731                 kfree(rx_old);
732                 adapter->rx_ring = rx_ring;
733                 adapter->tx_ring = tx_ring;
734                 err = e1000e_up(adapter);
735                 if (err)
736                         goto err_setup;
737         }
738
739         clear_bit(__E1000_RESETTING, &adapter->state);
740         return 0;
741 err_setup_tx:
742         e1000e_free_rx_resources(adapter);
743 err_setup_rx:
744         adapter->rx_ring = rx_old;
745         adapter->tx_ring = tx_old;
746         kfree(rx_ring);
747 err_alloc_rx:
748         kfree(tx_ring);
749 err_alloc_tx:
750         e1000e_up(adapter);
751 err_setup:
752         clear_bit(__E1000_RESETTING, &adapter->state);
753         return err;
754 }
755
756 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
757                              int reg, int offset, u32 mask, u32 write)
758 {
759         u32 pat, val;
760         static const u32 test[] = {
761                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
762         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
763                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
764                                       (test[pat] & write));
765                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
766                 if (val != (test[pat] & write & mask)) {
767                         e_err("pattern test reg %04X failed: got 0x%08X "
768                               "expected 0x%08X\n", reg + offset, val,
769                               (test[pat] & write & mask));
770                         *data = reg;
771                         return 1;
772                 }
773         }
774         return 0;
775 }
776
777 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
778                               int reg, u32 mask, u32 write)
779 {
780         u32 val;
781         __ew32(&adapter->hw, reg, write & mask);
782         val = __er32(&adapter->hw, reg);
783         if ((write & mask) != (val & mask)) {
784                 e_err("set/check reg %04X test failed: got 0x%08X "
785                       "expected 0x%08X\n", reg, (val & mask), (write & mask));
786                 *data = reg;
787                 return 1;
788         }
789         return 0;
790 }
791 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
792         do {                                                                   \
793                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
794                         return 1;                                              \
795         } while (0)
796 #define REG_PATTERN_TEST(reg, mask, write)                                     \
797         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
798
799 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
800         do {                                                                   \
801                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
802                         return 1;                                              \
803         } while (0)
804
805 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
806 {
807         struct e1000_hw *hw = &adapter->hw;
808         struct e1000_mac_info *mac = &adapter->hw.mac;
809         u32 value;
810         u32 before;
811         u32 after;
812         u32 i;
813         u32 toggle;
814         u32 mask;
815
816         /*
817          * The status register is Read Only, so a write should fail.
818          * Some bits that get toggled are ignored.
819          */
820         switch (mac->type) {
821         /* there are several bits on newer hardware that are r/w */
822         case e1000_82571:
823         case e1000_82572:
824         case e1000_80003es2lan:
825                 toggle = 0x7FFFF3FF;
826                 break;
827         default:
828                 toggle = 0x7FFFF033;
829                 break;
830         }
831
832         before = er32(STATUS);
833         value = (er32(STATUS) & toggle);
834         ew32(STATUS, toggle);
835         after = er32(STATUS) & toggle;
836         if (value != after) {
837                 e_err("failed STATUS register test got: 0x%08X expected: "
838                       "0x%08X\n", after, value);
839                 *data = 1;
840                 return 1;
841         }
842         /* restore previous status */
843         ew32(STATUS, before);
844
845         if (!(adapter->flags & FLAG_IS_ICH)) {
846                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
847                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
848                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
849                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
850         }
851
852         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
853         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
854         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
855         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
856         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
857         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
858         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
859         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
860         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
861         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
862
863         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
864
865         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
866         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
867         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
868
869         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
870         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
871         if (!(adapter->flags & FLAG_IS_ICH))
872                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
873         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
874         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
875         mask = 0x8003FFFF;
876         switch (mac->type) {
877         case e1000_ich10lan:
878         case e1000_pchlan:
879         case e1000_pch2lan:
880                 mask |= (1 << 18);
881                 break;
882         default:
883                 break;
884         }
885         for (i = 0; i < mac->rar_entry_count; i++)
886                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
887                                        mask, 0xFFFFFFFF);
888
889         for (i = 0; i < mac->mta_reg_count; i++)
890                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
891
892         *data = 0;
893         return 0;
894 }
895
896 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
897 {
898         u16 temp;
899         u16 checksum = 0;
900         u16 i;
901
902         *data = 0;
903         /* Read and add up the contents of the EEPROM */
904         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
905                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
906                         *data = 1;
907                         return *data;
908                 }
909                 checksum += temp;
910         }
911
912         /* If Checksum is not Correct return error else test passed */
913         if ((checksum != (u16) NVM_SUM) && !(*data))
914                 *data = 2;
915
916         return *data;
917 }
918
919 static irqreturn_t e1000_test_intr(int irq, void *data)
920 {
921         struct net_device *netdev = (struct net_device *) data;
922         struct e1000_adapter *adapter = netdev_priv(netdev);
923         struct e1000_hw *hw = &adapter->hw;
924
925         adapter->test_icr |= er32(ICR);
926
927         return IRQ_HANDLED;
928 }
929
930 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
931 {
932         struct net_device *netdev = adapter->netdev;
933         struct e1000_hw *hw = &adapter->hw;
934         u32 mask;
935         u32 shared_int = 1;
936         u32 irq = adapter->pdev->irq;
937         int i;
938         int ret_val = 0;
939         int int_mode = E1000E_INT_MODE_LEGACY;
940
941         *data = 0;
942
943         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
944         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
945                 int_mode = adapter->int_mode;
946                 e1000e_reset_interrupt_capability(adapter);
947                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
948                 e1000e_set_interrupt_capability(adapter);
949         }
950         /* Hook up test interrupt handler just for this test */
951         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
952                          netdev)) {
953                 shared_int = 0;
954         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
955                  netdev->name, netdev)) {
956                 *data = 1;
957                 ret_val = -1;
958                 goto out;
959         }
960         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
961
962         /* Disable all the interrupts */
963         ew32(IMC, 0xFFFFFFFF);
964         msleep(10);
965
966         /* Test each interrupt */
967         for (i = 0; i < 10; i++) {
968                 /* Interrupt to test */
969                 mask = 1 << i;
970
971                 if (adapter->flags & FLAG_IS_ICH) {
972                         switch (mask) {
973                         case E1000_ICR_RXSEQ:
974                                 continue;
975                         case 0x00000100:
976                                 if (adapter->hw.mac.type == e1000_ich8lan ||
977                                     adapter->hw.mac.type == e1000_ich9lan)
978                                         continue;
979                                 break;
980                         default:
981                                 break;
982                         }
983                 }
984
985                 if (!shared_int) {
986                         /*
987                          * Disable the interrupt to be reported in
988                          * the cause register and then force the same
989                          * interrupt and see if one gets posted.  If
990                          * an interrupt was posted to the bus, the
991                          * test failed.
