Merge branch 'upstream-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/linvil...
[pandora-kernel.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.15-k2"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x1049),
77         INTEL_E1000_ETHERNET_DEVICE(0x104A),
78         INTEL_E1000_ETHERNET_DEVICE(0x104B),
79         INTEL_E1000_ETHERNET_DEVICE(0x104C),
80         INTEL_E1000_ETHERNET_DEVICE(0x104D),
81         INTEL_E1000_ETHERNET_DEVICE(0x105E),
82         INTEL_E1000_ETHERNET_DEVICE(0x105F),
83         INTEL_E1000_ETHERNET_DEVICE(0x1060),
84         INTEL_E1000_ETHERNET_DEVICE(0x1075),
85         INTEL_E1000_ETHERNET_DEVICE(0x1076),
86         INTEL_E1000_ETHERNET_DEVICE(0x1077),
87         INTEL_E1000_ETHERNET_DEVICE(0x1078),
88         INTEL_E1000_ETHERNET_DEVICE(0x1079),
89         INTEL_E1000_ETHERNET_DEVICE(0x107A),
90         INTEL_E1000_ETHERNET_DEVICE(0x107B),
91         INTEL_E1000_ETHERNET_DEVICE(0x107C),
92         INTEL_E1000_ETHERNET_DEVICE(0x107D),
93         INTEL_E1000_ETHERNET_DEVICE(0x107E),
94         INTEL_E1000_ETHERNET_DEVICE(0x107F),
95         INTEL_E1000_ETHERNET_DEVICE(0x108A),
96         INTEL_E1000_ETHERNET_DEVICE(0x108B),
97         INTEL_E1000_ETHERNET_DEVICE(0x108C),
98         INTEL_E1000_ETHERNET_DEVICE(0x1096),
99         INTEL_E1000_ETHERNET_DEVICE(0x1098),
100         INTEL_E1000_ETHERNET_DEVICE(0x1099),
101         INTEL_E1000_ETHERNET_DEVICE(0x109A),
102         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
104         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
105         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
106         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
107         INTEL_E1000_ETHERNET_DEVICE(0x10BC),
108         INTEL_E1000_ETHERNET_DEVICE(0x10C4),
109         INTEL_E1000_ETHERNET_DEVICE(0x10C5),
110         /* required last entry */
111         {0,}
112 };
113
114 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
115
116 int e1000_up(struct e1000_adapter *adapter);
117 void e1000_down(struct e1000_adapter *adapter);
118 void e1000_reinit_locked(struct e1000_adapter *adapter);
119 void e1000_reset(struct e1000_adapter *adapter);
120 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
121 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
122 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
123 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
124 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
125 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
126                              struct e1000_tx_ring *txdr);
127 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
128                              struct e1000_rx_ring *rxdr);
129 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
130                              struct e1000_tx_ring *tx_ring);
131 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
132                              struct e1000_rx_ring *rx_ring);
133 void e1000_update_stats(struct e1000_adapter *adapter);
134
135 static int e1000_init_module(void);
136 static void e1000_exit_module(void);
137 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
138 static void __devexit e1000_remove(struct pci_dev *pdev);
139 static int e1000_alloc_queues(struct e1000_adapter *adapter);
140 static int e1000_sw_init(struct e1000_adapter *adapter);
141 static int e1000_open(struct net_device *netdev);
142 static int e1000_close(struct net_device *netdev);
143 static void e1000_configure_tx(struct e1000_adapter *adapter);
144 static void e1000_configure_rx(struct e1000_adapter *adapter);
145 static void e1000_setup_rctl(struct e1000_adapter *adapter);
146 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
147 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
148 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
149                                 struct e1000_tx_ring *tx_ring);
150 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
151                                 struct e1000_rx_ring *rx_ring);
152 static void e1000_set_multi(struct net_device *netdev);
153 static void e1000_update_phy_info(unsigned long data);
154 static void e1000_watchdog(unsigned long data);
155 static void e1000_82547_tx_fifo_stall(unsigned long data);
156 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
157 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
158 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
159 static int e1000_set_mac(struct net_device *netdev, void *p);
160 static irqreturn_t e1000_intr(int irq, void *data);
161 #ifdef CONFIG_PCI_MSI
162 static irqreturn_t e1000_intr_msi(int irq, void *data);
163 #endif
164 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
165                                     struct e1000_tx_ring *tx_ring);
166 #ifdef CONFIG_E1000_NAPI
167 static int e1000_clean(struct net_device *poll_dev, int *budget);
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169                                     struct e1000_rx_ring *rx_ring,
170                                     int *work_done, int work_to_do);
171 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
172                                        struct e1000_rx_ring *rx_ring,
173                                        int *work_done, int work_to_do);
174 #else
175 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
176                                     struct e1000_rx_ring *rx_ring);
177 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
178                                        struct e1000_rx_ring *rx_ring);
179 #endif
180 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
181                                    struct e1000_rx_ring *rx_ring,
182                                    int cleaned_count);
183 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
184                                       struct e1000_rx_ring *rx_ring,
185                                       int cleaned_count);
186 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
187 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
188                            int cmd);
189 void e1000_set_ethtool_ops(struct net_device *netdev);
190 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
191 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
192 static void e1000_tx_timeout(struct net_device *dev);
193 static void e1000_reset_task(struct work_struct *work);
194 static void e1000_smartspeed(struct e1000_adapter *adapter);
195 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
196                                        struct sk_buff *skb);
197
198 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
199 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
200 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
201 static void e1000_restore_vlan(struct e1000_adapter *adapter);
202
203 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
204 #ifdef CONFIG_PM
205 static int e1000_resume(struct pci_dev *pdev);
206 #endif
207 static void e1000_shutdown(struct pci_dev *pdev);
208
209 #ifdef CONFIG_NET_POLL_CONTROLLER
210 /* for netdump / net console */
211 static void e1000_netpoll (struct net_device *netdev);
212 #endif
213
214 extern void e1000_check_options(struct e1000_adapter *adapter);
215
216 #define COPYBREAK_DEFAULT 256
217 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
218 module_param(copybreak, uint, 0644);
219 MODULE_PARM_DESC(copybreak,
220         "Maximum size of packet that is copied to a new buffer on receive");
221
222 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
223                      pci_channel_state_t state);
224 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
225 static void e1000_io_resume(struct pci_dev *pdev);
226
227 static struct pci_error_handlers e1000_err_handler = {
228         .error_detected = e1000_io_error_detected,
229         .slot_reset = e1000_io_slot_reset,
230         .resume = e1000_io_resume,
231 };
232
233 static struct pci_driver e1000_driver = {
234         .name     = e1000_driver_name,
235         .id_table = e1000_pci_tbl,
236         .probe    = e1000_probe,
237         .remove   = __devexit_p(e1000_remove),
238 #ifdef CONFIG_PM
239         /* Power Managment Hooks */
240         .suspend  = e1000_suspend,
241         .resume   = e1000_resume,
242 #endif
243         .shutdown = e1000_shutdown,
244         .err_handler = &e1000_err_handler
245 };
246
247 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
248 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
249 MODULE_LICENSE("GPL");
250 MODULE_VERSION(DRV_VERSION);
251
252 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
253 module_param(debug, int, 0);
254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
256 /**
257  * e1000_init_module - Driver Registration Routine
258  *
259  * e1000_init_module is the first routine called when the driver is
260  * loaded. All it does is register with the PCI subsystem.
261  **/
262
263 static int __init
264 e1000_init_module(void)
265 {
266         int ret;
267         printk(KERN_INFO "%s - version %s\n",
268                e1000_driver_string, e1000_driver_version);
269
270         printk(KERN_INFO "%s\n", e1000_copyright);
271
272         ret = pci_register_driver(&e1000_driver);
273         if (copybreak != COPYBREAK_DEFAULT) {
274                 if (copybreak == 0)
275                         printk(KERN_INFO "e1000: copybreak disabled\n");
276                 else
277                         printk(KERN_INFO "e1000: copybreak enabled for "
278                                "packets <= %u bytes\n", copybreak);
279         }
280         return ret;
281 }
282
283 module_init(e1000_init_module);
284
285 /**
286  * e1000_exit_module - Driver Exit Cleanup Routine
287  *
288  * e1000_exit_module is called just before the driver is removed
289  * from memory.
290  **/
291
292 static void __exit
293 e1000_exit_module(void)
294 {
295         pci_unregister_driver(&e1000_driver);
296 }
297
298 module_exit(e1000_exit_module);
299
300 static int e1000_request_irq(struct e1000_adapter *adapter)
301 {
302         struct net_device *netdev = adapter->netdev;
303         int flags, err = 0;
304
305         flags = IRQF_SHARED;
306 #ifdef CONFIG_PCI_MSI
307         if (adapter->hw.mac_type >= e1000_82571) {
308                 adapter->have_msi = TRUE;
309                 if ((err = pci_enable_msi(adapter->pdev))) {
310                         DPRINTK(PROBE, ERR,
311                          "Unable to allocate MSI interrupt Error: %d\n", err);
312                         adapter->have_msi = FALSE;
313                 }
314         }
315         if (adapter->have_msi) {
316                 flags &= ~IRQF_SHARED;
317                 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, flags,
318                                   netdev->name, netdev);
319                 if (err)
320                         DPRINTK(PROBE, ERR,
321                                "Unable to allocate interrupt Error: %d\n", err);
322         } else
323 #endif
324         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
325                                netdev->name, netdev)))
326                 DPRINTK(PROBE, ERR,
327                         "Unable to allocate interrupt Error: %d\n", err);
328
329         return err;
330 }
331
332 static void e1000_free_irq(struct e1000_adapter *adapter)
333 {
334         struct net_device *netdev = adapter->netdev;
335
336         free_irq(adapter->pdev->irq, netdev);
337
338 #ifdef CONFIG_PCI_MSI
339         if (adapter->have_msi)
340                 pci_disable_msi(adapter->pdev);
341 #endif
342 }
343
344 /**
345  * e1000_irq_disable - Mask off interrupt generation on the NIC
346  * @adapter: board private structure
347  **/
348
349 static void
350 e1000_irq_disable(struct e1000_adapter *adapter)
351 {
352         atomic_inc(&adapter->irq_sem);
353         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
354         E1000_WRITE_FLUSH(&adapter->hw);
355         synchronize_irq(adapter->pdev->irq);
356 }
357
358 /**
359  * e1000_irq_enable - Enable default interrupt generation settings
360  * @adapter: board private structure
361  **/
362
363 static void
364 e1000_irq_enable(struct e1000_adapter *adapter)
365 {
366         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
367                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
368                 E1000_WRITE_FLUSH(&adapter->hw);
369         }
370 }
371
372 static void
373 e1000_update_mng_vlan(struct e1000_adapter *adapter)
374 {
375         struct net_device *netdev = adapter->netdev;
376         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
377         uint16_t old_vid = adapter->mng_vlan_id;
378         if (adapter->vlgrp) {
379                 if (!adapter->vlgrp->vlan_devices[vid]) {
380                         if (adapter->hw.mng_cookie.status &
381                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
382                                 e1000_vlan_rx_add_vid(netdev, vid);
383                                 adapter->mng_vlan_id = vid;
384                         } else
385                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
386
387                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
388                                         (vid != old_vid) &&
389                                         !adapter->vlgrp->vlan_devices[old_vid])
390                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
391                 } else
392                         adapter->mng_vlan_id = vid;
393         }
394 }
395
396 /**
397  * e1000_release_hw_control - release control of the h/w to f/w
398  * @adapter: address of board private structure
399  *
400  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
401  * For ASF and Pass Through versions of f/w this means that the
402  * driver is no longer loaded. For AMT version (only with 82573) i
403  * of the f/w this means that the network i/f is closed.
404  *
405  **/
406
407 static void
408 e1000_release_hw_control(struct e1000_adapter *adapter)
409 {
410         uint32_t ctrl_ext;
411         uint32_t swsm;
412         uint32_t extcnf;
413
414         /* Let firmware taken over control of h/w */
415         switch (adapter->hw.mac_type) {
416         case e1000_82571:
417         case e1000_82572:
418         case e1000_80003es2lan:
419                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
420                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
421                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
422                 break;
423         case e1000_82573:
424                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
425                 E1000_WRITE_REG(&adapter->hw, SWSM,
426                                 swsm & ~E1000_SWSM_DRV_LOAD);
427         case e1000_ich8lan:
428                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
429                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
430                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
431                 break;
432         default:
433                 break;
434         }
435 }
436
437 /**
438  * e1000_get_hw_control - get control of the h/w from f/w
439  * @adapter: address of board private structure
440  *
441  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
442  * For ASF and Pass Through versions of f/w this means that
443  * the driver is loaded. For AMT version (only with 82573)
444  * of the f/w this means that the network i/f is open.
445  *
446  **/
447
448 static void
449 e1000_get_hw_control(struct e1000_adapter *adapter)
450 {
451         uint32_t ctrl_ext;
452         uint32_t swsm;
453         uint32_t extcnf;
454
455         /* Let firmware know the driver has taken over */
456         switch (adapter->hw.mac_type) {
457         case e1000_82571:
458         case e1000_82572:
459         case e1000_80003es2lan:
460                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
461                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
462                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
463                 break;
464         case e1000_82573:
465                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
466                 E1000_WRITE_REG(&adapter->hw, SWSM,
467                                 swsm | E1000_SWSM_DRV_LOAD);
468                 break;
469         case e1000_ich8lan:
470                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
471                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
472                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
473                 break;
474         default:
475                 break;
476         }
477 }
478
479 static void
480 e1000_init_manageability(struct e1000_adapter *adapter)
481 {
482         if (adapter->en_mng_pt) {
483                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
484
485                 /* disable hardware interception of ARP */
486                 manc &= ~(E1000_MANC_ARP_EN);
487
488                 /* enable receiving management packets to the host */
489                 /* this will probably generate destination unreachable messages
490                  * from the host OS, but the packets will be handled on SMBUS */
491                 if (adapter->hw.has_manc2h) {
492                         uint32_t manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
493
494                         manc |= E1000_MANC_EN_MNG2HOST;
495 #define E1000_MNG2HOST_PORT_623 (1 << 5)
496 #define E1000_MNG2HOST_PORT_664 (1 << 6)
497                         manc2h |= E1000_MNG2HOST_PORT_623;
498                         manc2h |= E1000_MNG2HOST_PORT_664;
499                         E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
500                 }
501
502                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
503         }
504 }
505
506 static void
507 e1000_release_manageability(struct e1000_adapter *adapter)
508 {
509         if (adapter->en_mng_pt) {
510                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
511
512                 /* re-enable hardware interception of ARP */
513                 manc |= E1000_MANC_ARP_EN;
514
515                 if (adapter->hw.has_manc2h)
516                         manc &= ~E1000_MANC_EN_MNG2HOST;
517
518                 /* don't explicitly have to mess with MANC2H since
519                  * MANC has an enable disable that gates MANC2H */
520
521                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
522         }
523 }
524
525 int
526 e1000_up(struct e1000_adapter *adapter)
527 {
528         struct net_device *netdev = adapter->netdev;
529         int i;
530
531         /* hardware has been reset, we need to reload some things */
532
533         e1000_set_multi(netdev);
534
535         e1000_restore_vlan(adapter);
536         e1000_init_manageability(adapter);
537
538         e1000_configure_tx(adapter);
539         e1000_setup_rctl(adapter);
540         e1000_configure_rx(adapter);
541         /* call E1000_DESC_UNUSED which always leaves
542          * at least 1 descriptor unused to make sure
543          * next_to_use != next_to_clean */
544         for (i = 0; i < adapter->num_rx_queues; i++) {
545                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
546                 adapter->alloc_rx_buf(adapter, ring,
547                                       E1000_DESC_UNUSED(ring));
548         }
549
550         adapter->tx_queue_len = netdev->tx_queue_len;
551
552 #ifdef CONFIG_E1000_NAPI
553         netif_poll_enable(netdev);
554 #endif
555         e1000_irq_enable(adapter);
556
557         clear_bit(__E1000_DOWN, &adapter->flags);
558
559         /* fire a link change interrupt to start the watchdog */
560         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
561         return 0;
562 }
563
564 /**
565  * e1000_power_up_phy - restore link in case the phy was powered down
566  * @adapter: address of board private structure
567  *
568  * The phy may be powered down to save power and turn off link when the
569  * driver is unloaded and wake on lan is not enabled (among others)
570  * *** this routine MUST be followed by a call to e1000_reset ***
571  *
572  **/
573
574 void e1000_power_up_phy(struct e1000_adapter *adapter)
575 {
576         uint16_t mii_reg = 0;
577
578         /* Just clear the power down bit to wake the phy back up */
579         if (adapter->hw.media_type == e1000_media_type_copper) {
580                 /* according to the manual, the phy will retain its
581                  * settings across a power-down/up cycle */
582                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
583                 mii_reg &= ~MII_CR_POWER_DOWN;
584                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
585         }
586 }
587
588 static void e1000_power_down_phy(struct e1000_adapter *adapter)
589 {
590         /* Power down the PHY so no link is implied when interface is down *
591          * The PHY cannot be powered down if any of the following is TRUE *
592          * (a) WoL is enabled
593          * (b) AMT is active
594          * (c) SoL/IDER session is active */
595         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
596            adapter->hw.media_type == e1000_media_type_copper) {
597                 uint16_t mii_reg = 0;
598
599                 switch (adapter->hw.mac_type) {
600                 case e1000_82540:
601                 case e1000_82545:
602                 case e1000_82545_rev_3:
603                 case e1000_82546:
604                 case e1000_82546_rev_3:
605                 case e1000_82541:
606                 case e1000_82541_rev_2:
607                 case e1000_82547:
608                 case e1000_82547_rev_2:
609                         if (E1000_READ_REG(&adapter->hw, MANC) &
610                             E1000_MANC_SMBUS_EN)
611                                 goto out;
612                         break;
613                 case e1000_82571:
614                 case e1000_82572:
615                 case e1000_82573:
616                 case e1000_80003es2lan:
617                 case e1000_ich8lan:
618                         if (e1000_check_mng_mode(&adapter->hw) ||
619                             e1000_check_phy_reset_block(&adapter->hw))
620                                 goto out;
621                         break;
622                 default:
623                         goto out;
624                 }
625                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
626                 mii_reg |= MII_CR_POWER_DOWN;
627                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
628                 mdelay(1);
629         }
630 out:
631         return;
632 }
633
634 void
635 e1000_down(struct e1000_adapter *adapter)
636 {
637         struct net_device *netdev = adapter->netdev;
638
639         /* signal that we're down so the interrupt handler does not
640          * reschedule our watchdog timer */
641         set_bit(__E1000_DOWN, &adapter->flags);
642
643         e1000_irq_disable(adapter);
644
645         del_timer_sync(&adapter->tx_fifo_stall_timer);
646         del_timer_sync(&adapter->watchdog_timer);
647         del_timer_sync(&adapter->phy_info_timer);
648
649 #ifdef CONFIG_E1000_NAPI
650         netif_poll_disable(netdev);
651 #endif
652         netdev->tx_queue_len = adapter->tx_queue_len;
653         adapter->link_speed = 0;
654         adapter->link_duplex = 0;
655         netif_carrier_off(netdev);
656         netif_stop_queue(netdev);
657
658         e1000_reset(adapter);
659         e1000_clean_all_tx_rings(adapter);
660         e1000_clean_all_rx_rings(adapter);
661 }
662
663 void
664 e1000_reinit_locked(struct e1000_adapter *adapter)
665 {
666         WARN_ON(in_interrupt());
667         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
668                 msleep(1);
669         e1000_down(adapter);
670         e1000_up(adapter);
671         clear_bit(__E1000_RESETTING, &adapter->flags);
672 }
673
674 void
675 e1000_reset(struct e1000_adapter *adapter)
676 {
677         uint32_t pba = 0, tx_space, min_tx_space, min_rx_space;
678         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
679         boolean_t legacy_pba_adjust = FALSE;
680
681         /* Repartition Pba for greater than 9k mtu
682          * To take effect CTRL.RST is required.
