ore: Enable RAID5 mounts
[pandora-kernel.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35
36 /* Intel Media SOC GbE MDIO physical base address */
37 static unsigned long ce4100_gbe_mdio_base_phy;
38 /* Intel Media SOC GbE MDIO virtual base address */
39 void __iomem *ce4100_gbe_mdio_base_virt;
40
41 char e1000_driver_name[] = "e1000";
42 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
43 #define DRV_VERSION "7.3.21-k8-NAPI"
44 const char e1000_driver_version[] = DRV_VERSION;
45 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
46
47 /* e1000_pci_tbl - PCI Device ID Table
48  *
49  * Last entry must be all 0s
50  *
51  * Macro expands to...
52  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
53  */
54 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
55         INTEL_E1000_ETHERNET_DEVICE(0x1000),
56         INTEL_E1000_ETHERNET_DEVICE(0x1001),
57         INTEL_E1000_ETHERNET_DEVICE(0x1004),
58         INTEL_E1000_ETHERNET_DEVICE(0x1008),
59         INTEL_E1000_ETHERNET_DEVICE(0x1009),
60         INTEL_E1000_ETHERNET_DEVICE(0x100C),
61         INTEL_E1000_ETHERNET_DEVICE(0x100D),
62         INTEL_E1000_ETHERNET_DEVICE(0x100E),
63         INTEL_E1000_ETHERNET_DEVICE(0x100F),
64         INTEL_E1000_ETHERNET_DEVICE(0x1010),
65         INTEL_E1000_ETHERNET_DEVICE(0x1011),
66         INTEL_E1000_ETHERNET_DEVICE(0x1012),
67         INTEL_E1000_ETHERNET_DEVICE(0x1013),
68         INTEL_E1000_ETHERNET_DEVICE(0x1014),
69         INTEL_E1000_ETHERNET_DEVICE(0x1015),
70         INTEL_E1000_ETHERNET_DEVICE(0x1016),
71         INTEL_E1000_ETHERNET_DEVICE(0x1017),
72         INTEL_E1000_ETHERNET_DEVICE(0x1018),
73         INTEL_E1000_ETHERNET_DEVICE(0x1019),
74         INTEL_E1000_ETHERNET_DEVICE(0x101A),
75         INTEL_E1000_ETHERNET_DEVICE(0x101D),
76         INTEL_E1000_ETHERNET_DEVICE(0x101E),
77         INTEL_E1000_ETHERNET_DEVICE(0x1026),
78         INTEL_E1000_ETHERNET_DEVICE(0x1027),
79         INTEL_E1000_ETHERNET_DEVICE(0x1028),
80         INTEL_E1000_ETHERNET_DEVICE(0x1075),
81         INTEL_E1000_ETHERNET_DEVICE(0x1076),
82         INTEL_E1000_ETHERNET_DEVICE(0x1077),
83         INTEL_E1000_ETHERNET_DEVICE(0x1078),
84         INTEL_E1000_ETHERNET_DEVICE(0x1079),
85         INTEL_E1000_ETHERNET_DEVICE(0x107A),
86         INTEL_E1000_ETHERNET_DEVICE(0x107B),
87         INTEL_E1000_ETHERNET_DEVICE(0x107C),
88         INTEL_E1000_ETHERNET_DEVICE(0x108A),
89         INTEL_E1000_ETHERNET_DEVICE(0x1099),
90         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
91         INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
92         /* required last entry */
93         {0,}
94 };
95
96 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
97
98 int e1000_up(struct e1000_adapter *adapter);
99 void e1000_down(struct e1000_adapter *adapter);
100 void e1000_reinit_locked(struct e1000_adapter *adapter);
101 void e1000_reset(struct e1000_adapter *adapter);
102 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
103 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
104 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
105 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
106 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
107                              struct e1000_tx_ring *txdr);
108 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
109                              struct e1000_rx_ring *rxdr);
110 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
111                              struct e1000_tx_ring *tx_ring);
112 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
113                              struct e1000_rx_ring *rx_ring);
114 void e1000_update_stats(struct e1000_adapter *adapter);
115
116 static int e1000_init_module(void);
117 static void e1000_exit_module(void);
118 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
119 static void __devexit e1000_remove(struct pci_dev *pdev);
120 static int e1000_alloc_queues(struct e1000_adapter *adapter);
121 static int e1000_sw_init(struct e1000_adapter *adapter);
122 static int e1000_open(struct net_device *netdev);
123 static int e1000_close(struct net_device *netdev);
124 static void e1000_configure_tx(struct e1000_adapter *adapter);
125 static void e1000_configure_rx(struct e1000_adapter *adapter);
126 static void e1000_setup_rctl(struct e1000_adapter *adapter);
127 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
128 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
129 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
130                                 struct e1000_tx_ring *tx_ring);
131 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
132                                 struct e1000_rx_ring *rx_ring);
133 static void e1000_set_rx_mode(struct net_device *netdev);
134 static void e1000_update_phy_info(unsigned long data);
135 static void e1000_update_phy_info_task(struct work_struct *work);
136 static void e1000_watchdog(unsigned long data);
137 static void e1000_82547_tx_fifo_stall(unsigned long data);
138 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
139 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
140                                     struct net_device *netdev);
141 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
142 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
143 static int e1000_set_mac(struct net_device *netdev, void *p);
144 static irqreturn_t e1000_intr(int irq, void *data);
145 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
146                                struct e1000_tx_ring *tx_ring);
147 static int e1000_clean(struct napi_struct *napi, int budget);
148 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
149                                struct e1000_rx_ring *rx_ring,
150                                int *work_done, int work_to_do);
151 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
152                                      struct e1000_rx_ring *rx_ring,
153                                      int *work_done, int work_to_do);
154 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
155                                    struct e1000_rx_ring *rx_ring,
156                                    int cleaned_count);
157 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
158                                          struct e1000_rx_ring *rx_ring,
159                                          int cleaned_count);
160 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
161 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
162                            int cmd);
163 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
164 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
165 static void e1000_tx_timeout(struct net_device *dev);
166 static void e1000_reset_task(struct work_struct *work);
167 static void e1000_smartspeed(struct e1000_adapter *adapter);
168 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
169                                        struct sk_buff *skb);
170
171 static bool e1000_vlan_used(struct e1000_adapter *adapter);
172 static void e1000_vlan_mode(struct net_device *netdev, u32 features);
173 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
174 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
175 static void e1000_restore_vlan(struct e1000_adapter *adapter);
176
177 #ifdef CONFIG_PM
178 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
179 static int e1000_resume(struct pci_dev *pdev);
180 #endif
181 static void e1000_shutdown(struct pci_dev *pdev);
182
183 #ifdef CONFIG_NET_POLL_CONTROLLER
184 /* for netdump / net console */
185 static void e1000_netpoll (struct net_device *netdev);
186 #endif
187
188 #define COPYBREAK_DEFAULT 256
189 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
190 module_param(copybreak, uint, 0644);
191 MODULE_PARM_DESC(copybreak,
192         "Maximum size of packet that is copied to a new buffer on receive");
193
194 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
195                      pci_channel_state_t state);
196 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
197 static void e1000_io_resume(struct pci_dev *pdev);
198
199 static struct pci_error_handlers e1000_err_handler = {
200         .error_detected = e1000_io_error_detected,
201         .slot_reset = e1000_io_slot_reset,
202         .resume = e1000_io_resume,
203 };
204
205 static struct pci_driver e1000_driver = {
206         .name     = e1000_driver_name,
207         .id_table = e1000_pci_tbl,
208         .probe    = e1000_probe,
209         .remove   = __devexit_p(e1000_remove),
210 #ifdef CONFIG_PM
211         /* Power Management Hooks */
212         .suspend  = e1000_suspend,
213         .resume   = e1000_resume,
214 #endif
215         .shutdown = e1000_shutdown,
216         .err_handler = &e1000_err_handler
217 };
218
219 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
220 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
221 MODULE_LICENSE("GPL");
222 MODULE_VERSION(DRV_VERSION);
223
224 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
225 module_param(debug, int, 0);
226 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
227
228 /**
229  * e1000_get_hw_dev - return device
230  * used by hardware layer to print debugging information
231  *
232  **/
233 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
234 {
235         struct e1000_adapter *adapter = hw->back;
236         return adapter->netdev;
237 }
238
239 /**
240  * e1000_init_module - Driver Registration Routine
241  *
242  * e1000_init_module is the first routine called when the driver is
243  * loaded. All it does is register with the PCI subsystem.
244  **/
245
246 static int __init e1000_init_module(void)
247 {
248         int ret;
249         pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
250
251         pr_info("%s\n", e1000_copyright);
252
253         ret = pci_register_driver(&e1000_driver);
254         if (copybreak != COPYBREAK_DEFAULT) {
255                 if (copybreak == 0)
256                         pr_info("copybreak disabled\n");
257                 else
258                         pr_info("copybreak enabled for "
259                                    "packets <= %u bytes\n", copybreak);
260         }
261         return ret;
262 }
263
264 module_init(e1000_init_module);
265
266 /**
267  * e1000_exit_module - Driver Exit Cleanup Routine
268  *
269  * e1000_exit_module is called just before the driver is removed
270  * from memory.
271  **/
272
273 static void __exit e1000_exit_module(void)
274 {
275         pci_unregister_driver(&e1000_driver);
276 }
277
278 module_exit(e1000_exit_module);
279
280 static int e1000_request_irq(struct e1000_adapter *adapter)
281 {
282         struct net_device *netdev = adapter->netdev;
283         irq_handler_t handler = e1000_intr;
284         int irq_flags = IRQF_SHARED;
285         int err;
286
287         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
288                           netdev);
289         if (err) {
290                 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
291         }
292
293         return err;
294 }
295
296 static void e1000_free_irq(struct e1000_adapter *adapter)
297 {
298         struct net_device *netdev = adapter->netdev;
299
300         free_irq(adapter->pdev->irq, netdev);
301 }
302
303 /**
304  * e1000_irq_disable - Mask off interrupt generation on the NIC
305  * @adapter: board private structure
306  **/
307
308 static void e1000_irq_disable(struct e1000_adapter *adapter)
309 {
310         struct e1000_hw *hw = &adapter->hw;
311
312         ew32(IMC, ~0);
313         E1000_WRITE_FLUSH();
314         synchronize_irq(adapter->pdev->irq);
315 }
316
317 /**
318  * e1000_irq_enable - Enable default interrupt generation settings
319  * @adapter: board private structure
320  **/
321
322 static void e1000_irq_enable(struct e1000_adapter *adapter)
323 {
324         struct e1000_hw *hw = &adapter->hw;
325
326         ew32(IMS, IMS_ENABLE_MASK);
327         E1000_WRITE_FLUSH();
328 }
329
330 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
331 {
332         struct e1000_hw *hw = &adapter->hw;
333         struct net_device *netdev = adapter->netdev;
334         u16 vid = hw->mng_cookie.vlan_id;
335         u16 old_vid = adapter->mng_vlan_id;
336
337         if (!e1000_vlan_used(adapter))
338                 return;
339
340         if (!test_bit(vid, adapter->active_vlans)) {
341                 if (hw->mng_cookie.status &
342                     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
343                         e1000_vlan_rx_add_vid(netdev, vid);
344                         adapter->mng_vlan_id = vid;
345                 } else {
346                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
347                 }
348                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349                     (vid != old_vid) &&
350                     !test_bit(old_vid, adapter->active_vlans))
351                         e1000_vlan_rx_kill_vid(netdev, old_vid);
352         } else {
353                 adapter->mng_vlan_id = vid;
354         }
355 }
356
357 static void e1000_init_manageability(struct e1000_adapter *adapter)
358 {
359         struct e1000_hw *hw = &adapter->hw;
360
361         if (adapter->en_mng_pt) {
362                 u32 manc = er32(MANC);
363
364                 /* disable hardware interception of ARP */
365                 manc &= ~(E1000_MANC_ARP_EN);
366
367                 ew32(MANC, manc);
368         }
369 }
370
371 static void e1000_release_manageability(struct e1000_adapter *adapter)
372 {
373         struct e1000_hw *hw = &adapter->hw;
374
375         if (adapter->en_mng_pt) {
376                 u32 manc = er32(MANC);
377
378                 /* re-enable hardware interception of ARP */
379                 manc |= E1000_MANC_ARP_EN;
380
381                 ew32(MANC, manc);
382         }
383 }
384
385 /**
386  * e1000_configure - configure the hardware for RX and TX
387  * @adapter = private board structure
388  **/
389 static void e1000_configure(struct e1000_adapter *adapter)
390 {
391         struct net_device *netdev = adapter->netdev;
392         int i;
393
394         e1000_set_rx_mode(netdev);
395
396         e1000_restore_vlan(adapter);
397         e1000_init_manageability(adapter);
398
399         e1000_configure_tx(adapter);
400         e1000_setup_rctl(adapter);
401         e1000_configure_rx(adapter);
402         /* call E1000_DESC_UNUSED which always leaves
403          * at least 1 descriptor unused to make sure
404          * next_to_use != next_to_clean */
405         for (i = 0; i < adapter->num_rx_queues; i++) {
406                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
407                 adapter->alloc_rx_buf(adapter, ring,
408                                       E1000_DESC_UNUSED(ring));
409         }
410 }
411
412 int e1000_up(struct e1000_adapter *adapter)
413 {
414         struct e1000_hw *hw = &adapter->hw;
415
416         /* hardware has been reset, we need to reload some things */
417         e1000_configure(adapter);
418
419         clear_bit(__E1000_DOWN, &adapter->flags);
420
421         napi_enable(&adapter->napi);
422
423         e1000_irq_enable(adapter);
424
425         netif_wake_queue(adapter->netdev);
426
427         /* fire a link change interrupt to start the watchdog */
428         ew32(ICS, E1000_ICS_LSC);
429         return 0;
430 }
431
432 /**
433  * e1000_power_up_phy - restore link in case the phy was powered down
434  * @adapter: address of board private structure
435  *
436  * The phy may be powered down to save power and turn off link when the
437  * driver is unloaded and wake on lan is not enabled (among others)
438  * *** this routine MUST be followed by a call to e1000_reset ***
439  *
440  **/
441
442 void e1000_power_up_phy(struct e1000_adapter *adapter)
443 {
444         struct e1000_hw *hw = &adapter->hw;
445         u16 mii_reg = 0;
446
447         /* Just clear the power down bit to wake the phy back up */
448         if (hw->media_type == e1000_media_type_copper) {
449                 /* according to the manual, the phy will retain its
450                  * settings across a power-down/up cycle */
451                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
452                 mii_reg &= ~MII_CR_POWER_DOWN;
453                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
454         }
455 }
456
457 static void e1000_power_down_phy(struct e1000_adapter *adapter)
458 {
459         struct e1000_hw *hw = &adapter->hw;
460
461         /* Power down the PHY so no link is implied when interface is down *
462          * The PHY cannot be powered down if any of the following is true *
463          * (a) WoL is enabled
464          * (b) AMT is active
465          * (c) SoL/IDER session is active */
466         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
467            hw->media_type == e1000_media_type_copper) {
468                 u16 mii_reg = 0;
469
470                 switch (hw->mac_type) {
471                 case e1000_82540:
472                 case e1000_82545:
473                 case e1000_82545_rev_3:
474                 case e1000_82546:
475                 case e1000_ce4100:
476                 case e1000_82546_rev_3:
477                 case e1000_82541:
478                 case e1000_82541_rev_2:
479                 case e1000_82547:
480                 case e1000_82547_rev_2:
481                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
482                                 goto out;
483                         break;
484                 default:
485                         goto out;
486                 }
487                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
488                 mii_reg |= MII_CR_POWER_DOWN;
489                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
490                 mdelay(1);
491         }
492 out:
493         return;
494 }
495
496 void e1000_down(struct e1000_adapter *adapter)
497 {
498         struct e1000_hw *hw = &adapter->hw;
499         struct net_device *netdev = adapter->netdev;
500         u32 rctl, tctl;
501
502
503         /* disable receives in the hardware */
504         rctl = er32(RCTL);
505         ew32(RCTL, rctl & ~E1000_RCTL_EN);
506         /* flush and sleep below */
507
508         netif_tx_disable(netdev);
509
510         /* disable transmits in the hardware */
511         tctl = er32(TCTL);
512         tctl &= ~E1000_TCTL_EN;
513         ew32(TCTL, tctl);
514         /* flush both disables and wait for them to finish */
515         E1000_WRITE_FLUSH();
516         msleep(10);
517
518         napi_disable(&adapter->napi);
519
520         e1000_irq_disable(adapter);
521
522         /*
523          * Setting DOWN must be after irq_disable to prevent
524          * a screaming interrupt.  Setting DOWN also prevents
525          * timers and tasks from rescheduling.
526          */
527         set_bit(__E1000_DOWN, &adapter->flags);
528
529         del_timer_sync(&adapter->tx_fifo_stall_timer);
530         del_timer_sync(&adapter->watchdog_timer);
531         del_timer_sync(&adapter->phy_info_timer);
532
533         adapter->link_speed = 0;
534         adapter->link_duplex = 0;
535         netif_carrier_off(netdev);
536
537         e1000_reset(adapter);
538         e1000_clean_all_tx_rings(adapter);
539         e1000_clean_all_rx_rings(adapter);
540 }
541
542 static void e1000_reinit_safe(struct e1000_adapter *adapter)
543 {
544         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
545                 msleep(1);
546         rtnl_lock();
547         e1000_down(adapter);
548         e1000_up(adapter);
549         rtnl_unlock();
550         clear_bit(__E1000_RESETTING, &adapter->flags);
551 }
552
553 void e1000_reinit_locked(struct e1000_adapter *adapter)
554 {
555         /* if rtnl_lock is not held the call path is bogus */
556         ASSERT_RTNL();
557         WARN_ON(in_interrupt());
558         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
559                 msleep(1);
560         e1000_down(adapter);
561         e1000_up(adapter);
562         clear_bit(__E1000_RESETTING, &adapter->flags);
563 }
564
565 void e1000_reset(struct e1000_adapter *adapter)
566 {
567         struct e1000_hw *hw = &adapter->hw;
568         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
569         bool legacy_pba_adjust = false;
570         u16 hwm;
571
572         /* Repartition Pba for greater than 9k mtu
573          * To take effect CTRL.RST is required.
574          */
575
576         switch (hw->mac_type) {
577         case e1000_82542_rev2_0:
578         case e1000_82542_rev2_1:
579         case e1000_82543:
580         case e1000_82544:
581         case e1000_82540:
582         case e1000_82541:
583         case e1000_82541_rev_2:
584                 legacy_pba_adjust = true;
585                 pba = E1000_PBA_48K;
586                 break;
587         case e1000_82545:
588         case e1000_82545_rev_3:
589         case e1000_82546:
590         case e1000_ce4100:
591         case e1000_82546_rev_3:
592                 pba = E1000_PBA_48K;
593                 break;
594         case e1000_82547:
595         case e1000_82547_rev_2:
596                 legacy_pba_adjust = true;
597                 pba = E1000_PBA_30K;
598                 break;
599         case e1000_undefined:
600         case e1000_num_macs:
601                 break;
602         }
603
604         if (legacy_pba_adjust) {
605                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
606                         pba -= 8; /* allocate more FIFO for Tx */
607
608                 if (hw->mac_type == e1000_82547) {
609                         adapter->tx_fifo_head = 0;
610                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
611                         adapter->tx_fifo_size =
612                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
613                         atomic_set(&adapter->tx_fifo_stall, 0);
614                 }
615         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
616                 /* adjust PBA for jumbo frames */
617                 ew32(PBA, pba);
618
619                 /* To maintain wire speed transmits, the Tx FIFO should be
620                  * large enough to accommodate two full transmit packets,
621                  * rounded up to the next 1KB and expressed in KB.  Likewise,
622                  * the Rx FIFO should be large enough to accommodate at least
623                  * one full receive packet and is similarly rounded up and
624                  * expressed in KB. */
625                 pba = er32(PBA);
626                 /* upper 16 bits has Tx packet buffer allocation size in KB */
627                 tx_space = pba >> 16;
628                 /* lower 16 bits has Rx packet buffer allocation size in KB */
629                 pba &= 0xffff;
630                 /*
631                  * the tx fifo also stores 16 bytes of information about the tx
632                  * but don't include ethernet FCS because hardware appends it
633                  */
634                 min_tx_space = (hw->max_frame_size +
635                                 sizeof(struct e1000_tx_desc) -
636                                 ETH_FCS_LEN) * 2;
637                 min_tx_space = ALIGN(min_tx_space, 1024);
638                 min_tx_space >>= 10;
639                 /* software strips receive CRC, so leave room for it */
640                 min_rx_space = hw->max_frame_size;
641                 min_rx_space = ALIGN(min_rx_space, 1024);
642                 min_rx_space >>= 10;
643
644                 /* If current Tx allocation is less than the min Tx FIFO size,
645                  * and the min Tx FIFO size is less than the current Rx FIFO
646                  * allocation, take space away from current Rx allocation */
647                 if (tx_space < min_tx_space &&
648                     ((min_tx_space - tx_space) < pba)) {
649                         pba = pba - (min_tx_space - tx_space);
650
651                         /* PCI/PCIx hardware has PBA alignment constraints */
652                         switch (hw->mac_type) {
653                         case e1000_82545 ... e1000_82546_rev_3:
654                                 pba &= ~(E1000_PBA_8K - 1);
655                                 break;
656                         default:
657                                 break;
658                         }
659
660                         /* if short on rx space, rx wins and must trump tx
661                          * adjustment or use Early Receive if available */
662                         if (pba < min_rx_space)
663                                 pba = min_rx_space;
664                 }
665         }
666
667         ew32(PBA, pba);
668
669         /*
670          * flow control settings:
671          * The high water mark must be low enough to fit one full frame
672          * (or the size used for early receive) above it in the Rx FIFO.