992                          */
993                         adapter->test_icr = 0;
994                         ew32(IMC, mask);
995                         ew32(ICS, mask);
996                         msleep(10);
997
998                         if (adapter->test_icr & mask) {
999                                 *data = 3;
1000                                 break;
1001                         }
1002                 }
1003
1004                 /*
1005                  * Enable the interrupt to be reported in
1006                  * the cause register and then force the same
1007                  * interrupt and see if one gets posted.  If
1008                  * an interrupt was not posted to the bus, the
1009                  * test failed.
1010                  */
1011                 adapter->test_icr = 0;
1012                 ew32(IMS, mask);
1013                 ew32(ICS, mask);
1014                 msleep(10);
1015
1016                 if (!(adapter->test_icr & mask)) {
1017                         *data = 4;
1018                         break;
1019                 }
1020
1021                 if (!shared_int) {
1022                         /*
1023                          * Disable the other interrupts to be reported in
1024                          * the cause register and then force the other
1025                          * interrupts and see if any get posted.  If
1026                          * an interrupt was posted to the bus, the
1027                          * test failed.
1028                          */
1029                         adapter->test_icr = 0;
1030                         ew32(IMC, ~mask & 0x00007FFF);
1031                         ew32(ICS, ~mask & 0x00007FFF);
1032                         msleep(10);
1033
1034                         if (adapter->test_icr) {
1035                                 *data = 5;
1036                                 break;
1037                         }
1038                 }
1039         }
1040
1041         /* Disable all the interrupts */
1042         ew32(IMC, 0xFFFFFFFF);
1043         msleep(10);
1044
1045         /* Unhook test interrupt handler */
1046         free_irq(irq, netdev);
1047
1048 out:
1049         if (int_mode == E1000E_INT_MODE_MSIX) {
1050                 e1000e_reset_interrupt_capability(adapter);
1051                 adapter->int_mode = int_mode;
1052                 e1000e_set_interrupt_capability(adapter);
1053         }
1054
1055         return ret_val;
1056 }
1057
1058 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1059 {
1060         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1061         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1062         struct pci_dev *pdev = adapter->pdev;
1063         int i;
1064
1065         if (tx_ring->desc && tx_ring->buffer_info) {
1066                 for (i = 0; i < tx_ring->count; i++) {
1067                         if (tx_ring->buffer_info[i].dma)
1068                                 dma_unmap_single(&pdev->dev,
1069                                         tx_ring->buffer_info[i].dma,
1070                                         tx_ring->buffer_info[i].length,
1071                                         DMA_TO_DEVICE);
1072                         if (tx_ring->buffer_info[i].skb)
1073                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1074                 }
1075         }
1076
1077         if (rx_ring->desc && rx_ring->buffer_info) {
1078                 for (i = 0; i < rx_ring->count; i++) {
1079                         if (rx_ring->buffer_info[i].dma)
1080                                 dma_unmap_single(&pdev->dev,
1081                                         rx_ring->buffer_info[i].dma,
1082                                         2048, DMA_FROM_DEVICE);
1083                         if (rx_ring->buffer_info[i].skb)
1084                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1085                 }
1086         }
1087
1088         if (tx_ring->desc) {
1089                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1090                                   tx_ring->dma);
1091                 tx_ring->desc = NULL;
1092         }
1093         if (rx_ring->desc) {
1094                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1095                                   rx_ring->dma);
1096                 rx_ring->desc = NULL;
1097         }
1098
1099         kfree(tx_ring->buffer_info);
1100         tx_ring->buffer_info = NULL;
1101         kfree(rx_ring->buffer_info);
1102         rx_ring->buffer_info = NULL;
1103 }
1104
1105 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1106 {
1107         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1108         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1109         struct pci_dev *pdev = adapter->pdev;
1110         struct e1000_hw *hw = &adapter->hw;
1111         u32 rctl;
1112         int i;
1113         int ret_val;
1114
1115         /* Setup Tx descriptor ring and Tx buffers */
1116
1117         if (!tx_ring->count)
1118                 tx_ring->count = E1000_DEFAULT_TXD;
1119
1120         tx_ring->buffer_info = kcalloc(tx_ring->count,
1121                                        sizeof(struct e1000_buffer),
1122                                        GFP_KERNEL);
1123         if (!(tx_ring->buffer_info)) {
1124                 ret_val = 1;
1125                 goto err_nomem;
1126         }
1127
1128         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1129         tx_ring->size = ALIGN(tx_ring->size, 4096);
1130         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1131                                            &tx_ring->dma, GFP_KERNEL);
1132         if (!tx_ring->desc) {
1133                 ret_val = 2;
1134                 goto err_nomem;
1135         }
1136         tx_ring->next_to_use = 0;
1137         tx_ring->next_to_clean = 0;
1138
1139         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1140         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1141         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1142         ew32(TDH, 0);
1143         ew32(TDT, 0);
1144         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1145              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1146              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1147
