e1000: rework driver hardware reset locking
[pandora-kernel.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28 *******************************************************************************/
29
30 #include "e1000.h"
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.0.38-k4"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x105E),
77         INTEL_E1000_ETHERNET_DEVICE(0x105F),
78         INTEL_E1000_ETHERNET_DEVICE(0x1060),
79         INTEL_E1000_ETHERNET_DEVICE(0x1075),
80         INTEL_E1000_ETHERNET_DEVICE(0x1076),
81         INTEL_E1000_ETHERNET_DEVICE(0x1077),
82         INTEL_E1000_ETHERNET_DEVICE(0x1078),
83         INTEL_E1000_ETHERNET_DEVICE(0x1079),
84         INTEL_E1000_ETHERNET_DEVICE(0x107A),
85         INTEL_E1000_ETHERNET_DEVICE(0x107B),
86         INTEL_E1000_ETHERNET_DEVICE(0x107C),
87         INTEL_E1000_ETHERNET_DEVICE(0x107D),
88         INTEL_E1000_ETHERNET_DEVICE(0x107E),
89         INTEL_E1000_ETHERNET_DEVICE(0x107F),
90         INTEL_E1000_ETHERNET_DEVICE(0x108A),
91         INTEL_E1000_ETHERNET_DEVICE(0x108B),
92         INTEL_E1000_ETHERNET_DEVICE(0x108C),
93         INTEL_E1000_ETHERNET_DEVICE(0x1096),
94         INTEL_E1000_ETHERNET_DEVICE(0x1098),
95         INTEL_E1000_ETHERNET_DEVICE(0x1099),
96         INTEL_E1000_ETHERNET_DEVICE(0x109A),
97         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
98         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
99         /* required last entry */
100         {0,}
101 };
102
103 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
104
105 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
106                                     struct e1000_tx_ring *txdr);
107 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
108                                     struct e1000_rx_ring *rxdr);
109 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
110                                     struct e1000_tx_ring *tx_ring);
111 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
112                                     struct e1000_rx_ring *rx_ring);
113
114 /* Local Function Prototypes */
115
116 static int e1000_init_module(void);
117 static void e1000_exit_module(void);
118 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
119 static void __devexit e1000_remove(struct pci_dev *pdev);
120 static int e1000_alloc_queues(struct e1000_adapter *adapter);
121 static int e1000_sw_init(struct e1000_adapter *adapter);
122 static int e1000_open(struct net_device *netdev);
123 static int e1000_close(struct net_device *netdev);
124 static void e1000_configure_tx(struct e1000_adapter *adapter);
125 static void e1000_configure_rx(struct e1000_adapter *adapter);
126 static void e1000_setup_rctl(struct e1000_adapter *adapter);
127 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
128 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
129 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
130                                 struct e1000_tx_ring *tx_ring);
131 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
132                                 struct e1000_rx_ring *rx_ring);
133 static void e1000_set_multi(struct net_device *netdev);
134 static void e1000_update_phy_info(unsigned long data);
135 static void e1000_watchdog(unsigned long data);
136 static void e1000_82547_tx_fifo_stall(unsigned long data);
137 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
138 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
139 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
140 static int e1000_set_mac(struct net_device *netdev, void *p);
141 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
142 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
143                                     struct e1000_tx_ring *tx_ring);
144 #ifdef CONFIG_E1000_NAPI
145 static int e1000_clean(struct net_device *poll_dev, int *budget);
146 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
147                                     struct e1000_rx_ring *rx_ring,
148                                     int *work_done, int work_to_do);
149 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
150                                        struct e1000_rx_ring *rx_ring,
151                                        int *work_done, int work_to_do);
152 #else
153 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
154                                     struct e1000_rx_ring *rx_ring);
155 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
156                                        struct e1000_rx_ring *rx_ring);
157 #endif
158 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
159                                    struct e1000_rx_ring *rx_ring,
160                                    int cleaned_count);
161 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
162                                       struct e1000_rx_ring *rx_ring,
163                                       int cleaned_count);
164 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
165 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
166                            int cmd);
167 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
168 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
169 static void e1000_tx_timeout(struct net_device *dev);
170 static void e1000_reset_task(struct net_device *dev);
171 static void e1000_smartspeed(struct e1000_adapter *adapter);
172 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
173                                        struct sk_buff *skb);
174
175 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
176 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
177 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
178 static void e1000_restore_vlan(struct e1000_adapter *adapter);
179
180 #ifdef CONFIG_PM
181 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
182 static int e1000_resume(struct pci_dev *pdev);
183 #endif
184 static void e1000_shutdown(struct pci_dev *pdev);
185
186 #ifdef CONFIG_NET_POLL_CONTROLLER
187 /* for netdump / net console */
188 static void e1000_netpoll (struct net_device *netdev);
189 #endif
190
191 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
192                      pci_channel_state_t state);
193 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
194 static void e1000_io_resume(struct pci_dev *pdev);
195
196 static struct pci_error_handlers e1000_err_handler = {
197         .error_detected = e1000_io_error_detected,
198         .slot_reset = e1000_io_slot_reset,
199         .resume = e1000_io_resume,
200 };
201
202 static struct pci_driver e1000_driver = {
203         .name     = e1000_driver_name,
204         .id_table = e1000_pci_tbl,
205         .probe    = e1000_probe,
206         .remove   = __devexit_p(e1000_remove),
207         /* Power Managment Hooks */
208 #ifdef CONFIG_PM
209         .suspend  = e1000_suspend,
210         .resume   = e1000_resume,
211 #endif
212         .shutdown = e1000_shutdown,
213         .err_handler = &e1000_err_handler
214 };
215
216 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
217 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
218 MODULE_LICENSE("GPL");
219 MODULE_VERSION(DRV_VERSION);
220
221 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
222 module_param(debug, int, 0);
223 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
224
225 /**
226  * e1000_init_module - Driver Registration Routine
227  *
228  * e1000_init_module is the first routine called when the driver is
229  * loaded. All it does is register with the PCI subsystem.
230  **/
231
232 static int __init
233 e1000_init_module(void)
234 {
235         int ret;
236         printk(KERN_INFO "%s - version %s\n",
237                e1000_driver_string, e1000_driver_version);
238
239         printk(KERN_INFO "%s\n", e1000_copyright);
240
241         ret = pci_module_init(&e1000_driver);
242
243         return ret;
244 }
245
246 module_init(e1000_init_module);
247
248 /**
249  * e1000_exit_module - Driver Exit Cleanup Routine
250  *
251  * e1000_exit_module is called just before the driver is removed
252  * from memory.
253  **/
254
255 static void __exit
256 e1000_exit_module(void)
257 {
258         pci_unregister_driver(&e1000_driver);
259 }
260
261 module_exit(e1000_exit_module);
262
263 static int e1000_request_irq(struct e1000_adapter *adapter)
264 {
265         struct net_device *netdev = adapter->netdev;
266         int flags, err = 0;
267
268         flags = SA_SHIRQ | SA_SAMPLE_RANDOM;
269 #ifdef CONFIG_PCI_MSI
270         if (adapter->hw.mac_type > e1000_82547_rev_2) {
271                 adapter->have_msi = TRUE;
272                 if ((err = pci_enable_msi(adapter->pdev))) {
273                         DPRINTK(PROBE, ERR,
274                          "Unable to allocate MSI interrupt Error: %d\n", err);
275                         adapter->have_msi = FALSE;
276                 }
277         }
278         if (adapter->have_msi)
279                 flags &= ~SA_SHIRQ;
280 #endif
281         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
282                                netdev->name, netdev)))
283                 DPRINTK(PROBE, ERR,
284                         "Unable to allocate interrupt Error: %d\n", err);
285
286         return err;
287 }
288
289 static void e1000_free_irq(struct e1000_adapter *adapter)
290 {
291         struct net_device *netdev = adapter->netdev;
292
293         free_irq(adapter->pdev->irq, netdev);
294
295 #ifdef CONFIG_PCI_MSI
296         if (adapter->have_msi)
297                 pci_disable_msi(adapter->pdev);
298 #endif
299 }
300
301 /**
302  * e1000_irq_disable - Mask off interrupt generation on the NIC
303  * @adapter: board private structure
304  **/
305
306 static void
307 e1000_irq_disable(struct e1000_adapter *adapter)
308 {
309         atomic_inc(&adapter->irq_sem);
310         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
311         E1000_WRITE_FLUSH(&adapter->hw);
312         synchronize_irq(adapter->pdev->irq);
313 }
314
315 /**
316  * e1000_irq_enable - Enable default interrupt generation settings
317  * @adapter: board private structure
318  **/
319
320 static void
321 e1000_irq_enable(struct e1000_adapter *adapter)
322 {
323         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
324                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
325                 E1000_WRITE_FLUSH(&adapter->hw);
326         }
327 }
328
329 static void
330 e1000_update_mng_vlan(struct e1000_adapter *adapter)
331 {
332         struct net_device *netdev = adapter->netdev;
333         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
334         uint16_t old_vid = adapter->mng_vlan_id;
335         if (adapter->vlgrp) {
336                 if (!adapter->vlgrp->vlan_devices[vid]) {
337                         if (adapter->hw.mng_cookie.status &
338                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
339                                 e1000_vlan_rx_add_vid(netdev, vid);
340                                 adapter->mng_vlan_id = vid;
341                         } else
342                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
343
344                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
345                                         (vid != old_vid) &&
346                                         !adapter->vlgrp->vlan_devices[old_vid])
347                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
348                 } else
349                         adapter->mng_vlan_id = vid;
350         }
351 }
352
353 /**
354  * e1000_release_hw_control - release control of the h/w to f/w
355  * @adapter: address of board private structure
356  *
357  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
358  * For ASF and Pass Through versions of f/w this means that the
359  * driver is no longer loaded. For AMT version (only with 82573) i
360  * of the f/w this means that the netowrk i/f is closed.
361  *
362  **/
363
364 static void
365 e1000_release_hw_control(struct e1000_adapter *adapter)
366 {
367         uint32_t ctrl_ext;
368         uint32_t swsm;
369
370         /* Let firmware taken over control of h/w */
371         switch (adapter->hw.mac_type) {
372         case e1000_82571:
373         case e1000_82572:
374         case e1000_80003es2lan:
375                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
376                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
377                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
378                 break;
379         case e1000_82573:
380                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
381                 E1000_WRITE_REG(&adapter->hw, SWSM,
382                                 swsm & ~E1000_SWSM_DRV_LOAD);
383         default:
384                 break;
385         }
386 }
387
388 /**
389  * e1000_get_hw_control - get control of the h/w from f/w
390  * @adapter: address of board private structure
391  *
392  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
393  * For ASF and Pass Through versions of f/w this means that
394  * the driver is loaded. For AMT version (only with 82573)
395  * of the f/w this means that the netowrk i/f is open.
396  *
397  **/
398
399 static void
400 e1000_get_hw_control(struct e1000_adapter *adapter)
401 {
402         uint32_t ctrl_ext;
403         uint32_t swsm;
404         /* Let firmware know the driver has taken over */
405         switch (adapter->hw.mac_type) {
406         case e1000_82571:
407         case e1000_82572:
408         case e1000_80003es2lan:
409                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
410                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
411                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
412                 break;
413         case e1000_82573:
414                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
415                 E1000_WRITE_REG(&adapter->hw, SWSM,
416                                 swsm | E1000_SWSM_DRV_LOAD);
417                 break;
418         default:
419                 break;
420         }
421 }
422
423 int
424 e1000_up(struct e1000_adapter *adapter)
425 {
426         struct net_device *netdev = adapter->netdev;
427         int i;
428
429         /* hardware has been reset, we need to reload some things */
430
431         /* Reset the PHY if it was previously powered down */
432         if (adapter->hw.media_type == e1000_media_type_copper) {
433                 uint16_t mii_reg;
434                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
435                 if (mii_reg & MII_CR_POWER_DOWN)
436                         e1000_phy_hw_reset(&adapter->hw);
437         }
438
439         e1000_set_multi(netdev);
440
441         e1000_restore_vlan(adapter);
442
443         e1000_configure_tx(adapter);
444         e1000_setup_rctl(adapter);
445         e1000_configure_rx(adapter);
446         /* call E1000_DESC_UNUSED which always leaves
447          * at least 1 descriptor unused to make sure
448          * next_to_use != next_to_clean */
449         for (i = 0; i < adapter->num_rx_queues; i++) {
450                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
451                 adapter->alloc_rx_buf(adapter, ring,
452                                       E1000_DESC_UNUSED(ring));
453         }
454
455         adapter->tx_queue_len = netdev->tx_queue_len;
456
457         mod_timer(&adapter->watchdog_timer, jiffies);
458
459 #ifdef CONFIG_E1000_NAPI
460         netif_poll_enable(netdev);
461 #endif
462         e1000_irq_enable(adapter);
463
464         return 0;
465 }
466
467 void
468 e1000_down(struct e1000_adapter *adapter)
469 {
470         struct net_device *netdev = adapter->netdev;
471         boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
472                                       e1000_check_mng_mode(&adapter->hw);
473
474         e1000_irq_disable(adapter);
475
476         del_timer_sync(&adapter->tx_fifo_stall_timer);
477         del_timer_sync(&adapter->watchdog_timer);
478         del_timer_sync(&adapter->phy_info_timer);
479
480 #ifdef CONFIG_E1000_NAPI
481         netif_poll_disable(netdev);
482 #endif
483         netdev->tx_queue_len = adapter->tx_queue_len;
484         adapter->link_speed = 0;
485         adapter->link_duplex = 0;
486         netif_carrier_off(netdev);
487         netif_stop_queue(netdev);
488
489         e1000_reset(adapter);
490         e1000_clean_all_tx_rings(adapter);
491         e1000_clean_all_rx_rings(adapter);
492
493         /* Power down the PHY so no link is implied when interface is down *
494          * The PHY cannot be powered down if any of the following is TRUE *
495          * (a) WoL is enabled
496          * (b) AMT is active
497          * (c) SoL/IDER session is active */
498         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
499            adapter->hw.media_type == e1000_media_type_copper &&
500            !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
501            !mng_mode_enabled &&
502            !e1000_check_phy_reset_block(&adapter->hw)) {
503                 uint16_t mii_reg;
504                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
505                 mii_reg |= MII_CR_POWER_DOWN;
506                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
507                 mdelay(1);
508         }
509 }
510
511 void
512 e1000_reinit_locked(struct e1000_adapter *adapter)
513 {
514         WARN_ON(in_interrupt());
515         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
516                 msleep(1);
517         e1000_down(adapter);
518         e1000_up(adapter);
519         clear_bit(__E1000_RESETTING, &adapter->flags);
520 }
521
522 void
523 e1000_reset(struct e1000_adapter *adapter)
524 {
525         uint32_t pba, manc;
526         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
527
528         /* Repartition Pba for greater than 9k mtu
529          * To take effect CTRL.RST is required.
530          */
531
532         switch (adapter->hw.mac_type) {
533         case e1000_82547:
534         case e1000_82547_rev_2:
535                 pba = E1000_PBA_30K;
536                 break;
537         case e1000_82571:
538         case e1000_82572:
539         case e1000_80003es2lan:
540                 pba = E1000_PBA_38K;
541                 break;
542         case e1000_82573:
543                 pba = E1000_PBA_12K;
544                 break;
545         default:
546                 pba = E1000_PBA_48K;
547                 break;
548         }
549
550         if ((adapter->hw.mac_type != e1000_82573) &&
551            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
552                 pba -= 8; /* allocate more FIFO for Tx */
553
554
555         if (adapter->hw.mac_type == e1000_82547) {
556                 adapter->tx_fifo_head = 0;
557                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
558                 adapter->tx_fifo_size =
559                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
560                 atomic_set(&adapter->tx_fifo_stall, 0);
561         }
562
563         E1000_WRITE_REG(&adapter->hw, PBA, pba);
564
565         /* flow control settings */
566         /* Set the FC high water mark to 90% of the FIFO size.
567          * Required to clear last 3 LSB */
568         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
569
570         adapter->hw.fc_high_water = fc_high_water_mark;
571         adapter->hw.fc_low_water = fc_high_water_mark - 8;
572         if (adapter->hw.mac_type == e1000_80003es2lan)
573                 adapter->hw.fc_pause_time = 0xFFFF;
574         else
575                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
576         adapter->hw.fc_send_xon = 1;
577         adapter->hw.fc = adapter->hw.original_fc;
578
579         /* Allow time for pending master requests to run */
580         e1000_reset_hw(&adapter->hw);
581         if (adapter->hw.mac_type >= e1000_82544)
582                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
583         if (e1000_init_hw(&adapter->hw))
584                 DPRINTK(PROBE, ERR, "Hardware Error\n");
585         e1000_update_mng_vlan(adapter);
586         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
587         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
588
589         e1000_reset_adaptive(&adapter->hw);
590         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
591         if (adapter->en_mng_pt) {
592                 manc = E1000_READ_REG(&adapter->hw, MANC);
593                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
594                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
595         }
596 }
597
598 /**
599  * e1000_probe - Device Initialization Routine
600  * @pdev: PCI device information struct
601  * @ent: entry in e1000_pci_tbl
602  *
603  * Returns 0 on success, negative on failure
604  *
605  * e1000_probe initializes an adapter identified by a pci_dev structure.
606  * The OS initialization, configuring of the adapter private structure,
607  * and a hardware reset occur.
