Merge branch 'upstream-fixes' into upstream
[pandora-kernel.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /* Change Log
32  * 7.0.33      3-Feb-2006
33  *   o Added another fix for the pass false carrier bit
34  * 7.0.32      24-Jan-2006
35  *   o Need to rebuild with noew version number for the pass false carrier 
36  *     fix in e1000_hw.c
37  * 7.0.30      18-Jan-2006
38  *   o fixup for tso workaround to disable it for pci-x
39  *   o fix mem leak on 82542
40  *   o fixes for 10 Mb/s connections and incorrect stats
41  * 7.0.28      01/06/2006
42  *   o hardware workaround to only set "speed mode" bit for 1G link.
43  * 7.0.26      12/23/2005
44  *   o wake on lan support modified for device ID 10B5
45  *   o fix dhcp + vlan issue not making it to the iAMT firmware
46  * 7.0.24      12/9/2005
47  *   o New hardware support for the Gigabit NIC embedded in the south bridge
48  *   o Fixes to the recycling logic (skb->tail) from IBM LTC
49  * 6.3.9        12/16/2005
50  *   o incorporate fix for recycled skbs from IBM LTC
51  * 6.3.7        11/18/2005
52  *   o Honor eeprom setting for enabling/disabling Wake On Lan
53  * 6.3.5        11/17/2005
54  *   o Fix memory leak in rx ring handling for PCI Express adapters
55  * 6.3.4        11/8/05
56  *   o Patch from Jesper Juhl to remove redundant NULL checks for kfree
57  * 6.3.2        9/20/05
58  *   o Render logic that sets/resets DRV_LOAD as inline functions to 
59  *     avoid code replication. If f/w is AMT then set DRV_LOAD only when
60  *     network interface is open.
61  *   o Handle DRV_LOAD set/reset in cases where AMT uses VLANs.
62  *   o Adjust PBA partioning for Jumbo frames using MTU size and not
63  *     rx_buffer_len
64  * 6.3.1        9/19/05
65  *   o Use adapter->tx_timeout_factor in Tx Hung Detect logic 
66  *      (e1000_clean_tx_irq)
67  *   o Support for 8086:10B5 device (Quad Port)
68  */
69
70 char e1000_driver_name[] = "e1000";
71 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
72 #ifndef CONFIG_E1000_NAPI
73 #define DRIVERNAPI
74 #else
75 #define DRIVERNAPI "-NAPI"
76 #endif
77 #define DRV_VERSION "7.0.33-k2"DRIVERNAPI
78 char e1000_driver_version[] = DRV_VERSION;
79 static char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
80
81 /* e1000_pci_tbl - PCI Device ID Table
82  *
83  * Last entry must be all 0s
84  *
85  * Macro expands to...
86  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
87  */
88 static struct pci_device_id e1000_pci_tbl[] = {
89         INTEL_E1000_ETHERNET_DEVICE(0x1000),
90         INTEL_E1000_ETHERNET_DEVICE(0x1001),
91         INTEL_E1000_ETHERNET_DEVICE(0x1004),
92         INTEL_E1000_ETHERNET_DEVICE(0x1008),
93         INTEL_E1000_ETHERNET_DEVICE(0x1009),
94         INTEL_E1000_ETHERNET_DEVICE(0x100C),
95         INTEL_E1000_ETHERNET_DEVICE(0x100D),
96         INTEL_E1000_ETHERNET_DEVICE(0x100E),
97         INTEL_E1000_ETHERNET_DEVICE(0x100F),
98         INTEL_E1000_ETHERNET_DEVICE(0x1010),
99         INTEL_E1000_ETHERNET_DEVICE(0x1011),
100         INTEL_E1000_ETHERNET_DEVICE(0x1012),
101         INTEL_E1000_ETHERNET_DEVICE(0x1013),
102         INTEL_E1000_ETHERNET_DEVICE(0x1014),
103         INTEL_E1000_ETHERNET_DEVICE(0x1015),
104         INTEL_E1000_ETHERNET_DEVICE(0x1016),
105         INTEL_E1000_ETHERNET_DEVICE(0x1017),
106         INTEL_E1000_ETHERNET_DEVICE(0x1018),
107         INTEL_E1000_ETHERNET_DEVICE(0x1019),
108         INTEL_E1000_ETHERNET_DEVICE(0x101A),
109         INTEL_E1000_ETHERNET_DEVICE(0x101D),
110         INTEL_E1000_ETHERNET_DEVICE(0x101E),
111         INTEL_E1000_ETHERNET_DEVICE(0x1026),
112         INTEL_E1000_ETHERNET_DEVICE(0x1027),
113         INTEL_E1000_ETHERNET_DEVICE(0x1028),
114         INTEL_E1000_ETHERNET_DEVICE(0x105E),
115         INTEL_E1000_ETHERNET_DEVICE(0x105F),
116         INTEL_E1000_ETHERNET_DEVICE(0x1060),
117         INTEL_E1000_ETHERNET_DEVICE(0x1075),
118         INTEL_E1000_ETHERNET_DEVICE(0x1076),
119         INTEL_E1000_ETHERNET_DEVICE(0x1077),
120         INTEL_E1000_ETHERNET_DEVICE(0x1078),
121         INTEL_E1000_ETHERNET_DEVICE(0x1079),
122         INTEL_E1000_ETHERNET_DEVICE(0x107A),
123         INTEL_E1000_ETHERNET_DEVICE(0x107B),
124         INTEL_E1000_ETHERNET_DEVICE(0x107C),
125         INTEL_E1000_ETHERNET_DEVICE(0x107D),
126         INTEL_E1000_ETHERNET_DEVICE(0x107E),
127         INTEL_E1000_ETHERNET_DEVICE(0x107F),
128         INTEL_E1000_ETHERNET_DEVICE(0x108A),
129         INTEL_E1000_ETHERNET_DEVICE(0x108B),
130         INTEL_E1000_ETHERNET_DEVICE(0x108C),
131         INTEL_E1000_ETHERNET_DEVICE(0x1096),
132         INTEL_E1000_ETHERNET_DEVICE(0x1098),
133         INTEL_E1000_ETHERNET_DEVICE(0x1099),
134         INTEL_E1000_ETHERNET_DEVICE(0x109A),
135         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
136         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
137         /* required last entry */
138         {0,}
139 };
140
141 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
142
143 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
144                                     struct e1000_tx_ring *txdr);
145 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
146                                     struct e1000_rx_ring *rxdr);
147 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
148                                     struct e1000_tx_ring *tx_ring);
149 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
150                                     struct e1000_rx_ring *rx_ring);
151
152 /* Local Function Prototypes */
153
154 static int e1000_init_module(void);
155 static void e1000_exit_module(void);
156 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
157 static void __devexit e1000_remove(struct pci_dev *pdev);
158 static int e1000_alloc_queues(struct e1000_adapter *adapter);
159 static int e1000_sw_init(struct e1000_adapter *adapter);
160 static int e1000_open(struct net_device *netdev);
161 static int e1000_close(struct net_device *netdev);
162 static void e1000_configure_tx(struct e1000_adapter *adapter);
163 static void e1000_configure_rx(struct e1000_adapter *adapter);
164 static void e1000_setup_rctl(struct e1000_adapter *adapter);
165 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
166 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
167 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
168                                 struct e1000_tx_ring *tx_ring);
169 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
170                                 struct e1000_rx_ring *rx_ring);
171 static void e1000_set_multi(struct net_device *netdev);
172 static void e1000_update_phy_info(unsigned long data);
173 static void e1000_watchdog(unsigned long data);
174 static void e1000_watchdog_task(struct e1000_adapter *adapter);
175 static void e1000_82547_tx_fifo_stall(unsigned long data);
176 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
177 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
178 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
179 static int e1000_set_mac(struct net_device *netdev, void *p);
180 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
181 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
182                                     struct e1000_tx_ring *tx_ring);
183 #ifdef CONFIG_E1000_NAPI
184 static int e1000_clean(struct net_device *poll_dev, int *budget);
185 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
186                                     struct e1000_rx_ring *rx_ring,
187                                     int *work_done, int work_to_do);
188 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
189                                        struct e1000_rx_ring *rx_ring,
190                                        int *work_done, int work_to_do);
191 #else
192 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
193                                     struct e1000_rx_ring *rx_ring);
194 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
195                                        struct e1000_rx_ring *rx_ring);
196 #endif
197 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
198                                    struct e1000_rx_ring *rx_ring,
199                                    int cleaned_count);
200 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
201                                       struct e1000_rx_ring *rx_ring,
202                                       int cleaned_count);
203 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
204 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
205                            int cmd);
206 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
207 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
208 static void e1000_tx_timeout(struct net_device *dev);
209 static void e1000_reset_task(struct net_device *dev);
210 static void e1000_smartspeed(struct e1000_adapter *adapter);
211 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
212                                               struct sk_buff *skb);
213
214 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
215 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
216 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
217 static void e1000_restore_vlan(struct e1000_adapter *adapter);
218
219 #ifdef CONFIG_PM
220 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
221 static int e1000_resume(struct pci_dev *pdev);
222 #endif
223 static void e1000_shutdown(struct pci_dev *pdev);
224
225 #ifdef CONFIG_NET_POLL_CONTROLLER
226 /* for netdump / net console */
227 static void e1000_netpoll (struct net_device *netdev);
228 #endif
229
230
231 static struct pci_driver e1000_driver = {
232         .name     = e1000_driver_name,
233         .id_table = e1000_pci_tbl,
234         .probe    = e1000_probe,
235         .remove   = __devexit_p(e1000_remove),
236         /* Power Managment Hooks */
237 #ifdef CONFIG_PM
238         .suspend  = e1000_suspend,
239         .resume   = e1000_resume,
240 #endif
241         .shutdown = e1000_shutdown
242 };
243
244 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
245 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
246 MODULE_LICENSE("GPL");
247 MODULE_VERSION(DRV_VERSION);
248
249 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
250 module_param(debug, int, 0);
251 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
252
253 /**
254  * e1000_init_module - Driver Registration Routine
255  *
256  * e1000_init_module is the first routine called when the driver is
257  * loaded. All it does is register with the PCI subsystem.
258  **/
259
260 static int __init
261 e1000_init_module(void)
262 {
263         int ret;
264         printk(KERN_INFO "%s - version %s\n",
265                e1000_driver_string, e1000_driver_version);
266
267         printk(KERN_INFO "%s\n", e1000_copyright);
268
269         ret = pci_module_init(&e1000_driver);
270
271         return ret;
272 }
273
274 module_init(e1000_init_module);
275
276 /**
277  * e1000_exit_module - Driver Exit Cleanup Routine
278  *
279  * e1000_exit_module is called just before the driver is removed
280  * from memory.
281  **/
282
283 static void __exit
284 e1000_exit_module(void)
285 {
286         pci_unregister_driver(&e1000_driver);
287 }
288
289 module_exit(e1000_exit_module);
290
291 /**
292  * e1000_irq_disable - Mask off interrupt generation on the NIC
293  * @adapter: board private structure
294  **/
295
296 static inline void
297 e1000_irq_disable(struct e1000_adapter *adapter)
298 {
299         atomic_inc(&adapter->irq_sem);
300         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
301         E1000_WRITE_FLUSH(&adapter->hw);
302         synchronize_irq(adapter->pdev->irq);
303 }
304
305 /**
306  * e1000_irq_enable - Enable default interrupt generation settings
307  * @adapter: board private structure
308  **/
309
310 static inline void
311 e1000_irq_enable(struct e1000_adapter *adapter)
312 {
313         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
314                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
315                 E1000_WRITE_FLUSH(&adapter->hw);
316         }
317 }
318
319 static void
320 e1000_update_mng_vlan(struct e1000_adapter *adapter)
321 {
322         struct net_device *netdev = adapter->netdev;
323         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
324         uint16_t old_vid = adapter->mng_vlan_id;
325         if (adapter->vlgrp) {
326                 if (!adapter->vlgrp->vlan_devices[vid]) {
327                         if (adapter->hw.mng_cookie.status &
328                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
329                                 e1000_vlan_rx_add_vid(netdev, vid);
330                                 adapter->mng_vlan_id = vid;
331                         } else
332                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
333
334                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
335                                         (vid != old_vid) &&
336                                         !adapter->vlgrp->vlan_devices[old_vid])
337                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
338                 } else
339                         adapter->mng_vlan_id = vid;
340         }
341 }
342
343 /**
344  * e1000_release_hw_control - release control of the h/w to f/w
345  * @adapter: address of board private structure
346  *
347  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
348  * For ASF and Pass Through versions of f/w this means that the
349  * driver is no longer loaded. For AMT version (only with 82573) i
350  * of the f/w this means that the netowrk i/f is closed.
351  * 
352  **/
353
354 static inline void 
355 e1000_release_hw_control(struct e1000_adapter *adapter)
356 {
357         uint32_t ctrl_ext;
358         uint32_t swsm;
359
360         /* Let firmware taken over control of h/w */
361         switch (adapter->hw.mac_type) {
362         case e1000_82571:
363         case e1000_82572:
364                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
365                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
366                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
367                 break;
368         case e1000_82573:
369                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
370                 E1000_WRITE_REG(&adapter->hw, SWSM,
371                                 swsm & ~E1000_SWSM_DRV_LOAD);
372         default:
373                 break;
374         }
375 }
376
377 /**
378  * e1000_get_hw_control - get control of the h/w from f/w
379  * @adapter: address of board private structure
380  *
381  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
382  * For ASF and Pass Through versions of f/w this means that 
383  * the driver is loaded. For AMT version (only with 82573) 
384  * of the f/w this means that the netowrk i/f is open.
385  * 
386  **/
387
388 static inline void 
389 e1000_get_hw_control(struct e1000_adapter *adapter)
390 {
391         uint32_t ctrl_ext;
392         uint32_t swsm;
393         /* Let firmware know the driver has taken over */
394         switch (adapter->hw.mac_type) {
395         case e1000_82571:
396         case e1000_82572:
397                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
398                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
399                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
400                 break;
401         case e1000_82573:
402                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
403                 E1000_WRITE_REG(&adapter->hw, SWSM,
404                                 swsm | E1000_SWSM_DRV_LOAD);
405                 break;
406         default:
407                 break;
408         }
409 }
410
411 int
412 e1000_up(struct e1000_adapter *adapter)
413 {
414         struct net_device *netdev = adapter->netdev;
415         int i, err;
416
417         /* hardware has been reset, we need to reload some things */
418
419         /* Reset the PHY if it was previously powered down */
420         if (adapter->hw.media_type == e1000_media_type_copper) {
421                 uint16_t mii_reg;
422                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
423                 if (mii_reg & MII_CR_POWER_DOWN)
424                         e1000_phy_reset(&adapter->hw);
425         }
426
427         e1000_set_multi(netdev);
428
429         e1000_restore_vlan(adapter);
430
431         e1000_configure_tx(adapter);
432         e1000_setup_rctl(adapter);
433         e1000_configure_rx(adapter);
434         /* call E1000_DESC_UNUSED which always leaves
435          * at least 1 descriptor unused to make sure
436          * next_to_use != next_to_clean */
437         for (i = 0; i < adapter->num_rx_queues; i++) {
438                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
439                 adapter->alloc_rx_buf(adapter, ring,
440                                       E1000_DESC_UNUSED(ring));
441         }
442
443 #ifdef CONFIG_PCI_MSI
444         if (adapter->hw.mac_type > e1000_82547_rev_2) {
445                 adapter->have_msi = TRUE;
446                 if ((err = pci_enable_msi(adapter->pdev))) {
447                         DPRINTK(PROBE, ERR,
448                          "Unable to allocate MSI interrupt Error: %d\n", err);
449                         adapter->have_msi = FALSE;
450                 }
451         }
452 #endif
453         if ((err = request_irq(adapter->pdev->irq, &e1000_intr,
454                               SA_SHIRQ | SA_SAMPLE_RANDOM,
455                               netdev->name, netdev))) {
456                 DPRINTK(PROBE, ERR,
457                     "Unable to allocate interrupt Error: %d\n", err);
458                 return err;
459         }
460
461         adapter->tx_queue_len = netdev->tx_queue_len;
462
463         mod_timer(&adapter->watchdog_timer, jiffies);
464
465 #ifdef CONFIG_E1000_NAPI
466         netif_poll_enable(netdev);
467 #endif
468         e1000_irq_enable(adapter);
469
470         return 0;
471 }
472
473 void
474 e1000_down(struct e1000_adapter *adapter)
475 {
476         struct net_device *netdev = adapter->netdev;
477         boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
478                                      e1000_check_mng_mode(&adapter->hw);
479
480         e1000_irq_disable(adapter);
481
482         free_irq(adapter->pdev->irq, netdev);
483 #ifdef CONFIG_PCI_MSI
484         if (adapter->hw.mac_type > e1000_82547_rev_2 &&
485            adapter->have_msi == TRUE)
486                 pci_disable_msi(adapter->pdev);
487 #endif
488         del_timer_sync(&adapter->tx_fifo_stall_timer);
489         del_timer_sync(&adapter->watchdog_timer);
490         del_timer_sync(&adapter->phy_info_timer);
491
492 #ifdef CONFIG_E1000_NAPI
493         netif_poll_disable(netdev);
494 #endif
495         netdev->tx_queue_len = adapter->tx_queue_len;
496         adapter->link_speed = 0;
497         adapter->link_duplex = 0;
498         netif_carrier_off(netdev);
499         netif_stop_queue(netdev);
500
501         e1000_reset(adapter);
502         e1000_clean_all_tx_rings(adapter);
503         e1000_clean_all_rx_rings(adapter);
504
505         /* Power down the PHY so no link is implied when interface is down *
506          * The PHY cannot be powered down if any of the following is TRUE *
507          * (a) WoL is enabled
508          * (b) AMT is active
509          * (c) SoL/IDER session is active */
510         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
511            adapter->hw.media_type == e1000_media_type_copper &&
512            !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
513            !mng_mode_enabled &&
514            !e1000_check_phy_reset_block(&adapter->hw)) {
515                 uint16_t mii_reg;
516                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
517                 mii_reg |= MII_CR_POWER_DOWN;
518                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
519                 mdelay(1);
520         }
521 }
522
523 void
524 e1000_reset(struct e1000_adapter *adapter)
525 {
526         uint32_t pba, manc;
527         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
528
529         /* Repartition Pba for greater than 9k mtu
530          * To take effect CTRL.RST is required.