1148         for (i = 0; i < tx_ring->count; i++) {
1149                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1150                 struct sk_buff *skb;
1151                 unsigned int skb_size = 1024;
1152
1153                 skb = alloc_skb(skb_size, GFP_KERNEL);
1154                 if (!skb) {
1155                         ret_val = 3;
1156                         goto err_nomem;
1157                 }
1158                 skb_put(skb, skb_size);
1159                 tx_ring->buffer_info[i].skb = skb;
1160                 tx_ring->buffer_info[i].length = skb->len;
1161                 tx_ring->buffer_info[i].dma =
1162                         dma_map_single(&pdev->dev, skb->data, skb->len,
1163                                        DMA_TO_DEVICE);
1164                 if (dma_mapping_error(&pdev->dev,
1165                                       tx_ring->buffer_info[i].dma)) {
1166                         ret_val = 4;
1167                         goto err_nomem;
1168                 }
1169                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1170                 tx_desc->lower.data = cpu_to_le32(skb->len);
1171                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1172                                                    E1000_TXD_CMD_IFCS |
1173                                                    E1000_TXD_CMD_RS);
1174                 tx_desc->upper.data = 0;
1175         }
1176
1177         /* Setup Rx descriptor ring and Rx buffers */
1178
1179         if (!rx_ring->count)
1180                 rx_ring->count = E1000_DEFAULT_RXD;
1181
1182         rx_ring->buffer_info = kcalloc(rx_ring->count,
1183                                        sizeof(struct e1000_buffer),
1184                                        GFP_KERNEL);
1185         if (!(rx_ring->buffer_info)) {
1186                 ret_val = 5;
1187                 goto err_nomem;
1188         }
1189
1190         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1191         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1192                                            &rx_ring->dma, GFP_KERNEL);
1193         if (!rx_ring->desc) {
1194                 ret_val = 6;
1195                 goto err_nomem;
1196         }
1197         rx_ring->next_to_use = 0;
1198         rx_ring->next_to_clean = 0;
1199
1200         rctl = er32(RCTL);
1201         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1202         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1203         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1204         ew32(RDLEN, rx_ring->size);
1205         ew32(RDH, 0);
1206         ew32(RDT, 0);
1207         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1208                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1209                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1210                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1211                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1212         ew32(RCTL, rctl);
1213
1214         for (i = 0; i < rx_ring->count; i++) {
1215                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1216                 struct sk_buff *skb;
1217
1218                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1219                 if (!skb) {
1220                         ret_val = 7;
1221                         goto err_nomem;
1222                 }
1223                 skb_reserve(skb, NET_IP_ALIGN);
1224                 rx_ring->buffer_info[i].skb = skb;
1225                 rx_ring->buffer_info[i].dma =
1226                         dma_map_single(&pdev->dev, skb->data, 2048,
1227                                        DMA_FROM_DEVICE);
1228                 if (dma_mapping_error(&pdev->dev,
1229                                       rx_ring->buffer_info[i].dma)) {
1230                         ret_val = 8;
1231                         goto err_nomem;
1232                 }
1233                 rx_desc->buffer_addr =
1234                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1235                 memset(skb->data, 0x00, skb->len);
1236         }
1237
1238         return 0;
1239
1240 err_nomem:
1241         e1000_free_desc_rings(adapter);
1242         return ret_val;
1243 }
1244
1245 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1246 {
1247         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1248         e1e_wphy(&adapter->hw, 29, 0x001F);
1249         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1250         e1e_wphy(&adapter->hw, 29, 0x001A);
1251         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1252 }
1253
1254 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1255 {
1256         struct e1000_hw *hw = &adapter->hw;
1257         u32 ctrl_reg = 0;
1258         u32 stat_reg = 0;
1259         u16 phy_reg = 0;
1260         s32 ret_val = 0;
1261
1262         hw->mac.autoneg = 0;
1263
1264         if (hw->phy.type == e1000_phy_ife) {
1265                 /* force 100, set loopback */
1266                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1267
1268                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1269                 ctrl_reg = er32(CTRL);
1270                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1271                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1272                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1273                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1274                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1275
1276                 ew32(CTRL, ctrl_reg);
1277                 udelay(500);
1278
1279                 return 0;
1280         }
1281
1282         /* Specific PHY configuration for loopback */
1283         switch (hw->phy.type) {
1284         case e1000_phy_m88:
1285                 /* Auto-MDI/MDIX Off */
1286                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1287                 /* reset to update Auto-MDI/MDIX */
1288                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1289                 /* autoneg off */
1290                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1291                 break;
