e1000: FIX: be ready for incoming irq at pci_request_irq
[pandora-kernel.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x1049),
77         INTEL_E1000_ETHERNET_DEVICE(0x104A),
78         INTEL_E1000_ETHERNET_DEVICE(0x104B),
79         INTEL_E1000_ETHERNET_DEVICE(0x104C),
80         INTEL_E1000_ETHERNET_DEVICE(0x104D),
81         INTEL_E1000_ETHERNET_DEVICE(0x105E),
82         INTEL_E1000_ETHERNET_DEVICE(0x105F),
83         INTEL_E1000_ETHERNET_DEVICE(0x1060),
84         INTEL_E1000_ETHERNET_DEVICE(0x1075),
85         INTEL_E1000_ETHERNET_DEVICE(0x1076),
86         INTEL_E1000_ETHERNET_DEVICE(0x1077),
87         INTEL_E1000_ETHERNET_DEVICE(0x1078),
88         INTEL_E1000_ETHERNET_DEVICE(0x1079),
89         INTEL_E1000_ETHERNET_DEVICE(0x107A),
90         INTEL_E1000_ETHERNET_DEVICE(0x107B),
91         INTEL_E1000_ETHERNET_DEVICE(0x107C),
92         INTEL_E1000_ETHERNET_DEVICE(0x107D),
93         INTEL_E1000_ETHERNET_DEVICE(0x107E),
94         INTEL_E1000_ETHERNET_DEVICE(0x107F),
95         INTEL_E1000_ETHERNET_DEVICE(0x108A),
96         INTEL_E1000_ETHERNET_DEVICE(0x108B),
97         INTEL_E1000_ETHERNET_DEVICE(0x108C),
98         INTEL_E1000_ETHERNET_DEVICE(0x1096),
99         INTEL_E1000_ETHERNET_DEVICE(0x1098),
100         INTEL_E1000_ETHERNET_DEVICE(0x1099),
101         INTEL_E1000_ETHERNET_DEVICE(0x109A),
102         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
104         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
105         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
106         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
107         INTEL_E1000_ETHERNET_DEVICE(0x10BC),
108         INTEL_E1000_ETHERNET_DEVICE(0x10C4),
109         INTEL_E1000_ETHERNET_DEVICE(0x10C5),
110         /* required last entry */
111         {0,}
112 };
113
114 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
115
116 int e1000_up(struct e1000_adapter *adapter);
117 void e1000_down(struct e1000_adapter *adapter);
118 void e1000_reinit_locked(struct e1000_adapter *adapter);
119 void e1000_reset(struct e1000_adapter *adapter);
120 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
121 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
122 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
123 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
124 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
125 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
126                              struct e1000_tx_ring *txdr);
127 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
128                              struct e1000_rx_ring *rxdr);
129 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
130                              struct e1000_tx_ring *tx_ring);
131 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
132                              struct e1000_rx_ring *rx_ring);
133 void e1000_update_stats(struct e1000_adapter *adapter);
134
135 static int e1000_init_module(void);
136 static void e1000_exit_module(void);
137 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
138 static void __devexit e1000_remove(struct pci_dev *pdev);
139 static int e1000_alloc_queues(struct e1000_adapter *adapter);
140 static int e1000_sw_init(struct e1000_adapter *adapter);
141 static int e1000_open(struct net_device *netdev);
142 static int e1000_close(struct net_device *netdev);
143 static void e1000_configure_tx(struct e1000_adapter *adapter);
144 static void e1000_configure_rx(struct e1000_adapter *adapter);
145 static void e1000_setup_rctl(struct e1000_adapter *adapter);
146 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
147 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
148 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
149                                 struct e1000_tx_ring *tx_ring);
150 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
151                                 struct e1000_rx_ring *rx_ring);
152 static void e1000_set_multi(struct net_device *netdev);
153 static void e1000_update_phy_info(unsigned long data);
154 static void e1000_watchdog(unsigned long data);
155 static void e1000_82547_tx_fifo_stall(unsigned long data);
156 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
157 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
158 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
159 static int e1000_set_mac(struct net_device *netdev, void *p);
160 static irqreturn_t e1000_intr(int irq, void *data);
161 #ifdef CONFIG_PCI_MSI
162 static irqreturn_t e1000_intr_msi(int irq, void *data);
163 #endif
164 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
165                                     struct e1000_tx_ring *tx_ring);
166 #ifdef CONFIG_E1000_NAPI
167 static int e1000_clean(struct net_device *poll_dev, int *budget);
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169                                     struct e1000_rx_ring *rx_ring,
170                                     int *work_done, int work_to_do);
171 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
172                                        struct e1000_rx_ring *rx_ring,
173                                        int *work_done, int work_to_do);
174 #else
175 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
176                                     struct e1000_rx_ring *rx_ring);
177 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
178                                        struct e1000_rx_ring *rx_ring);
179 #endif
180 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
181                                    struct e1000_rx_ring *rx_ring,
182                                    int cleaned_count);
183 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
184                                       struct e1000_rx_ring *rx_ring,
185                                       int cleaned_count);
186 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
187 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
188                            int cmd);
189 void e1000_set_ethtool_ops(struct net_device *netdev);
190 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
191 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
192 static void e1000_tx_timeout(struct net_device *dev);
193 static void e1000_reset_task(struct work_struct *work);
194 static void e1000_smartspeed(struct e1000_adapter *adapter);
195 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
196                                        struct sk_buff *skb);
197
198 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
199 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
200 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
201 static void e1000_restore_vlan(struct e1000_adapter *adapter);
202
203 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
204 #ifdef CONFIG_PM
205 static int e1000_resume(struct pci_dev *pdev);
206 #endif
207 static void e1000_shutdown(struct pci_dev *pdev);
208
209 #ifdef CONFIG_NET_POLL_CONTROLLER
210 /* for netdump / net console */
211 static void e1000_netpoll (struct net_device *netdev);
212 #endif
213
214 extern void e1000_check_options(struct e1000_adapter *adapter);
215
216 #define COPYBREAK_DEFAULT 256
217 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
218 module_param(copybreak, uint, 0644);
219 MODULE_PARM_DESC(copybreak,
220         "Maximum size of packet that is copied to a new buffer on receive");
221
222 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
223                      pci_channel_state_t state);
224 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
225 static void e1000_io_resume(struct pci_dev *pdev);
226
227 static struct pci_error_handlers e1000_err_handler = {
228         .error_detected = e1000_io_error_detected,
229         .slot_reset = e1000_io_slot_reset,
230         .resume = e1000_io_resume,
231 };
232
233 static struct pci_driver e1000_driver = {
234         .name     = e1000_driver_name,
235         .id_table = e1000_pci_tbl,
236         .probe    = e1000_probe,
237         .remove   = __devexit_p(e1000_remove),
238 #ifdef CONFIG_PM
239         /* Power Managment Hooks */
240         .suspend  = e1000_suspend,
241         .resume   = e1000_resume,
242 #endif
243         .shutdown = e1000_shutdown,
244         .err_handler = &e1000_err_handler
245 };
246
247 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
248 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
249 MODULE_LICENSE("GPL");
250 MODULE_VERSION(DRV_VERSION);
251
252 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
253 module_param(debug, int, 0);
254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
256 /**
257  * e1000_init_module - Driver Registration Routine
258  *
259  * e1000_init_module is the first routine called when the driver is
260  * loaded. All it does is register with the PCI subsystem.
261  **/
262
263 static int __init
264 e1000_init_module(void)
265 {
266         int ret;
267         printk(KERN_INFO "%s - version %s\n",
268                e1000_driver_string, e1000_driver_version);
269
270         printk(KERN_INFO "%s\n", e1000_copyright);
271
272         ret = pci_register_driver(&e1000_driver);
273         if (copybreak != COPYBREAK_DEFAULT) {
274                 if (copybreak == 0)
275                         printk(KERN_INFO "e1000: copybreak disabled\n");
276                 else
277                         printk(KERN_INFO "e1000: copybreak enabled for "
278                                "packets <= %u bytes\n", copybreak);
279         }
280         return ret;
281 }
282
283 module_init(e1000_init_module);
284
285 /**
286  * e1000_exit_module - Driver Exit Cleanup Routine
287  *
288  * e1000_exit_module is called just before the driver is removed
289  * from memory.
290  **/
291
292 static void __exit
293 e1000_exit_module(void)
294 {
295         pci_unregister_driver(&e1000_driver);
296 }
297
298 module_exit(e1000_exit_module);
299
300 static int e1000_request_irq(struct e1000_adapter *adapter)
301 {
302         struct net_device *netdev = adapter->netdev;
303         int flags, err = 0;
304
305         flags = IRQF_SHARED;
306 #ifdef CONFIG_PCI_MSI
307         if (adapter->hw.mac_type >= e1000_82571) {
308                 adapter->have_msi = TRUE;
309                 if ((err = pci_enable_msi(adapter->pdev))) {
310                         DPRINTK(PROBE, ERR,
311                          "Unable to allocate MSI interrupt Error: %d\n", err);
312                         adapter->have_msi = FALSE;
313                 }
314         }
315         if (adapter->have_msi) {
316                 flags &= ~IRQF_SHARED;
317                 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, flags,
318                                   netdev->name, netdev);
319                 if (err)
320                         DPRINTK(PROBE, ERR,
321                                "Unable to allocate interrupt Error: %d\n", err);
322         } else
323 #endif
324         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
325                                netdev->name, netdev)))
326                 DPRINTK(PROBE, ERR,
327                         "Unable to allocate interrupt Error: %d\n", err);
328
329         return err;
330 }
331
332 static void e1000_free_irq(struct e1000_adapter *adapter)
333 {
334         struct net_device *netdev = adapter->netdev;
335
336         free_irq(adapter->pdev->irq, netdev);
337
338 #ifdef CONFIG_PCI_MSI
339         if (adapter->have_msi)
340                 pci_disable_msi(adapter->pdev);
341 #endif
342 }
343
344 /**
345  * e1000_irq_disable - Mask off interrupt generation on the NIC
346  * @adapter: board private structure
347  **/
348
349 static void
350 e1000_irq_disable(struct e1000_adapter *adapter)
351 {
352         atomic_inc(&adapter->irq_sem);
353         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
354         E1000_WRITE_FLUSH(&adapter->hw);
355         synchronize_irq(adapter->pdev->irq);
356 }
357
358 /**
359  * e1000_irq_enable - Enable default interrupt generation settings
360  * @adapter: board private structure
361  **/
362
363 static void
364 e1000_irq_enable(struct e1000_adapter *adapter)
365 {
366         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
367                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
368                 E1000_WRITE_FLUSH(&adapter->hw);
369         }
370 }
371
372 static void
373 e1000_update_mng_vlan(struct e1000_adapter *adapter)
374 {
375         struct net_device *netdev = adapter->netdev;
376         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
377         uint16_t old_vid = adapter->mng_vlan_id;
378         if (adapter->vlgrp) {
379                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
380                         if (adapter->hw.mng_cookie.status &
381                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
382                                 e1000_vlan_rx_add_vid(netdev, vid);
383                                 adapter->mng_vlan_id = vid;
384                         } else
385                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
386
387                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
388                                         (vid != old_vid) &&
389                             !vlan_group_get_device(adapter->vlgrp, old_vid))
390                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
391                 } else
392                         adapter->mng_vlan_id = vid;
393         }
394 }
395
396 /**
397  * e1000_release_hw_control - release control of the h/w to f/w
398  * @adapter: address of board private structure
399  *
400  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
401  * For ASF and Pass Through versions of f/w this means that the
402  * driver is no longer loaded. For AMT version (only with 82573) i
403  * of the f/w this means that the network i/f is closed.
404  *
405  **/
406
407 static void
408 e1000_release_hw_control(struct e1000_adapter *adapter)
409 {
410         uint32_t ctrl_ext;
411         uint32_t swsm;
412         uint32_t extcnf;
413
414         /* Let firmware taken over control of h/w */
415         switch (adapter->hw.mac_type) {
416         case e1000_82571:
417         case e1000_82572:
418         case e1000_80003es2lan:
419                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
420                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
421                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
422                 break;
423         case e1000_82573:
424                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
425                 E1000_WRITE_REG(&adapter->hw, SWSM,
426                                 swsm & ~E1000_SWSM_DRV_LOAD);
427         case e1000_ich8lan:
428                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
429                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
430                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
431                 break;
432         default:
433                 break;
434         }
435 }
436
437 /**
438  * e1000_get_hw_control - get control of the h/w from f/w
439  * @adapter: address of board private structure
440  *
441  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
442  * For ASF and Pass Through versions of f/w this means that
443  * the driver is loaded. For AMT version (only with 82573)
444  * of the f/w this means that the network i/f is open.
445  *
446  **/
447
448 static void
449 e1000_get_hw_control(struct e1000_adapter *adapter)
450 {
451         uint32_t ctrl_ext;
452         uint32_t swsm;
453         uint32_t extcnf;
454
455         /* Let firmware know the driver has taken over */
456         switch (adapter->hw.mac_type) {
457         case e1000_82571:
458         case e1000_82572:
459         case e1000_80003es2lan:
460                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
461                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
462                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
463                 break;
464         case e1000_82573:
465                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
466                 E1000_WRITE_REG(&adapter->hw, SWSM,
467                                 swsm | E1000_SWSM_DRV_LOAD);
468                 break;
469         case e1000_ich8lan:
470                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
471                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
472                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
473                 break;
474         default:
475                 break;
476         }
477 }
478
479 static void
480 e1000_init_manageability(struct e1000_adapter *adapter)
481 {
482         if (adapter->en_mng_pt) {
483                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
484
485                 /* disable hardware interception of ARP */
486                 manc &= ~(E1000_MANC_ARP_EN);
487
488                 /* enable receiving management packets to the host */
489                 /* this will probably generate destination unreachable messages
490                  * from the host OS, but the packets will be handled on SMBUS */
491                 if (adapter->hw.has_manc2h) {
492                         uint32_t manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
493
494                         manc |= E1000_MANC_EN_MNG2HOST;
495 #define E1000_MNG2HOST_PORT_623 (1 << 5)
496 #define E1000_MNG2HOST_PORT_664 (1 << 6)
497                         manc2h |= E1000_MNG2HOST_PORT_623;
498                         manc2h |= E1000_MNG2HOST_PORT_664;
499                         E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
500                 }
501
502                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
503         }
504 }
505
506 static void
507 e1000_release_manageability(struct e1000_adapter *adapter)
508 {
509         if (adapter->en_mng_pt) {
510                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
511
512                 /* re-enable hardware interception of ARP */
513                 manc |= E1000_MANC_ARP_EN;
514
515                 if (adapter->hw.has_manc2h)
516                         manc &= ~E1000_MANC_EN_MNG2HOST;
517
518                 /* don't explicitly have to mess with MANC2H since
519                  * MANC has an enable disable that gates MANC2H */
520
521                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
522         }
523 }
524
525 /**
526  * e1000_configure - configure the hardware for RX and TX
527  * @adapter = private board structure
528  **/
529 static void e1000_configure(struct e1000_adapter *adapter)
530 {
531         struct net_device *netdev = adapter->netdev;
532         int i;
533
534         e1000_set_multi(netdev);
535
536         e1000_restore_vlan(adapter);
537         e1000_init_manageability(adapter);
538
539         e1000_configure_tx(adapter);
540         e1000_setup_rctl(adapter);
541         e1000_configure_rx(adapter);
542         /* call E1000_DESC_UNUSED which always leaves
543          * at least 1 descriptor unused to make sure
544          * next_to_use != next_to_clean */
545         for (i = 0; i < adapter->num_rx_queues; i++) {
546                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
547                 adapter->alloc_rx_buf(adapter, ring,
548                                       E1000_DESC_UNUSED(ring));
549         }
550
551         adapter->tx_queue_len = netdev->tx_queue_len;
552 }
553
554 int e1000_up(struct e1000_adapter *adapter)
555 {
556         /* hardware has been reset, we need to reload some things */
557         e1000_configure(adapter);
558
559         clear_bit(__E1000_DOWN, &adapter->flags);
560
561 #ifdef CONFIG_E1000_NAPI
562         netif_poll_enable(adapter->netdev);
563 #endif
564         e1000_irq_enable(adapter);
565
566         /* fire a link change interrupt to start the watchdog */
567         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
568         return 0;
569 }
570
571 /**
572  * e1000_power_up_phy - restore link in case the phy was powered down
573  * @adapter: address of board private structure
574  *
575  * The phy may be powered down to save power and turn off link when the
576  * driver is unloaded and wake on lan is not enabled (among others)
577  * *** this routine MUST be followed by a call to e1000_reset ***
578  *
579  **/
580
581 void e1000_power_up_phy(struct e1000_adapter *adapter)
582 {
583         uint16_t mii_reg = 0;
584
585         /* Just clear the power down bit to wake the phy back up */
586         if (adapter->hw.media_type == e1000_media_type_copper) {
587                 /* according to the manual, the phy will retain its
588                  * settings across a power-down/up cycle */
589                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
590                 mii_reg &= ~MII_CR_POWER_DOWN;
591                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
592         }
593 }
594
595 static void e1000_power_down_phy(struct e1000_adapter *adapter)
596 {
597         /* Power down the PHY so no link is implied when interface is down *
598          * The PHY cannot be powered down if any of the following is TRUE *
599          * (a) WoL is enabled
600          * (b) AMT is active
601          * (c) SoL/IDER session is active */
602         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
603            adapter->hw.media_type == e1000_media_type_copper) {
604                 uint16_t mii_reg = 0;
605
606                 switch (adapter->hw.mac_type) {
607                 case e1000_82540:
608                 case e1000_82545:
609                 case e1000_82545_rev_3:
610                 case e1000_82546:
611                 case e1000_82546_rev_3:
612                 case e1000_82541:
613                 case e1000_82541_rev_2:
614                 case e1000_82547:
615                 case e1000_82547_rev_2:
616                         if (E1000_READ_REG(&adapter->hw, MANC) &
617                             E1000_MANC_SMBUS_EN)
618                                 goto out;
619                         break;
620                 case e1000_82571:
621                 case e1000_82572:
622                 case e1000_82573:
623                 case e1000_80003es2lan:
624                 case e1000_ich8lan:
625                         if (e1000_check_mng_mode(&adapter->hw) ||
626                             e1000_check_phy_reset_block(&adapter->hw))
627                                 goto out;
628                         break;
629                 default:
630                         goto out;
631                 }
632                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
633                 mii_reg |= MII_CR_POWER_DOWN;
634                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
635                 mdelay(1);
636         }
637 out:
638         return;
639 }
640
641 void
642 e1000_down(struct e1000_adapter *adapter)
643 {
644         struct net_device *netdev = adapter->netdev;
645
646         /* signal that we're down so the interrupt handler does not
647          * reschedule our watchdog timer */
648         set_bit(__E1000_DOWN, &adapter->flags);
649
650 #ifdef CONFIG_E1000_NAPI
651         netif_poll_disable(netdev);
652 #endif
653         e1000_irq_disable(adapter);
654
655         del_timer_sync(&adapter->tx_fifo_stall_timer);
656         del_timer_sync(&adapter->watchdog_timer);
657         del_timer_sync(&adapter->phy_info_timer);
658
659         netdev->tx_queue_len = adapter->tx_queue_len;
660         adapter->link_speed = 0;
661         adapter->link_duplex = 0;
662         netif_carrier_off(netdev);
663         netif_stop_queue(netdev);
664
665         e1000_reset(adapter);
666         e1000_clean_all_tx_rings(adapter);
667         e1000_clean_all_rx_rings(adapter);
668 }
669
670 void
671 e1000_reinit_locked(struct e1000_adapter *adapter)
672 {
673         WARN_ON(in_interrupt());
674         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
675                 msleep(1);
676         e1000_down(adapter);
677         e1000_up(adapter);
678         clear_bit(__E1000_RESETTING, &adapter->flags);
679 }
680
681 void
682 e1000_reset(struct e1000_adapter *adapter)
683 {
684         uint32_t pba = 0, tx_space, min_tx_space, min_rx_space;
685         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
686         boolean_t legacy_pba_adjust = FALSE;
687
688         /* Repartition Pba for greater than 9k mtu
689          * To take effect CTRL.RST is required.