531          */
532
533         switch (adapter->hw.mac_type) {
534         case e1000_82547:
535         case e1000_82547_rev_2:
536                 pba = E1000_PBA_30K;
537                 break;
538         case e1000_82571:
539         case e1000_82572:
540         case e1000_80003es2lan:
541                 pba = E1000_PBA_38K;
542                 break;
543         case e1000_82573:
544                 pba = E1000_PBA_12K;
545                 break;
546         default:
547                 pba = E1000_PBA_48K;
548                 break;
549         }
550
551         if ((adapter->hw.mac_type != e1000_82573) &&
552            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
553                 pba -= 8; /* allocate more FIFO for Tx */
554
555
556         if (adapter->hw.mac_type == e1000_82547) {
557                 adapter->tx_fifo_head = 0;
558                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
559                 adapter->tx_fifo_size =
560                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
561                 atomic_set(&adapter->tx_fifo_stall, 0);
562         }
563
564         E1000_WRITE_REG(&adapter->hw, PBA, pba);
565
566         /* flow control settings */
567         /* Set the FC high water mark to 90% of the FIFO size.
568          * Required to clear last 3 LSB */
569         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
570
571         adapter->hw.fc_high_water = fc_high_water_mark;
572         adapter->hw.fc_low_water = fc_high_water_mark - 8;
573         if (adapter->hw.mac_type == e1000_80003es2lan)
574                 adapter->hw.fc_pause_time = 0xFFFF;
575         else
576                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
577         adapter->hw.fc_send_xon = 1;
578         adapter->hw.fc = adapter->hw.original_fc;
579
580         /* Allow time for pending master requests to run */
581         e1000_reset_hw(&adapter->hw);
582         if (adapter->hw.mac_type >= e1000_82544)
583                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
584         if (e1000_init_hw(&adapter->hw))
585                 DPRINTK(PROBE, ERR, "Hardware Error\n");
586         e1000_update_mng_vlan(adapter);
587         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
588         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
589
590         e1000_reset_adaptive(&adapter->hw);
591         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
592         if (adapter->en_mng_pt) {
593                 manc = E1000_READ_REG(&adapter->hw, MANC);
594                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
595                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
596         }
597 }
598
599 /**
600  * e1000_probe - Device Initialization Routine
601  * @pdev: PCI device information struct
602  * @ent: entry in e1000_pci_tbl
603  *
604  * Returns 0 on success, negative on failure
605  *
606  * e1000_probe initializes an adapter identified by a pci_dev structure.
607  * The OS initialization, configuring of the adapter private structure,
608  * and a hardware reset occur.
609  **/
610
611 static int __devinit
612 e1000_probe(struct pci_dev *pdev,
613             const struct pci_device_id *ent)
614 {
615         struct net_device *netdev;
616         struct e1000_adapter *adapter;
617         unsigned long mmio_start, mmio_len;
618
619         static int cards_found = 0;
620         static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
621         int i, err, pci_using_dac;
622         uint16_t eeprom_data;
623         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
624         if ((err = pci_enable_device(pdev)))
625                 return err;
626
627         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
628                 pci_using_dac = 1;
629         } else {
630                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
631                         E1000_ERR("No usable DMA configuration, aborting\n");
632                         return err;
633                 }
634                 pci_using_dac = 0;
635         }
636
637         if ((err = pci_request_regions(pdev, e1000_driver_name)))
638                 return err;
639
640         pci_set_master(pdev);
641
642         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
643         if (!netdev) {
644                 err = -ENOMEM;
645                 goto err_alloc_etherdev;
646         }
647
648         SET_MODULE_OWNER(netdev);
649         SET_NETDEV_DEV(netdev, &pdev->dev);
650
651         pci_set_drvdata(pdev, netdev);
652         adapter = netdev_priv(netdev);
653         adapter->netdev = netdev;
654         adapter->pdev = pdev;
655         adapter->hw.back = adapter;
656         adapter->msg_enable = (1 << debug) - 1;
657
658         mmio_start = pci_resource_start(pdev, BAR_0);
659         mmio_len = pci_resource_len(pdev, BAR_0);
660
661         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
662         if (!adapter->hw.hw_addr) {
663                 err = -EIO;
664                 goto err_ioremap;
665         }
666
667         for (i = BAR_1; i <= BAR_5; i++) {
668                 if (pci_resource_len(pdev, i) == 0)
669                         continue;
670                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
671                         adapter->hw.io_base = pci_resource_start(pdev, i);
672                         break;
673                 }
674         }
675
676         netdev->open = &e1000_open;
677         netdev->stop = &e1000_close;
678         netdev->hard_start_xmit = &e1000_xmit_frame;
679         netdev->get_stats = &e1000_get_stats;
680         netdev->set_multicast_list = &e1000_set_multi;
681         netdev->set_mac_address = &e1000_set_mac;
682         netdev->change_mtu = &e1000_change_mtu;
683         netdev->do_ioctl = &e1000_ioctl;
684         e1000_set_ethtool_ops(netdev);
685         netdev->tx_timeout = &e1000_tx_timeout;
686         netdev->watchdog_timeo = 5 * HZ;
687 #ifdef CONFIG_E1000_NAPI
688         netdev->poll = &e1000_clean;
689         netdev->weight = 64;
690 #endif
691         netdev->vlan_rx_register = e1000_vlan_rx_register;
692         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
693         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
694 #ifdef CONFIG_NET_POLL_CONTROLLER
695         netdev->poll_controller = e1000_netpoll;
696 #endif
697         strcpy(netdev->name, pci_name(pdev));
698
699         netdev->mem_start = mmio_start;
700         netdev->mem_end = mmio_start + mmio_len;
701         netdev->base_addr = adapter->hw.io_base;
702
703         adapter->bd_number = cards_found;
704
705         /* setup the private structure */
706
707         if ((err = e1000_sw_init(adapter)))
708                 goto err_sw_init;
709
710         if ((err = e1000_check_phy_reset_block(&adapter->hw)))
711                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
712
713         /* if ksp3, indicate if it's port a being setup */
714         if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 && 
715                         e1000_ksp3_port_a == 0) 
716                 adapter->ksp3_port_a = 1;
717         e1000_ksp3_port_a++;
718         /* Reset for multiple KP3 adapters */
719         if (e1000_ksp3_port_a == 4)
720                 e1000_ksp3_port_a = 0;
721
722         if (adapter->hw.mac_type >= e1000_82543) {
723                 netdev->features = NETIF_F_SG |
724                                    NETIF_F_HW_CSUM |
725                                    NETIF_F_HW_VLAN_TX |
726                                    NETIF_F_HW_VLAN_RX |
727                                    NETIF_F_HW_VLAN_FILTER;
728         }
729
730 #ifdef NETIF_F_TSO
731         if ((adapter->hw.mac_type >= e1000_82544) &&
732            (adapter->hw.mac_type != e1000_82547))
733                 netdev->features |= NETIF_F_TSO;
734
735 #ifdef NETIF_F_TSO_IPV6
736         if (adapter->hw.mac_type > e1000_82547_rev_2)
737                 netdev->features |= NETIF_F_TSO_IPV6;
738 #endif
739 #endif
740         if (pci_using_dac)
741                 netdev->features |= NETIF_F_HIGHDMA;
742
743         /* hard_start_xmit is safe against parallel locking */
744         netdev->features |= NETIF_F_LLTX; 
745  
746         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
747
748         /* before reading the EEPROM, reset the controller to
749          * put the device in a known good starting state */
750
751         e1000_reset_hw(&adapter->hw);
752
753         /* make sure the EEPROM is good */
754
755         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
756                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
757                 err = -EIO;
758                 goto err_eeprom;
759         }
760
761         /* copy the MAC address out of the EEPROM */
762
763         if (e1000_read_mac_addr(&adapter->hw))
764                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
765         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
766         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
767
768         if (!is_valid_ether_addr(netdev->perm_addr)) {
769                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
770                 err = -EIO;
771                 goto err_eeprom;
772         }
773
774         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
775
776         e1000_get_bus_info(&adapter->hw);
777
778         init_timer(&adapter->tx_fifo_stall_timer);
779         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
780         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
781
782         init_timer(&adapter->watchdog_timer);
783         adapter->watchdog_timer.function = &e1000_watchdog;
784         adapter->watchdog_timer.data = (unsigned long) adapter;
785
786         INIT_WORK(&adapter->watchdog_task,
787                 (void (*)(void *))e1000_watchdog_task, adapter);
788
789         init_timer(&adapter->phy_info_timer);
790         adapter->phy_info_timer.function = &e1000_update_phy_info;
791         adapter->phy_info_timer.data = (unsigned long) adapter;
792
793         INIT_WORK(&adapter->reset_task,
794                 (void (*)(void *))e1000_reset_task, netdev);
795
796         /* we're going to reset, so assume we have no link for now */
797
798         netif_carrier_off(netdev);
799         netif_stop_queue(netdev);
800
801         e1000_check_options(adapter);
802
803         /* Initial Wake on LAN setting
804          * If APM wake is enabled in the EEPROM,
805          * enable the ACPI Magic Packet filter
806          */
807
808         switch (adapter->hw.mac_type) {
809         case e1000_82542_rev2_0:
810         case e1000_82542_rev2_1:
811         case e1000_82543:
812                 break;
813         case e1000_82544:
814                 e1000_read_eeprom(&adapter->hw,
815                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
816                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
817                 break;
818         case e1000_82546:
819         case e1000_82546_rev_3:
820         case e1000_82571:
821         case e1000_80003es2lan:
822                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
823                         e1000_read_eeprom(&adapter->hw,
824                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
825                         break;
826                 }
827                 /* Fall Through */
828         default:
829                 e1000_read_eeprom(&adapter->hw,
830                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
831                 break;
832         }
833         if (eeprom_data & eeprom_apme_mask)
834                 adapter->wol |= E1000_WUFC_MAG;
835
836         /* print bus type/speed/width info */
837         {
838         struct e1000_hw *hw = &adapter->hw;
839         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
840                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
841                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
842                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
843                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
844                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
845                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
846                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
847                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
848                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
849                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
850                  "32-bit"));
851         }
852
853         for (i = 0; i < 6; i++)
854                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
855
856         /* reset the hardware with the new settings */
857         e1000_reset(adapter);
858
859         /* If the controller is 82573 and f/w is AMT, do not set
860          * DRV_LOAD until the interface is up.  For all other cases,
861          * let the f/w know that the h/w is now under the control
862          * of the driver. */
863         if (adapter->hw.mac_type != e1000_82573 ||
864             !e1000_check_mng_mode(&adapter->hw))
865                 e1000_get_hw_control(adapter);
866
867         strcpy(netdev->name, "eth%d");
868         if ((err = register_netdev(netdev)))
869                 goto err_register;
870
871         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
872
873         cards_found++;
874         return 0;
875
876 err_register:
877 err_sw_init:
878 err_eeprom:
879         iounmap(adapter->hw.hw_addr);
880 err_ioremap:
881         free_netdev(netdev);
882 err_alloc_etherdev:
883         pci_release_regions(pdev);
884         return err;
885 }
886
887 /**
888  * e1000_remove - Device Removal Routine
889  * @pdev: PCI device information struct
890  *
891  * e1000_remove is called by the PCI subsystem to alert the driver
892  * that it should release a PCI device.  The could be caused by a
893  * Hot-Plug event, or because the driver is going to be removed from
894  * memory.
895  **/
896
897 static void __devexit
898 e1000_remove(struct pci_dev *pdev)
899 {
900         struct net_device *netdev = pci_get_drvdata(pdev);
901         struct e1000_adapter *adapter = netdev_priv(netdev);
902         uint32_t manc;
903 #ifdef CONFIG_E1000_NAPI
904         int i;
905 #endif
906
907         flush_scheduled_work();
908
909         if (adapter->hw.mac_type >= e1000_82540 &&
910            adapter->hw.media_type == e1000_media_type_copper) {
911                 manc = E1000_READ_REG(&adapter->hw, MANC);
912                 if (manc & E1000_MANC_SMBUS_EN) {
913                         manc |= E1000_MANC_ARP_EN;
914                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
915                 }
916         }
917
918         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
919          * would have already happened in close and is redundant. */
920         e1000_release_hw_control(adapter);
921
922         unregister_netdev(netdev);
923 #ifdef CONFIG_E1000_NAPI
924         for (i = 0; i < adapter->num_rx_queues; i++)
925                 dev_put(&adapter->polling_netdev[i]);
926 #endif
927
928         if (!e1000_check_phy_reset_block(&adapter->hw))
929                 e1000_phy_hw_reset(&adapter->hw);
930
931         kfree(adapter->tx_ring);
932         kfree(adapter->rx_ring);
933 #ifdef CONFIG_E1000_NAPI
934         kfree(adapter->polling_netdev);
935 #endif
936
937         iounmap(adapter->hw.hw_addr);
938         pci_release_regions(pdev);
939
940         free_netdev(netdev);
941
942         pci_disable_device(pdev);
943 }
944
945 /**
946  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
947  * @adapter: board private structure to initialize
948  *
949  * e1000_sw_init initializes the Adapter private data structure.
950  * Fields are initialized based on PCI device information and
951  * OS network device settings (MTU size).
952  **/
953
954 static int __devinit
955 e1000_sw_init(struct e1000_adapter *adapter)
956 {
957         struct e1000_hw *hw = &adapter->hw;
958         struct net_device *netdev = adapter->netdev;
959         struct pci_dev *pdev = adapter->pdev;
960 #ifdef CONFIG_E1000_NAPI
961         int i;
962 #endif
963
964         /* PCI config space info */
965
966         hw->vendor_id = pdev->vendor;
967         hw->device_id = pdev->device;
968         hw->subsystem_vendor_id = pdev->subsystem_vendor;
969         hw->subsystem_id = pdev->subsystem_device;
970
971         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
972
973         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
974
975         adapter->rx_buffer_len = E1000_RXBUFFER_2048;
976         adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
977         hw->max_frame_size = netdev->mtu +
978                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
979         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
980
981         /* identify the MAC */
982
983         if (e1000_set_mac_type(hw)) {
984                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
985                 return -EIO;
986         }
987
988         /* initialize eeprom parameters */
989
990         if (e1000_init_eeprom_params(hw)) {
991                 E1000_ERR("EEPROM initialization failed\n");
992                 return -EIO;
993         }
994
995         switch (hw->mac_type) {
996         default:
997                 break;
998         case e1000_82541:
999         case e1000_82547:
1000         case e1000_82541_rev_2:
1001         case e1000_82547_rev_2:
1002                 hw->phy_init_script = 1;
1003                 break;
1004         }
1005
1006         e1000_set_media_type(hw);
1007
1008         hw->wait_autoneg_complete = FALSE;
1009         hw->tbi_compatibility_en = TRUE;
1010         hw->adaptive_ifs = TRUE;
1011
1012         /* Copper options */
1013
1014         if (hw->media_type == e1000_media_type_copper) {
1015                 hw->mdix = AUTO_ALL_MODES;
1016                 hw->disable_polarity_correction = FALSE;
1017                 hw->master_slave = E1000_MASTER_SLAVE;
1018         }
1019
1020         adapter->num_tx_queues = 1;
1021         adapter->num_rx_queues = 1;
1022
1023         if (e1000_alloc_queues(adapter)) {
1024                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1025                 return -ENOMEM;
1026         }
1027
1028 #ifdef CONFIG_E1000_NAPI
1029         for (i = 0; i < adapter->num_rx_queues; i++) {
1030                 adapter->polling_netdev[i].priv = adapter;
1031                 adapter->polling_netdev[i].poll = &e1000_clean;
1032                 adapter->polling_netdev[i].weight = 64;
1033                 dev_hold(&adapter->polling_netdev[i]);
1034                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1035         }
1036         spin_lock_init(&adapter->tx_queue_lock);
1037 #endif
1038
1039         atomic_set(&adapter->irq_sem, 1);
1040         spin_lock_init(&adapter->stats_lock);
1041
1042         return 0;
1043 }
1044
1045 /**
1046  * e1000_alloc_queues - Allocate memory for all rings
1047  * @adapter: board private structure to initialize
1048  *
1049  * We allocate one ring per queue at run-time since we don't know the
1050  * number of queues at compile-time.  The polling_netdev array is
1051  * intended for Multiqueue, but should work fine with a single queue.
1052  **/
1053
1054 static int __devinit
1055 e1000_alloc_queues(struct e1000_adapter *adapter)
1056 {
1057         int size;
1058
1059         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1060         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1061         if (!adapter->tx_ring)
1062                 return -ENOMEM;
1063         memset(adapter->tx_ring, 0, size);
1064
1065         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1066         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1067         if (!adapter->rx_ring) {
1068                 kfree(adapter->tx_ring);
1069                 return -ENOMEM;
1070         }
1071         memset(adapter->rx_ring, 0, size);
1072
1073 #ifdef CONFIG_E1000_NAPI
1074         size = sizeof(struct net_device) * adapter->num_rx_queues;
1075         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1076         if (!adapter->polling_netdev) {
1077                 kfree(adapter->tx_ring);
1078                 kfree(adapter->rx_ring);
1079                 return -ENOMEM;
1080         }
1081         memset(adapter->polling_netdev, 0, size);
1082 #endif
1083
1084         return E1000_SUCCESS;
1085 }
1086
1087 /**
1088  * e1000_open - Called when a network interface is made active
1089  * @netdev: network interface device structure
1090  *
1091  * Returns 0 on success, negative value on failure
1092  *
1093  * The open entry point is called when a network interface is made
1094  * active by the system (IFF_UP).  At this point all resources needed
1095  * for transmit and receive operations are allocated, the interrupt
1096  * handler is registered with the OS, the watchdog timer is started,
1097  * and the stack is notified that the interface is ready.