683          */
684
685         switch (adapter->hw.mac_type) {
686         case e1000_82542_rev2_0:
687         case e1000_82542_rev2_1:
688         case e1000_82543:
689         case e1000_82544:
690         case e1000_82540:
691         case e1000_82541:
692         case e1000_82541_rev_2:
693                 legacy_pba_adjust = TRUE;
694                 pba = E1000_PBA_48K;
695                 break;
696         case e1000_82545:
697         case e1000_82545_rev_3:
698         case e1000_82546:
699         case e1000_82546_rev_3:
700                 pba = E1000_PBA_48K;
701                 break;
702         case e1000_82547:
703         case e1000_82547_rev_2:
704                 legacy_pba_adjust = TRUE;
705                 pba = E1000_PBA_30K;
706                 break;
707         case e1000_82571:
708         case e1000_82572:
709         case e1000_80003es2lan:
710                 pba = E1000_PBA_38K;
711                 break;
712         case e1000_82573:
713                 pba = E1000_PBA_20K;
714                 break;
715         case e1000_ich8lan:
716                 pba = E1000_PBA_8K;
717         case e1000_undefined:
718         case e1000_num_macs:
719                 break;
720         }
721
722         if (legacy_pba_adjust == TRUE) {
723                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
724                         pba -= 8; /* allocate more FIFO for Tx */
725
726                 if (adapter->hw.mac_type == e1000_82547) {
727                         adapter->tx_fifo_head = 0;
728                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
729                         adapter->tx_fifo_size =
730                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
731                         atomic_set(&adapter->tx_fifo_stall, 0);
732                 }
733         } else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
734                 /* adjust PBA for jumbo frames */
735                 E1000_WRITE_REG(&adapter->hw, PBA, pba);
736
737                 /* To maintain wire speed transmits, the Tx FIFO should be
738                  * large enough to accomodate two full transmit packets,
739                  * rounded up to the next 1KB and expressed in KB.  Likewise,
740                  * the Rx FIFO should be large enough to accomodate at least
741                  * one full receive packet and is similarly rounded up and
742                  * expressed in KB. */
743                 pba = E1000_READ_REG(&adapter->hw, PBA);
744                 /* upper 16 bits has Tx packet buffer allocation size in KB */
745                 tx_space = pba >> 16;
746                 /* lower 16 bits has Rx packet buffer allocation size in KB */
747                 pba &= 0xffff;
748                 /* don't include ethernet FCS because hardware appends/strips */
749                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
750                                VLAN_TAG_SIZE;
751                 min_tx_space = min_rx_space;
752                 min_tx_space *= 2;
753                 E1000_ROUNDUP(min_tx_space, 1024);
754                 min_tx_space >>= 10;
755                 E1000_ROUNDUP(min_rx_space, 1024);
756                 min_rx_space >>= 10;
757
758                 /* If current Tx allocation is less than the min Tx FIFO size,
759                  * and the min Tx FIFO size is less than the current Rx FIFO
760                  * allocation, take space away from current Rx allocation */
761                 if (tx_space < min_tx_space &&
762                     ((min_tx_space - tx_space) < pba)) {
763                         pba = pba - (min_tx_space - tx_space);
764
765                         /* PCI/PCIx hardware has PBA alignment constraints */
766                         switch (adapter->hw.mac_type) {
767                         case e1000_82545 ... e1000_82546_rev_3:
768                                 pba &= ~(E1000_PBA_8K - 1);
769                                 break;
770                         default:
771                                 break;
772                         }
773
774                         /* if short on rx space, rx wins and must trump tx
775                          * adjustment or use Early Receive if available */
776                         if (pba < min_rx_space) {
777                                 switch (adapter->hw.mac_type) {
778                                 case e1000_82573:
779                                         /* ERT enabled in e1000_configure_rx */
780                                         break;
781                                 default:
782                                         pba = min_rx_space;
783                                         break;
784                                 }
785                         }
786                 }
787         }
788
789         E1000_WRITE_REG(&adapter->hw, PBA, pba);
790
791         /* flow control settings */
792         /* Set the FC high water mark to 90% of the FIFO size.
793          * Required to clear last 3 LSB */
794         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
795         /* We can't use 90% on small FIFOs because the remainder
796          * would be less than 1 full frame.  In this case, we size
797          * it to allow at least a full frame above the high water
798          *  mark. */
799         if (pba < E1000_PBA_16K)
800                 fc_high_water_mark = (pba * 1024) - 1600;
801
802         adapter->hw.fc_high_water = fc_high_water_mark;
803         adapter->hw.fc_low_water = fc_high_water_mark - 8;
804         if (adapter->hw.mac_type == e1000_80003es2lan)
805                 adapter->hw.fc_pause_time = 0xFFFF;
806         else
807                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
808         adapter->hw.fc_send_xon = 1;
809         adapter->hw.fc = adapter->hw.original_fc;
810
811         /* Allow time for pending master requests to run */
812         e1000_reset_hw(&adapter->hw);
813         if (adapter->hw.mac_type >= e1000_82544)
814                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
815
816         if (e1000_init_hw(&adapter->hw))
817                 DPRINTK(PROBE, ERR, "Hardware Error\n");
818         e1000_update_mng_vlan(adapter);
819
820         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
821         if (adapter->hw.mac_type >= e1000_82544 &&
822             adapter->hw.mac_type <= e1000_82547_rev_2 &&
823             adapter->hw.autoneg == 1 &&
824             adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
825                 uint32_t ctrl = E1000_READ_REG(&adapter->hw, CTRL);
826                 /* clear phy power management bit if we are in gig only mode,
827                  * which if enabled will attempt negotiation to 100Mb, which
828                  * can cause a loss of link at power off or driver unload */
829                 ctrl &= ~E1000_CTRL_SWDPIN3;
830                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
831         }
832
833         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
834         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
835
836         e1000_reset_adaptive(&adapter->hw);
837         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
838
839         if (!adapter->smart_power_down &&
840             (adapter->hw.mac_type == e1000_82571 ||
841              adapter->hw.mac_type == e1000_82572)) {
842                 uint16_t phy_data = 0;
843                 /* speed up time to link by disabling smart power down, ignore
844                  * the return value of this function because there is nothing
845                  * different we would do if it failed */
846                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
847                                    &phy_data);
848                 phy_data &= ~IGP02E1000_PM_SPD;
849                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
850                                     phy_data);
851         }
852
853         e1000_release_manageability(adapter);
854 }
855
856 /**
857  * e1000_probe - Device Initialization Routine
858  * @pdev: PCI device information struct
859  * @ent: entry in e1000_pci_tbl
860  *
861  * Returns 0 on success, negative on failure
862  *
863  * e1000_probe initializes an adapter identified by a pci_dev structure.
864  * The OS initialization, configuring of the adapter private structure,
865  * and a hardware reset occur.
866  **/
867
868 static int __devinit
869 e1000_probe(struct pci_dev *pdev,
870             const struct pci_device_id *ent)
871 {
872         struct net_device *netdev;
873         struct e1000_adapter *adapter;
874         unsigned long mmio_start, mmio_len;
875         unsigned long flash_start, flash_len;
876
877         static int cards_found = 0;
878         static int global_quad_port_a = 0; /* global ksp3 port a indication */
879         int i, err, pci_using_dac;
880         uint16_t eeprom_data = 0;
881         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
882         if ((err = pci_enable_device(pdev)))
883                 return err;
884
885         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
886             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
887                 pci_using_dac = 1;
888         } else {
889                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
890                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
891                         E1000_ERR("No usable DMA configuration, aborting\n");
892                         goto err_dma;
893                 }
894                 pci_using_dac = 0;
895         }
896
897         if ((err = pci_request_regions(pdev, e1000_driver_name)))
898                 goto err_pci_reg;
899
900         pci_set_master(pdev);
901
902         err = -ENOMEM;
903         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
904         if (!netdev)
905                 goto err_alloc_etherdev;
906
907         SET_MODULE_OWNER(netdev);
908         SET_NETDEV_DEV(netdev, &pdev->dev);
909
910         pci_set_drvdata(pdev, netdev);
911         adapter = netdev_priv(netdev);
912         adapter->netdev = netdev;
913         adapter->pdev = pdev;
914         adapter->hw.back = adapter;
915         adapter->msg_enable = (1 << debug) - 1;
916
917         mmio_start = pci_resource_start(pdev, BAR_0);
918         mmio_len = pci_resource_len(pdev, BAR_0);
919
920         err = -EIO;
921         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
922         if (!adapter->hw.hw_addr)
923                 goto err_ioremap;
924
925         for (i = BAR_1; i <= BAR_5; i++) {
926                 if (pci_resource_len(pdev, i) == 0)
927                         continue;
928                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
929                         adapter->hw.io_base = pci_resource_start(pdev, i);
930                         break;
931                 }
932         }
933
934         netdev->open = &e1000_open;
935         netdev->stop = &e1000_close;
936         netdev->hard_start_xmit = &e1000_xmit_frame;
937         netdev->get_stats = &e1000_get_stats;
938         netdev->set_multicast_list = &e1000_set_multi;
939         netdev->set_mac_address = &e1000_set_mac;
940         netdev->change_mtu = &e1000_change_mtu;
941         netdev->do_ioctl = &e1000_ioctl;
942         e1000_set_ethtool_ops(netdev);
943         netdev->tx_timeout = &e1000_tx_timeout;
944         netdev->watchdog_timeo = 5 * HZ;
945 #ifdef CONFIG_E1000_NAPI
946         netdev->poll = &e1000_clean;
947         netdev->weight = 64;
948 #endif
949         netdev->vlan_rx_register = e1000_vlan_rx_register;
950         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
951         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
952 #ifdef CONFIG_NET_POLL_CONTROLLER
953         netdev->poll_controller = e1000_netpoll;
954 #endif
955         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
956
957         netdev->mem_start = mmio_start;
958         netdev->mem_end = mmio_start + mmio_len;
959         netdev->base_addr = adapter->hw.io_base;
960
961         adapter->bd_number = cards_found;
962
963         /* setup the private structure */
964
965         if ((err = e1000_sw_init(adapter)))
966                 goto err_sw_init;
967
968         err = -EIO;
969         /* Flash BAR mapping must happen after e1000_sw_init
970          * because it depends on mac_type */
971         if ((adapter->hw.mac_type == e1000_ich8lan) &&
972            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
973                 flash_start = pci_resource_start(pdev, 1);
974                 flash_len = pci_resource_len(pdev, 1);
975                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
976                 if (!adapter->hw.flash_address)
977                         goto err_flashmap;
978         }
979
980         if (e1000_check_phy_reset_block(&adapter->hw))
981                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
982
983         if (adapter->hw.mac_type >= e1000_82543) {
984                 netdev->features = NETIF_F_SG |
985                                    NETIF_F_HW_CSUM |
986                                    NETIF_F_HW_VLAN_TX |
987                                    NETIF_F_HW_VLAN_RX |
988                                    NETIF_F_HW_VLAN_FILTER;
989                 if (adapter->hw.mac_type == e1000_ich8lan)
990                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
991         }
992
993 #ifdef NETIF_F_TSO
994         if ((adapter->hw.mac_type >= e1000_82544) &&
995            (adapter->hw.mac_type != e1000_82547))
996                 netdev->features |= NETIF_F_TSO;
997
998 #ifdef CONFIG_DEBUG_SLAB
999         /* 82544's work arounds do not play nicely with DEBUG SLAB */
1000         if (adapter->hw.mac_type == e1000_82544)
1001                 netdev->features &= ~NETIF_F_TSO;
1002 #endif
1003
1004 #ifdef NETIF_F_TSO6
1005         if (adapter->hw.mac_type > e1000_82547_rev_2)
1006                 netdev->features |= NETIF_F_TSO6;
1007 #endif
1008 #endif
1009         if (pci_using_dac)
1010                 netdev->features |= NETIF_F_HIGHDMA;
1011
1012         netdev->features |= NETIF_F_LLTX;
1013
1014         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
1015
1016         /* initialize eeprom parameters */
1017
1018         if (e1000_init_eeprom_params(&adapter->hw)) {
1019                 E1000_ERR("EEPROM initialization failed\n");
1020                 goto err_eeprom;
1021         }
1022
1023         /* before reading the EEPROM, reset the controller to
1024          * put the device in a known good starting state */
1025
1026         e1000_reset_hw(&adapter->hw);
1027
1028         /* make sure the EEPROM is good */
1029
1030         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
1031                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1032                 goto err_eeprom;
1033         }
1034
1035         /* copy the MAC address out of the EEPROM */
1036
1037         if (e1000_read_mac_addr(&adapter->hw))
1038                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1039         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1040         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1041
1042         if (!is_valid_ether_addr(netdev->perm_addr)) {
1043                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1044                 goto err_eeprom;
1045         }
1046
1047         e1000_get_bus_info(&adapter->hw);
1048
1049         init_timer(&adapter->tx_fifo_stall_timer);
1050         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1051         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
1052
1053         init_timer(&adapter->watchdog_timer);
1054         adapter->watchdog_timer.function = &e1000_watchdog;
1055         adapter->watchdog_timer.data = (unsigned long) adapter;
1056
1057         init_timer(&adapter->phy_info_timer);
1058         adapter->phy_info_timer.function = &e1000_update_phy_info;
1059         adapter->phy_info_timer.data = (unsigned long) adapter;
1060
1061         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1062
1063         e1000_check_options(adapter);
1064
1065         /* Initial Wake on LAN setting
1066          * If APM wake is enabled in the EEPROM,
1067          * enable the ACPI Magic Packet filter
1068          */
1069
1070         switch (adapter->hw.mac_type) {
1071         case e1000_82542_rev2_0:
1072         case e1000_82542_rev2_1:
1073         case e1000_82543:
1074                 break;
1075         case e1000_82544:
1076                 e1000_read_eeprom(&adapter->hw,
1077                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1078                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1079                 break;
1080         case e1000_ich8lan:
1081                 e1000_read_eeprom(&adapter->hw,
1082                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1083                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1084                 break;
1085         case e1000_82546:
1086         case e1000_82546_rev_3:
1087         case e1000_82571:
1088         case e1000_80003es2lan:
1089                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1090                         e1000_read_eeprom(&adapter->hw,
1091                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1092                         break;
1093                 }
1094                 /* Fall Through */
1095         default:
1096                 e1000_read_eeprom(&adapter->hw,
1097                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1098                 break;
1099         }
1100         if (eeprom_data & eeprom_apme_mask)
1101                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1102
1103         /* now that we have the eeprom settings, apply the special cases
1104          * where the eeprom may be wrong or the board simply won't support
1105          * wake on lan on a particular port */
1106         switch (pdev->device) {
1107         case E1000_DEV_ID_82546GB_PCIE:
1108                 adapter->eeprom_wol = 0;
1109                 break;
1110         case E1000_DEV_ID_82546EB_FIBER:
1111         case E1000_DEV_ID_82546GB_FIBER:
1112         case E1000_DEV_ID_82571EB_FIBER:
1113                 /* Wake events only supported on port A for dual fiber
1114                  * regardless of eeprom setting */
1115                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1116                         adapter->eeprom_wol = 0;
1117                 break;
1118         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1119         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1120         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1121                 /* if quad port adapter, disable WoL on all but port A */
1122                 if (global_quad_port_a != 0)
1123                         adapter->eeprom_wol = 0;
1124                 else
1125                         adapter->quad_port_a = 1;
1126                 /* Reset for multiple quad port adapters */
1127                 if (++global_quad_port_a == 4)
1128                         global_quad_port_a = 0;
1129                 break;
1130         }
1131
1132         /* initialize the wol settings based on the eeprom settings */
1133         adapter->wol = adapter->eeprom_wol;
1134
1135         /* print bus type/speed/width info */
1136         {
1137         struct e1000_hw *hw = &adapter->hw;
1138         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1139                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1140                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1141                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1142                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1143                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1144                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1145                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1146                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1147                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1148                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1149                  "32-bit"));
1150         }
1151
1152         for (i = 0; i < 6; i++)
1153                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1154
1155         /* reset the hardware with the new settings */
1156         e1000_reset(adapter);
1157
1158         /* If the controller is 82573 and f/w is AMT, do not set
1159          * DRV_LOAD until the interface is up.  For all other cases,
1160          * let the f/w know that the h/w is now under the control
1161          * of the driver. */
1162         if (adapter->hw.mac_type != e1000_82573 ||
1163             !e1000_check_mng_mode(&adapter->hw))
1164                 e1000_get_hw_control(adapter);
1165
1166         strcpy(netdev->name, "eth%d");
1167         if ((err = register_netdev(netdev)))
1168                 goto err_register;
1169
1170         /* tell the stack to leave us alone until e1000_open() is called */
1171         netif_carrier_off(netdev);
1172         netif_stop_queue(netdev);
1173
1174         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1175
1176         cards_found++;
1177         return 0;
1178
1179 err_register:
1180         e1000_release_hw_control(adapter);
1181 err_eeprom:
1182         if (!e1000_check_phy_reset_block(&adapter->hw))
1183                 e1000_phy_hw_reset(&adapter->hw);
1184
1185         if (adapter->hw.flash_address)
1186                 iounmap(adapter->hw.flash_address);
1187 err_flashmap:
1188 #ifdef CONFIG_E1000_NAPI
1189         for (i = 0; i < adapter->num_rx_queues; i++)
1190                 dev_put(&adapter->polling_netdev[i]);
1191 #endif
1192
1193         kfree(adapter->tx_ring);
1194         kfree(adapter->rx_ring);
1195 #ifdef CONFIG_E1000_NAPI
1196         kfree(adapter->polling_netdev);
1197 #endif
1198 err_sw_init:
1199         iounmap(adapter->hw.hw_addr);
1200 err_ioremap:
1201         free_netdev(netdev);
1202 err_alloc_etherdev:
1203         pci_release_regions(pdev);
1204 err_pci_reg:
1205 err_dma:
1206         pci_disable_device(pdev);
1207         return err;
1208 }
1209
1210 /**
1211  * e1000_remove - Device Removal Routine
1212  * @pdev: PCI device information struct
1213  *
1214  * e1000_remove is called by the PCI subsystem to alert the driver
1215  * that it should release a PCI device.  The could be caused by a
1216  * Hot-Plug event, or because the driver is going to be removed from
1217  * memory.