690          */
691
692         switch (adapter->hw.mac_type) {
693         case e1000_82542_rev2_0:
694         case e1000_82542_rev2_1:
695         case e1000_82543:
696         case e1000_82544:
697         case e1000_82540:
698         case e1000_82541:
699         case e1000_82541_rev_2:
700                 legacy_pba_adjust = TRUE;
701                 pba = E1000_PBA_48K;
702                 break;
703         case e1000_82545:
704         case e1000_82545_rev_3:
705         case e1000_82546:
706         case e1000_82546_rev_3:
707                 pba = E1000_PBA_48K;
708                 break;
709         case e1000_82547:
710         case e1000_82547_rev_2:
711                 legacy_pba_adjust = TRUE;
712                 pba = E1000_PBA_30K;
713                 break;
714         case e1000_82571:
715         case e1000_82572:
716         case e1000_80003es2lan:
717                 pba = E1000_PBA_38K;
718                 break;
719         case e1000_82573:
720                 pba = E1000_PBA_20K;
721                 break;
722         case e1000_ich8lan:
723                 pba = E1000_PBA_8K;
724         case e1000_undefined:
725         case e1000_num_macs:
726                 break;
727         }
728
729         if (legacy_pba_adjust == TRUE) {
730                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
731                         pba -= 8; /* allocate more FIFO for Tx */
732
733                 if (adapter->hw.mac_type == e1000_82547) {
734                         adapter->tx_fifo_head = 0;
735                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
736                         adapter->tx_fifo_size =
737                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
738                         atomic_set(&adapter->tx_fifo_stall, 0);
739                 }
740         } else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
741                 /* adjust PBA for jumbo frames */
742                 E1000_WRITE_REG(&adapter->hw, PBA, pba);
743
744                 /* To maintain wire speed transmits, the Tx FIFO should be
745                  * large enough to accomodate two full transmit packets,
746                  * rounded up to the next 1KB and expressed in KB.  Likewise,
747                  * the Rx FIFO should be large enough to accomodate at least
748                  * one full receive packet and is similarly rounded up and
749                  * expressed in KB. */
750                 pba = E1000_READ_REG(&adapter->hw, PBA);
751                 /* upper 16 bits has Tx packet buffer allocation size in KB */
752                 tx_space = pba >> 16;
753                 /* lower 16 bits has Rx packet buffer allocation size in KB */
754                 pba &= 0xffff;
755                 /* don't include ethernet FCS because hardware appends/strips */
756                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
757                                VLAN_TAG_SIZE;
758                 min_tx_space = min_rx_space;
759                 min_tx_space *= 2;
760                 E1000_ROUNDUP(min_tx_space, 1024);
761                 min_tx_space >>= 10;
762                 E1000_ROUNDUP(min_rx_space, 1024);
763                 min_rx_space >>= 10;
764
765                 /* If current Tx allocation is less than the min Tx FIFO size,
766                  * and the min Tx FIFO size is less than the current Rx FIFO
767                  * allocation, take space away from current Rx allocation */
768                 if (tx_space < min_tx_space &&
769                     ((min_tx_space - tx_space) < pba)) {
770                         pba = pba - (min_tx_space - tx_space);
771
772                         /* PCI/PCIx hardware has PBA alignment constraints */
773                         switch (adapter->hw.mac_type) {
774                         case e1000_82545 ... e1000_82546_rev_3:
775                                 pba &= ~(E1000_PBA_8K - 1);
776                                 break;
777                         default:
778                                 break;
779                         }
780
781                         /* if short on rx space, rx wins and must trump tx
782                          * adjustment or use Early Receive if available */
783                         if (pba < min_rx_space) {
784                                 switch (adapter->hw.mac_type) {
785                                 case e1000_82573:
786                                         /* ERT enabled in e1000_configure_rx */
787                                         break;
788                                 default:
789                                         pba = min_rx_space;
790                                         break;
791                                 }
792                         }
793                 }
794         }
795
796         E1000_WRITE_REG(&adapter->hw, PBA, pba);
797
798         /* flow control settings */
799         /* Set the FC high water mark to 90% of the FIFO size.
800          * Required to clear last 3 LSB */
801         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
802         /* We can't use 90% on small FIFOs because the remainder
803          * would be less than 1 full frame.  In this case, we size
804          * it to allow at least a full frame above the high water
805          *  mark. */
806         if (pba < E1000_PBA_16K)
807                 fc_high_water_mark = (pba * 1024) - 1600;
808
809         adapter->hw.fc_high_water = fc_high_water_mark;
810         adapter->hw.fc_low_water = fc_high_water_mark - 8;
811         if (adapter->hw.mac_type == e1000_80003es2lan)
812                 adapter->hw.fc_pause_time = 0xFFFF;
813         else
814                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
815         adapter->hw.fc_send_xon = 1;
816         adapter->hw.fc = adapter->hw.original_fc;
817
818         /* Allow time for pending master requests to run */
819         e1000_reset_hw(&adapter->hw);
820         if (adapter->hw.mac_type >= e1000_82544)
821                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
822
823         if (e1000_init_hw(&adapter->hw))
824                 DPRINTK(PROBE, ERR, "Hardware Error\n");
825         e1000_update_mng_vlan(adapter);
826
827         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
828         if (adapter->hw.mac_type >= e1000_82544 &&
829             adapter->hw.mac_type <= e1000_82547_rev_2 &&
830             adapter->hw.autoneg == 1 &&
831             adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
832                 uint32_t ctrl = E1000_READ_REG(&adapter->hw, CTRL);
833                 /* clear phy power management bit if we are in gig only mode,
834                  * which if enabled will attempt negotiation to 100Mb, which
835                  * can cause a loss of link at power off or driver unload */
836                 ctrl &= ~E1000_CTRL_SWDPIN3;
837                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
838         }
839
840         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
841         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
842
843         e1000_reset_adaptive(&adapter->hw);
844         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
845
846         if (!adapter->smart_power_down &&
847             (adapter->hw.mac_type == e1000_82571 ||
848              adapter->hw.mac_type == e1000_82572)) {
849                 uint16_t phy_data = 0;
850                 /* speed up time to link by disabling smart power down, ignore
851                  * the return value of this function because there is nothing
852                  * different we would do if it failed */
853                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
854                                    &phy_data);
855                 phy_data &= ~IGP02E1000_PM_SPD;
856                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
857                                     phy_data);
858         }
859
860         e1000_release_manageability(adapter);
861 }
862
863 /**
864  * e1000_probe - Device Initialization Routine
865  * @pdev: PCI device information struct
866  * @ent: entry in e1000_pci_tbl
867  *
868  * Returns 0 on success, negative on failure
869  *
870  * e1000_probe initializes an adapter identified by a pci_dev structure.
871  * The OS initialization, configuring of the adapter private structure,
872  * and a hardware reset occur.
873  **/
874
875 static int __devinit
876 e1000_probe(struct pci_dev *pdev,
877             const struct pci_device_id *ent)
878 {
879         struct net_device *netdev;
880         struct e1000_adapter *adapter;
881         unsigned long mmio_start, mmio_len;
882         unsigned long flash_start, flash_len;
883
884         static int cards_found = 0;
885         static int global_quad_port_a = 0; /* global ksp3 port a indication */
886         int i, err, pci_using_dac;
887         uint16_t eeprom_data = 0;
888         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
889         if ((err = pci_enable_device(pdev)))
890                 return err;
891
892         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
893             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
894                 pci_using_dac = 1;
895         } else {
896                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
897                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
898                         E1000_ERR("No usable DMA configuration, aborting\n");
899                         goto err_dma;
900                 }
901                 pci_using_dac = 0;
902         }
903
904         if ((err = pci_request_regions(pdev, e1000_driver_name)))
905                 goto err_pci_reg;
906
907         pci_set_master(pdev);
908
909         err = -ENOMEM;
910         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
911         if (!netdev)
912                 goto err_alloc_etherdev;
913
914         SET_MODULE_OWNER(netdev);
915         SET_NETDEV_DEV(netdev, &pdev->dev);
916
917         pci_set_drvdata(pdev, netdev);
918         adapter = netdev_priv(netdev);
919         adapter->netdev = netdev;
920         adapter->pdev = pdev;
921         adapter->hw.back = adapter;
922         adapter->msg_enable = (1 << debug) - 1;
923
924         mmio_start = pci_resource_start(pdev, BAR_0);
925         mmio_len = pci_resource_len(pdev, BAR_0);
926
927         err = -EIO;
928         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
929         if (!adapter->hw.hw_addr)
930                 goto err_ioremap;
931
932         for (i = BAR_1; i <= BAR_5; i++) {
933                 if (pci_resource_len(pdev, i) == 0)
934                         continue;
935                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
936                         adapter->hw.io_base = pci_resource_start(pdev, i);
937                         break;
938                 }
939         }
940
941         netdev->open = &e1000_open;
942         netdev->stop = &e1000_close;
943         netdev->hard_start_xmit = &e1000_xmit_frame;
944         netdev->get_stats = &e1000_get_stats;
945         netdev->set_multicast_list = &e1000_set_multi;
946         netdev->set_mac_address = &e1000_set_mac;
947         netdev->change_mtu = &e1000_change_mtu;
948         netdev->do_ioctl = &e1000_ioctl;
949         e1000_set_ethtool_ops(netdev);
950         netdev->tx_timeout = &e1000_tx_timeout;
951         netdev->watchdog_timeo = 5 * HZ;
952 #ifdef CONFIG_E1000_NAPI
953         netdev->poll = &e1000_clean;
954         netdev->weight = 64;
955 #endif
956         netdev->vlan_rx_register = e1000_vlan_rx_register;
957         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
958         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
959 #ifdef CONFIG_NET_POLL_CONTROLLER
960         netdev->poll_controller = e1000_netpoll;
961 #endif
962         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
963
964         netdev->mem_start = mmio_start;
965         netdev->mem_end = mmio_start + mmio_len;
966         netdev->base_addr = adapter->hw.io_base;
967
968         adapter->bd_number = cards_found;
969
970         /* setup the private structure */
971
972         if ((err = e1000_sw_init(adapter)))
973                 goto err_sw_init;
974
975         err = -EIO;
976         /* Flash BAR mapping must happen after e1000_sw_init
977          * because it depends on mac_type */
978         if ((adapter->hw.mac_type == e1000_ich8lan) &&
979            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
980                 flash_start = pci_resource_start(pdev, 1);
981                 flash_len = pci_resource_len(pdev, 1);
982                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
983                 if (!adapter->hw.flash_address)
984                         goto err_flashmap;
985         }
986
987         if (e1000_check_phy_reset_block(&adapter->hw))
988                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
989
990         if (adapter->hw.mac_type >= e1000_82543) {
991                 netdev->features = NETIF_F_SG |
992                                    NETIF_F_HW_CSUM |
993                                    NETIF_F_HW_VLAN_TX |
994                                    NETIF_F_HW_VLAN_RX |
995                                    NETIF_F_HW_VLAN_FILTER;
996                 if (adapter->hw.mac_type == e1000_ich8lan)
997                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
998         }
999
1000         if ((adapter->hw.mac_type >= e1000_82544) &&
1001            (adapter->hw.mac_type != e1000_82547))
1002                 netdev->features |= NETIF_F_TSO;
1003
1004         if (adapter->hw.mac_type > e1000_82547_rev_2)
1005                 netdev->features |= NETIF_F_TSO6;
1006         if (pci_using_dac)
1007                 netdev->features |= NETIF_F_HIGHDMA;
1008
1009         netdev->features |= NETIF_F_LLTX;
1010
1011         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
1012
1013         /* initialize eeprom parameters */
1014
1015         if (e1000_init_eeprom_params(&adapter->hw)) {
1016                 E1000_ERR("EEPROM initialization failed\n");
1017                 goto err_eeprom;
1018         }
1019
1020         /* before reading the EEPROM, reset the controller to
1021          * put the device in a known good starting state */
1022
1023         e1000_reset_hw(&adapter->hw);
1024
1025         /* make sure the EEPROM is good */
1026
1027         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
1028                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1029                 goto err_eeprom;
1030         }
1031
1032         /* copy the MAC address out of the EEPROM */
1033
1034         if (e1000_read_mac_addr(&adapter->hw))
1035                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1036         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1037         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1038
1039         if (!is_valid_ether_addr(netdev->perm_addr)) {
1040                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1041                 goto err_eeprom;
1042         }
1043
1044         e1000_get_bus_info(&adapter->hw);
1045
1046         init_timer(&adapter->tx_fifo_stall_timer);
1047         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1048         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
1049
1050         init_timer(&adapter->watchdog_timer);
1051         adapter->watchdog_timer.function = &e1000_watchdog;
1052         adapter->watchdog_timer.data = (unsigned long) adapter;
1053
1054         init_timer(&adapter->phy_info_timer);
1055         adapter->phy_info_timer.function = &e1000_update_phy_info;
1056         adapter->phy_info_timer.data = (unsigned long) adapter;
1057
1058         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1059
1060         e1000_check_options(adapter);
1061
1062         /* Initial Wake on LAN setting
1063          * If APM wake is enabled in the EEPROM,
1064          * enable the ACPI Magic Packet filter
1065          */
1066
1067         switch (adapter->hw.mac_type) {
1068         case e1000_82542_rev2_0:
1069         case e1000_82542_rev2_1:
1070         case e1000_82543:
1071                 break;
1072         case e1000_82544:
1073                 e1000_read_eeprom(&adapter->hw,
1074                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1075                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1076                 break;
1077         case e1000_ich8lan:
1078                 e1000_read_eeprom(&adapter->hw,
1079                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1080                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1081                 break;
1082         case e1000_82546:
1083         case e1000_82546_rev_3:
1084         case e1000_82571:
1085         case e1000_80003es2lan:
1086                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1087                         e1000_read_eeprom(&adapter->hw,
1088                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1089                         break;
1090                 }
1091                 /* Fall Through */
1092         default:
1093                 e1000_read_eeprom(&adapter->hw,
1094                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1095                 break;
1096         }
1097         if (eeprom_data & eeprom_apme_mask)
1098                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1099
1100         /* now that we have the eeprom settings, apply the special cases
1101          * where the eeprom may be wrong or the board simply won't support
1102          * wake on lan on a particular port */
1103         switch (pdev->device) {
1104         case E1000_DEV_ID_82546GB_PCIE:
1105                 adapter->eeprom_wol = 0;
1106                 break;
1107         case E1000_DEV_ID_82546EB_FIBER:
1108         case E1000_DEV_ID_82546GB_FIBER:
1109         case E1000_DEV_ID_82571EB_FIBER:
1110                 /* Wake events only supported on port A for dual fiber
1111                  * regardless of eeprom setting */
1112                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1113                         adapter->eeprom_wol = 0;
1114                 break;
1115         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1116         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1117         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1118                 /* if quad port adapter, disable WoL on all but port A */
1119                 if (global_quad_port_a != 0)
1120                         adapter->eeprom_wol = 0;
1121                 else
1122                         adapter->quad_port_a = 1;
1123                 /* Reset for multiple quad port adapters */
1124                 if (++global_quad_port_a == 4)
1125                         global_quad_port_a = 0;
1126                 break;
1127         }
1128
1129         /* initialize the wol settings based on the eeprom settings */
1130         adapter->wol = adapter->eeprom_wol;
1131
1132         /* print bus type/speed/width info */
1133         {
1134         struct e1000_hw *hw = &adapter->hw;
1135         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1136                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1137                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1138                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1139                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1140                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1141                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1142                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1143                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1144                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1145                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1146                  "32-bit"));
1147         }
1148
1149         for (i = 0; i < 6; i++)
1150                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1151
1152         /* reset the hardware with the new settings */
1153         e1000_reset(adapter);
1154
1155         /* If the controller is 82573 and f/w is AMT, do not set
1156          * DRV_LOAD until the interface is up.  For all other cases,
1157          * let the f/w know that the h/w is now under the control
1158          * of the driver. */
1159         if (adapter->hw.mac_type != e1000_82573 ||
1160             !e1000_check_mng_mode(&adapter->hw))
1161                 e1000_get_hw_control(adapter);
1162
1163         strcpy(netdev->name, "eth%d");
1164         if ((err = register_netdev(netdev)))
1165                 goto err_register;
1166
1167         /* tell the stack to leave us alone until e1000_open() is called */
1168         netif_carrier_off(netdev);
1169         netif_stop_queue(netdev);
1170
1171         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1172
1173         cards_found++;
1174         return 0;
1175
1176 err_register:
1177         e1000_release_hw_control(adapter);
1178 err_eeprom:
1179         if (!e1000_check_phy_reset_block(&adapter->hw))
1180                 e1000_phy_hw_reset(&adapter->hw);
1181
1182         if (adapter->hw.flash_address)
1183                 iounmap(adapter->hw.flash_address);
1184 err_flashmap:
1185 #ifdef CONFIG_E1000_NAPI
1186         for (i = 0; i < adapter->num_rx_queues; i++)
1187                 dev_put(&adapter->polling_netdev[i]);
1188 #endif
1189
1190         kfree(adapter->tx_ring);
1191         kfree(adapter->rx_ring);
1192 #ifdef CONFIG_E1000_NAPI
1193         kfree(adapter->polling_netdev);
1194 #endif
1195 err_sw_init:
1196         iounmap(adapter->hw.hw_addr);
1197 err_ioremap:
1198         free_netdev(netdev);
1199 err_alloc_etherdev:
1200         pci_release_regions(pdev);
1201 err_pci_reg:
1202 err_dma:
1203         pci_disable_device(pdev);
1204         return err;
1205 }
1206
1207 /**
1208  * e1000_remove - Device Removal Routine
1209  * @pdev: PCI device information struct
1210  *
1211  * e1000_remove is called by the PCI subsystem to alert the driver
1212  * that it should release a PCI device.  The could be caused by a
1213  * Hot-Plug event, or because the driver is going to be removed from
1214  * memory.
1215  **/
1216
1217 static void __devexit
1218 e1000_remove(struct pci_dev *pdev)
1219 {
1220         struct net_device *netdev = pci_get_drvdata(pdev);
1221         struct e1000_adapter *adapter = netdev_priv(netdev);
1222 #ifdef CONFIG_E1000_NAPI
1223         int i;
1224 #endif
1225
1226         flush_scheduled_work();
1227
1228         e1000_release_manageability(adapter);
1229
1230         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1231          * would have already happened in close and is redundant. */
1232         e1000_release_hw_control(adapter);
1233
1234         unregister_netdev(netdev);
1235 #ifdef CONFIG_E1000_NAPI
1236         for (i = 0; i < adapter->num_rx_queues; i++)
1237                 dev_put(&adapter->polling_netdev[i]);
1238 #endif
1239
1240         if (!e1000_check_phy_reset_block(&adapter->hw))
1241                 e1000_phy_hw_reset(&adapter->hw);
1242
1243         kfree(adapter->tx_ring);
1244         kfree(adapter->rx_ring);
1245 #ifdef CONFIG_E1000_NAPI
1246         kfree(adapter->polling_netdev);
1247 #endif
1248
1249         iounmap(adapter->hw.hw_addr);
1250         if (adapter->hw.flash_address)
1251                 iounmap(adapter->hw.flash_address);
1252         pci_release_regions(pdev);
1253
1254         free_netdev(netdev);
1255
1256         pci_disable_device(pdev);
1257 }
1258
1259 /**
1260  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1261  * @adapter: board private structure to initialize
1262  *
1263  * e1000_sw_init initializes the Adapter private data structure.
1264  * Fields are initialized based on PCI device information and
1265  * OS network device settings (MTU size).
1266  **/
1267
1268 static int __devinit
1269 e1000_sw_init(struct e1000_adapter *adapter)
1270 {
1271         struct e1000_hw *hw = &adapter->hw;
1272         struct net_device *netdev = adapter->netdev;
1273         struct pci_dev *pdev = adapter->pdev;
1274 #ifdef CONFIG_E1000_NAPI
1275         int i;
1276 #endif
1277
1278         /* PCI config space info */
1279
1280         hw->vendor_id = pdev->vendor;
1281         hw->device_id = pdev->device;
1282         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1283         hw->subsystem_id = pdev->subsystem_device;
1284
1285         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1286
1287         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1288
1289         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1290         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1291         hw->max_frame_size = netdev->mtu +
1292                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1293         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1294
1295         /* identify the MAC */
1296
1297         if (e1000_set_mac_type(hw)) {
1298                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1299                 return -EIO;
1300         }
1301
1302         switch (hw->mac_type) {
1303         default:
1304                 break;
1305         case e1000_82541:
1306         case e1000_82547:
1307         case e1000_82541_rev_2:
1308         case e1000_82547_rev_2:
1309                 hw->phy_init_script = 1;
1310                 break;
1311         }
1312
1313         e1000_set_media_type(hw);
1314
1315         hw->wait_autoneg_complete = FALSE;
1316         hw->tbi_compatibility_en = TRUE;
1317         hw->adaptive_ifs = TRUE;
1318
1319         /* Copper options */
1320
1321         if (hw->media_type == e1000_media_type_copper) {
1322                 hw->mdix = AUTO_ALL_MODES;
1323                 hw->disable_polarity_correction = FALSE;
1324                 hw->master_slave = E1000_MASTER_SLAVE;
1325         }
1326
1327         adapter->num_tx_queues = 1;
1328         adapter->num_rx_queues = 1;
1329
1330         if (e1000_alloc_queues(adapter)) {
1331                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1332                 return -ENOMEM;
1333         }
1334
1335 #ifdef CONFIG_E1000_NAPI
1336         for (i = 0; i < adapter->num_rx_queues; i++) {
1337                 adapter->polling_netdev[i].priv = adapter;
1338                 adapter->polling_netdev[i].poll = &e1000_clean;
1339                 adapter->polling_netdev[i].weight = 64;
1340                 dev_hold(&adapter->polling_netdev[i]);
1341                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1342         }
1343         spin_lock_init(&adapter->tx_queue_lock);
1344 #endif
1345
1346         atomic_set(&adapter->irq_sem, 1);
1347         spin_lock_init(&adapter->stats_lock);
1348
1349         set_bit(__E1000_DOWN, &adapter->flags);
1350
1351         return 0;
1352 }
1353
1354 /**
1355  * e1000_alloc_queues - Allocate memory for all rings
1356  * @adapter: board private structure to initialize
1357  *
1358  * We allocate one ring per queue at run-time since we don't know the
1359  * number of queues at compile-time.  The polling_netdev array is
1360  * intended for Multiqueue, but should work fine with a single queue.