673          * Set it to the lower of:
674          * - 90% of the Rx FIFO size, and
675          * - the full Rx FIFO size minus the early receive size (for parts
676          *   with ERT support assuming ERT set to E1000_ERT_2048), or
677          * - the full Rx FIFO size minus one full frame
678          */
679         hwm = min(((pba << 10) * 9 / 10),
680                   ((pba << 10) - hw->max_frame_size));
681
682         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
683         hw->fc_low_water = hw->fc_high_water - 8;
684         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
685         hw->fc_send_xon = 1;
686         hw->fc = hw->original_fc;
687
688         /* Allow time for pending master requests to run */
689         e1000_reset_hw(hw);
690         if (hw->mac_type >= e1000_82544)
691                 ew32(WUC, 0);
692
693         if (e1000_init_hw(hw))
694                 e_dev_err("Hardware Error\n");
695         e1000_update_mng_vlan(adapter);
696
697         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
698         if (hw->mac_type >= e1000_82544 &&
699             hw->autoneg == 1 &&
700             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
701                 u32 ctrl = er32(CTRL);
702                 /* clear phy power management bit if we are in gig only mode,
703                  * which if enabled will attempt negotiation to 100Mb, which
704                  * can cause a loss of link at power off or driver unload */
705                 ctrl &= ~E1000_CTRL_SWDPIN3;
706                 ew32(CTRL, ctrl);
707         }
708
709         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
710         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
711
712         e1000_reset_adaptive(hw);
713         e1000_phy_get_info(hw, &adapter->phy_info);
714
715         e1000_release_manageability(adapter);
716 }
717
718 /**
719  *  Dump the eeprom for users having checksum issues
720  **/
721 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
722 {
723         struct net_device *netdev = adapter->netdev;
724         struct ethtool_eeprom eeprom;
725         const struct ethtool_ops *ops = netdev->ethtool_ops;
726         u8 *data;
727         int i;
728         u16 csum_old, csum_new = 0;
729
730         eeprom.len = ops->get_eeprom_len(netdev);
731         eeprom.offset = 0;
732
733         data = kmalloc(eeprom.len, GFP_KERNEL);
734         if (!data) {
735                 pr_err("Unable to allocate memory to dump EEPROM data\n");
736                 return;
737         }
738
739         ops->get_eeprom(netdev, &eeprom, data);
740
741         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
742                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
743         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
744                 csum_new += data[i] + (data[i + 1] << 8);
745         csum_new = EEPROM_SUM - csum_new;
746
747         pr_err("/*********************/\n");
748         pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
749         pr_err("Calculated              : 0x%04x\n", csum_new);
750
751         pr_err("Offset    Values\n");
752         pr_err("========  ======\n");
753         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
754
755         pr_err("Include this output when contacting your support provider.\n");
756         pr_err("This is not a software error! Something bad happened to\n");
757         pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
758         pr_err("result in further problems, possibly loss of data,\n");
759         pr_err("corruption or system hangs!\n");
760         pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
761         pr_err("which is invalid and requires you to set the proper MAC\n");
762         pr_err("address manually before continuing to enable this network\n");
763         pr_err("device. Please inspect the EEPROM dump and report the\n");
764         pr_err("issue to your hardware vendor or Intel Customer Support.\n");
765         pr_err("/*********************/\n");
766
767         kfree(data);
768 }
769
770 /**
771  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
772  * @pdev: PCI device information struct
773  *
774  * Return true if an adapter needs ioport resources
775  **/
776 static int e1000_is_need_ioport(struct pci_dev *pdev)
777 {
778         switch (pdev->device) {
779         case E1000_DEV_ID_82540EM:
780         case E1000_DEV_ID_82540EM_LOM:
781         case E1000_DEV_ID_82540EP:
782         case E1000_DEV_ID_82540EP_LOM:
783         case E1000_DEV_ID_82540EP_LP:
784         case E1000_DEV_ID_82541EI:
785         case E1000_DEV_ID_82541EI_MOBILE:
786         case E1000_DEV_ID_82541ER:
787         case E1000_DEV_ID_82541ER_LOM:
788         case E1000_DEV_ID_82541GI:
789         case E1000_DEV_ID_82541GI_LF:
790         case E1000_DEV_ID_82541GI_MOBILE:
791         case E1000_DEV_ID_82544EI_COPPER:
792         case E1000_DEV_ID_82544EI_FIBER:
793         case E1000_DEV_ID_82544GC_COPPER:
794         case E1000_DEV_ID_82544GC_LOM:
795         case E1000_DEV_ID_82545EM_COPPER:
796         case E1000_DEV_ID_82545EM_FIBER:
797         case E1000_DEV_ID_82546EB_COPPER:
798         case E1000_DEV_ID_82546EB_FIBER:
799         case E1000_DEV_ID_82546EB_QUAD_COPPER:
800                 return true;
801         default:
802                 return false;
803         }
804 }
805
806 static u32 e1000_fix_features(struct net_device *netdev, u32 features)
807 {
808         /*
809          * Since there is no support for separate rx/tx vlan accel
810          * enable/disable make sure tx flag is always in same state as rx.
811          */
812         if (features & NETIF_F_HW_VLAN_RX)
813                 features |= NETIF_F_HW_VLAN_TX;
814         else
815                 features &= ~NETIF_F_HW_VLAN_TX;
816
817         return features;
818 }
819
820 static int e1000_set_features(struct net_device *netdev, u32 features)
821 {
822         struct e1000_adapter *adapter = netdev_priv(netdev);
823         u32 changed = features ^ netdev->features;
824
825         if (changed & NETIF_F_HW_VLAN_RX)
826                 e1000_vlan_mode(netdev, features);
827
828         if (!(changed & NETIF_F_RXCSUM))
829                 return 0;
830
831         adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
832
833         if (netif_running(netdev))
834                 e1000_reinit_locked(adapter);
835         else
836                 e1000_reset(adapter);
837
838         return 0;
839 }
840
841 static const struct net_device_ops e1000_netdev_ops = {
842         .ndo_open               = e1000_open,
843         .ndo_stop               = e1000_close,
844         .ndo_start_xmit         = e1000_xmit_frame,
845         .ndo_get_stats          = e1000_get_stats,
846         .ndo_set_rx_mode        = e1000_set_rx_mode,
847         .ndo_set_mac_address    = e1000_set_mac,
848         .ndo_tx_timeout         = e1000_tx_timeout,
849         .ndo_change_mtu         = e1000_change_mtu,
850         .ndo_do_ioctl           = e1000_ioctl,
851         .ndo_validate_addr      = eth_validate_addr,
852         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
853         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
854 #ifdef CONFIG_NET_POLL_CONTROLLER
855         .ndo_poll_controller    = e1000_netpoll,
856 #endif
857         .ndo_fix_features       = e1000_fix_features,
858         .ndo_set_features       = e1000_set_features,
859 };
860
861 /**
862  * e1000_init_hw_struct - initialize members of hw struct
863  * @adapter: board private struct
864  * @hw: structure used by e1000_hw.c
865  *
866  * Factors out initialization of the e1000_hw struct to its own function
867  * that can be called very early at init (just after struct allocation).
868  * Fields are initialized based on PCI device information and
869  * OS network device settings (MTU size).
870  * Returns negative error codes if MAC type setup fails.
871  */
872 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
873                                 struct e1000_hw *hw)
874 {
875         struct pci_dev *pdev = adapter->pdev;
876
877         /* PCI config space info */
878         hw->vendor_id = pdev->vendor;
879         hw->device_id = pdev->device;
880         hw->subsystem_vendor_id = pdev->subsystem_vendor;
881         hw->subsystem_id = pdev->subsystem_device;
882         hw->revision_id = pdev->revision;
883
884         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
885
886         hw->max_frame_size = adapter->netdev->mtu +
887                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
888         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
889
890         /* identify the MAC */
891         if (e1000_set_mac_type(hw)) {
892                 e_err(probe, "Unknown MAC Type\n");
893                 return -EIO;
894         }
895
896         switch (hw->mac_type) {
897         default:
898                 break;
899         case e1000_82541:
900         case e1000_82547:
901         case e1000_82541_rev_2:
902         case e1000_82547_rev_2:
903                 hw->phy_init_script = 1;
904                 break;
905         }
906
907         e1000_set_media_type(hw);
908         e1000_get_bus_info(hw);
909
910         hw->wait_autoneg_complete = false;
911         hw->tbi_compatibility_en = true;
912         hw->adaptive_ifs = true;
913
914         /* Copper options */
915
916         if (hw->media_type == e1000_media_type_copper) {
917                 hw->mdix = AUTO_ALL_MODES;
918                 hw->disable_polarity_correction = false;
919                 hw->master_slave = E1000_MASTER_SLAVE;
920         }
921
922         return 0;
923 }
924
925 /**
926  * e1000_probe - Device Initialization Routine
927  * @pdev: PCI device information struct
928  * @ent: entry in e1000_pci_tbl
929  *
930  * Returns 0 on success, negative on failure
931  *
932  * e1000_probe initializes an adapter identified by a pci_dev structure.
933  * The OS initialization, configuring of the adapter private structure,
934  * and a hardware reset occur.
935  **/
936 static int __devinit e1000_probe(struct pci_dev *pdev,
937                                  const struct pci_device_id *ent)
938 {
939         struct net_device *netdev;
940         struct e1000_adapter *adapter;
941         struct e1000_hw *hw;
942
943         static int cards_found = 0;
944         static int global_quad_port_a = 0; /* global ksp3 port a indication */
945         int i, err, pci_using_dac;
946         u16 eeprom_data = 0;
947         u16 tmp = 0;
948         u16 eeprom_apme_mask = E1000_EEPROM_APME;
949         int bars, need_ioport;
950
951         /* do not allocate ioport bars when not needed */
952         need_ioport = e1000_is_need_ioport(pdev);
953         if (need_ioport) {
954                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
955                 err = pci_enable_device(pdev);
956         } else {
957                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
958                 err = pci_enable_device_mem(pdev);
959         }
960         if (err)
961                 return err;
962
963         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
964         if (err)
965                 goto err_pci_reg;
966
967         pci_set_master(pdev);
968         err = pci_save_state(pdev);
969         if (err)
970                 goto err_alloc_etherdev;
971
972         err = -ENOMEM;
973         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
974         if (!netdev)
975                 goto err_alloc_etherdev;
976
977         SET_NETDEV_DEV(netdev, &pdev->dev);
978
979         pci_set_drvdata(pdev, netdev);
980         adapter = netdev_priv(netdev);
981         adapter->netdev = netdev;
982         adapter->pdev = pdev;
983         adapter->msg_enable = (1 << debug) - 1;
984         adapter->bars = bars;
985         adapter->need_ioport = need_ioport;
986
987         hw = &adapter->hw;
988         hw->back = adapter;
989
990         err = -EIO;
991         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
992         if (!hw->hw_addr)
993                 goto err_ioremap;
994
995         if (adapter->need_ioport) {
996                 for (i = BAR_1; i <= BAR_5; i++) {
997                         if (pci_resource_len(pdev, i) == 0)
998                                 continue;
999                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1000                                 hw->io_base = pci_resource_start(pdev, i);
1001                                 break;
1002                         }
1003                 }
1004         }
1005
1006         /* make ready for any if (hw->...) below */
1007         err = e1000_init_hw_struct(adapter, hw);
1008         if (err)
1009                 goto err_sw_init;
1010
1011         /*
1012          * there is a workaround being applied below that limits
1013          * 64-bit DMA addresses to 64-bit hardware.  There are some
1014          * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1015          */
1016         pci_using_dac = 0;
1017         if ((hw->bus_type == e1000_bus_type_pcix) &&
1018             !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1019                 /*
1020                  * according to DMA-API-HOWTO, coherent calls will always
1021                  * succeed if the set call did
1022                  */
1023                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1024                 pci_using_dac = 1;
1025         } else {
1026                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1027                 if (err) {
1028                         pr_err("No usable DMA config, aborting\n");
1029                         goto err_dma;
1030                 }
1031                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1032         }
1033
1034         netdev->netdev_ops = &e1000_netdev_ops;
1035         e1000_set_ethtool_ops(netdev);
1036         netdev->watchdog_timeo = 5 * HZ;
1037         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1038
1039         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1040
1041         adapter->bd_number = cards_found;
1042
1043         /* setup the private structure */
1044
1045         err = e1000_sw_init(adapter);
1046         if (err)
1047                 goto err_sw_init;
1048
1049         err = -EIO;
1050         if (hw->mac_type == e1000_ce4100) {
1051                 ce4100_gbe_mdio_base_phy = pci_resource_start(pdev, BAR_1);
1052                 ce4100_gbe_mdio_base_virt = ioremap(ce4100_gbe_mdio_base_phy,
1053                                                 pci_resource_len(pdev, BAR_1));
1054
1055                 if (!ce4100_gbe_mdio_base_virt)
1056                         goto err_mdio_ioremap;
1057         }
1058
1059         if (hw->mac_type >= e1000_82543) {
1060                 netdev->hw_features = NETIF_F_SG |
1061                                    NETIF_F_HW_CSUM |
1062                                    NETIF_F_HW_VLAN_RX;
1063                 netdev->features = NETIF_F_HW_VLAN_TX |
1064                                    NETIF_F_HW_VLAN_FILTER;
1065         }
1066
1067         if ((hw->mac_type >= e1000_82544) &&
1068            (hw->mac_type != e1000_82547))
1069                 netdev->hw_features |= NETIF_F_TSO;
1070
1071         netdev->features |= netdev->hw_features;
1072         netdev->hw_features |= NETIF_F_RXCSUM;
1073
1074         if (pci_using_dac) {
1075                 netdev->features |= NETIF_F_HIGHDMA;
1076                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1077         }
1078
1079         netdev->vlan_features |= NETIF_F_TSO;
1080         netdev->vlan_features |= NETIF_F_HW_CSUM;
1081         netdev->vlan_features |= NETIF_F_SG;
1082
1083         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1084
1085         /* initialize eeprom parameters */
1086         if (e1000_init_eeprom_params(hw)) {
1087                 e_err(probe, "EEPROM initialization failed\n");
1088                 goto err_eeprom;
1089         }
1090
1091         /* before reading the EEPROM, reset the controller to
1092          * put the device in a known good starting state */
1093
1094         e1000_reset_hw(hw);
1095
1096         /* make sure the EEPROM is good */
1097         if (e1000_validate_eeprom_checksum(hw) < 0) {
1098                 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1099                 e1000_dump_eeprom(adapter);
1100                 /*
1101                  * set MAC address to all zeroes to invalidate and temporary
1102                  * disable this device for the user. This blocks regular
1103                  * traffic while still permitting ethtool ioctls from reaching
1104                  * the hardware as well as allowing the user to run the
1105                  * interface after manually setting a hw addr using
1106                  * `ip set address`
1107                  */
1108                 memset(hw->mac_addr, 0, netdev->addr_len);
1109         } else {
1110                 /* copy the MAC address out of the EEPROM */
1111                 if (e1000_read_mac_addr(hw))
1112                         e_err(probe, "EEPROM Read Error\n");
1113         }
1114         /* don't block initalization here due to bad MAC address */
1115         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1116         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1117
1118         if (!is_valid_ether_addr(netdev->perm_addr))
1119                 e_err(probe, "Invalid MAC Address\n");
1120
1121         init_timer(&adapter->tx_fifo_stall_timer);
1122         adapter->tx_fifo_stall_timer.function = e1000_82547_tx_fifo_stall;
1123         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1124
1125         init_timer(&adapter->watchdog_timer);
1126         adapter->watchdog_timer.function = e1000_watchdog;
1127         adapter->watchdog_timer.data = (unsigned long) adapter;
1128
1129         init_timer(&adapter->phy_info_timer);
1130         adapter->phy_info_timer.function = e1000_update_phy_info;
1131         adapter->phy_info_timer.data = (unsigned long)adapter;
1132
1133         INIT_WORK(&adapter->fifo_stall_task, e1000_82547_tx_fifo_stall_task);
1134         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1135         INIT_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1136
1137         e1000_check_options(adapter);
1138
1139         /* Initial Wake on LAN setting
1140          * If APM wake is enabled in the EEPROM,
1141          * enable the ACPI Magic Packet filter
1142          */
1143
1144         switch (hw->mac_type) {
1145         case e1000_82542_rev2_0:
1146         case e1000_82542_rev2_1:
1147         case e1000_82543:
1148                 break;
1149         case e1000_82544:
1150                 e1000_read_eeprom(hw,
1151                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1152                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1153                 break;
1154         case e1000_82546:
1155         case e1000_82546_rev_3:
1156                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1157                         e1000_read_eeprom(hw,
1158                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1159                         break;
1160                 }
1161                 /* Fall Through */
1162         default:
1163                 e1000_read_eeprom(hw,
1164                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1165                 break;
1166         }
1167         if (eeprom_data & eeprom_apme_mask)
1168                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1169
1170         /* now that we have the eeprom settings, apply the special cases
1171          * where the eeprom may be wrong or the board simply won't support
1172          * wake on lan on a particular port */
1173         switch (pdev->device) {
1174         case E1000_DEV_ID_82546GB_PCIE:
1175                 adapter->eeprom_wol = 0;
1176                 break;
1177         case E1000_DEV_ID_82546EB_FIBER:
1178         case E1000_DEV_ID_82546GB_FIBER:
1179                 /* Wake events only supported on port A for dual fiber
1180                  * regardless of eeprom setting */
1181                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1182                         adapter->eeprom_wol = 0;
1183                 break;
1184         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1185                 /* if quad port adapter, disable WoL on all but port A */
1186                 if (global_quad_port_a != 0)
1187                         adapter->eeprom_wol = 0;
1188                 else
1189                         adapter->quad_port_a = 1;
1190                 /* Reset for multiple quad port adapters */
1191                 if (++global_quad_port_a == 4)
1192                         global_quad_port_a = 0;
1193                 break;
1194         }
1195
1196         /* initialize the wol settings based on the eeprom settings */
1197         adapter->wol = adapter->eeprom_wol;
1198         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1199
1200         /* Auto detect PHY address */
1201         if (hw->mac_type == e1000_ce4100) {
1202                 for (i = 0; i < 32; i++) {
1203                         hw->phy_addr = i;
1204                         e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1205                         if (tmp == 0 || tmp == 0xFF) {
1206                                 if (i == 31)
1207                                         goto err_eeprom;
1208                                 continue;
1209                         } else
1210                                 break;
1211                 }
1212         }
1213
1214         /* reset the hardware with the new settings */
1215         e1000_reset(adapter);
1216
1217         strcpy(netdev->name, "eth%d");
1218         err = register_netdev(netdev);
1219         if (err)
1220                 goto err_register;
1221
1222         e1000_vlan_mode(netdev, netdev->features);
1223
1224         /* print bus type/speed/width info */
1225         e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1226                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1227                ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1228                 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1229                 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1230                 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1231                ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1232                netdev->dev_addr);
1233
1234         /* carrier off reporting is important to ethtool even BEFORE open */
1235         netif_carrier_off(netdev);
1236
1237         e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1238
1239         cards_found++;
1240         return 0;
1241
1242 err_register:
1243 err_eeprom:
1244         e1000_phy_hw_reset(hw);
1245
1246         if (hw->flash_address)
1247                 iounmap(hw->flash_address);
1248         kfree(adapter->tx_ring);
1249         kfree(adapter->rx_ring);
1250 err_dma:
1251 err_sw_init:
1252 err_mdio_ioremap:
1253         iounmap(ce4100_gbe_mdio_base_virt);
1254         iounmap(hw->hw_addr);
1255 err_ioremap:
1256         free_netdev(netdev);
1257 err_alloc_etherdev:
1258         pci_release_selected_regions(pdev, bars);
1259 err_pci_reg:
1260         pci_disable_device(pdev);
1261         return err;
1262 }
1263
1264 /**
1265  * e1000_remove - Device Removal Routine
1266  * @pdev: PCI device information struct
1267  *
1268  * e1000_remove is called by the PCI subsystem to alert the driver
1269  * that it should release a PCI device.  The could be caused by a
1270  * Hot-Plug event, or because the driver is going to be removed from
1271  * memory.