1098  **/
1099
1100 static int
1101 e1000_open(struct net_device *netdev)
1102 {
1103         struct e1000_adapter *adapter = netdev_priv(netdev);
1104         int err;
1105
1106         /* allocate transmit descriptors */
1107
1108         if ((err = e1000_setup_all_tx_resources(adapter)))
1109                 goto err_setup_tx;
1110
1111         /* allocate receive descriptors */
1112
1113         if ((err = e1000_setup_all_rx_resources(adapter)))
1114                 goto err_setup_rx;
1115
1116         if ((err = e1000_up(adapter)))
1117                 goto err_up;
1118         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1119         if ((adapter->hw.mng_cookie.status &
1120                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1121                 e1000_update_mng_vlan(adapter);
1122         }
1123
1124         /* If AMT is enabled, let the firmware know that the network
1125          * interface is now open */
1126         if (adapter->hw.mac_type == e1000_82573 &&
1127             e1000_check_mng_mode(&adapter->hw))
1128                 e1000_get_hw_control(adapter);
1129
1130         return E1000_SUCCESS;
1131
1132 err_up:
1133         e1000_free_all_rx_resources(adapter);
1134 err_setup_rx:
1135         e1000_free_all_tx_resources(adapter);
1136 err_setup_tx:
1137         e1000_reset(adapter);
1138
1139         return err;
1140 }
1141
1142 /**
1143  * e1000_close - Disables a network interface
1144  * @netdev: network interface device structure
1145  *
1146  * Returns 0, this is not allowed to fail
1147  *
1148  * The close entry point is called when an interface is de-activated
1149  * by the OS.  The hardware is still under the drivers control, but
1150  * needs to be disabled.  A global MAC reset is issued to stop the
1151  * hardware, and all transmit and receive resources are freed.
1152  **/
1153
1154 static int
1155 e1000_close(struct net_device *netdev)
1156 {
1157         struct e1000_adapter *adapter = netdev_priv(netdev);
1158
1159         e1000_down(adapter);
1160
1161         e1000_free_all_tx_resources(adapter);
1162         e1000_free_all_rx_resources(adapter);
1163
1164         if ((adapter->hw.mng_cookie.status &
1165                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1166                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1167         }
1168
1169         /* If AMT is enabled, let the firmware know that the network
1170          * interface is now closed */
1171         if (adapter->hw.mac_type == e1000_82573 &&
1172             e1000_check_mng_mode(&adapter->hw))
1173                 e1000_release_hw_control(adapter);
1174
1175         return 0;
1176 }
1177
1178 /**
1179  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1180  * @adapter: address of board private structure
1181  * @start: address of beginning of memory
1182  * @len: length of memory
1183  **/
1184 static inline boolean_t
1185 e1000_check_64k_bound(struct e1000_adapter *adapter,
1186                       void *start, unsigned long len)
1187 {
1188         unsigned long begin = (unsigned long) start;
1189         unsigned long end = begin + len;
1190
1191         /* First rev 82545 and 82546 need to not allow any memory
1192          * write location to cross 64k boundary due to errata 23 */
1193         if (adapter->hw.mac_type == e1000_82545 ||
1194             adapter->hw.mac_type == e1000_82546) {
1195                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1196         }
1197
1198         return TRUE;
1199 }
1200
1201 /**
1202  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1203  * @adapter: board private structure
1204  * @txdr:    tx descriptor ring (for a specific queue) to setup
1205  *
1206  * Return 0 on success, negative on failure
1207  **/
1208
1209 static int
1210 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1211                          struct e1000_tx_ring *txdr)
1212 {
1213         struct pci_dev *pdev = adapter->pdev;
1214         int size;
1215
1216         size = sizeof(struct e1000_buffer) * txdr->count;
1217
1218         txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1219         if (!txdr->buffer_info) {
1220                 DPRINTK(PROBE, ERR,
1221                 "Unable to allocate memory for the transmit descriptor ring\n");
1222                 return -ENOMEM;
1223         }
1224         memset(txdr->buffer_info, 0, size);
1225
1226         /* round up to nearest 4K */
1227
1228         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1229         E1000_ROUNDUP(txdr->size, 4096);
1230
1231         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1232         if (!txdr->desc) {
1233 setup_tx_desc_die:
1234                 vfree(txdr->buffer_info);
1235                 DPRINTK(PROBE, ERR,
1236                 "Unable to allocate memory for the transmit descriptor ring\n");
1237                 return -ENOMEM;
1238         }
1239
1240         /* Fix for errata 23, can't cross 64kB boundary */
1241         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1242                 void *olddesc = txdr->desc;
1243                 dma_addr_t olddma = txdr->dma;
1244                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1245                                      "at %p\n", txdr->size, txdr->desc);
1246                 /* Try again, without freeing the previous */
1247                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1248                 /* Failed allocation, critical failure */
1249                 if (!txdr->desc) {
1250                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1251                         goto setup_tx_desc_die;
1252                 }
1253
1254                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1255                         /* give up */
1256                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1257                                             txdr->dma);
1258                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1259                         DPRINTK(PROBE, ERR,
1260                                 "Unable to allocate aligned memory "
1261                                 "for the transmit descriptor ring\n");
1262                         vfree(txdr->buffer_info);
1263                         return -ENOMEM;
1264                 } else {
1265                         /* Free old allocation, new allocation was successful */
1266                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1267                 }
1268         }
1269         memset(txdr->desc, 0, txdr->size);
1270
1271         txdr->next_to_use = 0;
1272         txdr->next_to_clean = 0;
1273         spin_lock_init(&txdr->tx_lock);
1274
1275         return 0;
1276 }
1277
1278 /**
1279  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1280  *                                (Descriptors) for all queues
1281  * @adapter: board private structure
1282  *
1283  * If this function returns with an error, then it's possible one or
1284  * more of the rings is populated (while the rest are not).  It is the
1285  * callers duty to clean those orphaned rings.
1286  *
1287  * Return 0 on success, negative on failure
1288  **/
1289
1290 int
1291 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1292 {
1293         int i, err = 0;
1294
1295         for (i = 0; i < adapter->num_tx_queues; i++) {
1296                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1297                 if (err) {
1298                         DPRINTK(PROBE, ERR,
1299                                 "Allocation for Tx Queue %u failed\n", i);
1300                         break;
1301                 }
1302         }
1303
1304         return err;
1305 }
1306
1307 /**
1308  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1309  * @adapter: board private structure
1310  *
1311  * Configure the Tx unit of the MAC after a reset.
1312  **/
1313
1314 static void
1315 e1000_configure_tx(struct e1000_adapter *adapter)
1316 {
1317         uint64_t tdba;
1318         struct e1000_hw *hw = &adapter->hw;
1319         uint32_t tdlen, tctl, tipg, tarc;
1320         uint32_t ipgr1, ipgr2;
1321
1322         /* Setup the HW Tx Head and Tail descriptor pointers */
1323
1324         switch (adapter->num_tx_queues) {
1325         case 1:
1326         default:
1327                 tdba = adapter->tx_ring[0].dma;
1328                 tdlen = adapter->tx_ring[0].count *
1329                         sizeof(struct e1000_tx_desc);
1330                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1331                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1332                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1333                 E1000_WRITE_REG(hw, TDH, 0);
1334                 E1000_WRITE_REG(hw, TDT, 0);
1335                 adapter->tx_ring[0].tdh = E1000_TDH;
1336                 adapter->tx_ring[0].tdt = E1000_TDT;
1337                 break;
1338         }
1339
1340         /* Set the default values for the Tx Inter Packet Gap timer */
1341
1342         if (hw->media_type == e1000_media_type_fiber ||
1343             hw->media_type == e1000_media_type_internal_serdes)
1344                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1345         else
1346                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1347
1348         switch (hw->mac_type) {
1349         case e1000_82542_rev2_0:
1350         case e1000_82542_rev2_1:
1351                 tipg = DEFAULT_82542_TIPG_IPGT;
1352                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1353                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1354                 break;
1355         case e1000_80003es2lan:
1356                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1357                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1358                 break;
1359         default:
1360                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1361                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1362                 break;
1363         }
1364         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1365         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1366         E1000_WRITE_REG(hw, TIPG, tipg);
1367
1368         /* Set the Tx Interrupt Delay register */
1369
1370         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1371         if (hw->mac_type >= e1000_82540)
1372                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1373
1374         /* Program the Transmit Control Register */
1375
1376         tctl = E1000_READ_REG(hw, TCTL);
1377
1378         tctl &= ~E1000_TCTL_CT;
1379         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1380                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1381
1382 #ifdef DISABLE_MULR
1383         /* disable Multiple Reads for debugging */
1384         tctl &= ~E1000_TCTL_MULR;
1385 #endif
1386
1387         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1388                 tarc = E1000_READ_REG(hw, TARC0);
1389                 tarc |= ((1 << 25) | (1 << 21));
1390                 E1000_WRITE_REG(hw, TARC0, tarc);
1391                 tarc = E1000_READ_REG(hw, TARC1);
1392                 tarc |= (1 << 25);
1393                 if (tctl & E1000_TCTL_MULR)
1394                         tarc &= ~(1 << 28);
1395                 else
1396                         tarc |= (1 << 28);
1397                 E1000_WRITE_REG(hw, TARC1, tarc);
1398         } else if (hw->mac_type == e1000_80003es2lan) {
1399                 tarc = E1000_READ_REG(hw, TARC0);
1400                 tarc |= 1;
1401                 if (hw->media_type == e1000_media_type_internal_serdes)
1402                         tarc |= (1 << 20);
1403                 E1000_WRITE_REG(hw, TARC0, tarc);
1404                 tarc = E1000_READ_REG(hw, TARC1);
1405                 tarc |= 1;
1406                 E1000_WRITE_REG(hw, TARC1, tarc);
1407         }
1408
1409         e1000_config_collision_dist(hw);
1410
1411         /* Setup Transmit Descriptor Settings for eop descriptor */
1412         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1413                 E1000_TXD_CMD_IFCS;
1414
1415         if (hw->mac_type < e1000_82543)
1416                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1417         else
1418                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1419
1420         /* Cache if we're 82544 running in PCI-X because we'll
1421          * need this to apply a workaround later in the send path. */
1422         if (hw->mac_type == e1000_82544 &&
1423             hw->bus_type == e1000_bus_type_pcix)
1424                 adapter->pcix_82544 = 1;
1425
1426         E1000_WRITE_REG(hw, TCTL, tctl);
1427
1428 }
1429
1430 /**
1431  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1432  * @adapter: board private structure
1433  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1434  *
1435  * Returns 0 on success, negative on failure
1436  **/
1437
1438 static int
1439 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1440                          struct e1000_rx_ring *rxdr)
1441 {
1442         struct pci_dev *pdev = adapter->pdev;
1443         int size, desc_len;
1444
1445         size = sizeof(struct e1000_buffer) * rxdr->count;
1446         rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1447         if (!rxdr->buffer_info) {
1448                 DPRINTK(PROBE, ERR,
1449                 "Unable to allocate memory for the receive descriptor ring\n");
1450                 return -ENOMEM;
1451         }
1452         memset(rxdr->buffer_info, 0, size);
1453
1454         size = sizeof(struct e1000_ps_page) * rxdr->count;
1455         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1456         if (!rxdr->ps_page) {
1457                 vfree(rxdr->buffer_info);
1458                 DPRINTK(PROBE, ERR,
1459                 "Unable to allocate memory for the receive descriptor ring\n");
1460                 return -ENOMEM;
1461         }
1462         memset(rxdr->ps_page, 0, size);
1463
1464         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1465         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1466         if (!rxdr->ps_page_dma) {
1467                 vfree(rxdr->buffer_info);
1468                 kfree(rxdr->ps_page);
1469                 DPRINTK(PROBE, ERR,
1470                 "Unable to allocate memory for the receive descriptor ring\n");
1471                 return -ENOMEM;
1472         }
1473         memset(rxdr->ps_page_dma, 0, size);
1474
1475         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1476                 desc_len = sizeof(struct e1000_rx_desc);
1477         else
1478                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1479
1480         /* Round up to nearest 4K */
1481
1482         rxdr->size = rxdr->count * desc_len;
1483         E1000_ROUNDUP(rxdr->size, 4096);
1484
1485         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1486
1487         if (!rxdr->desc) {
1488                 DPRINTK(PROBE, ERR,
1489                 "Unable to allocate memory for the receive descriptor ring\n");
1490 setup_rx_desc_die:
1491                 vfree(rxdr->buffer_info);
1492                 kfree(rxdr->ps_page);
1493                 kfree(rxdr->ps_page_dma);
1494                 return -ENOMEM;
1495         }
1496
1497         /* Fix for errata 23, can't cross 64kB boundary */
1498         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1499                 void *olddesc = rxdr->desc;
1500                 dma_addr_t olddma = rxdr->dma;
1501                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1502                                      "at %p\n", rxdr->size, rxdr->desc);
1503                 /* Try again, without freeing the previous */
1504                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1505                 /* Failed allocation, critical failure */
1506                 if (!rxdr->desc) {
1507                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1508                         DPRINTK(PROBE, ERR,
1509                                 "Unable to allocate memory "
1510                                 "for the receive descriptor ring\n");
1511                         goto setup_rx_desc_die;
1512                 }
1513
1514                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1515                         /* give up */
1516                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1517                                             rxdr->dma);
1518                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1519                         DPRINTK(PROBE, ERR,
1520                                 "Unable to allocate aligned memory "
1521                                 "for the receive descriptor ring\n");
1522                         goto setup_rx_desc_die;
1523                 } else {
1524                         /* Free old allocation, new allocation was successful */
1525                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1526                 }
1527         }
1528         memset(rxdr->desc, 0, rxdr->size);
1529
1530         rxdr->next_to_clean = 0;
1531         rxdr->next_to_use = 0;
1532
1533         return 0;
1534 }
1535
1536 /**
1537  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1538  *                                (Descriptors) for all queues
1539  * @adapter: board private structure
1540  *
1541  * If this function returns with an error, then it's possible one or
1542  * more of the rings is populated (while the rest are not).  It is the
1543  * callers duty to clean those orphaned rings.
1544  *
1545  * Return 0 on success, negative on failure
1546  **/
1547
1548 int
1549 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1550 {
1551         int i, err = 0;
1552
1553         for (i = 0; i < adapter->num_rx_queues; i++) {
1554                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1555                 if (err) {
1556                         DPRINTK(PROBE, ERR,
1557                                 "Allocation for Rx Queue %u failed\n", i);
1558                         break;
1559                 }
1560         }
1561
1562         return err;
1563 }
1564
1565 /**
1566  * e1000_setup_rctl - configure the receive control registers
1567  * @adapter: Board private structure
1568  **/
1569 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1570                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1571 static void
1572 e1000_setup_rctl(struct e1000_adapter *adapter)
1573 {
1574         uint32_t rctl, rfctl;
1575         uint32_t psrctl = 0;
1576 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1577         uint32_t pages = 0;
1578 #endif
1579
1580         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1581
1582         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1583
1584         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1585                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1586                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1587
1588         if (adapter->hw.mac_type > e1000_82543)
1589                 rctl |= E1000_RCTL_SECRC;
1590
1591         if (adapter->hw.tbi_compatibility_on == 1)
1592                 rctl |= E1000_RCTL_SBP;
1593         else
1594                 rctl &= ~E1000_RCTL_SBP;
1595
1596         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1597                 rctl &= ~E1000_RCTL_LPE;
1598         else
1599                 rctl |= E1000_RCTL_LPE;
1600
1601         /* Setup buffer sizes */
1602         if (adapter->hw.mac_type >= e1000_82571) {
1603                 /* We can now specify buffers in 1K increments.
1604                  * BSIZE and BSEX are ignored in this case. */
1605                 rctl |= adapter->rx_buffer_len << 0x11;
1606         } else {
1607                 rctl &= ~E1000_RCTL_SZ_4096;
1608                 rctl |= E1000_RCTL_BSEX; 
1609                 switch (adapter->rx_buffer_len) {
1610                 case E1000_RXBUFFER_2048:
1611                 default:
1612                         rctl |= E1000_RCTL_SZ_2048;
1613                         rctl &= ~E1000_RCTL_BSEX;
1614                         break;
1615                 case E1000_RXBUFFER_4096:
1616                         rctl |= E1000_RCTL_SZ_4096;
1617                         break;
1618                 case E1000_RXBUFFER_8192:
1619                         rctl |= E1000_RCTL_SZ_8192;
1620                         break;
1621                 case E1000_RXBUFFER_16384:
1622                         rctl |= E1000_RCTL_SZ_16384;
1623                         break;
1624                 }
1625         }
1626
1627 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1628         /* 82571 and greater support packet-split where the protocol
1629          * header is placed in skb->data and the packet data is
1630          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1631          * In the case of a non-split, skb->data is linearly filled,
1632          * followed by the page buffers.  Therefore, skb->data is
1633          * sized to hold the largest protocol header.
1634          */
1635         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1636         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1637             PAGE_SIZE <= 16384)
1638                 adapter->rx_ps_pages = pages;
1639         else
1640                 adapter->rx_ps_pages = 0;
1641 #endif
1642         if (adapter->rx_ps_pages) {
1643                 /* Configure extra packet-split registers */
1644                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1645                 rfctl |= E1000_RFCTL_EXTEN;
1646                 /* disable IPv6 packet split support */
1647                 rfctl |= E1000_RFCTL_IPV6_DIS;
1648                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1649
1650                 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1651
1652                 psrctl |= adapter->rx_ps_bsize0 >>
1653                         E1000_PSRCTL_BSIZE0_SHIFT;
1654
1655                 switch (adapter->rx_ps_pages) {
1656                 case 3:
1657                         psrctl |= PAGE_SIZE <<
1658                                 E1000_PSRCTL_BSIZE3_SHIFT;
1659                 case 2:
1660                         psrctl |= PAGE_SIZE <<
1661                                 E1000_PSRCTL_BSIZE2_SHIFT;
1662                 case 1:
1663                         psrctl |= PAGE_SIZE >>
1664                                 E1000_PSRCTL_BSIZE1_SHIFT;
1665                         break;
1666                 }
1667
1668                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1669         }
1670
1671         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1672 }
1673
1674 /**
1675  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1676  * @adapter: board private structure
1677  *
1678  * Configure the Rx unit of the MAC after a reset.