1361  **/
1362
1363 static int __devinit
1364 e1000_alloc_queues(struct e1000_adapter *adapter)
1365 {
1366         int size;
1367
1368         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1369         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1370         if (!adapter->tx_ring)
1371                 return -ENOMEM;
1372         memset(adapter->tx_ring, 0, size);
1373
1374         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1375         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1376         if (!adapter->rx_ring) {
1377                 kfree(adapter->tx_ring);
1378                 return -ENOMEM;
1379         }
1380         memset(adapter->rx_ring, 0, size);
1381
1382 #ifdef CONFIG_E1000_NAPI
1383         size = sizeof(struct net_device) * adapter->num_rx_queues;
1384         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1385         if (!adapter->polling_netdev) {
1386                 kfree(adapter->tx_ring);
1387                 kfree(adapter->rx_ring);
1388                 return -ENOMEM;
1389         }
1390         memset(adapter->polling_netdev, 0, size);
1391 #endif
1392
1393         return E1000_SUCCESS;
1394 }
1395
1396 /**
1397  * e1000_open - Called when a network interface is made active
1398  * @netdev: network interface device structure
1399  *
1400  * Returns 0 on success, negative value on failure
1401  *
1402  * The open entry point is called when a network interface is made
1403  * active by the system (IFF_UP).  At this point all resources needed
1404  * for transmit and receive operations are allocated, the interrupt
1405  * handler is registered with the OS, the watchdog timer is started,
1406  * and the stack is notified that the interface is ready.
1407  **/
1408
1409 static int
1410 e1000_open(struct net_device *netdev)
1411 {
1412         struct e1000_adapter *adapter = netdev_priv(netdev);
1413         int err;
1414
1415         /* disallow open during test */
1416         if (test_bit(__E1000_TESTING, &adapter->flags))
1417                 return -EBUSY;
1418
1419         /* allocate transmit descriptors */
1420         err = e1000_setup_all_tx_resources(adapter);
1421         if (err)
1422                 goto err_setup_tx;
1423
1424         /* allocate receive descriptors */
1425         err = e1000_setup_all_rx_resources(adapter);
1426         if (err)
1427                 goto err_setup_rx;
1428
1429         e1000_power_up_phy(adapter);
1430
1431         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1432         if ((adapter->hw.mng_cookie.status &
1433                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1434                 e1000_update_mng_vlan(adapter);
1435         }
1436
1437         /* If AMT is enabled, let the firmware know that the network
1438          * interface is now open */
1439         if (adapter->hw.mac_type == e1000_82573 &&
1440             e1000_check_mng_mode(&adapter->hw))
1441                 e1000_get_hw_control(adapter);
1442
1443         /* before we allocate an interrupt, we must be ready to handle it.
1444          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1445          * as soon as we call pci_request_irq, so we have to setup our
1446          * clean_rx handler before we do so.  */
1447         e1000_configure(adapter);
1448
1449         err = e1000_request_irq(adapter);
1450         if (err)
1451                 goto err_req_irq;
1452
1453         /* From here on the code is the same as e1000_up() */
1454         clear_bit(__E1000_DOWN, &adapter->flags);
1455
1456 #ifdef CONFIG_E1000_NAPI
1457         netif_poll_enable(netdev);
1458 #endif
1459
1460         e1000_irq_enable(adapter);
1461
1462         /* fire a link status change interrupt to start the watchdog */
1463         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
1464
1465         return E1000_SUCCESS;
1466
1467 err_req_irq:
1468         e1000_release_hw_control(adapter);
1469         e1000_power_down_phy(adapter);
1470         e1000_free_all_rx_resources(adapter);
1471 err_setup_rx:
1472         e1000_free_all_tx_resources(adapter);
1473 err_setup_tx:
1474         e1000_reset(adapter);
1475
1476         return err;
1477 }
1478
1479 /**
1480  * e1000_close - Disables a network interface
1481  * @netdev: network interface device structure
1482  *
1483  * Returns 0, this is not allowed to fail
1484  *
1485  * The close entry point is called when an interface is de-activated
1486  * by the OS.  The hardware is still under the drivers control, but
1487  * needs to be disabled.  A global MAC reset is issued to stop the
1488  * hardware, and all transmit and receive resources are freed.
1489  **/
1490
1491 static int
1492 e1000_close(struct net_device *netdev)
1493 {
1494         struct e1000_adapter *adapter = netdev_priv(netdev);
1495
1496         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1497         e1000_down(adapter);
1498         e1000_power_down_phy(adapter);
1499         e1000_free_irq(adapter);
1500
1501         e1000_free_all_tx_resources(adapter);
1502         e1000_free_all_rx_resources(adapter);
1503
1504         /* kill manageability vlan ID if supported, but not if a vlan with
1505          * the same ID is registered on the host OS (let 8021q kill it) */
1506         if ((adapter->hw.mng_cookie.status &
1507                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1508              !(adapter->vlgrp &&
1509                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1510                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1511         }
1512
1513         /* If AMT is enabled, let the firmware know that the network
1514          * interface is now closed */
1515         if (adapter->hw.mac_type == e1000_82573 &&
1516             e1000_check_mng_mode(&adapter->hw))
1517                 e1000_release_hw_control(adapter);
1518
1519         return 0;
1520 }
1521
1522 /**
1523  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1524  * @adapter: address of board private structure
1525  * @start: address of beginning of memory
1526  * @len: length of memory
1527  **/
1528 static boolean_t
1529 e1000_check_64k_bound(struct e1000_adapter *adapter,
1530                       void *start, unsigned long len)
1531 {
1532         unsigned long begin = (unsigned long) start;
1533         unsigned long end = begin + len;
1534
1535         /* First rev 82545 and 82546 need to not allow any memory
1536          * write location to cross 64k boundary due to errata 23 */
1537         if (adapter->hw.mac_type == e1000_82545 ||
1538             adapter->hw.mac_type == e1000_82546) {
1539                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1540         }
1541
1542         return TRUE;
1543 }
1544
1545 /**
1546  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1547  * @adapter: board private structure
1548  * @txdr:    tx descriptor ring (for a specific queue) to setup
1549  *
1550  * Return 0 on success, negative on failure
1551  **/
1552
1553 static int
1554 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1555                          struct e1000_tx_ring *txdr)
1556 {
1557         struct pci_dev *pdev = adapter->pdev;
1558         int size;
1559
1560         size = sizeof(struct e1000_buffer) * txdr->count;
1561         txdr->buffer_info = vmalloc(size);
1562         if (!txdr->buffer_info) {
1563                 DPRINTK(PROBE, ERR,
1564                 "Unable to allocate memory for the transmit descriptor ring\n");
1565                 return -ENOMEM;
1566         }
1567         memset(txdr->buffer_info, 0, size);
1568
1569         /* round up to nearest 4K */
1570
1571         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1572         E1000_ROUNDUP(txdr->size, 4096);
1573
1574         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1575         if (!txdr->desc) {
1576 setup_tx_desc_die:
1577                 vfree(txdr->buffer_info);
1578                 DPRINTK(PROBE, ERR,
1579                 "Unable to allocate memory for the transmit descriptor ring\n");
1580                 return -ENOMEM;
1581         }
1582
1583         /* Fix for errata 23, can't cross 64kB boundary */
1584         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1585                 void *olddesc = txdr->desc;
1586                 dma_addr_t olddma = txdr->dma;
1587                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1588                                      "at %p\n", txdr->size, txdr->desc);
1589                 /* Try again, without freeing the previous */
1590                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1591                 /* Failed allocation, critical failure */
1592                 if (!txdr->desc) {
1593                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1594                         goto setup_tx_desc_die;
1595                 }
1596
1597                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1598                         /* give up */
1599                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1600                                             txdr->dma);
1601                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1602                         DPRINTK(PROBE, ERR,
1603                                 "Unable to allocate aligned memory "
1604                                 "for the transmit descriptor ring\n");
1605                         vfree(txdr->buffer_info);
1606                         return -ENOMEM;
1607                 } else {
1608                         /* Free old allocation, new allocation was successful */
1609                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1610                 }
1611         }
1612         memset(txdr->desc, 0, txdr->size);
1613
1614         txdr->next_to_use = 0;
1615         txdr->next_to_clean = 0;
1616         spin_lock_init(&txdr->tx_lock);
1617
1618         return 0;
1619 }
1620
1621 /**
1622  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1623  *                                (Descriptors) for all queues
1624  * @adapter: board private structure
1625  *
1626  * Return 0 on success, negative on failure
1627  **/
1628
1629 int
1630 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1631 {
1632         int i, err = 0;
1633
1634         for (i = 0; i < adapter->num_tx_queues; i++) {
1635                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1636                 if (err) {
1637                         DPRINTK(PROBE, ERR,
1638                                 "Allocation for Tx Queue %u failed\n", i);
1639                         for (i-- ; i >= 0; i--)
1640                                 e1000_free_tx_resources(adapter,
1641                                                         &adapter->tx_ring[i]);
1642                         break;
1643                 }
1644         }
1645
1646         return err;
1647 }
1648
1649 /**
1650  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1651  * @adapter: board private structure
1652  *
1653  * Configure the Tx unit of the MAC after a reset.
1654  **/
1655
1656 static void
1657 e1000_configure_tx(struct e1000_adapter *adapter)
1658 {
1659         uint64_t tdba;
1660         struct e1000_hw *hw = &adapter->hw;
1661         uint32_t tdlen, tctl, tipg, tarc;
1662         uint32_t ipgr1, ipgr2;
1663
1664         /* Setup the HW Tx Head and Tail descriptor pointers */
1665
1666         switch (adapter->num_tx_queues) {
1667         case 1:
1668         default:
1669                 tdba = adapter->tx_ring[0].dma;
1670                 tdlen = adapter->tx_ring[0].count *
1671                         sizeof(struct e1000_tx_desc);
1672                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1673                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1674                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1675                 E1000_WRITE_REG(hw, TDT, 0);
1676                 E1000_WRITE_REG(hw, TDH, 0);
1677                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1678                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1679                 break;
1680         }
1681
1682         /* Set the default values for the Tx Inter Packet Gap timer */
1683         if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1684             (hw->media_type == e1000_media_type_fiber ||
1685              hw->media_type == e1000_media_type_internal_serdes))
1686                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1687         else
1688                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1689
1690         switch (hw->mac_type) {
1691         case e1000_82542_rev2_0:
1692         case e1000_82542_rev2_1:
1693                 tipg = DEFAULT_82542_TIPG_IPGT;
1694                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1695                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1696                 break;
1697         case e1000_80003es2lan:
1698                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1699                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1700                 break;
1701         default:
1702                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1703                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1704                 break;
1705         }
1706         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1707         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1708         E1000_WRITE_REG(hw, TIPG, tipg);
1709
1710         /* Set the Tx Interrupt Delay register */
1711
1712         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1713         if (hw->mac_type >= e1000_82540)
1714                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1715
1716         /* Program the Transmit Control Register */
1717
1718         tctl = E1000_READ_REG(hw, TCTL);
1719         tctl &= ~E1000_TCTL_CT;
1720         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1721                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1722
1723         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1724                 tarc = E1000_READ_REG(hw, TARC0);
1725                 /* set the speed mode bit, we'll clear it if we're not at
1726                  * gigabit link later */
1727                 tarc |= (1 << 21);
1728                 E1000_WRITE_REG(hw, TARC0, tarc);
1729         } else if (hw->mac_type == e1000_80003es2lan) {
1730                 tarc = E1000_READ_REG(hw, TARC0);
1731                 tarc |= 1;
1732                 E1000_WRITE_REG(hw, TARC0, tarc);
1733                 tarc = E1000_READ_REG(hw, TARC1);
1734                 tarc |= 1;
1735                 E1000_WRITE_REG(hw, TARC1, tarc);
1736         }
1737
1738         e1000_config_collision_dist(hw);
1739
1740         /* Setup Transmit Descriptor Settings for eop descriptor */
1741         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1742
1743         /* only set IDE if we are delaying interrupts using the timers */
1744         if (adapter->tx_int_delay)
1745                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1746
1747         if (hw->mac_type < e1000_82543)
1748                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1749         else
1750                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1751
1752         /* Cache if we're 82544 running in PCI-X because we'll
1753          * need this to apply a workaround later in the send path. */
1754         if (hw->mac_type == e1000_82544 &&
1755             hw->bus_type == e1000_bus_type_pcix)
1756                 adapter->pcix_82544 = 1;
1757
1758         E1000_WRITE_REG(hw, TCTL, tctl);
1759
1760 }
1761
1762 /**
1763  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1764  * @adapter: board private structure
1765  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1766  *
1767  * Returns 0 on success, negative on failure
1768  **/
1769
1770 static int
1771 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1772                          struct e1000_rx_ring *rxdr)
1773 {
1774         struct pci_dev *pdev = adapter->pdev;
1775         int size, desc_len;
1776
1777         size = sizeof(struct e1000_buffer) * rxdr->count;
1778         rxdr->buffer_info = vmalloc(size);
1779         if (!rxdr->buffer_info) {
1780                 DPRINTK(PROBE, ERR,
1781                 "Unable to allocate memory for the receive descriptor ring\n");
1782                 return -ENOMEM;
1783         }
1784         memset(rxdr->buffer_info, 0, size);
1785
1786         size = sizeof(struct e1000_ps_page) * rxdr->count;
1787         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1788         if (!rxdr->ps_page) {
1789                 vfree(rxdr->buffer_info);
1790                 DPRINTK(PROBE, ERR,
1791                 "Unable to allocate memory for the receive descriptor ring\n");
1792                 return -ENOMEM;
1793         }
1794         memset(rxdr->ps_page, 0, size);
1795
1796         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1797         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1798         if (!rxdr->ps_page_dma) {
1799                 vfree(rxdr->buffer_info);
1800                 kfree(rxdr->ps_page);
1801                 DPRINTK(PROBE, ERR,
1802                 "Unable to allocate memory for the receive descriptor ring\n");
1803                 return -ENOMEM;
1804         }
1805         memset(rxdr->ps_page_dma, 0, size);
1806
1807         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1808                 desc_len = sizeof(struct e1000_rx_desc);
1809         else
1810                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1811
1812         /* Round up to nearest 4K */
1813
1814         rxdr->size = rxdr->count * desc_len;
1815         E1000_ROUNDUP(rxdr->size, 4096);
1816
1817         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1818
1819         if (!rxdr->desc) {
1820                 DPRINTK(PROBE, ERR,
1821                 "Unable to allocate memory for the receive descriptor ring\n");
1822 setup_rx_desc_die:
1823                 vfree(rxdr->buffer_info);
1824                 kfree(rxdr->ps_page);
1825                 kfree(rxdr->ps_page_dma);
1826                 return -ENOMEM;
1827         }
1828
1829         /* Fix for errata 23, can't cross 64kB boundary */
1830         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1831                 void *olddesc = rxdr->desc;
1832                 dma_addr_t olddma = rxdr->dma;
1833                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1834                                      "at %p\n", rxdr->size, rxdr->desc);
1835                 /* Try again, without freeing the previous */
1836                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1837                 /* Failed allocation, critical failure */
1838                 if (!rxdr->desc) {
1839                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1840                         DPRINTK(PROBE, ERR,
1841                                 "Unable to allocate memory "
1842                                 "for the receive descriptor ring\n");
1843                         goto setup_rx_desc_die;
1844                 }
1845
1846                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1847                         /* give up */
1848                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1849                                             rxdr->dma);
1850                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1851                         DPRINTK(PROBE, ERR,
1852                                 "Unable to allocate aligned memory "
1853                                 "for the receive descriptor ring\n");
1854                         goto setup_rx_desc_die;
1855                 } else {
1856                         /* Free old allocation, new allocation was successful */
1857                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1858                 }
1859         }
1860         memset(rxdr->desc, 0, rxdr->size);
1861
1862         rxdr->next_to_clean = 0;
1863         rxdr->next_to_use = 0;
1864
1865         return 0;
1866 }
1867
1868 /**
1869  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1870  *                                (Descriptors) for all queues
1871  * @adapter: board private structure
1872  *
1873  * Return 0 on success, negative on failure
1874  **/
1875
1876 int
1877 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1878 {
1879         int i, err = 0;
1880
1881         for (i = 0; i < adapter->num_rx_queues; i++) {
1882                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1883                 if (err) {
1884                         DPRINTK(PROBE, ERR,
1885                                 "Allocation for Rx Queue %u failed\n", i);
1886                         for (i-- ; i >= 0; i--)
1887                                 e1000_free_rx_resources(adapter,
1888                                                         &adapter->rx_ring[i]);
1889                         break;
1890                 }
1891         }
1892
1893         return err;
1894 }
1895
1896 /**
1897  * e1000_setup_rctl - configure the receive control registers
1898  * @adapter: Board private structure
1899  **/
1900 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1901                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1902 static void
1903 e1000_setup_rctl(struct e1000_adapter *adapter)
1904 {
1905         uint32_t rctl, rfctl;
1906         uint32_t psrctl = 0;
1907 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1908         uint32_t pages = 0;
1909 #endif
1910
1911         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1912
1913         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1914
1915         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1916                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1917                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1918
1919         if (adapter->hw.tbi_compatibility_on == 1)
1920                 rctl |= E1000_RCTL_SBP;
1921         else
1922                 rctl &= ~E1000_RCTL_SBP;
1923
1924         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1925                 rctl &= ~E1000_RCTL_LPE;
1926         else
1927                 rctl |= E1000_RCTL_LPE;
1928
1929         /* Setup buffer sizes */
1930         rctl &= ~E1000_RCTL_SZ_4096;
1931         rctl |= E1000_RCTL_BSEX;
1932         switch (adapter->rx_buffer_len) {
1933                 case E1000_RXBUFFER_256:
1934                         rctl |= E1000_RCTL_SZ_256;
1935                         rctl &= ~E1000_RCTL_BSEX;
1936                         break;
1937                 case E1000_RXBUFFER_512:
1938                         rctl |= E1000_RCTL_SZ_512;
1939                         rctl &= ~E1000_RCTL_BSEX;
1940                         break;
1941                 case E1000_RXBUFFER_1024:
1942                         rctl |= E1000_RCTL_SZ_1024;
1943                         rctl &= ~E1000_RCTL_BSEX;
1944                         break;
1945                 case E1000_RXBUFFER_2048:
1946                 default:
1947                         rctl |= E1000_RCTL_SZ_2048;
1948                         rctl &= ~E1000_RCTL_BSEX;
1949                         break;
1950                 case E1000_RXBUFFER_4096:
1951                         rctl |= E1000_RCTL_SZ_4096;
1952                         break;
1953                 case E1000_RXBUFFER_8192:
1954                         rctl |= E1000_RCTL_SZ_8192;
1955                         break;
1956                 case E1000_RXBUFFER_16384:
1957                         rctl |= E1000_RCTL_SZ_16384;
1958                         break;
1959         }
1960
1961 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1962         /* 82571 and greater support packet-split where the protocol
1963          * header is placed in skb->data and the packet data is
1964          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1965          * In the case of a non-split, skb->data is linearly filled,
1966          * followed by the page buffers.  Therefore, skb->data is
1967          * sized to hold the largest protocol header.
1968          */
1969         /* allocations using alloc_page take too long for regular MTU
1970          * so only enable packet split for jumbo frames */
1971         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1972         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1973             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1974                 adapter->rx_ps_pages = pages;
1975         else
1976                 adapter->rx_ps_pages = 0;
1977 #endif
1978         if (adapter->rx_ps_pages) {
1979                 /* Configure extra packet-split registers */
1980                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1981                 rfctl |= E1000_RFCTL_EXTEN;
1982                 /* disable packet split support for IPv6 extension headers,
1983                  * because some malformed IPv6 headers can hang the RX */
1984                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1985                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1986
1987                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1988
1989                 rctl |= E1000_RCTL_DTYP_PS;
1990
1991                 psrctl |= adapter->rx_ps_bsize0 >>
1992                         E1000_PSRCTL_BSIZE0_SHIFT;
1993
1994                 switch (adapter->rx_ps_pages) {
1995                 case 3:
1996                         psrctl |= PAGE_SIZE <<
1997                                 E1000_PSRCTL_BSIZE3_SHIFT;
1998                 case 2:
1999                         psrctl |= PAGE_SIZE <<
2000                                 E1000_PSRCTL_BSIZE2_SHIFT;
2001                 case 1:
2002                         psrctl |= PAGE_SIZE >>
2003                                 E1000_PSRCTL_BSIZE1_SHIFT;
2004                         break;
2005                 }
2006
2007                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
2008         }
2009
2010         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2011 }
2012
2013 /**
2014  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
2015  * @adapter: board private structure
2016  *
2017  * Configure the Rx unit of the MAC after a reset.