1218  **/
1219
1220 static void __devexit
1221 e1000_remove(struct pci_dev *pdev)
1222 {
1223         struct net_device *netdev = pci_get_drvdata(pdev);
1224         struct e1000_adapter *adapter = netdev_priv(netdev);
1225 #ifdef CONFIG_E1000_NAPI
1226         int i;
1227 #endif
1228
1229         flush_scheduled_work();
1230
1231         e1000_release_manageability(adapter);
1232
1233         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1234          * would have already happened in close and is redundant. */
1235         e1000_release_hw_control(adapter);
1236
1237         unregister_netdev(netdev);
1238 #ifdef CONFIG_E1000_NAPI
1239         for (i = 0; i < adapter->num_rx_queues; i++)
1240                 dev_put(&adapter->polling_netdev[i]);
1241 #endif
1242
1243         if (!e1000_check_phy_reset_block(&adapter->hw))
1244                 e1000_phy_hw_reset(&adapter->hw);
1245
1246         kfree(adapter->tx_ring);
1247         kfree(adapter->rx_ring);
1248 #ifdef CONFIG_E1000_NAPI
1249         kfree(adapter->polling_netdev);
1250 #endif
1251
1252         iounmap(adapter->hw.hw_addr);
1253         if (adapter->hw.flash_address)
1254                 iounmap(adapter->hw.flash_address);
1255         pci_release_regions(pdev);
1256
1257         free_netdev(netdev);
1258
1259         pci_disable_device(pdev);
1260 }
1261
1262 /**
1263  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1264  * @adapter: board private structure to initialize
1265  *
1266  * e1000_sw_init initializes the Adapter private data structure.
1267  * Fields are initialized based on PCI device information and
1268  * OS network device settings (MTU size).
1269  **/
1270
1271 static int __devinit
1272 e1000_sw_init(struct e1000_adapter *adapter)
1273 {
1274         struct e1000_hw *hw = &adapter->hw;
1275         struct net_device *netdev = adapter->netdev;
1276         struct pci_dev *pdev = adapter->pdev;
1277 #ifdef CONFIG_E1000_NAPI
1278         int i;
1279 #endif
1280
1281         /* PCI config space info */
1282
1283         hw->vendor_id = pdev->vendor;
1284         hw->device_id = pdev->device;
1285         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1286         hw->subsystem_id = pdev->subsystem_device;
1287
1288         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1289
1290         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1291
1292         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1293         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1294         hw->max_frame_size = netdev->mtu +
1295                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1296         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1297
1298         /* identify the MAC */
1299
1300         if (e1000_set_mac_type(hw)) {
1301                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1302                 return -EIO;
1303         }
1304
1305         switch (hw->mac_type) {
1306         default:
1307                 break;
1308         case e1000_82541:
1309         case e1000_82547:
1310         case e1000_82541_rev_2:
1311         case e1000_82547_rev_2:
1312                 hw->phy_init_script = 1;
1313                 break;
1314         }
1315
1316         e1000_set_media_type(hw);
1317
1318         hw->wait_autoneg_complete = FALSE;
1319         hw->tbi_compatibility_en = TRUE;
1320         hw->adaptive_ifs = TRUE;
1321
1322         /* Copper options */
1323
1324         if (hw->media_type == e1000_media_type_copper) {
1325                 hw->mdix = AUTO_ALL_MODES;
1326                 hw->disable_polarity_correction = FALSE;
1327                 hw->master_slave = E1000_MASTER_SLAVE;
1328         }
1329
1330         adapter->num_tx_queues = 1;
1331         adapter->num_rx_queues = 1;
1332
1333         if (e1000_alloc_queues(adapter)) {
1334                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1335                 return -ENOMEM;
1336         }
1337
1338 #ifdef CONFIG_E1000_NAPI
1339         for (i = 0; i < adapter->num_rx_queues; i++) {
1340                 adapter->polling_netdev[i].priv = adapter;
1341                 adapter->polling_netdev[i].poll = &e1000_clean;
1342                 adapter->polling_netdev[i].weight = 64;
1343                 dev_hold(&adapter->polling_netdev[i]);
1344                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1345         }
1346         spin_lock_init(&adapter->tx_queue_lock);
1347 #endif
1348
1349         atomic_set(&adapter->irq_sem, 1);
1350         spin_lock_init(&adapter->stats_lock);
1351
1352         set_bit(__E1000_DOWN, &adapter->flags);
1353
1354         return 0;
1355 }
1356
1357 /**
1358  * e1000_alloc_queues - Allocate memory for all rings
1359  * @adapter: board private structure to initialize
1360  *
1361  * We allocate one ring per queue at run-time since we don't know the
1362  * number of queues at compile-time.  The polling_netdev array is
1363  * intended for Multiqueue, but should work fine with a single queue.
1364  **/
1365
1366 static int __devinit
1367 e1000_alloc_queues(struct e1000_adapter *adapter)
1368 {
1369         int size;
1370
1371         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1372         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1373         if (!adapter->tx_ring)
1374                 return -ENOMEM;
1375         memset(adapter->tx_ring, 0, size);
1376
1377         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1378         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1379         if (!adapter->rx_ring) {
1380                 kfree(adapter->tx_ring);
1381                 return -ENOMEM;
1382         }
1383         memset(adapter->rx_ring, 0, size);
1384
1385 #ifdef CONFIG_E1000_NAPI
1386         size = sizeof(struct net_device) * adapter->num_rx_queues;
1387         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1388         if (!adapter->polling_netdev) {
1389                 kfree(adapter->tx_ring);
1390                 kfree(adapter->rx_ring);
1391                 return -ENOMEM;
1392         }
1393         memset(adapter->polling_netdev, 0, size);
1394 #endif
1395
1396         return E1000_SUCCESS;
1397 }
1398
1399 /**
1400  * e1000_open - Called when a network interface is made active
1401  * @netdev: network interface device structure
1402  *
1403  * Returns 0 on success, negative value on failure
1404  *
1405  * The open entry point is called when a network interface is made
1406  * active by the system (IFF_UP).  At this point all resources needed
1407  * for transmit and receive operations are allocated, the interrupt
1408  * handler is registered with the OS, the watchdog timer is started,
1409  * and the stack is notified that the interface is ready.
1410  **/
1411
1412 static int
1413 e1000_open(struct net_device *netdev)
1414 {
1415         struct e1000_adapter *adapter = netdev_priv(netdev);
1416         int err;
1417
1418         /* disallow open during test */
1419         if (test_bit(__E1000_TESTING, &adapter->flags))
1420                 return -EBUSY;
1421
1422         /* allocate transmit descriptors */
1423         if ((err = e1000_setup_all_tx_resources(adapter)))
1424                 goto err_setup_tx;
1425
1426         /* allocate receive descriptors */
1427         if ((err = e1000_setup_all_rx_resources(adapter)))
1428                 goto err_setup_rx;
1429
1430         err = e1000_request_irq(adapter);
1431         if (err)
1432                 goto err_req_irq;
1433
1434         e1000_power_up_phy(adapter);
1435
1436         if ((err = e1000_up(adapter)))
1437                 goto err_up;
1438         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1439         if ((adapter->hw.mng_cookie.status &
1440                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1441                 e1000_update_mng_vlan(adapter);
1442         }
1443
1444         /* If AMT is enabled, let the firmware know that the network
1445          * interface is now open */
1446         if (adapter->hw.mac_type == e1000_82573 &&
1447             e1000_check_mng_mode(&adapter->hw))
1448                 e1000_get_hw_control(adapter);
1449
1450         return E1000_SUCCESS;
1451
1452 err_up:
1453         e1000_power_down_phy(adapter);
1454         e1000_free_irq(adapter);
1455 err_req_irq:
1456         e1000_free_all_rx_resources(adapter);
1457 err_setup_rx:
1458         e1000_free_all_tx_resources(adapter);
1459 err_setup_tx:
1460         e1000_reset(adapter);
1461
1462         return err;
1463 }
1464
1465 /**
1466  * e1000_close - Disables a network interface
1467  * @netdev: network interface device structure
1468  *
1469  * Returns 0, this is not allowed to fail
1470  *
1471  * The close entry point is called when an interface is de-activated
1472  * by the OS.  The hardware is still under the drivers control, but
1473  * needs to be disabled.  A global MAC reset is issued to stop the
1474  * hardware, and all transmit and receive resources are freed.
1475  **/
1476
1477 static int
1478 e1000_close(struct net_device *netdev)
1479 {
1480         struct e1000_adapter *adapter = netdev_priv(netdev);
1481
1482         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1483         e1000_down(adapter);
1484         e1000_power_down_phy(adapter);
1485         e1000_free_irq(adapter);
1486
1487         e1000_free_all_tx_resources(adapter);
1488         e1000_free_all_rx_resources(adapter);
1489
1490         /* kill manageability vlan ID if supported, but not if a vlan with
1491          * the same ID is registered on the host OS (let 8021q kill it) */
1492         if ((adapter->hw.mng_cookie.status &
1493                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1494              !(adapter->vlgrp &&
1495                           adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1496                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1497         }
1498
1499         /* If AMT is enabled, let the firmware know that the network
1500          * interface is now closed */
1501         if (adapter->hw.mac_type == e1000_82573 &&
1502             e1000_check_mng_mode(&adapter->hw))
1503                 e1000_release_hw_control(adapter);
1504
1505         return 0;
1506 }
1507
1508 /**
1509  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1510  * @adapter: address of board private structure
1511  * @start: address of beginning of memory
1512  * @len: length of memory
1513  **/
1514 static boolean_t
1515 e1000_check_64k_bound(struct e1000_adapter *adapter,
1516                       void *start, unsigned long len)
1517 {
1518         unsigned long begin = (unsigned long) start;
1519         unsigned long end = begin + len;
1520
1521         /* First rev 82545 and 82546 need to not allow any memory
1522          * write location to cross 64k boundary due to errata 23 */
1523         if (adapter->hw.mac_type == e1000_82545 ||
1524             adapter->hw.mac_type == e1000_82546) {
1525                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1526         }
1527
1528         return TRUE;
1529 }
1530
1531 /**
1532  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1533  * @adapter: board private structure
1534  * @txdr:    tx descriptor ring (for a specific queue) to setup
1535  *
1536  * Return 0 on success, negative on failure
1537  **/
1538
1539 static int
1540 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1541                          struct e1000_tx_ring *txdr)
1542 {
1543         struct pci_dev *pdev = adapter->pdev;
1544         int size;
1545
1546         size = sizeof(struct e1000_buffer) * txdr->count;
1547         txdr->buffer_info = vmalloc(size);
1548         if (!txdr->buffer_info) {
1549                 DPRINTK(PROBE, ERR,
1550                 "Unable to allocate memory for the transmit descriptor ring\n");
1551                 return -ENOMEM;
1552         }
1553         memset(txdr->buffer_info, 0, size);
1554
1555         /* round up to nearest 4K */
1556
1557         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1558         E1000_ROUNDUP(txdr->size, 4096);
1559
1560         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1561         if (!txdr->desc) {
1562 setup_tx_desc_die:
1563                 vfree(txdr->buffer_info);
1564                 DPRINTK(PROBE, ERR,
1565                 "Unable to allocate memory for the transmit descriptor ring\n");
1566                 return -ENOMEM;
1567         }
1568
1569         /* Fix for errata 23, can't cross 64kB boundary */
1570         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1571                 void *olddesc = txdr->desc;
1572                 dma_addr_t olddma = txdr->dma;
1573                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1574                                      "at %p\n", txdr->size, txdr->desc);
1575                 /* Try again, without freeing the previous */
1576                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1577                 /* Failed allocation, critical failure */
1578                 if (!txdr->desc) {
1579                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1580                         goto setup_tx_desc_die;
1581                 }
1582
1583                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1584                         /* give up */
1585                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1586                                             txdr->dma);
1587                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1588                         DPRINTK(PROBE, ERR,
1589                                 "Unable to allocate aligned memory "
1590                                 "for the transmit descriptor ring\n");
1591                         vfree(txdr->buffer_info);
1592                         return -ENOMEM;
1593                 } else {
1594                         /* Free old allocation, new allocation was successful */
1595                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1596                 }
1597         }
1598         memset(txdr->desc, 0, txdr->size);
1599
1600         txdr->next_to_use = 0;
1601         txdr->next_to_clean = 0;
1602         spin_lock_init(&txdr->tx_lock);
1603
1604         return 0;
1605 }
1606
1607 /**
1608  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1609  *                                (Descriptors) for all queues
1610  * @adapter: board private structure
1611  *
1612  * Return 0 on success, negative on failure
1613  **/
1614
1615 int
1616 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1617 {
1618         int i, err = 0;
1619
1620         for (i = 0; i < adapter->num_tx_queues; i++) {
1621                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1622                 if (err) {
1623                         DPRINTK(PROBE, ERR,
1624                                 "Allocation for Tx Queue %u failed\n", i);
1625                         for (i-- ; i >= 0; i--)
1626                                 e1000_free_tx_resources(adapter,
1627                                                         &adapter->tx_ring[i]);
1628                         break;
1629                 }
1630         }
1631
1632         return err;
1633 }
1634
1635 /**
1636  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1637  * @adapter: board private structure
1638  *
1639  * Configure the Tx unit of the MAC after a reset.