608  **/
609
610 static int __devinit
611 e1000_probe(struct pci_dev *pdev,
612             const struct pci_device_id *ent)
613 {
614         struct net_device *netdev;
615         struct e1000_adapter *adapter;
616         unsigned long mmio_start, mmio_len;
617
618         static int cards_found = 0;
619         static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
620         int i, err, pci_using_dac;
621         uint16_t eeprom_data;
622         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
623         if ((err = pci_enable_device(pdev)))
624                 return err;
625
626         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
627                 pci_using_dac = 1;
628         } else {
629                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
630                         E1000_ERR("No usable DMA configuration, aborting\n");
631                         return err;
632                 }
633                 pci_using_dac = 0;
634         }
635
636         if ((err = pci_request_regions(pdev, e1000_driver_name)))
637                 return err;
638
639         pci_set_master(pdev);
640
641         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
642         if (!netdev) {
643                 err = -ENOMEM;
644                 goto err_alloc_etherdev;
645         }
646
647         SET_MODULE_OWNER(netdev);
648         SET_NETDEV_DEV(netdev, &pdev->dev);
649
650         pci_set_drvdata(pdev, netdev);
651         adapter = netdev_priv(netdev);
652         adapter->netdev = netdev;
653         adapter->pdev = pdev;
654         adapter->hw.back = adapter;
655         adapter->msg_enable = (1 << debug) - 1;
656
657         mmio_start = pci_resource_start(pdev, BAR_0);
658         mmio_len = pci_resource_len(pdev, BAR_0);
659
660         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
661         if (!adapter->hw.hw_addr) {
662                 err = -EIO;
663                 goto err_ioremap;
664         }
665
666         for (i = BAR_1; i <= BAR_5; i++) {
667                 if (pci_resource_len(pdev, i) == 0)
668                         continue;
669                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
670                         adapter->hw.io_base = pci_resource_start(pdev, i);
671                         break;
672                 }
673         }
674
675         netdev->open = &e1000_open;
676         netdev->stop = &e1000_close;
677         netdev->hard_start_xmit = &e1000_xmit_frame;
678         netdev->get_stats = &e1000_get_stats;
679         netdev->set_multicast_list = &e1000_set_multi;
680         netdev->set_mac_address = &e1000_set_mac;
681         netdev->change_mtu = &e1000_change_mtu;
682         netdev->do_ioctl = &e1000_ioctl;
683         e1000_set_ethtool_ops(netdev);
684         netdev->tx_timeout = &e1000_tx_timeout;
685         netdev->watchdog_timeo = 5 * HZ;
686 #ifdef CONFIG_E1000_NAPI
687         netdev->poll = &e1000_clean;
688         netdev->weight = 64;
689 #endif
690         netdev->vlan_rx_register = e1000_vlan_rx_register;
691         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
692         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
693 #ifdef CONFIG_NET_POLL_CONTROLLER
694         netdev->poll_controller = e1000_netpoll;
695 #endif
696         strcpy(netdev->name, pci_name(pdev));
697
698         netdev->mem_start = mmio_start;
699         netdev->mem_end = mmio_start + mmio_len;
700         netdev->base_addr = adapter->hw.io_base;
701
702         adapter->bd_number = cards_found;
703
704         /* setup the private structure */
705
706         if ((err = e1000_sw_init(adapter)))
707                 goto err_sw_init;
708
709         if ((err = e1000_check_phy_reset_block(&adapter->hw)))
710                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
711
712         /* if ksp3, indicate if it's port a being setup */
713         if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
714                         e1000_ksp3_port_a == 0)
715                 adapter->ksp3_port_a = 1;
716         e1000_ksp3_port_a++;
717         /* Reset for multiple KP3 adapters */
718         if (e1000_ksp3_port_a == 4)
719                 e1000_ksp3_port_a = 0;
720
721         if (adapter->hw.mac_type >= e1000_82543) {
722                 netdev->features = NETIF_F_SG |
723                                    NETIF_F_HW_CSUM |
724                                    NETIF_F_HW_VLAN_TX |
725                                    NETIF_F_HW_VLAN_RX |
726                                    NETIF_F_HW_VLAN_FILTER;
727         }
728
729 #ifdef NETIF_F_TSO
730         if ((adapter->hw.mac_type >= e1000_82544) &&
731            (adapter->hw.mac_type != e1000_82547))
732                 netdev->features |= NETIF_F_TSO;
733
734 #ifdef NETIF_F_TSO_IPV6
735         if (adapter->hw.mac_type > e1000_82547_rev_2)
736                 netdev->features |= NETIF_F_TSO_IPV6;
737 #endif
738 #endif
739         if (pci_using_dac)
740                 netdev->features |= NETIF_F_HIGHDMA;
741
742         /* hard_start_xmit is safe against parallel locking */
743         netdev->features |= NETIF_F_LLTX;
744
745         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
746
747         /* before reading the EEPROM, reset the controller to
748          * put the device in a known good starting state */
749
750         e1000_reset_hw(&adapter->hw);
751
752         /* make sure the EEPROM is good */
753
754         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
755                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
756                 err = -EIO;
757                 goto err_eeprom;
758         }
759
760         /* copy the MAC address out of the EEPROM */
761
762         if (e1000_read_mac_addr(&adapter->hw))
763                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
764         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
765         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
766
767         if (!is_valid_ether_addr(netdev->perm_addr)) {
768                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
769                 err = -EIO;
770                 goto err_eeprom;
771         }
772
773         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
774
775         e1000_get_bus_info(&adapter->hw);
776
777         init_timer(&adapter->tx_fifo_stall_timer);
778         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
779         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
780
781         init_timer(&adapter->watchdog_timer);
782         adapter->watchdog_timer.function = &e1000_watchdog;
783         adapter->watchdog_timer.data = (unsigned long) adapter;
784
785         init_timer(&adapter->phy_info_timer);
786         adapter->phy_info_timer.function = &e1000_update_phy_info;
787         adapter->phy_info_timer.data = (unsigned long) adapter;
788
789         INIT_WORK(&adapter->reset_task,
790                 (void (*)(void *))e1000_reset_task, netdev);
791
792         /* we're going to reset, so assume we have no link for now */
793
794         netif_carrier_off(netdev);
795         netif_stop_queue(netdev);
796
797         e1000_check_options(adapter);
798
799         /* Initial Wake on LAN setting
800          * If APM wake is enabled in the EEPROM,
801          * enable the ACPI Magic Packet filter
802          */
803
804         switch (adapter->hw.mac_type) {
805         case e1000_82542_rev2_0:
806         case e1000_82542_rev2_1:
807         case e1000_82543:
808                 break;
809         case e1000_82544:
810                 e1000_read_eeprom(&adapter->hw,
811                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
812                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
813                 break;
814         case e1000_82546:
815         case e1000_82546_rev_3:
816         case e1000_82571:
817         case e1000_80003es2lan:
818                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
819                         e1000_read_eeprom(&adapter->hw,
820                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
821                         break;
822                 }
823                 /* Fall Through */
824         default:
825                 e1000_read_eeprom(&adapter->hw,
826                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
827                 break;
828         }
829         if (eeprom_data & eeprom_apme_mask)
830                 adapter->wol |= E1000_WUFC_MAG;
831
832         /* print bus type/speed/width info */
833         {
834         struct e1000_hw *hw = &adapter->hw;
835         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
836                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
837                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
838                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
839                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
840                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
841                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
842                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
843                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
844                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
845                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
846                  "32-bit"));
847         }
848
849         for (i = 0; i < 6; i++)
850                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
851
852         /* reset the hardware with the new settings */
853         e1000_reset(adapter);
854
855         /* If the controller is 82573 and f/w is AMT, do not set
856          * DRV_LOAD until the interface is up.  For all other cases,
857          * let the f/w know that the h/w is now under the control
858          * of the driver. */
859         if (adapter->hw.mac_type != e1000_82573 ||
860             !e1000_check_mng_mode(&adapter->hw))
861                 e1000_get_hw_control(adapter);
862
863         strcpy(netdev->name, "eth%d");
864         if ((err = register_netdev(netdev)))
865                 goto err_register;
866
867         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
868
869         cards_found++;
870         return 0;
871
872 err_register:
873 err_sw_init:
874 err_eeprom:
875         iounmap(adapter->hw.hw_addr);
876 err_ioremap:
877         free_netdev(netdev);
878 err_alloc_etherdev:
879         pci_release_regions(pdev);
880         return err;
881 }
882
883 /**
884  * e1000_remove - Device Removal Routine
885  * @pdev: PCI device information struct
886  *
887  * e1000_remove is called by the PCI subsystem to alert the driver
888  * that it should release a PCI device.  The could be caused by a
889  * Hot-Plug event, or because the driver is going to be removed from
890  * memory.
891  **/
892
893 static void __devexit
894 e1000_remove(struct pci_dev *pdev)
895 {
896         struct net_device *netdev = pci_get_drvdata(pdev);
897         struct e1000_adapter *adapter = netdev_priv(netdev);
898         uint32_t manc;
899 #ifdef CONFIG_E1000_NAPI
900         int i;
901 #endif
902
903         flush_scheduled_work();
904
905         if (adapter->hw.mac_type >= e1000_82540 &&
906            adapter->hw.media_type == e1000_media_type_copper) {
907                 manc = E1000_READ_REG(&adapter->hw, MANC);
908                 if (manc & E1000_MANC_SMBUS_EN) {
909                         manc |= E1000_MANC_ARP_EN;
910                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
911                 }
912         }
913
914         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
915          * would have already happened in close and is redundant. */
916         e1000_release_hw_control(adapter);
917
918         unregister_netdev(netdev);
919 #ifdef CONFIG_E1000_NAPI
920         for (i = 0; i < adapter->num_rx_queues; i++)
921                 dev_put(&adapter->polling_netdev[i]);
922 #endif
923
924         if (!e1000_check_phy_reset_block(&adapter->hw))
925                 e1000_phy_hw_reset(&adapter->hw);
926
927         kfree(adapter->tx_ring);
928         kfree(adapter->rx_ring);
929 #ifdef CONFIG_E1000_NAPI
930         kfree(adapter->polling_netdev);
931 #endif
932
933         iounmap(adapter->hw.hw_addr);
934         pci_release_regions(pdev);
935
936         free_netdev(netdev);
937
938         pci_disable_device(pdev);
939 }
940
941 /**
942  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
943  * @adapter: board private structure to initialize
944  *
945  * e1000_sw_init initializes the Adapter private data structure.
946  * Fields are initialized based on PCI device information and
947  * OS network device settings (MTU size).
948  **/
949
950 static int __devinit
951 e1000_sw_init(struct e1000_adapter *adapter)
952 {
953         struct e1000_hw *hw = &adapter->hw;
954         struct net_device *netdev = adapter->netdev;
955         struct pci_dev *pdev = adapter->pdev;
956 #ifdef CONFIG_E1000_NAPI
957         int i;
958 #endif
959
960         /* PCI config space info */
961
962         hw->vendor_id = pdev->vendor;
963         hw->device_id = pdev->device;
964         hw->subsystem_vendor_id = pdev->subsystem_vendor;
965         hw->subsystem_id = pdev->subsystem_device;
966
967         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
968
969         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
970
971         adapter->rx_buffer_len = MAXIMUM_ETHERNET_FRAME_SIZE;
972         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
973         hw->max_frame_size = netdev->mtu +
974                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
975         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
976
977         /* identify the MAC */
978
979         if (e1000_set_mac_type(hw)) {
980                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
981                 return -EIO;
982         }
983
984         /* initialize eeprom parameters */
985
986         if (e1000_init_eeprom_params(hw)) {
987                 E1000_ERR("EEPROM initialization failed\n");
988                 return -EIO;
989         }
990
991         switch (hw->mac_type) {
992         default:
993                 break;
994         case e1000_82541:
995         case e1000_82547:
996         case e1000_82541_rev_2:
997         case e1000_82547_rev_2:
998                 hw->phy_init_script = 1;
999                 break;
1000         }
1001
1002         e1000_set_media_type(hw);
1003
1004         hw->wait_autoneg_complete = FALSE;
1005         hw->tbi_compatibility_en = TRUE;
1006         hw->adaptive_ifs = TRUE;
1007
1008         /* Copper options */
1009
1010         if (hw->media_type == e1000_media_type_copper) {
1011                 hw->mdix = AUTO_ALL_MODES;
1012                 hw->disable_polarity_correction = FALSE;
1013                 hw->master_slave = E1000_MASTER_SLAVE;
1014         }
1015
1016         adapter->num_tx_queues = 1;
1017         adapter->num_rx_queues = 1;
1018
1019         if (e1000_alloc_queues(adapter)) {
1020                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1021                 return -ENOMEM;
1022         }
1023
1024 #ifdef CONFIG_E1000_NAPI
1025         for (i = 0; i < adapter->num_rx_queues; i++) {
1026                 adapter->polling_netdev[i].priv = adapter;
1027                 adapter->polling_netdev[i].poll = &e1000_clean;
1028                 adapter->polling_netdev[i].weight = 64;
1029                 dev_hold(&adapter->polling_netdev[i]);
1030                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1031         }
1032         spin_lock_init(&adapter->tx_queue_lock);
1033 #endif
1034
1035         atomic_set(&adapter->irq_sem, 1);
1036         spin_lock_init(&adapter->stats_lock);
1037
1038         return 0;
1039 }
1040
1041 /**
1042  * e1000_alloc_queues - Allocate memory for all rings
1043  * @adapter: board private structure to initialize
1044  *
1045  * We allocate one ring per queue at run-time since we don't know the
1046  * number of queues at compile-time.  The polling_netdev array is
1047  * intended for Multiqueue, but should work fine with a single queue.
1048  **/
1049
1050 static int __devinit
1051 e1000_alloc_queues(struct e1000_adapter *adapter)
1052 {
1053         int size;
1054
1055         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1056         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1057         if (!adapter->tx_ring)
1058                 return -ENOMEM;
1059         memset(adapter->tx_ring, 0, size);
1060
1061         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1062         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1063         if (!adapter->rx_ring) {
1064                 kfree(adapter->tx_ring);
1065                 return -ENOMEM;
1066         }
1067         memset(adapter->rx_ring, 0, size);
1068
1069 #ifdef CONFIG_E1000_NAPI
1070         size = sizeof(struct net_device) * adapter->num_rx_queues;
1071         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1072         if (!adapter->polling_netdev) {
1073                 kfree(adapter->tx_ring);
1074                 kfree(adapter->rx_ring);
1075                 return -ENOMEM;
1076         }
1077         memset(adapter->polling_netdev, 0, size);
1078 #endif
1079
1080         return E1000_SUCCESS;
1081 }
1082
1083 /**
1084  * e1000_open - Called when a network interface is made active
1085  * @netdev: network interface device structure
1086  *
1087  * Returns 0 on success, negative value on failure
1088  *
1089  * The open entry point is called when a network interface is made
1090  * active by the system (IFF_UP).  At this point all resources needed
1091  * for transmit and receive operations are allocated, the interrupt
1092  * handler is registered with the OS, the watchdog timer is started,
1093  * and the stack is notified that the interface is ready.
1094  **/
1095
1096 static int
1097 e1000_open(struct net_device *netdev)
1098 {
1099         struct e1000_adapter *adapter = netdev_priv(netdev);
1100         int err;
1101
1102         /* disallow open during test */
1103         if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
1104                 return -EBUSY;
1105
1106         /* allocate transmit descriptors */
1107
1108         if ((err = e1000_setup_all_tx_resources(adapter)))
1109                 goto err_setup_tx;
1110
1111         /* allocate receive descriptors */
1112
1113         if ((err = e1000_setup_all_rx_resources(adapter)))
1114                 goto err_setup_rx;
1115
1116         err = e1000_request_irq(adapter);
1117         if (err)
1118                 goto err_up;
1119
1120         if ((err = e1000_up(adapter)))
1121                 goto err_up;
1122         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1123         if ((adapter->hw.mng_cookie.status &
1124                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1125                 e1000_update_mng_vlan(adapter);
1126         }
1127
1128         /* If AMT is enabled, let the firmware know that the network
1129          * interface is now open */
1130         if (adapter->hw.mac_type == e1000_82573 &&
1131             e1000_check_mng_mode(&adapter->hw))
1132                 e1000_get_hw_control(adapter);
1133
1134         return E1000_SUCCESS;
1135
1136 err_up:
1137         e1000_free_all_rx_resources(adapter);
1138 err_setup_rx:
1139         e1000_free_all_tx_resources(adapter);
1140 err_setup_tx:
1141         e1000_reset(adapter);
1142
1143         return err;
1144 }
1145
1146 /**
1147  * e1000_close - Disables a network interface
1148  * @netdev: network interface device structure
1149  *
1150  * Returns 0, this is not allowed to fail
1151  *
1152  * The close entry point is called when an interface is de-activated
1153  * by the OS.  The hardware is still under the drivers control, but
1154  * needs to be disabled.  A global MAC reset is issued to stop the
1155  * hardware, and all transmit and receive resources are freed.
1156  **/
1157
1158 static int
1159 e1000_close(struct net_device *netdev)
1160 {
1161         struct e1000_adapter *adapter = netdev_priv(netdev);
1162
1163         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1164         e1000_down(adapter);
1165         e1000_free_irq(adapter);
1166
1167         e1000_free_all_tx_resources(adapter);
1168         e1000_free_all_rx_resources(adapter);
1169
1170         if ((adapter->hw.mng_cookie.status &
1171                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1172                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1173         }
1174
1175         /* If AMT is enabled, let the firmware know that the network
1176          * interface is now closed */
1177         if (adapter->hw.mac_type == e1000_82573 &&
1178             e1000_check_mng_mode(&adapter->hw))
1179                 e1000_release_hw_control(adapter);
1180
1181         return 0;
1182 }
1183
1184 /**
1185  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1186  * @adapter: address of board private structure
1187  * @start: address of beginning of memory
1188  * @len: length of memory
1189  **/
1190 static boolean_t
1191 e1000_check_64k_bound(struct e1000_adapter *adapter,
1192                       void *start, unsigned long len)
1193 {
1194         unsigned long begin = (unsigned long) start;
1195         unsigned long end = begin + len;
1196
1197         /* First rev 82545 and 82546 need to not allow any memory
1198          * write location to cross 64k boundary due to errata 23 */
1199         if (adapter->hw.mac_type == e1000_82545 ||
1200             adapter->hw.mac_type == e1000_82546) {
1201                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1202         }
1203
1204         return TRUE;
1205 }
1206
1207 /**
1208  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1209  * @adapter: board private structure
1210  * @txdr:    tx descriptor ring (for a specific queue) to setup
1211  *
1212  * Return 0 on success, negative on failure
1213  **/
1214
1215 static int
1216 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1217                          struct e1000_tx_ring *txdr)
1218 {
1219         struct pci_dev *pdev = adapter->pdev;
1220         int size;
1221
1222         size = sizeof(struct e1000_buffer) * txdr->count;
1223
1224         txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1225         if (!txdr->buffer_info) {
1226                 DPRINTK(PROBE, ERR,
1227                 "Unable to allocate memory for the transmit descriptor ring\n");
1228                 return -ENOMEM;
1229         }
1230         memset(txdr->buffer_info, 0, size);
1231
1232         /* round up to nearest 4K */
1233
1234         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1235         E1000_ROUNDUP(txdr->size, 4096);
1236
1237         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1238         if (!txdr->desc) {
1239 setup_tx_desc_die:
1240                 vfree(txdr->buffer_info);
1241                 DPRINTK(PROBE, ERR,
1242                 "Unable to allocate memory for the transmit descriptor ring\n");
1243                 return -ENOMEM;
1244         }
1245
1246         /* Fix for errata 23, can't cross 64kB boundary */
1247         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1248                 void *olddesc = txdr->desc;
1249                 dma_addr_t olddma = txdr->dma;
1250                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1251                                      "at %p\n", txdr->size, txdr->desc);
1252                 /* Try again, without freeing the previous */
1253                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1254                 /* Failed allocation, critical failure */
1255                 if (!txdr->desc) {
1256                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1257                         goto setup_tx_desc_die;
1258                 }
1259
1260                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1261                         /* give up */
1262                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1263                                             txdr->dma);
1264                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1265                         DPRINTK(PROBE, ERR,
1266                                 "Unable to allocate aligned memory "
1267                                 "for the transmit descriptor ring\n");
1268                         vfree(txdr->buffer_info);
1269                         return -ENOMEM;
1270                 } else {
1271                         /* Free old allocation, new allocation was successful */
1272                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1273                 }
1274         }
1275         memset(txdr->desc, 0, txdr->size);
1276
1277         txdr->next_to_use = 0;
1278         txdr->next_to_clean = 0;
1279         spin_lock_init(&txdr->tx_lock);
1280
1281         return 0;
1282 }
1283
1284 /**
1285  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1286  *                                (Descriptors) for all queues
1287  * @adapter: board private structure
1288  *
1289  * If this function returns with an error, then it's possible one or
1290  * more of the rings is populated (while the rest are not).  It is the
1291  * callers duty to clean those orphaned rings.