2018  **/
2019
2020 static void
2021 e1000_configure_rx(struct e1000_adapter *adapter)
2022 {
2023         uint64_t rdba;
2024         struct e1000_hw *hw = &adapter->hw;
2025         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
2026
2027         if (adapter->rx_ps_pages) {
2028                 /* this is a 32 byte descriptor */
2029                 rdlen = adapter->rx_ring[0].count *
2030                         sizeof(union e1000_rx_desc_packet_split);
2031                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2032                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2033         } else {
2034                 rdlen = adapter->rx_ring[0].count *
2035                         sizeof(struct e1000_rx_desc);
2036                 adapter->clean_rx = e1000_clean_rx_irq;
2037                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2038         }
2039
2040         /* disable receives while setting up the descriptors */
2041         rctl = E1000_READ_REG(hw, RCTL);
2042         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2043
2044         /* set the Receive Delay Timer Register */
2045         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2046
2047         if (hw->mac_type >= e1000_82540) {
2048                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2049                 if (adapter->itr_setting != 0)
2050                         E1000_WRITE_REG(hw, ITR,
2051                                 1000000000 / (adapter->itr * 256));
2052         }
2053
2054         if (hw->mac_type >= e1000_82571) {
2055                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2056                 /* Reset delay timers after every interrupt */
2057                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2058 #ifdef CONFIG_E1000_NAPI
2059                 /* Auto-Mask interrupts upon ICR access */
2060                 ctrl_ext |= E1000_CTRL_EXT_IAME;
2061                 E1000_WRITE_REG(hw, IAM, 0xffffffff);
2062 #endif
2063                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2064                 E1000_WRITE_FLUSH(hw);
2065         }
2066
2067         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2068          * the Base and Length of the Rx Descriptor Ring */
2069         switch (adapter->num_rx_queues) {
2070         case 1:
2071         default:
2072                 rdba = adapter->rx_ring[0].dma;
2073                 E1000_WRITE_REG(hw, RDLEN, rdlen);
2074                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
2075                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
2076                 E1000_WRITE_REG(hw, RDT, 0);
2077                 E1000_WRITE_REG(hw, RDH, 0);
2078                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2079                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2080                 break;
2081         }
2082
2083         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2084         if (hw->mac_type >= e1000_82543) {
2085                 rxcsum = E1000_READ_REG(hw, RXCSUM);
2086                 if (adapter->rx_csum == TRUE) {
2087                         rxcsum |= E1000_RXCSUM_TUOFL;
2088
2089                         /* Enable 82571 IPv4 payload checksum for UDP fragments
2090                          * Must be used in conjunction with packet-split. */
2091                         if ((hw->mac_type >= e1000_82571) &&
2092                             (adapter->rx_ps_pages)) {
2093                                 rxcsum |= E1000_RXCSUM_IPPCSE;
2094                         }
2095                 } else {
2096                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2097                         /* don't need to clear IPPCSE as it defaults to 0 */
2098                 }
2099                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2100         }
2101
2102         /* enable early receives on 82573, only takes effect if using > 2048
2103          * byte total frame size.  for example only for jumbo frames */
2104 #define E1000_ERT_2048 0x100
2105         if (hw->mac_type == e1000_82573)
2106                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2107
2108         /* Enable Receives */
2109         E1000_WRITE_REG(hw, RCTL, rctl);
2110 }
2111
2112 /**
2113  * e1000_free_tx_resources - Free Tx Resources per Queue
2114  * @adapter: board private structure
2115  * @tx_ring: Tx descriptor ring for a specific queue
2116  *
2117  * Free all transmit software resources
2118  **/
2119
2120 static void
2121 e1000_free_tx_resources(struct e1000_adapter *adapter,
2122                         struct e1000_tx_ring *tx_ring)
2123 {
2124         struct pci_dev *pdev = adapter->pdev;
2125
2126         e1000_clean_tx_ring(adapter, tx_ring);
2127
2128         vfree(tx_ring->buffer_info);
2129         tx_ring->buffer_info = NULL;
2130
2131         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2132
2133         tx_ring->desc = NULL;
2134 }
2135
2136 /**
2137  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2138  * @adapter: board private structure
2139  *
2140  * Free all transmit software resources
2141  **/
2142
2143 void
2144 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2145 {
2146         int i;
2147
2148         for (i = 0; i < adapter->num_tx_queues; i++)
2149                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2150 }
2151
2152 static void
2153 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2154                         struct e1000_buffer *buffer_info)
2155 {
2156         if (buffer_info->dma) {
2157                 pci_unmap_page(adapter->pdev,
2158                                 buffer_info->dma,
2159                                 buffer_info->length,
2160                                 PCI_DMA_TODEVICE);
2161                 buffer_info->dma = 0;
2162         }
2163         if (buffer_info->skb) {
2164                 dev_kfree_skb_any(buffer_info->skb);
2165                 buffer_info->skb = NULL;
2166         }
2167         /* buffer_info must be completely set up in the transmit path */
2168 }
2169
2170 /**
2171  * e1000_clean_tx_ring - Free Tx Buffers
2172  * @adapter: board private structure
2173  * @tx_ring: ring to be cleaned
2174  **/
2175
2176 static void
2177 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2178                     struct e1000_tx_ring *tx_ring)
2179 {
2180         struct e1000_buffer *buffer_info;
2181         unsigned long size;
2182         unsigned int i;
2183
2184         /* Free all the Tx ring sk_buffs */
2185
2186         for (i = 0; i < tx_ring->count; i++) {
2187                 buffer_info = &tx_ring->buffer_info[i];
2188                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2189         }
2190
2191         size = sizeof(struct e1000_buffer) * tx_ring->count;
2192         memset(tx_ring->buffer_info, 0, size);
2193
2194         /* Zero out the descriptor ring */
2195
2196         memset(tx_ring->desc, 0, tx_ring->size);
2197
2198         tx_ring->next_to_use = 0;
2199         tx_ring->next_to_clean = 0;
2200         tx_ring->last_tx_tso = 0;
2201
2202         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2203         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2204 }
2205
2206 /**
2207  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2208  * @adapter: board private structure
2209  **/
2210
2211 static void
2212 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2213 {
2214         int i;
2215
2216         for (i = 0; i < adapter->num_tx_queues; i++)
2217                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2218 }
2219
2220 /**
2221  * e1000_free_rx_resources - Free Rx Resources
2222  * @adapter: board private structure
2223  * @rx_ring: ring to clean the resources from
2224  *
2225  * Free all receive software resources
2226  **/
2227
2228 static void
2229 e1000_free_rx_resources(struct e1000_adapter *adapter,
2230                         struct e1000_rx_ring *rx_ring)
2231 {
2232         struct pci_dev *pdev = adapter->pdev;
2233
2234         e1000_clean_rx_ring(adapter, rx_ring);
2235
2236         vfree(rx_ring->buffer_info);
2237         rx_ring->buffer_info = NULL;
2238         kfree(rx_ring->ps_page);
2239         rx_ring->ps_page = NULL;
2240         kfree(rx_ring->ps_page_dma);
2241         rx_ring->ps_page_dma = NULL;
2242
2243         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2244
2245         rx_ring->desc = NULL;
2246 }
2247
2248 /**
2249  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2250  * @adapter: board private structure
2251  *
2252  * Free all receive software resources
2253  **/
2254
2255 void
2256 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2257 {
2258         int i;
2259
2260         for (i = 0; i < adapter->num_rx_queues; i++)
2261                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2262 }
2263
2264 /**
2265  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2266  * @adapter: board private structure
2267  * @rx_ring: ring to free buffers from
2268  **/
2269
2270 static void
2271 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2272                     struct e1000_rx_ring *rx_ring)
2273 {
2274         struct e1000_buffer *buffer_info;
2275         struct e1000_ps_page *ps_page;
2276         struct e1000_ps_page_dma *ps_page_dma;
2277         struct pci_dev *pdev = adapter->pdev;
2278         unsigned long size;
2279         unsigned int i, j;
2280
2281         /* Free all the Rx ring sk_buffs */
2282         for (i = 0; i < rx_ring->count; i++) {
2283                 buffer_info = &rx_ring->buffer_info[i];
2284                 if (buffer_info->skb) {
2285                         pci_unmap_single(pdev,
2286                                          buffer_info->dma,
2287                                          buffer_info->length,
2288                                          PCI_DMA_FROMDEVICE);
2289
2290                         dev_kfree_skb(buffer_info->skb);
2291                         buffer_info->skb = NULL;
2292                 }
2293                 ps_page = &rx_ring->ps_page[i];
2294                 ps_page_dma = &rx_ring->ps_page_dma[i];
2295                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2296                         if (!ps_page->ps_page[j]) break;
2297                         pci_unmap_page(pdev,
2298                                        ps_page_dma->ps_page_dma[j],
2299                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2300                         ps_page_dma->ps_page_dma[j] = 0;
2301                         put_page(ps_page->ps_page[j]);
2302                         ps_page->ps_page[j] = NULL;
2303                 }
2304         }
2305
2306         size = sizeof(struct e1000_buffer) * rx_ring->count;
2307         memset(rx_ring->buffer_info, 0, size);
2308         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2309         memset(rx_ring->ps_page, 0, size);
2310         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2311         memset(rx_ring->ps_page_dma, 0, size);
2312
2313         /* Zero out the descriptor ring */
2314
2315         memset(rx_ring->desc, 0, rx_ring->size);
2316
2317         rx_ring->next_to_clean = 0;
2318         rx_ring->next_to_use = 0;
2319
2320         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2321         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2322 }
2323
2324 /**
2325  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2326  * @adapter: board private structure
2327  **/
2328
2329 static void
2330 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2331 {
2332         int i;
2333
2334         for (i = 0; i < adapter->num_rx_queues; i++)
2335                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2336 }
2337
2338 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2339  * and memory write and invalidate disabled for certain operations
2340  */
2341 static void
2342 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2343 {
2344         struct net_device *netdev = adapter->netdev;
2345         uint32_t rctl;
2346
2347         e1000_pci_clear_mwi(&adapter->hw);
2348
2349         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2350         rctl |= E1000_RCTL_RST;
2351         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2352         E1000_WRITE_FLUSH(&adapter->hw);
2353         mdelay(5);
2354
2355         if (netif_running(netdev))
2356                 e1000_clean_all_rx_rings(adapter);
2357 }
2358
2359 static void
2360 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2361 {
2362         struct net_device *netdev = adapter->netdev;
2363         uint32_t rctl;
2364
2365         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2366         rctl &= ~E1000_RCTL_RST;
2367         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2368         E1000_WRITE_FLUSH(&adapter->hw);
2369         mdelay(5);
2370
2371         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2372                 e1000_pci_set_mwi(&adapter->hw);
2373
2374         if (netif_running(netdev)) {
2375                 /* No need to loop, because 82542 supports only 1 queue */
2376                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2377                 e1000_configure_rx(adapter);
2378                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2379         }
2380 }
2381
2382 /**
2383  * e1000_set_mac - Change the Ethernet Address of the NIC
2384  * @netdev: network interface device structure
2385  * @p: pointer to an address structure
2386  *
2387  * Returns 0 on success, negative on failure
2388  **/
2389
2390 static int
2391 e1000_set_mac(struct net_device *netdev, void *p)
2392 {
2393         struct e1000_adapter *adapter = netdev_priv(netdev);
2394         struct sockaddr *addr = p;
2395
2396         if (!is_valid_ether_addr(addr->sa_data))
2397                 return -EADDRNOTAVAIL;
2398
2399         /* 82542 2.0 needs to be in reset to write receive address registers */
2400
2401         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2402                 e1000_enter_82542_rst(adapter);
2403
2404         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2405         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2406
2407         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2408
2409         /* With 82571 controllers, LAA may be overwritten (with the default)
2410          * due to controller reset from the other port. */
2411         if (adapter->hw.mac_type == e1000_82571) {
2412                 /* activate the work around */
2413                 adapter->hw.laa_is_present = 1;
2414
2415                 /* Hold a copy of the LAA in RAR[14] This is done so that
2416                  * between the time RAR[0] gets clobbered  and the time it
2417                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2418                  * of the RARs and no incoming packets directed to this port
2419                  * are dropped. Eventaully the LAA will be in RAR[0] and
2420                  * RAR[14] */
2421                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2422                                         E1000_RAR_ENTRIES - 1);
2423         }
2424
2425         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2426                 e1000_leave_82542_rst(adapter);
2427
2428         return 0;
2429 }
2430
2431 /**
2432  * e1000_set_multi - Multicast and Promiscuous mode set
2433  * @netdev: network interface device structure
2434  *
2435  * The set_multi entry point is called whenever the multicast address
2436  * list or the network interface flags are updated.  This routine is
2437  * responsible for configuring the hardware for proper multicast,
2438  * promiscuous mode, and all-multi behavior.
2439  **/
2440
2441 static void
2442 e1000_set_multi(struct net_device *netdev)
2443 {
2444         struct e1000_adapter *adapter = netdev_priv(netdev);
2445         struct e1000_hw *hw = &adapter->hw;
2446         struct dev_mc_list *mc_ptr;
2447         uint32_t rctl;
2448         uint32_t hash_value;
2449         int i, rar_entries = E1000_RAR_ENTRIES;
2450         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2451                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2452                                 E1000_NUM_MTA_REGISTERS;
2453
2454         if (adapter->hw.mac_type == e1000_ich8lan)
2455                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2456
2457         /* reserve RAR[14] for LAA over-write work-around */
2458         if (adapter->hw.mac_type == e1000_82571)
2459                 rar_entries--;
2460
2461         /* Check for Promiscuous and All Multicast modes */
2462
2463         rctl = E1000_READ_REG(hw, RCTL);
2464
2465         if (netdev->flags & IFF_PROMISC) {
2466                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2467         } else if (netdev->flags & IFF_ALLMULTI) {
2468                 rctl |= E1000_RCTL_MPE;
2469                 rctl &= ~E1000_RCTL_UPE;
2470         } else {
2471                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2472         }
2473
2474         E1000_WRITE_REG(hw, RCTL, rctl);
2475
2476         /* 82542 2.0 needs to be in reset to write receive address registers */
2477
2478         if (hw->mac_type == e1000_82542_rev2_0)
2479                 e1000_enter_82542_rst(adapter);
2480
2481         /* load the first 14 multicast address into the exact filters 1-14
2482          * RAR 0 is used for the station MAC adddress
2483          * if there are not 14 addresses, go ahead and clear the filters
2484          * -- with 82571 controllers only 0-13 entries are filled here
2485          */
2486         mc_ptr = netdev->mc_list;
2487
2488         for (i = 1; i < rar_entries; i++) {
2489                 if (mc_ptr) {
2490                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2491                         mc_ptr = mc_ptr->next;
2492                 } else {
2493                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2494                         E1000_WRITE_FLUSH(hw);
2495                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2496                         E1000_WRITE_FLUSH(hw);
2497                 }
2498         }
2499
2500         /* clear the old settings from the multicast hash table */
2501
2502         for (i = 0; i < mta_reg_count; i++) {
2503                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2504                 E1000_WRITE_FLUSH(hw);
2505         }
2506
2507         /* load any remaining addresses into the hash table */
2508
2509         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2510                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2511                 e1000_mta_set(hw, hash_value);
2512         }
2513
2514         if (hw->mac_type == e1000_82542_rev2_0)
2515                 e1000_leave_82542_rst(adapter);
2516 }
2517
2518 /* Need to wait a few seconds after link up to get diagnostic information from
2519  * the phy */
2520
2521 static void
2522 e1000_update_phy_info(unsigned long data)
2523 {
2524         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2525         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2526 }
2527
2528 /**
2529  * e1000_82547_tx_fifo_stall - Timer Call-back
2530  * @data: pointer to adapter cast into an unsigned long
2531  **/
2532
2533 static void
2534 e1000_82547_tx_fifo_stall(unsigned long data)
2535 {
2536         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2537         struct net_device *netdev = adapter->netdev;
2538         uint32_t tctl;
2539
2540         if (atomic_read(&adapter->tx_fifo_stall)) {
2541                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2542                     E1000_READ_REG(&adapter->hw, TDH)) &&
2543                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2544                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2545                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2546                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2547                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2548                         E1000_WRITE_REG(&adapter->hw, TCTL,
2549                                         tctl & ~E1000_TCTL_EN);
2550                         E1000_WRITE_REG(&adapter->hw, TDFT,
2551                                         adapter->tx_head_addr);
2552                         E1000_WRITE_REG(&adapter->hw, TDFH,
2553                                         adapter->tx_head_addr);
2554                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2555                                         adapter->tx_head_addr);
2556                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2557                                         adapter->tx_head_addr);
2558                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2559                         E1000_WRITE_FLUSH(&adapter->hw);
2560
2561                         adapter->tx_fifo_head = 0;
2562                         atomic_set(&adapter->tx_fifo_stall, 0);
2563                         netif_wake_queue(netdev);
2564                 } else {
2565                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2566                 }
2567         }
2568 }
2569
2570 /**
2571  * e1000_watchdog - Timer Call-back
2572  * @data: pointer to adapter cast into an unsigned long
2573  **/
2574 static void
2575 e1000_watchdog(unsigned long data)
2576 {
2577         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2578         struct net_device *netdev = adapter->netdev;
2579         struct e1000_tx_ring *txdr = adapter->tx_ring;
2580         uint32_t link, tctl;
2581         int32_t ret_val;
2582
2583         ret_val = e1000_check_for_link(&adapter->hw);
2584         if ((ret_val == E1000_ERR_PHY) &&
2585             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2586             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2587                 /* See e1000_kumeran_lock_loss_workaround() */
2588                 DPRINTK(LINK, INFO,
2589                         "Gigabit has been disabled, downgrading speed\n");
2590         }
2591
2592         if (adapter->hw.mac_type == e1000_82573) {
2593                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2594                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2595                         e1000_update_mng_vlan(adapter);
2596         }
2597
2598         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2599            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2600                 link = !adapter->hw.serdes_link_down;
2601         else
2602                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2603
2604         if (link) {
2605                 if (!netif_carrier_ok(netdev)) {
2606                         uint32_t ctrl;
2607                         boolean_t txb2b = 1;
2608                         e1000_get_speed_and_duplex(&adapter->hw,
2609                                                    &adapter->link_speed,
2610                                                    &adapter->link_duplex);
2611
2612                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2613                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2614                                 "Flow Control: %s\n",
2615                                 adapter->link_speed,
2616                                 adapter->link_duplex == FULL_DUPLEX ?
2617                                 "Full Duplex" : "Half Duplex",
2618                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2619                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2620                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2621                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2622
2623                         /* tweak tx_queue_len according to speed/duplex
2624                          * and adjust the timeout factor */
2625                         netdev->tx_queue_len = adapter->tx_queue_len;
2626                         adapter->tx_timeout_factor = 1;
2627                         switch (adapter->link_speed) {
2628                         case SPEED_10:
2629                                 txb2b = 0;
2630                                 netdev->tx_queue_len = 10;
2631                                 adapter->tx_timeout_factor = 8;
2632                                 break;
2633                         case SPEED_100:
2634                                 txb2b = 0;
2635                                 netdev->tx_queue_len = 100;
2636                                 /* maybe add some timeout factor ? */
2637                                 break;
2638                         }
2639
2640                         if ((adapter->hw.mac_type == e1000_82571 ||
2641                              adapter->hw.mac_type == e1000_82572) &&
2642                             txb2b == 0) {
2643                                 uint32_t tarc0;
2644                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2645                                 tarc0 &= ~(1 << 21);
2646                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2647                         }
2648
2649                         /* disable TSO for pcie and 10/100 speeds, to avoid
2650                          * some hardware issues */
2651                         if (!adapter->tso_force &&
2652                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2653                                 switch (adapter->link_speed) {
2654                                 case SPEED_10:
2655                                 case SPEED_100:
2656                                         DPRINTK(PROBE,INFO,
2657                                         "10/100 speed: disabling TSO\n");
2658                                         netdev->features &= ~NETIF_F_TSO;
2659                                         netdev->features &= ~NETIF_F_TSO6;
2660                                         break;
2661                                 case SPEED_1000:
2662                                         netdev->features |= NETIF_F_TSO;
2663                                         netdev->features |= NETIF_F_TSO6;
2664                                         break;
2665                                 default:
2666                                         /* oops */
2667                                         break;
2668                                 }
2669                         }
2670
2671                         /* enable transmits in the hardware, need to do this
2672                          * after setting TARC0 */
2673                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2674                         tctl |= E1000_TCTL_EN;
2675                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2676
2677                         netif_carrier_on(netdev);
2678                         netif_wake_queue(netdev);
2679                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2680                         adapter->smartspeed = 0;
2681                 } else {
2682                         /* make sure the receive unit is started */
2683                         if (adapter->hw.rx_needs_kicking) {
2684                                 struct e1000_hw *hw = &adapter->hw;
2685                                 uint32_t rctl = E1000_READ_REG(hw, RCTL);
2686                                 E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2687                         }
2688                 }
2689         } else {
2690                 if (netif_carrier_ok(netdev)) {
2691                         adapter->link_speed = 0;
2692                         adapter->link_duplex = 0;
2693                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2694                         netif_carrier_off(netdev);
2695                         netif_stop_queue(netdev);
2696                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2697
2698                         /* 80003ES2LAN workaround--
2699                          * For packet buffer work-around on link down event;
2700                          * disable receives in the ISR and
2701                          * reset device here in the watchdog
2702                          */
2703                         if (adapter->hw.mac_type == e1000_80003es2lan)
2704                                 /* reset device */
2705                                 schedule_work(&adapter->reset_task);
2706                 }
2707
2708                 e1000_smartspeed(adapter);
2709         }
2710
2711         e1000_update_stats(adapter);
2712
2713         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2714         adapter->tpt_old = adapter->stats.tpt;
2715         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2716         adapter->colc_old = adapter->stats.colc;
2717
2718         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2719         adapter->gorcl_old = adapter->stats.gorcl;
2720         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2721         adapter->gotcl_old = adapter->stats.gotcl;
2722
2723         e1000_update_adaptive(&adapter->hw);
2724
2725         if (!netif_carrier_ok(netdev)) {
2726                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2727                         /* We've lost link, so the controller stops DMA,
2728                          * but we've got queued Tx work that's never going
2729                          * to get done, so reset controller to flush Tx.