1640  **/
1641
1642 static void
1643 e1000_configure_tx(struct e1000_adapter *adapter)
1644 {
1645         uint64_t tdba;
1646         struct e1000_hw *hw = &adapter->hw;
1647         uint32_t tdlen, tctl, tipg, tarc;
1648         uint32_t ipgr1, ipgr2;
1649
1650         /* Setup the HW Tx Head and Tail descriptor pointers */
1651
1652         switch (adapter->num_tx_queues) {
1653         case 1:
1654         default:
1655                 tdba = adapter->tx_ring[0].dma;
1656                 tdlen = adapter->tx_ring[0].count *
1657                         sizeof(struct e1000_tx_desc);
1658                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1659                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1660                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1661                 E1000_WRITE_REG(hw, TDT, 0);
1662                 E1000_WRITE_REG(hw, TDH, 0);
1663                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1664                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1665                 break;
1666         }
1667
1668         /* Set the default values for the Tx Inter Packet Gap timer */
1669         if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1670             (hw->media_type == e1000_media_type_fiber ||
1671              hw->media_type == e1000_media_type_internal_serdes))
1672                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1673         else
1674                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1675
1676         switch (hw->mac_type) {
1677         case e1000_82542_rev2_0:
1678         case e1000_82542_rev2_1:
1679                 tipg = DEFAULT_82542_TIPG_IPGT;
1680                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1681                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1682                 break;
1683         case e1000_80003es2lan:
1684                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1685                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1686                 break;
1687         default:
1688                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1689                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1690                 break;
1691         }
1692         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1693         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1694         E1000_WRITE_REG(hw, TIPG, tipg);
1695
1696         /* Set the Tx Interrupt Delay register */
1697
1698         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1699         if (hw->mac_type >= e1000_82540)
1700                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1701
1702         /* Program the Transmit Control Register */
1703
1704         tctl = E1000_READ_REG(hw, TCTL);
1705         tctl &= ~E1000_TCTL_CT;
1706         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1707                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1708
1709         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1710                 tarc = E1000_READ_REG(hw, TARC0);
1711                 /* set the speed mode bit, we'll clear it if we're not at
1712                  * gigabit link later */
1713                 tarc |= (1 << 21);
1714                 E1000_WRITE_REG(hw, TARC0, tarc);
1715         } else if (hw->mac_type == e1000_80003es2lan) {
1716                 tarc = E1000_READ_REG(hw, TARC0);
1717                 tarc |= 1;
1718                 E1000_WRITE_REG(hw, TARC0, tarc);
1719                 tarc = E1000_READ_REG(hw, TARC1);
1720                 tarc |= 1;
1721                 E1000_WRITE_REG(hw, TARC1, tarc);
1722         }
1723
1724         e1000_config_collision_dist(hw);
1725
1726         /* Setup Transmit Descriptor Settings for eop descriptor */
1727         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1728
1729         /* only set IDE if we are delaying interrupts using the timers */
1730         if (adapter->tx_int_delay)
1731                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1732
1733         if (hw->mac_type < e1000_82543)
1734                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1735         else
1736                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1737
1738         /* Cache if we're 82544 running in PCI-X because we'll
1739          * need this to apply a workaround later in the send path. */
1740         if (hw->mac_type == e1000_82544 &&
1741             hw->bus_type == e1000_bus_type_pcix)
1742                 adapter->pcix_82544 = 1;
1743
1744         E1000_WRITE_REG(hw, TCTL, tctl);
1745
1746 }
1747
1748 /**
1749  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1750  * @adapter: board private structure
1751  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1752  *
1753  * Returns 0 on success, negative on failure
1754  **/
1755
1756 static int
1757 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1758                          struct e1000_rx_ring *rxdr)
1759 {
1760         struct pci_dev *pdev = adapter->pdev;
1761         int size, desc_len;
1762
1763         size = sizeof(struct e1000_buffer) * rxdr->count;
1764         rxdr->buffer_info = vmalloc(size);
1765         if (!rxdr->buffer_info) {
1766                 DPRINTK(PROBE, ERR,
1767                 "Unable to allocate memory for the receive descriptor ring\n");
1768                 return -ENOMEM;
1769         }
1770         memset(rxdr->buffer_info, 0, size);
1771
1772         size = sizeof(struct e1000_ps_page) * rxdr->count;
1773         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1774         if (!rxdr->ps_page) {
1775                 vfree(rxdr->buffer_info);
1776                 DPRINTK(PROBE, ERR,
1777                 "Unable to allocate memory for the receive descriptor ring\n");
1778                 return -ENOMEM;
1779         }
1780         memset(rxdr->ps_page, 0, size);
1781
1782         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1783         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1784         if (!rxdr->ps_page_dma) {
1785                 vfree(rxdr->buffer_info);
1786                 kfree(rxdr->ps_page);
1787                 DPRINTK(PROBE, ERR,
1788                 "Unable to allocate memory for the receive descriptor ring\n");
1789                 return -ENOMEM;
1790         }
1791         memset(rxdr->ps_page_dma, 0, size);
1792
1793         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1794                 desc_len = sizeof(struct e1000_rx_desc);
1795         else
1796                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1797
1798         /* Round up to nearest 4K */
1799
1800         rxdr->size = rxdr->count * desc_len;
1801         E1000_ROUNDUP(rxdr->size, 4096);
1802
1803         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1804
1805         if (!rxdr->desc) {
1806                 DPRINTK(PROBE, ERR,
1807                 "Unable to allocate memory for the receive descriptor ring\n");
1808 setup_rx_desc_die:
1809                 vfree(rxdr->buffer_info);
1810                 kfree(rxdr->ps_page);
1811                 kfree(rxdr->ps_page_dma);
1812                 return -ENOMEM;
1813         }
1814
1815         /* Fix for errata 23, can't cross 64kB boundary */
1816         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1817                 void *olddesc = rxdr->desc;
1818                 dma_addr_t olddma = rxdr->dma;
1819                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1820                                      "at %p\n", rxdr->size, rxdr->desc);
1821                 /* Try again, without freeing the previous */
1822                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1823                 /* Failed allocation, critical failure */
1824                 if (!rxdr->desc) {
1825                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1826                         DPRINTK(PROBE, ERR,
1827                                 "Unable to allocate memory "
1828                                 "for the receive descriptor ring\n");
1829                         goto setup_rx_desc_die;
1830                 }
1831
1832                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1833                         /* give up */
1834                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1835                                             rxdr->dma);
1836                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1837                         DPRINTK(PROBE, ERR,
1838                                 "Unable to allocate aligned memory "
1839                                 "for the receive descriptor ring\n");
1840                         goto setup_rx_desc_die;
1841                 } else {
1842                         /* Free old allocation, new allocation was successful */
1843                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1844                 }
1845         }
1846         memset(rxdr->desc, 0, rxdr->size);
1847
1848         rxdr->next_to_clean = 0;
1849         rxdr->next_to_use = 0;
1850
1851         return 0;
1852 }
1853
1854 /**
1855  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1856  *                                (Descriptors) for all queues
1857  * @adapter: board private structure
1858  *
1859  * Return 0 on success, negative on failure
1860  **/
1861
1862 int
1863 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1864 {
1865         int i, err = 0;
1866
1867         for (i = 0; i < adapter->num_rx_queues; i++) {
1868                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1869                 if (err) {
1870                         DPRINTK(PROBE, ERR,
1871                                 "Allocation for Rx Queue %u failed\n", i);
1872                         for (i-- ; i >= 0; i--)
1873                                 e1000_free_rx_resources(adapter,
1874                                                         &adapter->rx_ring[i]);
1875                         break;
1876                 }
1877         }
1878
1879         return err;
1880 }
1881
1882 /**
1883  * e1000_setup_rctl - configure the receive control registers
1884  * @adapter: Board private structure
1885  **/
1886 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1887                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1888 static void
1889 e1000_setup_rctl(struct e1000_adapter *adapter)
1890 {
1891         uint32_t rctl, rfctl;
1892         uint32_t psrctl = 0;
1893 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1894         uint32_t pages = 0;
1895 #endif
1896
1897         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1898
1899         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1900
1901         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1902                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1903                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1904
1905         if (adapter->hw.tbi_compatibility_on == 1)
1906                 rctl |= E1000_RCTL_SBP;
1907         else
1908                 rctl &= ~E1000_RCTL_SBP;
1909
1910         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1911                 rctl &= ~E1000_RCTL_LPE;
1912         else
1913                 rctl |= E1000_RCTL_LPE;
1914
1915         /* Setup buffer sizes */
1916         rctl &= ~E1000_RCTL_SZ_4096;
1917         rctl |= E1000_RCTL_BSEX;
1918         switch (adapter->rx_buffer_len) {
1919                 case E1000_RXBUFFER_256:
1920                         rctl |= E1000_RCTL_SZ_256;
1921                         rctl &= ~E1000_RCTL_BSEX;
1922                         break;
1923                 case E1000_RXBUFFER_512:
1924                         rctl |= E1000_RCTL_SZ_512;
1925                         rctl &= ~E1000_RCTL_BSEX;
1926                         break;
1927                 case E1000_RXBUFFER_1024:
1928                         rctl |= E1000_RCTL_SZ_1024;
1929                         rctl &= ~E1000_RCTL_BSEX;
1930                         break;
1931                 case E1000_RXBUFFER_2048:
1932                 default:
1933                         rctl |= E1000_RCTL_SZ_2048;
1934                         rctl &= ~E1000_RCTL_BSEX;
1935                         break;
1936                 case E1000_RXBUFFER_4096:
1937                         rctl |= E1000_RCTL_SZ_4096;
1938                         break;
1939                 case E1000_RXBUFFER_8192:
1940                         rctl |= E1000_RCTL_SZ_8192;
1941                         break;
1942                 case E1000_RXBUFFER_16384:
1943                         rctl |= E1000_RCTL_SZ_16384;
1944                         break;
1945         }
1946
1947 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1948         /* 82571 and greater support packet-split where the protocol
1949          * header is placed in skb->data and the packet data is
1950          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1951          * In the case of a non-split, skb->data is linearly filled,
1952          * followed by the page buffers.  Therefore, skb->data is
1953          * sized to hold the largest protocol header.
1954          */
1955         /* allocations using alloc_page take too long for regular MTU
1956          * so only enable packet split for jumbo frames */
1957         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1958         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1959             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1960                 adapter->rx_ps_pages = pages;
1961         else
1962                 adapter->rx_ps_pages = 0;
1963 #endif
1964         if (adapter->rx_ps_pages) {
1965                 /* Configure extra packet-split registers */
1966                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1967                 rfctl |= E1000_RFCTL_EXTEN;
1968                 /* disable packet split support for IPv6 extension headers,
1969                  * because some malformed IPv6 headers can hang the RX */
1970                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1971                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1972
1973                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1974
1975                 rctl |= E1000_RCTL_DTYP_PS;
1976
1977                 psrctl |= adapter->rx_ps_bsize0 >>
1978                         E1000_PSRCTL_BSIZE0_SHIFT;
1979
1980                 switch (adapter->rx_ps_pages) {
1981                 case 3:
1982                         psrctl |= PAGE_SIZE <<
1983                                 E1000_PSRCTL_BSIZE3_SHIFT;
1984                 case 2:
1985                         psrctl |= PAGE_SIZE <<
1986                                 E1000_PSRCTL_BSIZE2_SHIFT;
1987                 case 1:
1988                         psrctl |= PAGE_SIZE >>
1989                                 E1000_PSRCTL_BSIZE1_SHIFT;
1990                         break;
1991                 }
1992
1993                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1994         }
1995
1996         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1997 }
1998
1999 /**
2000  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
2001  * @adapter: board private structure
2002  *
2003  * Configure the Rx unit of the MAC after a reset.
2004  **/
2005
2006 static void
2007 e1000_configure_rx(struct e1000_adapter *adapter)
2008 {
2009         uint64_t rdba;
2010         struct e1000_hw *hw = &adapter->hw;
2011         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
2012
2013         if (adapter->rx_ps_pages) {
2014                 /* this is a 32 byte descriptor */
2015                 rdlen = adapter->rx_ring[0].count *
2016                         sizeof(union e1000_rx_desc_packet_split);
2017                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2018                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2019         } else {
2020                 rdlen = adapter->rx_ring[0].count *
2021                         sizeof(struct e1000_rx_desc);
2022                 adapter->clean_rx = e1000_clean_rx_irq;
2023                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2024         }
2025
2026         /* disable receives while setting up the descriptors */
2027         rctl = E1000_READ_REG(hw, RCTL);
2028         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2029
2030         /* set the Receive Delay Timer Register */
2031         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2032
2033         if (hw->mac_type >= e1000_82540) {
2034                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2035                 if (adapter->itr_setting != 0)
2036                         E1000_WRITE_REG(hw, ITR,
2037                                 1000000000 / (adapter->itr * 256));
2038         }
2039
2040         if (hw->mac_type >= e1000_82571) {
2041                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2042                 /* Reset delay timers after every interrupt */
2043                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2044 #ifdef CONFIG_E1000_NAPI
2045                 /* Auto-Mask interrupts upon ICR access */
2046                 ctrl_ext |= E1000_CTRL_EXT_IAME;
2047                 E1000_WRITE_REG(hw, IAM, 0xffffffff);
2048 #endif
2049                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2050                 E1000_WRITE_FLUSH(hw);
2051         }
2052
2053         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2054          * the Base and Length of the Rx Descriptor Ring */
2055         switch (adapter->num_rx_queues) {
2056         case 1:
2057         default:
2058                 rdba = adapter->rx_ring[0].dma;
2059                 E1000_WRITE_REG(hw, RDLEN, rdlen);
2060                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
2061                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
2062                 E1000_WRITE_REG(hw, RDT, 0);
2063                 E1000_WRITE_REG(hw, RDH, 0);
2064                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2065                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2066                 break;
2067         }
2068
2069         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2070         if (hw->mac_type >= e1000_82543) {
2071                 rxcsum = E1000_READ_REG(hw, RXCSUM);
2072                 if (adapter->rx_csum == TRUE) {
2073                         rxcsum |= E1000_RXCSUM_TUOFL;
2074
2075                         /* Enable 82571 IPv4 payload checksum for UDP fragments
2076                          * Must be used in conjunction with packet-split. */
2077                         if ((hw->mac_type >= e1000_82571) &&
2078                             (adapter->rx_ps_pages)) {
2079                                 rxcsum |= E1000_RXCSUM_IPPCSE;
2080                         }
2081                 } else {
2082                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2083                         /* don't need to clear IPPCSE as it defaults to 0 */
2084                 }
2085                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2086         }
2087
2088         /* enable early receives on 82573, only takes effect if using > 2048
2089          * byte total frame size.  for example only for jumbo frames */
2090 #define E1000_ERT_2048 0x100
2091         if (hw->mac_type == e1000_82573)
2092                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2093
2094         /* Enable Receives */
2095         E1000_WRITE_REG(hw, RCTL, rctl);
2096 }
2097
2098 /**
2099  * e1000_free_tx_resources - Free Tx Resources per Queue
2100  * @adapter: board private structure
2101  * @tx_ring: Tx descriptor ring for a specific queue
2102  *
2103  * Free all transmit software resources
2104  **/
2105
2106 static void
2107 e1000_free_tx_resources(struct e1000_adapter *adapter,
2108                         struct e1000_tx_ring *tx_ring)
2109 {
2110         struct pci_dev *pdev = adapter->pdev;
2111
2112         e1000_clean_tx_ring(adapter, tx_ring);
2113
2114         vfree(tx_ring->buffer_info);
2115         tx_ring->buffer_info = NULL;
2116
2117         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2118
2119         tx_ring->desc = NULL;
2120 }
2121
2122 /**
2123  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2124  * @adapter: board private structure
2125  *
2126  * Free all transmit software resources
2127  **/
2128
2129 void
2130 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2131 {
2132         int i;
2133
2134         for (i = 0; i < adapter->num_tx_queues; i++)
2135                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2136 }
2137
2138 static void
2139 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2140                         struct e1000_buffer *buffer_info)
2141 {
2142         if (buffer_info->dma) {
2143                 pci_unmap_page(adapter->pdev,
2144                                 buffer_info->dma,
2145                                 buffer_info->length,
2146                                 PCI_DMA_TODEVICE);
2147                 buffer_info->dma = 0;
2148         }
2149         if (buffer_info->skb) {
2150                 dev_kfree_skb_any(buffer_info->skb);
2151                 buffer_info->skb = NULL;
2152         }
2153         /* buffer_info must be completely set up in the transmit path */
2154 }
2155
2156 /**
2157  * e1000_clean_tx_ring - Free Tx Buffers
2158  * @adapter: board private structure
2159  * @tx_ring: ring to be cleaned
2160  **/
2161
2162 static void
2163 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2164                     struct e1000_tx_ring *tx_ring)
2165 {
2166         struct e1000_buffer *buffer_info;
2167         unsigned long size;
2168         unsigned int i;
2169
2170         /* Free all the Tx ring sk_buffs */
2171
2172         for (i = 0; i < tx_ring->count; i++) {
2173                 buffer_info = &tx_ring->buffer_info[i];
2174                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2175         }
2176
2177         size = sizeof(struct e1000_buffer) * tx_ring->count;
2178         memset(tx_ring->buffer_info, 0, size);
2179
2180         /* Zero out the descriptor ring */
2181
2182         memset(tx_ring->desc, 0, tx_ring->size);
2183
2184         tx_ring->next_to_use = 0;
2185         tx_ring->next_to_clean = 0;
2186         tx_ring->last_tx_tso = 0;
2187
2188         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2189         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2190 }
2191
2192 /**
2193  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2194  * @adapter: board private structure
2195  **/
2196
2197 static void
2198 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2199 {
2200         int i;
2201
2202         for (i = 0; i < adapter->num_tx_queues; i++)
2203                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2204 }
2205
2206 /**
2207  * e1000_free_rx_resources - Free Rx Resources
2208  * @adapter: board private structure
2209  * @rx_ring: ring to clean the resources from
2210  *
2211  * Free all receive software resources
2212  **/
2213
2214 static void
2215 e1000_free_rx_resources(struct e1000_adapter *adapter,
2216                         struct e1000_rx_ring *rx_ring)
2217 {
2218         struct pci_dev *pdev = adapter->pdev;
2219
2220         e1000_clean_rx_ring(adapter, rx_ring);
2221
2222         vfree(rx_ring->buffer_info);
2223         rx_ring->buffer_info = NULL;
2224         kfree(rx_ring->ps_page);
2225         rx_ring->ps_page = NULL;
2226         kfree(rx_ring->ps_page_dma);
2227         rx_ring->ps_page_dma = NULL;
2228
2229         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2230
2231         rx_ring->desc = NULL;
2232 }
2233
2234 /**
2235  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2236  * @adapter: board private structure
2237  *
2238  * Free all receive software resources
2239  **/
2240
2241 void
2242 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2243 {
2244         int i;
2245
2246         for (i = 0; i < adapter->num_rx_queues; i++)
2247                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2248 }
2249
2250 /**
2251  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2252  * @adapter: board private structure
2253  * @rx_ring: ring to free buffers from
2254  **/
2255
2256 static void
2257 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2258                     struct e1000_rx_ring *rx_ring)
2259 {
2260         struct e1000_buffer *buffer_info;
2261         struct e1000_ps_page *ps_page;
2262         struct e1000_ps_page_dma *ps_page_dma;
2263         struct pci_dev *pdev = adapter->pdev;
2264         unsigned long size;
2265         unsigned int i, j;
2266
2267         /* Free all the Rx ring sk_buffs */
2268         for (i = 0; i < rx_ring->count; i++) {
2269                 buffer_info = &rx_ring->buffer_info[i];
2270                 if (buffer_info->skb) {
2271                         pci_unmap_single(pdev,
2272                                          buffer_info->dma,
2273                                          buffer_info->length,
2274                                          PCI_DMA_FROMDEVICE);
2275
2276                         dev_kfree_skb(buffer_info->skb);
2277                         buffer_info->skb = NULL;
2278                 }
2279                 ps_page = &rx_ring->ps_page[i];
2280                 ps_page_dma = &rx_ring->ps_page_dma[i];
2281                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2282                         if (!ps_page->ps_page[j]) break;
2283                         pci_unmap_page(pdev,
2284                                        ps_page_dma->ps_page_dma[j],
2285                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2286                         ps_page_dma->ps_page_dma[j] = 0;
2287                         put_page(ps_page->ps_page[j]);
2288                         ps_page->ps_page[j] = NULL;
2289                 }
2290         }
2291
2292         size = sizeof(struct e1000_buffer) * rx_ring->count;
2293         memset(rx_ring->buffer_info, 0, size);
2294         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2295         memset(rx_ring->ps_page, 0, size);
2296         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2297         memset(rx_ring->ps_page_dma, 0, size);
2298
2299         /* Zero out the descriptor ring */
2300
2301         memset(rx_ring->desc, 0, rx_ring->size);
2302
2303         rx_ring->next_to_clean = 0;
2304         rx_ring->next_to_use = 0;
2305
2306         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2307         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2308 }
2309
2310 /**
2311  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2312  * @adapter: board private structure
2313  **/
2314
2315 static void
2316 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2317 {
2318         int i;
2319
2320         for (i = 0; i < adapter->num_rx_queues; i++)
2321                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2322 }
2323
2324 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2325  * and memory write and invalidate disabled for certain operations
2326  */
2327 static void
2328 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2329 {
2330         struct net_device *netdev = adapter->netdev;
2331         uint32_t rctl;
2332
2333         e1000_pci_clear_mwi(&adapter->hw);
2334
2335         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2336         rctl |= E1000_RCTL_RST;
2337         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2338         E1000_WRITE_FLUSH(&adapter->hw);
2339         mdelay(5);
2340
2341         if (netif_running(netdev))
2342                 e1000_clean_all_rx_rings(adapter);
2343 }
2344
2345 static void
2346 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2347 {
2348         struct net_device *netdev = adapter->netdev;
2349         uint32_t rctl;
2350
2351         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2352         rctl &= ~E1000_RCTL_RST;
2353         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2354         E1000_WRITE_FLUSH(&adapter->hw);
2355         mdelay(5);
2356
2357         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2358                 e1000_pci_set_mwi(&adapter->hw);
2359
2360         if (netif_running(netdev)) {
2361                 /* No need to loop, because 82542 supports only 1 queue */
2362                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2363                 e1000_configure_rx(adapter);
2364                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2365         }
2366 }
2367
2368 /**
2369  * e1000_set_mac - Change the Ethernet Address of the NIC
2370  * @netdev: network interface device structure
2371  * @p: pointer to an address structure
2372  *
2373  * Returns 0 on success, negative on failure
2374  **/
2375
2376 static int
2377 e1000_set_mac(struct net_device *netdev, void *p)
2378 {
2379         struct e1000_adapter *adapter = netdev_priv(netdev);
2380         struct sockaddr *addr = p;
2381
2382         if (!is_valid_ether_addr(addr->sa_data))
2383                 return -EADDRNOTAVAIL;
2384
2385         /* 82542 2.0 needs to be in reset to write receive address registers */
2386
2387         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2388                 e1000_enter_82542_rst(adapter);
2389
2390         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2391         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2392
2393         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2394
2395         /* With 82571 controllers, LAA may be overwritten (with the default)
2396          * due to controller reset from the other port. */
2397         if (adapter->hw.mac_type == e1000_82571) {
2398                 /* activate the work around */
2399                 adapter->hw.laa_is_present = 1;
2400
2401                 /* Hold a copy of the LAA in RAR[14] This is done so that
2402                  * between the time RAR[0] gets clobbered  and the time it
2403                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2404                  * of the RARs and no incoming packets directed to this port
2405                  * are dropped. Eventaully the LAA will be in RAR[0] and
2406                  * RAR[14] */
2407                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2408                                         E1000_RAR_ENTRIES - 1);
2409         }
2410
2411         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2412                 e1000_leave_82542_rst(adapter);
2413
2414         return 0;
2415 }
2416
2417 /**
2418  * e1000_set_multi - Multicast and Promiscuous mode set
2419  * @netdev: network interface device structure
2420  *
2421  * The set_multi entry point is called whenever the multicast address
2422  * list or the network interface flags are updated.  This routine is
2423  * responsible for configuring the hardware for proper multicast,
2424  * promiscuous mode, and all-multi behavior.