1292         case e1000_phy_gg82563:
1293                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1294                 break;
1295         case e1000_phy_bm:
1296                 /* Set Default MAC Interface speed to 1GB */
1297                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1298                 phy_reg &= ~0x0007;
1299                 phy_reg |= 0x006;
1300                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1301                 /* Assert SW reset for above settings to take effect */
1302                 e1000e_commit_phy(hw);
1303                 mdelay(1);
1304                 /* Force Full Duplex */
1305                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1306                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1307                 /* Set Link Up (in force link) */
1308                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1309                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1310                 /* Force Link */
1311                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1312                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1313                 /* Set Early Link Enable */
1314                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1315                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1316                 break;
1317         case e1000_phy_82577:
1318         case e1000_phy_82578:
1319                 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1320                 ret_val = hw->phy.ops.acquire(hw);
1321                 if (ret_val) {
1322                         e_err("Cannot setup 1Gbps loopback.\n");
1323                         return ret_val;
1324                 }
1325                 e1000_configure_k1_ich8lan(hw, false);
1326                 hw->phy.ops.release(hw);
1327                 break;
1328         case e1000_phy_82579:
1329                 /* Disable PHY energy detect power down */
1330                 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1331                 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1332                 /* Disable full chip energy detect */
1333                 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1334                 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1335                 /* Enable loopback on the PHY */
1336 #define I82577_PHY_LBK_CTRL          19
1337                 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1338                 break;
1339         default:
1340                 break;
1341         }
1342
1343         /* force 1000, set loopback */
1344         e1e_wphy(hw, PHY_CONTROL, 0x4140);
1345         mdelay(250);
1346
1347         /* Now set up the MAC to the same speed/duplex as the PHY. */
1348         ctrl_reg = er32(CTRL);
1349         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1350         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1351                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1352                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1353                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1354
1355         if (adapter->flags & FLAG_IS_ICH)
1356                 ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1357
1358         if (hw->phy.media_type == e1000_media_type_copper &&
1359             hw->phy.type == e1000_phy_m88) {
1360                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1361         } else {
1362                 /*
1363                  * Set the ILOS bit on the fiber Nic if half duplex link is
1364                  * detected.
1365                  */
1366                 stat_reg = er32(STATUS);
1367                 if ((stat_reg & E1000_STATUS_FD) == 0)
1368                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1369         }
1370
1371         ew32(CTRL, ctrl_reg);
1372
1373         /*
1374          * Disable the receiver on the PHY so when a cable is plugged in, the
1375          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1376          */
1377         if (hw->phy.type == e1000_phy_m88)
1378                 e1000_phy_disable_receiver(adapter);
1379
1380         udelay(500);
1381
1382         return 0;
1383 }
1384
1385 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1386 {
1387         struct e1000_hw *hw = &adapter->hw;
1388         u32 ctrl = er32(CTRL);
1389         int link = 0;
1390
1391         /* special requirements for 82571/82572 fiber adapters */
1392
1393         /*
1394          * jump through hoops to make sure link is up because serdes
1395          * link is hardwired up
1396          */
1397         ctrl |= E1000_CTRL_SLU;
1398         ew32(CTRL, ctrl);
1399
1400         /* disable autoneg */
1401         ctrl = er32(TXCW);
1402         ctrl &= ~(1 << 31);
1403         ew32(TXCW, ctrl);
1404
1405         link = (er32(STATUS) & E1000_STATUS_LU);
1406
1407         if (!link) {
1408                 /* set invert loss of signal */
1409                 ctrl = er32(CTRL);
1410                 ctrl |= E1000_CTRL_ILOS;
1411                 ew32(CTRL, ctrl);
1412         }
1413
1414         /*
1415          * special write to serdes control register to enable SerDes analog
1416          * loopback
1417          */
1418 #define E1000_SERDES_LB_ON 0x410
1419         ew32(SCTL, E1000_SERDES_LB_ON);
1420         msleep(10);
1421
1422         return 0;
1423 }
1424
1425 /* only call this for fiber/serdes connections to es2lan */
1426 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1427 {
1428         struct e1000_hw *hw = &adapter->hw;
1429         u32 ctrlext = er32(CTRL_EXT);
1430         u32 ctrl = er32(CTRL);
1431
1432         /*
1433          * save CTRL_EXT to restore later, reuse an empty variable (unused
1434          * on mac_type 80003es2lan)
1435          */
1436         adapter->tx_fifo_head = ctrlext;
1437
1438         /* clear the serdes mode bits, putting the device into mac loopback */
1439         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1440         ew32(CTRL_EXT, ctrlext);
1441
1442         /* force speed to 1000/FD, link up */