1292  *
1293  * Return 0 on success, negative on failure
1294  **/
1295
1296 int
1297 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1298 {
1299         int i, err = 0;
1300
1301         for (i = 0; i < adapter->num_tx_queues; i++) {
1302                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1303                 if (err) {
1304                         DPRINTK(PROBE, ERR,
1305                                 "Allocation for Tx Queue %u failed\n", i);
1306                         break;
1307                 }
1308         }
1309
1310         return err;
1311 }
1312
1313 /**
1314  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1315  * @adapter: board private structure
1316  *
1317  * Configure the Tx unit of the MAC after a reset.
1318  **/
1319
1320 static void
1321 e1000_configure_tx(struct e1000_adapter *adapter)
1322 {
1323         uint64_t tdba;
1324         struct e1000_hw *hw = &adapter->hw;
1325         uint32_t tdlen, tctl, tipg, tarc;
1326         uint32_t ipgr1, ipgr2;
1327
1328         /* Setup the HW Tx Head and Tail descriptor pointers */
1329
1330         switch (adapter->num_tx_queues) {
1331         case 1:
1332         default:
1333                 tdba = adapter->tx_ring[0].dma;
1334                 tdlen = adapter->tx_ring[0].count *
1335                         sizeof(struct e1000_tx_desc);
1336                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1337                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1338                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1339                 E1000_WRITE_REG(hw, TDH, 0);
1340                 E1000_WRITE_REG(hw, TDT, 0);
1341                 adapter->tx_ring[0].tdh = E1000_TDH;
1342                 adapter->tx_ring[0].tdt = E1000_TDT;
1343                 break;
1344         }
1345
1346         /* Set the default values for the Tx Inter Packet Gap timer */
1347
1348         if (hw->media_type == e1000_media_type_fiber ||
1349             hw->media_type == e1000_media_type_internal_serdes)
1350                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1351         else
1352                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1353
1354         switch (hw->mac_type) {
1355         case e1000_82542_rev2_0:
1356         case e1000_82542_rev2_1:
1357                 tipg = DEFAULT_82542_TIPG_IPGT;
1358                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1359                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1360                 break;
1361         case e1000_80003es2lan:
1362                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1363                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1364                 break;
1365         default:
1366                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1367                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1368                 break;
1369         }
1370         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1371         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1372         E1000_WRITE_REG(hw, TIPG, tipg);
1373
1374         /* Set the Tx Interrupt Delay register */
1375
1376         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1377         if (hw->mac_type >= e1000_82540)
1378                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1379
1380         /* Program the Transmit Control Register */
1381
1382         tctl = E1000_READ_REG(hw, TCTL);
1383
1384         tctl &= ~E1000_TCTL_CT;
1385         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1386                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1387
1388 #ifdef DISABLE_MULR
1389         /* disable Multiple Reads for debugging */
1390         tctl &= ~E1000_TCTL_MULR;
1391 #endif
1392
1393         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1394                 tarc = E1000_READ_REG(hw, TARC0);
1395                 tarc |= ((1 << 25) | (1 << 21));
1396                 E1000_WRITE_REG(hw, TARC0, tarc);
1397                 tarc = E1000_READ_REG(hw, TARC1);
1398                 tarc |= (1 << 25);
1399                 if (tctl & E1000_TCTL_MULR)
1400                         tarc &= ~(1 << 28);
1401                 else
1402                         tarc |= (1 << 28);
1403                 E1000_WRITE_REG(hw, TARC1, tarc);
1404         } else if (hw->mac_type == e1000_80003es2lan) {
1405                 tarc = E1000_READ_REG(hw, TARC0);
1406                 tarc |= 1;
1407                 if (hw->media_type == e1000_media_type_internal_serdes)
1408                         tarc |= (1 << 20);
1409                 E1000_WRITE_REG(hw, TARC0, tarc);
1410                 tarc = E1000_READ_REG(hw, TARC1);
1411                 tarc |= 1;
1412                 E1000_WRITE_REG(hw, TARC1, tarc);
1413         }
1414
1415         e1000_config_collision_dist(hw);
1416
1417         /* Setup Transmit Descriptor Settings for eop descriptor */
1418         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1419                 E1000_TXD_CMD_IFCS;
1420
1421         if (hw->mac_type < e1000_82543)
1422                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1423         else
1424                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1425
1426         /* Cache if we're 82544 running in PCI-X because we'll
1427          * need this to apply a workaround later in the send path. */
1428         if (hw->mac_type == e1000_82544 &&
1429             hw->bus_type == e1000_bus_type_pcix)
1430                 adapter->pcix_82544 = 1;
1431
1432         E1000_WRITE_REG(hw, TCTL, tctl);
1433
1434 }
1435
1436 /**
1437  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1438  * @adapter: board private structure
1439  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1440  *
1441  * Returns 0 on success, negative on failure
1442  **/
1443
1444 static int
1445 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1446                          struct e1000_rx_ring *rxdr)
1447 {
1448         struct pci_dev *pdev = adapter->pdev;
1449         int size, desc_len;
1450
1451         size = sizeof(struct e1000_buffer) * rxdr->count;
1452         rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1453         if (!rxdr->buffer_info) {
1454                 DPRINTK(PROBE, ERR,
1455                 "Unable to allocate memory for the receive descriptor ring\n");
1456                 return -ENOMEM;
1457         }
1458         memset(rxdr->buffer_info, 0, size);
1459
1460         size = sizeof(struct e1000_ps_page) * rxdr->count;
1461         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1462         if (!rxdr->ps_page) {
1463                 vfree(rxdr->buffer_info);
1464                 DPRINTK(PROBE, ERR,
1465                 "Unable to allocate memory for the receive descriptor ring\n");
1466                 return -ENOMEM;
1467         }
1468         memset(rxdr->ps_page, 0, size);
1469
1470         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1471         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1472         if (!rxdr->ps_page_dma) {
1473                 vfree(rxdr->buffer_info);
1474                 kfree(rxdr->ps_page);
1475                 DPRINTK(PROBE, ERR,
1476                 "Unable to allocate memory for the receive descriptor ring\n");
1477                 return -ENOMEM;
1478         }
1479         memset(rxdr->ps_page_dma, 0, size);
1480
1481         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1482                 desc_len = sizeof(struct e1000_rx_desc);
1483         else
1484                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1485
1486         /* Round up to nearest 4K */
1487
1488         rxdr->size = rxdr->count * desc_len;
1489         E1000_ROUNDUP(rxdr->size, 4096);
1490
1491         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1492
1493         if (!rxdr->desc) {
1494                 DPRINTK(PROBE, ERR,
1495                 "Unable to allocate memory for the receive descriptor ring\n");
1496 setup_rx_desc_die:
1497                 vfree(rxdr->buffer_info);
1498                 kfree(rxdr->ps_page);
1499                 kfree(rxdr->ps_page_dma);
1500                 return -ENOMEM;
1501         }
1502
1503         /* Fix for errata 23, can't cross 64kB boundary */
1504         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1505                 void *olddesc = rxdr->desc;
1506                 dma_addr_t olddma = rxdr->dma;
1507                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1508                                      "at %p\n", rxdr->size, rxdr->desc);
1509                 /* Try again, without freeing the previous */
1510                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1511                 /* Failed allocation, critical failure */
1512                 if (!rxdr->desc) {
1513                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1514                         DPRINTK(PROBE, ERR,
1515                                 "Unable to allocate memory "
1516                                 "for the receive descriptor ring\n");
1517                         goto setup_rx_desc_die;
1518                 }
1519
1520                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1521                         /* give up */
1522                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1523                                             rxdr->dma);
1524                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1525                         DPRINTK(PROBE, ERR,
1526                                 "Unable to allocate aligned memory "
1527                                 "for the receive descriptor ring\n");
1528                         goto setup_rx_desc_die;
1529                 } else {
1530                         /* Free old allocation, new allocation was successful */
1531                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1532                 }
1533         }
1534         memset(rxdr->desc, 0, rxdr->size);
1535
1536         rxdr->next_to_clean = 0;
1537         rxdr->next_to_use = 0;
1538
1539         return 0;
1540 }
1541
1542 /**
1543  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1544  *                                (Descriptors) for all queues
1545  * @adapter: board private structure
1546  *
1547  * If this function returns with an error, then it's possible one or
1548  * more of the rings is populated (while the rest are not).  It is the
1549  * callers duty to clean those orphaned rings.
1550  *
1551  * Return 0 on success, negative on failure
1552  **/
1553
1554 int
1555 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1556 {
1557         int i, err = 0;
1558
1559         for (i = 0; i < adapter->num_rx_queues; i++) {
1560                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1561                 if (err) {
1562                         DPRINTK(PROBE, ERR,
1563                                 "Allocation for Rx Queue %u failed\n", i);
1564                         break;
1565                 }
1566         }
1567
1568         return err;
1569 }
1570
1571 /**
1572  * e1000_setup_rctl - configure the receive control registers
1573  * @adapter: Board private structure
1574  **/
1575 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1576                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1577 static void
1578 e1000_setup_rctl(struct e1000_adapter *adapter)
1579 {
1580         uint32_t rctl, rfctl;
1581         uint32_t psrctl = 0;
1582 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1583         uint32_t pages = 0;
1584 #endif
1585
1586         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1587
1588         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1589
1590         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1591                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1592                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1593
1594         if (adapter->hw.mac_type > e1000_82543)
1595                 rctl |= E1000_RCTL_SECRC;
1596
1597         if (adapter->hw.tbi_compatibility_on == 1)
1598                 rctl |= E1000_RCTL_SBP;
1599         else
1600                 rctl &= ~E1000_RCTL_SBP;
1601
1602         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1603                 rctl &= ~E1000_RCTL_LPE;
1604         else
1605                 rctl |= E1000_RCTL_LPE;
1606
1607         /* Setup buffer sizes */
1608         rctl &= ~E1000_RCTL_SZ_4096;
1609         rctl |= E1000_RCTL_BSEX;
1610         switch (adapter->rx_buffer_len) {
1611                 case E1000_RXBUFFER_256:
1612                         rctl |= E1000_RCTL_SZ_256;
1613                         rctl &= ~E1000_RCTL_BSEX;
1614                         break;
1615                 case E1000_RXBUFFER_512:
1616                         rctl |= E1000_RCTL_SZ_512;
1617                         rctl &= ~E1000_RCTL_BSEX;
1618                         break;
1619                 case E1000_RXBUFFER_1024:
1620                         rctl |= E1000_RCTL_SZ_1024;
1621                         rctl &= ~E1000_RCTL_BSEX;
1622                         break;
1623                 case E1000_RXBUFFER_2048:
1624                 default:
1625                         rctl |= E1000_RCTL_SZ_2048;
1626                         rctl &= ~E1000_RCTL_BSEX;
1627                         break;
1628                 case E1000_RXBUFFER_4096:
1629                         rctl |= E1000_RCTL_SZ_4096;
1630                         break;
1631                 case E1000_RXBUFFER_8192:
1632                         rctl |= E1000_RCTL_SZ_8192;
1633                         break;
1634                 case E1000_RXBUFFER_16384:
1635                         rctl |= E1000_RCTL_SZ_16384;
1636                         break;
1637         }
1638
1639 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1640         /* 82571 and greater support packet-split where the protocol
1641          * header is placed in skb->data and the packet data is
1642          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1643          * In the case of a non-split, skb->data is linearly filled,
1644          * followed by the page buffers.  Therefore, skb->data is
1645          * sized to hold the largest protocol header.
1646          */
1647         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1648         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1649             PAGE_SIZE <= 16384)
1650                 adapter->rx_ps_pages = pages;
1651         else
1652                 adapter->rx_ps_pages = 0;
1653 #endif
1654         if (adapter->rx_ps_pages) {
1655                 /* Configure extra packet-split registers */
1656                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1657                 rfctl |= E1000_RFCTL_EXTEN;
1658                 /* disable IPv6 packet split support */
1659                 rfctl |= E1000_RFCTL_IPV6_DIS;
1660                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1661
1662                 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1663
1664                 psrctl |= adapter->rx_ps_bsize0 >>
1665                         E1000_PSRCTL_BSIZE0_SHIFT;
1666
1667                 switch (adapter->rx_ps_pages) {
1668                 case 3:
1669                         psrctl |= PAGE_SIZE <<
1670                                 E1000_PSRCTL_BSIZE3_SHIFT;
1671                 case 2:
1672                         psrctl |= PAGE_SIZE <<
1673                                 E1000_PSRCTL_BSIZE2_SHIFT;
1674                 case 1:
1675                         psrctl |= PAGE_SIZE >>
1676                                 E1000_PSRCTL_BSIZE1_SHIFT;
1677                         break;
1678                 }
1679
1680                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1681         }
1682
1683         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1684 }
1685
1686 /**
1687  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1688  * @adapter: board private structure
1689  *
1690  * Configure the Rx unit of the MAC after a reset.