2730                          * (Do the reset outside of interrupt context). */
2731                         adapter->tx_timeout_count++;
2732                         schedule_work(&adapter->reset_task);
2733                 }
2734         }
2735
2736         /* Cause software interrupt to ensure rx ring is cleaned */
2737         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2738
2739         /* Force detection of hung controller every watchdog period */
2740         adapter->detect_tx_hung = TRUE;
2741
2742         /* With 82571 controllers, LAA may be overwritten due to controller
2743          * reset from the other port. Set the appropriate LAA in RAR[0] */
2744         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2745                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2746
2747         /* Reset the timer */
2748         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2749 }
2750
2751 enum latency_range {
2752         lowest_latency = 0,
2753         low_latency = 1,
2754         bulk_latency = 2,
2755         latency_invalid = 255
2756 };
2757
2758 /**
2759  * e1000_update_itr - update the dynamic ITR value based on statistics
2760  *      Stores a new ITR value based on packets and byte
2761  *      counts during the last interrupt.  The advantage of per interrupt
2762  *      computation is faster updates and more accurate ITR for the current
2763  *      traffic pattern.  Constants in this function were computed
2764  *      based on theoretical maximum wire speed and thresholds were set based
2765  *      on testing data as well as attempting to minimize response time
2766  *      while increasing bulk throughput.
2767  *      this functionality is controlled by the InterruptThrottleRate module
2768  *      parameter (see e1000_param.c)
2769  * @adapter: pointer to adapter
2770  * @itr_setting: current adapter->itr
2771  * @packets: the number of packets during this measurement interval
2772  * @bytes: the number of bytes during this measurement interval
2773  **/
2774 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2775                                    uint16_t itr_setting,
2776                                    int packets,
2777                                    int bytes)
2778 {
2779         unsigned int retval = itr_setting;
2780         struct e1000_hw *hw = &adapter->hw;
2781
2782         if (unlikely(hw->mac_type < e1000_82540))
2783                 goto update_itr_done;
2784
2785         if (packets == 0)
2786                 goto update_itr_done;
2787
2788         switch (itr_setting) {
2789         case lowest_latency:
2790                 /* jumbo frames get bulk treatment*/
2791                 if (bytes/packets > 8000)
2792                         retval = bulk_latency;
2793                 else if ((packets < 5) && (bytes > 512))
2794                         retval = low_latency;
2795                 break;
2796         case low_latency:  /* 50 usec aka 20000 ints/s */
2797                 if (bytes > 10000) {
2798                         /* jumbo frames need bulk latency setting */
2799                         if (bytes/packets > 8000)
2800                                 retval = bulk_latency;
2801                         else if ((packets < 10) || ((bytes/packets) > 1200))
2802                                 retval = bulk_latency;
2803                         else if ((packets > 35))
2804                                 retval = lowest_latency;
2805                 } else if (bytes/packets > 2000)
2806                         retval = bulk_latency;
2807                 else if (packets <= 2 && bytes < 512)
2808                         retval = lowest_latency;
2809                 break;
2810         case bulk_latency: /* 250 usec aka 4000 ints/s */
2811                 if (bytes > 25000) {
2812                         if (packets > 35)
2813                                 retval = low_latency;
2814                 } else if (bytes < 6000) {
2815                         retval = low_latency;
2816                 }
2817                 break;
2818         }
2819
2820 update_itr_done:
2821         return retval;
2822 }
2823
2824 static void e1000_set_itr(struct e1000_adapter *adapter)
2825 {
2826         struct e1000_hw *hw = &adapter->hw;
2827         uint16_t current_itr;
2828         uint32_t new_itr = adapter->itr;
2829
2830         if (unlikely(hw->mac_type < e1000_82540))
2831                 return;
2832
2833         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2834         if (unlikely(adapter->link_speed != SPEED_1000)) {
2835                 current_itr = 0;
2836                 new_itr = 4000;
2837                 goto set_itr_now;
2838         }
2839
2840         adapter->tx_itr = e1000_update_itr(adapter,
2841                                     adapter->tx_itr,
2842                                     adapter->total_tx_packets,
2843                                     adapter->total_tx_bytes);
2844         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2845         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2846                 adapter->tx_itr = low_latency;
2847
2848         adapter->rx_itr = e1000_update_itr(adapter,
2849                                     adapter->rx_itr,
2850                                     adapter->total_rx_packets,
2851                                     adapter->total_rx_bytes);
2852         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2853         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2854                 adapter->rx_itr = low_latency;
2855
2856         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2857
2858         switch (current_itr) {
2859         /* counts and packets in update_itr are dependent on these numbers */
2860         case lowest_latency:
2861                 new_itr = 70000;
2862                 break;
2863         case low_latency:
2864                 new_itr = 20000; /* aka hwitr = ~200 */
2865                 break;
2866         case bulk_latency:
2867                 new_itr = 4000;
2868                 break;
2869         default:
2870                 break;
2871         }
2872
2873 set_itr_now:
2874         if (new_itr != adapter->itr) {
2875                 /* this attempts to bias the interrupt rate towards Bulk
2876                  * by adding intermediate steps when interrupt rate is
2877                  * increasing */
2878                 new_itr = new_itr > adapter->itr ?
2879                              min(adapter->itr + (new_itr >> 2), new_itr) :
2880                              new_itr;
2881                 adapter->itr = new_itr;
2882                 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2883         }
2884
2885         return;
2886 }
2887
2888 #define E1000_TX_FLAGS_CSUM             0x00000001
2889 #define E1000_TX_FLAGS_VLAN             0x00000002
2890 #define E1000_TX_FLAGS_TSO              0x00000004
2891 #define E1000_TX_FLAGS_IPV4             0x00000008
2892 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2893 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2894
2895 static int
2896 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2897           struct sk_buff *skb)
2898 {
2899         struct e1000_context_desc *context_desc;
2900         struct e1000_buffer *buffer_info;
2901         unsigned int i;
2902         uint32_t cmd_length = 0;
2903         uint16_t ipcse = 0, tucse, mss;
2904         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2905         int err;
2906
2907         if (skb_is_gso(skb)) {
2908                 if (skb_header_cloned(skb)) {
2909                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2910                         if (err)
2911                                 return err;
2912                 }
2913
2914                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2915                 mss = skb_shinfo(skb)->gso_size;
2916                 if (skb->protocol == htons(ETH_P_IP)) {
2917                         skb->nh.iph->tot_len = 0;
2918                         skb->nh.iph->check = 0;
2919                         skb->h.th->check =
2920                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2921                                                    skb->nh.iph->daddr,
2922                                                    0,
2923                                                    IPPROTO_TCP,
2924                                                    0);
2925                         cmd_length = E1000_TXD_CMD_IP;
2926                         ipcse = skb->h.raw - skb->data - 1;
2927                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2928                         skb->nh.ipv6h->payload_len = 0;
2929                         skb->h.th->check =
2930                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2931                                                  &skb->nh.ipv6h->daddr,
2932                                                  0,
2933                                                  IPPROTO_TCP,
2934                                                  0);
2935                         ipcse = 0;
2936                 }
2937                 ipcss = skb->nh.raw - skb->data;
2938                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2939                 tucss = skb->h.raw - skb->data;
2940                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2941                 tucse = 0;
2942
2943                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2944                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2945
2946                 i = tx_ring->next_to_use;
2947                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2948                 buffer_info = &tx_ring->buffer_info[i];
2949
2950                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2951                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2952                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2953                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2954                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2955                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2956                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2957                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2958                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2959
2960                 buffer_info->time_stamp = jiffies;
2961                 buffer_info->next_to_watch = i;
2962
2963                 if (++i == tx_ring->count) i = 0;
2964                 tx_ring->next_to_use = i;
2965
2966                 return TRUE;
2967         }
2968         return FALSE;
2969 }
2970
2971 static boolean_t
2972 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2973               struct sk_buff *skb)
2974 {
2975         struct e1000_context_desc *context_desc;
2976         struct e1000_buffer *buffer_info;
2977         unsigned int i;
2978         uint8_t css;
2979
2980         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2981                 css = skb->h.raw - skb->data;
2982
2983                 i = tx_ring->next_to_use;
2984                 buffer_info = &tx_ring->buffer_info[i];
2985                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2986
2987                 context_desc->lower_setup.ip_config = 0;
2988                 context_desc->upper_setup.tcp_fields.tucss = css;
2989                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2990                 context_desc->upper_setup.tcp_fields.tucse = 0;
2991                 context_desc->tcp_seg_setup.data = 0;
2992                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2993
2994                 buffer_info->time_stamp = jiffies;
2995                 buffer_info->next_to_watch = i;
2996
2997                 if (unlikely(++i == tx_ring->count)) i = 0;
2998                 tx_ring->next_to_use = i;
2999
3000                 return TRUE;
3001         }
3002
3003         return FALSE;
3004 }
3005
3006 #define E1000_MAX_TXD_PWR       12
3007 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
3008
3009 static int
3010 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3011              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
3012              unsigned int nr_frags, unsigned int mss)
3013 {
3014         struct e1000_buffer *buffer_info;
3015         unsigned int len = skb->len;
3016         unsigned int offset = 0, size, count = 0, i;
3017         unsigned int f;
3018         len -= skb->data_len;
3019
3020         i = tx_ring->next_to_use;
3021
3022         while (len) {
3023                 buffer_info = &tx_ring->buffer_info[i];
3024                 size = min(len, max_per_txd);
3025                 /* Workaround for Controller erratum --
3026                  * descriptor for non-tso packet in a linear SKB that follows a
3027                  * tso gets written back prematurely before the data is fully
3028                  * DMA'd to the controller */
3029                 if (!skb->data_len && tx_ring->last_tx_tso &&
3030                     !skb_is_gso(skb)) {
3031                         tx_ring->last_tx_tso = 0;
3032                         size -= 4;
3033                 }
3034
3035                 /* Workaround for premature desc write-backs
3036                  * in TSO mode.  Append 4-byte sentinel desc */
3037                 if (unlikely(mss && !nr_frags && size == len && size > 8))
3038                         size -= 4;
3039                 /* work-around for errata 10 and it applies
3040                  * to all controllers in PCI-X mode
3041                  * The fix is to make sure that the first descriptor of a
3042                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3043                  */
3044                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3045                                 (size > 2015) && count == 0))
3046                         size = 2015;
3047
3048                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
3049                  * terminating buffers within evenly-aligned dwords. */
3050                 if (unlikely(adapter->pcix_82544 &&
3051                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3052                    size > 4))
3053                         size -= 4;
3054
3055                 buffer_info->length = size;
3056                 buffer_info->dma =
3057                         pci_map_single(adapter->pdev,
3058                                 skb->data + offset,
3059                                 size,
3060                                 PCI_DMA_TODEVICE);
3061                 buffer_info->time_stamp = jiffies;
3062                 buffer_info->next_to_watch = i;
3063
3064                 len -= size;
3065                 offset += size;
3066                 count++;
3067                 if (unlikely(++i == tx_ring->count)) i = 0;
3068         }
3069
3070         for (f = 0; f < nr_frags; f++) {
3071                 struct skb_frag_struct *frag;
3072
3073                 frag = &skb_shinfo(skb)->frags[f];
3074                 len = frag->size;
3075                 offset = frag->page_offset;
3076
3077                 while (len) {
3078                         buffer_info = &tx_ring->buffer_info[i];
3079                         size = min(len, max_per_txd);
3080                         /* Workaround for premature desc write-backs
3081                          * in TSO mode.  Append 4-byte sentinel desc */
3082                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3083                                 size -= 4;
3084                         /* Workaround for potential 82544 hang in PCI-X.
3085                          * Avoid terminating buffers within evenly-aligned
3086                          * dwords. */
3087                         if (unlikely(adapter->pcix_82544 &&
3088                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3089                            size > 4))
3090                                 size -= 4;
3091
3092                         buffer_info->length = size;
3093                         buffer_info->dma =
3094                                 pci_map_page(adapter->pdev,
3095                                         frag->page,
3096                                         offset,
3097                                         size,
3098                                         PCI_DMA_TODEVICE);
3099                         buffer_info->time_stamp = jiffies;
3100                         buffer_info->next_to_watch = i;
3101
3102                         len -= size;
3103                         offset += size;
3104                         count++;
3105                         if (unlikely(++i == tx_ring->count)) i = 0;
3106                 }
3107         }
3108
3109         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3110         tx_ring->buffer_info[i].skb = skb;
3111         tx_ring->buffer_info[first].next_to_watch = i;
3112
3113         return count;
3114 }
3115
3116 static void
3117 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3118                int tx_flags, int count)
3119 {
3120         struct e1000_tx_desc *tx_desc = NULL;
3121         struct e1000_buffer *buffer_info;
3122         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3123         unsigned int i;
3124
3125         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3126                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3127                              E1000_TXD_CMD_TSE;
3128                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3129
3130                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3131                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3132         }
3133
3134         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3135                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3136                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3137         }
3138
3139         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3140                 txd_lower |= E1000_TXD_CMD_VLE;
3141                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3142         }
3143
3144         i = tx_ring->next_to_use;
3145
3146         while (count--) {
3147                 buffer_info = &tx_ring->buffer_info[i];
3148                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3149                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3150                 tx_desc->lower.data =
3151                         cpu_to_le32(txd_lower | buffer_info->length);
3152                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3153                 if (unlikely(++i == tx_ring->count)) i = 0;
3154         }
3155
3156         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3157
3158         /* Force memory writes to complete before letting h/w
3159          * know there are new descriptors to fetch.  (Only
3160          * applicable for weak-ordered memory model archs,
3161          * such as IA-64). */
3162         wmb();
3163
3164         tx_ring->next_to_use = i;
3165         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3166         /* we need this if more than one processor can write to our tail
3167          * at a time, it syncronizes IO on IA64/Altix systems */
3168         mmiowb();
3169 }
3170
3171 /**
3172  * 82547 workaround to avoid controller hang in half-duplex environment.
3173  * The workaround is to avoid queuing a large packet that would span
3174  * the internal Tx FIFO ring boundary by notifying the stack to resend
3175  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3176  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3177  * to the beginning of the Tx FIFO.
3178  **/
3179
3180 #define E1000_FIFO_HDR                  0x10
3181 #define E1000_82547_PAD_LEN             0x3E0
3182
3183 static int
3184 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3185 {
3186         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3187         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3188
3189         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
3190
3191         if (adapter->link_duplex != HALF_DUPLEX)
3192                 goto no_fifo_stall_required;
3193
3194         if (atomic_read(&adapter->tx_fifo_stall))
3195                 return 1;
3196
3197         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3198                 atomic_set(&adapter->tx_fifo_stall, 1);
3199                 return 1;
3200         }
3201
3202 no_fifo_stall_required:
3203         adapter->tx_fifo_head += skb_fifo_len;
3204         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3205                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3206         return 0;
3207 }
3208
3209 #define MINIMUM_DHCP_PACKET_SIZE 282
3210 static int
3211 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3212 {
3213         struct e1000_hw *hw =  &adapter->hw;
3214         uint16_t length, offset;
3215         if (vlan_tx_tag_present(skb)) {
3216                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3217                         ( adapter->hw.mng_cookie.status &
3218                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3219                         return 0;
3220         }
3221         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3222                 struct ethhdr *eth = (struct ethhdr *) skb->data;
3223                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3224                         const struct iphdr *ip =
3225                                 (struct iphdr *)((uint8_t *)skb->data+14);
3226                         if (IPPROTO_UDP == ip->protocol) {
3227                                 struct udphdr *udp =
3228                                         (struct udphdr *)((uint8_t *)ip +
3229                                                 (ip->ihl << 2));
3230                                 if (ntohs(udp->dest) == 67) {
3231                                         offset = (uint8_t *)udp + 8 - skb->data;
3232                                         length = skb->len - offset;
3233
3234                                         return e1000_mng_write_dhcp_info(hw,
3235                                                         (uint8_t *)udp + 8,
3236                                                         length);
3237                                 }
3238                         }
3239                 }
3240         }
3241         return 0;
3242 }
3243
3244 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3245 {
3246         struct e1000_adapter *adapter = netdev_priv(netdev);
3247         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3248
3249         netif_stop_queue(netdev);
3250         /* Herbert's original patch had:
3251          *  smp_mb__after_netif_stop_queue();
3252          * but since that doesn't exist yet, just open code it. */
3253         smp_mb();
3254
3255         /* We need to check again in a case another CPU has just
3256          * made room available. */
3257         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3258                 return -EBUSY;
3259
3260         /* A reprieve! */
3261         netif_start_queue(netdev);
3262         ++adapter->restart_queue;
3263         return 0;
3264 }
3265
3266 static int e1000_maybe_stop_tx(struct net_device *netdev,
3267                                struct e1000_tx_ring *tx_ring, int size)
3268 {
3269         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3270                 return 0;
3271         return __e1000_maybe_stop_tx(netdev, size);
3272 }
3273
3274 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3275 static int
3276 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3277 {
3278         struct e1000_adapter *adapter = netdev_priv(netdev);
3279         struct e1000_tx_ring *tx_ring;
3280         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3281         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3282         unsigned int tx_flags = 0;
3283         unsigned int len = skb->len;
3284         unsigned long flags;
3285         unsigned int nr_frags = 0;
3286         unsigned int mss = 0;
3287         int count = 0;
3288         int tso;
3289         unsigned int f;
3290         len -= skb->data_len;
3291
3292         /* This goes back to the question of how to logically map a tx queue
3293          * to a flow.  Right now, performance is impacted slightly negatively
3294          * if using multiple tx queues.  If the stack breaks away from a
3295          * single qdisc implementation, we can look at this again. */
3296         tx_ring = adapter->tx_ring;
3297
3298         if (unlikely(skb->len <= 0)) {
3299                 dev_kfree_skb_any(skb);
3300                 return NETDEV_TX_OK;
3301         }
3302
3303         /* 82571 and newer doesn't need the workaround that limited descriptor
3304          * length to 4kB */
3305         if (adapter->hw.mac_type >= e1000_82571)
3306                 max_per_txd = 8192;
3307
3308         mss = skb_shinfo(skb)->gso_size;
3309         /* The controller does a simple calculation to
3310          * make sure there is enough room in the FIFO before
3311          * initiating the DMA for each buffer.  The calc is:
3312          * 4 = ceil(buffer len/mss).  To make sure we don't
3313          * overrun the FIFO, adjust the max buffer len if mss
3314          * drops. */
3315         if (mss) {
3316                 uint8_t hdr_len;
3317                 max_per_txd = min(mss << 2, max_per_txd);
3318                 max_txd_pwr = fls(max_per_txd) - 1;
3319
3320                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3321                 * points to just header, pull a few bytes of payload from
3322                 * frags into skb->data */
3323                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3324                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3325                         switch (adapter->hw.mac_type) {
3326                                 unsigned int pull_size;
3327                         case e1000_82544:
3328                                 /* Make sure we have room to chop off 4 bytes,
3329                                  * and that the end alignment will work out to
3330                                  * this hardware's requirements
3331                                  * NOTE: this is a TSO only workaround
3332                                  * if end byte alignment not correct move us
3333                                  * into the next dword */
3334                                 if ((unsigned long)(skb->tail - 1) & 4)
3335                                         break;
3336                                 /* fall through */
3337                         case e1000_82571:
3338                         case e1000_82572:
3339                         case e1000_82573:
3340                         case e1000_ich8lan:
3341                                 pull_size = min((unsigned int)4, skb->data_len);
3342                                 if (!__pskb_pull_tail(skb, pull_size)) {
3343                                         DPRINTK(DRV, ERR,
3344                                                 "__pskb_pull_tail failed.\n");
3345                                         dev_kfree_skb_any(skb);
3346                                         return NETDEV_TX_OK;
3347                                 }
3348                                 len = skb->len - skb->data_len;
3349                                 break;
3350                         default:
3351                                 /* do nothing */
3352                                 break;
3353                         }
3354                 }
3355         }
3356
3357         /* reserve a descriptor for the offload context */
3358         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3359                 count++;
3360         count++;
3361
3362         /* Controller Erratum workaround */
3363         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3364                 count++;
3365
3366         count += TXD_USE_COUNT(len, max_txd_pwr);
3367
3368         if (adapter->pcix_82544)
3369                 count++;
3370
3371         /* work-around for errata 10 and it applies to all controllers
3372          * in PCI-X mode, so add one more descriptor to the count
3373          */
3374         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3375                         (len > 2015)))
3376                 count++;
3377
3378         nr_frags = skb_shinfo(skb)->nr_frags;
3379         for (f = 0; f < nr_frags; f++)
3380                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3381                                        max_txd_pwr);
3382         if (adapter->pcix_82544)
3383                 count += nr_frags;
3384
3385
3386         if (adapter->hw.tx_pkt_filtering &&
3387             (adapter->hw.mac_type == e1000_82573))
3388                 e1000_transfer_dhcp_info(adapter, skb);
3389
3390         local_irq_save(flags);
3391         if (!spin_trylock(&tx_ring->tx_lock)) {
3392                 /* Collision - tell upper layer to requeue */
3393                 local_irq_restore(flags);
3394                 return NETDEV_TX_LOCKED;
3395         }
3396
3397         /* need: count + 2 desc gap to keep tail from touching
3398          * head, otherwise try next time */
3399         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3400                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3401                 return NETDEV_TX_BUSY;
3402         }
3403
3404         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3405                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3406                         netif_stop_queue(netdev);
3407                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3408                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3409                         return NETDEV_TX_BUSY;
3410                 }
3411         }
3412
3413         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3414                 tx_flags |= E1000_TX_FLAGS_VLAN;
3415                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3416         }
3417
3418         first = tx_ring->next_to_use;
3419
3420         tso = e1000_tso(adapter, tx_ring, skb);
3421         if (tso < 0) {
3422                 dev_kfree_skb_any(skb);
3423                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3424                 return NETDEV_TX_OK;
3425         }
3426
3427         if (likely(tso)) {
3428                 tx_ring->last_tx_tso = 1;
3429                 tx_flags |= E1000_TX_FLAGS_TSO;
3430         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3431                 tx_flags |= E1000_TX_FLAGS_CSUM;
3432
3433         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3434          * 82571 hardware supports TSO capabilities for IPv6 as well...