1443         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1444         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1445                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1446         ew32(CTRL, ctrl);
1447
1448         /* set mac loopback */
1449         ctrl = er32(RCTL);
1450         ctrl |= E1000_RCTL_LBM_MAC;
1451         ew32(RCTL, ctrl);
1452
1453         /* set testing mode parameters (no need to reset later) */
1454 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1455 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1456         ew32(KMRNCTRLSTA,
1457              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1458
1459         return 0;
1460 }
1461
1462 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1463 {
1464         struct e1000_hw *hw = &adapter->hw;
1465         u32 rctl;
1466
1467         if (hw->phy.media_type == e1000_media_type_fiber ||
1468             hw->phy.media_type == e1000_media_type_internal_serdes) {
1469                 switch (hw->mac.type) {
1470                 case e1000_80003es2lan:
1471                         return e1000_set_es2lan_mac_loopback(adapter);
1472                         break;
1473                 case e1000_82571:
1474                 case e1000_82572:
1475                         return e1000_set_82571_fiber_loopback(adapter);
1476                         break;
1477                 default:
1478                         rctl = er32(RCTL);
1479                         rctl |= E1000_RCTL_LBM_TCVR;
1480                         ew32(RCTL, rctl);
1481                         return 0;
1482                 }
1483         } else if (hw->phy.media_type == e1000_media_type_copper) {
1484                 return e1000_integrated_phy_loopback(adapter);
1485         }
1486
1487         return 7;
1488 }
1489
1490 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1491 {
1492         struct e1000_hw *hw = &adapter->hw;
1493         u32 rctl;
1494         u16 phy_reg;
1495
1496         rctl = er32(RCTL);
1497         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1498         ew32(RCTL, rctl);
1499
1500         switch (hw->mac.type) {
1501         case e1000_80003es2lan:
1502                 if (hw->phy.media_type == e1000_media_type_fiber ||
1503                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1504                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1505                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1506                         adapter->tx_fifo_head = 0;
1507                 }
1508                 /* fall through */
1509         case e1000_82571:
1510         case e1000_82572:
1511                 if (hw->phy.media_type == e1000_media_type_fiber ||
1512                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1513 #define E1000_SERDES_LB_OFF 0x400
1514                         ew32(SCTL, E1000_SERDES_LB_OFF);
1515                         msleep(10);
1516                         break;
1517                 }
1518                 /* Fall Through */
1519         default:
1520                 hw->mac.autoneg = 1;
1521                 if (hw->phy.type == e1000_phy_gg82563)
1522                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1523                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1524                 if (phy_reg & MII_CR_LOOPBACK) {
1525                         phy_reg &= ~MII_CR_LOOPBACK;
1526                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1527                         e1000e_commit_phy(hw);
1528                 }
1529                 break;
1530         }
1531 }
1532
1533 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1534                                       unsigned int frame_size)
1535 {
1536         memset(skb->data, 0xFF, frame_size);
1537         frame_size &= ~1;
1538         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1539         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1540         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1541 }
1542
1543 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1544                                     unsigned int frame_size)
1545 {
1546         frame_size &= ~1;
1547         if (*(skb->data + 3) == 0xFF)
1548                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1549                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1550                         return 0;
1551         return 13;
1552 }
1553
1554 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1555 {
1556         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1557         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1558         struct pci_dev *pdev = adapter->pdev;
1559         struct e1000_hw *hw = &adapter->hw;
1560         int i, j, k, l;
1561         int lc;
1562         int good_cnt;
1563         int ret_val = 0;
1564         unsigned long time;
1565
1566         ew32(RDT, rx_ring->count - 1);
1567
1568         /*
1569          * Calculate the loop count based on the largest descriptor ring
1570          * The idea is to wrap the largest ring a number of times using 64
1571          * send/receive pairs during each loop
1572          */
1573
1574         if (rx_ring->count <= tx_ring->count)
1575                 lc = ((tx_ring->count / 64) * 2) + 1;
1576         else
1577                 lc = ((rx_ring->count / 64) * 2) + 1;
1578
1579         k = 0;
1580         l = 0;
1581         for (j = 0; j <= lc; j++) { /* loop count loop */
1582                 for (i = 0; i < 64; i++) { /* send the packets */
1583                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1584                                                   1024);
1585                         dma_sync_single_for_device(&pdev->dev,
1586                                         tx_ring->buffer_info[k].dma,
1587                                         tx_ring->buffer_info[k].length,
1588                                         DMA_TO_DEVICE);
1589                         k++;
1590                         if (k == tx_ring->count)
1591                                 k = 0;
1592                 }
1593                 ew32(TDT, k);
1594                 msleep(200);
1595                 time = jiffies; /* set the start time for the receive */
1596                 good_cnt = 0;
1597                 do { /* receive the sent packets */