1272  **/
1273
1274 static void __devexit e1000_remove(struct pci_dev *pdev)
1275 {
1276         struct net_device *netdev = pci_get_drvdata(pdev);
1277         struct e1000_adapter *adapter = netdev_priv(netdev);
1278         struct e1000_hw *hw = &adapter->hw;
1279
1280         set_bit(__E1000_DOWN, &adapter->flags);
1281         del_timer_sync(&adapter->tx_fifo_stall_timer);
1282         del_timer_sync(&adapter->watchdog_timer);
1283         del_timer_sync(&adapter->phy_info_timer);
1284
1285         cancel_work_sync(&adapter->reset_task);
1286
1287         e1000_release_manageability(adapter);
1288
1289         unregister_netdev(netdev);
1290
1291         e1000_phy_hw_reset(hw);
1292
1293         kfree(adapter->tx_ring);
1294         kfree(adapter->rx_ring);
1295
1296         iounmap(hw->hw_addr);
1297         if (hw->flash_address)
1298                 iounmap(hw->flash_address);
1299         pci_release_selected_regions(pdev, adapter->bars);
1300
1301         free_netdev(netdev);
1302
1303         pci_disable_device(pdev);
1304 }
1305
1306 /**
1307  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1308  * @adapter: board private structure to initialize
1309  *
1310  * e1000_sw_init initializes the Adapter private data structure.
1311  * e1000_init_hw_struct MUST be called before this function
1312  **/
1313
1314 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1315 {
1316         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1317
1318         adapter->num_tx_queues = 1;
1319         adapter->num_rx_queues = 1;
1320
1321         if (e1000_alloc_queues(adapter)) {
1322                 e_err(probe, "Unable to allocate memory for queues\n");
1323                 return -ENOMEM;
1324         }
1325
1326         /* Explicitly disable IRQ since the NIC can be in any state. */
1327         e1000_irq_disable(adapter);
1328
1329         spin_lock_init(&adapter->stats_lock);
1330
1331         set_bit(__E1000_DOWN, &adapter->flags);
1332
1333         return 0;
1334 }
1335
1336 /**
1337  * e1000_alloc_queues - Allocate memory for all rings
1338  * @adapter: board private structure to initialize
1339  *
1340  * We allocate one ring per queue at run-time since we don't know the
1341  * number of queues at compile-time.
1342  **/
1343
1344 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1345 {
1346         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1347                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1348         if (!adapter->tx_ring)
1349                 return -ENOMEM;
1350
1351         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1352                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1353         if (!adapter->rx_ring) {
1354                 kfree(adapter->tx_ring);
1355                 return -ENOMEM;
1356         }
1357
1358         return E1000_SUCCESS;
1359 }
1360
1361 /**
1362  * e1000_open - Called when a network interface is made active
1363  * @netdev: network interface device structure
1364  *
1365  * Returns 0 on success, negative value on failure
1366  *
1367  * The open entry point is called when a network interface is made
1368  * active by the system (IFF_UP).  At this point all resources needed
1369  * for transmit and receive operations are allocated, the interrupt
1370  * handler is registered with the OS, the watchdog timer is started,
1371  * and the stack is notified that the interface is ready.
1372  **/
1373
1374 static int e1000_open(struct net_device *netdev)
1375 {
1376         struct e1000_adapter *adapter = netdev_priv(netdev);
1377         struct e1000_hw *hw = &adapter->hw;
1378         int err;
1379
1380         /* disallow open during test */
1381         if (test_bit(__E1000_TESTING, &adapter->flags))
1382                 return -EBUSY;
1383
1384         netif_carrier_off(netdev);
1385
1386         /* allocate transmit descriptors */
1387         err = e1000_setup_all_tx_resources(adapter);
1388         if (err)
1389                 goto err_setup_tx;
1390
1391         /* allocate receive descriptors */
1392         err = e1000_setup_all_rx_resources(adapter);
1393         if (err)
1394                 goto err_setup_rx;
1395
1396         e1000_power_up_phy(adapter);
1397
1398         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1399         if ((hw->mng_cookie.status &
1400                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1401                 e1000_update_mng_vlan(adapter);
1402         }
1403
1404         /* before we allocate an interrupt, we must be ready to handle it.
1405          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1406          * as soon as we call pci_request_irq, so we have to setup our
1407          * clean_rx handler before we do so.  */
1408         e1000_configure(adapter);
1409
1410         err = e1000_request_irq(adapter);
1411         if (err)
1412                 goto err_req_irq;
1413
1414         /* From here on the code is the same as e1000_up() */
1415         clear_bit(__E1000_DOWN, &adapter->flags);
1416
1417         napi_enable(&adapter->napi);
1418
1419         e1000_irq_enable(adapter);
1420
1421         netif_start_queue(netdev);
1422
1423         /* fire a link status change interrupt to start the watchdog */
1424         ew32(ICS, E1000_ICS_LSC);
1425
1426         return E1000_SUCCESS;
1427
1428 err_req_irq:
1429         e1000_power_down_phy(adapter);
1430         e1000_free_all_rx_resources(adapter);
1431 err_setup_rx:
1432         e1000_free_all_tx_resources(adapter);
1433 err_setup_tx:
1434         e1000_reset(adapter);
1435
1436         return err;
1437 }
1438
1439 /**
1440  * e1000_close - Disables a network interface
1441  * @netdev: network interface device structure
1442  *
1443  * Returns 0, this is not allowed to fail
1444  *
1445  * The close entry point is called when an interface is de-activated
1446  * by the OS.  The hardware is still under the drivers control, but
1447  * needs to be disabled.  A global MAC reset is issued to stop the
1448  * hardware, and all transmit and receive resources are freed.
1449  **/
1450
1451 static int e1000_close(struct net_device *netdev)
1452 {
1453         struct e1000_adapter *adapter = netdev_priv(netdev);
1454         struct e1000_hw *hw = &adapter->hw;
1455
1456         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1457         e1000_down(adapter);
1458         e1000_power_down_phy(adapter);
1459         e1000_free_irq(adapter);
1460
1461         e1000_free_all_tx_resources(adapter);
1462         e1000_free_all_rx_resources(adapter);
1463
1464         /* kill manageability vlan ID if supported, but not if a vlan with
1465          * the same ID is registered on the host OS (let 8021q kill it) */
1466         if ((hw->mng_cookie.status &
1467                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1468              !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1469                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1470         }
1471
1472         return 0;
1473 }
1474
1475 /**
1476  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1477  * @adapter: address of board private structure
1478  * @start: address of beginning of memory
1479  * @len: length of memory
1480  **/
1481 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1482                                   unsigned long len)
1483 {
1484         struct e1000_hw *hw = &adapter->hw;
1485         unsigned long begin = (unsigned long)start;
1486         unsigned long end = begin + len;
1487
1488         /* First rev 82545 and 82546 need to not allow any memory
1489          * write location to cross 64k boundary due to errata 23 */
1490         if (hw->mac_type == e1000_82545 ||
1491             hw->mac_type == e1000_ce4100 ||
1492             hw->mac_type == e1000_82546) {
1493                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1494         }
1495
1496         return true;
1497 }
1498
1499 /**
1500  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1501  * @adapter: board private structure
1502  * @txdr:    tx descriptor ring (for a specific queue) to setup
1503  *
1504  * Return 0 on success, negative on failure
1505  **/
1506
1507 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1508                                     struct e1000_tx_ring *txdr)
1509 {
1510         struct pci_dev *pdev = adapter->pdev;
1511         int size;
1512
1513         size = sizeof(struct e1000_buffer) * txdr->count;
1514         txdr->buffer_info = vzalloc(size);
1515         if (!txdr->buffer_info) {
1516                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1517                       "ring\n");
1518                 return -ENOMEM;
1519         }
1520
1521         /* round up to nearest 4K */
1522
1523         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1524         txdr->size = ALIGN(txdr->size, 4096);
1525
1526         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1527                                         GFP_KERNEL);
1528         if (!txdr->desc) {
1529 setup_tx_desc_die:
1530                 vfree(txdr->buffer_info);
1531                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1532                       "ring\n");
1533                 return -ENOMEM;
1534         }
1535
1536         /* Fix for errata 23, can't cross 64kB boundary */
1537         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1538                 void *olddesc = txdr->desc;
1539                 dma_addr_t olddma = txdr->dma;
1540                 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1541                       txdr->size, txdr->desc);
1542                 /* Try again, without freeing the previous */
1543                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1544                                                 &txdr->dma, GFP_KERNEL);
1545                 /* Failed allocation, critical failure */
1546                 if (!txdr->desc) {
1547                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1548                                           olddma);
1549                         goto setup_tx_desc_die;
1550                 }
1551
1552                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1553                         /* give up */
1554                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1555                                           txdr->dma);
1556                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1557                                           olddma);
1558                         e_err(probe, "Unable to allocate aligned memory "
1559                               "for the transmit descriptor ring\n");
1560                         vfree(txdr->buffer_info);
1561                         return -ENOMEM;
1562                 } else {
1563                         /* Free old allocation, new allocation was successful */
1564                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1565                                           olddma);
1566                 }
1567         }
1568         memset(txdr->desc, 0, txdr->size);
1569
1570         txdr->next_to_use = 0;
1571         txdr->next_to_clean = 0;
1572
1573         return 0;
1574 }
1575
1576 /**
1577  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1578  *                                (Descriptors) for all queues
1579  * @adapter: board private structure
1580  *
1581  * Return 0 on success, negative on failure
1582  **/
1583
1584 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1585 {
1586         int i, err = 0;
1587
1588         for (i = 0; i < adapter->num_tx_queues; i++) {
1589                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1590                 if (err) {
1591                         e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1592                         for (i-- ; i >= 0; i--)
1593                                 e1000_free_tx_resources(adapter,
1594                                                         &adapter->tx_ring[i]);
1595                         break;
1596                 }
1597         }
1598
1599         return err;
1600 }
1601
1602 /**
1603  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1604  * @adapter: board private structure
1605  *
1606  * Configure the Tx unit of the MAC after a reset.
1607  **/
1608
1609 static void e1000_configure_tx(struct e1000_adapter *adapter)
1610 {
1611         u64 tdba;
1612         struct e1000_hw *hw = &adapter->hw;
1613         u32 tdlen, tctl, tipg;
1614         u32 ipgr1, ipgr2;
1615
1616         /* Setup the HW Tx Head and Tail descriptor pointers */
1617
1618         switch (adapter->num_tx_queues) {
1619         case 1:
1620         default:
1621                 tdba = adapter->tx_ring[0].dma;
1622                 tdlen = adapter->tx_ring[0].count *
1623                         sizeof(struct e1000_tx_desc);
1624                 ew32(TDLEN, tdlen);
1625                 ew32(TDBAH, (tdba >> 32));
1626                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1627                 ew32(TDT, 0);
1628                 ew32(TDH, 0);
1629                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1630                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1631                 break;
1632         }
1633
1634         /* Set the default values for the Tx Inter Packet Gap timer */
1635         if ((hw->media_type == e1000_media_type_fiber ||
1636              hw->media_type == e1000_media_type_internal_serdes))
1637                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1638         else
1639                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1640
1641         switch (hw->mac_type) {
1642         case e1000_82542_rev2_0:
1643         case e1000_82542_rev2_1:
1644                 tipg = DEFAULT_82542_TIPG_IPGT;
1645                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1646                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1647                 break;
1648         default:
1649                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1650                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1651                 break;
1652         }
1653         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1654         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1655         ew32(TIPG, tipg);
1656
1657         /* Set the Tx Interrupt Delay register */
1658
1659         ew32(TIDV, adapter->tx_int_delay);
1660         if (hw->mac_type >= e1000_82540)
1661                 ew32(TADV, adapter->tx_abs_int_delay);
1662
1663         /* Program the Transmit Control Register */
1664
1665         tctl = er32(TCTL);
1666         tctl &= ~E1000_TCTL_CT;
1667         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1668                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1669
1670         e1000_config_collision_dist(hw);
1671
1672         /* Setup Transmit Descriptor Settings for eop descriptor */
1673         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1674
1675         /* only set IDE if we are delaying interrupts using the timers */
1676         if (adapter->tx_int_delay)
1677                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1678
1679         if (hw->mac_type < e1000_82543)
1680                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1681         else
1682                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1683
1684         /* Cache if we're 82544 running in PCI-X because we'll
1685          * need this to apply a workaround later in the send path. */
1686         if (hw->mac_type == e1000_82544 &&
1687             hw->bus_type == e1000_bus_type_pcix)
1688                 adapter->pcix_82544 = 1;
1689
1690         ew32(TCTL, tctl);
1691
1692 }
1693
1694 /**
1695  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1696  * @adapter: board private structure
1697  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1698  *
1699  * Returns 0 on success, negative on failure
1700  **/
1701
1702 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1703                                     struct e1000_rx_ring *rxdr)
1704 {
1705         struct pci_dev *pdev = adapter->pdev;
1706         int size, desc_len;
1707
1708         size = sizeof(struct e1000_buffer) * rxdr->count;
1709         rxdr->buffer_info = vzalloc(size);
1710         if (!rxdr->buffer_info) {
1711                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1712                       "ring\n");
1713                 return -ENOMEM;
1714         }
1715
1716         desc_len = sizeof(struct e1000_rx_desc);
1717
1718         /* Round up to nearest 4K */
1719
1720         rxdr->size = rxdr->count * desc_len;
1721         rxdr->size = ALIGN(rxdr->size, 4096);
1722
1723         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1724                                         GFP_KERNEL);
1725
1726         if (!rxdr->desc) {
1727                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1728                       "ring\n");
1729 setup_rx_desc_die:
1730                 vfree(rxdr->buffer_info);
1731                 return -ENOMEM;
1732         }
1733
1734         /* Fix for errata 23, can't cross 64kB boundary */
1735         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1736                 void *olddesc = rxdr->desc;
1737                 dma_addr_t olddma = rxdr->dma;
1738                 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1739                       rxdr->size, rxdr->desc);
1740                 /* Try again, without freeing the previous */
1741                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1742                                                 &rxdr->dma, GFP_KERNEL);
1743                 /* Failed allocation, critical failure */
1744                 if (!rxdr->desc) {
1745                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746                                           olddma);
1747                         e_err(probe, "Unable to allocate memory for the Rx "
1748                               "descriptor ring\n");
1749                         goto setup_rx_desc_die;
1750                 }
1751
1752                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1753                         /* give up */
1754                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1755                                           rxdr->dma);
1756                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1757                                           olddma);
1758                         e_err(probe, "Unable to allocate aligned memory for "
1759                               "the Rx descriptor ring\n");
1760                         goto setup_rx_desc_die;
1761                 } else {
1762                         /* Free old allocation, new allocation was successful */
1763                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1764                                           olddma);
1765                 }
1766         }
1767         memset(rxdr->desc, 0, rxdr->size);
1768
1769         rxdr->next_to_clean = 0;
1770         rxdr->next_to_use = 0;
1771         rxdr->rx_skb_top = NULL;
1772
1773         return 0;
1774 }
1775
1776 /**
1777  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1778  *                                (Descriptors) for all queues
1779  * @adapter: board private structure
1780  *
1781  * Return 0 on success, negative on failure
1782  **/
1783
1784 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1785 {
1786         int i, err = 0;
1787
1788         for (i = 0; i < adapter->num_rx_queues; i++) {
1789                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1790                 if (err) {
1791                         e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1792                         for (i-- ; i >= 0; i--)
1793                                 e1000_free_rx_resources(adapter,
1794                                                         &adapter->rx_ring[i]);
1795                         break;
1796                 }
1797         }
1798
1799         return err;
1800 }
1801
1802 /**
1803  * e1000_setup_rctl - configure the receive control registers
1804  * @adapter: Board private structure
1805  **/
1806 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1807 {
1808         struct e1000_hw *hw = &adapter->hw;
1809         u32 rctl;
1810
1811         rctl = er32(RCTL);
1812
1813         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1814
1815         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1816                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1817                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1818
1819         if (hw->tbi_compatibility_on == 1)
1820                 rctl |= E1000_RCTL_SBP;
1821         else
1822                 rctl &= ~E1000_RCTL_SBP;
1823
1824         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1825                 rctl &= ~E1000_RCTL_LPE;
1826         else
1827                 rctl |= E1000_RCTL_LPE;
1828
1829         /* Setup buffer sizes */
1830         rctl &= ~E1000_RCTL_SZ_4096;
1831         rctl |= E1000_RCTL_BSEX;
1832         switch (adapter->rx_buffer_len) {
1833                 case E1000_RXBUFFER_2048:
1834                 default:
1835                         rctl |= E1000_RCTL_SZ_2048;
1836                         rctl &= ~E1000_RCTL_BSEX;
1837                         break;
1838                 case E1000_RXBUFFER_4096:
1839                         rctl |= E1000_RCTL_SZ_4096;
1840                         break;
1841                 case E1000_RXBUFFER_8192:
1842                         rctl |= E1000_RCTL_SZ_8192;
1843                         break;
1844                 case E1000_RXBUFFER_16384:
1845                         rctl |= E1000_RCTL_SZ_16384;
1846                         break;
1847         }
1848
1849         ew32(RCTL, rctl);
1850 }
1851
1852 /**
1853  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1854  * @adapter: board private structure
1855  *
1856  * Configure the Rx unit of the MAC after a reset.