2425  **/
2426
2427 static void
2428 e1000_set_multi(struct net_device *netdev)
2429 {
2430         struct e1000_adapter *adapter = netdev_priv(netdev);
2431         struct e1000_hw *hw = &adapter->hw;
2432         struct dev_mc_list *mc_ptr;
2433         uint32_t rctl;
2434         uint32_t hash_value;
2435         int i, rar_entries = E1000_RAR_ENTRIES;
2436         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2437                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2438                                 E1000_NUM_MTA_REGISTERS;
2439
2440         if (adapter->hw.mac_type == e1000_ich8lan)
2441                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2442
2443         /* reserve RAR[14] for LAA over-write work-around */
2444         if (adapter->hw.mac_type == e1000_82571)
2445                 rar_entries--;
2446
2447         /* Check for Promiscuous and All Multicast modes */
2448
2449         rctl = E1000_READ_REG(hw, RCTL);
2450
2451         if (netdev->flags & IFF_PROMISC) {
2452                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2453         } else if (netdev->flags & IFF_ALLMULTI) {
2454                 rctl |= E1000_RCTL_MPE;
2455                 rctl &= ~E1000_RCTL_UPE;
2456         } else {
2457                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2458         }
2459
2460         E1000_WRITE_REG(hw, RCTL, rctl);
2461
2462         /* 82542 2.0 needs to be in reset to write receive address registers */
2463
2464         if (hw->mac_type == e1000_82542_rev2_0)
2465                 e1000_enter_82542_rst(adapter);
2466
2467         /* load the first 14 multicast address into the exact filters 1-14
2468          * RAR 0 is used for the station MAC adddress
2469          * if there are not 14 addresses, go ahead and clear the filters
2470          * -- with 82571 controllers only 0-13 entries are filled here
2471          */
2472         mc_ptr = netdev->mc_list;
2473
2474         for (i = 1; i < rar_entries; i++) {
2475                 if (mc_ptr) {
2476                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2477                         mc_ptr = mc_ptr->next;
2478                 } else {
2479                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2480                         E1000_WRITE_FLUSH(hw);
2481                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2482                         E1000_WRITE_FLUSH(hw);
2483                 }
2484         }
2485
2486         /* clear the old settings from the multicast hash table */
2487
2488         for (i = 0; i < mta_reg_count; i++) {
2489                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2490                 E1000_WRITE_FLUSH(hw);
2491         }
2492
2493         /* load any remaining addresses into the hash table */
2494
2495         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2496                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2497                 e1000_mta_set(hw, hash_value);
2498         }
2499
2500         if (hw->mac_type == e1000_82542_rev2_0)
2501                 e1000_leave_82542_rst(adapter);
2502 }
2503
2504 /* Need to wait a few seconds after link up to get diagnostic information from
2505  * the phy */
2506
2507 static void
2508 e1000_update_phy_info(unsigned long data)
2509 {
2510         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2511         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2512 }
2513
2514 /**
2515  * e1000_82547_tx_fifo_stall - Timer Call-back
2516  * @data: pointer to adapter cast into an unsigned long
2517  **/
2518
2519 static void
2520 e1000_82547_tx_fifo_stall(unsigned long data)
2521 {
2522         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2523         struct net_device *netdev = adapter->netdev;
2524         uint32_t tctl;
2525
2526         if (atomic_read(&adapter->tx_fifo_stall)) {
2527                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2528                     E1000_READ_REG(&adapter->hw, TDH)) &&
2529                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2530                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2531                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2532                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2533                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2534                         E1000_WRITE_REG(&adapter->hw, TCTL,
2535                                         tctl & ~E1000_TCTL_EN);
2536                         E1000_WRITE_REG(&adapter->hw, TDFT,
2537                                         adapter->tx_head_addr);
2538                         E1000_WRITE_REG(&adapter->hw, TDFH,
2539                                         adapter->tx_head_addr);
2540                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2541                                         adapter->tx_head_addr);
2542                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2543                                         adapter->tx_head_addr);
2544                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2545                         E1000_WRITE_FLUSH(&adapter->hw);
2546
2547                         adapter->tx_fifo_head = 0;
2548                         atomic_set(&adapter->tx_fifo_stall, 0);
2549                         netif_wake_queue(netdev);
2550                 } else {
2551                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2552                 }
2553         }
2554 }
2555
2556 /**
2557  * e1000_watchdog - Timer Call-back
2558  * @data: pointer to adapter cast into an unsigned long
2559  **/
2560 static void
2561 e1000_watchdog(unsigned long data)
2562 {
2563         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2564         struct net_device *netdev = adapter->netdev;
2565         struct e1000_tx_ring *txdr = adapter->tx_ring;
2566         uint32_t link, tctl;
2567         int32_t ret_val;
2568
2569         ret_val = e1000_check_for_link(&adapter->hw);
2570         if ((ret_val == E1000_ERR_PHY) &&
2571             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2572             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2573                 /* See e1000_kumeran_lock_loss_workaround() */
2574                 DPRINTK(LINK, INFO,
2575                         "Gigabit has been disabled, downgrading speed\n");
2576         }
2577
2578         if (adapter->hw.mac_type == e1000_82573) {
2579                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2580                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2581                         e1000_update_mng_vlan(adapter);
2582         }
2583
2584         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2585            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2586                 link = !adapter->hw.serdes_link_down;
2587         else
2588                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2589
2590         if (link) {
2591                 if (!netif_carrier_ok(netdev)) {
2592                         boolean_t txb2b = 1;
2593                         e1000_get_speed_and_duplex(&adapter->hw,
2594                                                    &adapter->link_speed,
2595                                                    &adapter->link_duplex);
2596
2597                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2598                                adapter->link_speed,
2599                                adapter->link_duplex == FULL_DUPLEX ?
2600                                "Full Duplex" : "Half Duplex");
2601
2602                         /* tweak tx_queue_len according to speed/duplex
2603                          * and adjust the timeout factor */
2604                         netdev->tx_queue_len = adapter->tx_queue_len;
2605                         adapter->tx_timeout_factor = 1;
2606                         switch (adapter->link_speed) {
2607                         case SPEED_10:
2608                                 txb2b = 0;
2609                                 netdev->tx_queue_len = 10;
2610                                 adapter->tx_timeout_factor = 8;
2611                                 break;
2612                         case SPEED_100:
2613                                 txb2b = 0;
2614                                 netdev->tx_queue_len = 100;
2615                                 /* maybe add some timeout factor ? */
2616                                 break;
2617                         }
2618
2619                         if ((adapter->hw.mac_type == e1000_82571 ||
2620                              adapter->hw.mac_type == e1000_82572) &&
2621                             txb2b == 0) {
2622                                 uint32_t tarc0;
2623                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2624                                 tarc0 &= ~(1 << 21);
2625                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2626                         }
2627
2628 #ifdef NETIF_F_TSO
2629                         /* disable TSO for pcie and 10/100 speeds, to avoid
2630                          * some hardware issues */
2631                         if (!adapter->tso_force &&
2632                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2633                                 switch (adapter->link_speed) {
2634                                 case SPEED_10:
2635                                 case SPEED_100:
2636                                         DPRINTK(PROBE,INFO,
2637                                         "10/100 speed: disabling TSO\n");
2638                                         netdev->features &= ~NETIF_F_TSO;
2639 #ifdef NETIF_F_TSO6
2640                                         netdev->features &= ~NETIF_F_TSO6;
2641 #endif
2642                                         break;
2643                                 case SPEED_1000:
2644                                         netdev->features |= NETIF_F_TSO;
2645 #ifdef NETIF_F_TSO6
2646                                         netdev->features |= NETIF_F_TSO6;
2647 #endif
2648                                         break;
2649                                 default:
2650                                         /* oops */
2651                                         break;
2652                                 }
2653                         }
2654 #endif
2655
2656                         /* enable transmits in the hardware, need to do this
2657                          * after setting TARC0 */
2658                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2659                         tctl |= E1000_TCTL_EN;
2660                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2661
2662                         netif_carrier_on(netdev);
2663                         netif_wake_queue(netdev);
2664                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2665                         adapter->smartspeed = 0;
2666                 } else {
2667                         /* make sure the receive unit is started */
2668                         if (adapter->hw.rx_needs_kicking) {
2669                                 struct e1000_hw *hw = &adapter->hw;
2670                                 uint32_t rctl = E1000_READ_REG(hw, RCTL);
2671                                 E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2672                         }
2673                 }
2674         } else {
2675                 if (netif_carrier_ok(netdev)) {
2676                         adapter->link_speed = 0;
2677                         adapter->link_duplex = 0;
2678                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2679                         netif_carrier_off(netdev);
2680                         netif_stop_queue(netdev);
2681                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2682
2683                         /* 80003ES2LAN workaround--
2684                          * For packet buffer work-around on link down event;
2685                          * disable receives in the ISR and
2686                          * reset device here in the watchdog
2687                          */
2688                         if (adapter->hw.mac_type == e1000_80003es2lan)
2689                                 /* reset device */
2690                                 schedule_work(&adapter->reset_task);
2691                 }
2692
2693                 e1000_smartspeed(adapter);
2694         }
2695
2696         e1000_update_stats(adapter);
2697
2698         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2699         adapter->tpt_old = adapter->stats.tpt;
2700         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2701         adapter->colc_old = adapter->stats.colc;
2702
2703         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2704         adapter->gorcl_old = adapter->stats.gorcl;
2705         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2706         adapter->gotcl_old = adapter->stats.gotcl;
2707
2708         e1000_update_adaptive(&adapter->hw);
2709
2710         if (!netif_carrier_ok(netdev)) {
2711                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2712                         /* We've lost link, so the controller stops DMA,
2713                          * but we've got queued Tx work that's never going
2714                          * to get done, so reset controller to flush Tx.
2715                          * (Do the reset outside of interrupt context). */
2716                         adapter->tx_timeout_count++;
2717                         schedule_work(&adapter->reset_task);
2718                 }
2719         }
2720
2721         /* Cause software interrupt to ensure rx ring is cleaned */
2722         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2723
2724         /* Force detection of hung controller every watchdog period */
2725         adapter->detect_tx_hung = TRUE;
2726
2727         /* With 82571 controllers, LAA may be overwritten due to controller
2728          * reset from the other port. Set the appropriate LAA in RAR[0] */
2729         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2730                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2731
2732         /* Reset the timer */
2733         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2734 }
2735
2736 enum latency_range {
2737         lowest_latency = 0,
2738         low_latency = 1,
2739         bulk_latency = 2,
2740         latency_invalid = 255
2741 };
2742
2743 /**
2744  * e1000_update_itr - update the dynamic ITR value based on statistics
2745  *      Stores a new ITR value based on packets and byte
2746  *      counts during the last interrupt.  The advantage of per interrupt
2747  *      computation is faster updates and more accurate ITR for the current
2748  *      traffic pattern.  Constants in this function were computed
2749  *      based on theoretical maximum wire speed and thresholds were set based
2750  *      on testing data as well as attempting to minimize response time
2751  *      while increasing bulk throughput.
2752  *      this functionality is controlled by the InterruptThrottleRate module
2753  *      parameter (see e1000_param.c)
2754  * @adapter: pointer to adapter
2755  * @itr_setting: current adapter->itr
2756  * @packets: the number of packets during this measurement interval
2757  * @bytes: the number of bytes during this measurement interval
2758  **/
2759 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2760                                    uint16_t itr_setting,
2761                                    int packets,
2762                                    int bytes)
2763 {
2764         unsigned int retval = itr_setting;
2765         struct e1000_hw *hw = &adapter->hw;
2766
2767         if (unlikely(hw->mac_type < e1000_82540))
2768                 goto update_itr_done;
2769
2770         if (packets == 0)
2771                 goto update_itr_done;
2772
2773         switch (itr_setting) {
2774         case lowest_latency:
2775                 /* jumbo frames get bulk treatment*/
2776                 if (bytes/packets > 8000)
2777                         retval = bulk_latency;
2778                 else if ((packets < 5) && (bytes > 512))
2779                         retval = low_latency;
2780                 break;
2781         case low_latency:  /* 50 usec aka 20000 ints/s */
2782                 if (bytes > 10000) {
2783                         /* jumbo frames need bulk latency setting */
2784                         if (bytes/packets > 8000)
2785                                 retval = bulk_latency;
2786                         else if ((packets < 10) || ((bytes/packets) > 1200))
2787                                 retval = bulk_latency;
2788                         else if ((packets > 35))
2789                                 retval = lowest_latency;
2790                 } else if (bytes/packets > 2000)
2791                         retval = bulk_latency;
2792                 else if (packets <= 2 && bytes < 512)
2793                         retval = lowest_latency;
2794                 break;
2795         case bulk_latency: /* 250 usec aka 4000 ints/s */
2796                 if (bytes > 25000) {
2797                         if (packets > 35)
2798                                 retval = low_latency;
2799                 } else if (bytes < 6000) {
2800                         retval = low_latency;
2801                 }
2802                 break;
2803         }
2804
2805 update_itr_done:
2806         return retval;
2807 }
2808
2809 static void e1000_set_itr(struct e1000_adapter *adapter)
2810 {
2811         struct e1000_hw *hw = &adapter->hw;
2812         uint16_t current_itr;
2813         uint32_t new_itr = adapter->itr;
2814
2815         if (unlikely(hw->mac_type < e1000_82540))
2816                 return;
2817
2818         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2819         if (unlikely(adapter->link_speed != SPEED_1000)) {
2820                 current_itr = 0;
2821                 new_itr = 4000;
2822                 goto set_itr_now;
2823         }
2824
2825         adapter->tx_itr = e1000_update_itr(adapter,
2826                                     adapter->tx_itr,
2827                                     adapter->total_tx_packets,
2828                                     adapter->total_tx_bytes);
2829         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2830         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2831                 adapter->tx_itr = low_latency;
2832
2833         adapter->rx_itr = e1000_update_itr(adapter,
2834                                     adapter->rx_itr,
2835                                     adapter->total_rx_packets,
2836                                     adapter->total_rx_bytes);
2837         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2838         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2839                 adapter->rx_itr = low_latency;
2840
2841         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2842
2843         switch (current_itr) {
2844         /* counts and packets in update_itr are dependent on these numbers */
2845         case lowest_latency:
2846                 new_itr = 70000;
2847                 break;
2848         case low_latency:
2849                 new_itr = 20000; /* aka hwitr = ~200 */
2850                 break;
2851         case bulk_latency:
2852                 new_itr = 4000;
2853                 break;
2854         default:
2855                 break;
2856         }
2857
2858 set_itr_now:
2859         if (new_itr != adapter->itr) {
2860                 /* this attempts to bias the interrupt rate towards Bulk
2861                  * by adding intermediate steps when interrupt rate is
2862                  * increasing */
2863                 new_itr = new_itr > adapter->itr ?