3435          * no longer assume, we must. */
3436         if (likely(skb->protocol == htons(ETH_P_IP)))
3437                 tx_flags |= E1000_TX_FLAGS_IPV4;
3438
3439         e1000_tx_queue(adapter, tx_ring, tx_flags,
3440                        e1000_tx_map(adapter, tx_ring, skb, first,
3441                                     max_per_txd, nr_frags, mss));
3442
3443         netdev->trans_start = jiffies;
3444
3445         /* Make sure there is space in the ring for the next send. */
3446         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3447
3448         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3449         return NETDEV_TX_OK;
3450 }
3451
3452 /**
3453  * e1000_tx_timeout - Respond to a Tx Hang
3454  * @netdev: network interface device structure
3455  **/
3456
3457 static void
3458 e1000_tx_timeout(struct net_device *netdev)
3459 {
3460         struct e1000_adapter *adapter = netdev_priv(netdev);
3461
3462         /* Do the reset outside of interrupt context */
3463         adapter->tx_timeout_count++;
3464         schedule_work(&adapter->reset_task);
3465 }
3466
3467 static void
3468 e1000_reset_task(struct work_struct *work)
3469 {
3470         struct e1000_adapter *adapter =
3471                 container_of(work, struct e1000_adapter, reset_task);
3472
3473         e1000_reinit_locked(adapter);
3474 }
3475
3476 /**
3477  * e1000_get_stats - Get System Network Statistics
3478  * @netdev: network interface device structure
3479  *
3480  * Returns the address of the device statistics structure.
3481  * The statistics are actually updated from the timer callback.
3482  **/
3483
3484 static struct net_device_stats *
3485 e1000_get_stats(struct net_device *netdev)
3486 {
3487         struct e1000_adapter *adapter = netdev_priv(netdev);
3488
3489         /* only return the current stats */
3490         return &adapter->net_stats;
3491 }
3492
3493 /**
3494  * e1000_change_mtu - Change the Maximum Transfer Unit
3495  * @netdev: network interface device structure
3496  * @new_mtu: new value for maximum frame size
3497  *
3498  * Returns 0 on success, negative on failure
3499  **/
3500
3501 static int
3502 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3503 {
3504         struct e1000_adapter *adapter = netdev_priv(netdev);
3505         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3506         uint16_t eeprom_data = 0;
3507
3508         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3509             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3510                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3511                 return -EINVAL;
3512         }
3513
3514         /* Adapter-specific max frame size limits. */
3515         switch (adapter->hw.mac_type) {
3516         case e1000_undefined ... e1000_82542_rev2_1:
3517         case e1000_ich8lan:
3518                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3519                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3520                         return -EINVAL;
3521                 }
3522                 break;
3523         case e1000_82573:
3524                 /* Jumbo Frames not supported if:
3525                  * - this is not an 82573L device
3526                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3527                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3528                                   &eeprom_data);
3529                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3530                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3531                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3532                                 DPRINTK(PROBE, ERR,
3533                                         "Jumbo Frames not supported.\n");
3534                                 return -EINVAL;
3535                         }
3536                         break;
3537                 }
3538                 /* ERT will be enabled later to enable wire speed receives */
3539
3540                 /* fall through to get support */
3541         case e1000_82571:
3542         case e1000_82572:
3543         case e1000_80003es2lan:
3544 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3545                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3546                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3547                         return -EINVAL;
3548                 }
3549                 break;
3550         default:
3551                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3552                 break;
3553         }
3554
3555         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3556          * means we reserve 2 more, this pushes us to allocate from the next
3557          * larger slab size
3558          * i.e. RXBUFFER_2048 --> size-4096 slab */
3559
3560         if (max_frame <= E1000_RXBUFFER_256)
3561                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3562         else if (max_frame <= E1000_RXBUFFER_512)
3563                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3564         else if (max_frame <= E1000_RXBUFFER_1024)
3565                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3566         else if (max_frame <= E1000_RXBUFFER_2048)
3567                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3568         else if (max_frame <= E1000_RXBUFFER_4096)
3569                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3570         else if (max_frame <= E1000_RXBUFFER_8192)
3571                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3572         else if (max_frame <= E1000_RXBUFFER_16384)
3573                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3574
3575         /* adjust allocation if LPE protects us, and we aren't using SBP */
3576         if (!adapter->hw.tbi_compatibility_on &&
3577             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3578              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3579                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3580
3581         netdev->mtu = new_mtu;
3582         adapter->hw.max_frame_size = max_frame;
3583
3584         if (netif_running(netdev))
3585                 e1000_reinit_locked(adapter);
3586
3587         return 0;
3588 }
3589
3590 /**
3591  * e1000_update_stats - Update the board statistics counters
3592  * @adapter: board private structure
3593  **/
3594
3595 void
3596 e1000_update_stats(struct e1000_adapter *adapter)
3597 {
3598         struct e1000_hw *hw = &adapter->hw;
3599         struct pci_dev *pdev = adapter->pdev;
3600         unsigned long flags;
3601         uint16_t phy_tmp;
3602
3603 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3604
3605         /*
3606          * Prevent stats update while adapter is being reset, or if the pci
3607          * connection is down.
3608          */
3609         if (adapter->link_speed == 0)
3610                 return;
3611         if (pci_channel_offline(pdev))
3612                 return;
3613
3614         spin_lock_irqsave(&adapter->stats_lock, flags);
3615
3616         /* these counters are modified from e1000_adjust_tbi_stats,
3617          * called from the interrupt context, so they must only
3618          * be written while holding adapter->stats_lock
3619          */
3620
3621         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3622         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3623         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3624         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3625         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3626         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3627         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3628
3629         if (adapter->hw.mac_type != e1000_ich8lan) {
3630                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3631                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3632                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3633                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3634                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3635                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3636         }
3637
3638         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3639         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3640         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3641         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3642         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3643         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3644         adapter->stats.dc += E1000_READ_REG(hw, DC);
3645         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3646         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3647         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3648         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3649         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3650         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3651         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3652         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3653         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3654         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3655         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3656         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3657         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3658         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3659         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3660         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3661         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3662         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3663         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3664
3665         if (adapter->hw.mac_type != e1000_ich8lan) {
3666                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3667                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3668                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3669                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3670                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3671                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3672         }
3673
3674         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3675         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3676
3677         /* used for adaptive IFS */
3678
3679         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3680         adapter->stats.tpt += hw->tx_packet_delta;
3681         hw->collision_delta = E1000_READ_REG(hw, COLC);
3682         adapter->stats.colc += hw->collision_delta;
3683
3684         if (hw->mac_type >= e1000_82543) {
3685                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3686                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3687                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3688                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3689                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3690                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3691         }
3692         if (hw->mac_type > e1000_82547_rev_2) {
3693                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3694                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3695
3696                 if (adapter->hw.mac_type != e1000_ich8lan) {
3697                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3698                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3699                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3700                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3701                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3702                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3703                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3704                 }
3705         }
3706
3707         /* Fill out the OS statistics structure */
3708         adapter->net_stats.rx_packets = adapter->stats.gprc;
3709         adapter->net_stats.tx_packets = adapter->stats.gptc;
3710         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3711         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3712         adapter->net_stats.multicast = adapter->stats.mprc;
3713         adapter->net_stats.collisions = adapter->stats.colc;
3714
3715         /* Rx Errors */
3716
3717         /* RLEC on some newer hardware can be incorrect so build
3718         * our own version based on RUC and ROC */
3719         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3720                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3721                 adapter->stats.ruc + adapter->stats.roc +
3722                 adapter->stats.cexterr;
3723         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3724         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3725         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3726         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3727         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3728
3729         /* Tx Errors */
3730         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3731         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3732         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3733         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3734         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3735         if (adapter->hw.bad_tx_carr_stats_fd &&
3736             adapter->link_duplex == FULL_DUPLEX) {
3737                 adapter->net_stats.tx_carrier_errors = 0;
3738                 adapter->stats.tncrs = 0;
3739         }
3740
3741         /* Tx Dropped needs to be maintained elsewhere */
3742
3743         /* Phy Stats */
3744         if (hw->media_type == e1000_media_type_copper) {
3745                 if ((adapter->link_speed == SPEED_1000) &&
3746                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3747                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3748                         adapter->phy_stats.idle_errors += phy_tmp;
3749                 }
3750
3751                 if ((hw->mac_type <= e1000_82546) &&
3752                    (hw->phy_type == e1000_phy_m88) &&
3753                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3754                         adapter->phy_stats.receive_errors += phy_tmp;
3755         }
3756
3757         /* Management Stats */
3758         if (adapter->hw.has_smbus) {
3759                 adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC);
3760                 adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC);
3761                 adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC);
3762         }
3763
3764         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3765 }
3766 #ifdef CONFIG_PCI_MSI
3767
3768 /**
3769  * e1000_intr_msi - Interrupt Handler
3770  * @irq: interrupt number
3771  * @data: pointer to a network interface device structure
3772  **/
3773
3774 static irqreturn_t
3775 e1000_intr_msi(int irq, void *data)
3776 {
3777         struct net_device *netdev = data;
3778         struct e1000_adapter *adapter = netdev_priv(netdev);
3779         struct e1000_hw *hw = &adapter->hw;
3780 #ifndef CONFIG_E1000_NAPI
3781         int i;
3782 #endif
3783         uint32_t icr = E1000_READ_REG(hw, ICR);
3784
3785 #ifdef CONFIG_E1000_NAPI
3786         /* read ICR disables interrupts using IAM, so keep up with our
3787          * enable/disable accounting */
3788         atomic_inc(&adapter->irq_sem);
3789 #endif
3790         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3791                 hw->get_link_status = 1;
3792                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3793                  * link down event; disable receives here in the ISR and reset
3794                  * adapter in watchdog */
3795                 if (netif_carrier_ok(netdev) &&
3796                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3797                         /* disable receives */
3798                         uint32_t rctl = E1000_READ_REG(hw, RCTL);
3799                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3800                 }
3801                 /* guard against interrupt when we're going down */
3802                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3803                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3804         }
3805
3806 #ifdef CONFIG_E1000_NAPI
3807         if (likely(netif_rx_schedule_prep(netdev))) {
3808                 adapter->total_tx_bytes = 0;
3809                 adapter->total_tx_packets = 0;
3810                 adapter->total_rx_bytes = 0;
3811                 adapter->total_rx_packets = 0;
3812                 __netif_rx_schedule(netdev);
3813         } else
3814                 e1000_irq_enable(adapter);
3815 #else
3816         adapter->total_tx_bytes = 0;
3817         adapter->total_rx_bytes = 0;
3818         adapter->total_tx_packets = 0;
3819         adapter->total_rx_packets = 0;
3820
3821         for (i = 0; i < E1000_MAX_INTR; i++)
3822                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3823                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3824                         break;
3825
3826         if (likely(adapter->itr_setting & 3))
3827                 e1000_set_itr(adapter);
3828 #endif
3829
3830         return IRQ_HANDLED;
3831 }
3832 #endif
3833
3834 /**
3835  * e1000_intr - Interrupt Handler
3836  * @irq: interrupt number
3837  * @data: pointer to a network interface device structure
3838  **/
3839
3840 static irqreturn_t
3841 e1000_intr(int irq, void *data)
3842 {
3843         struct net_device *netdev = data;
3844         struct e1000_adapter *adapter = netdev_priv(netdev);
3845         struct e1000_hw *hw = &adapter->hw;
3846         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3847 #ifndef CONFIG_E1000_NAPI
3848         int i;
3849 #endif
3850         if (unlikely(!icr))
3851                 return IRQ_NONE;  /* Not our interrupt */
3852
3853 #ifdef CONFIG_E1000_NAPI
3854         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3855          * not set, then the adapter didn't send an interrupt */
3856         if (unlikely(hw->mac_type >= e1000_82571 &&
3857                      !(icr & E1000_ICR_INT_ASSERTED)))
3858                 return IRQ_NONE;
3859
3860         /* Interrupt Auto-Mask...upon reading ICR,
3861          * interrupts are masked.  No need for the
3862          * IMC write, but it does mean we should
3863          * account for it ASAP. */
3864         if (likely(hw->mac_type >= e1000_82571))
3865                 atomic_inc(&adapter->irq_sem);
3866 #endif
3867
3868         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3869                 hw->get_link_status = 1;
3870                 /* 80003ES2LAN workaround--
3871                  * For packet buffer work-around on link down event;
3872                  * disable receives here in the ISR and
3873                  * reset adapter in watchdog
3874                  */
3875                 if (netif_carrier_ok(netdev) &&
3876                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3877                         /* disable receives */
3878                         rctl = E1000_READ_REG(hw, RCTL);
3879                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3880                 }
3881                 /* guard against interrupt when we're going down */
3882                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3883                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3884         }
3885
3886 #ifdef CONFIG_E1000_NAPI
3887         if (unlikely(hw->mac_type < e1000_82571)) {
3888                 /* disable interrupts, without the synchronize_irq bit */
3889                 atomic_inc(&adapter->irq_sem);
3890                 E1000_WRITE_REG(hw, IMC, ~0);
3891                 E1000_WRITE_FLUSH(hw);
3892         }
3893         if (likely(netif_rx_schedule_prep(netdev))) {
3894                 adapter->total_tx_bytes = 0;
3895                 adapter->total_tx_packets = 0;
3896                 adapter->total_rx_bytes = 0;
3897                 adapter->total_rx_packets = 0;
3898                 __netif_rx_schedule(netdev);
3899         } else
3900                 /* this really should not happen! if it does it is basically a
3901                  * bug, but not a hard error, so enable ints and continue */
3902                 e1000_irq_enable(adapter);
3903 #else
3904         /* Writing IMC and IMS is needed for 82547.
3905          * Due to Hub Link bus being occupied, an interrupt
3906          * de-assertion message is not able to be sent.
3907          * When an interrupt assertion message is generated later,
3908          * two messages are re-ordered and sent out.
3909          * That causes APIC to think 82547 is in de-assertion
3910          * state, while 82547 is in assertion state, resulting
3911          * in dead lock. Writing IMC forces 82547 into
3912          * de-assertion state.
3913          */
3914         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3915                 atomic_inc(&adapter->irq_sem);
3916                 E1000_WRITE_REG(hw, IMC, ~0);
3917         }
3918
3919         adapter->total_tx_bytes = 0;
3920         adapter->total_rx_bytes = 0;
3921         adapter->total_tx_packets = 0;
3922         adapter->total_rx_packets = 0;
3923
3924         for (i = 0; i < E1000_MAX_INTR; i++)
3925                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3926                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3927                         break;
3928
3929         if (likely(adapter->itr_setting & 3))
3930                 e1000_set_itr(adapter);
3931
3932         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3933                 e1000_irq_enable(adapter);
3934
3935 #endif
3936         return IRQ_HANDLED;
3937 }
3938
3939 #ifdef CONFIG_E1000_NAPI
3940 /**
3941  * e1000_clean - NAPI Rx polling callback
3942  * @adapter: board private structure
3943  **/
3944
3945 static int
3946 e1000_clean(struct net_device *poll_dev, int *budget)
3947 {
3948         struct e1000_adapter *adapter;
3949         int work_to_do = min(*budget, poll_dev->quota);
3950         int tx_cleaned = 0, work_done = 0;
3951
3952         /* Must NOT use netdev_priv macro here. */
3953         adapter = poll_dev->priv;
3954
3955         /* Keep link state information with original netdev */
3956         if (!netif_carrier_ok(poll_dev))
3957                 goto quit_polling;
3958
3959         /* e1000_clean is called per-cpu.  This lock protects
3960          * tx_ring[0] from being cleaned by multiple cpus
3961          * simultaneously.  A failure obtaining the lock means
3962          * tx_ring[0] is currently being cleaned anyway. */
3963         if (spin_trylock(&adapter->tx_queue_lock)) {
3964                 tx_cleaned = e1000_clean_tx_irq(adapter,
3965                                                 &adapter->tx_ring[0]);
3966                 spin_unlock(&adapter->tx_queue_lock);
3967         }
3968
3969         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3970                           &work_done, work_to_do);
3971
3972         *budget -= work_done;
3973         poll_dev->quota -= work_done;
3974
3975         /* If no Tx and not enough Rx work done, exit the polling mode */
3976         if ((!tx_cleaned && (work_done == 0)) ||
3977            !netif_running(poll_dev)) {
3978 quit_polling:
3979                 if (likely(adapter->itr_setting & 3))
3980                         e1000_set_itr(adapter);
3981                 netif_rx_complete(poll_dev);
3982                 e1000_irq_enable(adapter);
3983                 return 0;
3984         }
3985
3986         return 1;
3987 }
3988
3989 #endif
3990 /**
3991  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3992  * @adapter: board private structure
3993  **/
3994
3995 static boolean_t
3996 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3997                    struct e1000_tx_ring *tx_ring)
3998 {
3999         struct net_device *netdev = adapter->netdev;
4000         struct e1000_tx_desc *tx_desc, *eop_desc;
4001         struct e1000_buffer *buffer_info;
4002         unsigned int i, eop;
4003 #ifdef CONFIG_E1000_NAPI
4004         unsigned int count = 0;
4005 #endif
4006         boolean_t cleaned = FALSE;
4007         unsigned int total_tx_bytes=0, total_tx_packets=0;
4008
4009         i = tx_ring->next_to_clean;
4010         eop = tx_ring->buffer_info[i].next_to_watch;
4011         eop_desc = E1000_TX_DESC(*tx_ring, eop);
4012
4013         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
4014                 for (cleaned = FALSE; !cleaned; ) {
4015                         tx_desc = E1000_TX_DESC(*tx_ring, i);
4016                         buffer_info = &tx_ring->buffer_info[i];
4017                         cleaned = (i == eop);
4018
4019                         if (cleaned) {
4020                                 struct sk_buff *skb = buffer_info->skb;
4021                                 unsigned int segs, bytecount;
4022                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
4023                                 /* multiply data chunks by size of headers */
4024                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
4025                                             skb->len;
4026                                 total_tx_packets += segs;
4027                                 total_tx_bytes += bytecount;
4028                         }
4029                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
4030                         tx_desc->upper.data = 0;
4031
4032                         if (unlikely(++i == tx_ring->count)) i = 0;
4033                 }
4034
4035                 eop = tx_ring->buffer_info[i].next_to_watch;
4036                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
4037 #ifdef CONFIG_E1000_NAPI
4038 #define E1000_TX_WEIGHT 64
4039                 /* weight of a sort for tx, to avoid endless transmit cleanup */
4040                 if (count++ == E1000_TX_WEIGHT) break;
4041 #endif
4042         }
4043
4044         tx_ring->next_to_clean = i;
4045
4046 #define TX_WAKE_THRESHOLD 32
4047         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
4048                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
4049                 /* Make sure that anybody stopping the queue after this
4050                  * sees the new next_to_clean.