1679  **/
1680
1681 static void
1682 e1000_configure_rx(struct e1000_adapter *adapter)
1683 {
1684         uint64_t rdba;
1685         struct e1000_hw *hw = &adapter->hw;
1686         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1687
1688         if (adapter->rx_ps_pages) {
1689                 /* this is a 32 byte descriptor */
1690                 rdlen = adapter->rx_ring[0].count *
1691                         sizeof(union e1000_rx_desc_packet_split);
1692                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1693                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1694         } else {
1695                 rdlen = adapter->rx_ring[0].count *
1696                         sizeof(struct e1000_rx_desc);
1697                 adapter->clean_rx = e1000_clean_rx_irq;
1698                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1699         }
1700
1701         /* disable receives while setting up the descriptors */
1702         rctl = E1000_READ_REG(hw, RCTL);
1703         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1704
1705         /* set the Receive Delay Timer Register */
1706         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1707
1708         if (hw->mac_type >= e1000_82540) {
1709                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1710                 if (adapter->itr > 1)
1711                         E1000_WRITE_REG(hw, ITR,
1712                                 1000000000 / (adapter->itr * 256));
1713         }
1714
1715         if (hw->mac_type >= e1000_82571) {
1716                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1717                 /* Reset delay timers after every interrupt */
1718                 ctrl_ext |= E1000_CTRL_EXT_CANC;
1719 #ifdef CONFIG_E1000_NAPI
1720                 /* Auto-Mask interrupts upon ICR read. */
1721                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1722 #endif
1723                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1724                 E1000_WRITE_REG(hw, IAM, ~0);
1725                 E1000_WRITE_FLUSH(hw);
1726         }
1727
1728         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1729          * the Base and Length of the Rx Descriptor Ring */
1730         switch (adapter->num_rx_queues) {
1731         case 1:
1732         default:
1733                 rdba = adapter->rx_ring[0].dma;
1734                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1735                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1736                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1737                 E1000_WRITE_REG(hw, RDH, 0);
1738                 E1000_WRITE_REG(hw, RDT, 0);
1739                 adapter->rx_ring[0].rdh = E1000_RDH;
1740                 adapter->rx_ring[0].rdt = E1000_RDT;
1741                 break;
1742         }
1743
1744         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1745         if (hw->mac_type >= e1000_82543) {
1746                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1747                 if (adapter->rx_csum == TRUE) {
1748                         rxcsum |= E1000_RXCSUM_TUOFL;
1749
1750                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1751                          * Must be used in conjunction with packet-split. */
1752                         if ((hw->mac_type >= e1000_82571) &&
1753                             (adapter->rx_ps_pages)) {
1754                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1755                         }
1756                 } else {
1757                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1758                         /* don't need to clear IPPCSE as it defaults to 0 */
1759                 }
1760                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1761         }
1762
1763         if (hw->mac_type == e1000_82573)
1764                 E1000_WRITE_REG(hw, ERT, 0x0100);
1765
1766         /* Enable Receives */
1767         E1000_WRITE_REG(hw, RCTL, rctl);
1768 }
1769
1770 /**
1771  * e1000_free_tx_resources - Free Tx Resources per Queue
1772  * @adapter: board private structure
1773  * @tx_ring: Tx descriptor ring for a specific queue
1774  *
1775  * Free all transmit software resources
1776  **/
1777
1778 static void
1779 e1000_free_tx_resources(struct e1000_adapter *adapter,
1780                         struct e1000_tx_ring *tx_ring)
1781 {
1782         struct pci_dev *pdev = adapter->pdev;
1783
1784         e1000_clean_tx_ring(adapter, tx_ring);
1785
1786         vfree(tx_ring->buffer_info);
1787         tx_ring->buffer_info = NULL;
1788
1789         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1790
1791         tx_ring->desc = NULL;
1792 }
1793
1794 /**
1795  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1796  * @adapter: board private structure
1797  *
1798  * Free all transmit software resources
1799  **/
1800
1801 void
1802 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1803 {
1804         int i;
1805
1806         for (i = 0; i < adapter->num_tx_queues; i++)
1807                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1808 }
1809
1810 static inline void
1811 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1812                         struct e1000_buffer *buffer_info)
1813 {
1814         if (buffer_info->dma) {
1815                 pci_unmap_page(adapter->pdev,
1816                                 buffer_info->dma,
1817                                 buffer_info->length,
1818                                 PCI_DMA_TODEVICE);
1819         }
1820         if (buffer_info->skb)
1821                 dev_kfree_skb_any(buffer_info->skb);
1822         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1823 }
1824
1825 /**
1826  * e1000_clean_tx_ring - Free Tx Buffers
1827  * @adapter: board private structure
1828  * @tx_ring: ring to be cleaned
1829  **/
1830
1831 static void
1832 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1833                     struct e1000_tx_ring *tx_ring)
1834 {
1835         struct e1000_buffer *buffer_info;
1836         unsigned long size;
1837         unsigned int i;
1838
1839         /* Free all the Tx ring sk_buffs */
1840
1841         for (i = 0; i < tx_ring->count; i++) {
1842                 buffer_info = &tx_ring->buffer_info[i];
1843                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1844         }
1845
1846         size = sizeof(struct e1000_buffer) * tx_ring->count;
1847         memset(tx_ring->buffer_info, 0, size);
1848
1849         /* Zero out the descriptor ring */
1850
1851         memset(tx_ring->desc, 0, tx_ring->size);
1852
1853         tx_ring->next_to_use = 0;
1854         tx_ring->next_to_clean = 0;
1855         tx_ring->last_tx_tso = 0;
1856
1857         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1858         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1859 }
1860
1861 /**
1862  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1863  * @adapter: board private structure
1864  **/
1865
1866 static void
1867 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1868 {
1869         int i;
1870
1871         for (i = 0; i < adapter->num_tx_queues; i++)
1872                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1873 }
1874
1875 /**
1876  * e1000_free_rx_resources - Free Rx Resources
1877  * @adapter: board private structure
1878  * @rx_ring: ring to clean the resources from
1879  *
1880  * Free all receive software resources
1881  **/
1882
1883 static void
1884 e1000_free_rx_resources(struct e1000_adapter *adapter,
1885                         struct e1000_rx_ring *rx_ring)
1886 {
1887         struct pci_dev *pdev = adapter->pdev;
1888
1889         e1000_clean_rx_ring(adapter, rx_ring);
1890
1891         vfree(rx_ring->buffer_info);
1892         rx_ring->buffer_info = NULL;
1893         kfree(rx_ring->ps_page);
1894         rx_ring->ps_page = NULL;
1895         kfree(rx_ring->ps_page_dma);
1896         rx_ring->ps_page_dma = NULL;
1897
1898         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1899
1900         rx_ring->desc = NULL;
1901 }
1902
1903 /**
1904  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1905  * @adapter: board private structure
1906  *
1907  * Free all receive software resources
1908  **/
1909
1910 void
1911 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1912 {
1913         int i;
1914
1915         for (i = 0; i < adapter->num_rx_queues; i++)
1916                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1917 }
1918
1919 /**
1920  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1921  * @adapter: board private structure
1922  * @rx_ring: ring to free buffers from
1923  **/
1924
1925 static void
1926 e1000_clean_rx_ring(struct e1000_adapter *adapter,
1927                     struct e1000_rx_ring *rx_ring)
1928 {
1929         struct e1000_buffer *buffer_info;
1930         struct e1000_ps_page *ps_page;
1931         struct e1000_ps_page_dma *ps_page_dma;
1932         struct pci_dev *pdev = adapter->pdev;
1933         unsigned long size;
1934         unsigned int i, j;
1935
1936         /* Free all the Rx ring sk_buffs */
1937         for (i = 0; i < rx_ring->count; i++) {
1938                 buffer_info = &rx_ring->buffer_info[i];
1939                 if (buffer_info->skb) {
1940                         pci_unmap_single(pdev,
1941                                          buffer_info->dma,
1942                                          buffer_info->length,
1943                                          PCI_DMA_FROMDEVICE);
1944
1945                         dev_kfree_skb(buffer_info->skb);
1946                         buffer_info->skb = NULL;
1947                 }
1948                 ps_page = &rx_ring->ps_page[i];
1949                 ps_page_dma = &rx_ring->ps_page_dma[i];
1950                 for (j = 0; j < adapter->rx_ps_pages; j++) {
1951                         if (!ps_page->ps_page[j]) break;
1952                         pci_unmap_page(pdev,
1953                                        ps_page_dma->ps_page_dma[j],
1954                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
1955                         ps_page_dma->ps_page_dma[j] = 0;
1956                         put_page(ps_page->ps_page[j]);
1957                         ps_page->ps_page[j] = NULL;
1958                 }
1959         }
1960
1961         size = sizeof(struct e1000_buffer) * rx_ring->count;
1962         memset(rx_ring->buffer_info, 0, size);
1963         size = sizeof(struct e1000_ps_page) * rx_ring->count;
1964         memset(rx_ring->ps_page, 0, size);
1965         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1966         memset(rx_ring->ps_page_dma, 0, size);
1967
1968         /* Zero out the descriptor ring */
1969
1970         memset(rx_ring->desc, 0, rx_ring->size);
1971
1972         rx_ring->next_to_clean = 0;
1973         rx_ring->next_to_use = 0;
1974
1975         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
1976         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
1977 }
1978
1979 /**
1980  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1981  * @adapter: board private structure
1982  **/
1983
1984 static void
1985 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
1986 {
1987         int i;
1988
1989         for (i = 0; i < adapter->num_rx_queues; i++)
1990                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1991 }
1992
1993 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1994  * and memory write and invalidate disabled for certain operations
1995  */
1996 static void
1997 e1000_enter_82542_rst(struct e1000_adapter *adapter)
1998 {
1999         struct net_device *netdev = adapter->netdev;
2000         uint32_t rctl;
2001
2002         e1000_pci_clear_mwi(&adapter->hw);
2003
2004         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2005         rctl |= E1000_RCTL_RST;
2006         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2007         E1000_WRITE_FLUSH(&adapter->hw);
2008         mdelay(5);
2009
2010         if (netif_running(netdev))
2011                 e1000_clean_all_rx_rings(adapter);
2012 }
2013
2014 static void
2015 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2016 {
2017         struct net_device *netdev = adapter->netdev;
2018         uint32_t rctl;
2019
2020         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2021         rctl &= ~E1000_RCTL_RST;
2022         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2023         E1000_WRITE_FLUSH(&adapter->hw);
2024         mdelay(5);
2025
2026         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2027                 e1000_pci_set_mwi(&adapter->hw);
2028
2029         if (netif_running(netdev)) {
2030                 /* No need to loop, because 82542 supports only 1 queue */
2031                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2032                 e1000_configure_rx(adapter);
2033                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2034         }
2035 }
2036
2037 /**
2038  * e1000_set_mac - Change the Ethernet Address of the NIC
2039  * @netdev: network interface device structure
2040  * @p: pointer to an address structure
2041  *
2042  * Returns 0 on success, negative on failure
2043  **/
2044
2045 static int
2046 e1000_set_mac(struct net_device *netdev, void *p)
2047 {
2048         struct e1000_adapter *adapter = netdev_priv(netdev);
2049         struct sockaddr *addr = p;
2050
2051         if (!is_valid_ether_addr(addr->sa_data))
2052                 return -EADDRNOTAVAIL;
2053
2054         /* 82542 2.0 needs to be in reset to write receive address registers */
2055
2056         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2057                 e1000_enter_82542_rst(adapter);
2058
2059         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2060         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2061
2062         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2063
2064         /* With 82571 controllers, LAA may be overwritten (with the default)
2065          * due to controller reset from the other port. */
2066         if (adapter->hw.mac_type == e1000_82571) {
2067                 /* activate the work around */
2068                 adapter->hw.laa_is_present = 1;
2069
2070                 /* Hold a copy of the LAA in RAR[14] This is done so that
2071                  * between the time RAR[0] gets clobbered  and the time it
2072                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2073                  * of the RARs and no incoming packets directed to this port
2074                  * are dropped. Eventaully the LAA will be in RAR[0] and
2075                  * RAR[14] */
2076                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2077                                         E1000_RAR_ENTRIES - 1);
2078         }
2079
2080         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2081                 e1000_leave_82542_rst(adapter);
2082
2083         return 0;
2084 }
2085
2086 /**
2087  * e1000_set_multi - Multicast and Promiscuous mode set
2088  * @netdev: network interface device structure
2089  *
2090  * The set_multi entry point is called whenever the multicast address
2091  * list or the network interface flags are updated.  This routine is
2092  * responsible for configuring the hardware for proper multicast,
2093  * promiscuous mode, and all-multi behavior.
2094  **/
2095
2096 static void
2097 e1000_set_multi(struct net_device *netdev)
2098 {
2099         struct e1000_adapter *adapter = netdev_priv(netdev);
2100         struct e1000_hw *hw = &adapter->hw;
2101         struct dev_mc_list *mc_ptr;
2102         uint32_t rctl;
2103         uint32_t hash_value;
2104         int i, rar_entries = E1000_RAR_ENTRIES;
2105
2106         /* reserve RAR[14] for LAA over-write work-around */
2107         if (adapter->hw.mac_type == e1000_82571)
2108                 rar_entries--;
2109
2110         /* Check for Promiscuous and All Multicast modes */
2111
2112         rctl = E1000_READ_REG(hw, RCTL);
2113
2114         if (netdev->flags & IFF_PROMISC) {
2115                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2116         } else if (netdev->flags & IFF_ALLMULTI) {
2117                 rctl |= E1000_RCTL_MPE;
2118                 rctl &= ~E1000_RCTL_UPE;
2119         } else {
2120                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2121         }
2122
2123         E1000_WRITE_REG(hw, RCTL, rctl);
2124
2125         /* 82542 2.0 needs to be in reset to write receive address registers */
2126
2127         if (hw->mac_type == e1000_82542_rev2_0)
2128                 e1000_enter_82542_rst(adapter);
2129
2130         /* load the first 14 multicast address into the exact filters 1-14
2131          * RAR 0 is used for the station MAC adddress
2132          * if there are not 14 addresses, go ahead and clear the filters
2133          * -- with 82571 controllers only 0-13 entries are filled here
2134          */
2135         mc_ptr = netdev->mc_list;
2136
2137         for (i = 1; i < rar_entries; i++) {
2138                 if (mc_ptr) {
2139                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2140                         mc_ptr = mc_ptr->next;
2141                 } else {
2142                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2143                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2144                 }
2145         }
2146
2147         /* clear the old settings from the multicast hash table */
2148
2149         for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2150                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2151
2152         /* load any remaining addresses into the hash table */
2153
2154         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2155                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2156                 e1000_mta_set(hw, hash_value);
2157         }
2158
2159         if (hw->mac_type == e1000_82542_rev2_0)
2160                 e1000_leave_82542_rst(adapter);
2161 }
2162
2163 /* Need to wait a few seconds after link up to get diagnostic information from
2164  * the phy */
2165
2166 static void
2167 e1000_update_phy_info(unsigned long data)
2168 {
2169         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2170         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2171 }
2172
2173 /**
2174  * e1000_82547_tx_fifo_stall - Timer Call-back
2175  * @data: pointer to adapter cast into an unsigned long
2176  **/
2177
2178 static void
2179 e1000_82547_tx_fifo_stall(unsigned long data)
2180 {
2181         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2182         struct net_device *netdev = adapter->netdev;
2183         uint32_t tctl;
2184
2185         if (atomic_read(&adapter->tx_fifo_stall)) {
2186                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2187                     E1000_READ_REG(&adapter->hw, TDH)) &&
2188                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2189                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2190                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2191                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2192                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2193                         E1000_WRITE_REG(&adapter->hw, TCTL,
2194                                         tctl & ~E1000_TCTL_EN);
2195                         E1000_WRITE_REG(&adapter->hw, TDFT,
2196                                         adapter->tx_head_addr);
2197                         E1000_WRITE_REG(&adapter->hw, TDFH,
2198                                         adapter->tx_head_addr);
2199                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2200                                         adapter->tx_head_addr);
2201                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2202                                         adapter->tx_head_addr);
2203                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2204                         E1000_WRITE_FLUSH(&adapter->hw);
2205
2206                         adapter->tx_fifo_head = 0;
2207                         atomic_set(&adapter->tx_fifo_stall, 0);
2208                         netif_wake_queue(netdev);
2209                 } else {
2210                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2211                 }
2212         }
2213 }
2214
2215 /**
2216  * e1000_watchdog - Timer Call-back
2217  * @data: pointer to adapter cast into an unsigned long
2218  **/
2219 static void
2220 e1000_watchdog(unsigned long data)
2221 {
2222         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2223
2224         /* Do the rest outside of interrupt context */
2225         schedule_work(&adapter->watchdog_task);
2226 }
2227
2228 static void
2229 e1000_watchdog_task(struct e1000_adapter *adapter)
2230 {
2231         struct net_device *netdev = adapter->netdev;
2232         struct e1000_tx_ring *txdr = adapter->tx_ring;
2233         uint32_t link, tctl;
2234
2235         e1000_check_for_link(&adapter->hw);
2236         if (adapter->hw.mac_type == e1000_82573) {
2237                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2238                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2239                         e1000_update_mng_vlan(adapter);
2240         }
2241
2242         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2243            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2244                 link = !adapter->hw.serdes_link_down;
2245         else
2246                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2247
2248         if (link) {
2249                 if (!netif_carrier_ok(netdev)) {
2250                         e1000_get_speed_and_duplex(&adapter->hw,
2251                                                    &adapter->link_speed,
2252                                                    &adapter->link_duplex);
2253
2254                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2255                                adapter->link_speed,
2256                                adapter->link_duplex == FULL_DUPLEX ?