2864                              min(adapter->itr + (new_itr >> 2), new_itr) :
2865                              new_itr;
2866                 adapter->itr = new_itr;
2867                 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2868         }
2869
2870         return;
2871 }
2872
2873 #define E1000_TX_FLAGS_CSUM             0x00000001
2874 #define E1000_TX_FLAGS_VLAN             0x00000002
2875 #define E1000_TX_FLAGS_TSO              0x00000004
2876 #define E1000_TX_FLAGS_IPV4             0x00000008
2877 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2878 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2879
2880 static int
2881 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2882           struct sk_buff *skb)
2883 {
2884 #ifdef NETIF_F_TSO
2885         struct e1000_context_desc *context_desc;
2886         struct e1000_buffer *buffer_info;
2887         unsigned int i;
2888         uint32_t cmd_length = 0;
2889         uint16_t ipcse = 0, tucse, mss;
2890         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2891         int err;
2892
2893         if (skb_is_gso(skb)) {
2894                 if (skb_header_cloned(skb)) {
2895                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2896                         if (err)
2897                                 return err;
2898                 }
2899
2900                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2901                 mss = skb_shinfo(skb)->gso_size;
2902                 if (skb->protocol == htons(ETH_P_IP)) {
2903                         skb->nh.iph->tot_len = 0;
2904                         skb->nh.iph->check = 0;
2905                         skb->h.th->check =
2906                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2907                                                    skb->nh.iph->daddr,
2908                                                    0,
2909                                                    IPPROTO_TCP,
2910                                                    0);
2911                         cmd_length = E1000_TXD_CMD_IP;
2912                         ipcse = skb->h.raw - skb->data - 1;
2913 #ifdef NETIF_F_TSO6
2914                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2915                         skb->nh.ipv6h->payload_len = 0;
2916                         skb->h.th->check =
2917                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2918                                                  &skb->nh.ipv6h->daddr,
2919                                                  0,
2920                                                  IPPROTO_TCP,
2921                                                  0);
2922                         ipcse = 0;
2923 #endif
2924                 }
2925                 ipcss = skb->nh.raw - skb->data;
2926                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2927                 tucss = skb->h.raw - skb->data;
2928                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2929                 tucse = 0;
2930
2931                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2932                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2933
2934                 i = tx_ring->next_to_use;
2935                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2936                 buffer_info = &tx_ring->buffer_info[i];
2937
2938                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2939                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2940                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2941                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2942                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2943                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2944                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2945                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2946                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2947
2948                 buffer_info->time_stamp = jiffies;
2949                 buffer_info->next_to_watch = i;
2950
2951                 if (++i == tx_ring->count) i = 0;
2952                 tx_ring->next_to_use = i;
2953
2954                 return TRUE;
2955         }
2956 #endif
2957
2958         return FALSE;
2959 }
2960
2961 static boolean_t
2962 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2963               struct sk_buff *skb)
2964 {
2965         struct e1000_context_desc *context_desc;
2966         struct e1000_buffer *buffer_info;
2967         unsigned int i;
2968         uint8_t css;
2969
2970         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2971                 css = skb->h.raw - skb->data;
2972
2973                 i = tx_ring->next_to_use;
2974                 buffer_info = &tx_ring->buffer_info[i];
2975                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2976
2977                 context_desc->upper_setup.tcp_fields.tucss = css;
2978                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
2979                 context_desc->upper_setup.tcp_fields.tucse = 0;
2980                 context_desc->tcp_seg_setup.data = 0;
2981                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2982
2983                 buffer_info->time_stamp = jiffies;
2984                 buffer_info->next_to_watch = i;
2985
2986                 if (unlikely(++i == tx_ring->count)) i = 0;
2987                 tx_ring->next_to_use = i;
2988
2989                 return TRUE;
2990         }
2991
2992         return FALSE;
2993 }
2994
2995 #define E1000_MAX_TXD_PWR       12
2996 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2997
2998 static int
2999 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3000              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
3001              unsigned int nr_frags, unsigned int mss)
3002 {
3003         struct e1000_buffer *buffer_info;
3004         unsigned int len = skb->len;
3005         unsigned int offset = 0, size, count = 0, i;
3006         unsigned int f;
3007         len -= skb->data_len;
3008
3009         i = tx_ring->next_to_use;
3010
3011         while (len) {
3012                 buffer_info = &tx_ring->buffer_info[i];
3013                 size = min(len, max_per_txd);
3014 #ifdef NETIF_F_TSO
3015                 /* Workaround for Controller erratum --
3016                  * descriptor for non-tso packet in a linear SKB that follows a
3017                  * tso gets written back prematurely before the data is fully
3018                  * DMA'd to the controller */
3019                 if (!skb->data_len && tx_ring->last_tx_tso &&
3020                     !skb_is_gso(skb)) {
3021                         tx_ring->last_tx_tso = 0;
3022                         size -= 4;
3023                 }
3024
3025                 /* Workaround for premature desc write-backs
3026                  * in TSO mode.  Append 4-byte sentinel desc */
3027                 if (unlikely(mss && !nr_frags && size == len && size > 8))
3028                         size -= 4;
3029 #endif
3030                 /* work-around for errata 10 and it applies
3031                  * to all controllers in PCI-X mode
3032                  * The fix is to make sure that the first descriptor of a
3033                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3034                  */
3035                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3036                                 (size > 2015) && count == 0))
3037                         size = 2015;
3038
3039                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
3040                  * terminating buffers within evenly-aligned dwords. */
3041                 if (unlikely(adapter->pcix_82544 &&
3042                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3043                    size > 4))
3044                         size -= 4;
3045
3046                 buffer_info->length = size;
3047                 buffer_info->dma =
3048                         pci_map_single(adapter->pdev,
3049                                 skb->data + offset,
3050                                 size,
3051                                 PCI_DMA_TODEVICE);
3052                 buffer_info->time_stamp = jiffies;
3053                 buffer_info->next_to_watch = i;
3054
3055                 len -= size;
3056                 offset += size;
3057                 count++;
3058                 if (unlikely(++i == tx_ring->count)) i = 0;
3059         }
3060
3061         for (f = 0; f < nr_frags; f++) {
3062                 struct skb_frag_struct *frag;
3063
3064                 frag = &skb_shinfo(skb)->frags[f];
3065                 len = frag->size;
3066                 offset = frag->page_offset;
3067
3068                 while (len) {
3069                         buffer_info = &tx_ring->buffer_info[i];
3070                         size = min(len, max_per_txd);
3071 #ifdef NETIF_F_TSO
3072                         /* Workaround for premature desc write-backs
3073                          * in TSO mode.  Append 4-byte sentinel desc */
3074                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3075                                 size -= 4;
3076 #endif
3077                         /* Workaround for potential 82544 hang in PCI-X.
3078                          * Avoid terminating buffers within evenly-aligned
3079                          * dwords. */
3080                         if (unlikely(adapter->pcix_82544 &&
3081                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3082                            size > 4))
3083                                 size -= 4;
3084
3085                         buffer_info->length = size;
3086                         buffer_info->dma =
3087                                 pci_map_page(adapter->pdev,
3088                                         frag->page,
3089                                         offset,
3090                                         size,
3091                                         PCI_DMA_TODEVICE);
3092                         buffer_info->time_stamp = jiffies;
3093                         buffer_info->next_to_watch = i;
3094
3095                         len -= size;
3096                         offset += size;
3097                         count++;
3098                         if (unlikely(++i == tx_ring->count)) i = 0;
3099                 }
3100         }
3101
3102         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3103         tx_ring->buffer_info[i].skb = skb;
3104         tx_ring->buffer_info[first].next_to_watch = i;
3105
3106         return count;
3107 }
3108
3109 static void
3110 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3111                int tx_flags, int count)
3112 {
3113         struct e1000_tx_desc *tx_desc = NULL;
3114         struct e1000_buffer *buffer_info;
3115         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3116         unsigned int i;
3117
3118         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3119                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3120                              E1000_TXD_CMD_TSE;
3121                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3122
3123                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3124                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3125         }
3126
3127         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3128                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3129                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3130         }
3131
3132         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3133                 txd_lower |= E1000_TXD_CMD_VLE;
3134                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3135         }
3136
3137         i = tx_ring->next_to_use;
3138
3139         while (count--) {
3140                 buffer_info = &tx_ring->buffer_info[i];
3141                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3142                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3143                 tx_desc->lower.data =
3144                         cpu_to_le32(txd_lower | buffer_info->length);
3145                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3146                 if (unlikely(++i == tx_ring->count)) i = 0;
3147         }
3148
3149         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3150
3151         /* Force memory writes to complete before letting h/w
3152          * know there are new descriptors to fetch.  (Only
3153          * applicable for weak-ordered memory model archs,
3154          * such as IA-64). */
3155         wmb();
3156
3157         tx_ring->next_to_use = i;
3158         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3159         /* we need this if more than one processor can write to our tail
3160          * at a time, it syncronizes IO on IA64/Altix systems */
3161         mmiowb();
3162 }
3163
3164 /**
3165  * 82547 workaround to avoid controller hang in half-duplex environment.
3166  * The workaround is to avoid queuing a large packet that would span
3167  * the internal Tx FIFO ring boundary by notifying the stack to resend
3168  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3169  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3170  * to the beginning of the Tx FIFO.
3171  **/
3172
3173 #define E1000_FIFO_HDR                  0x10
3174 #define E1000_82547_PAD_LEN             0x3E0
3175
3176 static int
3177 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3178 {
3179         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3180         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3181
3182         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
3183
3184         if (adapter->link_duplex != HALF_DUPLEX)
3185                 goto no_fifo_stall_required;
3186
3187         if (atomic_read(&adapter->tx_fifo_stall))
3188                 return 1;
3189
3190         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3191                 atomic_set(&adapter->tx_fifo_stall, 1);
3192                 return 1;
3193         }
3194
3195 no_fifo_stall_required:
3196         adapter->tx_fifo_head += skb_fifo_len;
3197         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3198                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3199         return 0;
3200 }
3201
3202 #define MINIMUM_DHCP_PACKET_SIZE 282
3203 static int
3204 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3205 {
3206         struct e1000_hw *hw =  &adapter->hw;
3207         uint16_t length, offset;
3208         if (vlan_tx_tag_present(skb)) {
3209                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3210                         ( adapter->hw.mng_cookie.status &
3211                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3212                         return 0;
3213         }
3214         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3215                 struct ethhdr *eth = (struct ethhdr *) skb->data;
3216                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3217                         const struct iphdr *ip =
3218                                 (struct iphdr *)((uint8_t *)skb->data+14);
3219                         if (IPPROTO_UDP == ip->protocol) {
3220                                 struct udphdr *udp =
3221                                         (struct udphdr *)((uint8_t *)ip +
3222                                                 (ip->ihl << 2));
3223                                 if (ntohs(udp->dest) == 67) {
3224                                         offset = (uint8_t *)udp + 8 - skb->data;
3225                                         length = skb->len - offset;
3226
3227                                         return e1000_mng_write_dhcp_info(hw,
3228                                                         (uint8_t *)udp + 8,
3229                                                         length);
3230                                 }
3231                         }
3232                 }
3233         }
3234         return 0;
3235 }
3236
3237 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3238 {
3239         struct e1000_adapter *adapter = netdev_priv(netdev);
3240         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3241
3242         netif_stop_queue(netdev);
3243         /* Herbert's original patch had:
3244          *  smp_mb__after_netif_stop_queue();
3245          * but since that doesn't exist yet, just open code it. */
3246         smp_mb();
3247
3248         /* We need to check again in a case another CPU has just
3249          * made room available. */
3250         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3251                 return -EBUSY;
3252
3253         /* A reprieve! */
3254         netif_start_queue(netdev);
3255         ++adapter->restart_queue;
3256         return 0;
3257 }
3258
3259 static int e1000_maybe_stop_tx(struct net_device *netdev,
3260                                struct e1000_tx_ring *tx_ring, int size)
3261 {
3262         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3263                 return 0;
3264         return __e1000_maybe_stop_tx(netdev, size);
3265 }
3266
3267 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3268 static int
3269 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3270 {
3271         struct e1000_adapter *adapter = netdev_priv(netdev);
3272         struct e1000_tx_ring *tx_ring;
3273         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3274         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3275         unsigned int tx_flags = 0;
3276         unsigned int len = skb->len;
3277         unsigned long flags;
3278         unsigned int nr_frags = 0;
3279         unsigned int mss = 0;
3280         int count = 0;
3281         int tso;
3282         unsigned int f;
3283         len -= skb->data_len;
3284
3285         /* This goes back to the question of how to logically map a tx queue
3286          * to a flow.  Right now, performance is impacted slightly negatively
3287          * if using multiple tx queues.  If the stack breaks away from a
3288          * single qdisc implementation, we can look at this again. */
3289         tx_ring = adapter->tx_ring;
3290
3291         if (unlikely(skb->len <= 0)) {
3292                 dev_kfree_skb_any(skb);
3293                 return NETDEV_TX_OK;
3294         }
3295
3296         /* 82571 and newer doesn't need the workaround that limited descriptor
3297          * length to 4kB */
3298         if (adapter->hw.mac_type >= e1000_82571)
3299                 max_per_txd = 8192;
3300
3301 #ifdef NETIF_F_TSO
3302         mss = skb_shinfo(skb)->gso_size;
3303         /* The controller does a simple calculation to
3304          * make sure there is enough room in the FIFO before
3305          * initiating the DMA for each buffer.  The calc is:
3306          * 4 = ceil(buffer len/mss).  To make sure we don't
3307          * overrun the FIFO, adjust the max buffer len if mss
3308          * drops. */
3309         if (mss) {
3310                 uint8_t hdr_len;
3311                 max_per_txd = min(mss << 2, max_per_txd);
3312                 max_txd_pwr = fls(max_per_txd) - 1;
3313
3314                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3315                 * points to just header, pull a few bytes of payload from
3316                 * frags into skb->data */
3317                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3318                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3319                         switch (adapter->hw.mac_type) {
3320                                 unsigned int pull_size;
3321                         case e1000_82544:
3322                                 /* Make sure we have room to chop off 4 bytes,
3323                                  * and that the end alignment will work out to
3324                                  * this hardware's requirements
3325                                  * NOTE: this is a TSO only workaround
3326                                  * if end byte alignment not correct move us
3327                                  * into the next dword */
3328                                 if ((unsigned long)(skb->tail - 1) & 4)
3329                                         break;
3330                                 /* fall through */
3331                         case e1000_82571:
3332                         case e1000_82572:
3333                         case e1000_82573:
3334                         case e1000_ich8lan:
3335                                 pull_size = min((unsigned int)4, skb->data_len);
3336                                 if (!__pskb_pull_tail(skb, pull_size)) {
3337                                         DPRINTK(DRV, ERR,
3338                                                 "__pskb_pull_tail failed.\n");
3339                                         dev_kfree_skb_any(skb);
3340                                         return NETDEV_TX_OK;
3341                                 }
3342                                 len = skb->len - skb->data_len;
3343                                 break;
3344                         default:
3345                                 /* do nothing */
3346                                 break;
3347                         }
3348                 }
3349         }
3350
3351         /* reserve a descriptor for the offload context */
3352         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3353                 count++;
3354         count++;
3355 #else
3356         if (skb->ip_summed == CHECKSUM_PARTIAL)
3357                 count++;
3358 #endif
3359
3360 #ifdef NETIF_F_TSO
3361         /* Controller Erratum workaround */
3362         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3363                 count++;
3364 #endif
3365
3366         count += TXD_USE_COUNT(len, max_txd_pwr);
3367
3368         if (adapter->pcix_82544)
3369                 count++;
3370
3371         /* work-around for errata 10 and it applies to all controllers
3372          * in PCI-X mode, so add one more descriptor to the count
3373          */
3374         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3375                         (len > 2015)))
3376                 count++;
3377
3378         nr_frags = skb_shinfo(skb)->nr_frags;
3379         for (f = 0; f < nr_frags; f++)
3380                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3381                                        max_txd_pwr);
3382         if (adapter->pcix_82544)
3383                 count += nr_frags;
3384
3385
3386         if (adapter->hw.tx_pkt_filtering &&
3387             (adapter->hw.mac_type == e1000_82573))
3388                 e1000_transfer_dhcp_info(adapter, skb);
3389
3390         local_irq_save(flags);
3391         if (!spin_trylock(&tx_ring->tx_lock)) {
3392                 /* Collision - tell upper layer to requeue */
3393                 local_irq_restore(flags);
3394                 return NETDEV_TX_LOCKED;
3395         }
3396
3397         /* need: count + 2 desc gap to keep tail from touching
3398          * head, otherwise try next time */
3399         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3400                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3401                 return NETDEV_TX_BUSY;
3402         }
3403
3404         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3405                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3406                         netif_stop_queue(netdev);
3407                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3408                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3409                         return NETDEV_TX_BUSY;
3410                 }
3411         }
3412
3413         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3414                 tx_flags |= E1000_TX_FLAGS_VLAN;
3415                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3416         }
3417
3418         first = tx_ring->next_to_use;
3419
3420         tso = e1000_tso(adapter, tx_ring, skb);
3421         if (tso < 0) {
3422                 dev_kfree_skb_any(skb);
3423                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3424                 return NETDEV_TX_OK;
3425         }
3426
3427         if (likely(tso)) {
3428                 tx_ring->last_tx_tso = 1;
3429                 tx_flags |= E1000_TX_FLAGS_TSO;
3430         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3431                 tx_flags |= E1000_TX_FLAGS_CSUM;
3432
3433         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3434          * 82571 hardware supports TSO capabilities for IPv6 as well...
3435          * no longer assume, we must. */
3436         if (likely(skb->protocol == htons(ETH_P_IP)))
3437                 tx_flags |= E1000_TX_FLAGS_IPV4;
3438
3439         e1000_tx_queue(adapter, tx_ring, tx_flags,
3440                        e1000_tx_map(adapter, tx_ring, skb, first,
3441                                     max_per_txd, nr_frags, mss));
3442
3443         netdev->trans_start = jiffies;
3444
3445         /* Make sure there is space in the ring for the next send. */
3446         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3447
3448         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3449         return NETDEV_TX_OK;
3450 }
3451
3452 /**
3453  * e1000_tx_timeout - Respond to a Tx Hang
3454  * @netdev: network interface device structure
3455  **/
3456
3457 static void
3458 e1000_tx_timeout(struct net_device *netdev)
3459 {
3460         struct e1000_adapter *adapter = netdev_priv(netdev);
3461
3462         /* Do the reset outside of interrupt context */
3463         adapter->tx_timeout_count++;
3464         schedule_work(&adapter->reset_task);
3465 }
3466
3467 static void
3468 e1000_reset_task(struct work_struct *work)
3469 {
3470         struct e1000_adapter *adapter =
3471                 container_of(work, struct e1000_adapter, reset_task);
3472
3473         e1000_reinit_locked(adapter);
3474 }
3475
3476 /**
3477  * e1000_get_stats - Get System Network Statistics
3478  * @netdev: network interface device structure
3479  *
3480  * Returns the address of the device statistics structure.
3481  * The statistics are actually updated from the timer callback.