1857  **/
1858
1859 static void e1000_configure_rx(struct e1000_adapter *adapter)
1860 {
1861         u64 rdba;
1862         struct e1000_hw *hw = &adapter->hw;
1863         u32 rdlen, rctl, rxcsum;
1864
1865         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1866                 rdlen = adapter->rx_ring[0].count *
1867                         sizeof(struct e1000_rx_desc);
1868                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1869                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1870         } else {
1871                 rdlen = adapter->rx_ring[0].count *
1872                         sizeof(struct e1000_rx_desc);
1873                 adapter->clean_rx = e1000_clean_rx_irq;
1874                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1875         }
1876
1877         /* disable receives while setting up the descriptors */
1878         rctl = er32(RCTL);
1879         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1880
1881         /* set the Receive Delay Timer Register */
1882         ew32(RDTR, adapter->rx_int_delay);
1883
1884         if (hw->mac_type >= e1000_82540) {
1885                 ew32(RADV, adapter->rx_abs_int_delay);
1886                 if (adapter->itr_setting != 0)
1887                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1888         }
1889
1890         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1891          * the Base and Length of the Rx Descriptor Ring */
1892         switch (adapter->num_rx_queues) {
1893         case 1:
1894         default:
1895                 rdba = adapter->rx_ring[0].dma;
1896                 ew32(RDLEN, rdlen);
1897                 ew32(RDBAH, (rdba >> 32));
1898                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1899                 ew32(RDT, 0);
1900                 ew32(RDH, 0);
1901                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1902                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1903                 break;
1904         }
1905
1906         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1907         if (hw->mac_type >= e1000_82543) {
1908                 rxcsum = er32(RXCSUM);
1909                 if (adapter->rx_csum)
1910                         rxcsum |= E1000_RXCSUM_TUOFL;
1911                 else
1912                         /* don't need to clear IPPCSE as it defaults to 0 */
1913                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1914                 ew32(RXCSUM, rxcsum);
1915         }
1916
1917         /* Enable Receives */
1918         ew32(RCTL, rctl);
1919 }
1920
1921 /**
1922  * e1000_free_tx_resources - Free Tx Resources per Queue
1923  * @adapter: board private structure
1924  * @tx_ring: Tx descriptor ring for a specific queue
1925  *
1926  * Free all transmit software resources
1927  **/
1928
1929 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1930                                     struct e1000_tx_ring *tx_ring)
1931 {
1932         struct pci_dev *pdev = adapter->pdev;
1933
1934         e1000_clean_tx_ring(adapter, tx_ring);
1935
1936         vfree(tx_ring->buffer_info);
1937         tx_ring->buffer_info = NULL;
1938
1939         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1940                           tx_ring->dma);
1941
1942         tx_ring->desc = NULL;
1943 }
1944
1945 /**
1946  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1947  * @adapter: board private structure
1948  *
1949  * Free all transmit software resources
1950  **/
1951
1952 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1953 {
1954         int i;
1955
1956         for (i = 0; i < adapter->num_tx_queues; i++)
1957                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1958 }
1959
1960 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1961                                              struct e1000_buffer *buffer_info)
1962 {
1963         if (buffer_info->dma) {
1964                 if (buffer_info->mapped_as_page)
1965                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1966                                        buffer_info->length, DMA_TO_DEVICE);
1967                 else
1968                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1969                                          buffer_info->length,
1970                                          DMA_TO_DEVICE);
1971                 buffer_info->dma = 0;
1972         }
1973         if (buffer_info->skb) {
1974                 dev_kfree_skb_any(buffer_info->skb);
1975                 buffer_info->skb = NULL;
1976         }
1977         buffer_info->time_stamp = 0;
1978         /* buffer_info must be completely set up in the transmit path */
1979 }
1980
1981 /**
1982  * e1000_clean_tx_ring - Free Tx Buffers
1983  * @adapter: board private structure
1984  * @tx_ring: ring to be cleaned
1985  **/
1986
1987 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1988                                 struct e1000_tx_ring *tx_ring)
1989 {
1990         struct e1000_hw *hw = &adapter->hw;
1991         struct e1000_buffer *buffer_info;
1992         unsigned long size;
1993         unsigned int i;
1994
1995         /* Free all the Tx ring sk_buffs */
1996
1997         for (i = 0; i < tx_ring->count; i++) {
1998                 buffer_info = &tx_ring->buffer_info[i];
1999                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2000         }
2001
2002         size = sizeof(struct e1000_buffer) * tx_ring->count;
2003         memset(tx_ring->buffer_info, 0, size);
2004
2005         /* Zero out the descriptor ring */
2006
2007         memset(tx_ring->desc, 0, tx_ring->size);
2008
2009         tx_ring->next_to_use = 0;
2010         tx_ring->next_to_clean = 0;
2011         tx_ring->last_tx_tso = 0;
2012
2013         writel(0, hw->hw_addr + tx_ring->tdh);
2014         writel(0, hw->hw_addr + tx_ring->tdt);
2015 }
2016
2017 /**
2018  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2019  * @adapter: board private structure
2020  **/
2021
2022 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2023 {
2024         int i;
2025
2026         for (i = 0; i < adapter->num_tx_queues; i++)
2027                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2028 }
2029
2030 /**
2031  * e1000_free_rx_resources - Free Rx Resources
2032  * @adapter: board private structure
2033  * @rx_ring: ring to clean the resources from
2034  *
2035  * Free all receive software resources
2036  **/
2037
2038 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2039                                     struct e1000_rx_ring *rx_ring)
2040 {
2041         struct pci_dev *pdev = adapter->pdev;
2042
2043         e1000_clean_rx_ring(adapter, rx_ring);
2044
2045         vfree(rx_ring->buffer_info);
2046         rx_ring->buffer_info = NULL;
2047
2048         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2049                           rx_ring->dma);
2050
2051         rx_ring->desc = NULL;
2052 }
2053
2054 /**
2055  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2056  * @adapter: board private structure
2057  *
2058  * Free all receive software resources
2059  **/
2060
2061 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2062 {
2063         int i;
2064
2065         for (i = 0; i < adapter->num_rx_queues; i++)
2066                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2067 }
2068
2069 /**
2070  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2071  * @adapter: board private structure
2072  * @rx_ring: ring to free buffers from
2073  **/
2074
2075 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2076                                 struct e1000_rx_ring *rx_ring)
2077 {
2078         struct e1000_hw *hw = &adapter->hw;
2079         struct e1000_buffer *buffer_info;
2080         struct pci_dev *pdev = adapter->pdev;
2081         unsigned long size;
2082         unsigned int i;
2083
2084         /* Free all the Rx ring sk_buffs */
2085         for (i = 0; i < rx_ring->count; i++) {
2086                 buffer_info = &rx_ring->buffer_info[i];
2087                 if (buffer_info->dma &&
2088                     adapter->clean_rx == e1000_clean_rx_irq) {
2089                         dma_unmap_single(&pdev->dev, buffer_info->dma,
2090                                          buffer_info->length,
2091                                          DMA_FROM_DEVICE);
2092                 } else if (buffer_info->dma &&
2093                            adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2094                         dma_unmap_page(&pdev->dev, buffer_info->dma,
2095                                        buffer_info->length,
2096                                        DMA_FROM_DEVICE);
2097                 }
2098
2099                 buffer_info->dma = 0;
2100                 if (buffer_info->page) {
2101                         put_page(buffer_info->page);
2102                         buffer_info->page = NULL;
2103                 }
2104                 if (buffer_info->skb) {
2105                         dev_kfree_skb(buffer_info->skb);
2106                         buffer_info->skb = NULL;
2107                 }
2108         }
2109
2110         /* there also may be some cached data from a chained receive */
2111         if (rx_ring->rx_skb_top) {
2112                 dev_kfree_skb(rx_ring->rx_skb_top);
2113                 rx_ring->rx_skb_top = NULL;
2114         }
2115
2116         size = sizeof(struct e1000_buffer) * rx_ring->count;
2117         memset(rx_ring->buffer_info, 0, size);
2118
2119         /* Zero out the descriptor ring */
2120         memset(rx_ring->desc, 0, rx_ring->size);
2121
2122         rx_ring->next_to_clean = 0;
2123         rx_ring->next_to_use = 0;
2124
2125         writel(0, hw->hw_addr + rx_ring->rdh);
2126         writel(0, hw->hw_addr + rx_ring->rdt);
2127 }
2128
2129 /**
2130  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2131  * @adapter: board private structure
2132  **/
2133
2134 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2135 {
2136         int i;
2137
2138         for (i = 0; i < adapter->num_rx_queues; i++)
2139                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2140 }
2141
2142 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2143  * and memory write and invalidate disabled for certain operations
2144  */
2145 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2146 {
2147         struct e1000_hw *hw = &adapter->hw;
2148         struct net_device *netdev = adapter->netdev;
2149         u32 rctl;
2150
2151         e1000_pci_clear_mwi(hw);
2152
2153         rctl = er32(RCTL);
2154         rctl |= E1000_RCTL_RST;
2155         ew32(RCTL, rctl);
2156         E1000_WRITE_FLUSH();
2157         mdelay(5);
2158
2159         if (netif_running(netdev))
2160                 e1000_clean_all_rx_rings(adapter);
2161 }
2162
2163 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2164 {
2165         struct e1000_hw *hw = &adapter->hw;
2166         struct net_device *netdev = adapter->netdev;
2167         u32 rctl;
2168
2169         rctl = er32(RCTL);
2170         rctl &= ~E1000_RCTL_RST;
2171         ew32(RCTL, rctl);
2172         E1000_WRITE_FLUSH();
2173         mdelay(5);
2174
2175         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2176                 e1000_pci_set_mwi(hw);
2177
2178         if (netif_running(netdev)) {
2179                 /* No need to loop, because 82542 supports only 1 queue */
2180                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2181                 e1000_configure_rx(adapter);
2182                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2183         }
2184 }
2185
2186 /**
2187  * e1000_set_mac - Change the Ethernet Address of the NIC
2188  * @netdev: network interface device structure
2189  * @p: pointer to an address structure
2190  *
2191  * Returns 0 on success, negative on failure
2192  **/
2193
2194 static int e1000_set_mac(struct net_device *netdev, void *p)
2195 {
2196         struct e1000_adapter *adapter = netdev_priv(netdev);
2197         struct e1000_hw *hw = &adapter->hw;
2198         struct sockaddr *addr = p;
2199
2200         if (!is_valid_ether_addr(addr->sa_data))
2201                 return -EADDRNOTAVAIL;
2202
2203         /* 82542 2.0 needs to be in reset to write receive address registers */
2204
2205         if (hw->mac_type == e1000_82542_rev2_0)
2206                 e1000_enter_82542_rst(adapter);
2207
2208         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2209         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2210
2211         e1000_rar_set(hw, hw->mac_addr, 0);
2212
2213         if (hw->mac_type == e1000_82542_rev2_0)
2214                 e1000_leave_82542_rst(adapter);
2215
2216         return 0;
2217 }
2218
2219 /**
2220  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2221  * @netdev: network interface device structure
2222  *
2223  * The set_rx_mode entry point is called whenever the unicast or multicast
2224  * address lists or the network interface flags are updated. This routine is
2225  * responsible for configuring the hardware for proper unicast, multicast,
2226  * promiscuous mode, and all-multi behavior.
2227  **/
2228
2229 static void e1000_set_rx_mode(struct net_device *netdev)
2230 {
2231         struct e1000_adapter *adapter = netdev_priv(netdev);
2232         struct e1000_hw *hw = &adapter->hw;
2233         struct netdev_hw_addr *ha;
2234         bool use_uc = false;
2235         u32 rctl;
2236         u32 hash_value;
2237         int i, rar_entries = E1000_RAR_ENTRIES;
2238         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2239         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2240
2241         if (!mcarray) {
2242                 e_err(probe, "memory allocation failed\n");
2243                 return;
2244         }
2245
2246         /* Check for Promiscuous and All Multicast modes */
2247
2248         rctl = er32(RCTL);
2249
2250         if (netdev->flags & IFF_PROMISC) {
2251                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2252                 rctl &= ~E1000_RCTL_VFE;
2253         } else {
2254                 if (netdev->flags & IFF_ALLMULTI)
2255                         rctl |= E1000_RCTL_MPE;
2256                 else
2257                         rctl &= ~E1000_RCTL_MPE;
2258                 /* Enable VLAN filter if there is a VLAN */
2259                 if (e1000_vlan_used(adapter))
2260                         rctl |= E1000_RCTL_VFE;
2261         }
2262
2263         if (netdev_uc_count(netdev) > rar_entries - 1) {
2264                 rctl |= E1000_RCTL_UPE;
2265         } else if (!(netdev->flags & IFF_PROMISC)) {
2266                 rctl &= ~E1000_RCTL_UPE;
2267                 use_uc = true;
2268         }
2269
2270         ew32(RCTL, rctl);
2271
2272         /* 82542 2.0 needs to be in reset to write receive address registers */
2273
2274         if (hw->mac_type == e1000_82542_rev2_0)
2275                 e1000_enter_82542_rst(adapter);
2276
2277         /* load the first 14 addresses into the exact filters 1-14. Unicast
2278          * addresses take precedence to avoid disabling unicast filtering
2279          * when possible.
2280          *
2281          * RAR 0 is used for the station MAC address
2282          * if there are not 14 addresses, go ahead and clear the filters
2283          */
2284         i = 1;
2285         if (use_uc)
2286                 netdev_for_each_uc_addr(ha, netdev) {
2287                         if (i == rar_entries)
2288                                 break;
2289                         e1000_rar_set(hw, ha->addr, i++);
2290                 }
2291
2292         netdev_for_each_mc_addr(ha, netdev) {
2293                 if (i == rar_entries) {
2294                         /* load any remaining addresses into the hash table */
2295                         u32 hash_reg, hash_bit, mta;
2296                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
2297                         hash_reg = (hash_value >> 5) & 0x7F;
2298                         hash_bit = hash_value & 0x1F;
2299                         mta = (1 << hash_bit);
2300                         mcarray[hash_reg] |= mta;
2301                 } else {
2302                         e1000_rar_set(hw, ha->addr, i++);
2303                 }
2304         }
2305
2306         for (; i < rar_entries; i++) {
2307                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2308                 E1000_WRITE_FLUSH();
2309                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2310                 E1000_WRITE_FLUSH();
2311         }
2312
2313         /* write the hash table completely, write from bottom to avoid
2314          * both stupid write combining chipsets, and flushing each write */
2315         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2316                 /*
2317                  * If we are on an 82544 has an errata where writing odd
2318                  * offsets overwrites the previous even offset, but writing
2319                  * backwards over the range solves the issue by always
2320                  * writing the odd offset first
2321                  */
2322                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2323         }
2324         E1000_WRITE_FLUSH();
2325
2326         if (hw->mac_type == e1000_82542_rev2_0)
2327                 e1000_leave_82542_rst(adapter);
2328
2329         kfree(mcarray);
2330 }
2331
2332 /* Need to wait a few seconds after link up to get diagnostic information from
2333  * the phy */
2334
2335 static void e1000_update_phy_info(unsigned long data)
2336 {
2337         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2338         schedule_work(&adapter->phy_info_task);
2339 }
2340
2341 static void e1000_update_phy_info_task(struct work_struct *work)
2342 {
2343         struct e1000_adapter *adapter = container_of(work,
2344                                                      struct e1000_adapter,
2345                                                      phy_info_task);
2346         struct e1000_hw *hw = &adapter->hw;
2347
2348         rtnl_lock();
2349         e1000_phy_get_info(hw, &adapter->phy_info);
2350         rtnl_unlock();
2351 }
2352
2353 /**
2354  * e1000_82547_tx_fifo_stall - Timer Call-back
2355  * @data: pointer to adapter cast into an unsigned long
2356  **/
2357 static void e1000_82547_tx_fifo_stall(unsigned long data)
2358 {
2359         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2360         schedule_work(&adapter->fifo_stall_task);
2361 }
2362
2363 /**
2364  * e1000_82547_tx_fifo_stall_task - task to complete work
2365  * @work: work struct contained inside adapter struct
2366  **/
2367 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2368 {
2369         struct e1000_adapter *adapter = container_of(work,
2370                                                      struct e1000_adapter,
2371                                                      fifo_stall_task);
2372         struct e1000_hw *hw = &adapter->hw;
2373         struct net_device *netdev = adapter->netdev;
2374         u32 tctl;
2375
2376         rtnl_lock();
2377         if (atomic_read(&adapter->tx_fifo_stall)) {
2378                 if ((er32(TDT) == er32(TDH)) &&
2379                    (er32(TDFT) == er32(TDFH)) &&
2380                    (er32(TDFTS) == er32(TDFHS))) {
2381                         tctl = er32(TCTL);
2382                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2383                         ew32(TDFT, adapter->tx_head_addr);
2384                         ew32(TDFH, adapter->tx_head_addr);
2385                         ew32(TDFTS, adapter->tx_head_addr);
2386                         ew32(TDFHS, adapter->tx_head_addr);
2387                         ew32(TCTL, tctl);
2388                         E1000_WRITE_FLUSH();
2389
2390                         adapter->tx_fifo_head = 0;
2391                         atomic_set(&adapter->tx_fifo_stall, 0);
2392                         netif_wake_queue(netdev);
2393                 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2394                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2395                 }
2396         }
2397         rtnl_unlock();
2398 }
2399
2400 bool e1000_has_link(struct e1000_adapter *adapter)
2401 {
2402         struct e1000_hw *hw = &adapter->hw;
2403         bool link_active = false;
2404
2405         /* get_link_status is set on LSC (link status) interrupt or rx
2406          * sequence error interrupt (except on intel ce4100).
2407          * get_link_status will stay false until the
2408          * e1000_check_for_link establishes link for copper adapters
2409          * ONLY
2410          */
2411         switch (hw->media_type) {
2412         case e1000_media_type_copper:
2413                 if (hw->mac_type == e1000_ce4100)
2414                         hw->get_link_status = 1;
2415                 if (hw->get_link_status) {
2416                         e1000_check_for_link(hw);
2417                         link_active = !hw->get_link_status;
2418                 } else {
2419                         link_active = true;
2420                 }
2421                 break;
2422         case e1000_media_type_fiber:
2423                 e1000_check_for_link(hw);
2424                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2425                 break;
2426         case e1000_media_type_internal_serdes:
2427                 e1000_check_for_link(hw);
2428                 link_active = hw->serdes_has_link;
2429                 break;
2430         default:
2431                 break;
2432         }
2433
2434         return link_active;
2435 }
2436
2437 /**
2438  * e1000_watchdog - Timer Call-back
2439  * @data: pointer to adapter cast into an unsigned long
2440  **/
2441 static void e1000_watchdog(unsigned long data)
2442 {
2443         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2444         struct e1000_hw *hw = &adapter->hw;
2445         struct net_device *netdev = adapter->netdev;
2446         struct e1000_tx_ring *txdr = adapter->tx_ring;
2447         u32 link, tctl;
2448
2449         link = e1000_has_link(adapter);
2450         if ((netif_carrier_ok(netdev)) && link)
2451                 goto link_up;
2452
2453         if (link) {
2454                 if (!netif_carrier_ok(netdev)) {
2455                         u32 ctrl;
2456                         bool txb2b = true;
2457                         /* update snapshot of PHY registers on LSC */
2458                         e1000_get_speed_and_duplex(hw,
2459                                                    &adapter->link_speed,
2460                                                    &adapter->link_duplex);
2461
2462                         ctrl = er32(CTRL);
2463                         pr_info("%s NIC Link is Up %d Mbps %s, "
2464                                 "Flow Control: %s\n",
2465                                 netdev->name,
2466                                 adapter->link_speed,
2467                                 adapter->link_duplex == FULL_DUPLEX ?
2468                                 "Full Duplex" : "Half Duplex",
2469                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2470                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2471                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2472                                 E1000_CTRL_TFCE) ? "TX" : "None")));
2473
2474                         /* adjust timeout factor according to speed/duplex */
2475                         adapter->tx_timeout_factor = 1;
2476                         switch (adapter->link_speed) {
2477                         case SPEED_10:
2478                                 txb2b = false;
2479                                 adapter->tx_timeout_factor = 16;
2480                                 break;
2481                         case SPEED_100:
2482                                 txb2b = false;
2483                                 /* maybe add some timeout factor ? */
2484                                 break;
2485                         }
2486
2487                         /* enable transmits in the hardware */
2488                         tctl = er32(TCTL);
2489                         tctl |= E1000_TCTL_EN;
2490                         ew32(TCTL, tctl);
2491
2492                         netif_carrier_on(netdev);
2493                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2494                                 mod_timer(&adapter->phy_info_timer,
2495                                           round_jiffies(jiffies + 2 * HZ));
2496                         adapter->smartspeed = 0;
2497                 }
2498         } else {
2499                 if (netif_carrier_ok(netdev)) {
2500                         adapter->link_speed = 0;
2501                         adapter->link_duplex = 0;
2502                         pr_info("%s NIC Link is Down\n",
2503                                 netdev->name);
2504                         netif_carrier_off(netdev);
2505
2506                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2507                                 mod_timer(&adapter->phy_info_timer,
2508                                           round_jiffies(jiffies + 2 * HZ));
2509                 }
2510
2511                 e1000_smartspeed(adapter);
2512         }
2513
2514 link_up:
2515         e1000_update_stats(adapter);
2516
2517         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2518         adapter->tpt_old = adapter->stats.tpt;
2519         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2520         adapter->colc_old = adapter->stats.colc;
2521
2522         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2523         adapter->gorcl_old = adapter->stats.gorcl;
2524         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2525         adapter->gotcl_old = adapter->stats.gotcl;
2526
2527         e1000_update_adaptive(hw);
2528
2529         if (!netif_carrier_ok(netdev)) {
2530                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2531                         /* We've lost link, so the controller stops DMA,
2532                          * but we've got queued Tx work that's never going
2533                          * to get done, so reset controller to flush Tx.
2534                          * (Do the reset outside of interrupt context). */
2535                         adapter->tx_timeout_count++;
2536                         schedule_work(&adapter->reset_task);
2537                         /* return immediately since reset is imminent */
2538                         return;
2539                 }
2540         }
2541
2542         /* Simple mode for Interrupt Throttle Rate (ITR) */
2543         if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2544                 /*
2545                  * Symmetric Tx/Rx gets a reduced ITR=2000;
2546                  * Total asymmetrical Tx or Rx gets ITR=8000;
2547                  * everyone else is between 2000-8000.