2257                                "Full Duplex" : "Half Duplex");
2258
2259                         /* tweak tx_queue_len according to speed/duplex
2260                          * and adjust the timeout factor */
2261                         netdev->tx_queue_len = adapter->tx_queue_len;
2262                         adapter->tx_timeout_factor = 1;
2263                         adapter->txb2b = 1;
2264                         switch (adapter->link_speed) {
2265                         case SPEED_10:
2266                                 adapter->txb2b = 0;
2267                                 netdev->tx_queue_len = 10;
2268                                 adapter->tx_timeout_factor = 8;
2269                                 break;
2270                         case SPEED_100:
2271                                 adapter->txb2b = 0;
2272                                 netdev->tx_queue_len = 100;
2273                                 /* maybe add some timeout factor ? */
2274                                 break;
2275                         }
2276
2277                         if ((adapter->hw.mac_type == e1000_82571 || 
2278                              adapter->hw.mac_type == e1000_82572) &&
2279                             adapter->txb2b == 0) {
2280 #define SPEED_MODE_BIT (1 << 21)
2281                                 uint32_t tarc0;
2282                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2283                                 tarc0 &= ~SPEED_MODE_BIT;
2284                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2285                         }
2286                                 
2287 #ifdef NETIF_F_TSO
2288                         /* disable TSO for pcie and 10/100 speeds, to avoid
2289                          * some hardware issues */
2290                         if (!adapter->tso_force &&
2291                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2292                                 switch (adapter->link_speed) {
2293                                 case SPEED_10:
2294                                 case SPEED_100:
2295                                         DPRINTK(PROBE,INFO,
2296                                         "10/100 speed: disabling TSO\n");
2297                                         netdev->features &= ~NETIF_F_TSO;
2298                                         break;
2299                                 case SPEED_1000:
2300                                         netdev->features |= NETIF_F_TSO;
2301                                         break;
2302                                 default:
2303                                         /* oops */
2304                                         break;
2305                                 }
2306                         }
2307 #endif
2308
2309                         /* enable transmits in the hardware, need to do this
2310                          * after setting TARC0 */
2311                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2312                         tctl |= E1000_TCTL_EN;
2313                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2314
2315                         netif_carrier_on(netdev);
2316                         netif_wake_queue(netdev);
2317                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2318                         adapter->smartspeed = 0;
2319                 }
2320         } else {
2321                 if (netif_carrier_ok(netdev)) {
2322                         adapter->link_speed = 0;
2323                         adapter->link_duplex = 0;
2324                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2325                         netif_carrier_off(netdev);
2326                         netif_stop_queue(netdev);
2327                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2328
2329                         /* 80003ES2LAN workaround--
2330                          * For packet buffer work-around on link down event;
2331                          * disable receives in the ISR and
2332                          * reset device here in the watchdog
2333                          */
2334                         if (adapter->hw.mac_type == e1000_80003es2lan) {
2335                                 /* reset device */
2336                                 schedule_work(&adapter->reset_task);
2337                         }
2338                 }
2339
2340                 e1000_smartspeed(adapter);
2341         }
2342
2343         e1000_update_stats(adapter);
2344
2345         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2346         adapter->tpt_old = adapter->stats.tpt;
2347         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2348         adapter->colc_old = adapter->stats.colc;
2349
2350         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2351         adapter->gorcl_old = adapter->stats.gorcl;
2352         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2353         adapter->gotcl_old = adapter->stats.gotcl;
2354
2355         e1000_update_adaptive(&adapter->hw);
2356
2357         if (!netif_carrier_ok(netdev)) {
2358                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2359                         /* We've lost link, so the controller stops DMA,
2360                          * but we've got queued Tx work that's never going
2361                          * to get done, so reset controller to flush Tx.
2362                          * (Do the reset outside of interrupt context). */
2363                         adapter->tx_timeout_count++;
2364                         schedule_work(&adapter->reset_task);
2365                 }
2366         }
2367
2368         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2369         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2370                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2371                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2372                  * else is between 2000-8000. */
2373                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2374                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2375                         adapter->gotcl - adapter->gorcl :
2376                         adapter->gorcl - adapter->gotcl) / 10000;
2377                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2378                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2379         }
2380
2381         /* Cause software interrupt to ensure rx ring is cleaned */
2382         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2383
2384         /* Force detection of hung controller every watchdog period */
2385         adapter->detect_tx_hung = TRUE;
2386
2387         /* With 82571 controllers, LAA may be overwritten due to controller
2388          * reset from the other port. Set the appropriate LAA in RAR[0] */
2389         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2390                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2391
2392         /* Reset the timer */
2393         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2394 }
2395
2396 #define E1000_TX_FLAGS_CSUM             0x00000001
2397 #define E1000_TX_FLAGS_VLAN             0x00000002
2398 #define E1000_TX_FLAGS_TSO              0x00000004
2399 #define E1000_TX_FLAGS_IPV4             0x00000008
2400 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2401 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2402
2403 static inline int
2404 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2405           struct sk_buff *skb)
2406 {
2407 #ifdef NETIF_F_TSO
2408         struct e1000_context_desc *context_desc;
2409         struct e1000_buffer *buffer_info;
2410         unsigned int i;
2411         uint32_t cmd_length = 0;
2412         uint16_t ipcse = 0, tucse, mss;
2413         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2414         int err;
2415
2416         if (skb_shinfo(skb)->tso_size) {
2417                 if (skb_header_cloned(skb)) {
2418                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2419                         if (err)
2420                                 return err;
2421                 }
2422
2423                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2424                 mss = skb_shinfo(skb)->tso_size;
2425                 if (skb->protocol == ntohs(ETH_P_IP)) {
2426                         skb->nh.iph->tot_len = 0;
2427                         skb->nh.iph->check = 0;
2428                         skb->h.th->check =
2429                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2430                                                    skb->nh.iph->daddr,
2431                                                    0,
2432                                                    IPPROTO_TCP,
2433                                                    0);
2434                         cmd_length = E1000_TXD_CMD_IP;
2435                         ipcse = skb->h.raw - skb->data - 1;
2436 #ifdef NETIF_F_TSO_IPV6
2437                 } else if (skb->protocol == ntohs(ETH_P_IPV6)) {
2438                         skb->nh.ipv6h->payload_len = 0;
2439                         skb->h.th->check =
2440                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2441                                                  &skb->nh.ipv6h->daddr,
2442                                                  0,
2443                                                  IPPROTO_TCP,
2444                                                  0);
2445                         ipcse = 0;
2446 #endif
2447                 }
2448                 ipcss = skb->nh.raw - skb->data;
2449                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2450                 tucss = skb->h.raw - skb->data;
2451                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2452                 tucse = 0;
2453
2454                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2455                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2456
2457                 i = tx_ring->next_to_use;
2458                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2459                 buffer_info = &tx_ring->buffer_info[i];
2460
2461                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2462                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2463                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2464                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2465                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2466                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2467                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2468                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2469                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2470
2471                 buffer_info->time_stamp = jiffies;
2472
2473                 if (++i == tx_ring->count) i = 0;
2474                 tx_ring->next_to_use = i;
2475
2476                 return TRUE;
2477         }
2478 #endif
2479
2480         return FALSE;
2481 }
2482
2483 static inline boolean_t
2484 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2485               struct sk_buff *skb)
2486 {
2487         struct e1000_context_desc *context_desc;
2488         struct e1000_buffer *buffer_info;
2489         unsigned int i;
2490         uint8_t css;
2491
2492         if (likely(skb->ip_summed == CHECKSUM_HW)) {
2493                 css = skb->h.raw - skb->data;
2494
2495                 i = tx_ring->next_to_use;
2496                 buffer_info = &tx_ring->buffer_info[i];
2497                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2498
2499                 context_desc->upper_setup.tcp_fields.tucss = css;
2500                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2501                 context_desc->upper_setup.tcp_fields.tucse = 0;
2502                 context_desc->tcp_seg_setup.data = 0;
2503                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2504
2505                 buffer_info->time_stamp = jiffies;
2506
2507                 if (unlikely(++i == tx_ring->count)) i = 0;
2508                 tx_ring->next_to_use = i;
2509
2510                 return TRUE;
2511         }
2512
2513         return FALSE;
2514 }
2515
2516 #define E1000_MAX_TXD_PWR       12
2517 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2518
2519 static inline int
2520 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2521              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2522              unsigned int nr_frags, unsigned int mss)
2523 {
2524         struct e1000_buffer *buffer_info;
2525         unsigned int len = skb->len;
2526         unsigned int offset = 0, size, count = 0, i;
2527         unsigned int f;
2528         len -= skb->data_len;
2529
2530         i = tx_ring->next_to_use;
2531
2532         while (len) {
2533                 buffer_info = &tx_ring->buffer_info[i];
2534                 size = min(len, max_per_txd);
2535 #ifdef NETIF_F_TSO
2536                 /* Workaround for Controller erratum --
2537                  * descriptor for non-tso packet in a linear SKB that follows a
2538                  * tso gets written back prematurely before the data is fully
2539                  * DMA'd to the controller */
2540                 if (!skb->data_len && tx_ring->last_tx_tso &&
2541                     !skb_shinfo(skb)->tso_size) {
2542                         tx_ring->last_tx_tso = 0;
2543                         size -= 4;
2544                 }
2545
2546                 /* Workaround for premature desc write-backs
2547                  * in TSO mode.  Append 4-byte sentinel desc */
2548                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2549                         size -= 4;
2550 #endif
2551                 /* work-around for errata 10 and it applies
2552                  * to all controllers in PCI-X mode
2553                  * The fix is to make sure that the first descriptor of a
2554                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2555                  */
2556                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2557                                 (size > 2015) && count == 0))
2558                         size = 2015;
2559
2560                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2561                  * terminating buffers within evenly-aligned dwords. */
2562                 if (unlikely(adapter->pcix_82544 &&
2563                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2564                    size > 4))
2565                         size -= 4;
2566
2567                 buffer_info->length = size;
2568                 buffer_info->dma =
2569                         pci_map_single(adapter->pdev,
2570                                 skb->data + offset,
2571                                 size,
2572                                 PCI_DMA_TODEVICE);
2573                 buffer_info->time_stamp = jiffies;
2574
2575                 len -= size;
2576                 offset += size;
2577                 count++;
2578                 if (unlikely(++i == tx_ring->count)) i = 0;
2579         }
2580
2581         for (f = 0; f < nr_frags; f++) {
2582                 struct skb_frag_struct *frag;
2583
2584                 frag = &skb_shinfo(skb)->frags[f];
2585                 len = frag->size;
2586                 offset = frag->page_offset;
2587
2588                 while (len) {
2589                         buffer_info = &tx_ring->buffer_info[i];
2590                         size = min(len, max_per_txd);
2591 #ifdef NETIF_F_TSO
2592                         /* Workaround for premature desc write-backs
2593                          * in TSO mode.  Append 4-byte sentinel desc */
2594                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2595                                 size -= 4;
2596 #endif
2597                         /* Workaround for potential 82544 hang in PCI-X.
2598                          * Avoid terminating buffers within evenly-aligned
2599                          * dwords. */
2600                         if (unlikely(adapter->pcix_82544 &&
2601                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2602                            size > 4))
2603                                 size -= 4;
2604
2605                         buffer_info->length = size;
2606                         buffer_info->dma =
2607                                 pci_map_page(adapter->pdev,
2608                                         frag->page,
2609                                         offset,
2610                                         size,
2611                                         PCI_DMA_TODEVICE);
2612                         buffer_info->time_stamp = jiffies;
2613
2614                         len -= size;
2615                         offset += size;
2616                         count++;
2617                         if (unlikely(++i == tx_ring->count)) i = 0;
2618                 }
2619         }
2620
2621         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2622         tx_ring->buffer_info[i].skb = skb;
2623         tx_ring->buffer_info[first].next_to_watch = i;
2624
2625         return count;
2626 }
2627
2628 static inline void
2629 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2630                int tx_flags, int count)
2631 {
2632         struct e1000_tx_desc *tx_desc = NULL;
2633         struct e1000_buffer *buffer_info;
2634         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2635         unsigned int i;
2636
2637         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2638                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2639                              E1000_TXD_CMD_TSE;
2640                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2641
2642                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2643                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2644         }
2645
2646         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2647                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2648                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2649         }
2650
2651         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2652                 txd_lower |= E1000_TXD_CMD_VLE;
2653                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2654         }
2655
2656         i = tx_ring->next_to_use;
2657
2658         while (count--) {
2659                 buffer_info = &tx_ring->buffer_info[i];
2660                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2661                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2662                 tx_desc->lower.data =
2663                         cpu_to_le32(txd_lower | buffer_info->length);
2664                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2665                 if (unlikely(++i == tx_ring->count)) i = 0;
2666         }
2667
2668         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2669
2670         /* Force memory writes to complete before letting h/w
2671          * know there are new descriptors to fetch.  (Only
2672          * applicable for weak-ordered memory model archs,
2673          * such as IA-64). */
2674         wmb();
2675
2676         tx_ring->next_to_use = i;
2677         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2678 }
2679
2680 /**
2681  * 82547 workaround to avoid controller hang in half-duplex environment.
2682  * The workaround is to avoid queuing a large packet that would span
2683  * the internal Tx FIFO ring boundary by notifying the stack to resend
2684  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2685  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2686  * to the beginning of the Tx FIFO.
2687  **/
2688
2689 #define E1000_FIFO_HDR                  0x10
2690 #define E1000_82547_PAD_LEN             0x3E0
2691
2692 static inline int
2693 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2694 {
2695         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2696         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2697
2698         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2699
2700         if (adapter->link_duplex != HALF_DUPLEX)
2701                 goto no_fifo_stall_required;
2702
2703         if (atomic_read(&adapter->tx_fifo_stall))
2704                 return 1;
2705
2706         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2707                 atomic_set(&adapter->tx_fifo_stall, 1);
2708                 return 1;
2709         }
2710
2711 no_fifo_stall_required:
2712         adapter->tx_fifo_head += skb_fifo_len;
2713         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2714                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2715         return 0;
2716 }
2717
2718 #define MINIMUM_DHCP_PACKET_SIZE 282
2719 static inline int
2720 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2721 {
2722         struct e1000_hw *hw =  &adapter->hw;
2723         uint16_t length, offset;
2724         if (vlan_tx_tag_present(skb)) {
2725                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2726                         ( adapter->hw.mng_cookie.status &
2727                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2728                         return 0;
2729         }
2730         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2731                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2732                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2733                         const struct iphdr *ip =
2734                                 (struct iphdr *)((uint8_t *)skb->data+14);
2735                         if (IPPROTO_UDP == ip->protocol) {
2736                                 struct udphdr *udp =
2737                                         (struct udphdr *)((uint8_t *)ip +
2738                                                 (ip->ihl << 2));
2739                                 if (ntohs(udp->dest) == 67) {
2740                                         offset = (uint8_t *)udp + 8 - skb->data;
2741                                         length = skb->len - offset;
2742
2743                                         return e1000_mng_write_dhcp_info(hw,
2744                                                         (uint8_t *)udp + 8,
2745                                                         length);
2746                                 }
2747                         }
2748                 }
2749         }
2750         return 0;
2751 }
2752
2753 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2754 static int
2755 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2756 {
2757         struct e1000_adapter *adapter = netdev_priv(netdev);
2758         struct e1000_tx_ring *tx_ring;
2759         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2760         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2761         unsigned int tx_flags = 0;
2762         unsigned int len = skb->len;
2763         unsigned long flags;
2764         unsigned int nr_frags = 0;
2765         unsigned int mss = 0;
2766         int count = 0;
2767         int tso;
2768         unsigned int f;
2769         len -= skb->data_len;
2770
2771         tx_ring = adapter->tx_ring;
2772
2773         if (unlikely(skb->len <= 0)) {
2774                 dev_kfree_skb_any(skb);
2775                 return NETDEV_TX_OK;
2776         }
2777
2778 #ifdef NETIF_F_TSO
2779         mss = skb_shinfo(skb)->tso_size;
2780         /* The controller does a simple calculation to 
2781          * make sure there is enough room in the FIFO before
2782          * initiating the DMA for each buffer.  The calc is:
2783          * 4 = ceil(buffer len/mss).  To make sure we don't
2784          * overrun the FIFO, adjust the max buffer len if mss
2785          * drops. */
2786         if (mss) {
2787                 uint8_t hdr_len;
2788                 max_per_txd = min(mss << 2, max_per_txd);
2789                 max_txd_pwr = fls(max_per_txd) - 1;
2790
2791         /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2792          * points to just header, pull a few bytes of payload from
2793          * frags into skb->data */
2794                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2795                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2796                         switch (adapter->hw.mac_type) {
2797                                 unsigned int pull_size;
2798                         case e1000_82571:
2799                         case e1000_82572:
2800                         case e1000_82573:
2801                                 pull_size = min((unsigned int)4, skb->data_len);
2802                                 if (!__pskb_pull_tail(skb, pull_size)) {
2803                                         printk(KERN_ERR 
2804                                                 "__pskb_pull_tail failed.\n");
2805                                         dev_kfree_skb_any(skb);
2806                                         return NETDEV_TX_OK;
2807                                 }
2808                                 len = skb->len - skb->data_len;
2809                                 break;
2810                         default:
2811                                 /* do nothing */
2812                                 break;
2813                         }
2814                 }
2815         }
2816
2817         /* reserve a descriptor for the offload context */
2818         if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2819                 count++;
2820         count++;
2821 #else
2822         if (skb->ip_summed == CHECKSUM_HW)
2823                 count++;
2824 #endif
2825
2826 #ifdef NETIF_F_TSO
2827         /* Controller Erratum workaround */
2828         if (!skb->data_len && tx_ring->last_tx_tso &&
2829             !skb_shinfo(skb)->tso_size)
2830                 count++;
2831 #endif
2832
2833         count += TXD_USE_COUNT(len, max_txd_pwr);
2834
2835         if (adapter->pcix_82544)
2836                 count++;
2837
2838         /* work-around for errata 10 and it applies to all controllers
2839          * in PCI-X mode, so add one more descriptor to the count
2840          */
2841         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2842                         (len > 2015)))
2843                 count++;
2844
2845         nr_frags = skb_shinfo(skb)->nr_frags;
2846         for (f = 0; f < nr_frags; f++)
2847                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2848                                        max_txd_pwr);
2849         if (adapter->pcix_82544)
2850                 count += nr_frags;
2851
2852
2853         if (adapter->hw.tx_pkt_filtering &&
2854             (adapter->hw.mac_type == e1000_82573))
2855                 e1000_transfer_dhcp_info(adapter, skb);
2856
2857         local_irq_save(flags);
2858         if (!spin_trylock(&tx_ring->tx_lock)) {
2859                 /* Collision - tell upper layer to requeue */
2860                 local_irq_restore(flags);
2861                 return NETDEV_TX_LOCKED;
2862         }
2863
2864         /* need: count + 2 desc gap to keep tail from touching
2865          * head, otherwise try next time */
2866         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2867                 netif_stop_queue(netdev);
2868                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2869                 return NETDEV_TX_BUSY;
2870         }
2871
2872         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
2873                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2874                         netif_stop_queue(netdev);
2875                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2876                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2877                         return NETDEV_TX_BUSY;
2878                 }
2879         }
2880
2881         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2882                 tx_flags |= E1000_TX_FLAGS_VLAN;
2883                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2884         }
2885
2886         first = tx_ring->next_to_use;
2887
2888         tso = e1000_tso(adapter, tx_ring, skb);
2889         if (tso < 0) {
2890                 dev_kfree_skb_any(skb);
2891                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2892                 return NETDEV_TX_OK;
2893         }
2894
2895         if (likely(tso)) {
2896                 tx_ring->last_tx_tso = 1;
2897                 tx_flags |= E1000_TX_FLAGS_TSO;
2898         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
2899                 tx_flags |= E1000_TX_FLAGS_CSUM;
2900
2901         /* Old method was to assume IPv4 packet by default if TSO was enabled.