1691  **/
1692
1693 static void
1694 e1000_configure_rx(struct e1000_adapter *adapter)
1695 {
1696         uint64_t rdba;
1697         struct e1000_hw *hw = &adapter->hw;
1698         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1699
1700         if (adapter->rx_ps_pages) {
1701                 /* this is a 32 byte descriptor */
1702                 rdlen = adapter->rx_ring[0].count *
1703                         sizeof(union e1000_rx_desc_packet_split);
1704                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1705                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1706         } else {
1707                 rdlen = adapter->rx_ring[0].count *
1708                         sizeof(struct e1000_rx_desc);
1709                 adapter->clean_rx = e1000_clean_rx_irq;
1710                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1711         }
1712
1713         /* disable receives while setting up the descriptors */
1714         rctl = E1000_READ_REG(hw, RCTL);
1715         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1716
1717         /* set the Receive Delay Timer Register */
1718         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1719
1720         if (hw->mac_type >= e1000_82540) {
1721                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1722                 if (adapter->itr > 1)
1723                         E1000_WRITE_REG(hw, ITR,
1724                                 1000000000 / (adapter->itr * 256));
1725         }
1726
1727         if (hw->mac_type >= e1000_82571) {
1728                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1729                 /* Reset delay timers after every interrupt */
1730                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1731 #ifdef CONFIG_E1000_NAPI
1732                 /* Auto-Mask interrupts upon ICR read. */
1733                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1734 #endif
1735                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1736                 E1000_WRITE_REG(hw, IAM, ~0);
1737                 E1000_WRITE_FLUSH(hw);
1738         }
1739
1740         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1741          * the Base and Length of the Rx Descriptor Ring */
1742         switch (adapter->num_rx_queues) {
1743         case 1:
1744         default:
1745                 rdba = adapter->rx_ring[0].dma;
1746                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1747                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1748                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1749                 E1000_WRITE_REG(hw, RDH, 0);
1750                 E1000_WRITE_REG(hw, RDT, 0);
1751                 adapter->rx_ring[0].rdh = E1000_RDH;
1752                 adapter->rx_ring[0].rdt = E1000_RDT;
1753                 break;
1754         }
1755
1756         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1757         if (hw->mac_type >= e1000_82543) {
1758                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1759                 if (adapter->rx_csum == TRUE) {
1760                         rxcsum |= E1000_RXCSUM_TUOFL;
1761
1762                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1763                          * Must be used in conjunction with packet-split. */
1764                         if ((hw->mac_type >= e1000_82571) &&
1765                             (adapter->rx_ps_pages)) {
1766                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1767                         }
1768                 } else {
1769                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1770                         /* don't need to clear IPPCSE as it defaults to 0 */
1771                 }
1772                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1773         }
1774
1775         if (hw->mac_type == e1000_82573)
1776                 E1000_WRITE_REG(hw, ERT, 0x0100);
1777
1778         /* Enable Receives */
1779         E1000_WRITE_REG(hw, RCTL, rctl);
1780 }
1781
1782 /**
1783  * e1000_free_tx_resources - Free Tx Resources per Queue
1784  * @adapter: board private structure
1785  * @tx_ring: Tx descriptor ring for a specific queue
1786  *
1787  * Free all transmit software resources
1788  **/
1789
1790 static void
1791 e1000_free_tx_resources(struct e1000_adapter *adapter,
1792                         struct e1000_tx_ring *tx_ring)
1793 {
1794         struct pci_dev *pdev = adapter->pdev;
1795
1796         e1000_clean_tx_ring(adapter, tx_ring);
1797
1798         vfree(tx_ring->buffer_info);
1799         tx_ring->buffer_info = NULL;
1800
1801         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1802
1803         tx_ring->desc = NULL;
1804 }
1805
1806 /**
1807  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1808  * @adapter: board private structure
1809  *
1810  * Free all transmit software resources
1811  **/
1812
1813 void
1814 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1815 {
1816         int i;
1817
1818         for (i = 0; i < adapter->num_tx_queues; i++)
1819                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1820 }
1821
1822 static void
1823 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1824                         struct e1000_buffer *buffer_info)
1825 {
1826         if (buffer_info->dma) {
1827                 pci_unmap_page(adapter->pdev,
1828                                 buffer_info->dma,
1829                                 buffer_info->length,
1830                                 PCI_DMA_TODEVICE);
1831         }
1832         if (buffer_info->skb)
1833                 dev_kfree_skb_any(buffer_info->skb);
1834         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1835 }
1836
1837 /**
1838  * e1000_clean_tx_ring - Free Tx Buffers
1839  * @adapter: board private structure
1840  * @tx_ring: ring to be cleaned
1841  **/
1842
1843 static void
1844 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1845                     struct e1000_tx_ring *tx_ring)
1846 {
1847         struct e1000_buffer *buffer_info;
1848         unsigned long size;
1849         unsigned int i;
1850
1851         /* Free all the Tx ring sk_buffs */
1852
1853         for (i = 0; i < tx_ring->count; i++) {
1854                 buffer_info = &tx_ring->buffer_info[i];
1855                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1856         }
1857
1858         size = sizeof(struct e1000_buffer) * tx_ring->count;
1859         memset(tx_ring->buffer_info, 0, size);
1860
1861         /* Zero out the descriptor ring */
1862
1863         memset(tx_ring->desc, 0, tx_ring->size);
1864
1865         tx_ring->next_to_use = 0;
1866         tx_ring->next_to_clean = 0;
1867         tx_ring->last_tx_tso = 0;
1868
1869         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1870         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1871 }
1872
1873 /**
1874  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1875  * @adapter: board private structure
1876  **/
1877
1878 static void
1879 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1880 {
1881         int i;
1882
1883         for (i = 0; i < adapter->num_tx_queues; i++)
1884                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1885 }
1886
1887 /**
1888  * e1000_free_rx_resources - Free Rx Resources
1889  * @adapter: board private structure
1890  * @rx_ring: ring to clean the resources from
1891  *
1892  * Free all receive software resources
1893  **/
1894
1895 static void
1896 e1000_free_rx_resources(struct e1000_adapter *adapter,
1897                         struct e1000_rx_ring *rx_ring)
1898 {
1899         struct pci_dev *pdev = adapter->pdev;
1900
1901         e1000_clean_rx_ring(adapter, rx_ring);
1902
1903         vfree(rx_ring->buffer_info);
1904         rx_ring->buffer_info = NULL;
1905         kfree(rx_ring->ps_page);
1906         rx_ring->ps_page = NULL;
1907         kfree(rx_ring->ps_page_dma);
1908         rx_ring->ps_page_dma = NULL;
1909
1910         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1911
1912         rx_ring->desc = NULL;
1913 }
1914
1915 /**
1916  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1917  * @adapter: board private structure
1918  *
1919  * Free all receive software resources
1920  **/
1921
1922 void
1923 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1924 {
1925         int i;
1926
1927         for (i = 0; i < adapter->num_rx_queues; i++)
1928                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1929 }
1930
1931 /**
1932  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1933  * @adapter: board private structure
1934  * @rx_ring: ring to free buffers from
1935  **/
1936
1937 static void
1938 e1000_clean_rx_ring(struct e1000_adapter *adapter,
1939                     struct e1000_rx_ring *rx_ring)
1940 {
1941         struct e1000_buffer *buffer_info;
1942         struct e1000_ps_page *ps_page;
1943         struct e1000_ps_page_dma *ps_page_dma;
1944         struct pci_dev *pdev = adapter->pdev;
1945         unsigned long size;
1946         unsigned int i, j;
1947
1948         /* Free all the Rx ring sk_buffs */
1949         for (i = 0; i < rx_ring->count; i++) {
1950                 buffer_info = &rx_ring->buffer_info[i];
1951                 if (buffer_info->skb) {
1952                         pci_unmap_single(pdev,
1953                                          buffer_info->dma,
1954                                          buffer_info->length,
1955                                          PCI_DMA_FROMDEVICE);
1956
1957                         dev_kfree_skb(buffer_info->skb);
1958                         buffer_info->skb = NULL;
1959                 }
1960                 ps_page = &rx_ring->ps_page[i];
1961                 ps_page_dma = &rx_ring->ps_page_dma[i];
1962                 for (j = 0; j < adapter->rx_ps_pages; j++) {
1963                         if (!ps_page->ps_page[j]) break;
1964                         pci_unmap_page(pdev,
1965                                        ps_page_dma->ps_page_dma[j],
1966                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
1967                         ps_page_dma->ps_page_dma[j] = 0;
1968                         put_page(ps_page->ps_page[j]);
1969                         ps_page->ps_page[j] = NULL;
1970                 }
1971         }
1972
1973         size = sizeof(struct e1000_buffer) * rx_ring->count;
1974         memset(rx_ring->buffer_info, 0, size);
1975         size = sizeof(struct e1000_ps_page) * rx_ring->count;
1976         memset(rx_ring->ps_page, 0, size);
1977         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1978         memset(rx_ring->ps_page_dma, 0, size);
1979
1980         /* Zero out the descriptor ring */
1981
1982         memset(rx_ring->desc, 0, rx_ring->size);
1983
1984         rx_ring->next_to_clean = 0;
1985         rx_ring->next_to_use = 0;
1986
1987         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
1988         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
1989 }
1990
1991 /**
1992  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1993  * @adapter: board private structure
1994  **/
1995
1996 static void
1997 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
1998 {
1999         int i;
2000
2001         for (i = 0; i < adapter->num_rx_queues; i++)
2002                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2003 }
2004
2005 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2006  * and memory write and invalidate disabled for certain operations
2007  */
2008 static void
2009 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2010 {
2011         struct net_device *netdev = adapter->netdev;
2012         uint32_t rctl;
2013
2014         e1000_pci_clear_mwi(&adapter->hw);
2015
2016         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2017         rctl |= E1000_RCTL_RST;
2018         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2019         E1000_WRITE_FLUSH(&adapter->hw);
2020         mdelay(5);
2021
2022         if (netif_running(netdev))
2023                 e1000_clean_all_rx_rings(adapter);
2024 }
2025
2026 static void
2027 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2028 {
2029         struct net_device *netdev = adapter->netdev;
2030         uint32_t rctl;
2031
2032         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2033         rctl &= ~E1000_RCTL_RST;
2034         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2035         E1000_WRITE_FLUSH(&adapter->hw);
2036         mdelay(5);
2037
2038         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2039                 e1000_pci_set_mwi(&adapter->hw);
2040
2041         if (netif_running(netdev)) {
2042                 /* No need to loop, because 82542 supports only 1 queue */
2043                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2044                 e1000_configure_rx(adapter);
2045                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2046         }
2047 }
2048
2049 /**
2050  * e1000_set_mac - Change the Ethernet Address of the NIC
2051  * @netdev: network interface device structure
2052  * @p: pointer to an address structure
2053  *
2054  * Returns 0 on success, negative on failure
2055  **/
2056
2057 static int
2058 e1000_set_mac(struct net_device *netdev, void *p)
2059 {
2060         struct e1000_adapter *adapter = netdev_priv(netdev);
2061         struct sockaddr *addr = p;
2062
2063         if (!is_valid_ether_addr(addr->sa_data))
2064                 return -EADDRNOTAVAIL;
2065
2066         /* 82542 2.0 needs to be in reset to write receive address registers */
2067
2068         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2069                 e1000_enter_82542_rst(adapter);
2070
2071         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2072         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2073
2074         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2075
2076         /* With 82571 controllers, LAA may be overwritten (with the default)
2077          * due to controller reset from the other port. */
2078         if (adapter->hw.mac_type == e1000_82571) {
2079                 /* activate the work around */
2080                 adapter->hw.laa_is_present = 1;
2081
2082                 /* Hold a copy of the LAA in RAR[14] This is done so that
2083                  * between the time RAR[0] gets clobbered  and the time it
2084                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2085                  * of the RARs and no incoming packets directed to this port
2086                  * are dropped. Eventaully the LAA will be in RAR[0] and
2087                  * RAR[14] */
2088                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2089                                         E1000_RAR_ENTRIES - 1);
2090         }
2091
2092         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2093                 e1000_leave_82542_rst(adapter);
2094
2095         return 0;
2096 }
2097
2098 /**
2099  * e1000_set_multi - Multicast and Promiscuous mode set
2100  * @netdev: network interface device structure
2101  *
2102  * The set_multi entry point is called whenever the multicast address
2103  * list or the network interface flags are updated.  This routine is
2104  * responsible for configuring the hardware for proper multicast,
2105  * promiscuous mode, and all-multi behavior.
2106  **/
2107
2108 static void
2109 e1000_set_multi(struct net_device *netdev)
2110 {
2111         struct e1000_adapter *adapter = netdev_priv(netdev);
2112         struct e1000_hw *hw = &adapter->hw;
2113         struct dev_mc_list *mc_ptr;
2114         uint32_t rctl;
2115         uint32_t hash_value;
2116         int i, rar_entries = E1000_RAR_ENTRIES;
2117
2118         /* reserve RAR[14] for LAA over-write work-around */
2119         if (adapter->hw.mac_type == e1000_82571)
2120                 rar_entries--;
2121
2122         /* Check for Promiscuous and All Multicast modes */
2123
2124         rctl = E1000_READ_REG(hw, RCTL);
2125
2126         if (netdev->flags & IFF_PROMISC) {
2127                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2128         } else if (netdev->flags & IFF_ALLMULTI) {
2129                 rctl |= E1000_RCTL_MPE;
2130                 rctl &= ~E1000_RCTL_UPE;
2131         } else {
2132                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2133         }
2134
2135         E1000_WRITE_REG(hw, RCTL, rctl);
2136
2137         /* 82542 2.0 needs to be in reset to write receive address registers */
2138
2139         if (hw->mac_type == e1000_82542_rev2_0)
2140                 e1000_enter_82542_rst(adapter);
2141
2142         /* load the first 14 multicast address into the exact filters 1-14
2143          * RAR 0 is used for the station MAC adddress
2144          * if there are not 14 addresses, go ahead and clear the filters
2145          * -- with 82571 controllers only 0-13 entries are filled here
2146          */
2147         mc_ptr = netdev->mc_list;
2148
2149         for (i = 1; i < rar_entries; i++) {
2150                 if (mc_ptr) {
2151                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2152                         mc_ptr = mc_ptr->next;
2153                 } else {
2154                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2155                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2156                 }
2157         }
2158
2159         /* clear the old settings from the multicast hash table */
2160
2161         for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2162                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2163
2164         /* load any remaining addresses into the hash table */
2165
2166         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2167                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2168                 e1000_mta_set(hw, hash_value);
2169         }
2170
2171         if (hw->mac_type == e1000_82542_rev2_0)
2172                 e1000_leave_82542_rst(adapter);
2173 }
2174
2175 /* Need to wait a few seconds after link up to get diagnostic information from
2176  * the phy */
2177
2178 static void
2179 e1000_update_phy_info(unsigned long data)
2180 {
2181         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2182         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2183 }
2184
2185 /**
2186  * e1000_82547_tx_fifo_stall - Timer Call-back
2187  * @data: pointer to adapter cast into an unsigned long
2188  **/
2189
2190 static void
2191 e1000_82547_tx_fifo_stall(unsigned long data)
2192 {
2193         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2194         struct net_device *netdev = adapter->netdev;
2195         uint32_t tctl;
2196
2197         if (atomic_read(&adapter->tx_fifo_stall)) {
2198                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2199                     E1000_READ_REG(&adapter->hw, TDH)) &&
2200                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2201                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2202                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2203                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2204                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2205                         E1000_WRITE_REG(&adapter->hw, TCTL,
2206                                         tctl & ~E1000_TCTL_EN);
2207                         E1000_WRITE_REG(&adapter->hw, TDFT,
2208                                         adapter->tx_head_addr);
2209                         E1000_WRITE_REG(&adapter->hw, TDFH,
2210                                         adapter->tx_head_addr);
2211                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2212                                         adapter->tx_head_addr);
2213                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2214                                         adapter->tx_head_addr);
2215                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2216                         E1000_WRITE_FLUSH(&adapter->hw);
2217
2218                         adapter->tx_fifo_head = 0;
2219                         atomic_set(&adapter->tx_fifo_stall, 0);
2220                         netif_wake_queue(netdev);
2221                 } else {
2222                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2223                 }
2224         }
2225 }
2226
2227 /**
2228  * e1000_watchdog - Timer Call-back
2229  * @data: pointer to adapter cast into an unsigned long
2230  **/
2231 static void
2232 e1000_watchdog(unsigned long data)
2233 {
2234         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2235         struct net_device *netdev = adapter->netdev;
2236         struct e1000_tx_ring *txdr = adapter->tx_ring;
2237         uint32_t link, tctl;
2238
2239         e1000_check_for_link(&adapter->hw);
2240         if (adapter->hw.mac_type == e1000_82573) {
2241                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2242                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2243                         e1000_update_mng_vlan(adapter);
2244         }
2245
2246         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2247            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2248                 link = !adapter->hw.serdes_link_down;
2249         else
2250                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2251
2252         if (link) {
2253                 if (!netif_carrier_ok(netdev)) {
2254                         boolean_t txb2b = 1;
2255                         e1000_get_speed_and_duplex(&adapter->hw,
2256                                                    &adapter->link_speed,
2257                                                    &adapter->link_duplex);
2258
2259                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2260                                adapter->link_speed,
2261                                adapter->link_duplex == FULL_DUPLEX ?
2262                                "Full Duplex" : "Half Duplex");
2263
2264                         /* tweak tx_queue_len according to speed/duplex
2265                          * and adjust the timeout factor */
2266                         netdev->tx_queue_len = adapter->tx_queue_len;
2267                         adapter->tx_timeout_factor = 1;
2268                         switch (adapter->link_speed) {
2269                         case SPEED_10:
2270                                 txb2b = 0;
2271                                 netdev->tx_queue_len = 10;
2272                                 adapter->tx_timeout_factor = 8;
2273                                 break;
2274                         case SPEED_100:
2275                                 txb2b = 0;
2276                                 netdev->tx_queue_len = 100;
2277                                 /* maybe add some timeout factor ? */
2278                                 break;
2279                         }
2280
2281                         if ((adapter->hw.mac_type == e1000_82571 ||
2282                              adapter->hw.mac_type == e1000_82572) &&
2283                             txb2b == 0) {
2284 #define SPEED_MODE_BIT (1 << 21)
2285                                 uint32_t tarc0;
2286                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2287                                 tarc0 &= ~SPEED_MODE_BIT;
2288                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2289                         }
2290                                 
2291 #ifdef NETIF_F_TSO
2292                         /* disable TSO for pcie and 10/100 speeds, to avoid
2293                          * some hardware issues */
2294                         if (!adapter->tso_force &&
2295                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2296                                 switch (adapter->link_speed) {
2297                                 case SPEED_10:
2298                                 case SPEED_100:
2299                                         DPRINTK(PROBE,INFO,
2300                                         "10/100 speed: disabling TSO\n");
2301                                         netdev->features &= ~NETIF_F_TSO;
2302                                         break;
2303                                 case SPEED_1000:
2304                                         netdev->features |= NETIF_F_TSO;
2305                                         break;
2306                                 default:
2307                                         /* oops */
2308                                         break;
2309                                 }
2310                         }
2311 #endif
2312
2313                         /* enable transmits in the hardware, need to do this
2314                          * after setting TARC0 */
2315                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2316                         tctl |= E1000_TCTL_EN;
2317                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2318
2319                         netif_carrier_on(netdev);
2320                         netif_wake_queue(netdev);
2321                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2322                         adapter->smartspeed = 0;
2323                 }
2324         } else {
2325                 if (netif_carrier_ok(netdev)) {
2326                         adapter->link_speed = 0;
2327                         adapter->link_duplex = 0;
2328                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2329                         netif_carrier_off(netdev);
2330                         netif_stop_queue(netdev);
2331                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2332
2333                         /* 80003ES2LAN workaround--
2334                          * For packet buffer work-around on link down event;
2335                          * disable receives in the ISR and
2336                          * reset device here in the watchdog
2337                          */
2338                         if (adapter->hw.mac_type == e1000_80003es2lan) {
2339                                 /* reset device */
2340                                 schedule_work(&adapter->reset_task);
2341                         }
2342                 }
2343
2344                 e1000_smartspeed(adapter);
2345         }
2346
2347         e1000_update_stats(adapter);
2348
2349         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2350         adapter->tpt_old = adapter->stats.tpt;
2351         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2352         adapter->colc_old = adapter->stats.colc;
2353
2354         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2355         adapter->gorcl_old = adapter->stats.gorcl;
2356         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2357         adapter->gotcl_old = adapter->stats.gotcl;
2358
2359         e1000_update_adaptive(&adapter->hw);
2360
2361         if (!netif_carrier_ok(netdev)) {
2362                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2363                         /* We've lost link, so the controller stops DMA,
2364                          * but we've got queued Tx work that's never going
2365                          * to get done, so reset controller to flush Tx.