4051                  */
4052                 smp_mb();
4053                 if (netif_queue_stopped(netdev)) {
4054                         netif_wake_queue(netdev);
4055                         ++adapter->restart_queue;
4056                 }
4057         }
4058
4059         if (adapter->detect_tx_hung) {
4060                 /* Detect a transmit hang in hardware, this serializes the
4061                  * check with the clearing of time_stamp and movement of i */
4062                 adapter->detect_tx_hung = FALSE;
4063                 if (tx_ring->buffer_info[eop].dma &&
4064                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
4065                                (adapter->tx_timeout_factor * HZ))
4066                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
4067                          E1000_STATUS_TXOFF)) {
4068
4069                         /* detected Tx unit hang */
4070                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
4071                                         "  Tx Queue             <%lu>\n"
4072                                         "  TDH                  <%x>\n"
4073                                         "  TDT                  <%x>\n"
4074                                         "  next_to_use          <%x>\n"
4075                                         "  next_to_clean        <%x>\n"
4076                                         "buffer_info[next_to_clean]\n"
4077                                         "  time_stamp           <%lx>\n"
4078                                         "  next_to_watch        <%x>\n"
4079                                         "  jiffies              <%lx>\n"
4080                                         "  next_to_watch.status <%x>\n",
4081                                 (unsigned long)((tx_ring - adapter->tx_ring) /
4082                                         sizeof(struct e1000_tx_ring)),
4083                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
4084                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
4085                                 tx_ring->next_to_use,
4086                                 tx_ring->next_to_clean,
4087                                 tx_ring->buffer_info[eop].time_stamp,
4088                                 eop,
4089                                 jiffies,
4090                                 eop_desc->upper.fields.status);
4091                         netif_stop_queue(netdev);
4092                 }
4093         }
4094         adapter->total_tx_bytes += total_tx_bytes;
4095         adapter->total_tx_packets += total_tx_packets;
4096         return cleaned;
4097 }
4098
4099 /**
4100  * e1000_rx_checksum - Receive Checksum Offload for 82543
4101  * @adapter:     board private structure
4102  * @status_err:  receive descriptor status and error fields
4103  * @csum:        receive descriptor csum field
4104  * @sk_buff:     socket buffer with received data
4105  **/
4106
4107 static void
4108 e1000_rx_checksum(struct e1000_adapter *adapter,
4109                   uint32_t status_err, uint32_t csum,
4110                   struct sk_buff *skb)
4111 {
4112         uint16_t status = (uint16_t)status_err;
4113         uint8_t errors = (uint8_t)(status_err >> 24);
4114         skb->ip_summed = CHECKSUM_NONE;
4115
4116         /* 82543 or newer only */
4117         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
4118         /* Ignore Checksum bit is set */
4119         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4120         /* TCP/UDP checksum error bit is set */
4121         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4122                 /* let the stack verify checksum errors */
4123                 adapter->hw_csum_err++;
4124                 return;
4125         }
4126         /* TCP/UDP Checksum has not been calculated */
4127         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
4128                 if (!(status & E1000_RXD_STAT_TCPCS))
4129                         return;
4130         } else {
4131                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4132                         return;
4133         }
4134         /* It must be a TCP or UDP packet with a valid checksum */
4135         if (likely(status & E1000_RXD_STAT_TCPCS)) {
4136                 /* TCP checksum is good */
4137                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4138         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
4139                 /* IP fragment with UDP payload */
4140                 /* Hardware complements the payload checksum, so we undo it
4141                  * and then put the value in host order for further stack use.
4142                  */
4143                 csum = ntohl(csum ^ 0xFFFF);
4144                 skb->csum = csum;
4145                 skb->ip_summed = CHECKSUM_COMPLETE;
4146         }
4147         adapter->hw_csum_good++;
4148 }
4149
4150 /**
4151  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4152  * @adapter: board private structure
4153  **/
4154
4155 static boolean_t
4156 #ifdef CONFIG_E1000_NAPI
4157 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4158                    struct e1000_rx_ring *rx_ring,
4159                    int *work_done, int work_to_do)
4160 #else
4161 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4162                    struct e1000_rx_ring *rx_ring)
4163 #endif
4164 {
4165         struct net_device *netdev = adapter->netdev;
4166         struct pci_dev *pdev = adapter->pdev;
4167         struct e1000_rx_desc *rx_desc, *next_rxd;
4168         struct e1000_buffer *buffer_info, *next_buffer;
4169         unsigned long flags;
4170         uint32_t length;
4171         uint8_t last_byte;
4172         unsigned int i;
4173         int cleaned_count = 0;
4174         boolean_t cleaned = FALSE;
4175         unsigned int total_rx_bytes=0, total_rx_packets=0;
4176
4177         i = rx_ring->next_to_clean;
4178         rx_desc = E1000_RX_DESC(*rx_ring, i);
4179         buffer_info = &rx_ring->buffer_info[i];
4180
4181         while (rx_desc->status & E1000_RXD_STAT_DD) {
4182                 struct sk_buff *skb;
4183                 u8 status;
4184
4185 #ifdef CONFIG_E1000_NAPI
4186                 if (*work_done >= work_to_do)
4187                         break;
4188                 (*work_done)++;
4189 #endif
4190                 status = rx_desc->status;
4191                 skb = buffer_info->skb;
4192                 buffer_info->skb = NULL;
4193
4194                 prefetch(skb->data - NET_IP_ALIGN);
4195
4196                 if (++i == rx_ring->count) i = 0;
4197                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4198                 prefetch(next_rxd);
4199
4200                 next_buffer = &rx_ring->buffer_info[i];
4201
4202                 cleaned = TRUE;
4203                 cleaned_count++;
4204                 pci_unmap_single(pdev,
4205                                  buffer_info->dma,
4206                                  buffer_info->length,
4207                                  PCI_DMA_FROMDEVICE);
4208
4209                 length = le16_to_cpu(rx_desc->length);
4210
4211                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4212                         /* All receives must fit into a single buffer */
4213                         E1000_DBG("%s: Receive packet consumed multiple"
4214                                   " buffers\n", netdev->name);
4215                         /* recycle */
4216                         buffer_info->skb = skb;
4217                         goto next_desc;
4218                 }
4219
4220                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4221                         last_byte = *(skb->data + length - 1);
4222                         if (TBI_ACCEPT(&adapter->hw, status,
4223                                       rx_desc->errors, length, last_byte)) {
4224                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4225                                 e1000_tbi_adjust_stats(&adapter->hw,
4226                                                        &adapter->stats,
4227                                                        length, skb->data);
4228                                 spin_unlock_irqrestore(&adapter->stats_lock,
4229                                                        flags);
4230                                 length--;
4231                         } else {
4232                                 /* recycle */
4233                                 buffer_info->skb = skb;
4234                                 goto next_desc;
4235                         }
4236                 }
4237
4238                 /* adjust length to remove Ethernet CRC, this must be
4239                  * done after the TBI_ACCEPT workaround above */
4240                 length -= 4;
4241
4242                 /* probably a little skewed due to removing CRC */
4243                 total_rx_bytes += length;
4244                 total_rx_packets++;
4245
4246                 /* code added for copybreak, this should improve
4247                  * performance for small packets with large amounts
4248                  * of reassembly being done in the stack */
4249                 if (length < copybreak) {
4250                         struct sk_buff *new_skb =
4251                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4252                         if (new_skb) {
4253                                 skb_reserve(new_skb, NET_IP_ALIGN);
4254                                 memcpy(new_skb->data - NET_IP_ALIGN,
4255                                        skb->data - NET_IP_ALIGN,
4256                                        length + NET_IP_ALIGN);
4257                                 /* save the skb in buffer_info as good */
4258                                 buffer_info->skb = skb;
4259                                 skb = new_skb;
4260                         }
4261                         /* else just continue with the old one */
4262                 }
4263                 /* end copybreak code */
4264                 skb_put(skb, length);
4265
4266                 /* Receive Checksum Offload */
4267                 e1000_rx_checksum(adapter,
4268                                   (uint32_t)(status) |
4269                                   ((uint32_t)(rx_desc->errors) << 24),
4270                                   le16_to_cpu(rx_desc->csum), skb);
4271
4272                 skb->protocol = eth_type_trans(skb, netdev);
4273 #ifdef CONFIG_E1000_NAPI
4274                 if (unlikely(adapter->vlgrp &&
4275                             (status & E1000_RXD_STAT_VP))) {
4276                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4277                                                  le16_to_cpu(rx_desc->special) &
4278                                                  E1000_RXD_SPC_VLAN_MASK);
4279                 } else {
4280                         netif_receive_skb(skb);
4281                 }
4282 #else /* CONFIG_E1000_NAPI */
4283                 if (unlikely(adapter->vlgrp &&
4284                             (status & E1000_RXD_STAT_VP))) {
4285                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4286                                         le16_to_cpu(rx_desc->special) &
4287                                         E1000_RXD_SPC_VLAN_MASK);
4288                 } else {
4289                         netif_rx(skb);
4290                 }
4291 #endif /* CONFIG_E1000_NAPI */
4292                 netdev->last_rx = jiffies;
4293
4294 next_desc:
4295                 rx_desc->status = 0;
4296
4297                 /* return some buffers to hardware, one at a time is too slow */
4298                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4299                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4300                         cleaned_count = 0;
4301                 }
4302
4303                 /* use prefetched values */
4304                 rx_desc = next_rxd;
4305                 buffer_info = next_buffer;
4306         }
4307         rx_ring->next_to_clean = i;
4308
4309         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4310         if (cleaned_count)
4311                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4312
4313         adapter->total_rx_packets += total_rx_packets;
4314         adapter->total_rx_bytes += total_rx_bytes;
4315         return cleaned;
4316 }
4317
4318 /**
4319  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4320  * @adapter: board private structure
4321  **/
4322
4323 static boolean_t
4324 #ifdef CONFIG_E1000_NAPI
4325 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4326                       struct e1000_rx_ring *rx_ring,
4327                       int *work_done, int work_to_do)
4328 #else
4329 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4330                       struct e1000_rx_ring *rx_ring)
4331 #endif
4332 {
4333         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4334         struct net_device *netdev = adapter->netdev;
4335         struct pci_dev *pdev = adapter->pdev;
4336         struct e1000_buffer *buffer_info, *next_buffer;
4337         struct e1000_ps_page *ps_page;
4338         struct e1000_ps_page_dma *ps_page_dma;
4339         struct sk_buff *skb;
4340         unsigned int i, j;
4341         uint32_t length, staterr;
4342         int cleaned_count = 0;
4343         boolean_t cleaned = FALSE;
4344         unsigned int total_rx_bytes=0, total_rx_packets=0;
4345
4346         i = rx_ring->next_to_clean;
4347         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4348         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4349         buffer_info = &rx_ring->buffer_info[i];
4350
4351         while (staterr & E1000_RXD_STAT_DD) {
4352                 ps_page = &rx_ring->ps_page[i];
4353                 ps_page_dma = &rx_ring->ps_page_dma[i];
4354 #ifdef CONFIG_E1000_NAPI
4355                 if (unlikely(*work_done >= work_to_do))
4356                         break;
4357                 (*work_done)++;
4358 #endif
4359                 skb = buffer_info->skb;
4360
4361                 /* in the packet split case this is header only */
4362                 prefetch(skb->data - NET_IP_ALIGN);
4363
4364                 if (++i == rx_ring->count) i = 0;
4365                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4366                 prefetch(next_rxd);
4367
4368                 next_buffer = &rx_ring->buffer_info[i];
4369
4370                 cleaned = TRUE;
4371                 cleaned_count++;
4372                 pci_unmap_single(pdev, buffer_info->dma,
4373                                  buffer_info->length,
4374                                  PCI_DMA_FROMDEVICE);
4375
4376                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4377                         E1000_DBG("%s: Packet Split buffers didn't pick up"
4378                                   " the full packet\n", netdev->name);
4379                         dev_kfree_skb_irq(skb);
4380                         goto next_desc;
4381                 }
4382
4383                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4384                         dev_kfree_skb_irq(skb);
4385                         goto next_desc;
4386                 }
4387
4388                 length = le16_to_cpu(rx_desc->wb.middle.length0);
4389
4390                 if (unlikely(!length)) {
4391                         E1000_DBG("%s: Last part of the packet spanning"
4392                                   " multiple descriptors\n", netdev->name);
4393                         dev_kfree_skb_irq(skb);
4394                         goto next_desc;
4395                 }
4396
4397                 /* Good Receive */
4398                 skb_put(skb, length);
4399
4400                 {
4401                 /* this looks ugly, but it seems compiler issues make it
4402                    more efficient than reusing j */
4403                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4404
4405                 /* page alloc/put takes too long and effects small packet
4406                  * throughput, so unsplit small packets and save the alloc/put*/
4407                 if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
4408                         u8 *vaddr;
4409                         /* there is no documentation about how to call
4410                          * kmap_atomic, so we can't hold the mapping
4411                          * very long */
4412                         pci_dma_sync_single_for_cpu(pdev,
4413                                 ps_page_dma->ps_page_dma[0],
4414                                 PAGE_SIZE,
4415                                 PCI_DMA_FROMDEVICE);
4416                         vaddr = kmap_atomic(ps_page->ps_page[0],
4417                                             KM_SKB_DATA_SOFTIRQ);
4418                         memcpy(skb->tail, vaddr, l1);
4419                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4420                         pci_dma_sync_single_for_device(pdev,
4421                                 ps_page_dma->ps_page_dma[0],
4422                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4423                         /* remove the CRC */
4424                         l1 -= 4;
4425                         skb_put(skb, l1);
4426                         goto copydone;
4427                 } /* if */
4428                 }
4429
4430                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4431                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4432                                 break;
4433                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4434                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4435                         ps_page_dma->ps_page_dma[j] = 0;
4436                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4437                                            length);
4438                         ps_page->ps_page[j] = NULL;
4439                         skb->len += length;
4440                         skb->data_len += length;
4441                         skb->truesize += length;
4442                 }
4443
4444                 /* strip the ethernet crc, problem is we're using pages now so
4445                  * this whole operation can get a little cpu intensive */
4446                 pskb_trim(skb, skb->len - 4);
4447
4448 copydone:
4449                 total_rx_bytes += skb->len;
4450                 total_rx_packets++;
4451
4452                 e1000_rx_checksum(adapter, staterr,
4453                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4454                 skb->protocol = eth_type_trans(skb, netdev);
4455
4456                 if (likely(rx_desc->wb.upper.header_status &
4457                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4458                         adapter->rx_hdr_split++;
4459 #ifdef CONFIG_E1000_NAPI
4460                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4461                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4462                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4463                                 E1000_RXD_SPC_VLAN_MASK);
4464                 } else {
4465                         netif_receive_skb(skb);
4466                 }
4467 #else /* CONFIG_E1000_NAPI */
4468                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4469                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4470                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4471                                 E1000_RXD_SPC_VLAN_MASK);
4472                 } else {
4473                         netif_rx(skb);
4474                 }
4475 #endif /* CONFIG_E1000_NAPI */
4476                 netdev->last_rx = jiffies;
4477
4478 next_desc:
4479                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4480                 buffer_info->skb = NULL;
4481
4482                 /* return some buffers to hardware, one at a time is too slow */
4483                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4484                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4485                         cleaned_count = 0;
4486                 }
4487
4488                 /* use prefetched values */
4489                 rx_desc = next_rxd;
4490                 buffer_info = next_buffer;
4491
4492                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4493         }
4494         rx_ring->next_to_clean = i;
4495
4496         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4497         if (cleaned_count)
4498                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4499
4500         adapter->total_rx_packets += total_rx_packets;
4501         adapter->total_rx_bytes += total_rx_bytes;
4502         return cleaned;
4503 }
4504
4505 /**
4506  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4507  * @adapter: address of board private structure
4508  **/
4509
4510 static void
4511 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4512                        struct e1000_rx_ring *rx_ring,
4513                        int cleaned_count)
4514 {
4515         struct net_device *netdev = adapter->netdev;
4516         struct pci_dev *pdev = adapter->pdev;
4517         struct e1000_rx_desc *rx_desc;
4518         struct e1000_buffer *buffer_info;
4519         struct sk_buff *skb;
4520         unsigned int i;
4521         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4522
4523         i = rx_ring->next_to_use;
4524         buffer_info = &rx_ring->buffer_info[i];
4525
4526         while (cleaned_count--) {
4527                 skb = buffer_info->skb;
4528                 if (skb) {
4529                         skb_trim(skb, 0);
4530                         goto map_skb;
4531                 }
4532
4533                 skb = netdev_alloc_skb(netdev, bufsz);
4534                 if (unlikely(!skb)) {
4535                         /* Better luck next round */
4536                         adapter->alloc_rx_buff_failed++;
4537                         break;
4538                 }
4539
4540                 /* Fix for errata 23, can't cross 64kB boundary */
4541                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4542                         struct sk_buff *oldskb = skb;
4543                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4544                                              "at %p\n", bufsz, skb->data);
4545                         /* Try again, without freeing the previous */
4546                         skb = netdev_alloc_skb(netdev, bufsz);
4547                         /* Failed allocation, critical failure */
4548                         if (!skb) {
4549                                 dev_kfree_skb(oldskb);
4550                                 break;
4551                         }
4552
4553                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4554                                 /* give up */
4555                                 dev_kfree_skb(skb);
4556                                 dev_kfree_skb(oldskb);
4557                                 break; /* while !buffer_info->skb */
4558                         }
4559
4560                         /* Use new allocation */
4561                         dev_kfree_skb(oldskb);
4562                 }
4563                 /* Make buffer alignment 2 beyond a 16 byte boundary
4564                  * this will result in a 16 byte aligned IP header after
4565                  * the 14 byte MAC header is removed
4566                  */
4567                 skb_reserve(skb, NET_IP_ALIGN);
4568
4569                 buffer_info->skb = skb;
4570                 buffer_info->length = adapter->rx_buffer_len;
4571 map_skb:
4572                 buffer_info->dma = pci_map_single(pdev,
4573                                                   skb->data,
4574                                                   adapter->rx_buffer_len,
4575                                                   PCI_DMA_FROMDEVICE);
4576
4577                 /* Fix for errata 23, can't cross 64kB boundary */
4578                 if (!e1000_check_64k_bound(adapter,
4579                                         (void *)(unsigned long)buffer_info->dma,
4580                                         adapter->rx_buffer_len)) {
4581                         DPRINTK(RX_ERR, ERR,
4582                                 "dma align check failed: %u bytes at %p\n",
4583                                 adapter->rx_buffer_len,
4584                                 (void *)(unsigned long)buffer_info->dma);
4585                         dev_kfree_skb(skb);
4586                         buffer_info->skb = NULL;
4587
4588                         pci_unmap_single(pdev, buffer_info->dma,
4589                                          adapter->rx_buffer_len,
4590                                          PCI_DMA_FROMDEVICE);
4591
4592                         break; /* while !buffer_info->skb */
4593                 }
4594                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4595                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4596
4597                 if (unlikely(++i == rx_ring->count))
4598                         i = 0;
4599                 buffer_info = &rx_ring->buffer_info[i];
4600         }
4601
4602         if (likely(rx_ring->next_to_use != i)) {
4603                 rx_ring->next_to_use = i;
4604                 if (unlikely(i-- == 0))
4605                         i = (rx_ring->count - 1);
4606
4607                 /* Force memory writes to complete before letting h/w
4608                  * know there are new descriptors to fetch.  (Only
4609                  * applicable for weak-ordered memory model archs,
4610                  * such as IA-64). */
4611                 wmb();
4612                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4613         }
4614 }
4615
4616 /**
4617  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4618  * @adapter: address of board private structure
4619  **/
4620
4621 static void
4622 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4623                           struct e1000_rx_ring *rx_ring,
4624                           int cleaned_count)
4625 {
4626         struct net_device *netdev = adapter->netdev;
4627         struct pci_dev *pdev = adapter->pdev;
4628         union e1000_rx_desc_packet_split *rx_desc;
4629         struct e1000_buffer *buffer_info;
4630         struct e1000_ps_page *ps_page;
4631         struct e1000_ps_page_dma *ps_page_dma;
4632         struct sk_buff *skb;
4633         unsigned int i, j;
4634
4635         i = rx_ring->next_to_use;
4636         buffer_info = &rx_ring->buffer_info[i];
4637         ps_page = &rx_ring->ps_page[i];
4638         ps_page_dma = &rx_ring->ps_page_dma[i];
4639
4640         while (cleaned_count--) {
4641                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4642
4643                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4644                         if (j < adapter->rx_ps_pages) {
4645                                 if (likely(!ps_page->ps_page[j])) {
4646                                         ps_page->ps_page[j] =
4647                                                 alloc_page(GFP_ATOMIC);
4648                                         if (unlikely(!ps_page->ps_page[j])) {
4649                                                 adapter->alloc_rx_buff_failed++;
4650                                                 goto no_buffers;
4651                                         }
4652                                         ps_page_dma->ps_page_dma[j] =
4653                                                 pci_map_page(pdev,
4654                                                             ps_page->ps_page[j],
4655                                                             0, PAGE_SIZE,
4656                                                             PCI_DMA_FROMDEVICE);
4657                                 }
4658                                 /* Refresh the desc even if buffer_addrs didn't
4659                                  * change because each write-back erases
4660                                  * this info.