2548                  */
2549                 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2550                 u32 dif = (adapter->gotcl > adapter->gorcl ?
2551                             adapter->gotcl - adapter->gorcl :
2552                             adapter->gorcl - adapter->gotcl) / 10000;
2553                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2554
2555                 ew32(ITR, 1000000000 / (itr * 256));
2556         }
2557
2558         /* Cause software interrupt to ensure rx ring is cleaned */
2559         ew32(ICS, E1000_ICS_RXDMT0);
2560
2561         /* Force detection of hung controller every watchdog period */
2562         adapter->detect_tx_hung = true;
2563
2564         /* Reset the timer */
2565         if (!test_bit(__E1000_DOWN, &adapter->flags))
2566                 mod_timer(&adapter->watchdog_timer,
2567                           round_jiffies(jiffies + 2 * HZ));
2568 }
2569
2570 enum latency_range {
2571         lowest_latency = 0,
2572         low_latency = 1,
2573         bulk_latency = 2,
2574         latency_invalid = 255
2575 };
2576
2577 /**
2578  * e1000_update_itr - update the dynamic ITR value based on statistics
2579  * @adapter: pointer to adapter
2580  * @itr_setting: current adapter->itr
2581  * @packets: the number of packets during this measurement interval
2582  * @bytes: the number of bytes during this measurement interval
2583  *
2584  *      Stores a new ITR value based on packets and byte
2585  *      counts during the last interrupt.  The advantage of per interrupt
2586  *      computation is faster updates and more accurate ITR for the current
2587  *      traffic pattern.  Constants in this function were computed
2588  *      based on theoretical maximum wire speed and thresholds were set based
2589  *      on testing data as well as attempting to minimize response time
2590  *      while increasing bulk throughput.
2591  *      this functionality is controlled by the InterruptThrottleRate module
2592  *      parameter (see e1000_param.c)
2593  **/
2594 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2595                                      u16 itr_setting, int packets, int bytes)
2596 {
2597         unsigned int retval = itr_setting;
2598         struct e1000_hw *hw = &adapter->hw;
2599
2600         if (unlikely(hw->mac_type < e1000_82540))
2601                 goto update_itr_done;
2602
2603         if (packets == 0)
2604                 goto update_itr_done;
2605
2606         switch (itr_setting) {
2607         case lowest_latency:
2608                 /* jumbo frames get bulk treatment*/
2609                 if (bytes/packets > 8000)
2610                         retval = bulk_latency;
2611                 else if ((packets < 5) && (bytes > 512))
2612                         retval = low_latency;
2613                 break;
2614         case low_latency:  /* 50 usec aka 20000 ints/s */
2615                 if (bytes > 10000) {
2616                         /* jumbo frames need bulk latency setting */
2617                         if (bytes/packets > 8000)
2618                                 retval = bulk_latency;
2619                         else if ((packets < 10) || ((bytes/packets) > 1200))
2620                                 retval = bulk_latency;
2621                         else if ((packets > 35))
2622                                 retval = lowest_latency;
2623                 } else if (bytes/packets > 2000)
2624                         retval = bulk_latency;
2625                 else if (packets <= 2 && bytes < 512)
2626                         retval = lowest_latency;
2627                 break;
2628         case bulk_latency: /* 250 usec aka 4000 ints/s */
2629                 if (bytes > 25000) {
2630                         if (packets > 35)
2631                                 retval = low_latency;
2632                 } else if (bytes < 6000) {
2633                         retval = low_latency;
2634                 }
2635                 break;
2636         }
2637
2638 update_itr_done:
2639         return retval;
2640 }
2641
2642 static void e1000_set_itr(struct e1000_adapter *adapter)
2643 {
2644         struct e1000_hw *hw = &adapter->hw;
2645         u16 current_itr;
2646         u32 new_itr = adapter->itr;
2647
2648         if (unlikely(hw->mac_type < e1000_82540))
2649                 return;
2650
2651         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2652         if (unlikely(adapter->link_speed != SPEED_1000)) {
2653                 current_itr = 0;
2654                 new_itr = 4000;
2655                 goto set_itr_now;
2656         }
2657
2658         adapter->tx_itr = e1000_update_itr(adapter,
2659                                     adapter->tx_itr,
2660                                     adapter->total_tx_packets,
2661                                     adapter->total_tx_bytes);
2662         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2663         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2664                 adapter->tx_itr = low_latency;
2665
2666         adapter->rx_itr = e1000_update_itr(adapter,
2667                                     adapter->rx_itr,
2668                                     adapter->total_rx_packets,
2669                                     adapter->total_rx_bytes);
2670         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2671         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2672                 adapter->rx_itr = low_latency;
2673
2674         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2675
2676         switch (current_itr) {
2677         /* counts and packets in update_itr are dependent on these numbers */
2678         case lowest_latency:
2679                 new_itr = 70000;
2680                 break;
2681         case low_latency:
2682                 new_itr = 20000; /* aka hwitr = ~200 */
2683                 break;
2684         case bulk_latency:
2685                 new_itr = 4000;
2686                 break;
2687         default:
2688                 break;
2689         }
2690
2691 set_itr_now:
2692         if (new_itr != adapter->itr) {
2693                 /* this attempts to bias the interrupt rate towards Bulk
2694                  * by adding intermediate steps when interrupt rate is
2695                  * increasing */
2696                 new_itr = new_itr > adapter->itr ?
2697                              min(adapter->itr + (new_itr >> 2), new_itr) :
2698                              new_itr;
2699                 adapter->itr = new_itr;
2700                 ew32(ITR, 1000000000 / (new_itr * 256));
2701         }
2702 }
2703
2704 #define E1000_TX_FLAGS_CSUM             0x00000001
2705 #define E1000_TX_FLAGS_VLAN             0x00000002
2706 #define E1000_TX_FLAGS_TSO              0x00000004
2707 #define E1000_TX_FLAGS_IPV4             0x00000008
2708 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2709 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2710
2711 static int e1000_tso(struct e1000_adapter *adapter,
2712                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2713 {
2714         struct e1000_context_desc *context_desc;
2715         struct e1000_buffer *buffer_info;
2716         unsigned int i;
2717         u32 cmd_length = 0;
2718         u16 ipcse = 0, tucse, mss;
2719         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2720         int err;
2721
2722         if (skb_is_gso(skb)) {
2723                 if (skb_header_cloned(skb)) {
2724                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2725                         if (err)
2726                                 return err;
2727                 }
2728
2729                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2730                 mss = skb_shinfo(skb)->gso_size;
2731                 if (skb->protocol == htons(ETH_P_IP)) {
2732                         struct iphdr *iph = ip_hdr(skb);
2733                         iph->tot_len = 0;
2734                         iph->check = 0;
2735                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2736                                                                  iph->daddr, 0,
2737                                                                  IPPROTO_TCP,
2738                                                                  0);
2739                         cmd_length = E1000_TXD_CMD_IP;
2740                         ipcse = skb_transport_offset(skb) - 1;
2741                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2742                         ipv6_hdr(skb)->payload_len = 0;
2743                         tcp_hdr(skb)->check =
2744                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2745                                                  &ipv6_hdr(skb)->daddr,
2746                                                  0, IPPROTO_TCP, 0);
2747                         ipcse = 0;
2748                 }
2749                 ipcss = skb_network_offset(skb);
2750                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2751                 tucss = skb_transport_offset(skb);
2752                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2753                 tucse = 0;
2754
2755                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2756                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2757
2758                 i = tx_ring->next_to_use;
2759                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2760                 buffer_info = &tx_ring->buffer_info[i];
2761
2762                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2763                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2764                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2765                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2766                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2767                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2768                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2769                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2770                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2771
2772                 buffer_info->time_stamp = jiffies;
2773                 buffer_info->next_to_watch = i;
2774
2775                 if (++i == tx_ring->count) i = 0;
2776                 tx_ring->next_to_use = i;
2777
2778                 return true;
2779         }
2780         return false;
2781 }
2782
2783 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2784                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2785 {
2786         struct e1000_context_desc *context_desc;
2787         struct e1000_buffer *buffer_info;
2788         unsigned int i;
2789         u8 css;
2790         u32 cmd_len = E1000_TXD_CMD_DEXT;
2791
2792         if (skb->ip_summed != CHECKSUM_PARTIAL)
2793                 return false;
2794
2795         switch (skb->protocol) {
2796         case cpu_to_be16(ETH_P_IP):
2797                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2798                         cmd_len |= E1000_TXD_CMD_TCP;
2799                 break;
2800         case cpu_to_be16(ETH_P_IPV6):
2801                 /* XXX not handling all IPV6 headers */
2802                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2803                         cmd_len |= E1000_TXD_CMD_TCP;
2804                 break;
2805         default:
2806                 if (unlikely(net_ratelimit()))
2807                         e_warn(drv, "checksum_partial proto=%x!\n",
2808                                skb->protocol);
2809                 break;
2810         }
2811
2812         css = skb_checksum_start_offset(skb);
2813
2814         i = tx_ring->next_to_use;
2815         buffer_info = &tx_ring->buffer_info[i];
2816         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2817
2818         context_desc->lower_setup.ip_config = 0;
2819         context_desc->upper_setup.tcp_fields.tucss = css;
2820         context_desc->upper_setup.tcp_fields.tucso =
2821                 css + skb->csum_offset;
2822         context_desc->upper_setup.tcp_fields.tucse = 0;
2823         context_desc->tcp_seg_setup.data = 0;
2824         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2825
2826         buffer_info->time_stamp = jiffies;
2827         buffer_info->next_to_watch = i;
2828
2829         if (unlikely(++i == tx_ring->count)) i = 0;
2830         tx_ring->next_to_use = i;
2831
2832         return true;
2833 }
2834
2835 #define E1000_MAX_TXD_PWR       12
2836 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2837
2838 static int e1000_tx_map(struct e1000_adapter *adapter,
2839                         struct e1000_tx_ring *tx_ring,
2840                         struct sk_buff *skb, unsigned int first,
2841                         unsigned int max_per_txd, unsigned int nr_frags,
2842                         unsigned int mss)
2843 {
2844         struct e1000_hw *hw = &adapter->hw;
2845         struct pci_dev *pdev = adapter->pdev;
2846         struct e1000_buffer *buffer_info;
2847         unsigned int len = skb_headlen(skb);
2848         unsigned int offset = 0, size, count = 0, i;
2849         unsigned int f;
2850
2851         i = tx_ring->next_to_use;
2852
2853         while (len) {
2854                 buffer_info = &tx_ring->buffer_info[i];
2855                 size = min(len, max_per_txd);
2856                 /* Workaround for Controller erratum --
2857                  * descriptor for non-tso packet in a linear SKB that follows a
2858                  * tso gets written back prematurely before the data is fully
2859                  * DMA'd to the controller */
2860                 if (!skb->data_len && tx_ring->last_tx_tso &&
2861                     !skb_is_gso(skb)) {
2862                         tx_ring->last_tx_tso = 0;
2863                         size -= 4;
2864                 }
2865
2866                 /* Workaround for premature desc write-backs
2867                  * in TSO mode.  Append 4-byte sentinel desc */
2868                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2869                         size -= 4;
2870                 /* work-around for errata 10 and it applies
2871                  * to all controllers in PCI-X mode
2872                  * The fix is to make sure that the first descriptor of a
2873                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2874                  */
2875                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2876                                 (size > 2015) && count == 0))
2877                         size = 2015;
2878
2879                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2880                  * terminating buffers within evenly-aligned dwords. */
2881                 if (unlikely(adapter->pcix_82544 &&
2882                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2883                    size > 4))
2884                         size -= 4;
2885
2886                 buffer_info->length = size;
2887                 /* set time_stamp *before* dma to help avoid a possible race */
2888                 buffer_info->time_stamp = jiffies;
2889                 buffer_info->mapped_as_page = false;
2890                 buffer_info->dma = dma_map_single(&pdev->dev,
2891                                                   skb->data + offset,
2892                                                   size, DMA_TO_DEVICE);
2893                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2894                         goto dma_error;
2895                 buffer_info->next_to_watch = i;
2896
2897                 len -= size;
2898                 offset += size;
2899                 count++;
2900                 if (len) {
2901                         i++;
2902                         if (unlikely(i == tx_ring->count))
2903                                 i = 0;
2904                 }
2905         }
2906
2907         for (f = 0; f < nr_frags; f++) {
2908                 struct skb_frag_struct *frag;
2909
2910                 frag = &skb_shinfo(skb)->frags[f];
2911                 len = frag->size;
2912                 offset = frag->page_offset;
2913
2914                 while (len) {
2915                         i++;
2916                         if (unlikely(i == tx_ring->count))
2917                                 i = 0;
2918
2919                         buffer_info = &tx_ring->buffer_info[i];
2920                         size = min(len, max_per_txd);
2921                         /* Workaround for premature desc write-backs
2922                          * in TSO mode.  Append 4-byte sentinel desc */
2923                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2924                                 size -= 4;
2925                         /* Workaround for potential 82544 hang in PCI-X.
2926                          * Avoid terminating buffers within evenly-aligned
2927                          * dwords. */
2928                         if (unlikely(adapter->pcix_82544 &&
2929                             !((unsigned long)(page_to_phys(frag->page) + offset
2930                                               + size - 1) & 4) &&
2931                             size > 4))
2932                                 size -= 4;
2933
2934                         buffer_info->length = size;
2935                         buffer_info->time_stamp = jiffies;
2936                         buffer_info->mapped_as_page = true;
2937                         buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
2938                                                         offset, size,
2939                                                         DMA_TO_DEVICE);
2940                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2941                                 goto dma_error;
2942                         buffer_info->next_to_watch = i;
2943
2944                         len -= size;
2945                         offset += size;
2946                         count++;
2947                 }
2948         }
2949
2950         tx_ring->buffer_info[i].skb = skb;
2951         tx_ring->buffer_info[first].next_to_watch = i;
2952
2953         return count;
2954
2955 dma_error:
2956         dev_err(&pdev->dev, "TX DMA map failed\n");
2957         buffer_info->dma = 0;
2958         if (count)
2959                 count--;
2960
2961         while (count--) {
2962                 if (i==0)
2963                         i += tx_ring->count;
2964                 i--;
2965                 buffer_info = &tx_ring->buffer_info[i];
2966                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2967         }
2968
2969         return 0;
2970 }
2971
2972 static void e1000_tx_queue(struct e1000_adapter *adapter,
2973                            struct e1000_tx_ring *tx_ring, int tx_flags,
2974                            int count)
2975 {
2976         struct e1000_hw *hw = &adapter->hw;
2977         struct e1000_tx_desc *tx_desc = NULL;
2978         struct e1000_buffer *buffer_info;
2979         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2980         unsigned int i;
2981
2982         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2983                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2984                              E1000_TXD_CMD_TSE;
2985                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2986
2987                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2988                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2989         }
2990
2991         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2992                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2993                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2994         }
2995
2996         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2997                 txd_lower |= E1000_TXD_CMD_VLE;
2998                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2999         }
3000
3001         i = tx_ring->next_to_use;
3002
3003         while (count--) {
3004                 buffer_info = &tx_ring->buffer_info[i];
3005                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3006                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3007                 tx_desc->lower.data =
3008                         cpu_to_le32(txd_lower | buffer_info->length);
3009                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3010                 if (unlikely(++i == tx_ring->count)) i = 0;
3011         }
3012
3013         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3014
3015         /* Force memory writes to complete before letting h/w
3016          * know there are new descriptors to fetch.  (Only
3017          * applicable for weak-ordered memory model archs,
3018          * such as IA-64). */
3019         wmb();
3020
3021         tx_ring->next_to_use = i;
3022         writel(i, hw->hw_addr + tx_ring->tdt);
3023         /* we need this if more than one processor can write to our tail
3024          * at a time, it syncronizes IO on IA64/Altix systems */
3025         mmiowb();
3026 }
3027
3028 /**
3029  * 82547 workaround to avoid controller hang in half-duplex environment.
3030  * The workaround is to avoid queuing a large packet that would span
3031  * the internal Tx FIFO ring boundary by notifying the stack to resend
3032  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3033  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3034  * to the beginning of the Tx FIFO.
3035  **/
3036
3037 #define E1000_FIFO_HDR                  0x10
3038 #define E1000_82547_PAD_LEN             0x3E0
3039
3040 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3041                                        struct sk_buff *skb)
3042 {
3043         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3044         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3045
3046         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3047
3048         if (adapter->link_duplex != HALF_DUPLEX)
3049                 goto no_fifo_stall_required;
3050
3051         if (atomic_read(&adapter->tx_fifo_stall))
3052                 return 1;
3053
3054         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3055                 atomic_set(&adapter->tx_fifo_stall, 1);
3056                 return 1;
3057         }
3058
3059 no_fifo_stall_required:
3060         adapter->tx_fifo_head += skb_fifo_len;
3061         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3062                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3063         return 0;
3064 }
3065
3066 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3067 {
3068         struct e1000_adapter *adapter = netdev_priv(netdev);
3069         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3070
3071         netif_stop_queue(netdev);
3072         /* Herbert's original patch had:
3073          *  smp_mb__after_netif_stop_queue();
3074          * but since that doesn't exist yet, just open code it. */
3075         smp_mb();
3076
3077         /* We need to check again in a case another CPU has just
3078          * made room available. */
3079         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3080                 return -EBUSY;
3081
3082         /* A reprieve! */
3083         netif_start_queue(netdev);
3084         ++adapter->restart_queue;
3085         return 0;
3086 }
3087
3088 static int e1000_maybe_stop_tx(struct net_device *netdev,
3089                                struct e1000_tx_ring *tx_ring, int size)
3090 {
3091         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3092                 return 0;
3093         return __e1000_maybe_stop_tx(netdev, size);
3094 }
3095
3096 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3097 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3098                                     struct net_device *netdev)
3099 {
3100         struct e1000_adapter *adapter = netdev_priv(netdev);
3101         struct e1000_hw *hw = &adapter->hw;
3102         struct e1000_tx_ring *tx_ring;
3103         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3104         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3105         unsigned int tx_flags = 0;
3106         unsigned int len = skb_headlen(skb);
3107         unsigned int nr_frags;
3108         unsigned int mss;
3109         int count = 0;
3110         int tso;
3111         unsigned int f;
3112
3113         /* This goes back to the question of how to logically map a tx queue
3114          * to a flow.  Right now, performance is impacted slightly negatively
3115          * if using multiple tx queues.  If the stack breaks away from a
3116          * single qdisc implementation, we can look at this again. */
3117         tx_ring = adapter->tx_ring;
3118
3119         if (unlikely(skb->len <= 0)) {
3120                 dev_kfree_skb_any(skb);
3121                 return NETDEV_TX_OK;
3122         }
3123
3124         mss = skb_shinfo(skb)->gso_size;
3125         /* The controller does a simple calculation to
3126          * make sure there is enough room in the FIFO before
3127          * initiating the DMA for each buffer.  The calc is:
3128          * 4 = ceil(buffer len/mss).  To make sure we don't
3129          * overrun the FIFO, adjust the max buffer len if mss
3130          * drops. */
3131         if (mss) {
3132                 u8 hdr_len;
3133                 max_per_txd = min(mss << 2, max_per_txd);
3134                 max_txd_pwr = fls(max_per_txd) - 1;
3135
3136                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3137                 if (skb->data_len && hdr_len == len) {
3138                         switch (hw->mac_type) {
3139                                 unsigned int pull_size;
3140                         case e1000_82544:
3141                                 /* Make sure we have room to chop off 4 bytes,
3142                                  * and that the end alignment will work out to
3143                                  * this hardware's requirements
3144                                  * NOTE: this is a TSO only workaround
3145                                  * if end byte alignment not correct move us
3146                                  * into the next dword */
3147                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3148                                         break;
3149                                 /* fall through */
3150                                 pull_size = min((unsigned int)4, skb->data_len);
3151                                 if (!__pskb_pull_tail(skb, pull_size)) {
3152                                         e_err(drv, "__pskb_pull_tail "
3153                                               "failed.\n");
3154                                         dev_kfree_skb_any(skb);
3155                                         return NETDEV_TX_OK;
3156                                 }
3157                                 len = skb_headlen(skb);
3158                                 break;
3159                         default:
3160                                 /* do nothing */
3161                                 break;
3162                         }
3163                 }
3164         }
3165
3166         /* reserve a descriptor for the offload context */
3167         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3168                 count++;
3169         count++;
3170
3171         /* Controller Erratum workaround */
3172         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3173                 count++;
3174
3175         count += TXD_USE_COUNT(len, max_txd_pwr);
3176
3177         if (adapter->pcix_82544)
3178                 count++;
3179
3180         /* work-around for errata 10 and it applies to all controllers
3181          * in PCI-X mode, so add one more descriptor to the count
3182          */
3183         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3184                         (len > 2015)))
3185                 count++;
3186
3187         nr_frags = skb_shinfo(skb)->nr_frags;
3188         for (f = 0; f < nr_frags; f++)
3189                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3190                                        max_txd_pwr);
3191         if (adapter->pcix_82544)
3192                 count += nr_frags;
3193
3194         /* need: count + 2 desc gap to keep tail from touching
3195          * head, otherwise try next time */
3196         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3197                 return NETDEV_TX_BUSY;
3198
3199         if (unlikely(hw->mac_type == e1000_82547)) {
3200                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3201                         netif_stop_queue(netdev);
3202                         if (!test_bit(__E1000_DOWN, &adapter->flags))
3203                                 mod_timer(&adapter->tx_fifo_stall_timer,
3204                                           jiffies + 1);
3205                         return NETDEV_TX_BUSY;
3206                 }
3207         }
3208
3209         if (vlan_tx_tag_present(skb)) {
3210                 tx_flags |= E1000_TX_FLAGS_VLAN;
3211                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3212         }
3213
3214         first = tx_ring->next_to_use;
3215
3216         tso = e1000_tso(adapter, tx_ring, skb);
3217         if (tso < 0) {
3218                 dev_kfree_skb_any(skb);
3219                 return NETDEV_TX_OK;
3220         }
3221
3222         if (likely(tso)) {
3223                 if (likely(hw->mac_type != e1000_82544))
3224                         tx_ring->last_tx_tso = 1;
3225                 tx_flags |= E1000_TX_FLAGS_TSO;
3226         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3227                 tx_flags |= E1000_TX_FLAGS_CSUM;
3228
3229         if (likely(skb->protocol == htons(ETH_P_IP)))
3230                 tx_flags |= E1000_TX_FLAGS_IPV4;
3231
3232         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3233                              nr_frags, mss);
3234
3235         if (count) {
3236                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3237                 /* Make sure there is space in the ring for the next send. */
3238                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3239
3240         } else {
3241                 dev_kfree_skb_any(skb);
3242                 tx_ring->buffer_info[first].time_stamp = 0;
3243                 tx_ring->next_to_use = first;
3244         }
3245
3246         return NETDEV_TX_OK;
3247 }
3248
3249 /**
3250  * e1000_tx_timeout - Respond to a Tx Hang
3251  * @netdev: network interface device structure
3252  **/
3253
3254 static void e1000_tx_timeout(struct net_device *netdev)
3255 {
3256         struct e1000_adapter *adapter = netdev_priv(netdev);
3257
3258         /* Do the reset outside of interrupt context */
3259         adapter->tx_timeout_count++;
3260         schedule_work(&adapter->reset_task);
3261 }
3262
3263 static void e1000_reset_task(struct work_struct *work)
3264 {
3265         struct e1000_adapter *adapter =
3266                 container_of(work, struct e1000_adapter, reset_task);
3267
3268         e1000_reinit_safe(adapter);
3269 }
3270
3271 /**
3272  * e1000_get_stats - Get System Network Statistics
3273  * @netdev: network interface device structure
3274  *
3275  * Returns the address of the device statistics structure.