2902          * 82571 hardware supports TSO capabilities for IPv6 as well...
2903          * no longer assume, we must. */
2904         if (likely(skb->protocol == ntohs(ETH_P_IP)))
2905                 tx_flags |= E1000_TX_FLAGS_IPV4;
2906
2907         e1000_tx_queue(adapter, tx_ring, tx_flags,
2908                        e1000_tx_map(adapter, tx_ring, skb, first,
2909                                     max_per_txd, nr_frags, mss));
2910
2911         netdev->trans_start = jiffies;
2912
2913         /* Make sure there is space in the ring for the next send. */
2914         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
2915                 netif_stop_queue(netdev);
2916
2917         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2918         return NETDEV_TX_OK;
2919 }
2920
2921 /**
2922  * e1000_tx_timeout - Respond to a Tx Hang
2923  * @netdev: network interface device structure
2924  **/
2925
2926 static void
2927 e1000_tx_timeout(struct net_device *netdev)
2928 {
2929         struct e1000_adapter *adapter = netdev_priv(netdev);
2930
2931         /* Do the reset outside of interrupt context */
2932         adapter->tx_timeout_count++;
2933         schedule_work(&adapter->reset_task);
2934 }
2935
2936 static void
2937 e1000_reset_task(struct net_device *netdev)
2938 {
2939         struct e1000_adapter *adapter = netdev_priv(netdev);
2940
2941         e1000_down(adapter);
2942         e1000_up(adapter);
2943 }
2944
2945 /**
2946  * e1000_get_stats - Get System Network Statistics
2947  * @netdev: network interface device structure
2948  *
2949  * Returns the address of the device statistics structure.
2950  * The statistics are actually updated from the timer callback.
2951  **/
2952
2953 static struct net_device_stats *
2954 e1000_get_stats(struct net_device *netdev)
2955 {
2956         struct e1000_adapter *adapter = netdev_priv(netdev);
2957
2958         /* only return the current stats */
2959         return &adapter->net_stats;
2960 }
2961
2962 /**
2963  * e1000_change_mtu - Change the Maximum Transfer Unit
2964  * @netdev: network interface device structure
2965  * @new_mtu: new value for maximum frame size
2966  *
2967  * Returns 0 on success, negative on failure
2968  **/
2969
2970 static int
2971 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2972 {
2973         struct e1000_adapter *adapter = netdev_priv(netdev);
2974         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2975         uint16_t eeprom_data = 0;
2976
2977         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2978             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2979                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2980                 return -EINVAL;
2981         }
2982
2983         /* Adapter-specific max frame size limits. */
2984         switch (adapter->hw.mac_type) {
2985         case e1000_82542_rev2_0:
2986         case e1000_82542_rev2_1:
2987                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2988                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
2989                         return -EINVAL;
2990                 }
2991                 break;
2992         case e1000_82573:
2993                 /* only enable jumbo frames if ASPM is disabled completely
2994                  * this means both bits must be zero in 0x1A bits 3:2 */
2995                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
2996                                   &eeprom_data);
2997                 if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
2998                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2999                                 DPRINTK(PROBE, ERR,
3000                                         "Jumbo Frames not supported.\n");
3001                                 return -EINVAL;
3002                         }
3003                         break;
3004                 }
3005                 /* fall through to get support */
3006         case e1000_82571:
3007         case e1000_82572:
3008         case e1000_80003es2lan:
3009 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3010                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3011                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3012                         return -EINVAL;
3013                 }
3014                 break;
3015         default:
3016                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3017                 break;
3018         }
3019
3020
3021         if (adapter->hw.mac_type > e1000_82547_rev_2) {
3022                 adapter->rx_buffer_len = max_frame;
3023                 E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
3024         } else {
3025                 if(unlikely((adapter->hw.mac_type < e1000_82543) &&
3026                    (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
3027                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
3028                                             "on 82542\n");
3029                         return -EINVAL;
3030                 } else {
3031                         if(max_frame <= E1000_RXBUFFER_2048)
3032                                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3033                         else if(max_frame <= E1000_RXBUFFER_4096)
3034                                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3035                         else if(max_frame <= E1000_RXBUFFER_8192)
3036                                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3037                         else if(max_frame <= E1000_RXBUFFER_16384)
3038                                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3039                 }
3040         }
3041
3042         netdev->mtu = new_mtu;
3043
3044         if (netif_running(netdev)) {
3045                 e1000_down(adapter);
3046                 e1000_up(adapter);
3047         }
3048
3049         adapter->hw.max_frame_size = max_frame;
3050
3051         return 0;
3052 }
3053
3054 /**
3055  * e1000_update_stats - Update the board statistics counters
3056  * @adapter: board private structure
3057  **/
3058
3059 void
3060 e1000_update_stats(struct e1000_adapter *adapter)
3061 {
3062         struct e1000_hw *hw = &adapter->hw;
3063         unsigned long flags;
3064         uint16_t phy_tmp;
3065
3066 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3067
3068         spin_lock_irqsave(&adapter->stats_lock, flags);
3069
3070         /* these counters are modified from e1000_adjust_tbi_stats,
3071          * called from the interrupt context, so they must only
3072          * be written while holding adapter->stats_lock
3073          */
3074
3075         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3076         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3077         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3078         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3079         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3080         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3081         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3082         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3083         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3084         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3085         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3086         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3087         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3088
3089         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3090         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3091         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3092         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3093         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3094         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3095         adapter->stats.dc += E1000_READ_REG(hw, DC);
3096         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3097         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3098         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3099         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3100         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3101         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3102         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3103         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3104         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3105         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3106         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3107         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3108         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3109         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3110         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3111         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3112         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3113         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3114         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3115         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3116         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3117         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3118         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3119         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3120         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3121         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3122         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3123
3124         /* used for adaptive IFS */
3125
3126         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3127         adapter->stats.tpt += hw->tx_packet_delta;
3128         hw->collision_delta = E1000_READ_REG(hw, COLC);
3129         adapter->stats.colc += hw->collision_delta;
3130
3131         if (hw->mac_type >= e1000_82543) {
3132                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3133                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3134                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3135                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3136                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3137                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3138         }
3139         if (hw->mac_type > e1000_82547_rev_2) {
3140                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3141                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3142                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3143                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3144                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3145                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3146                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3147                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3148                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3149         }
3150
3151         /* Fill out the OS statistics structure */
3152
3153         adapter->net_stats.rx_packets = adapter->stats.gprc;
3154         adapter->net_stats.tx_packets = adapter->stats.gptc;
3155         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3156         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3157         adapter->net_stats.multicast = adapter->stats.mprc;
3158         adapter->net_stats.collisions = adapter->stats.colc;
3159
3160         /* Rx Errors */
3161
3162         /* RLEC on some newer hardware can be incorrect so build
3163         * our own version based on RUC and ROC */
3164         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3165                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3166                 adapter->stats.ruc + adapter->stats.roc +
3167                 adapter->stats.cexterr;
3168         adapter->net_stats.rx_dropped = 0;
3169         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3170                                               adapter->stats.roc;
3171         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3172         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3173         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3174
3175         /* Tx Errors */
3176
3177         adapter->net_stats.tx_errors = adapter->stats.ecol +
3178                                        adapter->stats.latecol;
3179         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3180         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3181         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3182
3183         /* Tx Dropped needs to be maintained elsewhere */
3184
3185         /* Phy Stats */
3186
3187         if (hw->media_type == e1000_media_type_copper) {
3188                 if ((adapter->link_speed == SPEED_1000) &&
3189                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3190                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3191                         adapter->phy_stats.idle_errors += phy_tmp;
3192                 }
3193
3194                 if ((hw->mac_type <= e1000_82546) &&
3195                    (hw->phy_type == e1000_phy_m88) &&
3196                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3197                         adapter->phy_stats.receive_errors += phy_tmp;
3198         }
3199
3200         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3201 }
3202
3203 /**
3204  * e1000_intr - Interrupt Handler
3205  * @irq: interrupt number
3206  * @data: pointer to a network interface device structure
3207  * @pt_regs: CPU registers structure
3208  **/
3209
3210 static irqreturn_t
3211 e1000_intr(int irq, void *data, struct pt_regs *regs)
3212 {
3213         struct net_device *netdev = data;
3214         struct e1000_adapter *adapter = netdev_priv(netdev);
3215         struct e1000_hw *hw = &adapter->hw;
3216         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3217 #ifndef CONFIG_E1000_NAPI
3218         int i;
3219 #else
3220         /* Interrupt Auto-Mask...upon reading ICR,
3221          * interrupts are masked.  No need for the
3222          * IMC write, but it does mean we should
3223          * account for it ASAP. */
3224         if (likely(hw->mac_type >= e1000_82571))
3225                 atomic_inc(&adapter->irq_sem);
3226 #endif
3227
3228         if (unlikely(!icr)) {
3229 #ifdef CONFIG_E1000_NAPI
3230                 if (hw->mac_type >= e1000_82571)
3231                         e1000_irq_enable(adapter);
3232 #endif
3233                 return IRQ_NONE;  /* Not our interrupt */
3234         }
3235
3236         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3237                 hw->get_link_status = 1;
3238                 /* 80003ES2LAN workaround--
3239                  * For packet buffer work-around on link down event;
3240                  * disable receives here in the ISR and
3241                  * reset adapter in watchdog
3242                  */
3243                 if (netif_carrier_ok(netdev) &&
3244                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3245                         /* disable receives */
3246                         rctl = E1000_READ_REG(hw, RCTL);
3247                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3248                 }
3249                 mod_timer(&adapter->watchdog_timer, jiffies);
3250         }
3251
3252 #ifdef CONFIG_E1000_NAPI
3253         if (unlikely(hw->mac_type < e1000_82571)) {
3254                 atomic_inc(&adapter->irq_sem);
3255                 E1000_WRITE_REG(hw, IMC, ~0);
3256                 E1000_WRITE_FLUSH(hw);
3257         }
3258         if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3259                 __netif_rx_schedule(&adapter->polling_netdev[0]);
3260         else
3261                 e1000_irq_enable(adapter);
3262 #else
3263         /* Writing IMC and IMS is needed for 82547.
3264          * Due to Hub Link bus being occupied, an interrupt
3265          * de-assertion message is not able to be sent.
3266          * When an interrupt assertion message is generated later,
3267          * two messages are re-ordered and sent out.
3268          * That causes APIC to think 82547 is in de-assertion
3269          * state, while 82547 is in assertion state, resulting
3270          * in dead lock. Writing IMC forces 82547 into
3271          * de-assertion state.
3272          */
3273         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3274                 atomic_inc(&adapter->irq_sem);
3275                 E1000_WRITE_REG(hw, IMC, ~0);
3276         }
3277
3278         for (i = 0; i < E1000_MAX_INTR; i++)
3279                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3280                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3281                         break;
3282
3283         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3284                 e1000_irq_enable(adapter);
3285
3286 #endif
3287
3288         return IRQ_HANDLED;
3289 }
3290
3291 #ifdef CONFIG_E1000_NAPI
3292 /**
3293  * e1000_clean - NAPI Rx polling callback
3294  * @adapter: board private structure
3295  **/
3296
3297 static int
3298 e1000_clean(struct net_device *poll_dev, int *budget)
3299 {
3300         struct e1000_adapter *adapter;
3301         int work_to_do = min(*budget, poll_dev->quota);
3302         int tx_cleaned = 0, i = 0, work_done = 0;
3303
3304         /* Must NOT use netdev_priv macro here. */
3305         adapter = poll_dev->priv;
3306
3307         /* Keep link state information with original netdev */
3308         if (!netif_carrier_ok(adapter->netdev))
3309                 goto quit_polling;
3310
3311         while (poll_dev != &adapter->polling_netdev[i]) {
3312                 i++;
3313                 BUG_ON(i == adapter->num_rx_queues);
3314         }
3315
3316         if (likely(adapter->num_tx_queues == 1)) {
3317                 /* e1000_clean is called per-cpu.  This lock protects
3318                  * tx_ring[0] from being cleaned by multiple cpus
3319                  * simultaneously.  A failure obtaining the lock means
3320                  * tx_ring[0] is currently being cleaned anyway. */
3321                 if (spin_trylock(&adapter->tx_queue_lock)) {
3322                         tx_cleaned = e1000_clean_tx_irq(adapter,
3323                                                         &adapter->tx_ring[0]);
3324                         spin_unlock(&adapter->tx_queue_lock);
3325                 }
3326         } else
3327                 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3328
3329         adapter->clean_rx(adapter, &adapter->rx_ring[i],
3330                           &work_done, work_to_do);
3331
3332         *budget -= work_done;
3333         poll_dev->quota -= work_done;
3334
3335         /* If no Tx and not enough Rx work done, exit the polling mode */
3336         if ((!tx_cleaned && (work_done == 0)) ||
3337            !netif_running(adapter->netdev)) {
3338 quit_polling:
3339                 netif_rx_complete(poll_dev);
3340                 e1000_irq_enable(adapter);
3341                 return 0;
3342         }
3343
3344         return 1;
3345 }
3346
3347 #endif
3348 /**
3349  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3350  * @adapter: board private structure
3351  **/
3352
3353 static boolean_t
3354 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3355                    struct e1000_tx_ring *tx_ring)
3356 {
3357         struct net_device *netdev = adapter->netdev;
3358         struct e1000_tx_desc *tx_desc, *eop_desc;
3359         struct e1000_buffer *buffer_info;
3360         unsigned int i, eop;
3361 #ifdef CONFIG_E1000_NAPI
3362         unsigned int count = 0;
3363 #endif
3364         boolean_t cleaned = FALSE;
3365
3366         i = tx_ring->next_to_clean;
3367         eop = tx_ring->buffer_info[i].next_to_watch;
3368         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3369
3370         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3371                 for (cleaned = FALSE; !cleaned; ) {
3372                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3373                         buffer_info = &tx_ring->buffer_info[i];
3374                         cleaned = (i == eop);
3375
3376                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3377                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3378
3379                         if (unlikely(++i == tx_ring->count)) i = 0;
3380                 }
3381
3382
3383                 eop = tx_ring->buffer_info[i].next_to_watch;
3384                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3385 #ifdef CONFIG_E1000_NAPI
3386 #define E1000_TX_WEIGHT 64
3387                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3388                 if (count++ == E1000_TX_WEIGHT) break;
3389 #endif
3390         }
3391
3392         tx_ring->next_to_clean = i;
3393
3394         spin_lock(&tx_ring->tx_lock);
3395
3396         if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3397                     netif_carrier_ok(netdev)))
3398                 netif_wake_queue(netdev);
3399
3400         spin_unlock(&tx_ring->tx_lock);
3401
3402         if (adapter->detect_tx_hung) {
3403                 /* Detect a transmit hang in hardware, this serializes the
3404                  * check with the clearing of time_stamp and movement of i */
3405                 adapter->detect_tx_hung = FALSE;
3406                 if (tx_ring->buffer_info[eop].dma &&
3407                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3408                                (adapter->tx_timeout_factor * HZ))
3409                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3410                          E1000_STATUS_TXOFF)) {
3411
3412                         /* detected Tx unit hang */
3413                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3414                                         "  Tx Queue             <%lu>\n"
3415                                         "  TDH                  <%x>\n"
3416                                         "  TDT                  <%x>\n"
3417                                         "  next_to_use          <%x>\n"
3418                                         "  next_to_clean        <%x>\n"
3419                                         "buffer_info[next_to_clean]\n"
3420                                         "  time_stamp           <%lx>\n"
3421                                         "  next_to_watch        <%x>\n"
3422                                         "  jiffies              <%lx>\n"
3423                                         "  next_to_watch.status <%x>\n",
3424                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3425                                         sizeof(struct e1000_tx_ring)),
3426                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3427                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3428                                 tx_ring->next_to_use,
3429                                 tx_ring->next_to_clean,
3430                                 tx_ring->buffer_info[eop].time_stamp,
3431                                 eop,
3432                                 jiffies,
3433                                 eop_desc->upper.fields.status);
3434                         netif_stop_queue(netdev);
3435                 }
3436         }
3437         return cleaned;
3438 }
3439
3440 /**
3441  * e1000_rx_checksum - Receive Checksum Offload for 82543
3442  * @adapter:     board private structure
3443  * @status_err:  receive descriptor status and error fields
3444  * @csum:        receive descriptor csum field
3445  * @sk_buff:     socket buffer with received data
3446  **/
3447
3448 static inline void
3449 e1000_rx_checksum(struct e1000_adapter *adapter,
3450                   uint32_t status_err, uint32_t csum,
3451                   struct sk_buff *skb)
3452 {
3453         uint16_t status = (uint16_t)status_err;
3454         uint8_t errors = (uint8_t)(status_err >> 24);
3455         skb->ip_summed = CHECKSUM_NONE;
3456
3457         /* 82543 or newer only */
3458         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3459         /* Ignore Checksum bit is set */
3460         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3461         /* TCP/UDP checksum error bit is set */
3462         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3463                 /* let the stack verify checksum errors */
3464                 adapter->hw_csum_err++;
3465                 return;
3466         }
3467         /* TCP/UDP Checksum has not been calculated */
3468         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3469                 if (!(status & E1000_RXD_STAT_TCPCS))
3470                         return;
3471         } else {
3472                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3473                         return;
3474         }
3475         /* It must be a TCP or UDP packet with a valid checksum */
3476         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3477                 /* TCP checksum is good */
3478                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3479         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3480                 /* IP fragment with UDP payload */
3481                 /* Hardware complements the payload checksum, so we undo it
3482                  * and then put the value in host order for further stack use.