1598                         dma_sync_single_for_cpu(&pdev->dev,
1599                                         rx_ring->buffer_info[l].dma, 2048,
1600                                         DMA_FROM_DEVICE);
1601
1602                         ret_val = e1000_check_lbtest_frame(
1603                                         rx_ring->buffer_info[l].skb, 1024);
1604                         if (!ret_val)
1605                                 good_cnt++;
1606                         l++;
1607                         if (l == rx_ring->count)
1608                                 l = 0;
1609                         /*
1610                          * time + 20 msecs (200 msecs on 2.4) is more than
1611                          * enough time to complete the receives, if it's
1612                          * exceeded, break and error off
1613                          */
1614                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1615                 if (good_cnt != 64) {
1616                         ret_val = 13; /* ret_val is the same as mis-compare */
1617                         break;
1618                 }
1619                 if (jiffies >= (time + 20)) {
1620                         ret_val = 14; /* error code for time out error */
1621                         break;
1622                 }
1623         } /* end loop count loop */
1624         return ret_val;
1625 }
1626
1627 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1628 {
1629         /*
1630          * PHY loopback cannot be performed if SoL/IDER
1631          * sessions are active
1632          */
1633         if (e1000_check_reset_block(&adapter->hw)) {
1634                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1635                 *data = 0;
1636                 goto out;
1637         }
1638
1639         *data = e1000_setup_desc_rings(adapter);
1640         if (*data)
1641                 goto out;
1642
1643         *data = e1000_setup_loopback_test(adapter);
1644         if (*data)
1645                 goto err_loopback;
1646
1647         *data = e1000_run_loopback_test(adapter);
1648         e1000_loopback_cleanup(adapter);
1649
1650 err_loopback:
1651         e1000_free_desc_rings(adapter);
1652 out:
1653         return *data;
1654 }
1655
1656 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1657 {
1658         struct e1000_hw *hw = &adapter->hw;
1659
1660         *data = 0;
1661         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1662                 int i = 0;
1663                 hw->mac.serdes_has_link = false;
1664
1665                 /*
1666                  * On some blade server designs, link establishment
1667                  * could take as long as 2-3 minutes
1668                  */
1669                 do {
1670                         hw->mac.ops.check_for_link(hw);
1671                         if (hw->mac.serdes_has_link)
1672                                 return *data;
1673                         msleep(20);
1674                 } while (i++ < 3750);
1675
1676                 *data = 1;
1677         } else {
1678                 hw->mac.ops.check_for_link(hw);
1679                 if (hw->mac.autoneg)
1680                         msleep(4000);
1681
1682                 if (!(er32(STATUS) &
1683                       E1000_STATUS_LU))
1684                         *data = 1;
1685         }
1686         return *data;
1687 }
1688
1689 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1690 {
1691         switch (sset) {
1692         case ETH_SS_TEST:
1693                 return E1000_TEST_LEN;
1694         case ETH_SS_STATS:
1695                 return E1000_STATS_LEN;
1696         default:
1697                 return -EOPNOTSUPP;
1698         }
1699 }
1700
1701 static void e1000_diag_test(struct net_device *netdev,
1702                             struct ethtool_test *eth_test, u64 *data)
1703 {
1704         struct e1000_adapter *adapter = netdev_priv(netdev);
1705         u16 autoneg_advertised;
1706         u8 forced_speed_duplex;
1707         u8 autoneg;
1708         bool if_running = netif_running(netdev);
1709
1710         set_bit(__E1000_TESTING, &adapter->state);
1711
1712         if (!if_running) {
1713                 /* Get control of and reset hardware */
1714                 if (adapter->flags & FLAG_HAS_AMT)
1715                         e1000e_get_hw_control(adapter);
1716
1717                 e1000e_power_up_phy(adapter);
1718
1719                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1720                 e1000e_reset(adapter);
1721                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1722         }
1723
1724         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1725                 /* Offline tests */
1726
1727                 /* save speed, duplex, autoneg settings */
1728                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1729                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1730                 autoneg = adapter->hw.mac.autoneg;
1731
1732                 e_info("offline testing starting\n");
1733
1734                 if (if_running)
1735                         /* indicate we're in test mode */
1736                         dev_close(netdev);
1737
1738                 if (e1000_reg_test(adapter, &data[0]))
1739                         eth_test->flags |= ETH_TEST_FL_FAILED;
1740
1741                 e1000e_reset(adapter);
1742                 if (e1000_eeprom_test(adapter, &data[1]))
1743                         eth_test->flags |= ETH_TEST_FL_FAILED;
1744
1745                 e1000e_reset(adapter);
1746                 if (e1000_intr_test(adapter, &data[2]))
1747                         eth_test->flags |= ETH_TEST_FL_FAILED;
1748
1749                 e1000e_reset(adapter);
1750                 if (e1000_loopback_test(adapter, &data[3]))
1751                         eth_test->flags |= ETH_TEST_FL_FAILED;
1752
1753                 /* force this routine to wait until autoneg complete/timeout */
1754                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1755                 e1000e_reset(adapter);
1756                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1757
1758                 if (e1000_link_test(adapter, &data[4]))