3276  * The statistics are actually updated from the timer callback.
3277  **/
3278
3279 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3280 {
3281         /* only return the current stats */
3282         return &netdev->stats;
3283 }
3284
3285 /**
3286  * e1000_change_mtu - Change the Maximum Transfer Unit
3287  * @netdev: network interface device structure
3288  * @new_mtu: new value for maximum frame size
3289  *
3290  * Returns 0 on success, negative on failure
3291  **/
3292
3293 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3294 {
3295         struct e1000_adapter *adapter = netdev_priv(netdev);
3296         struct e1000_hw *hw = &adapter->hw;
3297         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3298
3299         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3300             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3301                 e_err(probe, "Invalid MTU setting\n");
3302                 return -EINVAL;
3303         }
3304
3305         /* Adapter-specific max frame size limits. */
3306         switch (hw->mac_type) {
3307         case e1000_undefined ... e1000_82542_rev2_1:
3308                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3309                         e_err(probe, "Jumbo Frames not supported.\n");
3310                         return -EINVAL;
3311                 }
3312                 break;
3313         default:
3314                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3315                 break;
3316         }
3317
3318         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3319                 msleep(1);
3320         /* e1000_down has a dependency on max_frame_size */
3321         hw->max_frame_size = max_frame;
3322         if (netif_running(netdev))
3323                 e1000_down(adapter);
3324
3325         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3326          * means we reserve 2 more, this pushes us to allocate from the next
3327          * larger slab size.
3328          * i.e. RXBUFFER_2048 --> size-4096 slab
3329          *  however with the new *_jumbo_rx* routines, jumbo receives will use
3330          *  fragmented skbs */
3331
3332         if (max_frame <= E1000_RXBUFFER_2048)
3333                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3334         else
3335 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3336                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3337 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3338                 adapter->rx_buffer_len = PAGE_SIZE;
3339 #endif
3340
3341         /* adjust allocation if LPE protects us, and we aren't using SBP */
3342         if (!hw->tbi_compatibility_on &&
3343             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3344              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3345                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3346
3347         pr_info("%s changing MTU from %d to %d\n",
3348                 netdev->name, netdev->mtu, new_mtu);
3349         netdev->mtu = new_mtu;
3350
3351         if (netif_running(netdev))
3352                 e1000_up(adapter);
3353         else
3354                 e1000_reset(adapter);
3355
3356         clear_bit(__E1000_RESETTING, &adapter->flags);
3357
3358         return 0;
3359 }
3360
3361 /**
3362  * e1000_update_stats - Update the board statistics counters
3363  * @adapter: board private structure
3364  **/
3365
3366 void e1000_update_stats(struct e1000_adapter *adapter)
3367 {
3368         struct net_device *netdev = adapter->netdev;
3369         struct e1000_hw *hw = &adapter->hw;
3370         struct pci_dev *pdev = adapter->pdev;
3371         unsigned long flags;
3372         u16 phy_tmp;
3373
3374 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3375
3376         /*
3377          * Prevent stats update while adapter is being reset, or if the pci
3378          * connection is down.
3379          */
3380         if (adapter->link_speed == 0)
3381                 return;
3382         if (pci_channel_offline(pdev))
3383                 return;
3384
3385         spin_lock_irqsave(&adapter->stats_lock, flags);
3386
3387         /* these counters are modified from e1000_tbi_adjust_stats,
3388          * called from the interrupt context, so they must only
3389          * be written while holding adapter->stats_lock
3390          */
3391
3392         adapter->stats.crcerrs += er32(CRCERRS);
3393         adapter->stats.gprc += er32(GPRC);
3394         adapter->stats.gorcl += er32(GORCL);
3395         adapter->stats.gorch += er32(GORCH);
3396         adapter->stats.bprc += er32(BPRC);
3397         adapter->stats.mprc += er32(MPRC);
3398         adapter->stats.roc += er32(ROC);
3399
3400         adapter->stats.prc64 += er32(PRC64);
3401         adapter->stats.prc127 += er32(PRC127);
3402         adapter->stats.prc255 += er32(PRC255);
3403         adapter->stats.prc511 += er32(PRC511);
3404         adapter->stats.prc1023 += er32(PRC1023);
3405         adapter->stats.prc1522 += er32(PRC1522);
3406
3407         adapter->stats.symerrs += er32(SYMERRS);
3408         adapter->stats.mpc += er32(MPC);
3409         adapter->stats.scc += er32(SCC);
3410         adapter->stats.ecol += er32(ECOL);
3411         adapter->stats.mcc += er32(MCC);
3412         adapter->stats.latecol += er32(LATECOL);
3413         adapter->stats.dc += er32(DC);
3414         adapter->stats.sec += er32(SEC);
3415         adapter->stats.rlec += er32(RLEC);
3416         adapter->stats.xonrxc += er32(XONRXC);
3417         adapter->stats.xontxc += er32(XONTXC);
3418         adapter->stats.xoffrxc += er32(XOFFRXC);
3419         adapter->stats.xofftxc += er32(XOFFTXC);
3420         adapter->stats.fcruc += er32(FCRUC);
3421         adapter->stats.gptc += er32(GPTC);
3422         adapter->stats.gotcl += er32(GOTCL);
3423         adapter->stats.gotch += er32(GOTCH);
3424         adapter->stats.rnbc += er32(RNBC);
3425         adapter->stats.ruc += er32(RUC);
3426         adapter->stats.rfc += er32(RFC);
3427         adapter->stats.rjc += er32(RJC);
3428         adapter->stats.torl += er32(TORL);
3429         adapter->stats.torh += er32(TORH);
3430         adapter->stats.totl += er32(TOTL);
3431         adapter->stats.toth += er32(TOTH);
3432         adapter->stats.tpr += er32(TPR);
3433
3434         adapter->stats.ptc64 += er32(PTC64);
3435         adapter->stats.ptc127 += er32(PTC127);
3436         adapter->stats.ptc255 += er32(PTC255);
3437         adapter->stats.ptc511 += er32(PTC511);
3438         adapter->stats.ptc1023 += er32(PTC1023);
3439         adapter->stats.ptc1522 += er32(PTC1522);
3440
3441         adapter->stats.mptc += er32(MPTC);
3442         adapter->stats.bptc += er32(BPTC);
3443
3444         /* used for adaptive IFS */
3445
3446         hw->tx_packet_delta = er32(TPT);
3447         adapter->stats.tpt += hw->tx_packet_delta;
3448         hw->collision_delta = er32(COLC);
3449         adapter->stats.colc += hw->collision_delta;
3450
3451         if (hw->mac_type >= e1000_82543) {
3452                 adapter->stats.algnerrc += er32(ALGNERRC);
3453                 adapter->stats.rxerrc += er32(RXERRC);
3454                 adapter->stats.tncrs += er32(TNCRS);
3455                 adapter->stats.cexterr += er32(CEXTERR);
3456                 adapter->stats.tsctc += er32(TSCTC);
3457                 adapter->stats.tsctfc += er32(TSCTFC);
3458         }
3459
3460         /* Fill out the OS statistics structure */
3461         netdev->stats.multicast = adapter->stats.mprc;
3462         netdev->stats.collisions = adapter->stats.colc;
3463
3464         /* Rx Errors */
3465
3466         /* RLEC on some newer hardware can be incorrect so build
3467         * our own version based on RUC and ROC */
3468         netdev->stats.rx_errors = adapter->stats.rxerrc +
3469                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3470                 adapter->stats.ruc + adapter->stats.roc +
3471                 adapter->stats.cexterr;
3472         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3473         netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3474         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3475         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3476         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3477
3478         /* Tx Errors */
3479         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3480         netdev->stats.tx_errors = adapter->stats.txerrc;
3481         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3482         netdev->stats.tx_window_errors = adapter->stats.latecol;
3483         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3484         if (hw->bad_tx_carr_stats_fd &&
3485             adapter->link_duplex == FULL_DUPLEX) {
3486                 netdev->stats.tx_carrier_errors = 0;
3487                 adapter->stats.tncrs = 0;
3488         }
3489
3490         /* Tx Dropped needs to be maintained elsewhere */
3491
3492         /* Phy Stats */
3493         if (hw->media_type == e1000_media_type_copper) {
3494                 if ((adapter->link_speed == SPEED_1000) &&
3495                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3496                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3497                         adapter->phy_stats.idle_errors += phy_tmp;
3498                 }
3499
3500                 if ((hw->mac_type <= e1000_82546) &&
3501                    (hw->phy_type == e1000_phy_m88) &&
3502                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3503                         adapter->phy_stats.receive_errors += phy_tmp;
3504         }
3505
3506         /* Management Stats */
3507         if (hw->has_smbus) {
3508                 adapter->stats.mgptc += er32(MGTPTC);
3509                 adapter->stats.mgprc += er32(MGTPRC);
3510                 adapter->stats.mgpdc += er32(MGTPDC);
3511         }
3512
3513         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3514 }
3515
3516 /**
3517  * e1000_intr - Interrupt Handler
3518  * @irq: interrupt number
3519  * @data: pointer to a network interface device structure
3520  **/
3521
3522 static irqreturn_t e1000_intr(int irq, void *data)
3523 {
3524         struct net_device *netdev = data;
3525         struct e1000_adapter *adapter = netdev_priv(netdev);
3526         struct e1000_hw *hw = &adapter->hw;
3527         u32 icr = er32(ICR);
3528
3529         if (unlikely((!icr)))
3530                 return IRQ_NONE;  /* Not our interrupt */
3531
3532         /*
3533          * we might have caused the interrupt, but the above
3534          * read cleared it, and just in case the driver is
3535          * down there is nothing to do so return handled
3536          */
3537         if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3538                 return IRQ_HANDLED;
3539
3540         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3541                 hw->get_link_status = 1;
3542                 /* guard against interrupt when we're going down */
3543                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3544                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3545         }
3546
3547         /* disable interrupts, without the synchronize_irq bit */
3548         ew32(IMC, ~0);
3549         E1000_WRITE_FLUSH();
3550
3551         if (likely(napi_schedule_prep(&adapter->napi))) {
3552                 adapter->total_tx_bytes = 0;
3553                 adapter->total_tx_packets = 0;
3554                 adapter->total_rx_bytes = 0;
3555                 adapter->total_rx_packets = 0;
3556                 __napi_schedule(&adapter->napi);
3557         } else {
3558                 /* this really should not happen! if it does it is basically a
3559                  * bug, but not a hard error, so enable ints and continue */
3560                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3561                         e1000_irq_enable(adapter);
3562         }
3563
3564         return IRQ_HANDLED;
3565 }
3566
3567 /**
3568  * e1000_clean - NAPI Rx polling callback
3569  * @adapter: board private structure
3570  **/
3571 static int e1000_clean(struct napi_struct *napi, int budget)
3572 {
3573         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3574         int tx_clean_complete = 0, work_done = 0;
3575
3576         tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3577
3578         adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3579
3580         if (!tx_clean_complete)
3581                 work_done = budget;
3582
3583         /* If budget not fully consumed, exit the polling mode */
3584         if (work_done < budget) {
3585                 if (likely(adapter->itr_setting & 3))
3586                         e1000_set_itr(adapter);
3587                 napi_complete(napi);
3588                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3589                         e1000_irq_enable(adapter);
3590         }
3591
3592         return work_done;
3593 }
3594
3595 /**
3596  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3597  * @adapter: board private structure
3598  **/
3599 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3600                                struct e1000_tx_ring *tx_ring)
3601 {
3602         struct e1000_hw *hw = &adapter->hw;
3603         struct net_device *netdev = adapter->netdev;
3604         struct e1000_tx_desc *tx_desc, *eop_desc;
3605         struct e1000_buffer *buffer_info;
3606         unsigned int i, eop;
3607         unsigned int count = 0;
3608         unsigned int total_tx_bytes=0, total_tx_packets=0;
3609
3610         i = tx_ring->next_to_clean;
3611         eop = tx_ring->buffer_info[i].next_to_watch;
3612         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3613
3614         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3615                (count < tx_ring->count)) {
3616                 bool cleaned = false;
3617                 rmb();  /* read buffer_info after eop_desc */
3618                 for ( ; !cleaned; count++) {
3619                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3620                         buffer_info = &tx_ring->buffer_info[i];
3621                         cleaned = (i == eop);
3622
3623                         if (cleaned) {
3624                                 struct sk_buff *skb = buffer_info->skb;
3625                                 unsigned int segs, bytecount;
3626                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3627                                 /* multiply data chunks by size of headers */
3628                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3629                                             skb->len;
3630                                 total_tx_packets += segs;
3631                                 total_tx_bytes += bytecount;
3632                         }
3633                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3634                         tx_desc->upper.data = 0;
3635
3636                         if (unlikely(++i == tx_ring->count)) i = 0;
3637                 }
3638
3639                 eop = tx_ring->buffer_info[i].next_to_watch;
3640                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3641         }
3642
3643         tx_ring->next_to_clean = i;
3644
3645 #define TX_WAKE_THRESHOLD 32
3646         if (unlikely(count && netif_carrier_ok(netdev) &&
3647                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3648                 /* Make sure that anybody stopping the queue after this
3649                  * sees the new next_to_clean.