3483                  */
3484                 csum = ntohl(csum ^ 0xFFFF);
3485                 skb->csum = csum;
3486                 skb->ip_summed = CHECKSUM_HW;
3487         }
3488         adapter->hw_csum_good++;
3489 }
3490
3491 /**
3492  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3493  * @adapter: board private structure
3494  **/
3495
3496 static boolean_t
3497 #ifdef CONFIG_E1000_NAPI
3498 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3499                    struct e1000_rx_ring *rx_ring,
3500                    int *work_done, int work_to_do)
3501 #else
3502 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3503                    struct e1000_rx_ring *rx_ring)
3504 #endif
3505 {
3506         struct net_device *netdev = adapter->netdev;
3507         struct pci_dev *pdev = adapter->pdev;
3508         struct e1000_rx_desc *rx_desc, *next_rxd;
3509         struct e1000_buffer *buffer_info, *next_buffer;
3510         unsigned long flags;
3511         uint32_t length;
3512         uint8_t last_byte;
3513         unsigned int i;
3514         int cleaned_count = 0;
3515         boolean_t cleaned = FALSE;
3516
3517         i = rx_ring->next_to_clean;
3518         rx_desc = E1000_RX_DESC(*rx_ring, i);
3519         buffer_info = &rx_ring->buffer_info[i];
3520
3521         while (rx_desc->status & E1000_RXD_STAT_DD) {
3522                 struct sk_buff *skb;
3523                 u8 status;
3524 #ifdef CONFIG_E1000_NAPI
3525                 if (*work_done >= work_to_do)
3526                         break;
3527                 (*work_done)++;
3528 #endif
3529                 status = rx_desc->status;
3530                 skb = buffer_info->skb;
3531                 buffer_info->skb = NULL;
3532
3533                 prefetch(skb->data - NET_IP_ALIGN);
3534
3535                 if (++i == rx_ring->count) i = 0;
3536                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3537                 prefetch(next_rxd);
3538
3539                 next_buffer = &rx_ring->buffer_info[i];
3540
3541                 cleaned = TRUE;
3542                 cleaned_count++;
3543                 pci_unmap_single(pdev,
3544                                  buffer_info->dma,
3545                                  buffer_info->length,
3546                                  PCI_DMA_FROMDEVICE);
3547
3548                 length = le16_to_cpu(rx_desc->length);
3549
3550                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3551                         /* All receives must fit into a single buffer */
3552                         E1000_DBG("%s: Receive packet consumed multiple"
3553                                   " buffers\n", netdev->name);
3554                         dev_kfree_skb_irq(skb);
3555                         goto next_desc;
3556                 }
3557
3558                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3559                         last_byte = *(skb->data + length - 1);
3560                         if (TBI_ACCEPT(&adapter->hw, status,
3561                                       rx_desc->errors, length, last_byte)) {
3562                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3563                                 e1000_tbi_adjust_stats(&adapter->hw,
3564                                                        &adapter->stats,
3565                                                        length, skb->data);
3566                                 spin_unlock_irqrestore(&adapter->stats_lock,
3567                                                        flags);
3568                                 length--;
3569                         } else {
3570                                 dev_kfree_skb_irq(skb);
3571                                 goto next_desc;
3572                         }
3573                 }
3574
3575                 /* code added for copybreak, this should improve
3576                  * performance for small packets with large amounts
3577                  * of reassembly being done in the stack */
3578 #define E1000_CB_LENGTH 256
3579                 if (length < E1000_CB_LENGTH) {
3580                         struct sk_buff *new_skb =
3581                             dev_alloc_skb(length + NET_IP_ALIGN);
3582                         if (new_skb) {
3583                                 skb_reserve(new_skb, NET_IP_ALIGN);
3584                                 new_skb->dev = netdev;
3585                                 memcpy(new_skb->data - NET_IP_ALIGN,
3586                                        skb->data - NET_IP_ALIGN,
3587                                        length + NET_IP_ALIGN);
3588                                 /* save the skb in buffer_info as good */
3589                                 buffer_info->skb = skb;
3590                                 skb = new_skb;
3591                                 skb_put(skb, length);
3592                         }
3593                 } else
3594                         skb_put(skb, length);
3595
3596                 /* end copybreak code */
3597
3598                 /* Receive Checksum Offload */
3599                 e1000_rx_checksum(adapter,
3600                                   (uint32_t)(status) |
3601                                   ((uint32_t)(rx_desc->errors) << 24),
3602                                   le16_to_cpu(rx_desc->csum), skb);
3603
3604                 skb->protocol = eth_type_trans(skb, netdev);
3605 #ifdef CONFIG_E1000_NAPI
3606                 if (unlikely(adapter->vlgrp &&
3607                             (status & E1000_RXD_STAT_VP))) {
3608                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3609                                                  le16_to_cpu(rx_desc->special) &
3610                                                  E1000_RXD_SPC_VLAN_MASK);
3611                 } else {
3612                         netif_receive_skb(skb);
3613                 }
3614 #else /* CONFIG_E1000_NAPI */
3615                 if (unlikely(adapter->vlgrp &&
3616                             (status & E1000_RXD_STAT_VP))) {
3617                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3618                                         le16_to_cpu(rx_desc->special) &
3619                                         E1000_RXD_SPC_VLAN_MASK);
3620                 } else {
3621                         netif_rx(skb);
3622                 }
3623 #endif /* CONFIG_E1000_NAPI */
3624                 netdev->last_rx = jiffies;
3625
3626 next_desc:
3627                 rx_desc->status = 0;
3628
3629                 /* return some buffers to hardware, one at a time is too slow */
3630                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3631                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3632                         cleaned_count = 0;
3633                 }
3634
3635                 /* use prefetched values */
3636                 rx_desc = next_rxd;
3637                 buffer_info = next_buffer;
3638         }
3639         rx_ring->next_to_clean = i;
3640
3641         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3642         if (cleaned_count)
3643                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3644
3645         return cleaned;
3646 }
3647
3648 /**
3649  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3650  * @adapter: board private structure
3651  **/
3652
3653 static boolean_t
3654 #ifdef CONFIG_E1000_NAPI
3655 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3656                       struct e1000_rx_ring *rx_ring,
3657                       int *work_done, int work_to_do)
3658 #else
3659 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3660                       struct e1000_rx_ring *rx_ring)
3661 #endif
3662 {
3663         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3664         struct net_device *netdev = adapter->netdev;
3665         struct pci_dev *pdev = adapter->pdev;
3666         struct e1000_buffer *buffer_info, *next_buffer;
3667         struct e1000_ps_page *ps_page;
3668         struct e1000_ps_page_dma *ps_page_dma;
3669         struct sk_buff *skb;
3670         unsigned int i, j;
3671         uint32_t length, staterr;
3672         int cleaned_count = 0;
3673         boolean_t cleaned = FALSE;
3674
3675         i = rx_ring->next_to_clean;
3676         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3677         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3678
3679         while (staterr & E1000_RXD_STAT_DD) {
3680                 buffer_info = &rx_ring->buffer_info[i];
3681                 ps_page = &rx_ring->ps_page[i];
3682                 ps_page_dma = &rx_ring->ps_page_dma[i];
3683 #ifdef CONFIG_E1000_NAPI
3684                 if (unlikely(*work_done >= work_to_do))
3685                         break;
3686                 (*work_done)++;
3687 #endif
3688                 skb = buffer_info->skb;
3689
3690                 /* in the packet split case this is header only */
3691                 prefetch(skb->data - NET_IP_ALIGN);
3692
3693                 if (++i == rx_ring->count) i = 0;
3694                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3695                 prefetch(next_rxd);
3696
3697                 next_buffer = &rx_ring->buffer_info[i];
3698
3699                 cleaned = TRUE;
3700                 cleaned_count++;
3701                 pci_unmap_single(pdev, buffer_info->dma,
3702                                  buffer_info->length,
3703                                  PCI_DMA_FROMDEVICE);
3704
3705                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3706                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3707                                   " the full packet\n", netdev->name);
3708                         dev_kfree_skb_irq(skb);
3709                         goto next_desc;
3710                 }
3711
3712                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3713                         dev_kfree_skb_irq(skb);
3714                         goto next_desc;
3715                 }
3716
3717                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3718
3719                 if (unlikely(!length)) {
3720                         E1000_DBG("%s: Last part of the packet spanning"
3721                                   " multiple descriptors\n", netdev->name);
3722                         dev_kfree_skb_irq(skb);
3723                         goto next_desc;
3724                 }
3725
3726                 /* Good Receive */
3727                 skb_put(skb, length);
3728
3729                 {
3730                 /* this looks ugly, but it seems compiler issues make it
3731                    more efficient than reusing j */
3732                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3733
3734                 /* page alloc/put takes too long and effects small packet
3735                  * throughput, so unsplit small packets and save the alloc/put*/
3736                 if (l1 && ((length + l1) < E1000_CB_LENGTH)) {
3737                         u8 *vaddr;
3738                         /* there is no documentation about how to call 
3739                          * kmap_atomic, so we can't hold the mapping
3740                          * very long */
3741                         pci_dma_sync_single_for_cpu(pdev,
3742                                 ps_page_dma->ps_page_dma[0],
3743                                 PAGE_SIZE,
3744                                 PCI_DMA_FROMDEVICE);
3745                         vaddr = kmap_atomic(ps_page->ps_page[0],
3746                                             KM_SKB_DATA_SOFTIRQ);
3747                         memcpy(skb->tail, vaddr, l1);
3748                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3749                         pci_dma_sync_single_for_device(pdev,
3750                                 ps_page_dma->ps_page_dma[0],
3751                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3752                         skb_put(skb, l1);
3753                         length += l1;
3754                         goto copydone;
3755                 } /* if */
3756                 }
3757                 
3758                 for (j = 0; j < adapter->rx_ps_pages; j++) {
3759                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3760                                 break;
3761                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3762                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3763                         ps_page_dma->ps_page_dma[j] = 0;
3764                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3765                                            length);
3766                         ps_page->ps_page[j] = NULL;
3767                         skb->len += length;
3768                         skb->data_len += length;
3769                         skb->truesize += length;
3770                 }
3771
3772 copydone:
3773                 e1000_rx_checksum(adapter, staterr,
3774                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
3775                 skb->protocol = eth_type_trans(skb, netdev);
3776
3777                 if (likely(rx_desc->wb.upper.header_status &
3778                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
3779                         adapter->rx_hdr_split++;
3780 #ifdef CONFIG_E1000_NAPI
3781                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3782                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3783                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3784                                 E1000_RXD_SPC_VLAN_MASK);
3785                 } else {
3786                         netif_receive_skb(skb);
3787                 }
3788 #else /* CONFIG_E1000_NAPI */
3789                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3790                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3791                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3792                                 E1000_RXD_SPC_VLAN_MASK);
3793                 } else {
3794                         netif_rx(skb);
3795                 }
3796 #endif /* CONFIG_E1000_NAPI */
3797                 netdev->last_rx = jiffies;
3798
3799 next_desc:
3800                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
3801                 buffer_info->skb = NULL;
3802
3803                 /* return some buffers to hardware, one at a time is too slow */
3804                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3805                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3806                         cleaned_count = 0;
3807                 }
3808
3809                 /* use prefetched values */
3810                 rx_desc = next_rxd;
3811                 buffer_info = next_buffer;
3812
3813                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3814         }
3815         rx_ring->next_to_clean = i;
3816
3817         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3818         if (cleaned_count)
3819                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3820
3821         return cleaned;
3822 }
3823
3824 /**
3825  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3826  * @adapter: address of board private structure
3827  **/
3828
3829 static void
3830 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3831                        struct e1000_rx_ring *rx_ring,
3832                        int cleaned_count)
3833 {
3834         struct net_device *netdev = adapter->netdev;
3835         struct pci_dev *pdev = adapter->pdev;
3836         struct e1000_rx_desc *rx_desc;
3837         struct e1000_buffer *buffer_info;
3838         struct sk_buff *skb;
3839         unsigned int i;
3840         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3841
3842         i = rx_ring->next_to_use;
3843         buffer_info = &rx_ring->buffer_info[i];
3844
3845         while (cleaned_count--) {
3846                 if (!(skb = buffer_info->skb))
3847                         skb = dev_alloc_skb(bufsz);
3848                 else {
3849                         skb_trim(skb, 0);
3850                         goto map_skb;
3851                 }
3852
3853                 if (unlikely(!skb)) {
3854                         /* Better luck next round */
3855                         adapter->alloc_rx_buff_failed++;
3856                         break;
3857                 }
3858
3859                 /* Fix for errata 23, can't cross 64kB boundary */
3860                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3861                         struct sk_buff *oldskb = skb;
3862                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3863                                              "at %p\n", bufsz, skb->data);
3864                         /* Try again, without freeing the previous */
3865                         skb = dev_alloc_skb(bufsz);
3866                         /* Failed allocation, critical failure */
3867                         if (!skb) {
3868                                 dev_kfree_skb(oldskb);
3869                                 break;
3870                         }
3871
3872                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3873                                 /* give up */
3874                                 dev_kfree_skb(skb);
3875                                 dev_kfree_skb(oldskb);
3876                                 break; /* while !buffer_info->skb */
3877                         } else {
3878                                 /* Use new allocation */
3879                                 dev_kfree_skb(oldskb);
3880                         }
3881                 }
3882                 /* Make buffer alignment 2 beyond a 16 byte boundary
3883                  * this will result in a 16 byte aligned IP header after
3884                  * the 14 byte MAC header is removed
3885                  */
3886                 skb_reserve(skb, NET_IP_ALIGN);
3887
3888                 skb->dev = netdev;
3889
3890                 buffer_info->skb = skb;
3891                 buffer_info->length = adapter->rx_buffer_len;
3892 map_skb:
3893                 buffer_info->dma = pci_map_single(pdev,
3894                                                   skb->data,
3895                                                   adapter->rx_buffer_len,
3896                                                   PCI_DMA_FROMDEVICE);
3897
3898                 /* Fix for errata 23, can't cross 64kB boundary */
3899                 if (!e1000_check_64k_bound(adapter,
3900                                         (void *)(unsigned long)buffer_info->dma,
3901                                         adapter->rx_buffer_len)) {
3902                         DPRINTK(RX_ERR, ERR,
3903                                 "dma align check failed: %u bytes at %p\n",
3904                                 adapter->rx_buffer_len,
3905                                 (void *)(unsigned long)buffer_info->dma);
3906                         dev_kfree_skb(skb);
3907                         buffer_info->skb = NULL;
3908
3909                         pci_unmap_single(pdev, buffer_info->dma,
3910                                          adapter->rx_buffer_len,
3911                                          PCI_DMA_FROMDEVICE);
3912
3913                         break; /* while !buffer_info->skb */
3914                 }
3915                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3916                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3917
3918                 if (unlikely(++i == rx_ring->count))
3919                         i = 0;
3920                 buffer_info = &rx_ring->buffer_info[i];
3921         }
3922
3923         if (likely(rx_ring->next_to_use != i)) {
3924                 rx_ring->next_to_use = i;
3925                 if (unlikely(i-- == 0))
3926                         i = (rx_ring->count - 1);
3927
3928                 /* Force memory writes to complete before letting h/w
3929                  * know there are new descriptors to fetch.  (Only
3930                  * applicable for weak-ordered memory model archs,
3931                  * such as IA-64). */
3932                 wmb();
3933                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
3934         }
3935 }
3936
3937 /**
3938  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3939  * @adapter: address of board private structure
3940  **/
3941
3942 static void
3943 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
3944                           struct e1000_rx_ring *rx_ring,
3945                           int cleaned_count)
3946 {
3947         struct net_device *netdev = adapter->netdev;
3948         struct pci_dev *pdev = adapter->pdev;
3949         union e1000_rx_desc_packet_split *rx_desc;
3950         struct e1000_buffer *buffer_info;
3951         struct e1000_ps_page *ps_page;
3952         struct e1000_ps_page_dma *ps_page_dma;
3953         struct sk_buff *skb;
3954         unsigned int i, j;
3955
3956         i = rx_ring->next_to_use;
3957         buffer_info = &rx_ring->buffer_info[i];
3958         ps_page = &rx_ring->ps_page[i];
3959         ps_page_dma = &rx_ring->ps_page_dma[i];
3960
3961         while (cleaned_count--) {
3962                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3963
3964                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
3965                         if (j < adapter->rx_ps_pages) {
3966                                 if (likely(!ps_page->ps_page[j])) {
3967                                         ps_page->ps_page[j] =
3968                                                 alloc_page(GFP_ATOMIC);
3969                                         if (unlikely(!ps_page->ps_page[j])) {
3970                                                 adapter->alloc_rx_buff_failed++;
3971                                                 goto no_buffers;
3972                                         }
3973                                         ps_page_dma->ps_page_dma[j] =
3974                                                 pci_map_page(pdev,
3975                                                             ps_page->ps_page[j],
3976                                                             0, PAGE_SIZE,
3977                                                             PCI_DMA_FROMDEVICE);
3978                                 }
3979                                 /* Refresh the desc even if buffer_addrs didn't
3980                                  * change because each write-back erases
3981                                  * this info.
3982                                  */
3983                                 rx_desc->read.buffer_addr[j+1] =
3984                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3985                         } else
3986                                 rx_desc->read.buffer_addr[j+1] = ~0;
3987                 }
3988
3989                 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3990
3991                 if (unlikely(!skb)) {
3992                         adapter->alloc_rx_buff_failed++;
3993                         break;
3994                 }
3995
3996                 /* Make buffer alignment 2 beyond a 16 byte boundary
3997                  * this will result in a 16 byte aligned IP header after
3998                  * the 14 byte MAC header is removed
3999                  */
4000                 skb_reserve(skb, NET_IP_ALIGN);
4001
4002                 skb->dev = netdev;
4003
4004                 buffer_info->skb = skb;
4005                 buffer_info->length = adapter->rx_ps_bsize0;
4006                 buffer_info->dma = pci_map_single(pdev, skb->data,
4007                                                   adapter->rx_ps_bsize0,
4008                                                   PCI_DMA_FROMDEVICE);
4009
4010                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4011
4012                 if (unlikely(++i == rx_ring->count)) i = 0;
4013                 buffer_info = &rx_ring->buffer_info[i];
4014                 ps_page = &rx_ring->ps_page[i];
4015                 ps_page_dma = &rx_ring->ps_page_dma[i];
4016         }
4017
4018 no_buffers:
4019         if (likely(rx_ring->next_to_use != i)) {
4020                 rx_ring->next_to_use = i;
4021                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4022
4023                 /* Force memory writes to complete before letting h/w
4024                  * know there are new descriptors to fetch.  (Only
4025                  * applicable for weak-ordered memory model archs,
4026                  * such as IA-64). */
4027                 wmb();
4028                 /* Hardware increments by 16 bytes, but packet split
4029                  * descriptors are 32 bytes...so we increment tail
4030                  * twice as much.