3482  **/
3483
3484 static struct net_device_stats *
3485 e1000_get_stats(struct net_device *netdev)
3486 {
3487         struct e1000_adapter *adapter = netdev_priv(netdev);
3488
3489         /* only return the current stats */
3490         return &adapter->net_stats;
3491 }
3492
3493 /**
3494  * e1000_change_mtu - Change the Maximum Transfer Unit
3495  * @netdev: network interface device structure
3496  * @new_mtu: new value for maximum frame size
3497  *
3498  * Returns 0 on success, negative on failure
3499  **/
3500
3501 static int
3502 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3503 {
3504         struct e1000_adapter *adapter = netdev_priv(netdev);
3505         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3506         uint16_t eeprom_data = 0;
3507
3508         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3509             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3510                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3511                 return -EINVAL;
3512         }
3513
3514         /* Adapter-specific max frame size limits. */
3515         switch (adapter->hw.mac_type) {
3516         case e1000_undefined ... e1000_82542_rev2_1:
3517         case e1000_ich8lan:
3518                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3519                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3520                         return -EINVAL;
3521                 }
3522                 break;
3523         case e1000_82573:
3524                 /* Jumbo Frames not supported if:
3525                  * - this is not an 82573L device
3526                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3527                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3528                                   &eeprom_data);
3529                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3530                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3531                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3532                                 DPRINTK(PROBE, ERR,
3533                                         "Jumbo Frames not supported.\n");
3534                                 return -EINVAL;
3535                         }
3536                         break;
3537                 }
3538                 /* ERT will be enabled later to enable wire speed receives */
3539
3540                 /* fall through to get support */
3541         case e1000_82571:
3542         case e1000_82572:
3543         case e1000_80003es2lan:
3544 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3545                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3546                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3547                         return -EINVAL;
3548                 }
3549                 break;
3550         default:
3551                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3552                 break;
3553         }
3554
3555         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3556          * means we reserve 2 more, this pushes us to allocate from the next
3557          * larger slab size
3558          * i.e. RXBUFFER_2048 --> size-4096 slab */
3559
3560         if (max_frame <= E1000_RXBUFFER_256)
3561                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3562         else if (max_frame <= E1000_RXBUFFER_512)
3563                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3564         else if (max_frame <= E1000_RXBUFFER_1024)
3565                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3566         else if (max_frame <= E1000_RXBUFFER_2048)
3567                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3568         else if (max_frame <= E1000_RXBUFFER_4096)
3569                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3570         else if (max_frame <= E1000_RXBUFFER_8192)
3571                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3572         else if (max_frame <= E1000_RXBUFFER_16384)
3573                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3574
3575         /* adjust allocation if LPE protects us, and we aren't using SBP */
3576         if (!adapter->hw.tbi_compatibility_on &&
3577             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3578              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3579                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3580
3581         netdev->mtu = new_mtu;
3582         adapter->hw.max_frame_size = max_frame;
3583
3584         if (netif_running(netdev))
3585                 e1000_reinit_locked(adapter);
3586
3587         return 0;
3588 }
3589
3590 /**
3591  * e1000_update_stats - Update the board statistics counters
3592  * @adapter: board private structure
3593  **/
3594
3595 void
3596 e1000_update_stats(struct e1000_adapter *adapter)
3597 {
3598         struct e1000_hw *hw = &adapter->hw;
3599         struct pci_dev *pdev = adapter->pdev;
3600         unsigned long flags;
3601         uint16_t phy_tmp;
3602
3603 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3604
3605         /*
3606          * Prevent stats update while adapter is being reset, or if the pci
3607          * connection is down.
3608          */
3609         if (adapter->link_speed == 0)
3610                 return;
3611         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3612                 return;
3613
3614         spin_lock_irqsave(&adapter->stats_lock, flags);
3615
3616         /* these counters are modified from e1000_adjust_tbi_stats,
3617          * called from the interrupt context, so they must only
3618          * be written while holding adapter->stats_lock
3619          */
3620
3621         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3622         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3623         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3624         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3625         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3626         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3627         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3628
3629         if (adapter->hw.mac_type != e1000_ich8lan) {
3630                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3631                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3632                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3633                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3634                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3635                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3636         }
3637
3638         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3639         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3640         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3641         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3642         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3643         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3644         adapter->stats.dc += E1000_READ_REG(hw, DC);
3645         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3646         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3647         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3648         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3649         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3650         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3651         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3652         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3653         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3654         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3655         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3656         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3657         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3658         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3659         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3660         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3661         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3662         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3663         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3664
3665         if (adapter->hw.mac_type != e1000_ich8lan) {
3666                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3667                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3668                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3669                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3670                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3671                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3672         }
3673
3674         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3675         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3676
3677         /* used for adaptive IFS */
3678
3679         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3680         adapter->stats.tpt += hw->tx_packet_delta;
3681         hw->collision_delta = E1000_READ_REG(hw, COLC);
3682         adapter->stats.colc += hw->collision_delta;
3683
3684         if (hw->mac_type >= e1000_82543) {
3685                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3686                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3687                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3688                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3689                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3690                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3691         }
3692         if (hw->mac_type > e1000_82547_rev_2) {
3693                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3694                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3695
3696                 if (adapter->hw.mac_type != e1000_ich8lan) {
3697                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3698                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3699                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3700                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3701                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3702                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3703                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3704                 }
3705         }
3706
3707         /* Fill out the OS statistics structure */
3708         adapter->net_stats.rx_packets = adapter->stats.gprc;
3709         adapter->net_stats.tx_packets = adapter->stats.gptc;
3710         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3711         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3712         adapter->net_stats.multicast = adapter->stats.mprc;
3713         adapter->net_stats.collisions = adapter->stats.colc;
3714
3715         /* Rx Errors */
3716
3717         /* RLEC on some newer hardware can be incorrect so build
3718         * our own version based on RUC and ROC */
3719         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3720                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3721                 adapter->stats.ruc + adapter->stats.roc +
3722                 adapter->stats.cexterr;
3723         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3724         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3725         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3726         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3727         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3728
3729         /* Tx Errors */
3730         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3731         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3732         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3733         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3734         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3735         if (adapter->hw.bad_tx_carr_stats_fd &&
3736             adapter->link_duplex == FULL_DUPLEX) {
3737                 adapter->net_stats.tx_carrier_errors = 0;
3738                 adapter->stats.tncrs = 0;
3739         }
3740
3741         /* Tx Dropped needs to be maintained elsewhere */
3742
3743         /* Phy Stats */
3744         if (hw->media_type == e1000_media_type_copper) {
3745                 if ((adapter->link_speed == SPEED_1000) &&
3746                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3747                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3748                         adapter->phy_stats.idle_errors += phy_tmp;
3749                 }
3750
3751                 if ((hw->mac_type <= e1000_82546) &&
3752                    (hw->phy_type == e1000_phy_m88) &&
3753                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3754                         adapter->phy_stats.receive_errors += phy_tmp;
3755         }
3756
3757         /* Management Stats */
3758         if (adapter->hw.has_smbus) {
3759                 adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC);
3760                 adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC);
3761                 adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC);
3762         }
3763
3764         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3765 }
3766 #ifdef CONFIG_PCI_MSI
3767
3768 /**
3769  * e1000_intr_msi - Interrupt Handler
3770  * @irq: interrupt number
3771  * @data: pointer to a network interface device structure
3772  **/
3773
3774 static
3775 irqreturn_t e1000_intr_msi(int irq, void *data)
3776 {
3777         struct net_device *netdev = data;
3778         struct e1000_adapter *adapter = netdev_priv(netdev);
3779         struct e1000_hw *hw = &adapter->hw;
3780 #ifndef CONFIG_E1000_NAPI
3781         int i;
3782 #endif
3783
3784         /* this code avoids the read of ICR but has to get 1000 interrupts
3785          * at every link change event before it will notice the change */
3786         if (++adapter->detect_link >= 1000) {
3787                 uint32_t icr = E1000_READ_REG(hw, ICR);
3788 #ifdef CONFIG_E1000_NAPI
3789                 /* read ICR disables interrupts using IAM, so keep up with our
3790                  * enable/disable accounting */
3791                 atomic_inc(&adapter->irq_sem);
3792 #endif
3793                 adapter->detect_link = 0;
3794                 if ((icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) &&
3795                     (icr & E1000_ICR_INT_ASSERTED)) {
3796                         hw->get_link_status = 1;
3797                         /* 80003ES2LAN workaround--
3798                         * For packet buffer work-around on link down event;
3799                         * disable receives here in the ISR and
3800                         * reset adapter in watchdog
3801                         */
3802                         if (netif_carrier_ok(netdev) &&
3803                             (adapter->hw.mac_type == e1000_80003es2lan)) {
3804                                 /* disable receives */
3805                                 uint32_t rctl = E1000_READ_REG(hw, RCTL);
3806                                 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3807                         }
3808                         /* guard against interrupt when we're going down */
3809                         if (!test_bit(__E1000_DOWN, &adapter->flags))
3810                                 mod_timer(&adapter->watchdog_timer,
3811                                           jiffies + 1);
3812                 }
3813         } else {
3814                 E1000_WRITE_REG(hw, ICR, (0xffffffff & ~(E1000_ICR_RXSEQ |
3815                                                          E1000_ICR_LSC)));
3816                 /* bummer we have to flush here, but things break otherwise as
3817                  * some event appears to be lost or delayed and throughput
3818                  * drops.  In almost all tests this flush is un-necessary */
3819                 E1000_WRITE_FLUSH(hw);
3820 #ifdef CONFIG_E1000_NAPI
3821                 /* Interrupt Auto-Mask (IAM)...upon writing ICR, interrupts are
3822                  * masked.  No need for the IMC write, but it does mean we
3823                  * should account for it ASAP. */
3824                 atomic_inc(&adapter->irq_sem);
3825 #endif
3826         }
3827
3828 #ifdef CONFIG_E1000_NAPI
3829         if (likely(netif_rx_schedule_prep(netdev))) {
3830                 adapter->total_tx_bytes = 0;
3831                 adapter->total_tx_packets = 0;
3832                 adapter->total_rx_bytes = 0;
3833                 adapter->total_rx_packets = 0;
3834                 __netif_rx_schedule(netdev);
3835         } else
3836                 e1000_irq_enable(adapter);
3837 #else
3838         adapter->total_tx_bytes = 0;
3839         adapter->total_rx_bytes = 0;
3840         adapter->total_tx_packets = 0;
3841         adapter->total_rx_packets = 0;
3842
3843         for (i = 0; i < E1000_MAX_INTR; i++)
3844                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3845                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3846                         break;
3847
3848         if (likely(adapter->itr_setting & 3))
3849                 e1000_set_itr(adapter);
3850 #endif
3851
3852         return IRQ_HANDLED;
3853 }
3854 #endif
3855
3856 /**
3857  * e1000_intr - Interrupt Handler
3858  * @irq: interrupt number
3859  * @data: pointer to a network interface device structure
3860  **/
3861
3862 static irqreturn_t
3863 e1000_intr(int irq, void *data)
3864 {
3865         struct net_device *netdev = data;
3866         struct e1000_adapter *adapter = netdev_priv(netdev);
3867         struct e1000_hw *hw = &adapter->hw;
3868         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3869 #ifndef CONFIG_E1000_NAPI
3870         int i;
3871 #endif
3872         if (unlikely(!icr))
3873                 return IRQ_NONE;  /* Not our interrupt */
3874
3875 #ifdef CONFIG_E1000_NAPI
3876         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3877          * not set, then the adapter didn't send an interrupt */
3878         if (unlikely(hw->mac_type >= e1000_82571 &&
3879                      !(icr & E1000_ICR_INT_ASSERTED)))
3880                 return IRQ_NONE;
3881
3882         /* Interrupt Auto-Mask...upon reading ICR,
3883          * interrupts are masked.  No need for the
3884          * IMC write, but it does mean we should
3885          * account for it ASAP. */
3886         if (likely(hw->mac_type >= e1000_82571))
3887                 atomic_inc(&adapter->irq_sem);
3888 #endif
3889
3890         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3891                 hw->get_link_status = 1;
3892                 /* 80003ES2LAN workaround--
3893                  * For packet buffer work-around on link down event;
3894                  * disable receives here in the ISR and
3895                  * reset adapter in watchdog
3896                  */
3897                 if (netif_carrier_ok(netdev) &&
3898                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3899                         /* disable receives */
3900                         rctl = E1000_READ_REG(hw, RCTL);
3901                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3902                 }
3903                 /* guard against interrupt when we're going down */
3904                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3905                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3906         }
3907
3908 #ifdef CONFIG_E1000_NAPI
3909         if (unlikely(hw->mac_type < e1000_82571)) {
3910                 /* disable interrupts, without the synchronize_irq bit */
3911                 atomic_inc(&adapter->irq_sem);
3912                 E1000_WRITE_REG(hw, IMC, ~0);
3913                 E1000_WRITE_FLUSH(hw);
3914         }
3915         if (likely(netif_rx_schedule_prep(netdev))) {
3916                 adapter->total_tx_bytes = 0;
3917                 adapter->total_tx_packets = 0;
3918                 adapter->total_rx_bytes = 0;
3919                 adapter->total_rx_packets = 0;
3920                 __netif_rx_schedule(netdev);
3921         } else
3922                 /* this really should not happen! if it does it is basically a
3923                  * bug, but not a hard error, so enable ints and continue */
3924                 e1000_irq_enable(adapter);
3925 #else
3926         /* Writing IMC and IMS is needed for 82547.
3927          * Due to Hub Link bus being occupied, an interrupt
3928          * de-assertion message is not able to be sent.
3929          * When an interrupt assertion message is generated later,
3930          * two messages are re-ordered and sent out.
3931          * That causes APIC to think 82547 is in de-assertion
3932          * state, while 82547 is in assertion state, resulting
3933          * in dead lock. Writing IMC forces 82547 into
3934          * de-assertion state.
3935          */
3936         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3937                 atomic_inc(&adapter->irq_sem);
3938                 E1000_WRITE_REG(hw, IMC, ~0);
3939         }
3940
3941         adapter->total_tx_bytes = 0;
3942         adapter->total_rx_bytes = 0;
3943         adapter->total_tx_packets = 0;
3944         adapter->total_rx_packets = 0;
3945
3946         for (i = 0; i < E1000_MAX_INTR; i++)
3947                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3948                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3949                         break;
3950
3951         if (likely(adapter->itr_setting & 3))
3952                 e1000_set_itr(adapter);
3953
3954         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3955                 e1000_irq_enable(adapter);
3956
3957 #endif
3958         return IRQ_HANDLED;
3959 }
3960
3961 #ifdef CONFIG_E1000_NAPI
3962 /**
3963  * e1000_clean - NAPI Rx polling callback
3964  * @adapter: board private structure
3965  **/
3966
3967 static int
3968 e1000_clean(struct net_device *poll_dev, int *budget)
3969 {
3970         struct e1000_adapter *adapter;
3971         int work_to_do = min(*budget, poll_dev->quota);
3972         int tx_cleaned = 0, work_done = 0;
3973
3974         /* Must NOT use netdev_priv macro here. */
3975         adapter = poll_dev->priv;
3976
3977         /* Keep link state information with original netdev */
3978         if (!netif_carrier_ok(poll_dev))
3979                 goto quit_polling;
3980
3981         /* e1000_clean is called per-cpu.  This lock protects
3982          * tx_ring[0] from being cleaned by multiple cpus
3983          * simultaneously.  A failure obtaining the lock means
3984          * tx_ring[0] is currently being cleaned anyway. */
3985         if (spin_trylock(&adapter->tx_queue_lock)) {
3986                 tx_cleaned = e1000_clean_tx_irq(adapter,
3987                                                 &adapter->tx_ring[0]);
3988                 spin_unlock(&adapter->tx_queue_lock);
3989         }
3990
3991         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3992                           &work_done, work_to_do);
3993
3994         *budget -= work_done;
3995         poll_dev->quota -= work_done;
3996
3997         /* If no Tx and not enough Rx work done, exit the polling mode */
3998         if ((!tx_cleaned && (work_done == 0)) ||
3999            !netif_running(poll_dev)) {
4000 quit_polling:
4001                 if (likely(adapter->itr_setting & 3))
4002                         e1000_set_itr(adapter);
4003                 netif_rx_complete(poll_dev);
4004                 e1000_irq_enable(adapter);
4005                 return 0;
4006         }
4007
4008         return 1;
4009 }
4010
4011 #endif
4012 /**
4013  * e1000_clean_tx_irq - Reclaim resources after transmit completes
4014  * @adapter: board private structure
4015  **/
4016
4017 static boolean_t
4018 e1000_clean_tx_irq(struct e1000_adapter *adapter,
4019                    struct e1000_tx_ring *tx_ring)
4020 {
4021         struct net_device *netdev = adapter->netdev;
4022         struct e1000_tx_desc *tx_desc, *eop_desc;
4023         struct e1000_buffer *buffer_info;
4024         unsigned int i, eop;
4025 #ifdef CONFIG_E1000_NAPI
4026         unsigned int count = 0;
4027 #endif
4028         boolean_t cleaned = FALSE;
4029         unsigned int total_tx_bytes=0, total_tx_packets=0;
4030
4031         i = tx_ring->next_to_clean;
4032         eop = tx_ring->buffer_info[i].next_to_watch;
4033         eop_desc = E1000_TX_DESC(*tx_ring, eop);
4034
4035         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
4036                 for (cleaned = FALSE; !cleaned; ) {
4037                         tx_desc = E1000_TX_DESC(*tx_ring, i);
4038                         buffer_info = &tx_ring->buffer_info[i];
4039                         cleaned = (i == eop);
4040
4041                         if (cleaned) {
4042                                 struct sk_buff *skb = buffer_info->skb;
4043                                 unsigned int segs = skb_shinfo(skb)->gso_segs;
4044                                 total_tx_packets += segs;
4045                                 total_tx_packets++;
4046                                 total_tx_bytes += skb->len;
4047                         }
4048                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
4049                         tx_desc->upper.data = 0;
4050
4051                         if (unlikely(++i == tx_ring->count)) i = 0;
4052                 }
4053
4054                 eop = tx_ring->buffer_info[i].next_to_watch;
4055                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
4056 #ifdef CONFIG_E1000_NAPI
4057 #define E1000_TX_WEIGHT 64
4058                 /* weight of a sort for tx, to avoid endless transmit cleanup */
4059                 if (count++ == E1000_TX_WEIGHT) break;
4060 #endif
4061         }
4062
4063         tx_ring->next_to_clean = i;
4064
4065 #define TX_WAKE_THRESHOLD 32
4066         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
4067                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
4068                 /* Make sure that anybody stopping the queue after this
4069                  * sees the new next_to_clean.