3650                  */
3651                 smp_mb();
3652
3653                 if (netif_queue_stopped(netdev) &&
3654                     !(test_bit(__E1000_DOWN, &adapter->flags))) {
3655                         netif_wake_queue(netdev);
3656                         ++adapter->restart_queue;
3657                 }
3658         }
3659
3660         if (adapter->detect_tx_hung) {
3661                 /* Detect a transmit hang in hardware, this serializes the
3662                  * check with the clearing of time_stamp and movement of i */
3663                 adapter->detect_tx_hung = false;
3664                 if (tx_ring->buffer_info[eop].time_stamp &&
3665                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3666                                (adapter->tx_timeout_factor * HZ)) &&
3667                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3668
3669                         /* detected Tx unit hang */
3670                         e_err(drv, "Detected Tx Unit Hang\n"
3671                               "  Tx Queue             <%lu>\n"
3672                               "  TDH                  <%x>\n"
3673                               "  TDT                  <%x>\n"
3674                               "  next_to_use          <%x>\n"
3675                               "  next_to_clean        <%x>\n"
3676                               "buffer_info[next_to_clean]\n"
3677                               "  time_stamp           <%lx>\n"
3678                               "  next_to_watch        <%x>\n"
3679                               "  jiffies              <%lx>\n"
3680                               "  next_to_watch.status <%x>\n",
3681                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3682                                         sizeof(struct e1000_tx_ring)),
3683                                 readl(hw->hw_addr + tx_ring->tdh),
3684                                 readl(hw->hw_addr + tx_ring->tdt),
3685                                 tx_ring->next_to_use,
3686                                 tx_ring->next_to_clean,
3687                                 tx_ring->buffer_info[eop].time_stamp,
3688                                 eop,
3689                                 jiffies,
3690                                 eop_desc->upper.fields.status);
3691                         netif_stop_queue(netdev);
3692                 }
3693         }
3694         adapter->total_tx_bytes += total_tx_bytes;
3695         adapter->total_tx_packets += total_tx_packets;
3696         netdev->stats.tx_bytes += total_tx_bytes;
3697         netdev->stats.tx_packets += total_tx_packets;
3698         return count < tx_ring->count;
3699 }
3700
3701 /**
3702  * e1000_rx_checksum - Receive Checksum Offload for 82543
3703  * @adapter:     board private structure
3704  * @status_err:  receive descriptor status and error fields
3705  * @csum:        receive descriptor csum field
3706  * @sk_buff:     socket buffer with received data
3707  **/
3708
3709 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3710                               u32 csum, struct sk_buff *skb)
3711 {
3712         struct e1000_hw *hw = &adapter->hw;
3713         u16 status = (u16)status_err;
3714         u8 errors = (u8)(status_err >> 24);
3715
3716         skb_checksum_none_assert(skb);
3717
3718         /* 82543 or newer only */
3719         if (unlikely(hw->mac_type < e1000_82543)) return;
3720         /* Ignore Checksum bit is set */
3721         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3722         /* TCP/UDP checksum error bit is set */
3723         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3724                 /* let the stack verify checksum errors */
3725                 adapter->hw_csum_err++;
3726                 return;
3727         }
3728         /* TCP/UDP Checksum has not been calculated */
3729         if (!(status & E1000_RXD_STAT_TCPCS))
3730                 return;
3731
3732         /* It must be a TCP or UDP packet with a valid checksum */
3733         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3734                 /* TCP checksum is good */
3735                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3736         }
3737         adapter->hw_csum_good++;
3738 }
3739
3740 /**
3741  * e1000_consume_page - helper function
3742  **/
3743 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3744                                u16 length)
3745 {
3746         bi->page = NULL;
3747         skb->len += length;
3748         skb->data_len += length;
3749         skb->truesize += length;
3750 }
3751
3752 /**
3753  * e1000_receive_skb - helper function to handle rx indications
3754  * @adapter: board private structure
3755  * @status: descriptor status field as written by hardware
3756  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3757  * @skb: pointer to sk_buff to be indicated to stack
3758  */
3759 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3760                               __le16 vlan, struct sk_buff *skb)
3761 {
3762         skb->protocol = eth_type_trans(skb, adapter->netdev);
3763
3764         if (status & E1000_RXD_STAT_VP) {
3765                 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3766
3767                 __vlan_hwaccel_put_tag(skb, vid);
3768         }
3769         napi_gro_receive(&adapter->napi, skb);
3770 }
3771
3772 /**
3773  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3774  * @adapter: board private structure
3775  * @rx_ring: ring to clean
3776  * @work_done: amount of napi work completed this call
3777  * @work_to_do: max amount of work allowed for this call to do
3778  *
3779  * the return value indicates whether actual cleaning was done, there
3780  * is no guarantee that everything was cleaned
3781  */
3782 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3783                                      struct e1000_rx_ring *rx_ring,
3784                                      int *work_done, int work_to_do)
3785 {
3786         struct e1000_hw *hw = &adapter->hw;
3787         struct net_device *netdev = adapter->netdev;
3788         struct pci_dev *pdev = adapter->pdev;
3789         struct e1000_rx_desc *rx_desc, *next_rxd;
3790         struct e1000_buffer *buffer_info, *next_buffer;
3791         unsigned long irq_flags;
3792         u32 length;
3793         unsigned int i;
3794         int cleaned_count = 0;
3795         bool cleaned = false;
3796         unsigned int total_rx_bytes=0, total_rx_packets=0;
3797
3798         i = rx_ring->next_to_clean;
3799         rx_desc = E1000_RX_DESC(*rx_ring, i);
3800         buffer_info = &rx_ring->buffer_info[i];
3801
3802         while (rx_desc->status & E1000_RXD_STAT_DD) {
3803                 struct sk_buff *skb;
3804                 u8 status;
3805
3806                 if (*work_done >= work_to_do)
3807                         break;
3808                 (*work_done)++;
3809                 rmb(); /* read descriptor and rx_buffer_info after status DD */
3810
3811                 status = rx_desc->status;
3812                 skb = buffer_info->skb;
3813                 buffer_info->skb = NULL;
3814
3815                 if (++i == rx_ring->count) i = 0;
3816                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3817                 prefetch(next_rxd);
3818
3819                 next_buffer = &rx_ring->buffer_info[i];
3820
3821                 cleaned = true;
3822                 cleaned_count++;
3823                 dma_unmap_page(&pdev->dev, buffer_info->dma,
3824                                buffer_info->length, DMA_FROM_DEVICE);
3825                 buffer_info->dma = 0;
3826
3827                 length = le16_to_cpu(rx_desc->length);
3828
3829                 /* errors is only valid for DD + EOP descriptors */
3830                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3831                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3832                         u8 last_byte = *(skb->data + length - 1);
3833                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3834                                        last_byte)) {
3835                                 spin_lock_irqsave(&adapter->stats_lock,
3836                                                   irq_flags);
3837                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
3838                                                        length, skb->data);
3839                                 spin_unlock_irqrestore(&adapter->stats_lock,
3840                                                        irq_flags);
3841                                 length--;
3842                         } else {
3843                                 /* recycle both page and skb */
3844                                 buffer_info->skb = skb;
3845                                 /* an error means any chain goes out the window
3846                                  * too */
3847                                 if (rx_ring->rx_skb_top)
3848                                         dev_kfree_skb(rx_ring->rx_skb_top);
3849                                 rx_ring->rx_skb_top = NULL;
3850                                 goto next_desc;
3851                         }
3852                 }
3853
3854 #define rxtop rx_ring->rx_skb_top
3855                 if (!(status & E1000_RXD_STAT_EOP)) {
3856                         /* this descriptor is only the beginning (or middle) */
3857                         if (!rxtop) {
3858                                 /* this is the beginning of a chain */
3859                                 rxtop = skb;
3860                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3861                                                    0, length);
3862                         } else {
3863                                 /* this is the middle of a chain */
3864                                 skb_fill_page_desc(rxtop,
3865                                     skb_shinfo(rxtop)->nr_frags,
3866                                     buffer_info->page, 0, length);
3867                                 /* re-use the skb, only consumed the page */
3868                                 buffer_info->skb = skb;
3869                         }
3870                         e1000_consume_page(buffer_info, rxtop, length);
3871                         goto next_desc;
3872                 } else {
3873                         if (rxtop) {
3874                                 /* end of the chain */
3875                                 skb_fill_page_desc(rxtop,
3876                                     skb_shinfo(rxtop)->nr_frags,
3877                                     buffer_info->page, 0, length);
3878                                 /* re-use the current skb, we only consumed the
3879                                  * page */
3880                                 buffer_info->skb = skb;
3881                                 skb = rxtop;
3882                                 rxtop = NULL;
3883                                 e1000_consume_page(buffer_info, skb, length);
3884                         } else {
3885                                 /* no chain, got EOP, this buf is the packet
3886                                  * copybreak to save the put_page/alloc_page */
3887                                 if (length <= copybreak &&
3888                                     skb_tailroom(skb) >= length) {
3889                                         u8 *vaddr;
3890                                         vaddr = kmap_atomic(buffer_info->page,
3891                                                             KM_SKB_DATA_SOFTIRQ);
3892                                         memcpy(skb_tail_pointer(skb), vaddr, length);
3893                                         kunmap_atomic(vaddr,
3894                                                       KM_SKB_DATA_SOFTIRQ);
3895                                         /* re-use the page, so don't erase
3896                                          * buffer_info->page */
3897                                         skb_put(skb, length);
3898                                 } else {
3899                                         skb_fill_page_desc(skb, 0,
3900                                                            buffer_info->page, 0,
3901                                                            length);
3902                                         e1000_consume_page(buffer_info, skb,
3903                                                            length);
3904                                 }
3905                         }
3906                 }
3907
3908                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3909                 e1000_rx_checksum(adapter,
3910                                   (u32)(status) |
3911                                   ((u32)(rx_desc->errors) << 24),
3912                                   le16_to_cpu(rx_desc->csum), skb);
3913
3914                 pskb_trim(skb, skb->len - 4);
3915
3916                 /* probably a little skewed due to removing CRC */
3917                 total_rx_bytes += skb->len;
3918                 total_rx_packets++;
3919
3920                 /* eth type trans needs skb->data to point to something */
3921                 if (!pskb_may_pull(skb, ETH_HLEN)) {
3922                         e_err(drv, "pskb_may_pull failed.\n");
3923                         dev_kfree_skb(skb);
3924                         goto next_desc;
3925                 }
3926
3927                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3928
3929 next_desc:
3930                 rx_desc->status = 0;
3931
3932                 /* return some buffers to hardware, one at a time is too slow */
3933                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3934                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3935                         cleaned_count = 0;
3936                 }
3937
3938                 /* use prefetched values */
3939                 rx_desc = next_rxd;
3940                 buffer_info = next_buffer;
3941         }
3942         rx_ring->next_to_clean = i;
3943
3944         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3945         if (cleaned_count)
3946                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3947
3948         adapter->total_rx_packets += total_rx_packets;
3949         adapter->total_rx_bytes += total_rx_bytes;
3950         netdev->stats.rx_bytes += total_rx_bytes;
3951         netdev->stats.rx_packets += total_rx_packets;
3952         return cleaned;
3953 }
3954
3955 /*
3956  * this should improve performance for small packets with large amounts
3957  * of reassembly being done in the stack
3958  */
3959 static void e1000_check_copybreak(struct net_device *netdev,
3960                                  struct e1000_buffer *buffer_info,
3961                                  u32 length, struct sk_buff **skb)
3962 {
3963         struct sk_buff *new_skb;
3964
3965         if (length > copybreak)
3966                 return;
3967
3968         new_skb = netdev_alloc_skb_ip_align(netdev, length);
3969         if (!new_skb)
3970                 return;
3971
3972         skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
3973                                        (*skb)->data - NET_IP_ALIGN,
3974                                        length + NET_IP_ALIGN);
3975         /* save the skb in buffer_info as good */
3976         buffer_info->skb = *skb;
3977         *skb = new_skb;
3978 }
3979
3980 /**
3981  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3982  * @adapter: board private structure
3983  * @rx_ring: ring to clean
3984  * @work_done: amount of napi work completed this call
3985  * @work_to_do: max amount of work allowed for this call to do
3986  */
3987 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3988                                struct e1000_rx_ring *rx_ring,
3989                                int *work_done, int work_to_do)
3990 {
3991         struct e1000_hw *hw = &adapter->hw;
3992         struct net_device *netdev = adapter->netdev;
3993         struct pci_dev *pdev = adapter->pdev;
3994         struct e1000_rx_desc *rx_desc, *next_rxd;
3995         struct e1000_buffer *buffer_info, *next_buffer;
3996         unsigned long flags;
3997         u32 length;
3998         unsigned int i;
3999         int cleaned_count = 0;
4000         bool cleaned = false;
4001         unsigned int total_rx_bytes=0, total_rx_packets=0;
4002
4003         i = rx_ring->next_to_clean;
4004         rx_desc = E1000_RX_DESC(*rx_ring, i);
4005         buffer_info = &rx_ring->buffer_info[i];
4006
4007         while (rx_desc->status & E1000_RXD_STAT_DD) {
4008                 struct sk_buff *skb;
4009                 u8 status;
4010
4011                 if (*work_done >= work_to_do)
4012                         break;
4013                 (*work_done)++;
4014                 rmb(); /* read descriptor and rx_buffer_info after status DD */
4015
4016                 status = rx_desc->status;
4017                 skb = buffer_info->skb;
4018                 buffer_info->skb = NULL;
4019
4020                 prefetch(skb->data - NET_IP_ALIGN);
4021
4022                 if (++i == rx_ring->count) i = 0;
4023                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4024                 prefetch(next_rxd);
4025
4026                 next_buffer = &rx_ring->buffer_info[i];
4027
4028                 cleaned = true;
4029                 cleaned_count++;
4030                 dma_unmap_single(&pdev->dev, buffer_info->dma,
4031                                  buffer_info->length, DMA_FROM_DEVICE);
4032                 buffer_info->dma = 0;
4033
4034                 length = le16_to_cpu(rx_desc->length);
4035                 /* !EOP means multiple descriptors were used to store a single
4036                  * packet, if thats the case we need to toss it.  In fact, we
4037                  * to toss every packet with the EOP bit clear and the next
4038                  * frame that _does_ have the EOP bit set, as it is by
4039                  * definition only a frame fragment
4040                  */
4041                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4042                         adapter->discarding = true;
4043
4044                 if (adapter->discarding) {
4045                         /* All receives must fit into a single buffer */
4046                         e_dbg("Receive packet consumed multiple buffers\n");
4047                         /* recycle */
4048                         buffer_info->skb = skb;
4049                         if (status & E1000_RXD_STAT_EOP)
4050                                 adapter->discarding = false;
4051                         goto next_desc;
4052                 }
4053
4054                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4055                         u8 last_byte = *(skb->data + length - 1);
4056                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4057                                        last_byte)) {
4058                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4059                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4060                                                        length, skb->data);
4061                                 spin_unlock_irqrestore(&adapter->stats_lock,
4062                                                        flags);
4063                                 length--;
4064                         } else {
4065                                 /* recycle */
4066                                 buffer_info->skb = skb;
4067                                 goto next_desc;
4068                         }
4069                 }
4070
4071                 /* adjust length to remove Ethernet CRC, this must be
4072                  * done after the TBI_ACCEPT workaround above */
4073                 length -= 4;
4074
4075                 /* probably a little skewed due to removing CRC */
4076                 total_rx_bytes += length;
4077                 total_rx_packets++;
4078
4079                 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4080
4081                 skb_put(skb, length);
4082
4083                 /* Receive Checksum Offload */
4084                 e1000_rx_checksum(adapter,
4085                                   (u32)(status) |
4086                                   ((u32)(rx_desc->errors) << 24),
4087                                   le16_to_cpu(rx_desc->csum), skb);
4088
4089                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4090
4091 next_desc:
4092                 rx_desc->status = 0;
4093
4094                 /* return some buffers to hardware, one at a time is too slow */
4095                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4096                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4097                         cleaned_count = 0;
4098                 }
4099
4100                 /* use prefetched values */
4101                 rx_desc = next_rxd;
4102                 buffer_info = next_buffer;
4103         }
4104         rx_ring->next_to_clean = i;
4105
4106         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4107         if (cleaned_count)
4108                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4109
4110         adapter->total_rx_packets += total_rx_packets;
4111         adapter->total_rx_bytes += total_rx_bytes;
4112         netdev->stats.rx_bytes += total_rx_bytes;
4113         netdev->stats.rx_packets += total_rx_packets;
4114         return cleaned;
4115 }
4116
4117 /**
4118  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4119  * @adapter: address of board private structure
4120  * @rx_ring: pointer to receive ring structure
4121  * @cleaned_count: number of buffers to allocate this pass
4122  **/
4123
4124 static void
4125 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4126                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4127 {
4128         struct net_device *netdev = adapter->netdev;
4129         struct pci_dev *pdev = adapter->pdev;
4130         struct e1000_rx_desc *rx_desc;
4131         struct e1000_buffer *buffer_info;
4132         struct sk_buff *skb;
4133         unsigned int i;
4134         unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4135
4136         i = rx_ring->next_to_use;
4137         buffer_info = &rx_ring->buffer_info[i];
4138
4139         while (cleaned_count--) {
4140                 skb = buffer_info->skb;
4141                 if (skb) {
4142                         skb_trim(skb, 0);
4143                         goto check_page;
4144                 }
4145
4146                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4147                 if (unlikely(!skb)) {
4148                         /* Better luck next round */
4149                         adapter->alloc_rx_buff_failed++;
4150                         break;
4151                 }
4152
4153                 /* Fix for errata 23, can't cross 64kB boundary */
4154                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4155                         struct sk_buff *oldskb = skb;
4156                         e_err(rx_err, "skb align check failed: %u bytes at "
4157                               "%p\n", bufsz, skb->data);
4158                         /* Try again, without freeing the previous */
4159                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4160                         /* Failed allocation, critical failure */
4161                         if (!skb) {
4162                                 dev_kfree_skb(oldskb);
4163                                 adapter->alloc_rx_buff_failed++;
4164                                 break;
4165                         }
4166
4167                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4168                                 /* give up */
4169                                 dev_kfree_skb(skb);
4170                                 dev_kfree_skb(oldskb);
4171                                 break; /* while (cleaned_count--) */
4172                         }
4173
4174                         /* Use new allocation */
4175                         dev_kfree_skb(oldskb);
4176                 }
4177                 buffer_info->skb = skb;
4178                 buffer_info->length = adapter->rx_buffer_len;
4179 check_page:
4180                 /* allocate a new page if necessary */
4181                 if (!buffer_info->page) {
4182                         buffer_info->page = alloc_page(GFP_ATOMIC);
4183                         if (unlikely(!buffer_info->page)) {
4184                                 adapter->alloc_rx_buff_failed++;
4185                                 break;
4186                         }
4187                 }
4188
4189                 if (!buffer_info->dma) {
4190                         buffer_info->dma = dma_map_page(&pdev->dev,
4191                                                         buffer_info->page, 0,
4192                                                         buffer_info->length,
4193                                                         DMA_FROM_DEVICE);
4194                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4195                                 put_page(buffer_info->page);
4196                                 dev_kfree_skb(skb);
4197                                 buffer_info->page = NULL;
4198                                 buffer_info->skb = NULL;
4199                                 buffer_info->dma = 0;
4200                                 adapter->alloc_rx_buff_failed++;
4201                                 break; /* while !buffer_info->skb */
4202                         }
4203                 }
4204
4205                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4206                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4207
4208                 if (unlikely(++i == rx_ring->count))
4209                         i = 0;
4210                 buffer_info = &rx_ring->buffer_info[i];
4211         }
4212
4213         if (likely(rx_ring->next_to_use != i)) {
4214                 rx_ring->next_to_use = i;
4215                 if (unlikely(i-- == 0))
4216                         i = (rx_ring->count - 1);
4217
4218                 /* Force memory writes to complete before letting h/w
4219                  * know there are new descriptors to fetch.  (Only
4220                  * applicable for weak-ordered memory model archs,
4221                  * such as IA-64). */
4222                 wmb();
4223                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4224         }
4225 }
4226
4227 /**
4228  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4229  * @adapter: address of board private structure
4230  **/
4231
4232 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4233                                    struct e1000_rx_ring *rx_ring,
4234                                    int cleaned_count)
4235 {
4236         struct e1000_hw *hw = &adapter->hw;
4237         struct net_device *netdev = adapter->netdev;
4238         struct pci_dev *pdev = adapter->pdev;
4239         struct e1000_rx_desc *rx_desc;
4240         struct e1000_buffer *buffer_info;
4241         struct sk_buff *skb;
4242         unsigned int i;
4243         unsigned int bufsz = adapter->rx_buffer_len;
4244
4245         i = rx_ring->next_to_use;
4246         buffer_info = &rx_ring->buffer_info[i];
4247
4248         while (cleaned_count--) {
4249                 skb = buffer_info->skb;
4250                 if (skb) {
4251                         skb_trim(skb, 0);
4252                         goto map_skb;
4253                 }
4254