1759                         eth_test->flags |= ETH_TEST_FL_FAILED;
1760
1761                 /* restore speed, duplex, autoneg settings */
1762                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1763                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1764                 adapter->hw.mac.autoneg = autoneg;
1765                 e1000e_reset(adapter);
1766
1767                 clear_bit(__E1000_TESTING, &adapter->state);
1768                 if (if_running)
1769                         dev_open(netdev);
1770         } else {
1771                 /* Online tests */
1772
1773                 e_info("online testing starting\n");
1774
1775                 /* register, eeprom, intr and loopback tests not run online */
1776                 data[0] = 0;
1777                 data[1] = 0;
1778                 data[2] = 0;
1779                 data[3] = 0;
1780
1781                 if (e1000_link_test(adapter, &data[4]))
1782                         eth_test->flags |= ETH_TEST_FL_FAILED;
1783
1784                 clear_bit(__E1000_TESTING, &adapter->state);
1785         }
1786
1787         if (!if_running) {
1788                 e1000e_reset(adapter);
1789
1790                 if (adapter->flags & FLAG_HAS_AMT)
1791                         e1000e_release_hw_control(adapter);
1792         }
1793
1794         msleep_interruptible(4 * 1000);
1795 }
1796
1797 static void e1000_get_wol(struct net_device *netdev,
1798                           struct ethtool_wolinfo *wol)
1799 {
1800         struct e1000_adapter *adapter = netdev_priv(netdev);
1801
1802         wol->supported = 0;
1803         wol->wolopts = 0;
1804
1805         if (!(adapter->flags & FLAG_HAS_WOL) ||
1806             !device_can_wakeup(&adapter->pdev->dev))
1807                 return;
1808
1809         wol->supported = WAKE_UCAST | WAKE_MCAST |
1810                          WAKE_BCAST | WAKE_MAGIC |
1811                          WAKE_PHY | WAKE_ARP;
1812
1813         /* apply any specific unsupported masks here */
1814         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1815                 wol->supported &= ~WAKE_UCAST;
1816
1817                 if (adapter->wol & E1000_WUFC_EX)
1818                         e_err("Interface does not support directed (unicast) "
1819                               "frame wake-up packets\n");
1820         }
1821
1822         if (adapter->wol & E1000_WUFC_EX)
1823                 wol->wolopts |= WAKE_UCAST;
1824         if (adapter->wol & E1000_WUFC_MC)
1825                 wol->wolopts |= WAKE_MCAST;
1826         if (adapter->wol & E1000_WUFC_BC)
1827                 wol->wolopts |= WAKE_BCAST;
1828         if (adapter->wol & E1000_WUFC_MAG)
1829                 wol->wolopts |= WAKE_MAGIC;
1830         if (adapter->wol & E1000_WUFC_LNKC)
1831                 wol->wolopts |= WAKE_PHY;
1832         if (adapter->wol & E1000_WUFC_ARP)
1833                 wol->wolopts |= WAKE_ARP;
1834 }
1835
1836 static int e1000_set_wol(struct net_device *netdev,
1837                          struct ethtool_wolinfo *wol)
1838 {
1839         struct e1000_adapter *adapter = netdev_priv(netdev);
1840
1841         if (!(adapter->flags & FLAG_HAS_WOL) ||
1842             !device_can_wakeup(&adapter->pdev->dev) ||
1843             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1844                               WAKE_MAGIC | WAKE_PHY | WAKE_ARP)))
1845                 return -EOPNOTSUPP;
1846
1847         /* these settings will always override what we currently have */
1848         adapter->wol = 0;
1849
1850         if (wol->wolopts & WAKE_UCAST)
1851                 adapter->wol |= E1000_WUFC_EX;
1852         if (wol->wolopts & WAKE_MCAST)
1853                 adapter->wol |= E1000_WUFC_MC;
1854         if (wol->wolopts & WAKE_BCAST)
1855                 adapter->wol |= E1000_WUFC_BC;
1856         if (wol->wolopts & WAKE_MAGIC)
1857                 adapter->wol |= E1000_WUFC_MAG;
1858         if (wol->wolopts & WAKE_PHY)
1859                 adapter->wol |= E1000_WUFC_LNKC;
1860         if (wol->wolopts & WAKE_ARP)
1861                 adapter->wol |= E1000_WUFC_ARP;
1862
1863         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1864
1865         return 0;
1866 }
1867
1868 /* toggle LED 4 times per second = 2 "blinks" per second */
1869 #define E1000_ID_INTERVAL       (HZ/4)
1870
1871 /* bit defines for adapter->led_status */
1872 #define E1000_LED_ON            0
1873
1874 void e1000e_led_blink_task(struct work_struct *work)
1875 {
1876         struct e1000_adapter *adapter = container_of(work,
1877                                         struct e1000_adapter, led_blink_task);
1878
1879         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1880                 adapter->hw.mac.ops.led_off(&adapter->hw);
1881         else
1882                 adapter->hw.mac.ops.led_on(&adapter->hw);
1883 }
1884
1885 static void e1000_led_blink_callback(unsigned long data)
1886 {
1887         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1888
1889         schedule_work(&adapter->led_blink_task);
1890         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1891 }
1892
1893 static int e1000_phys_id(struct net_device *netdev, u32 data)
1894 {
1895         struct e1000_adapter *adapter = netdev_priv(netdev);
1896         struct e1000_hw *hw = &adapter->hw;
1897
1898         if (!data)
1899                 data = INT_MAX;
1900
1901         if ((hw->phy.type == e1000_phy_ife) ||
1902             (hw->mac.type == e1000_pchlan) ||
1903             (hw->mac.type == e1000_pch2lan) ||
1904             (hw->mac.type == e1000_82583) ||
1905             (hw->mac.type == e1000_82574)) {
1906                 if (!adapter->blink_timer.function) {
1907                         init_timer(&adapter->blink_timer);
1908                         adapter->blink_timer.function =
1909                                 e1000_led_blink_callback;
1910                         adapter->blink_timer.data = (unsigned long) adapter;
1911                 }
1912                 mod_timer(&adapter->blink_timer, jiffies);
1913                 msleep_interruptible(data * 1000);
1914                 del_timer_sync(&adapter->blink_timer);
1915                 if (hw->phy.type == e1000_phy_ife)
1916                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1917         } else {