2366                          * (Do the reset outside of interrupt context). */
2367                         adapter->tx_timeout_count++;
2368                         schedule_work(&adapter->reset_task);
2369                 }
2370         }
2371
2372         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2373         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2374                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2375                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2376                  * else is between 2000-8000. */
2377                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2378                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2379                         adapter->gotcl - adapter->gorcl :
2380                         adapter->gorcl - adapter->gotcl) / 10000;
2381                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2382                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2383         }
2384
2385         /* Cause software interrupt to ensure rx ring is cleaned */
2386         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2387
2388         /* Force detection of hung controller every watchdog period */
2389         adapter->detect_tx_hung = TRUE;
2390
2391         /* With 82571 controllers, LAA may be overwritten due to controller
2392          * reset from the other port. Set the appropriate LAA in RAR[0] */
2393         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2394                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2395
2396         /* Reset the timer */
2397         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2398 }
2399
2400 #define E1000_TX_FLAGS_CSUM             0x00000001
2401 #define E1000_TX_FLAGS_VLAN             0x00000002
2402 #define E1000_TX_FLAGS_TSO              0x00000004
2403 #define E1000_TX_FLAGS_IPV4             0x00000008
2404 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2405 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2406
2407 static int
2408 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2409           struct sk_buff *skb)
2410 {
2411 #ifdef NETIF_F_TSO
2412         struct e1000_context_desc *context_desc;
2413         struct e1000_buffer *buffer_info;
2414         unsigned int i;
2415         uint32_t cmd_length = 0;
2416         uint16_t ipcse = 0, tucse, mss;
2417         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2418         int err;
2419
2420         if (skb_shinfo(skb)->tso_size) {
2421                 if (skb_header_cloned(skb)) {
2422                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2423                         if (err)
2424                                 return err;
2425                 }
2426
2427                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2428                 mss = skb_shinfo(skb)->tso_size;
2429                 if (skb->protocol == htons(ETH_P_IP)) {
2430                         skb->nh.iph->tot_len = 0;
2431                         skb->nh.iph->check = 0;
2432                         skb->h.th->check =
2433                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2434                                                    skb->nh.iph->daddr,
2435                                                    0,
2436                                                    IPPROTO_TCP,
2437                                                    0);
2438                         cmd_length = E1000_TXD_CMD_IP;
2439                         ipcse = skb->h.raw - skb->data - 1;
2440 #ifdef NETIF_F_TSO_IPV6
2441                 } else if (skb->protocol == ntohs(ETH_P_IPV6)) {
2442                         skb->nh.ipv6h->payload_len = 0;
2443                         skb->h.th->check =
2444                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2445                                                  &skb->nh.ipv6h->daddr,
2446                                                  0,
2447                                                  IPPROTO_TCP,
2448                                                  0);
2449                         ipcse = 0;
2450 #endif
2451                 }
2452                 ipcss = skb->nh.raw - skb->data;
2453                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2454                 tucss = skb->h.raw - skb->data;
2455                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2456                 tucse = 0;
2457
2458                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2459                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2460
2461                 i = tx_ring->next_to_use;
2462                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2463                 buffer_info = &tx_ring->buffer_info[i];
2464
2465                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2466                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2467                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2468                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2469                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2470                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2471                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2472                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2473                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2474
2475                 buffer_info->time_stamp = jiffies;
2476
2477                 if (++i == tx_ring->count) i = 0;
2478                 tx_ring->next_to_use = i;
2479
2480                 return TRUE;
2481         }
2482 #endif
2483
2484         return FALSE;
2485 }
2486
2487 static boolean_t
2488 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2489               struct sk_buff *skb)
2490 {
2491         struct e1000_context_desc *context_desc;
2492         struct e1000_buffer *buffer_info;
2493         unsigned int i;
2494         uint8_t css;
2495
2496         if (likely(skb->ip_summed == CHECKSUM_HW)) {
2497                 css = skb->h.raw - skb->data;
2498
2499                 i = tx_ring->next_to_use;
2500                 buffer_info = &tx_ring->buffer_info[i];
2501                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2502
2503                 context_desc->upper_setup.tcp_fields.tucss = css;
2504                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2505                 context_desc->upper_setup.tcp_fields.tucse = 0;
2506                 context_desc->tcp_seg_setup.data = 0;
2507                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2508
2509                 buffer_info->time_stamp = jiffies;
2510
2511                 if (unlikely(++i == tx_ring->count)) i = 0;
2512                 tx_ring->next_to_use = i;
2513
2514                 return TRUE;
2515         }
2516
2517         return FALSE;
2518 }
2519
2520 #define E1000_MAX_TXD_PWR       12
2521 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2522
2523 static int
2524 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2525              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2526              unsigned int nr_frags, unsigned int mss)
2527 {
2528         struct e1000_buffer *buffer_info;
2529         unsigned int len = skb->len;
2530         unsigned int offset = 0, size, count = 0, i;
2531         unsigned int f;
2532         len -= skb->data_len;
2533
2534         i = tx_ring->next_to_use;
2535
2536         while (len) {
2537                 buffer_info = &tx_ring->buffer_info[i];
2538                 size = min(len, max_per_txd);
2539 #ifdef NETIF_F_TSO
2540                 /* Workaround for Controller erratum --
2541                  * descriptor for non-tso packet in a linear SKB that follows a
2542                  * tso gets written back prematurely before the data is fully
2543                  * DMA'd to the controller */
2544                 if (!skb->data_len && tx_ring->last_tx_tso &&
2545                     !skb_shinfo(skb)->tso_size) {
2546                         tx_ring->last_tx_tso = 0;
2547                         size -= 4;
2548                 }
2549
2550                 /* Workaround for premature desc write-backs
2551                  * in TSO mode.  Append 4-byte sentinel desc */
2552                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2553                         size -= 4;
2554 #endif
2555                 /* work-around for errata 10 and it applies
2556                  * to all controllers in PCI-X mode
2557                  * The fix is to make sure that the first descriptor of a
2558                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2559                  */
2560                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2561                                 (size > 2015) && count == 0))
2562                         size = 2015;
2563
2564                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2565                  * terminating buffers within evenly-aligned dwords. */
2566                 if (unlikely(adapter->pcix_82544 &&
2567                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2568                    size > 4))
2569                         size -= 4;
2570
2571                 buffer_info->length = size;
2572                 buffer_info->dma =
2573                         pci_map_single(adapter->pdev,
2574                                 skb->data + offset,
2575                                 size,
2576                                 PCI_DMA_TODEVICE);
2577                 buffer_info->time_stamp = jiffies;
2578
2579                 len -= size;
2580                 offset += size;
2581                 count++;
2582                 if (unlikely(++i == tx_ring->count)) i = 0;
2583         }
2584
2585         for (f = 0; f < nr_frags; f++) {
2586                 struct skb_frag_struct *frag;
2587
2588                 frag = &skb_shinfo(skb)->frags[f];
2589                 len = frag->size;
2590                 offset = frag->page_offset;
2591
2592                 while (len) {
2593                         buffer_info = &tx_ring->buffer_info[i];
2594                         size = min(len, max_per_txd);
2595 #ifdef NETIF_F_TSO
2596                         /* Workaround for premature desc write-backs
2597                          * in TSO mode.  Append 4-byte sentinel desc */
2598                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2599                                 size -= 4;
2600 #endif
2601                         /* Workaround for potential 82544 hang in PCI-X.
2602                          * Avoid terminating buffers within evenly-aligned
2603                          * dwords. */
2604                         if (unlikely(adapter->pcix_82544 &&
2605                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2606                            size > 4))
2607                                 size -= 4;
2608
2609                         buffer_info->length = size;
2610                         buffer_info->dma =
2611                                 pci_map_page(adapter->pdev,
2612                                         frag->page,
2613                                         offset,
2614                                         size,
2615                                         PCI_DMA_TODEVICE);
2616                         buffer_info->time_stamp = jiffies;
2617
2618                         len -= size;
2619                         offset += size;
2620                         count++;
2621                         if (unlikely(++i == tx_ring->count)) i = 0;
2622                 }
2623         }
2624
2625         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2626         tx_ring->buffer_info[i].skb = skb;
2627         tx_ring->buffer_info[first].next_to_watch = i;
2628
2629         return count;
2630 }
2631
2632 static void
2633 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2634                int tx_flags, int count)
2635 {
2636         struct e1000_tx_desc *tx_desc = NULL;
2637         struct e1000_buffer *buffer_info;
2638         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2639         unsigned int i;
2640
2641         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2642                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2643                              E1000_TXD_CMD_TSE;
2644                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2645
2646                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2647                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2648         }
2649
2650         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2651                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2652                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2653         }
2654
2655         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2656                 txd_lower |= E1000_TXD_CMD_VLE;
2657                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2658         }
2659
2660         i = tx_ring->next_to_use;
2661
2662         while (count--) {
2663                 buffer_info = &tx_ring->buffer_info[i];
2664                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2665                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2666                 tx_desc->lower.data =
2667                         cpu_to_le32(txd_lower | buffer_info->length);
2668                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2669                 if (unlikely(++i == tx_ring->count)) i = 0;
2670         }
2671
2672         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2673
2674         /* Force memory writes to complete before letting h/w
2675          * know there are new descriptors to fetch.  (Only
2676          * applicable for weak-ordered memory model archs,
2677          * such as IA-64). */
2678         wmb();
2679
2680         tx_ring->next_to_use = i;
2681         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2682 }
2683
2684 /**
2685  * 82547 workaround to avoid controller hang in half-duplex environment.
2686  * The workaround is to avoid queuing a large packet that would span
2687  * the internal Tx FIFO ring boundary by notifying the stack to resend
2688  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2689  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2690  * to the beginning of the Tx FIFO.
2691  **/
2692
2693 #define E1000_FIFO_HDR                  0x10
2694 #define E1000_82547_PAD_LEN             0x3E0
2695
2696 static int
2697 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2698 {
2699         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2700         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2701
2702         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2703
2704         if (adapter->link_duplex != HALF_DUPLEX)
2705                 goto no_fifo_stall_required;
2706
2707         if (atomic_read(&adapter->tx_fifo_stall))
2708                 return 1;
2709
2710         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2711                 atomic_set(&adapter->tx_fifo_stall, 1);
2712                 return 1;
2713         }
2714
2715 no_fifo_stall_required:
2716         adapter->tx_fifo_head += skb_fifo_len;
2717         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2718                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2719         return 0;
2720 }
2721
2722 #define MINIMUM_DHCP_PACKET_SIZE 282
2723 static int
2724 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2725 {
2726         struct e1000_hw *hw =  &adapter->hw;
2727         uint16_t length, offset;
2728         if (vlan_tx_tag_present(skb)) {
2729                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2730                         ( adapter->hw.mng_cookie.status &
2731                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2732                         return 0;
2733         }
2734         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2735                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2736                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2737                         const struct iphdr *ip =
2738                                 (struct iphdr *)((uint8_t *)skb->data+14);
2739                         if (IPPROTO_UDP == ip->protocol) {
2740                                 struct udphdr *udp =
2741                                         (struct udphdr *)((uint8_t *)ip +
2742                                                 (ip->ihl << 2));
2743                                 if (ntohs(udp->dest) == 67) {
2744                                         offset = (uint8_t *)udp + 8 - skb->data;
2745                                         length = skb->len - offset;
2746
2747                                         return e1000_mng_write_dhcp_info(hw,
2748                                                         (uint8_t *)udp + 8,
2749                                                         length);
2750                                 }
2751                         }
2752                 }
2753         }
2754         return 0;
2755 }
2756
2757 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2758 static int
2759 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2760 {
2761         struct e1000_adapter *adapter = netdev_priv(netdev);
2762         struct e1000_tx_ring *tx_ring;
2763         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2764         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2765         unsigned int tx_flags = 0;
2766         unsigned int len = skb->len;
2767         unsigned long flags;
2768         unsigned int nr_frags = 0;
2769         unsigned int mss = 0;
2770         int count = 0;
2771         int tso;
2772         unsigned int f;
2773         len -= skb->data_len;
2774
2775         tx_ring = adapter->tx_ring;
2776
2777         if (unlikely(skb->len <= 0)) {
2778                 dev_kfree_skb_any(skb);
2779                 return NETDEV_TX_OK;
2780         }
2781
2782 #ifdef NETIF_F_TSO
2783         mss = skb_shinfo(skb)->tso_size;
2784         /* The controller does a simple calculation to
2785          * make sure there is enough room in the FIFO before
2786          * initiating the DMA for each buffer.  The calc is:
2787          * 4 = ceil(buffer len/mss).  To make sure we don't
2788          * overrun the FIFO, adjust the max buffer len if mss
2789          * drops. */
2790         if (mss) {
2791                 uint8_t hdr_len;
2792                 max_per_txd = min(mss << 2, max_per_txd);
2793                 max_txd_pwr = fls(max_per_txd) - 1;
2794
2795         /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2796          * points to just header, pull a few bytes of payload from
2797          * frags into skb->data */
2798                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2799                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2800                         switch (adapter->hw.mac_type) {
2801                                 unsigned int pull_size;
2802                         case e1000_82571:
2803                         case e1000_82572:
2804                         case e1000_82573:
2805                                 pull_size = min((unsigned int)4, skb->data_len);
2806                                 if (!__pskb_pull_tail(skb, pull_size)) {
2807                                         printk(KERN_ERR
2808                                                 "__pskb_pull_tail failed.\n");
2809                                         dev_kfree_skb_any(skb);
2810                                         return NETDEV_TX_OK;
2811                                 }
2812                                 len = skb->len - skb->data_len;
2813                                 break;
2814                         default:
2815                                 /* do nothing */
2816                                 break;
2817                         }
2818                 }
2819         }
2820
2821         /* reserve a descriptor for the offload context */
2822         if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2823                 count++;
2824         count++;
2825 #else
2826         if (skb->ip_summed == CHECKSUM_HW)
2827                 count++;
2828 #endif
2829
2830 #ifdef NETIF_F_TSO
2831         /* Controller Erratum workaround */
2832         if (!skb->data_len && tx_ring->last_tx_tso &&
2833             !skb_shinfo(skb)->tso_size)
2834                 count++;
2835 #endif
2836
2837         count += TXD_USE_COUNT(len, max_txd_pwr);
2838
2839         if (adapter->pcix_82544)
2840                 count++;
2841
2842         /* work-around for errata 10 and it applies to all controllers
2843          * in PCI-X mode, so add one more descriptor to the count
2844          */
2845         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2846                         (len > 2015)))
2847                 count++;
2848
2849         nr_frags = skb_shinfo(skb)->nr_frags;
2850         for (f = 0; f < nr_frags; f++)
2851                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2852                                        max_txd_pwr);
2853         if (adapter->pcix_82544)
2854                 count += nr_frags;
2855
2856
2857         if (adapter->hw.tx_pkt_filtering &&
2858             (adapter->hw.mac_type == e1000_82573))
2859                 e1000_transfer_dhcp_info(adapter, skb);
2860
2861         local_irq_save(flags);
2862         if (!spin_trylock(&tx_ring->tx_lock)) {
2863                 /* Collision - tell upper layer to requeue */
2864                 local_irq_restore(flags);
2865                 return NETDEV_TX_LOCKED;
2866         }
2867
2868         /* need: count + 2 desc gap to keep tail from touching
2869          * head, otherwise try next time */
2870         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2871                 netif_stop_queue(netdev);
2872                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2873                 return NETDEV_TX_BUSY;
2874         }
2875
2876         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
2877                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2878                         netif_stop_queue(netdev);
2879                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2880                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2881                         return NETDEV_TX_BUSY;
2882                 }
2883         }
2884
2885         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2886                 tx_flags |= E1000_TX_FLAGS_VLAN;
2887                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2888         }
2889
2890         first = tx_ring->next_to_use;
2891
2892         tso = e1000_tso(adapter, tx_ring, skb);
2893         if (tso < 0) {
2894                 dev_kfree_skb_any(skb);
2895                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2896                 return NETDEV_TX_OK;
2897         }
2898
2899         if (likely(tso)) {
2900                 tx_ring->last_tx_tso = 1;
2901                 tx_flags |= E1000_TX_FLAGS_TSO;
2902         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
2903                 tx_flags |= E1000_TX_FLAGS_CSUM;
2904
2905         /* Old method was to assume IPv4 packet by default if TSO was enabled.
2906          * 82571 hardware supports TSO capabilities for IPv6 as well...
2907          * no longer assume, we must. */
2908         if (likely(skb->protocol == htons(ETH_P_IP)))
2909                 tx_flags |= E1000_TX_FLAGS_IPV4;
2910
2911         e1000_tx_queue(adapter, tx_ring, tx_flags,
2912                        e1000_tx_map(adapter, tx_ring, skb, first,
2913                                     max_per_txd, nr_frags, mss));
2914
2915         netdev->trans_start = jiffies;
2916
2917         /* Make sure there is space in the ring for the next send. */
2918         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
2919                 netif_stop_queue(netdev);
2920
2921         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2922         return NETDEV_TX_OK;
2923 }
2924
2925 /**
2926  * e1000_tx_timeout - Respond to a Tx Hang
2927  * @netdev: network interface device structure
2928  **/
2929
2930 static void
2931 e1000_tx_timeout(struct net_device *netdev)
2932 {
2933         struct e1000_adapter *adapter = netdev_priv(netdev);
2934
2935         /* Do the reset outside of interrupt context */
2936         adapter->tx_timeout_count++;
2937         schedule_work(&adapter->reset_task);
2938 }
2939
2940 static void
2941 e1000_reset_task(struct net_device *netdev)
2942 {
2943         struct e1000_adapter *adapter = netdev_priv(netdev);
2944
2945         e1000_reinit_locked(adapter);
2946 }
2947
2948 /**
2949  * e1000_get_stats - Get System Network Statistics
2950  * @netdev: network interface device structure
2951  *
2952  * Returns the address of the device statistics structure.
2953  * The statistics are actually updated from the timer callback.