4031                  */
4032                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4033         }
4034 }
4035
4036 /**
4037  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4038  * @adapter:
4039  **/
4040
4041 static void
4042 e1000_smartspeed(struct e1000_adapter *adapter)
4043 {
4044         uint16_t phy_status;
4045         uint16_t phy_ctrl;
4046
4047         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4048            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4049                 return;
4050
4051         if (adapter->smartspeed == 0) {
4052                 /* If Master/Slave config fault is asserted twice,
4053                  * we assume back-to-back */
4054                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4055                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4056                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4057                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4058                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4059                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4060                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4061                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4062                                             phy_ctrl);
4063                         adapter->smartspeed++;
4064                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4065                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4066                                                &phy_ctrl)) {
4067                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4068                                              MII_CR_RESTART_AUTO_NEG);
4069                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4070                                                     phy_ctrl);
4071                         }
4072                 }
4073                 return;
4074         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4075                 /* If still no link, perhaps using 2/3 pair cable */
4076                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4077                 phy_ctrl |= CR_1000T_MS_ENABLE;
4078                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4079                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4080                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4081                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4082                                      MII_CR_RESTART_AUTO_NEG);
4083                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4084                 }
4085         }
4086         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4087         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4088                 adapter->smartspeed = 0;
4089 }
4090
4091 /**
4092  * e1000_ioctl -
4093  * @netdev:
4094  * @ifreq:
4095  * @cmd:
4096  **/
4097
4098 static int
4099 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4100 {
4101         switch (cmd) {
4102         case SIOCGMIIPHY:
4103         case SIOCGMIIREG:
4104         case SIOCSMIIREG:
4105                 return e1000_mii_ioctl(netdev, ifr, cmd);
4106         default:
4107                 return -EOPNOTSUPP;
4108         }
4109 }
4110
4111 /**
4112  * e1000_mii_ioctl -
4113  * @netdev:
4114  * @ifreq:
4115  * @cmd:
4116  **/
4117
4118 static int
4119 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4120 {
4121         struct e1000_adapter *adapter = netdev_priv(netdev);
4122         struct mii_ioctl_data *data = if_mii(ifr);
4123         int retval;
4124         uint16_t mii_reg;
4125         uint16_t spddplx;
4126         unsigned long flags;
4127
4128         if (adapter->hw.media_type != e1000_media_type_copper)
4129                 return -EOPNOTSUPP;
4130
4131         switch (cmd) {
4132         case SIOCGMIIPHY:
4133                 data->phy_id = adapter->hw.phy_addr;
4134                 break;
4135         case SIOCGMIIREG:
4136                 if (!capable(CAP_NET_ADMIN))
4137                         return -EPERM;
4138                 spin_lock_irqsave(&adapter->stats_lock, flags);
4139                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4140                                    &data->val_out)) {
4141                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4142                         return -EIO;
4143                 }
4144                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4145                 break;
4146         case SIOCSMIIREG:
4147                 if (!capable(CAP_NET_ADMIN))
4148                         return -EPERM;
4149                 if (data->reg_num & ~(0x1F))
4150                         return -EFAULT;
4151                 mii_reg = data->val_in;
4152                 spin_lock_irqsave(&adapter->stats_lock, flags);
4153                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4154                                         mii_reg)) {
4155                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4156                         return -EIO;
4157                 }
4158                 if (adapter->hw.phy_type == e1000_media_type_copper) {
4159                         switch (data->reg_num) {
4160                         case PHY_CTRL:
4161                                 if (mii_reg & MII_CR_POWER_DOWN)
4162                                         break;
4163                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4164                                         adapter->hw.autoneg = 1;
4165                                         adapter->hw.autoneg_advertised = 0x2F;
4166                                 } else {
4167                                         if (mii_reg & 0x40)
4168                                                 spddplx = SPEED_1000;
4169                                         else if (mii_reg & 0x2000)
4170                                                 spddplx = SPEED_100;
4171                                         else
4172                                                 spddplx = SPEED_10;
4173                                         spddplx += (mii_reg & 0x100)
4174                                                    ? DUPLEX_FULL :
4175                                                    DUPLEX_HALF;
4176                                         retval = e1000_set_spd_dplx(adapter,
4177                                                                     spddplx);
4178                                         if (retval) {
4179                                                 spin_unlock_irqrestore(
4180                                                         &adapter->stats_lock,
4181                                                         flags);
4182                                                 return retval;
4183                                         }
4184                                 }
4185                                 if (netif_running(adapter->netdev)) {
4186                                         e1000_down(adapter);
4187                                         e1000_up(adapter);
4188                                 } else
4189                                         e1000_reset(adapter);
4190                                 break;
4191                         case M88E1000_PHY_SPEC_CTRL:
4192                         case M88E1000_EXT_PHY_SPEC_CTRL:
4193                                 if (e1000_phy_reset(&adapter->hw)) {
4194                                         spin_unlock_irqrestore(
4195                                                 &adapter->stats_lock, flags);
4196                                         return -EIO;
4197                                 }
4198                                 break;
4199                         }
4200                 } else {
4201                         switch (data->reg_num) {
4202                         case PHY_CTRL:
4203                                 if (mii_reg & MII_CR_POWER_DOWN)
4204                                         break;
4205                                 if (netif_running(adapter->netdev)) {
4206                                         e1000_down(adapter);
4207                                         e1000_up(adapter);
4208                                 } else
4209                                         e1000_reset(adapter);
4210                                 break;
4211                         }
4212                 }
4213                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4214                 break;
4215         default:
4216                 return -EOPNOTSUPP;
4217         }
4218         return E1000_SUCCESS;
4219 }
4220
4221 void
4222 e1000_pci_set_mwi(struct e1000_hw *hw)
4223 {
4224         struct e1000_adapter *adapter = hw->back;
4225         int ret_val = pci_set_mwi(adapter->pdev);
4226
4227         if (ret_val)
4228                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4229 }
4230
4231 void
4232 e1000_pci_clear_mwi(struct e1000_hw *hw)
4233 {
4234         struct e1000_adapter *adapter = hw->back;
4235
4236         pci_clear_mwi(adapter->pdev);
4237 }
4238
4239 void
4240 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4241 {
4242         struct e1000_adapter *adapter = hw->back;
4243
4244         pci_read_config_word(adapter->pdev, reg, value);
4245 }
4246
4247 void
4248 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4249 {
4250         struct e1000_adapter *adapter = hw->back;
4251
4252         pci_write_config_word(adapter->pdev, reg, *value);
4253 }
4254
4255 uint32_t
4256 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4257 {
4258         return inl(port);
4259 }
4260
4261 void
4262 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4263 {
4264         outl(value, port);
4265 }
4266
4267 static void
4268 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4269 {
4270         struct e1000_adapter *adapter = netdev_priv(netdev);
4271         uint32_t ctrl, rctl;
4272
4273         e1000_irq_disable(adapter);
4274         adapter->vlgrp = grp;
4275
4276         if (grp) {
4277                 /* enable VLAN tag insert/strip */
4278                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4279                 ctrl |= E1000_CTRL_VME;
4280                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4281
4282                 /* enable VLAN receive filtering */
4283                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4284                 rctl |= E1000_RCTL_VFE;
4285                 rctl &= ~E1000_RCTL_CFIEN;
4286                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4287                 e1000_update_mng_vlan(adapter);
4288         } else {
4289                 /* disable VLAN tag insert/strip */
4290                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4291                 ctrl &= ~E1000_CTRL_VME;
4292                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4293
4294                 /* disable VLAN filtering */
4295                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4296                 rctl &= ~E1000_RCTL_VFE;
4297                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4298                 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4299                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4300                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4301                 }
4302         }
4303
4304         e1000_irq_enable(adapter);
4305 }
4306
4307 static void
4308 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4309 {
4310         struct e1000_adapter *adapter = netdev_priv(netdev);
4311         uint32_t vfta, index;
4312
4313         if ((adapter->hw.mng_cookie.status &
4314              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4315             (vid == adapter->mng_vlan_id))
4316                 return;
4317         /* add VID to filter table */
4318         index = (vid >> 5) & 0x7F;
4319         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4320         vfta |= (1 << (vid & 0x1F));
4321         e1000_write_vfta(&adapter->hw, index, vfta);
4322 }
4323
4324 static void
4325 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4326 {
4327         struct e1000_adapter *adapter = netdev_priv(netdev);
4328         uint32_t vfta, index;
4329
4330         e1000_irq_disable(adapter);
4331
4332         if (adapter->vlgrp)
4333                 adapter->vlgrp->vlan_devices[vid] = NULL;
4334
4335         e1000_irq_enable(adapter);
4336
4337         if ((adapter->hw.mng_cookie.status &
4338              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4339             (vid == adapter->mng_vlan_id)) {
4340                 /* release control to f/w */
4341                 e1000_release_hw_control(adapter);
4342                 return;
4343         }
4344
4345         /* remove VID from filter table */
4346         index = (vid >> 5) & 0x7F;
4347         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4348         vfta &= ~(1 << (vid & 0x1F));
4349         e1000_write_vfta(&adapter->hw, index, vfta);
4350 }
4351
4352 static void
4353 e1000_restore_vlan(struct e1000_adapter *adapter)
4354 {
4355         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4356
4357         if (adapter->vlgrp) {
4358                 uint16_t vid;
4359                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4360                         if (!adapter->vlgrp->vlan_devices[vid])
4361                                 continue;
4362                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4363                 }
4364         }
4365 }
4366
4367 int
4368 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4369 {
4370         adapter->hw.autoneg = 0;
4371
4372         /* Fiber NICs only allow 1000 gbps Full duplex */
4373         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4374                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4375                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4376                 return -EINVAL;
4377         }
4378
4379         switch (spddplx) {
4380         case SPEED_10 + DUPLEX_HALF:
4381                 adapter->hw.forced_speed_duplex = e1000_10_half;
4382                 break;
4383         case SPEED_10 + DUPLEX_FULL:
4384                 adapter->hw.forced_speed_duplex = e1000_10_full;
4385                 break;
4386         case SPEED_100 + DUPLEX_HALF:
4387                 adapter->hw.forced_speed_duplex = e1000_100_half;
4388                 break;
4389         case SPEED_100 + DUPLEX_FULL:
4390                 adapter->hw.forced_speed_duplex = e1000_100_full;
4391                 break;
4392         case SPEED_1000 + DUPLEX_FULL:
4393                 adapter->hw.autoneg = 1;
4394                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4395                 break;
4396         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4397         default:
4398                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4399                 return -EINVAL;
4400         }
4401         return 0;
4402 }
4403
4404 #ifdef CONFIG_PM
4405 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4406  * bus we're on (PCI(X) vs. PCI-E)
4407  */
4408 #define PCIE_CONFIG_SPACE_LEN 256
4409 #define PCI_CONFIG_SPACE_LEN 64
4410 static int
4411 e1000_pci_save_state(struct e1000_adapter *adapter)
4412 {
4413         struct pci_dev *dev = adapter->pdev;
4414         int size;
4415         int i;
4416
4417         if (adapter->hw.mac_type >= e1000_82571)
4418                 size = PCIE_CONFIG_SPACE_LEN;
4419         else
4420                 size = PCI_CONFIG_SPACE_LEN;
4421
4422         WARN_ON(adapter->config_space != NULL);
4423
4424         adapter->config_space = kmalloc(size, GFP_KERNEL);
4425         if (!adapter->config_space) {
4426                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4427                 return -ENOMEM;
4428         }
4429         for (i = 0; i < (size / 4); i++)
4430                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4431         return 0;
4432 }
4433
4434 static void
4435 e1000_pci_restore_state(struct e1000_adapter *adapter)
4436 {
4437         struct pci_dev *dev = adapter->pdev;
4438         int size;
4439         int i;
4440
4441         if (adapter->config_space == NULL)
4442                 return;
4443
4444         if (adapter->hw.mac_type >= e1000_82571)
4445                 size = PCIE_CONFIG_SPACE_LEN;
4446         else
4447                 size = PCI_CONFIG_SPACE_LEN;
4448         for (i = 0; i < (size / 4); i++)
4449                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4450         kfree(adapter->config_space);
4451         adapter->config_space = NULL;
4452         return;
4453 }
4454 #endif /* CONFIG_PM */
4455
4456 static int
4457 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4458 {
4459         struct net_device *netdev = pci_get_drvdata(pdev);
4460         struct e1000_adapter *adapter = netdev_priv(netdev);
4461         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4462         uint32_t wufc = adapter->wol;
4463         int retval = 0;
4464
4465         netif_device_detach(netdev);
4466
4467         if (netif_running(netdev))
4468                 e1000_down(adapter);
4469
4470 #ifdef CONFIG_PM
4471         /* Implement our own version of pci_save_state(pdev) because pci-
4472          * express adapters have 256-byte config spaces. */
4473         retval = e1000_pci_save_state(adapter);
4474         if (retval)
4475                 return retval;
4476 #endif
4477
4478         status = E1000_READ_REG(&adapter->hw, STATUS);
4479         if (status & E1000_STATUS_LU)
4480                 wufc &= ~E1000_WUFC_LNKC;
4481
4482         if (wufc) {
4483                 e1000_setup_rctl(adapter);
4484                 e1000_set_multi(netdev);
4485
4486                 /* turn on all-multi mode if wake on multicast is enabled */
4487                 if (adapter->wol & E1000_WUFC_MC) {
4488                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4489                         rctl |= E1000_RCTL_MPE;
4490                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4491                 }
4492
4493                 if (adapter->hw.mac_type >= e1000_82540) {
4494                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4495                         /* advertise wake from D3Cold */
4496                         #define E1000_CTRL_ADVD3WUC 0x00100000
4497                         /* phy power management enable */
4498                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4499                         ctrl |= E1000_CTRL_ADVD3WUC |
4500                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4501                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4502                 }
4503
4504                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4505                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4506                         /* keep the laser running in D3 */
4507                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4508                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4509                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4510                 }
4511
4512                 /* Allow time for pending master requests to run */
4513                 e1000_disable_pciex_master(&adapter->hw);
4514
4515                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4516                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4517                 retval = pci_enable_wake(pdev, PCI_D3hot, 1);
4518                 if (retval)
4519                         DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4520                 retval = pci_enable_wake(pdev, PCI_D3cold, 1);
4521                 if (retval)
4522                         DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4523         } else {
4524                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4525                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4526                 retval = pci_enable_wake(pdev, PCI_D3hot, 0);
4527                 if (retval)
4528                         DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4529                 retval = pci_enable_wake(pdev, PCI_D3cold, 0);
4530                 if (retval)
4531                         DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4532         }
4533
4534         if (adapter->hw.mac_type >= e1000_82540 &&
4535            adapter->hw.media_type == e1000_media_type_copper) {
4536                 manc = E1000_READ_REG(&adapter->hw, MANC);
4537                 if (manc & E1000_MANC_SMBUS_EN) {
4538                         manc |= E1000_MANC_ARP_EN;
4539                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4540                         retval = pci_enable_wake(pdev, PCI_D3hot, 1);
4541                         if (retval)
4542                                 DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4543                         retval = pci_enable_wake(pdev, PCI_D3cold, 1);
4544                         if (retval)
4545                                 DPRINTK(PROBE, ERR,
4546                                         "Error enabling D3 cold wake\n");
4547                 }
4548         }
4549
4550         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4551          * would have already happened in close and is redundant. */
4552         e1000_release_hw_control(adapter);
4553
4554         pci_disable_device(pdev);
4555
4556         retval = pci_set_power_state(pdev, pci_choose_state(pdev, state));
4557         if (retval)
4558                 DPRINTK(PROBE, ERR, "Error in setting power state\n");
4559
4560         return 0;
4561 }
4562
4563 #ifdef CONFIG_PM
4564 static int
4565 e1000_resume(struct pci_dev *pdev)
4566 {
4567         struct net_device *netdev = pci_get_drvdata(pdev);
4568         struct e1000_adapter *adapter = netdev_priv(netdev);
4569         int retval;
4570         uint32_t manc, ret_val;
4571
4572         retval = pci_set_power_state(pdev, PCI_D0);
4573         if (retval)
4574                 DPRINTK(PROBE, ERR, "Error in setting power state\n");
4575         e1000_pci_restore_state(adapter);
4576         ret_val = pci_enable_device(pdev);
4577         pci_set_master(pdev);
4578
4579         retval = pci_enable_wake(pdev, PCI_D3hot, 0);
4580         if (retval)
4581                 DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4582         retval = pci_enable_wake(pdev, PCI_D3cold, 0);
4583         if (retval)
4584                 DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4585
4586         e1000_reset(adapter);
4587         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4588
4589         if (netif_running(netdev))
4590                 e1000_up(adapter);
4591
4592         netif_device_attach(netdev);
4593
4594         if (adapter->hw.mac_type >= e1000_82540 &&
4595            adapter->hw.media_type == e1000_media_type_copper) {
4596                 manc = E1000_READ_REG(&adapter->hw, MANC);
4597                 manc &= ~(E1000_MANC_ARP_EN);
4598                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4599         }
4600
4601         /* If the controller is 82573 and f/w is AMT, do not set
4602          * DRV_LOAD until the interface is up.  For all other cases,
4603          * let the f/w know that the h/w is now under the control
4604          * of the driver. */
4605         if (adapter->hw.mac_type != e1000_82573 ||
4606             !e1000_check_mng_mode(&adapter->hw))
4607                 e1000_get_hw_control(adapter);
4608
4609         return 0;
4610 }
4611 #endif
4612
4613 static void e1000_shutdown(struct pci_dev *pdev)
4614 {
4615         e1000_suspend(pdev, PMSG_SUSPEND);
4616 }
4617
4618 #ifdef CONFIG_NET_POLL_CONTROLLER
4619 /*
4620  * Polling 'interrupt' - used by things like netconsole to send skbs
4621  * without having to re-enable interrupts. It's not called while
4622  * the interrupt routine is executing.
4623  */
4624 static void
4625 e1000_netpoll(struct net_device *netdev)
4626 {
4627         struct e1000_adapter *adapter = netdev_priv(netdev);
4628         disable_irq(adapter->pdev->irq);
4629         e1000_intr(adapter->pdev->irq, netdev, NULL);
4630         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4631 #ifndef CONFIG_E1000_NAPI
4632         adapter->clean_rx(adapter, adapter->rx_ring);
4633 #endif
4634         enable_irq(adapter->pdev->irq);
4635 }
4636 #endif
4637
4638 /* e1000_main.c */