1918                 e1000e_blink_led(hw);
1919                 msleep_interruptible(data * 1000);
1920         }
1921
1922         hw->mac.ops.led_off(hw);
1923         clear_bit(E1000_LED_ON, &adapter->led_status);
1924         hw->mac.ops.cleanup_led(hw);
1925
1926         return 0;
1927 }
1928
1929 static int e1000_get_coalesce(struct net_device *netdev,
1930                               struct ethtool_coalesce *ec)
1931 {
1932         struct e1000_adapter *adapter = netdev_priv(netdev);
1933
1934         if (adapter->itr_setting <= 4)
1935                 ec->rx_coalesce_usecs = adapter->itr_setting;
1936         else
1937                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1938
1939         return 0;
1940 }
1941
1942 static int e1000_set_coalesce(struct net_device *netdev,
1943                               struct ethtool_coalesce *ec)
1944 {
1945         struct e1000_adapter *adapter = netdev_priv(netdev);
1946         struct e1000_hw *hw = &adapter->hw;
1947
1948         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1949             ((ec->rx_coalesce_usecs > 4) &&
1950              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1951             (ec->rx_coalesce_usecs == 2))
1952                 return -EINVAL;
1953
1954         if (ec->rx_coalesce_usecs == 4) {
1955                 adapter->itr = adapter->itr_setting = 4;
1956         } else if (ec->rx_coalesce_usecs <= 3) {
1957                 adapter->itr = 20000;
1958                 adapter->itr_setting = ec->rx_coalesce_usecs;
1959         } else {
1960                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1961                 adapter->itr_setting = adapter->itr & ~3;
1962         }
1963
1964         if (adapter->itr_setting != 0)
1965                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1966         else
1967                 ew32(ITR, 0);
1968
1969         return 0;
1970 }
1971
1972 static int e1000_nway_reset(struct net_device *netdev)
1973 {
1974         struct e1000_adapter *adapter = netdev_priv(netdev);
1975         if (netif_running(netdev))
1976                 e1000e_reinit_locked(adapter);
1977         return 0;
1978 }
1979
1980 static void e1000_get_ethtool_stats(struct net_device *netdev,
1981                                     struct ethtool_stats *stats,
1982                                     u64 *data)
1983 {
1984         struct e1000_adapter *adapter = netdev_priv(netdev);
1985         int i;
1986         char *p = NULL;
1987
1988         e1000e_update_stats(adapter);
1989         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1990                 switch (e1000_gstrings_stats[i].type) {
1991                 case NETDEV_STATS:
1992                         p = (char *) netdev +
1993                                         e1000_gstrings_stats[i].stat_offset;
1994                         break;
1995                 case E1000_STATS:
1996                         p = (char *) adapter +
1997                                         e1000_gstrings_stats[i].stat_offset;
1998                         break;
1999                 default:
2000                         data[i] = 0;
2001                         continue;
2002                 }
2003
2004                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2005                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2006         }
2007 }
2008
2009 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
2010                               u8 *data)
2011 {
2012         u8 *p = data;
2013         int i;
2014
2015         switch (stringset) {
2016         case ETH_SS_TEST:
2017                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
2018                 break;
2019         case ETH_SS_STATS:
2020                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2021                         memcpy(p, e1000_gstrings_stats[i].stat_string,
2022                                ETH_GSTRING_LEN);
2023                         p += ETH_GSTRING_LEN;
2024                 }
2025                 break;
2026         }
2027 }
2028
2029 static const struct ethtool_ops e1000_ethtool_ops = {
2030         .get_settings           = e1000_get_settings,
2031         .set_settings           = e1000_set_settings,
2032         .get_drvinfo            = e1000_get_drvinfo,
2033         .get_regs_len           = e1000_get_regs_len,
2034         .get_regs               = e1000_get_regs,
2035         .get_wol                = e1000_get_wol,
2036         .set_wol                = e1000_set_wol,
2037         .get_msglevel           = e1000_get_msglevel,
2038         .set_msglevel           = e1000_set_msglevel,
2039         .nway_reset             = e1000_nway_reset,
2040         .get_link               = ethtool_op_get_link,
2041         .get_eeprom_len         = e1000_get_eeprom_len,
2042         .get_eeprom             = e1000_get_eeprom,
2043         .set_eeprom             = e1000_set_eeprom,
2044         .get_ringparam          = e1000_get_ringparam,
2045         .set_ringparam          = e1000_set_ringparam,
2046         .get_pauseparam         = e1000_get_pauseparam,
2047         .set_pauseparam         = e1000_set_pauseparam,
2048         .get_rx_csum            = e1000_get_rx_csum,
2049         .set_rx_csum            = e1000_set_rx_csum,
2050         .get_tx_csum            = e1000_get_tx_csum,
2051         .set_tx_csum            = e1000_set_tx_csum,
2052         .get_sg                 = ethtool_op_get_sg,
2053         .set_sg                 = ethtool_op_set_sg,
2054         .get_tso                = ethtool_op_get_tso,
2055         .set_tso                = e1000_set_tso,
2056         .self_test              = e1000_diag_test,
2057         .get_strings            = e1000_get_strings,
2058         .phys_id                = e1000_phys_id,
2059         .get_ethtool_stats      = e1000_get_ethtool_stats,
2060         .get_sset_count         = e1000e_get_sset_count,
2061         .get_coalesce           = e1000_get_coalesce,
2062         .set_coalesce           = e1000_set_coalesce,
2063         .get_flags              = ethtool_op_get_flags,
2064 };
2065
2066 void e1000e_set_ethtool_ops(struct net_device *netdev)
2067 {
2068         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2069 }