2954  **/
2955
2956 static struct net_device_stats *
2957 e1000_get_stats(struct net_device *netdev)
2958 {
2959         struct e1000_adapter *adapter = netdev_priv(netdev);
2960
2961         /* only return the current stats */
2962         return &adapter->net_stats;
2963 }
2964
2965 /**
2966  * e1000_change_mtu - Change the Maximum Transfer Unit
2967  * @netdev: network interface device structure
2968  * @new_mtu: new value for maximum frame size
2969  *
2970  * Returns 0 on success, negative on failure
2971  **/
2972
2973 static int
2974 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2975 {
2976         struct e1000_adapter *adapter = netdev_priv(netdev);
2977         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2978         uint16_t eeprom_data = 0;
2979
2980         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2981             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2982                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2983                 return -EINVAL;
2984         }
2985
2986         /* Adapter-specific max frame size limits. */
2987         switch (adapter->hw.mac_type) {
2988         case e1000_undefined ... e1000_82542_rev2_1:
2989                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2990                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
2991                         return -EINVAL;
2992                 }
2993                 break;
2994         case e1000_82573:
2995                 /* only enable jumbo frames if ASPM is disabled completely
2996                  * this means both bits must be zero in 0x1A bits 3:2 */
2997                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
2998                                   &eeprom_data);
2999                 if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
3000                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3001                                 DPRINTK(PROBE, ERR,
3002                                         "Jumbo Frames not supported.\n");
3003                                 return -EINVAL;
3004                         }
3005                         break;
3006                 }
3007                 /* fall through to get support */
3008         case e1000_82571:
3009         case e1000_82572:
3010         case e1000_80003es2lan:
3011 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3012                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3013                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3014                         return -EINVAL;
3015                 }
3016                 break;
3017         default:
3018                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3019                 break;
3020         }
3021
3022         /* NOTE: dev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3023          * means we reserve 2 more, this pushes us to allocate from the next
3024          * larger slab size
3025          * i.e. RXBUFFER_2048 --> size-4096 slab */
3026
3027         if (max_frame <= E1000_RXBUFFER_256)
3028                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3029         else if (max_frame <= E1000_RXBUFFER_512)
3030                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3031         else if (max_frame <= E1000_RXBUFFER_1024)
3032                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3033         else if (max_frame <= E1000_RXBUFFER_2048)
3034                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3035         else if (max_frame <= E1000_RXBUFFER_4096)
3036                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3037         else if (max_frame <= E1000_RXBUFFER_8192)
3038                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3039         else if (max_frame <= E1000_RXBUFFER_16384)
3040                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3041
3042         /* adjust allocation if LPE protects us, and we aren't using SBP */
3043 #define MAXIMUM_ETHERNET_VLAN_SIZE 1522
3044         if (!adapter->hw.tbi_compatibility_on &&
3045             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3046              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3047                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3048
3049         netdev->mtu = new_mtu;
3050
3051         if (netif_running(netdev))
3052                 e1000_reinit_locked(adapter);
3053
3054         adapter->hw.max_frame_size = max_frame;
3055
3056         return 0;
3057 }
3058
3059 /**
3060  * e1000_update_stats - Update the board statistics counters
3061  * @adapter: board private structure
3062  **/
3063
3064 void
3065 e1000_update_stats(struct e1000_adapter *adapter)
3066 {
3067         struct e1000_hw *hw = &adapter->hw;
3068         struct pci_dev *pdev = adapter->pdev;
3069         unsigned long flags;
3070         uint16_t phy_tmp;
3071
3072 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3073
3074         /*
3075          * Prevent stats update while adapter is being reset, or if the pci
3076          * connection is down.
3077          */
3078         if (adapter->link_speed == 0)
3079                 return;
3080         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3081                 return;
3082
3083         spin_lock_irqsave(&adapter->stats_lock, flags);
3084
3085         /* these counters are modified from e1000_adjust_tbi_stats,
3086          * called from the interrupt context, so they must only
3087          * be written while holding adapter->stats_lock
3088          */
3089
3090         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3091         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3092         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3093         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3094         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3095         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3096         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3097         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3098         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3099         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3100         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3101         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3102         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3103
3104         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3105         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3106         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3107         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3108         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3109         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3110         adapter->stats.dc += E1000_READ_REG(hw, DC);
3111         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3112         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3113         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3114         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3115         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3116         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3117         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3118         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3119         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3120         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3121         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3122         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3123         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3124         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3125         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3126         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3127         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3128         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3129         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3130         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3131         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3132         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3133         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3134         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3135         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3136         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3137         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3138
3139         /* used for adaptive IFS */
3140
3141         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3142         adapter->stats.tpt += hw->tx_packet_delta;
3143         hw->collision_delta = E1000_READ_REG(hw, COLC);
3144         adapter->stats.colc += hw->collision_delta;
3145
3146         if (hw->mac_type >= e1000_82543) {
3147                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3148                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3149                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3150                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3151                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3152                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3153         }
3154         if (hw->mac_type > e1000_82547_rev_2) {
3155                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3156                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3157                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3158                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3159                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3160                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3161                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3162                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3163                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3164         }
3165
3166         /* Fill out the OS statistics structure */
3167
3168         adapter->net_stats.rx_packets = adapter->stats.gprc;
3169         adapter->net_stats.tx_packets = adapter->stats.gptc;
3170         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3171         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3172         adapter->net_stats.multicast = adapter->stats.mprc;
3173         adapter->net_stats.collisions = adapter->stats.colc;
3174
3175         /* Rx Errors */
3176
3177         /* RLEC on some newer hardware can be incorrect so build
3178         * our own version based on RUC and ROC */
3179         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3180                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3181                 adapter->stats.ruc + adapter->stats.roc +
3182                 adapter->stats.cexterr;
3183         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3184                                               adapter->stats.roc;
3185         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3186         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3187         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3188
3189         /* Tx Errors */
3190
3191         adapter->net_stats.tx_errors = adapter->stats.ecol +
3192                                        adapter->stats.latecol;
3193         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3194         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3195         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3196
3197         /* Tx Dropped needs to be maintained elsewhere */
3198
3199         /* Phy Stats */
3200
3201         if (hw->media_type == e1000_media_type_copper) {
3202                 if ((adapter->link_speed == SPEED_1000) &&
3203                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3204                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3205                         adapter->phy_stats.idle_errors += phy_tmp;
3206                 }
3207
3208                 if ((hw->mac_type <= e1000_82546) &&
3209                    (hw->phy_type == e1000_phy_m88) &&
3210                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3211                         adapter->phy_stats.receive_errors += phy_tmp;
3212         }
3213
3214         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3215 }
3216
3217 /**
3218  * e1000_intr - Interrupt Handler
3219  * @irq: interrupt number
3220  * @data: pointer to a network interface device structure
3221  * @pt_regs: CPU registers structure
3222  **/
3223
3224 static irqreturn_t
3225 e1000_intr(int irq, void *data, struct pt_regs *regs)
3226 {
3227         struct net_device *netdev = data;
3228         struct e1000_adapter *adapter = netdev_priv(netdev);
3229         struct e1000_hw *hw = &adapter->hw;
3230         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3231 #ifndef CONFIG_E1000_NAPI
3232         int i;
3233 #else
3234         /* Interrupt Auto-Mask...upon reading ICR,
3235          * interrupts are masked.  No need for the
3236          * IMC write, but it does mean we should
3237          * account for it ASAP. */
3238         if (likely(hw->mac_type >= e1000_82571))
3239                 atomic_inc(&adapter->irq_sem);
3240 #endif
3241
3242         if (unlikely(!icr)) {
3243 #ifdef CONFIG_E1000_NAPI
3244                 if (hw->mac_type >= e1000_82571)
3245                         e1000_irq_enable(adapter);
3246 #endif
3247                 return IRQ_NONE;  /* Not our interrupt */
3248         }
3249
3250         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3251                 hw->get_link_status = 1;
3252                 /* 80003ES2LAN workaround--
3253                  * For packet buffer work-around on link down event;
3254                  * disable receives here in the ISR and
3255                  * reset adapter in watchdog
3256                  */
3257                 if (netif_carrier_ok(netdev) &&
3258                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3259                         /* disable receives */
3260                         rctl = E1000_READ_REG(hw, RCTL);
3261                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3262                 }
3263                 mod_timer(&adapter->watchdog_timer, jiffies);
3264         }
3265
3266 #ifdef CONFIG_E1000_NAPI
3267         if (unlikely(hw->mac_type < e1000_82571)) {
3268                 atomic_inc(&adapter->irq_sem);
3269                 E1000_WRITE_REG(hw, IMC, ~0);
3270                 E1000_WRITE_FLUSH(hw);
3271         }
3272         if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3273                 __netif_rx_schedule(&adapter->polling_netdev[0]);
3274         else
3275                 e1000_irq_enable(adapter);
3276 #else
3277         /* Writing IMC and IMS is needed for 82547.
3278          * Due to Hub Link bus being occupied, an interrupt
3279          * de-assertion message is not able to be sent.
3280          * When an interrupt assertion message is generated later,
3281          * two messages are re-ordered and sent out.
3282          * That causes APIC to think 82547 is in de-assertion
3283          * state, while 82547 is in assertion state, resulting
3284          * in dead lock. Writing IMC forces 82547 into
3285          * de-assertion state.
3286          */
3287         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3288                 atomic_inc(&adapter->irq_sem);
3289                 E1000_WRITE_REG(hw, IMC, ~0);
3290         }
3291
3292         for (i = 0; i < E1000_MAX_INTR; i++)
3293                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3294                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3295                         break;
3296
3297         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3298                 e1000_irq_enable(adapter);
3299
3300 #endif
3301
3302         return IRQ_HANDLED;
3303 }
3304
3305 #ifdef CONFIG_E1000_NAPI
3306 /**
3307  * e1000_clean - NAPI Rx polling callback
3308  * @adapter: board private structure
3309  **/
3310
3311 static int
3312 e1000_clean(struct net_device *poll_dev, int *budget)
3313 {
3314         struct e1000_adapter *adapter;
3315         int work_to_do = min(*budget, poll_dev->quota);
3316         int tx_cleaned = 0, i = 0, work_done = 0;
3317
3318         /* Must NOT use netdev_priv macro here. */
3319         adapter = poll_dev->priv;
3320
3321         /* Keep link state information with original netdev */
3322         if (!netif_carrier_ok(adapter->netdev))
3323                 goto quit_polling;
3324
3325         while (poll_dev != &adapter->polling_netdev[i]) {
3326                 i++;
3327                 BUG_ON(i == adapter->num_rx_queues);
3328         }
3329
3330         if (likely(adapter->num_tx_queues == 1)) {
3331                 /* e1000_clean is called per-cpu.  This lock protects
3332                  * tx_ring[0] from being cleaned by multiple cpus
3333                  * simultaneously.  A failure obtaining the lock means
3334                  * tx_ring[0] is currently being cleaned anyway. */
3335                 if (spin_trylock(&adapter->tx_queue_lock)) {
3336                         tx_cleaned = e1000_clean_tx_irq(adapter,
3337                                                         &adapter->tx_ring[0]);
3338                         spin_unlock(&adapter->tx_queue_lock);
3339                 }
3340         } else
3341                 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3342
3343         adapter->clean_rx(adapter, &adapter->rx_ring[i],
3344                           &work_done, work_to_do);
3345
3346         *budget -= work_done;
3347         poll_dev->quota -= work_done;
3348
3349         /* If no Tx and not enough Rx work done, exit the polling mode */
3350         if ((!tx_cleaned && (work_done == 0)) ||
3351            !netif_running(adapter->netdev)) {
3352 quit_polling:
3353                 netif_rx_complete(poll_dev);
3354                 e1000_irq_enable(adapter);
3355                 return 0;
3356         }
3357
3358         return 1;
3359 }
3360
3361 #endif
3362 /**
3363  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3364  * @adapter: board private structure
3365  **/
3366
3367 static boolean_t
3368 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3369                    struct e1000_tx_ring *tx_ring)
3370 {
3371         struct net_device *netdev = adapter->netdev;
3372         struct e1000_tx_desc *tx_desc, *eop_desc;
3373         struct e1000_buffer *buffer_info;
3374         unsigned int i, eop;
3375 #ifdef CONFIG_E1000_NAPI
3376         unsigned int count = 0;
3377 #endif
3378         boolean_t cleaned = FALSE;
3379
3380         i = tx_ring->next_to_clean;
3381         eop = tx_ring->buffer_info[i].next_to_watch;
3382         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3383
3384         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3385                 for (cleaned = FALSE; !cleaned; ) {
3386                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3387                         buffer_info = &tx_ring->buffer_info[i];
3388                         cleaned = (i == eop);
3389
3390                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3391                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3392
3393                         if (unlikely(++i == tx_ring->count)) i = 0;
3394                 }
3395
3396
3397                 eop = tx_ring->buffer_info[i].next_to_watch;
3398                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3399 #ifdef CONFIG_E1000_NAPI
3400 #define E1000_TX_WEIGHT 64
3401                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3402                 if (count++ == E1000_TX_WEIGHT) break;
3403 #endif
3404         }
3405
3406         tx_ring->next_to_clean = i;
3407
3408 #define TX_WAKE_THRESHOLD 32
3409         if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3410                      netif_carrier_ok(netdev))) {
3411                 spin_lock(&tx_ring->tx_lock);
3412                 if (netif_queue_stopped(netdev) &&
3413                     (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
3414                         netif_wake_queue(netdev);
3415                 spin_unlock(&tx_ring->tx_lock);
3416         }
3417
3418         if (adapter->detect_tx_hung) {
3419                 /* Detect a transmit hang in hardware, this serializes the
3420                  * check with the clearing of time_stamp and movement of i */
3421                 adapter->detect_tx_hung = FALSE;
3422                 if (tx_ring->buffer_info[eop].dma &&
3423                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3424                                (adapter->tx_timeout_factor * HZ))
3425                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3426                          E1000_STATUS_TXOFF)) {
3427
3428                         /* detected Tx unit hang */
3429                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3430                                         "  Tx Queue             <%lu>\n"
3431                                         "  TDH                  <%x>\n"
3432                                         "  TDT                  <%x>\n"
3433                                         "  next_to_use          <%x>\n"
3434                                         "  next_to_clean        <%x>\n"
3435                                         "buffer_info[next_to_clean]\n"
3436                                         "  time_stamp           <%lx>\n"
3437                                         "  next_to_watch        <%x>\n"
3438                                         "  jiffies              <%lx>\n"
3439                                         "  next_to_watch.status <%x>\n",
3440                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3441                                         sizeof(struct e1000_tx_ring)),
3442                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3443                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3444                                 tx_ring->next_to_use,
3445                                 tx_ring->next_to_clean,
3446                                 tx_ring->buffer_info[eop].time_stamp,
3447                                 eop,
3448                                 jiffies,
3449                                 eop_desc->upper.fields.status);
3450                         netif_stop_queue(netdev);
3451                 }
3452         }
3453         return cleaned;
3454 }
3455
3456 /**
3457  * e1000_rx_checksum - Receive Checksum Offload for 82543
3458  * @adapter:     board private structure
3459  * @status_err:  receive descriptor status and error fields
3460  * @csum:        receive descriptor csum field
3461  * @sk_buff:     socket buffer with received data
3462  **/
3463
3464 static void
3465 e1000_rx_checksum(struct e1000_adapter *adapter,
3466                   uint32_t status_err, uint32_t csum,
3467                   struct sk_buff *skb)
3468 {
3469         uint16_t status = (uint16_t)status_err;
3470         uint8_t errors = (uint8_t)(status_err >> 24);
3471         skb->ip_summed = CHECKSUM_NONE;
3472
3473         /* 82543 or newer only */
3474         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3475         /* Ignore Checksum bit is set */
3476         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3477         /* TCP/UDP checksum error bit is set */
3478         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3479                 /* let the stack verify checksum errors */
3480                 adapter->hw_csum_err++;
3481                 return;
3482         }
3483         /* TCP/UDP Checksum has not been calculated */
3484         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3485                 if (!(status & E1000_RXD_STAT_TCPCS))
3486                         return;
3487         } else {
3488                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3489                         return;
3490         }
3491         /* It must be a TCP or UDP packet with a valid checksum */
3492         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3493                 /* TCP checksum is good */
3494                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3495         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3496                 /* IP fragment with UDP payload */
3497                 /* Hardware complements the payload checksum, so we undo it
3498                  * and then put the value in host order for further stack use.