4255                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4256                 if (unlikely(!skb)) {
4257                         /* Better luck next round */
4258                         adapter->alloc_rx_buff_failed++;
4259                         break;
4260                 }
4261
4262                 /* Fix for errata 23, can't cross 64kB boundary */
4263                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4264                         struct sk_buff *oldskb = skb;
4265                         e_err(rx_err, "skb align check failed: %u bytes at "
4266                               "%p\n", bufsz, skb->data);
4267                         /* Try again, without freeing the previous */
4268                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4269                         /* Failed allocation, critical failure */
4270                         if (!skb) {
4271                                 dev_kfree_skb(oldskb);
4272                                 adapter->alloc_rx_buff_failed++;
4273                                 break;
4274                         }
4275
4276                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4277                                 /* give up */
4278                                 dev_kfree_skb(skb);
4279                                 dev_kfree_skb(oldskb);
4280                                 adapter->alloc_rx_buff_failed++;
4281                                 break; /* while !buffer_info->skb */
4282                         }
4283
4284                         /* Use new allocation */
4285                         dev_kfree_skb(oldskb);
4286                 }
4287                 buffer_info->skb = skb;
4288                 buffer_info->length = adapter->rx_buffer_len;
4289 map_skb:
4290                 buffer_info->dma = dma_map_single(&pdev->dev,
4291                                                   skb->data,
4292                                                   buffer_info->length,
4293                                                   DMA_FROM_DEVICE);
4294                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4295                         dev_kfree_skb(skb);
4296                         buffer_info->skb = NULL;
4297                         buffer_info->dma = 0;
4298                         adapter->alloc_rx_buff_failed++;
4299                         break; /* while !buffer_info->skb */
4300                 }
4301
4302                 /*
4303                  * XXX if it was allocated cleanly it will never map to a
4304                  * boundary crossing
4305                  */
4306
4307                 /* Fix for errata 23, can't cross 64kB boundary */
4308                 if (!e1000_check_64k_bound(adapter,
4309                                         (void *)(unsigned long)buffer_info->dma,
4310                                         adapter->rx_buffer_len)) {
4311                         e_err(rx_err, "dma align check failed: %u bytes at "
4312                               "%p\n", adapter->rx_buffer_len,
4313                               (void *)(unsigned long)buffer_info->dma);
4314                         dev_kfree_skb(skb);
4315                         buffer_info->skb = NULL;
4316
4317                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4318                                          adapter->rx_buffer_len,
4319                                          DMA_FROM_DEVICE);
4320                         buffer_info->dma = 0;
4321
4322                         adapter->alloc_rx_buff_failed++;
4323                         break; /* while !buffer_info->skb */
4324                 }
4325                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4326                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4327
4328                 if (unlikely(++i == rx_ring->count))
4329                         i = 0;
4330                 buffer_info = &rx_ring->buffer_info[i];
4331         }
4332
4333         if (likely(rx_ring->next_to_use != i)) {
4334                 rx_ring->next_to_use = i;
4335                 if (unlikely(i-- == 0))
4336                         i = (rx_ring->count - 1);
4337
4338                 /* Force memory writes to complete before letting h/w
4339                  * know there are new descriptors to fetch.  (Only
4340                  * applicable for weak-ordered memory model archs,
4341                  * such as IA-64). */
4342                 wmb();
4343                 writel(i, hw->hw_addr + rx_ring->rdt);
4344         }
4345 }
4346
4347 /**
4348  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4349  * @adapter:
4350  **/
4351
4352 static void e1000_smartspeed(struct e1000_adapter *adapter)
4353 {
4354         struct e1000_hw *hw = &adapter->hw;
4355         u16 phy_status;
4356         u16 phy_ctrl;
4357
4358         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4359            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4360                 return;
4361
4362         if (adapter->smartspeed == 0) {
4363                 /* If Master/Slave config fault is asserted twice,
4364                  * we assume back-to-back */
4365                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4366                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4367                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4368                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4369                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4370                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4371                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4372                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4373                                             phy_ctrl);
4374                         adapter->smartspeed++;
4375                         if (!e1000_phy_setup_autoneg(hw) &&
4376                            !e1000_read_phy_reg(hw, PHY_CTRL,
4377                                                &phy_ctrl)) {
4378                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4379                                              MII_CR_RESTART_AUTO_NEG);
4380                                 e1000_write_phy_reg(hw, PHY_CTRL,
4381                                                     phy_ctrl);
4382                         }
4383                 }
4384                 return;
4385         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4386                 /* If still no link, perhaps using 2/3 pair cable */
4387                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4388                 phy_ctrl |= CR_1000T_MS_ENABLE;
4389                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4390                 if (!e1000_phy_setup_autoneg(hw) &&
4391                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4392                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4393                                      MII_CR_RESTART_AUTO_NEG);
4394                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4395                 }
4396         }
4397         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4398         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4399                 adapter->smartspeed = 0;
4400 }
4401
4402 /**
4403  * e1000_ioctl -
4404  * @netdev:
4405  * @ifreq:
4406  * @cmd:
4407  **/
4408
4409 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4410 {
4411         switch (cmd) {
4412         case SIOCGMIIPHY:
4413         case SIOCGMIIREG:
4414         case SIOCSMIIREG:
4415                 return e1000_mii_ioctl(netdev, ifr, cmd);
4416         default:
4417                 return -EOPNOTSUPP;
4418         }
4419 }
4420
4421 /**
4422  * e1000_mii_ioctl -
4423  * @netdev:
4424  * @ifreq:
4425  * @cmd:
4426  **/
4427
4428 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4429                            int cmd)
4430 {
4431         struct e1000_adapter *adapter = netdev_priv(netdev);
4432         struct e1000_hw *hw = &adapter->hw;
4433         struct mii_ioctl_data *data = if_mii(ifr);
4434         int retval;
4435         u16 mii_reg;
4436         unsigned long flags;
4437
4438         if (hw->media_type != e1000_media_type_copper)
4439                 return -EOPNOTSUPP;
4440
4441         switch (cmd) {
4442         case SIOCGMIIPHY:
4443                 data->phy_id = hw->phy_addr;
4444                 break;
4445         case SIOCGMIIREG:
4446                 spin_lock_irqsave(&adapter->stats_lock, flags);
4447                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4448                                    &data->val_out)) {
4449                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4450                         return -EIO;
4451                 }
4452                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4453                 break;
4454         case SIOCSMIIREG:
4455                 if (data->reg_num & ~(0x1F))
4456                         return -EFAULT;
4457                 mii_reg = data->val_in;
4458                 spin_lock_irqsave(&adapter->stats_lock, flags);
4459                 if (e1000_write_phy_reg(hw, data->reg_num,
4460                                         mii_reg)) {
4461                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4462                         return -EIO;
4463                 }
4464                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4465                 if (hw->media_type == e1000_media_type_copper) {
4466                         switch (data->reg_num) {
4467                         case PHY_CTRL:
4468                                 if (mii_reg & MII_CR_POWER_DOWN)
4469                                         break;
4470                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4471                                         hw->autoneg = 1;
4472                                         hw->autoneg_advertised = 0x2F;
4473                                 } else {
4474                                         u32 speed;
4475                                         if (mii_reg & 0x40)
4476                                                 speed = SPEED_1000;
4477                                         else if (mii_reg & 0x2000)
4478                                                 speed = SPEED_100;
4479                                         else
4480                                                 speed = SPEED_10;
4481                                         retval = e1000_set_spd_dplx(
4482                                                 adapter, speed,
4483                                                 ((mii_reg & 0x100)
4484                                                  ? DUPLEX_FULL :
4485                                                  DUPLEX_HALF));
4486                                         if (retval)
4487                                                 return retval;
4488                                 }
4489                                 if (netif_running(adapter->netdev))
4490                                         e1000_reinit_locked(adapter);
4491                                 else
4492                                         e1000_reset(adapter);
4493                                 break;
4494                         case M88E1000_PHY_SPEC_CTRL:
4495                         case M88E1000_EXT_PHY_SPEC_CTRL:
4496                                 if (e1000_phy_reset(hw))
4497                                         return -EIO;
4498                                 break;
4499                         }
4500                 } else {
4501                         switch (data->reg_num) {
4502                         case PHY_CTRL:
4503                                 if (mii_reg & MII_CR_POWER_DOWN)
4504                                         break;
4505                                 if (netif_running(adapter->netdev))
4506                                         e1000_reinit_locked(adapter);
4507                                 else
4508                                         e1000_reset(adapter);
4509                                 break;
4510                         }
4511                 }
4512                 break;
4513         default:
4514                 return -EOPNOTSUPP;
4515         }
4516         return E1000_SUCCESS;
4517 }
4518
4519 void e1000_pci_set_mwi(struct e1000_hw *hw)
4520 {
4521         struct e1000_adapter *adapter = hw->back;
4522         int ret_val = pci_set_mwi(adapter->pdev);
4523
4524         if (ret_val)
4525                 e_err(probe, "Error in setting MWI\n");
4526 }
4527
4528 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4529 {
4530         struct e1000_adapter *adapter = hw->back;
4531
4532         pci_clear_mwi(adapter->pdev);
4533 }
4534
4535 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4536 {
4537         struct e1000_adapter *adapter = hw->back;
4538         return pcix_get_mmrbc(adapter->pdev);
4539 }
4540
4541 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4542 {
4543         struct e1000_adapter *adapter = hw->back;
4544         pcix_set_mmrbc(adapter->pdev, mmrbc);
4545 }
4546
4547 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4548 {
4549         outl(value, port);
4550 }
4551
4552 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4553 {
4554         u16 vid;
4555
4556         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4557                 return true;
4558         return false;
4559 }
4560
4561 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4562                                      bool filter_on)
4563 {
4564         struct e1000_hw *hw = &adapter->hw;
4565         u32 rctl;
4566
4567         if (!test_bit(__E1000_DOWN, &adapter->flags))
4568                 e1000_irq_disable(adapter);
4569
4570         if (filter_on) {
4571                 /* enable VLAN receive filtering */
4572                 rctl = er32(RCTL);
4573                 rctl &= ~E1000_RCTL_CFIEN;
4574                 if (!(adapter->netdev->flags & IFF_PROMISC))
4575                         rctl |= E1000_RCTL_VFE;
4576                 ew32(RCTL, rctl);
4577                 e1000_update_mng_vlan(adapter);
4578         } else {
4579                 /* disable VLAN receive filtering */
4580                 rctl = er32(RCTL);
4581                 rctl &= ~E1000_RCTL_VFE;
4582                 ew32(RCTL, rctl);
4583         }
4584
4585         if (!test_bit(__E1000_DOWN, &adapter->flags))
4586                 e1000_irq_enable(adapter);
4587 }
4588
4589 static void e1000_vlan_mode(struct net_device *netdev, u32 features)
4590 {
4591         struct e1000_adapter *adapter = netdev_priv(netdev);
4592         struct e1000_hw *hw = &adapter->hw;
4593         u32 ctrl;
4594
4595         if (!test_bit(__E1000_DOWN, &adapter->flags))
4596                 e1000_irq_disable(adapter);
4597
4598         ctrl = er32(CTRL);
4599         if (features & NETIF_F_HW_VLAN_RX) {
4600                 /* enable VLAN tag insert/strip */
4601                 ctrl |= E1000_CTRL_VME;
4602         } else {
4603                 /* disable VLAN tag insert/strip */
4604                 ctrl &= ~E1000_CTRL_VME;
4605         }
4606         ew32(CTRL, ctrl);
4607
4608         if (!test_bit(__E1000_DOWN, &adapter->flags))
4609                 e1000_irq_enable(adapter);
4610 }
4611
4612 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4613 {
4614         struct e1000_adapter *adapter = netdev_priv(netdev);
4615         struct e1000_hw *hw = &adapter->hw;
4616         u32 vfta, index;
4617
4618         if ((hw->mng_cookie.status &
4619              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4620             (vid == adapter->mng_vlan_id))
4621                 return;
4622
4623         if (!e1000_vlan_used(adapter))
4624                 e1000_vlan_filter_on_off(adapter, true);
4625
4626         /* add VID to filter table */
4627         index = (vid >> 5) & 0x7F;
4628         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4629         vfta |= (1 << (vid & 0x1F));
4630         e1000_write_vfta(hw, index, vfta);
4631
4632         set_bit(vid, adapter->active_vlans);
4633 }
4634
4635 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4636 {
4637         struct e1000_adapter *adapter = netdev_priv(netdev);
4638         struct e1000_hw *hw = &adapter->hw;
4639         u32 vfta, index;
4640
4641         if (!test_bit(__E1000_DOWN, &adapter->flags))
4642                 e1000_irq_disable(adapter);
4643         if (!test_bit(__E1000_DOWN, &adapter->flags))
4644                 e1000_irq_enable(adapter);
4645
4646         /* remove VID from filter table */
4647         index = (vid >> 5) & 0x7F;
4648         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4649         vfta &= ~(1 << (vid & 0x1F));
4650         e1000_write_vfta(hw, index, vfta);
4651
4652         clear_bit(vid, adapter->active_vlans);
4653
4654         if (!e1000_vlan_used(adapter))
4655                 e1000_vlan_filter_on_off(adapter, false);
4656 }
4657
4658 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4659 {
4660         u16 vid;
4661
4662         if (!e1000_vlan_used(adapter))
4663                 return;
4664
4665         e1000_vlan_filter_on_off(adapter, true);
4666         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4667                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4668 }
4669
4670 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4671 {
4672         struct e1000_hw *hw = &adapter->hw;
4673
4674         hw->autoneg = 0;
4675
4676         /* Make sure dplx is at most 1 bit and lsb of speed is not set
4677          * for the switch() below to work */
4678         if ((spd & 1) || (dplx & ~1))
4679                 goto err_inval;
4680
4681         /* Fiber NICs only allow 1000 gbps Full duplex */
4682         if ((hw->media_type == e1000_media_type_fiber) &&
4683             spd != SPEED_1000 &&
4684             dplx != DUPLEX_FULL)
4685                 goto err_inval;
4686
4687         switch (spd + dplx) {
4688         case SPEED_10 + DUPLEX_HALF:
4689                 hw->forced_speed_duplex = e1000_10_half;
4690                 break;
4691         case SPEED_10 + DUPLEX_FULL:
4692                 hw->forced_speed_duplex = e1000_10_full;
4693                 break;
4694         case SPEED_100 + DUPLEX_HALF:
4695                 hw->forced_speed_duplex = e1000_100_half;
4696                 break;
4697         case SPEED_100 + DUPLEX_FULL:
4698                 hw->forced_speed_duplex = e1000_100_full;
4699                 break;
4700         case SPEED_1000 + DUPLEX_FULL:
4701                 hw->autoneg = 1;
4702                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4703                 break;
4704         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4705         default:
4706                 goto err_inval;
4707         }
4708         return 0;
4709
4710 err_inval:
4711         e_err(probe, "Unsupported Speed/Duplex configuration\n");
4712         return -EINVAL;
4713 }
4714
4715 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4716 {
4717         struct net_device *netdev = pci_get_drvdata(pdev);
4718         struct e1000_adapter *adapter = netdev_priv(netdev);
4719         struct e1000_hw *hw = &adapter->hw;
4720         u32 ctrl, ctrl_ext, rctl, status;
4721         u32 wufc = adapter->wol;
4722 #ifdef CONFIG_PM
4723         int retval = 0;
4724 #endif
4725
4726         netif_device_detach(netdev);
4727
4728         if (netif_running(netdev)) {
4729                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4730                 e1000_down(adapter);
4731         }
4732
4733 #ifdef CONFIG_PM
4734         retval = pci_save_state(pdev);
4735         if (retval)
4736                 return retval;
4737 #endif
4738
4739         status = er32(STATUS);
4740         if (status & E1000_STATUS_LU)
4741                 wufc &= ~E1000_WUFC_LNKC;
4742
4743         if (wufc) {
4744                 e1000_setup_rctl(adapter);
4745                 e1000_set_rx_mode(netdev);
4746
4747                 /* turn on all-multi mode if wake on multicast is enabled */
4748                 if (wufc & E1000_WUFC_MC) {
4749                         rctl = er32(RCTL);
4750                         rctl |= E1000_RCTL_MPE;
4751                         ew32(RCTL, rctl);
4752                 }
4753
4754                 if (hw->mac_type >= e1000_82540) {
4755                         ctrl = er32(CTRL);
4756                         /* advertise wake from D3Cold */
4757                         #define E1000_CTRL_ADVD3WUC 0x00100000
4758                         /* phy power management enable */
4759                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4760                         ctrl |= E1000_CTRL_ADVD3WUC |
4761                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4762                         ew32(CTRL, ctrl);
4763                 }
4764
4765                 if (hw->media_type == e1000_media_type_fiber ||
4766                     hw->media_type == e1000_media_type_internal_serdes) {
4767                         /* keep the laser running in D3 */
4768                         ctrl_ext = er32(CTRL_EXT);
4769                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4770                         ew32(CTRL_EXT, ctrl_ext);
4771                 }
4772
4773                 ew32(WUC, E1000_WUC_PME_EN);
4774                 ew32(WUFC, wufc);
4775         } else {
4776                 ew32(WUC, 0);
4777                 ew32(WUFC, 0);
4778         }
4779
4780         e1000_release_manageability(adapter);
4781
4782         *enable_wake = !!wufc;
4783
4784         /* make sure adapter isn't asleep if manageability is enabled */
4785         if (adapter->en_mng_pt)
4786                 *enable_wake = true;
4787
4788         if (netif_running(netdev))
4789                 e1000_free_irq(adapter);
4790
4791         pci_disable_device(pdev);
4792
4793         return 0;
4794 }
4795
4796 #ifdef CONFIG_PM
4797 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4798 {
4799         int retval;
4800         bool wake;
4801
4802         retval = __e1000_shutdown(pdev, &wake);
4803         if (retval)
4804                 return retval;
4805
4806         if (wake) {
4807                 pci_prepare_to_sleep(pdev);
4808         } else {
4809                 pci_wake_from_d3(pdev, false);
4810                 pci_set_power_state(pdev, PCI_D3hot);
4811         }
4812
4813         return 0;
4814 }
4815
4816 static int e1000_resume(struct pci_dev *pdev)
4817 {
4818         struct net_device *netdev = pci_get_drvdata(pdev);
4819         struct e1000_adapter *adapter = netdev_priv(netdev);
4820         struct e1000_hw *hw = &adapter->hw;
4821         u32 err;
4822
4823         pci_set_power_state(pdev, PCI_D0);
4824         pci_restore_state(pdev);
4825         pci_save_state(pdev);
4826
4827         if (adapter->need_ioport)
4828                 err = pci_enable_device(pdev);
4829         else
4830                 err = pci_enable_device_mem(pdev);
4831         if (err) {
4832                 pr_err("Cannot enable PCI device from suspend\n");
4833                 return err;
4834         }
4835         pci_set_master(pdev);
4836
4837         pci_enable_wake(pdev, PCI_D3hot, 0);
4838         pci_enable_wake(pdev, PCI_D3cold, 0);
4839
4840         if (netif_running(netdev)) {
4841                 err = e1000_request_irq(adapter);
4842                 if (err)
4843                         return err;
4844         }
4845
4846         e1000_power_up_phy(adapter);
4847         e1000_reset(adapter);
4848         ew32(WUS, ~0);
4849
4850         e1000_init_manageability(adapter);
4851
4852         if (netif_running(netdev))
4853                 e1000_up(adapter);
4854
4855         netif_device_attach(netdev);
4856
4857         return 0;
4858 }
4859 #endif
4860
4861 static void e1000_shutdown(struct pci_dev *pdev)
4862 {
4863         bool wake;
4864
4865         __e1000_shutdown(pdev, &wake);
4866
4867         if (system_state == SYSTEM_POWER_OFF) {
4868                 pci_wake_from_d3(pdev, wake);
4869                 pci_set_power_state(pdev, PCI_D3hot);
4870         }
4871 }
4872
4873 #ifdef CONFIG_NET_POLL_CONTROLLER
4874 /*
4875  * Polling 'interrupt' - used by things like netconsole to send skbs
4876  * without having to re-enable interrupts. It's not called while
4877  * the interrupt routine is executing.
4878  */
4879 static void e1000_netpoll(struct net_device *netdev)
4880 {
4881         struct e1000_adapter *adapter = netdev_priv(netdev);
4882
4883         disable_irq(adapter->pdev->irq);
4884         e1000_intr(adapter->pdev->irq, netdev);
4885         enable_irq(adapter->pdev->irq);
4886 }
4887 #endif
4888
4889 /**
4890  * e1000_io_error_detected - called when PCI error is detected
4891  * @pdev: Pointer to PCI device
4892  * @state: The current pci connection state
4893  *
4894  * This function is called after a PCI bus error affecting
4895  * this device has been detected.
4896  */
4897 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4898                                                 pci_channel_state_t state)
4899 {
4900         struct net_device *netdev = pci_get_drvdata(pdev);
4901         struct e1000_adapter *adapter = netdev_priv(netdev);
4902
4903         netif_device_detach(netdev);
4904
4905         if (state == pci_channel_io_perm_failure)
4906                 return PCI_ERS_RESULT_DISCONNECT;
4907
4908         if (netif_running(netdev))
4909                 e1000_down(adapter);
4910         pci_disable_device(pdev);
4911
4912         /* Request a slot slot reset. */
4913         return PCI_ERS_RESULT_NEED_RESET;
4914 }
4915
4916 /**
4917  * e1000_io_slot_reset - called after the pci bus has been reset.
4918  * @pdev: Pointer to PCI device
4919  *
4920  * Restart the card from scratch, as if from a cold-boot. Implementation
4921  * resembles the first-half of the e1000_resume routine.
4922  */
4923 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4924 {
4925         struct net_device *netdev = pci_get_drvdata(pdev);
4926         struct e1000_adapter *adapter = netdev_priv(netdev);
4927         struct e1000_hw *hw = &adapter->hw;
4928         int err;
4929
4930         if (adapter->need_ioport)
4931                 err = pci_enable_device(pdev);
4932         else
4933                 err = pci_enable_device_mem(pdev);
4934         if (err) {
4935                 pr_err("Cannot re-enable PCI device after reset.\n");
4936                 return PCI_ERS_RESULT_DISCONNECT;
4937         }
4938         pci_set_master(pdev);
4939
4940         pci_enable_wake(pdev, PCI_D3hot, 0);
4941         pci_enable_wake(pdev, PCI_D3cold, 0);
4942
4943         e1000_reset(adapter);
4944         ew32(WUS, ~0);
4945
4946         return PCI_ERS_RESULT_RECOVERED;
4947 }
4948
4949 /**
4950  * e1000_io_resume - called when traffic can start flowing again.
4951  * @pdev: Pointer to PCI device
4952  *
4953  * This callback is called when the error recovery driver tells us that
4954  * its OK to resume normal operation. Implementation resembles the
4955  * second-half of the e1000_resume routine.
4956  */
4957 static void e1000_io_resume(struct pci_dev *pdev)
4958 {
4959         struct net_device *netdev = pci_get_drvdata(pdev);
4960         struct e1000_adapter *adapter = netdev_priv(netdev);
4961
4962         e1000_init_manageability(adapter);
4963
4964         if (netif_running(netdev)) {
4965                 if (e1000_up(adapter)) {
4966                         pr_info("can't bring device back up after reset\n");
4967                         return;
4968                 }
4969         }
4970
4971         netif_device_attach(netdev);
4972 }
4973
4974 /* e1000_main.c */