4661                                  */
4662                                 rx_desc->read.buffer_addr[j+1] =
4663                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4664                         } else
4665                                 rx_desc->read.buffer_addr[j+1] = ~0;
4666                 }
4667
4668                 skb = netdev_alloc_skb(netdev,
4669                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4670
4671                 if (unlikely(!skb)) {
4672                         adapter->alloc_rx_buff_failed++;
4673                         break;
4674                 }
4675
4676                 /* Make buffer alignment 2 beyond a 16 byte boundary
4677                  * this will result in a 16 byte aligned IP header after
4678                  * the 14 byte MAC header is removed
4679                  */
4680                 skb_reserve(skb, NET_IP_ALIGN);
4681
4682                 buffer_info->skb = skb;
4683                 buffer_info->length = adapter->rx_ps_bsize0;
4684                 buffer_info->dma = pci_map_single(pdev, skb->data,
4685                                                   adapter->rx_ps_bsize0,
4686                                                   PCI_DMA_FROMDEVICE);
4687
4688                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4689
4690                 if (unlikely(++i == rx_ring->count)) i = 0;
4691                 buffer_info = &rx_ring->buffer_info[i];
4692                 ps_page = &rx_ring->ps_page[i];
4693                 ps_page_dma = &rx_ring->ps_page_dma[i];
4694         }
4695
4696 no_buffers:
4697         if (likely(rx_ring->next_to_use != i)) {
4698                 rx_ring->next_to_use = i;
4699                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4700
4701                 /* Force memory writes to complete before letting h/w
4702                  * know there are new descriptors to fetch.  (Only
4703                  * applicable for weak-ordered memory model archs,
4704                  * such as IA-64). */
4705                 wmb();
4706                 /* Hardware increments by 16 bytes, but packet split
4707                  * descriptors are 32 bytes...so we increment tail
4708                  * twice as much.
4709                  */
4710                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4711         }
4712 }
4713
4714 /**
4715  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4716  * @adapter:
4717  **/
4718
4719 static void
4720 e1000_smartspeed(struct e1000_adapter *adapter)
4721 {
4722         uint16_t phy_status;
4723         uint16_t phy_ctrl;
4724
4725         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4726            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4727                 return;
4728
4729         if (adapter->smartspeed == 0) {
4730                 /* If Master/Slave config fault is asserted twice,
4731                  * we assume back-to-back */
4732                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4733                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4734                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4735                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4736                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4737                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4738                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4739                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4740                                             phy_ctrl);
4741                         adapter->smartspeed++;
4742                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4743                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4744                                                &phy_ctrl)) {
4745                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4746                                              MII_CR_RESTART_AUTO_NEG);
4747                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4748                                                     phy_ctrl);
4749                         }
4750                 }
4751                 return;
4752         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4753                 /* If still no link, perhaps using 2/3 pair cable */
4754                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4755                 phy_ctrl |= CR_1000T_MS_ENABLE;
4756                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4757                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4758                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4759                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4760                                      MII_CR_RESTART_AUTO_NEG);
4761                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4762                 }
4763         }
4764         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4765         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4766                 adapter->smartspeed = 0;
4767 }
4768
4769 /**
4770  * e1000_ioctl -
4771  * @netdev:
4772  * @ifreq:
4773  * @cmd:
4774  **/
4775
4776 static int
4777 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4778 {
4779         switch (cmd) {
4780         case SIOCGMIIPHY:
4781         case SIOCGMIIREG:
4782         case SIOCSMIIREG:
4783                 return e1000_mii_ioctl(netdev, ifr, cmd);
4784         default:
4785                 return -EOPNOTSUPP;
4786         }
4787 }
4788
4789 /**
4790  * e1000_mii_ioctl -
4791  * @netdev:
4792  * @ifreq:
4793  * @cmd:
4794  **/
4795
4796 static int
4797 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4798 {
4799         struct e1000_adapter *adapter = netdev_priv(netdev);
4800         struct mii_ioctl_data *data = if_mii(ifr);
4801         int retval;
4802         uint16_t mii_reg;
4803         uint16_t spddplx;
4804         unsigned long flags;
4805
4806         if (adapter->hw.media_type != e1000_media_type_copper)
4807                 return -EOPNOTSUPP;
4808
4809         switch (cmd) {
4810         case SIOCGMIIPHY:
4811                 data->phy_id = adapter->hw.phy_addr;
4812                 break;
4813         case SIOCGMIIREG:
4814                 if (!capable(CAP_NET_ADMIN))
4815                         return -EPERM;
4816                 spin_lock_irqsave(&adapter->stats_lock, flags);
4817                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4818                                    &data->val_out)) {
4819                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4820                         return -EIO;
4821                 }
4822                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4823                 break;
4824         case SIOCSMIIREG:
4825                 if (!capable(CAP_NET_ADMIN))
4826                         return -EPERM;
4827                 if (data->reg_num & ~(0x1F))
4828                         return -EFAULT;
4829                 mii_reg = data->val_in;
4830                 spin_lock_irqsave(&adapter->stats_lock, flags);
4831                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4832                                         mii_reg)) {
4833                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4834                         return -EIO;
4835                 }
4836                 if (adapter->hw.media_type == e1000_media_type_copper) {
4837                         switch (data->reg_num) {
4838                         case PHY_CTRL:
4839                                 if (mii_reg & MII_CR_POWER_DOWN)
4840                                         break;
4841                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4842                                         adapter->hw.autoneg = 1;
4843                                         adapter->hw.autoneg_advertised = 0x2F;
4844                                 } else {
4845                                         if (mii_reg & 0x40)
4846                                                 spddplx = SPEED_1000;
4847                                         else if (mii_reg & 0x2000)
4848                                                 spddplx = SPEED_100;
4849                                         else
4850                                                 spddplx = SPEED_10;
4851                                         spddplx += (mii_reg & 0x100)
4852                                                    ? DUPLEX_FULL :
4853                                                    DUPLEX_HALF;
4854                                         retval = e1000_set_spd_dplx(adapter,
4855                                                                     spddplx);
4856                                         if (retval) {
4857                                                 spin_unlock_irqrestore(
4858                                                         &adapter->stats_lock,
4859                                                         flags);
4860                                                 return retval;
4861                                         }
4862                                 }
4863                                 if (netif_running(adapter->netdev))
4864                                         e1000_reinit_locked(adapter);
4865                                 else
4866                                         e1000_reset(adapter);
4867                                 break;
4868                         case M88E1000_PHY_SPEC_CTRL:
4869                         case M88E1000_EXT_PHY_SPEC_CTRL:
4870                                 if (e1000_phy_reset(&adapter->hw)) {
4871                                         spin_unlock_irqrestore(
4872                                                 &adapter->stats_lock, flags);
4873                                         return -EIO;
4874                                 }
4875                                 break;
4876                         }
4877                 } else {
4878                         switch (data->reg_num) {
4879                         case PHY_CTRL:
4880                                 if (mii_reg & MII_CR_POWER_DOWN)
4881                                         break;
4882                                 if (netif_running(adapter->netdev))
4883                                         e1000_reinit_locked(adapter);
4884                                 else
4885                                         e1000_reset(adapter);
4886                                 break;
4887                         }
4888                 }
4889                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4890                 break;
4891         default:
4892                 return -EOPNOTSUPP;
4893         }
4894         return E1000_SUCCESS;
4895 }
4896
4897 void
4898 e1000_pci_set_mwi(struct e1000_hw *hw)
4899 {
4900         struct e1000_adapter *adapter = hw->back;
4901         int ret_val = pci_set_mwi(adapter->pdev);
4902
4903         if (ret_val)
4904                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4905 }
4906
4907 void
4908 e1000_pci_clear_mwi(struct e1000_hw *hw)
4909 {
4910         struct e1000_adapter *adapter = hw->back;
4911
4912         pci_clear_mwi(adapter->pdev);
4913 }
4914
4915 void
4916 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4917 {
4918         struct e1000_adapter *adapter = hw->back;
4919
4920         pci_read_config_word(adapter->pdev, reg, value);
4921 }
4922
4923 void
4924 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4925 {
4926         struct e1000_adapter *adapter = hw->back;
4927
4928         pci_write_config_word(adapter->pdev, reg, *value);
4929 }
4930
4931 int32_t
4932 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4933 {
4934     struct e1000_adapter *adapter = hw->back;
4935     uint16_t cap_offset;
4936
4937     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4938     if (!cap_offset)
4939         return -E1000_ERR_CONFIG;
4940
4941     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4942
4943     return E1000_SUCCESS;
4944 }
4945
4946 void
4947 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4948 {
4949         outl(value, port);
4950 }
4951
4952 static void
4953 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4954 {
4955         struct e1000_adapter *adapter = netdev_priv(netdev);
4956         uint32_t ctrl, rctl;
4957
4958         e1000_irq_disable(adapter);
4959         adapter->vlgrp = grp;
4960
4961         if (grp) {
4962                 /* enable VLAN tag insert/strip */
4963                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4964                 ctrl |= E1000_CTRL_VME;
4965                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4966
4967                 if (adapter->hw.mac_type != e1000_ich8lan) {
4968                         /* enable VLAN receive filtering */
4969                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4970                         rctl |= E1000_RCTL_VFE;
4971                         rctl &= ~E1000_RCTL_CFIEN;
4972                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4973                         e1000_update_mng_vlan(adapter);
4974                 }
4975         } else {
4976                 /* disable VLAN tag insert/strip */
4977                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4978                 ctrl &= ~E1000_CTRL_VME;
4979                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4980
4981                 if (adapter->hw.mac_type != e1000_ich8lan) {
4982                         /* disable VLAN filtering */
4983                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4984                         rctl &= ~E1000_RCTL_VFE;
4985                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4986                         if (adapter->mng_vlan_id !=
4987                             (uint16_t)E1000_MNG_VLAN_NONE) {
4988                                 e1000_vlan_rx_kill_vid(netdev,
4989                                                        adapter->mng_vlan_id);
4990                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4991                         }
4992                 }
4993         }
4994
4995         e1000_irq_enable(adapter);
4996 }
4997
4998 static void
4999 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
5000 {
5001         struct e1000_adapter *adapter = netdev_priv(netdev);
5002         uint32_t vfta, index;
5003
5004         if ((adapter->hw.mng_cookie.status &
5005              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5006             (vid == adapter->mng_vlan_id))
5007                 return;
5008         /* add VID to filter table */
5009         index = (vid >> 5) & 0x7F;
5010         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5011         vfta |= (1 << (vid & 0x1F));
5012         e1000_write_vfta(&adapter->hw, index, vfta);
5013 }
5014
5015 static void
5016 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
5017 {
5018         struct e1000_adapter *adapter = netdev_priv(netdev);
5019         uint32_t vfta, index;
5020
5021         e1000_irq_disable(adapter);
5022         vlan_group_set_device(adapter->vlgrp, vid, NULL);
5023         e1000_irq_enable(adapter);
5024
5025         if ((adapter->hw.mng_cookie.status &
5026              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5027             (vid == adapter->mng_vlan_id)) {
5028                 /* release control to f/w */
5029                 e1000_release_hw_control(adapter);
5030                 return;
5031         }
5032
5033         /* remove VID from filter table */
5034         index = (vid >> 5) & 0x7F;
5035         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5036         vfta &= ~(1 << (vid & 0x1F));
5037         e1000_write_vfta(&adapter->hw, index, vfta);
5038 }
5039
5040 static void
5041 e1000_restore_vlan(struct e1000_adapter *adapter)
5042 {
5043         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5044
5045         if (adapter->vlgrp) {
5046                 uint16_t vid;
5047                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5048                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5049                                 continue;
5050                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
5051                 }
5052         }
5053 }
5054
5055 int
5056 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
5057 {
5058         adapter->hw.autoneg = 0;
5059
5060         /* Fiber NICs only allow 1000 gbps Full duplex */
5061         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
5062                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5063                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5064                 return -EINVAL;
5065         }
5066
5067         switch (spddplx) {
5068         case SPEED_10 + DUPLEX_HALF:
5069                 adapter->hw.forced_speed_duplex = e1000_10_half;
5070                 break;
5071         case SPEED_10 + DUPLEX_FULL:
5072                 adapter->hw.forced_speed_duplex = e1000_10_full;
5073                 break;
5074         case SPEED_100 + DUPLEX_HALF:
5075                 adapter->hw.forced_speed_duplex = e1000_100_half;
5076                 break;
5077         case SPEED_100 + DUPLEX_FULL:
5078                 adapter->hw.forced_speed_duplex = e1000_100_full;
5079                 break;
5080         case SPEED_1000 + DUPLEX_FULL:
5081                 adapter->hw.autoneg = 1;
5082                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
5083                 break;
5084         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5085         default:
5086                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5087                 return -EINVAL;
5088         }
5089         return 0;
5090 }
5091
5092 static int
5093 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5094 {
5095         struct net_device *netdev = pci_get_drvdata(pdev);
5096         struct e1000_adapter *adapter = netdev_priv(netdev);
5097         uint32_t ctrl, ctrl_ext, rctl, status;
5098         uint32_t wufc = adapter->wol;
5099 #ifdef CONFIG_PM
5100         int retval = 0;
5101 #endif
5102
5103         netif_device_detach(netdev);
5104
5105         if (netif_running(netdev)) {
5106                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5107                 e1000_down(adapter);
5108         }
5109
5110 #ifdef CONFIG_PM
5111         retval = pci_save_state(pdev);
5112         if (retval)
5113                 return retval;
5114 #endif
5115
5116         status = E1000_READ_REG(&adapter->hw, STATUS);
5117         if (status & E1000_STATUS_LU)
5118                 wufc &= ~E1000_WUFC_LNKC;
5119
5120         if (wufc) {
5121                 e1000_setup_rctl(adapter);
5122                 e1000_set_multi(netdev);
5123
5124                 /* turn on all-multi mode if wake on multicast is enabled */
5125                 if (wufc & E1000_WUFC_MC) {
5126                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5127                         rctl |= E1000_RCTL_MPE;
5128                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5129                 }
5130
5131                 if (adapter->hw.mac_type >= e1000_82540) {
5132                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5133                         /* advertise wake from D3Cold */
5134                         #define E1000_CTRL_ADVD3WUC 0x00100000
5135                         /* phy power management enable */
5136                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5137                         ctrl |= E1000_CTRL_ADVD3WUC |
5138                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5139                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5140                 }
5141
5142                 if (adapter->hw.media_type == e1000_media_type_fiber ||
5143                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
5144                         /* keep the laser running in D3 */
5145                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5146                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5147                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5148                 }
5149
5150                 /* Allow time for pending master requests to run */
5151                 e1000_disable_pciex_master(&adapter->hw);
5152
5153                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5154                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5155                 pci_enable_wake(pdev, PCI_D3hot, 1);
5156                 pci_enable_wake(pdev, PCI_D3cold, 1);
5157         } else {
5158                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5159                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5160                 pci_enable_wake(pdev, PCI_D3hot, 0);
5161                 pci_enable_wake(pdev, PCI_D3cold, 0);
5162         }
5163
5164         e1000_release_manageability(adapter);
5165
5166         /* make sure adapter isn't asleep if manageability is enabled */
5167         if (adapter->en_mng_pt) {
5168                 pci_enable_wake(pdev, PCI_D3hot, 1);
5169                 pci_enable_wake(pdev, PCI_D3cold, 1);
5170         }
5171
5172         if (adapter->hw.phy_type == e1000_phy_igp_3)
5173                 e1000_phy_powerdown_workaround(&adapter->hw);
5174
5175         if (netif_running(netdev))
5176                 e1000_free_irq(adapter);
5177
5178         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5179          * would have already happened in close and is redundant. */
5180         e1000_release_hw_control(adapter);
5181
5182         pci_disable_device(pdev);
5183
5184         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5185
5186         return 0;
5187 }
5188
5189 #ifdef CONFIG_PM
5190 static int
5191 e1000_resume(struct pci_dev *pdev)
5192 {
5193         struct net_device *netdev = pci_get_drvdata(pdev);
5194         struct e1000_adapter *adapter = netdev_priv(netdev);
5195         uint32_t err;
5196
5197         pci_set_power_state(pdev, PCI_D0);
5198         pci_restore_state(pdev);
5199         if ((err = pci_enable_device(pdev))) {
5200                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5201                 return err;
5202         }
5203         pci_set_master(pdev);
5204
5205         pci_enable_wake(pdev, PCI_D3hot, 0);
5206         pci_enable_wake(pdev, PCI_D3cold, 0);
5207
5208         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5209                 return err;
5210
5211         e1000_power_up_phy(adapter);
5212         e1000_reset(adapter);
5213         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5214
5215         e1000_init_manageability(adapter);
5216
5217         if (netif_running(netdev))
5218                 e1000_up(adapter);
5219
5220         netif_device_attach(netdev);
5221
5222         /* If the controller is 82573 and f/w is AMT, do not set
5223          * DRV_LOAD until the interface is up.  For all other cases,
5224          * let the f/w know that the h/w is now under the control
5225          * of the driver. */
5226         if (adapter->hw.mac_type != e1000_82573 ||
5227             !e1000_check_mng_mode(&adapter->hw))
5228                 e1000_get_hw_control(adapter);
5229
5230         return 0;
5231 }
5232 #endif
5233
5234 static void e1000_shutdown(struct pci_dev *pdev)
5235 {
5236         e1000_suspend(pdev, PMSG_SUSPEND);
5237 }
5238
5239 #ifdef CONFIG_NET_POLL_CONTROLLER
5240 /*
5241  * Polling 'interrupt' - used by things like netconsole to send skbs
5242  * without having to re-enable interrupts. It's not called while
5243  * the interrupt routine is executing.
5244  */
5245 static void
5246 e1000_netpoll(struct net_device *netdev)
5247 {
5248         struct e1000_adapter *adapter = netdev_priv(netdev);
5249
5250         disable_irq(adapter->pdev->irq);
5251         e1000_intr(adapter->pdev->irq, netdev);
5252         e1000_clean_tx_irq(adapter, adapter->tx_ring);
5253 #ifndef CONFIG_E1000_NAPI
5254         adapter->clean_rx(adapter, adapter->rx_ring);
5255 #endif
5256         enable_irq(adapter->pdev->irq);
5257 }
5258 #endif
5259
5260 /**
5261  * e1000_io_error_detected - called when PCI error is detected
5262  * @pdev: Pointer to PCI device
5263  * @state: The current pci conneection state
5264  *
5265  * This function is called after a PCI bus error affecting
5266  * this device has been detected.
5267  */
5268 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5269 {
5270         struct net_device *netdev = pci_get_drvdata(pdev);
5271         struct e1000_adapter *adapter = netdev->priv;
5272
5273         netif_device_detach(netdev);
5274
5275         if (netif_running(netdev))
5276                 e1000_down(adapter);
5277         pci_disable_device(pdev);
5278
5279         /* Request a slot slot reset. */
5280         return PCI_ERS_RESULT_NEED_RESET;
5281 }
5282
5283 /**
5284  * e1000_io_slot_reset - called after the pci bus has been reset.
5285  * @pdev: Pointer to PCI device
5286  *
5287  * Restart the card from scratch, as if from a cold-boot. Implementation
5288  * resembles the first-half of the e1000_resume routine.
5289  */
5290 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5291 {
5292         struct net_device *netdev = pci_get_drvdata(pdev);
5293         struct e1000_adapter *adapter = netdev->priv;
5294
5295         if (pci_enable_device(pdev)) {
5296                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5297                 return PCI_ERS_RESULT_DISCONNECT;
5298         }
5299         pci_set_master(pdev);
5300
5301         pci_enable_wake(pdev, PCI_D3hot, 0);
5302         pci_enable_wake(pdev, PCI_D3cold, 0);
5303
5304         e1000_reset(adapter);
5305         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5306
5307         return PCI_ERS_RESULT_RECOVERED;
5308 }
5309
5310 /**
5311  * e1000_io_resume - called when traffic can start flowing again.
5312  * @pdev: Pointer to PCI device
5313  *
5314  * This callback is called when the error recovery driver tells us that
5315  * its OK to resume normal operation. Implementation resembles the
5316  * second-half of the e1000_resume routine.
5317  */
5318 static void e1000_io_resume(struct pci_dev *pdev)
5319 {
5320         struct net_device *netdev = pci_get_drvdata(pdev);
5321         struct e1000_adapter *adapter = netdev->priv;
5322
5323         e1000_init_manageability(adapter);
5324
5325         if (netif_running(netdev)) {
5326                 if (e1000_up(adapter)) {
5327                         printk("e1000: can't bring device back up after reset\n");
5328                         return;
5329                 }
5330         }
5331
5332         netif_device_attach(netdev);
5333
5334         /* If the controller is 82573 and f/w is AMT, do not set
5335          * DRV_LOAD until the interface is up.  For all other cases,
5336          * let the f/w know that the h/w is now under the control
5337          * of the driver. */
5338         if (adapter->hw.mac_type != e1000_82573 ||
5339             !e1000_check_mng_mode(&adapter->hw))
5340                 e1000_get_hw_control(adapter);
5341
5342 }
5343
5344 /* e1000_main.c */