3499                  */
3500                 csum = ntohl(csum ^ 0xFFFF);
3501                 skb->csum = csum;
3502                 skb->ip_summed = CHECKSUM_HW;
3503         }
3504         adapter->hw_csum_good++;
3505 }
3506
3507 /**
3508  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3509  * @adapter: board private structure
3510  **/
3511
3512 static boolean_t
3513 #ifdef CONFIG_E1000_NAPI
3514 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3515                    struct e1000_rx_ring *rx_ring,
3516                    int *work_done, int work_to_do)
3517 #else
3518 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3519                    struct e1000_rx_ring *rx_ring)
3520 #endif
3521 {
3522         struct net_device *netdev = adapter->netdev;
3523         struct pci_dev *pdev = adapter->pdev;
3524         struct e1000_rx_desc *rx_desc, *next_rxd;
3525         struct e1000_buffer *buffer_info, *next_buffer;
3526         unsigned long flags;
3527         uint32_t length;
3528         uint8_t last_byte;
3529         unsigned int i;
3530         int cleaned_count = 0;
3531         boolean_t cleaned = FALSE;
3532
3533         i = rx_ring->next_to_clean;
3534         rx_desc = E1000_RX_DESC(*rx_ring, i);
3535         buffer_info = &rx_ring->buffer_info[i];
3536
3537         while (rx_desc->status & E1000_RXD_STAT_DD) {
3538                 struct sk_buff *skb;
3539                 u8 status;
3540 #ifdef CONFIG_E1000_NAPI
3541                 if (*work_done >= work_to_do)
3542                         break;
3543                 (*work_done)++;
3544 #endif
3545                 status = rx_desc->status;
3546                 skb = buffer_info->skb;
3547                 buffer_info->skb = NULL;
3548
3549                 prefetch(skb->data - NET_IP_ALIGN);
3550
3551                 if (++i == rx_ring->count) i = 0;
3552                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3553                 prefetch(next_rxd);
3554
3555                 next_buffer = &rx_ring->buffer_info[i];
3556
3557                 cleaned = TRUE;
3558                 cleaned_count++;
3559                 pci_unmap_single(pdev,
3560                                  buffer_info->dma,
3561                                  buffer_info->length,
3562                                  PCI_DMA_FROMDEVICE);
3563
3564                 length = le16_to_cpu(rx_desc->length);
3565
3566                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3567                         /* All receives must fit into a single buffer */
3568                         E1000_DBG("%s: Receive packet consumed multiple"
3569                                   " buffers\n", netdev->name);
3570                         dev_kfree_skb_irq(skb);
3571                         goto next_desc;
3572                 }
3573
3574                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3575                         last_byte = *(skb->data + length - 1);
3576                         if (TBI_ACCEPT(&adapter->hw, status,
3577                                       rx_desc->errors, length, last_byte)) {
3578                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3579                                 e1000_tbi_adjust_stats(&adapter->hw,
3580                                                        &adapter->stats,
3581                                                        length, skb->data);
3582                                 spin_unlock_irqrestore(&adapter->stats_lock,
3583                                                        flags);
3584                                 length--;
3585                         } else {
3586                                 /* recycle */
3587                                 buffer_info->skb = skb;
3588                                 goto next_desc;
3589                         }
3590                 }
3591
3592                 /* code added for copybreak, this should improve
3593                  * performance for small packets with large amounts
3594                  * of reassembly being done in the stack */
3595 #define E1000_CB_LENGTH 256
3596                 if (length < E1000_CB_LENGTH) {
3597                         struct sk_buff *new_skb =
3598                             dev_alloc_skb(length + NET_IP_ALIGN);
3599                         if (new_skb) {
3600                                 skb_reserve(new_skb, NET_IP_ALIGN);
3601                                 new_skb->dev = netdev;
3602                                 memcpy(new_skb->data - NET_IP_ALIGN,
3603                                        skb->data - NET_IP_ALIGN,
3604                                        length + NET_IP_ALIGN);
3605                                 /* save the skb in buffer_info as good */
3606                                 buffer_info->skb = skb;
3607                                 skb = new_skb;
3608                                 skb_put(skb, length);
3609                         }
3610                 } else
3611                         skb_put(skb, length);
3612
3613                 /* end copybreak code */
3614
3615                 /* Receive Checksum Offload */
3616                 e1000_rx_checksum(adapter,
3617                                   (uint32_t)(status) |
3618                                   ((uint32_t)(rx_desc->errors) << 24),
3619                                   le16_to_cpu(rx_desc->csum), skb);
3620
3621                 skb->protocol = eth_type_trans(skb, netdev);
3622 #ifdef CONFIG_E1000_NAPI
3623                 if (unlikely(adapter->vlgrp &&
3624                             (status & E1000_RXD_STAT_VP))) {
3625                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3626                                                  le16_to_cpu(rx_desc->special) &
3627                                                  E1000_RXD_SPC_VLAN_MASK);
3628                 } else {
3629                         netif_receive_skb(skb);
3630                 }
3631 #else /* CONFIG_E1000_NAPI */
3632                 if (unlikely(adapter->vlgrp &&
3633                             (status & E1000_RXD_STAT_VP))) {
3634                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3635                                         le16_to_cpu(rx_desc->special) &
3636                                         E1000_RXD_SPC_VLAN_MASK);
3637                 } else {
3638                         netif_rx(skb);
3639                 }
3640 #endif /* CONFIG_E1000_NAPI */
3641                 netdev->last_rx = jiffies;
3642
3643 next_desc:
3644                 rx_desc->status = 0;
3645
3646                 /* return some buffers to hardware, one at a time is too slow */
3647                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3648                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3649                         cleaned_count = 0;
3650                 }
3651
3652                 /* use prefetched values */
3653                 rx_desc = next_rxd;
3654                 buffer_info = next_buffer;
3655         }
3656         rx_ring->next_to_clean = i;
3657
3658         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3659         if (cleaned_count)
3660                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3661
3662         return cleaned;
3663 }
3664
3665 /**
3666  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3667  * @adapter: board private structure
3668  **/
3669
3670 static boolean_t
3671 #ifdef CONFIG_E1000_NAPI
3672 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3673                       struct e1000_rx_ring *rx_ring,
3674                       int *work_done, int work_to_do)
3675 #else
3676 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3677                       struct e1000_rx_ring *rx_ring)
3678 #endif
3679 {
3680         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3681         struct net_device *netdev = adapter->netdev;
3682         struct pci_dev *pdev = adapter->pdev;
3683         struct e1000_buffer *buffer_info, *next_buffer;
3684         struct e1000_ps_page *ps_page;
3685         struct e1000_ps_page_dma *ps_page_dma;
3686         struct sk_buff *skb;
3687         unsigned int i, j;
3688         uint32_t length, staterr;
3689         int cleaned_count = 0;
3690         boolean_t cleaned = FALSE;
3691
3692         i = rx_ring->next_to_clean;
3693         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3694         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3695         buffer_info = &rx_ring->buffer_info[i];
3696
3697         while (staterr & E1000_RXD_STAT_DD) {
3698                 buffer_info = &rx_ring->buffer_info[i];
3699                 ps_page = &rx_ring->ps_page[i];
3700                 ps_page_dma = &rx_ring->ps_page_dma[i];
3701 #ifdef CONFIG_E1000_NAPI
3702                 if (unlikely(*work_done >= work_to_do))
3703                         break;
3704                 (*work_done)++;
3705 #endif
3706                 skb = buffer_info->skb;
3707
3708                 /* in the packet split case this is header only */
3709                 prefetch(skb->data - NET_IP_ALIGN);
3710
3711                 if (++i == rx_ring->count) i = 0;
3712                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3713                 prefetch(next_rxd);
3714
3715                 next_buffer = &rx_ring->buffer_info[i];
3716
3717                 cleaned = TRUE;
3718                 cleaned_count++;
3719                 pci_unmap_single(pdev, buffer_info->dma,
3720                                  buffer_info->length,
3721                                  PCI_DMA_FROMDEVICE);
3722
3723                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3724                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3725                                   " the full packet\n", netdev->name);
3726                         dev_kfree_skb_irq(skb);
3727                         goto next_desc;
3728                 }
3729
3730                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3731                         dev_kfree_skb_irq(skb);
3732                         goto next_desc;
3733                 }
3734
3735                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3736
3737                 if (unlikely(!length)) {
3738                         E1000_DBG("%s: Last part of the packet spanning"
3739                                   " multiple descriptors\n", netdev->name);
3740                         dev_kfree_skb_irq(skb);
3741                         goto next_desc;
3742                 }
3743
3744                 /* Good Receive */
3745                 skb_put(skb, length);
3746
3747                 {
3748                 /* this looks ugly, but it seems compiler issues make it
3749                    more efficient than reusing j */
3750                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3751
3752                 /* page alloc/put takes too long and effects small packet
3753                  * throughput, so unsplit small packets and save the alloc/put*/
3754                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3755                         u8 *vaddr;
3756                         /* there is no documentation about how to call
3757                          * kmap_atomic, so we can't hold the mapping
3758                          * very long */
3759                         pci_dma_sync_single_for_cpu(pdev,
3760                                 ps_page_dma->ps_page_dma[0],
3761                                 PAGE_SIZE,
3762                                 PCI_DMA_FROMDEVICE);
3763                         vaddr = kmap_atomic(ps_page->ps_page[0],
3764                                             KM_SKB_DATA_SOFTIRQ);
3765                         memcpy(skb->tail, vaddr, l1);
3766                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3767                         pci_dma_sync_single_for_device(pdev,
3768                                 ps_page_dma->ps_page_dma[0],
3769                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3770                         skb_put(skb, l1);
3771                         length += l1;
3772                         goto copydone;
3773                 } /* if */
3774                 }
3775                 
3776                 for (j = 0; j < adapter->rx_ps_pages; j++) {
3777                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3778                                 break;
3779                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3780                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3781                         ps_page_dma->ps_page_dma[j] = 0;
3782                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3783                                            length);
3784                         ps_page->ps_page[j] = NULL;
3785                         skb->len += length;
3786                         skb->data_len += length;
3787                         skb->truesize += length;
3788                 }
3789
3790 copydone:
3791                 e1000_rx_checksum(adapter, staterr,
3792                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
3793                 skb->protocol = eth_type_trans(skb, netdev);
3794
3795                 if (likely(rx_desc->wb.upper.header_status &
3796                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
3797                         adapter->rx_hdr_split++;
3798 #ifdef CONFIG_E1000_NAPI
3799                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3800                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3801                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3802                                 E1000_RXD_SPC_VLAN_MASK);
3803                 } else {
3804                         netif_receive_skb(skb);
3805                 }
3806 #else /* CONFIG_E1000_NAPI */
3807                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3808                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3809                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3810                                 E1000_RXD_SPC_VLAN_MASK);
3811                 } else {
3812                         netif_rx(skb);
3813                 }
3814 #endif /* CONFIG_E1000_NAPI */
3815                 netdev->last_rx = jiffies;
3816
3817 next_desc:
3818                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
3819                 buffer_info->skb = NULL;
3820
3821                 /* return some buffers to hardware, one at a time is too slow */
3822                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3823                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3824                         cleaned_count = 0;
3825                 }
3826
3827                 /* use prefetched values */
3828                 rx_desc = next_rxd;
3829                 buffer_info = next_buffer;
3830
3831                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3832         }
3833         rx_ring->next_to_clean = i;
3834
3835         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3836         if (cleaned_count)
3837                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3838
3839         return cleaned;
3840 }
3841
3842 /**
3843  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3844  * @adapter: address of board private structure
3845  **/
3846
3847 static void
3848 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3849                        struct e1000_rx_ring *rx_ring,
3850                        int cleaned_count)
3851 {
3852         struct net_device *netdev = adapter->netdev;
3853         struct pci_dev *pdev = adapter->pdev;
3854         struct e1000_rx_desc *rx_desc;
3855         struct e1000_buffer *buffer_info;
3856         struct sk_buff *skb;
3857         unsigned int i;
3858         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3859
3860         i = rx_ring->next_to_use;
3861         buffer_info = &rx_ring->buffer_info[i];
3862
3863         while (cleaned_count--) {
3864                 if (!(skb = buffer_info->skb))
3865                         skb = dev_alloc_skb(bufsz);
3866                 else {
3867                         skb_trim(skb, 0);
3868                         goto map_skb;
3869                 }
3870
3871                 if (unlikely(!skb)) {
3872                         /* Better luck next round */
3873                         adapter->alloc_rx_buff_failed++;
3874                         break;
3875                 }
3876
3877                 /* Fix for errata 23, can't cross 64kB boundary */
3878                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3879                         struct sk_buff *oldskb = skb;
3880                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3881                                              "at %p\n", bufsz, skb->data);
3882                         /* Try again, without freeing the previous */
3883                         skb = dev_alloc_skb(bufsz);
3884                         /* Failed allocation, critical failure */
3885                         if (!skb) {
3886                                 dev_kfree_skb(oldskb);
3887                                 break;
3888                         }
3889
3890                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3891                                 /* give up */
3892                                 dev_kfree_skb(skb);
3893                                 dev_kfree_skb(oldskb);
3894                                 break; /* while !buffer_info->skb */
3895                         } else {
3896                                 /* Use new allocation */
3897                                 dev_kfree_skb(oldskb);
3898                         }
3899                 }
3900                 /* Make buffer alignment 2 beyond a 16 byte boundary
3901                  * this will result in a 16 byte aligned IP header after
3902                  * the 14 byte MAC header is removed
3903                  */
3904                 skb_reserve(skb, NET_IP_ALIGN);
3905
3906                 skb->dev = netdev;
3907
3908                 buffer_info->skb = skb;
3909                 buffer_info->length = adapter->rx_buffer_len;
3910 map_skb:
3911                 buffer_info->dma = pci_map_single(pdev,
3912                                                   skb->data,
3913                                                   adapter->rx_buffer_len,
3914                                                   PCI_DMA_FROMDEVICE);
3915
3916                 /* Fix for errata 23, can't cross 64kB boundary */
3917                 if (!e1000_check_64k_bound(adapter,
3918                                         (void *)(unsigned long)buffer_info->dma,
3919                                         adapter->rx_buffer_len)) {
3920                         DPRINTK(RX_ERR, ERR,
3921                                 "dma align check failed: %u bytes at %p\n",
3922                                 adapter->rx_buffer_len,
3923                                 (void *)(unsigned long)buffer_info->dma);
3924                         dev_kfree_skb(skb);
3925                         buffer_info->skb = NULL;
3926
3927                         pci_unmap_single(pdev, buffer_info->dma,
3928                                          adapter->rx_buffer_len,
3929                                          PCI_DMA_FROMDEVICE);
3930
3931                         break; /* while !buffer_info->skb */
3932                 }
3933                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3934                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3935
3936                 if (unlikely(++i == rx_ring->count))
3937                         i = 0;
3938                 buffer_info = &rx_ring->buffer_info[i];
3939         }
3940
3941         if (likely(rx_ring->next_to_use != i)) {
3942                 rx_ring->next_to_use = i;
3943                 if (unlikely(i-- == 0))
3944                         i = (rx_ring->count - 1);
3945
3946                 /* Force memory writes to complete before letting h/w
3947                  * know there are new descriptors to fetch.  (Only
3948                  * applicable for weak-ordered memory model archs,
3949                  * such as IA-64). */
3950                 wmb();
3951                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
3952         }
3953 }
3954
3955 /**
3956  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3957  * @adapter: address of board private structure
3958  **/
3959
3960 static void
3961 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
3962                           struct e1000_rx_ring *rx_ring,
3963                           int cleaned_count)
3964 {
3965         struct net_device *netdev = adapter->netdev;
3966         struct pci_dev *pdev = adapter->pdev;
3967         union e1000_rx_desc_packet_split *rx_desc;
3968         struct e1000_buffer *buffer_info;
3969         struct e1000_ps_page *ps_page;
3970         struct e1000_ps_page_dma *ps_page_dma;
3971         struct sk_buff *skb;
3972         unsigned int i, j;
3973
3974         i = rx_ring->next_to_use;
3975         buffer_info = &rx_ring->buffer_info[i];
3976         ps_page = &rx_ring->ps_page[i];
3977         ps_page_dma = &rx_ring->ps_page_dma[i];
3978
3979         while (cleaned_count--) {
3980                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3981
3982                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
3983                         if (j < adapter->rx_ps_pages) {
3984                                 if (likely(!ps_page->ps_page[j])) {
3985                                         ps_page->ps_page[j] =
3986                                                 alloc_page(GFP_ATOMIC);
3987                                         if (unlikely(!ps_page->ps_page[j])) {
3988                                                 adapter->alloc_rx_buff_failed++;
3989                                                 goto no_buffers;
3990                                         }
3991                                         ps_page_dma->ps_page_dma[j] =
3992                                                 pci_map_page(pdev,
3993                                                             ps_page->ps_page[j],
3994                                                             0, PAGE_SIZE,
3995                                                             PCI_DMA_FROMDEVICE);
3996                                 }
3997                                 /* Refresh the desc even if buffer_addrs didn't
3998                                  * change because each write-back erases
3999                                  * this info.
4000                                  */
4001                                 rx_desc->read.buffer_addr[j+1] =
4002                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4003                         } else
4004                                 rx_desc->read.buffer_addr[j+1] = ~0;
4005                 }
4006
4007                 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4008
4009                 if (unlikely(!skb)) {
4010                         adapter->alloc_rx_buff_failed++;
4011                         break;
4012                 }
4013
4014                 /* Make buffer alignment 2 beyond a 16 byte boundary
4015                  * this will result in a 16 byte aligned IP header after
4016                  * the 14 byte MAC header is removed
4017                  */
4018                 skb_reserve(skb, NET_IP_ALIGN);
4019
4020                 skb->dev = netdev;
4021
4022                 buffer_info->skb = skb;
4023                 buffer_info->length = adapter->rx_ps_bsize0;
4024                 buffer_info->dma = pci_map_single(pdev, skb->data,
4025                                                   adapter->rx_ps_bsize0,
4026                                                   PCI_DMA_FROMDEVICE);
4027
4028                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4029
4030                 if (unlikely(++i == rx_ring->count)) i = 0;
4031                 buffer_info = &rx_ring->buffer_info[i];
4032                 ps_page = &rx_ring->ps_page[i];
4033                 ps_page_dma = &rx_ring->ps_page_dma[i];
4034         }
4035
4036 no_buffers:
4037         if (likely(rx_ring->next_to_use != i)) {
4038                 rx_ring->next_to_use = i;
4039                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4040
4041                 /* Force memory writes to complete before letting h/w
4042                  * know there are new descriptors to fetch.  (Only
4043                  * applicable for weak-ordered memory model archs,
4044                  * such as IA-64). */
4045                 wmb();
4046                 /* Hardware increments by 16 bytes, but packet split
4047                  * descriptors are 32 bytes...so we increment tail
4048                  * twice as much.
4049                  */
4050                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4051         }
4052 }
4053
4054 /**
4055  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4056  * @adapter:
4057  **/
4058
4059 static void
4060 e1000_smartspeed(struct e1000_adapter *adapter)
4061 {
4062         uint16_t phy_status;
4063         uint16_t phy_ctrl;
4064
4065         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4066            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4067                 return;
4068
4069         if (adapter->smartspeed == 0) {
4070                 /* If Master/Slave config fault is asserted twice,
4071                  * we assume back-to-back */
4072                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4073                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4074                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4075                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4076                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4077                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4078                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4079                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4080                                             phy_ctrl);
4081                         adapter->smartspeed++;
4082                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4083                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4084                                                &phy_ctrl)) {
4085                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4086                                              MII_CR_RESTART_AUTO_NEG);
4087                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4088                                                     phy_ctrl);
4089                         }
4090                 }
4091                 return;
4092         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4093                 /* If still no link, perhaps using 2/3 pair cable */
4094                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4095                 phy_ctrl |= CR_1000T_MS_ENABLE;
4096                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4097                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4098                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4099                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4100                                      MII_CR_RESTART_AUTO_NEG);
4101                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4102                 }
4103         }
4104         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4105         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4106                 adapter->smartspeed = 0;
4107 }
4108
4109 /**
4110  * e1000_ioctl -
4111  * @netdev:
4112  * @ifreq:
4113  * @cmd:
4114  **/
4115
4116 static int
4117 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4118 {
4119         switch (cmd) {
4120         case SIOCGMIIPHY:
4121         case SIOCGMIIREG:
4122         case SIOCSMIIREG:
4123                 return e1000_mii_ioctl(netdev, ifr, cmd);
4124         default:
4125                 return -EOPNOTSUPP;
4126         }
4127 }
4128
4129 /**
4130  * e1000_mii_ioctl -
4131  * @netdev:
4132  * @ifreq:
4133  * @cmd:
4134  **/
4135
4136 static int
4137 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4138 {
4139         struct e1000_adapter *adapter = netdev_priv(netdev);
4140         struct mii_ioctl_data *data = if_mii(ifr);
4141         int retval;
4142         uint16_t mii_reg;
4143         uint16_t spddplx;
4144         unsigned long flags;
4145
4146         if (adapter->hw.media_type != e1000_media_type_copper)
4147                 return -EOPNOTSUPP;
4148
4149         switch (cmd) {
4150         case SIOCGMIIPHY:
4151                 data->phy_id = adapter->hw.phy_addr;
4152                 break;
4153         case SIOCGMIIREG:
4154                 if (!capable(CAP_NET_ADMIN))
4155                         return -EPERM;
4156                 spin_lock_irqsave(&adapter->stats_lock, flags);
4157                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4158                                    &data->val_out)) {
4159                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4160                         return -EIO;
4161                 }
4162                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4163                 break;
4164         case SIOCSMIIREG:
4165                 if (!capable(CAP_NET_ADMIN))
4166                         return -EPERM;
4167                 if (data->reg_num & ~(0x1F))
4168                         return -EFAULT;
4169                 mii_reg = data->val_in;
4170                 spin_lock_irqsave(&adapter->stats_lock, flags);
4171                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4172                                         mii_reg)) {
4173                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4174                         return -EIO;
4175                 }
4176                 if (adapter->hw.media_type == e1000_media_type_copper) {
4177                         switch (data->reg_num) {
4178                         case PHY_CTRL:
4179                                 if (mii_reg & MII_CR_POWER_DOWN)
4180                                         break;
4181                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4182                                         adapter->hw.autoneg = 1;
4183                                         adapter->hw.autoneg_advertised = 0x2F;
4184                                 } else {
4185                                         if (mii_reg & 0x40)
4186                                                 spddplx = SPEED_1000;
4187                                         else if (mii_reg & 0x2000)
4188                                                 spddplx = SPEED_100;
4189                                         else
4190                                                 spddplx = SPEED_10;
4191                                         spddplx += (mii_reg & 0x100)
4192                                                    ? DUPLEX_FULL :
4193                                                    DUPLEX_HALF;
4194                                         retval = e1000_set_spd_dplx(adapter,
4195                                                                     spddplx);
4196                                         if (retval) {
4197                                                 spin_unlock_irqrestore(
4198                                                         &adapter->stats_lock,
4199                                                         flags);
4200                                                 return retval;
4201                                         }
4202                                 }
4203                                 if (netif_running(adapter->netdev))
4204                                         e1000_reinit_locked(adapter);
4205                                 else
4206                                         e1000_reset(adapter);
4207                                 break;
4208                         case M88E1000_PHY_SPEC_CTRL:
4209                         case M88E1000_EXT_PHY_SPEC_CTRL:
4210                                 if (e1000_phy_reset(&adapter->hw)) {
4211                                         spin_unlock_irqrestore(
4212                                                 &adapter->stats_lock, flags);
4213                                         return -EIO;
4214                                 }
4215                                 break;
4216                         }
4217                 } else {
4218                         switch (data->reg_num) {
4219                         case PHY_CTRL:
4220                                 if (mii_reg & MII_CR_POWER_DOWN)
4221                                         break;
4222                                 if (netif_running(adapter->netdev))
4223                                         e1000_reinit_locked(adapter);
4224                                 else
4225                                         e1000_reset(adapter);
4226                                 break;
4227                         }
4228                 }
4229                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4230                 break;
4231         default:
4232                 return -EOPNOTSUPP;
4233         }
4234         return E1000_SUCCESS;
4235 }
4236
4237 void
4238 e1000_pci_set_mwi(struct e1000_hw *hw)
4239 {
4240         struct e1000_adapter *adapter = hw->back;
4241         int ret_val = pci_set_mwi(adapter->pdev);
4242
4243         if (ret_val)
4244                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4245 }
4246
4247 void
4248 e1000_pci_clear_mwi(struct e1000_hw *hw)
4249 {
4250         struct e1000_adapter *adapter = hw->back;
4251
4252         pci_clear_mwi(adapter->pdev);
4253 }
4254
4255 void
4256 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4257 {
4258         struct e1000_adapter *adapter = hw->back;
4259
4260         pci_read_config_word(adapter->pdev, reg, value);
4261 }
4262
4263 void
4264 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4265 {
4266         struct e1000_adapter *adapter = hw->back;
4267
4268         pci_write_config_word(adapter->pdev, reg, *value);
4269 }
4270
4271 uint32_t
4272 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4273 {
4274         return inl(port);
4275 }
4276
4277 void
4278 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4279 {
4280         outl(value, port);
4281 }
4282
4283 static void
4284 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4285 {
4286         struct e1000_adapter *adapter = netdev_priv(netdev);
4287         uint32_t ctrl, rctl;
4288
4289         e1000_irq_disable(adapter);
4290         adapter->vlgrp = grp;
4291
4292         if (grp) {
4293                 /* enable VLAN tag insert/strip */
4294                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4295                 ctrl |= E1000_CTRL_VME;
4296                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4297
4298                 /* enable VLAN receive filtering */
4299                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4300                 rctl |= E1000_RCTL_VFE;
4301                 rctl &= ~E1000_RCTL_CFIEN;
4302                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4303                 e1000_update_mng_vlan(adapter);
4304         } else {
4305                 /* disable VLAN tag insert/strip */
4306                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4307                 ctrl &= ~E1000_CTRL_VME;
4308                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4309
4310                 /* disable VLAN filtering */
4311                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4312                 rctl &= ~E1000_RCTL_VFE;
4313                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4314                 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4315                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4316                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4317                 }
4318         }
4319
4320         e1000_irq_enable(adapter);
4321 }
4322
4323 static void
4324 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4325 {
4326         struct e1000_adapter *adapter = netdev_priv(netdev);
4327         uint32_t vfta, index;
4328
4329         if ((adapter->hw.mng_cookie.status &
4330              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4331             (vid == adapter->mng_vlan_id))
4332                 return;
4333         /* add VID to filter table */
4334         index = (vid >> 5) & 0x7F;
4335         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4336         vfta |= (1 << (vid & 0x1F));
4337         e1000_write_vfta(&adapter->hw, index, vfta);
4338 }
4339
4340 static void
4341 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4342 {
4343         struct e1000_adapter *adapter = netdev_priv(netdev);
4344         uint32_t vfta, index;
4345
4346         e1000_irq_disable(adapter);
4347
4348         if (adapter->vlgrp)
4349                 adapter->vlgrp->vlan_devices[vid] = NULL;
4350
4351         e1000_irq_enable(adapter);
4352
4353         if ((adapter->hw.mng_cookie.status &
4354              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4355             (vid == adapter->mng_vlan_id)) {
4356                 /* release control to f/w */
4357                 e1000_release_hw_control(adapter);
4358                 return;
4359         }
4360
4361         /* remove VID from filter table */
4362         index = (vid >> 5) & 0x7F;
4363         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4364         vfta &= ~(1 << (vid & 0x1F));
4365         e1000_write_vfta(&adapter->hw, index, vfta);
4366 }
4367
4368 static void
4369 e1000_restore_vlan(struct e1000_adapter *adapter)
4370 {
4371         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4372
4373         if (adapter->vlgrp) {
4374                 uint16_t vid;
4375                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4376                         if (!adapter->vlgrp->vlan_devices[vid])
4377                                 continue;
4378                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4379                 }
4380         }
4381 }
4382
4383 int
4384 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4385 {
4386         adapter->hw.autoneg = 0;
4387
4388         /* Fiber NICs only allow 1000 gbps Full duplex */
4389         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4390                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4391                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4392                 return -EINVAL;
4393         }
4394
4395         switch (spddplx) {
4396         case SPEED_10 + DUPLEX_HALF:
4397                 adapter->hw.forced_speed_duplex = e1000_10_half;
4398                 break;
4399         case SPEED_10 + DUPLEX_FULL:
4400                 adapter->hw.forced_speed_duplex = e1000_10_full;
4401                 break;
4402         case SPEED_100 + DUPLEX_HALF:
4403                 adapter->hw.forced_speed_duplex = e1000_100_half;
4404                 break;
4405         case SPEED_100 + DUPLEX_FULL:
4406                 adapter->hw.forced_speed_duplex = e1000_100_full;
4407                 break;
4408         case SPEED_1000 + DUPLEX_FULL:
4409                 adapter->hw.autoneg = 1;
4410                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4411                 break;
4412         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4413         default:
4414                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4415                 return -EINVAL;
4416         }
4417         return 0;
4418 }
4419
4420 #ifdef CONFIG_PM
4421 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4422  * bus we're on (PCI(X) vs. PCI-E)
4423  */
4424 #define PCIE_CONFIG_SPACE_LEN 256
4425 #define PCI_CONFIG_SPACE_LEN 64
4426 static int
4427 e1000_pci_save_state(struct e1000_adapter *adapter)
4428 {
4429         struct pci_dev *dev = adapter->pdev;
4430         int size;
4431         int i;
4432
4433         if (adapter->hw.mac_type >= e1000_82571)
4434                 size = PCIE_CONFIG_SPACE_LEN;
4435         else
4436                 size = PCI_CONFIG_SPACE_LEN;
4437
4438         WARN_ON(adapter->config_space != NULL);
4439
4440         adapter->config_space = kmalloc(size, GFP_KERNEL);
4441         if (!adapter->config_space) {
4442                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4443                 return -ENOMEM;
4444         }
4445         for (i = 0; i < (size / 4); i++)
4446                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4447         return 0;
4448 }
4449
4450 static void
4451 e1000_pci_restore_state(struct e1000_adapter *adapter)
4452 {
4453         struct pci_dev *dev = adapter->pdev;
4454         int size;
4455         int i;
4456
4457         if (adapter->config_space == NULL)
4458                 return;
4459
4460         if (adapter->hw.mac_type >= e1000_82571)
4461                 size = PCIE_CONFIG_SPACE_LEN;
4462         else
4463                 size = PCI_CONFIG_SPACE_LEN;
4464         for (i = 0; i < (size / 4); i++)
4465                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4466         kfree(adapter->config_space);
4467         adapter->config_space = NULL;
4468         return;
4469 }
4470 #endif /* CONFIG_PM */
4471
4472 static int
4473 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4474 {
4475         struct net_device *netdev = pci_get_drvdata(pdev);
4476         struct e1000_adapter *adapter = netdev_priv(netdev);
4477         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4478         uint32_t wufc = adapter->wol;
4479         int retval = 0;
4480
4481         netif_device_detach(netdev);
4482
4483         if (netif_running(netdev)) {
4484                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4485                 e1000_down(adapter);
4486         }
4487
4488 #ifdef CONFIG_PM
4489         /* Implement our own version of pci_save_state(pdev) because pci-
4490          * express adapters have 256-byte config spaces. */
4491         retval = e1000_pci_save_state(adapter);
4492         if (retval)
4493                 return retval;
4494 #endif
4495
4496         status = E1000_READ_REG(&adapter->hw, STATUS);
4497         if (status & E1000_STATUS_LU)
4498                 wufc &= ~E1000_WUFC_LNKC;
4499
4500         if (wufc) {
4501                 e1000_setup_rctl(adapter);
4502                 e1000_set_multi(netdev);
4503
4504                 /* turn on all-multi mode if wake on multicast is enabled */
4505                 if (adapter->wol & E1000_WUFC_MC) {
4506                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4507                         rctl |= E1000_RCTL_MPE;
4508                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4509                 }
4510
4511                 if (adapter->hw.mac_type >= e1000_82540) {
4512                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4513                         /* advertise wake from D3Cold */
4514                         #define E1000_CTRL_ADVD3WUC 0x00100000
4515                         /* phy power management enable */
4516                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4517                         ctrl |= E1000_CTRL_ADVD3WUC |
4518                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4519                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4520                 }
4521
4522                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4523                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4524                         /* keep the laser running in D3 */
4525                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4526                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4527                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4528                 }
4529
4530                 /* Allow time for pending master requests to run */
4531                 e1000_disable_pciex_master(&adapter->hw);
4532
4533                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4534                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4535                 pci_enable_wake(pdev, PCI_D3hot, 1);
4536                 pci_enable_wake(pdev, PCI_D3cold, 1);
4537         } else {
4538                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4539                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4540                 pci_enable_wake(pdev, PCI_D3hot, 0);
4541                 pci_enable_wake(pdev, PCI_D3cold, 0);
4542         }
4543
4544         if (adapter->hw.mac_type >= e1000_82540 &&
4545            adapter->hw.media_type == e1000_media_type_copper) {
4546                 manc = E1000_READ_REG(&adapter->hw, MANC);
4547                 if (manc & E1000_MANC_SMBUS_EN) {
4548                         manc |= E1000_MANC_ARP_EN;
4549                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4550                         pci_enable_wake(pdev, PCI_D3hot, 1);
4551                         pci_enable_wake(pdev, PCI_D3cold, 1);
4552                 }
4553         }
4554
4555         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4556          * would have already happened in close and is redundant. */
4557         e1000_release_hw_control(adapter);
4558
4559         pci_disable_device(pdev);
4560
4561         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4562
4563         return 0;
4564 }
4565
4566 #ifdef CONFIG_PM
4567 static int
4568 e1000_resume(struct pci_dev *pdev)
4569 {
4570         struct net_device *netdev = pci_get_drvdata(pdev);
4571         struct e1000_adapter *adapter = netdev_priv(netdev);
4572         uint32_t manc, ret_val;
4573
4574         pci_set_power_state(pdev, PCI_D0);
4575         e1000_pci_restore_state(adapter);
4576         ret_val = pci_enable_device(pdev);
4577         pci_set_master(pdev);
4578
4579         pci_enable_wake(pdev, PCI_D3hot, 0);
4580         pci_enable_wake(pdev, PCI_D3cold, 0);
4581
4582         e1000_reset(adapter);
4583         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4584
4585         if (netif_running(netdev))
4586                 e1000_up(adapter);
4587
4588         netif_device_attach(netdev);
4589
4590         if (adapter->hw.mac_type >= e1000_82540 &&
4591            adapter->hw.media_type == e1000_media_type_copper) {
4592                 manc = E1000_READ_REG(&adapter->hw, MANC);
4593                 manc &= ~(E1000_MANC_ARP_EN);
4594                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4595         }
4596
4597         /* If the controller is 82573 and f/w is AMT, do not set
4598          * DRV_LOAD until the interface is up.  For all other cases,
4599          * let the f/w know that the h/w is now under the control
4600          * of the driver. */
4601         if (adapter->hw.mac_type != e1000_82573 ||
4602             !e1000_check_mng_mode(&adapter->hw))
4603                 e1000_get_hw_control(adapter);
4604
4605         return 0;
4606 }
4607 #endif
4608
4609 static void e1000_shutdown(struct pci_dev *pdev)
4610 {
4611         e1000_suspend(pdev, PMSG_SUSPEND);
4612 }
4613
4614 #ifdef CONFIG_NET_POLL_CONTROLLER
4615 /*
4616  * Polling 'interrupt' - used by things like netconsole to send skbs
4617  * without having to re-enable interrupts. It's not called while
4618  * the interrupt routine is executing.
4619  */
4620 static void
4621 e1000_netpoll(struct net_device *netdev)
4622 {
4623         struct e1000_adapter *adapter = netdev_priv(netdev);
4624         disable_irq(adapter->pdev->irq);
4625         e1000_intr(adapter->pdev->irq, netdev, NULL);
4626         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4627 #ifndef CONFIG_E1000_NAPI
4628         adapter->clean_rx(adapter, adapter->rx_ring);
4629 #endif
4630         enable_irq(adapter->pdev->irq);
4631 }
4632 #endif
4633
4634 /**
4635  * e1000_io_error_detected - called when PCI error is detected
4636  * @pdev: Pointer to PCI device
4637  * @state: The current pci conneection state
4638  *
4639  * This function is called after a PCI bus error affecting
4640  * this device has been detected.
4641  */
4642 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4643 {
4644         struct net_device *netdev = pci_get_drvdata(pdev);
4645         struct e1000_adapter *adapter = netdev->priv;
4646
4647         netif_device_detach(netdev);
4648
4649         if (netif_running(netdev))
4650                 e1000_down(adapter);
4651
4652         /* Request a slot slot reset. */
4653         return PCI_ERS_RESULT_NEED_RESET;
4654 }
4655
4656 /**
4657  * e1000_io_slot_reset - called after the pci bus has been reset.
4658  * @pdev: Pointer to PCI device
4659  *
4660  * Restart the card from scratch, as if from a cold-boot. Implementation
4661  * resembles the first-half of the e1000_resume routine.
4662  */
4663 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4664 {
4665         struct net_device *netdev = pci_get_drvdata(pdev);
4666         struct e1000_adapter *adapter = netdev->priv;
4667
4668         if (pci_enable_device(pdev)) {
4669                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4670                 return PCI_ERS_RESULT_DISCONNECT;
4671         }
4672         pci_set_master(pdev);
4673
4674         pci_enable_wake(pdev, 3, 0);
4675         pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4676
4677         /* Perform card reset only on one instance of the card */
4678         if (PCI_FUNC (pdev->devfn) != 0)
4679                 return PCI_ERS_RESULT_RECOVERED;
4680
4681         e1000_reset(adapter);
4682         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4683
4684         return PCI_ERS_RESULT_RECOVERED;
4685 }
4686
4687 /**
4688  * e1000_io_resume - called when traffic can start flowing again.
4689  * @pdev: Pointer to PCI device
4690  *
4691  * This callback is called when the error recovery driver tells us that
4692  * its OK to resume normal operation. Implementation resembles the
4693  * second-half of the e1000_resume routine.
4694  */
4695 static void e1000_io_resume(struct pci_dev *pdev)
4696 {
4697         struct net_device *netdev = pci_get_drvdata(pdev);
4698         struct e1000_adapter *adapter = netdev->priv;
4699         uint32_t manc, swsm;
4700
4701         if (netif_running(netdev)) {
4702                 if (e1000_up(adapter)) {
4703                         printk("e1000: can't bring device back up after reset\n");
4704                         return;
4705                 }
4706         }
4707
4708         netif_device_attach(netdev);
4709
4710         if (adapter->hw.mac_type >= e1000_82540 &&
4711             adapter->hw.media_type == e1000_media_type_copper) {
4712                 manc = E1000_READ_REG(&adapter->hw, MANC);
4713                 manc &= ~(E1000_MANC_ARP_EN);
4714                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4715         }
4716
4717         switch (adapter->hw.mac_type) {
4718         case e1000_82573:
4719                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4720                 E1000_WRITE_REG(&adapter->hw, SWSM,
4721                                 swsm | E1000_SWSM_DRV_LOAD);
4722                 break;
4723         default:
4724                 break;
4725         }
4726
4727         if (netif_running(netdev))
4728                 mod_timer(&adapter->watchdog_timer, jiffies);
4729 }
4730
4731 /* e1000_main.c */