4070                  */
4071                 smp_mb();
4072                 if (netif_queue_stopped(netdev)) {
4073                         netif_wake_queue(netdev);
4074                         ++adapter->restart_queue;
4075                 }
4076         }
4077
4078         if (adapter->detect_tx_hung) {
4079                 /* Detect a transmit hang in hardware, this serializes the
4080                  * check with the clearing of time_stamp and movement of i */
4081                 adapter->detect_tx_hung = FALSE;
4082                 if (tx_ring->buffer_info[eop].dma &&
4083                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
4084                                (adapter->tx_timeout_factor * HZ))
4085                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
4086                          E1000_STATUS_TXOFF)) {
4087
4088                         /* detected Tx unit hang */
4089                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
4090                                         "  Tx Queue             <%lu>\n"
4091                                         "  TDH                  <%x>\n"
4092                                         "  TDT                  <%x>\n"
4093                                         "  next_to_use          <%x>\n"
4094                                         "  next_to_clean        <%x>\n"
4095                                         "buffer_info[next_to_clean]\n"
4096                                         "  time_stamp           <%lx>\n"
4097                                         "  next_to_watch        <%x>\n"
4098                                         "  jiffies              <%lx>\n"
4099                                         "  next_to_watch.status <%x>\n",
4100                                 (unsigned long)((tx_ring - adapter->tx_ring) /
4101                                         sizeof(struct e1000_tx_ring)),
4102                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
4103                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
4104                                 tx_ring->next_to_use,
4105                                 tx_ring->next_to_clean,
4106                                 tx_ring->buffer_info[eop].time_stamp,
4107                                 eop,
4108                                 jiffies,
4109                                 eop_desc->upper.fields.status);
4110                         netif_stop_queue(netdev);
4111                 }
4112         }
4113         adapter->total_tx_bytes += total_tx_bytes;
4114         adapter->total_tx_packets += total_tx_packets;
4115         return cleaned;
4116 }
4117
4118 /**
4119  * e1000_rx_checksum - Receive Checksum Offload for 82543
4120  * @adapter:     board private structure
4121  * @status_err:  receive descriptor status and error fields
4122  * @csum:        receive descriptor csum field
4123  * @sk_buff:     socket buffer with received data
4124  **/
4125
4126 static void
4127 e1000_rx_checksum(struct e1000_adapter *adapter,
4128                   uint32_t status_err, uint32_t csum,
4129                   struct sk_buff *skb)
4130 {
4131         uint16_t status = (uint16_t)status_err;
4132         uint8_t errors = (uint8_t)(status_err >> 24);
4133         skb->ip_summed = CHECKSUM_NONE;
4134
4135         /* 82543 or newer only */
4136         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
4137         /* Ignore Checksum bit is set */
4138         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4139         /* TCP/UDP checksum error bit is set */
4140         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4141                 /* let the stack verify checksum errors */
4142                 adapter->hw_csum_err++;
4143                 return;
4144         }
4145         /* TCP/UDP Checksum has not been calculated */
4146         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
4147                 if (!(status & E1000_RXD_STAT_TCPCS))
4148                         return;
4149         } else {
4150                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4151                         return;
4152         }
4153         /* It must be a TCP or UDP packet with a valid checksum */
4154         if (likely(status & E1000_RXD_STAT_TCPCS)) {
4155                 /* TCP checksum is good */
4156                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4157         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
4158                 /* IP fragment with UDP payload */
4159                 /* Hardware complements the payload checksum, so we undo it
4160                  * and then put the value in host order for further stack use.
4161                  */
4162                 csum = ntohl(csum ^ 0xFFFF);
4163                 skb->csum = csum;
4164                 skb->ip_summed = CHECKSUM_COMPLETE;
4165         }
4166         adapter->hw_csum_good++;
4167 }
4168
4169 /**
4170  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4171  * @adapter: board private structure
4172  **/
4173
4174 static boolean_t
4175 #ifdef CONFIG_E1000_NAPI
4176 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4177                    struct e1000_rx_ring *rx_ring,
4178                    int *work_done, int work_to_do)
4179 #else
4180 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4181                    struct e1000_rx_ring *rx_ring)
4182 #endif
4183 {
4184         struct net_device *netdev = adapter->netdev;
4185         struct pci_dev *pdev = adapter->pdev;
4186         struct e1000_rx_desc *rx_desc, *next_rxd;
4187         struct e1000_buffer *buffer_info, *next_buffer;
4188         unsigned long flags;
4189         uint32_t length;
4190         uint8_t last_byte;
4191         unsigned int i;
4192         int cleaned_count = 0;
4193         boolean_t cleaned = FALSE;
4194         unsigned int total_rx_bytes=0, total_rx_packets=0;
4195
4196         i = rx_ring->next_to_clean;
4197         rx_desc = E1000_RX_DESC(*rx_ring, i);
4198         buffer_info = &rx_ring->buffer_info[i];
4199
4200         while (rx_desc->status & E1000_RXD_STAT_DD) {
4201                 struct sk_buff *skb;
4202                 u8 status;
4203
4204 #ifdef CONFIG_E1000_NAPI
4205                 if (*work_done >= work_to_do)
4206                         break;
4207                 (*work_done)++;
4208 #endif
4209                 status = rx_desc->status;
4210                 skb = buffer_info->skb;
4211                 buffer_info->skb = NULL;
4212
4213                 prefetch(skb->data - NET_IP_ALIGN);
4214
4215                 if (++i == rx_ring->count) i = 0;
4216                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4217                 prefetch(next_rxd);
4218
4219                 next_buffer = &rx_ring->buffer_info[i];
4220
4221                 cleaned = TRUE;
4222                 cleaned_count++;
4223                 pci_unmap_single(pdev,
4224                                  buffer_info->dma,
4225                                  buffer_info->length,
4226                                  PCI_DMA_FROMDEVICE);
4227
4228                 length = le16_to_cpu(rx_desc->length);
4229
4230                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4231                         /* All receives must fit into a single buffer */
4232                         E1000_DBG("%s: Receive packet consumed multiple"
4233                                   " buffers\n", netdev->name);
4234                         /* recycle */
4235                         buffer_info->skb = skb;
4236                         goto next_desc;
4237                 }
4238
4239                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4240                         last_byte = *(skb->data + length - 1);
4241                         if (TBI_ACCEPT(&adapter->hw, status,
4242                                       rx_desc->errors, length, last_byte)) {
4243                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4244                                 e1000_tbi_adjust_stats(&adapter->hw,
4245                                                        &adapter->stats,
4246                                                        length, skb->data);
4247                                 spin_unlock_irqrestore(&adapter->stats_lock,
4248                                                        flags);
4249                                 length--;
4250                         } else {
4251                                 /* recycle */
4252                                 buffer_info->skb = skb;
4253                                 goto next_desc;
4254                         }
4255                 }
4256
4257                 /* adjust length to remove Ethernet CRC, this must be
4258                  * done after the TBI_ACCEPT workaround above */
4259                 length -= 4;
4260
4261                 /* probably a little skewed due to removing CRC */
4262                 total_rx_bytes += length;
4263                 total_rx_packets++;
4264
4265                 /* code added for copybreak, this should improve
4266                  * performance for small packets with large amounts
4267                  * of reassembly being done in the stack */
4268                 if (length < copybreak) {
4269                         struct sk_buff *new_skb =
4270                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4271                         if (new_skb) {
4272                                 skb_reserve(new_skb, NET_IP_ALIGN);
4273                                 memcpy(new_skb->data - NET_IP_ALIGN,
4274                                        skb->data - NET_IP_ALIGN,
4275                                        length + NET_IP_ALIGN);
4276                                 /* save the skb in buffer_info as good */
4277                                 buffer_info->skb = skb;
4278                                 skb = new_skb;
4279                         }
4280                         /* else just continue with the old one */
4281                 }
4282                 /* end copybreak code */
4283                 skb_put(skb, length);
4284
4285                 /* Receive Checksum Offload */
4286                 e1000_rx_checksum(adapter,
4287                                   (uint32_t)(status) |
4288                                   ((uint32_t)(rx_desc->errors) << 24),
4289                                   le16_to_cpu(rx_desc->csum), skb);
4290
4291                 skb->protocol = eth_type_trans(skb, netdev);
4292 #ifdef CONFIG_E1000_NAPI
4293                 if (unlikely(adapter->vlgrp &&
4294                             (status & E1000_RXD_STAT_VP))) {
4295                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4296                                                  le16_to_cpu(rx_desc->special) &
4297                                                  E1000_RXD_SPC_VLAN_MASK);
4298                 } else {
4299                         netif_receive_skb(skb);
4300                 }
4301 #else /* CONFIG_E1000_NAPI */
4302                 if (unlikely(adapter->vlgrp &&
4303                             (status & E1000_RXD_STAT_VP))) {
4304                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4305                                         le16_to_cpu(rx_desc->special) &
4306                                         E1000_RXD_SPC_VLAN_MASK);
4307                 } else {
4308                         netif_rx(skb);
4309                 }
4310 #endif /* CONFIG_E1000_NAPI */
4311                 netdev->last_rx = jiffies;
4312
4313 next_desc:
4314                 rx_desc->status = 0;
4315
4316                 /* return some buffers to hardware, one at a time is too slow */
4317                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4318                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4319                         cleaned_count = 0;
4320                 }
4321
4322                 /* use prefetched values */
4323                 rx_desc = next_rxd;
4324                 buffer_info = next_buffer;
4325         }
4326         rx_ring->next_to_clean = i;
4327
4328         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4329         if (cleaned_count)
4330                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4331
4332         adapter->total_rx_packets += total_rx_packets;
4333         adapter->total_rx_bytes += total_rx_bytes;
4334         return cleaned;
4335 }
4336
4337 /**
4338  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4339  * @adapter: board private structure
4340  **/
4341
4342 static boolean_t
4343 #ifdef CONFIG_E1000_NAPI
4344 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4345                       struct e1000_rx_ring *rx_ring,
4346                       int *work_done, int work_to_do)
4347 #else
4348 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4349                       struct e1000_rx_ring *rx_ring)
4350 #endif
4351 {
4352         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4353         struct net_device *netdev = adapter->netdev;
4354         struct pci_dev *pdev = adapter->pdev;
4355         struct e1000_buffer *buffer_info, *next_buffer;
4356         struct e1000_ps_page *ps_page;
4357         struct e1000_ps_page_dma *ps_page_dma;
4358         struct sk_buff *skb;
4359         unsigned int i, j;
4360         uint32_t length, staterr;
4361         int cleaned_count = 0;
4362         boolean_t cleaned = FALSE;
4363         unsigned int total_rx_bytes=0, total_rx_packets=0;
4364
4365         i = rx_ring->next_to_clean;
4366         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4367         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4368         buffer_info = &rx_ring->buffer_info[i];
4369
4370         while (staterr & E1000_RXD_STAT_DD) {
4371                 ps_page = &rx_ring->ps_page[i];
4372                 ps_page_dma = &rx_ring->ps_page_dma[i];
4373 #ifdef CONFIG_E1000_NAPI
4374                 if (unlikely(*work_done >= work_to_do))
4375                         break;
4376                 (*work_done)++;
4377 #endif
4378                 skb = buffer_info->skb;
4379
4380                 /* in the packet split case this is header only */
4381                 prefetch(skb->data - NET_IP_ALIGN);
4382
4383                 if (++i == rx_ring->count) i = 0;
4384                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4385                 prefetch(next_rxd);
4386
4387                 next_buffer = &rx_ring->buffer_info[i];
4388
4389                 cleaned = TRUE;
4390                 cleaned_count++;
4391                 pci_unmap_single(pdev, buffer_info->dma,
4392                                  buffer_info->length,
4393                                  PCI_DMA_FROMDEVICE);
4394
4395                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4396                         E1000_DBG("%s: Packet Split buffers didn't pick up"
4397                                   " the full packet\n", netdev->name);
4398                         dev_kfree_skb_irq(skb);
4399                         goto next_desc;
4400                 }
4401
4402                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4403                         dev_kfree_skb_irq(skb);
4404                         goto next_desc;
4405                 }
4406
4407                 length = le16_to_cpu(rx_desc->wb.middle.length0);
4408
4409                 if (unlikely(!length)) {
4410                         E1000_DBG("%s: Last part of the packet spanning"
4411                                   " multiple descriptors\n", netdev->name);
4412                         dev_kfree_skb_irq(skb);
4413                         goto next_desc;
4414                 }
4415
4416                 /* Good Receive */
4417                 skb_put(skb, length);
4418
4419                 {
4420                 /* this looks ugly, but it seems compiler issues make it
4421                    more efficient than reusing j */
4422                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4423
4424                 /* page alloc/put takes too long and effects small packet
4425                  * throughput, so unsplit small packets and save the alloc/put*/
4426                 if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
4427                         u8 *vaddr;
4428                         /* there is no documentation about how to call
4429                          * kmap_atomic, so we can't hold the mapping
4430                          * very long */
4431                         pci_dma_sync_single_for_cpu(pdev,
4432                                 ps_page_dma->ps_page_dma[0],
4433                                 PAGE_SIZE,
4434                                 PCI_DMA_FROMDEVICE);
4435                         vaddr = kmap_atomic(ps_page->ps_page[0],
4436                                             KM_SKB_DATA_SOFTIRQ);
4437                         memcpy(skb->tail, vaddr, l1);
4438                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4439                         pci_dma_sync_single_for_device(pdev,
4440                                 ps_page_dma->ps_page_dma[0],
4441                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4442                         /* remove the CRC */
4443                         l1 -= 4;
4444                         skb_put(skb, l1);
4445                         goto copydone;
4446                 } /* if */
4447                 }
4448
4449                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4450                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4451                                 break;
4452                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4453                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4454                         ps_page_dma->ps_page_dma[j] = 0;
4455                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4456                                            length);
4457                         ps_page->ps_page[j] = NULL;
4458                         skb->len += length;
4459                         skb->data_len += length;
4460                         skb->truesize += length;
4461                 }
4462
4463                 /* strip the ethernet crc, problem is we're using pages now so
4464                  * this whole operation can get a little cpu intensive */
4465                 pskb_trim(skb, skb->len - 4);
4466
4467 copydone:
4468                 total_rx_bytes += skb->len;
4469                 total_rx_packets++;
4470
4471                 e1000_rx_checksum(adapter, staterr,
4472                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4473                 skb->protocol = eth_type_trans(skb, netdev);
4474
4475                 if (likely(rx_desc->wb.upper.header_status &
4476                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4477                         adapter->rx_hdr_split++;
4478 #ifdef CONFIG_E1000_NAPI
4479                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4480                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4481                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4482                                 E1000_RXD_SPC_VLAN_MASK);
4483                 } else {
4484                         netif_receive_skb(skb);
4485                 }
4486 #else /* CONFIG_E1000_NAPI */
4487                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4488                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4489                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4490                                 E1000_RXD_SPC_VLAN_MASK);
4491                 } else {
4492                         netif_rx(skb);
4493                 }
4494 #endif /* CONFIG_E1000_NAPI */
4495                 netdev->last_rx = jiffies;
4496
4497 next_desc:
4498                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4499                 buffer_info->skb = NULL;
4500
4501                 /* return some buffers to hardware, one at a time is too slow */
4502                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4503                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4504                         cleaned_count = 0;
4505                 }
4506
4507                 /* use prefetched values */
4508                 rx_desc = next_rxd;
4509                 buffer_info = next_buffer;
4510
4511                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4512         }
4513         rx_ring->next_to_clean = i;
4514
4515         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4516         if (cleaned_count)
4517                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4518
4519         adapter->total_rx_packets += total_rx_packets;
4520         adapter->total_rx_bytes += total_rx_bytes;
4521         return cleaned;
4522 }
4523
4524 /**
4525  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4526  * @adapter: address of board private structure
4527  **/
4528
4529 static void
4530 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4531                        struct e1000_rx_ring *rx_ring,
4532                        int cleaned_count)
4533 {
4534         struct net_device *netdev = adapter->netdev;
4535         struct pci_dev *pdev = adapter->pdev;
4536         struct e1000_rx_desc *rx_desc;
4537         struct e1000_buffer *buffer_info;
4538         struct sk_buff *skb;
4539         unsigned int i;
4540         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4541
4542         i = rx_ring->next_to_use;
4543         buffer_info = &rx_ring->buffer_info[i];
4544
4545         while (cleaned_count--) {
4546                 skb = buffer_info->skb;
4547                 if (skb) {
4548                         skb_trim(skb, 0);
4549                         goto map_skb;
4550                 }
4551
4552                 skb = netdev_alloc_skb(netdev, bufsz);
4553                 if (unlikely(!skb)) {
4554                         /* Better luck next round */
4555                         adapter->alloc_rx_buff_failed++;
4556                         break;
4557                 }
4558
4559                 /* Fix for errata 23, can't cross 64kB boundary */
4560                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4561                         struct sk_buff *oldskb = skb;
4562                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4563                                              "at %p\n", bufsz, skb->data);
4564                         /* Try again, without freeing the previous */
4565                         skb = netdev_alloc_skb(netdev, bufsz);
4566                         /* Failed allocation, critical failure */
4567                         if (!skb) {
4568                                 dev_kfree_skb(oldskb);
4569                                 break;
4570                         }
4571
4572                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4573                                 /* give up */
4574                                 dev_kfree_skb(skb);
4575                                 dev_kfree_skb(oldskb);
4576                                 break; /* while !buffer_info->skb */
4577                         }
4578
4579                         /* Use new allocation */
4580                         dev_kfree_skb(oldskb);
4581                 }
4582                 /* Make buffer alignment 2 beyond a 16 byte boundary
4583                  * this will result in a 16 byte aligned IP header after
4584                  * the 14 byte MAC header is removed
4585                  */
4586                 skb_reserve(skb, NET_IP_ALIGN);
4587
4588                 buffer_info->skb = skb;
4589                 buffer_info->length = adapter->rx_buffer_len;
4590 map_skb:
4591                 buffer_info->dma = pci_map_single(pdev,
4592                                                   skb->data,
4593                                                   adapter->rx_buffer_len,
4594                                                   PCI_DMA_FROMDEVICE);
4595
4596                 /* Fix for errata 23, can't cross 64kB boundary */
4597                 if (!e1000_check_64k_bound(adapter,
4598                                         (void *)(unsigned long)buffer_info->dma,
4599                                         adapter->rx_buffer_len)) {
4600                         DPRINTK(RX_ERR, ERR,
4601                                 "dma align check failed: %u bytes at %p\n",
4602                                 adapter->rx_buffer_len,
4603                                 (void *)(unsigned long)buffer_info->dma);
4604                         dev_kfree_skb(skb);
4605                         buffer_info->skb = NULL;
4606
4607                         pci_unmap_single(pdev, buffer_info->dma,
4608                                          adapter->rx_buffer_len,
4609                                          PCI_DMA_FROMDEVICE);
4610
4611                         break; /* while !buffer_info->skb */
4612                 }
4613                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4614                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4615
4616                 if (unlikely(++i == rx_ring->count))
4617                         i = 0;
4618                 buffer_info = &rx_ring->buffer_info[i];
4619         }
4620
4621         if (likely(rx_ring->next_to_use != i)) {
4622                 rx_ring->next_to_use = i;
4623                 if (unlikely(i-- == 0))
4624                         i = (rx_ring->count - 1);
4625
4626                 /* Force memory writes to complete before letting h/w
4627                  * know there are new descriptors to fetch.  (Only
4628                  * applicable for weak-ordered memory model archs,
4629                  * such as IA-64). */
4630                 wmb();
4631                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4632         }
4633 }
4634
4635 /**
4636  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4637  * @adapter: address of board private structure
4638  **/
4639
4640 static void
4641 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4642                           struct e1000_rx_ring *rx_ring,
4643                           int cleaned_count)
4644 {
4645         struct net_device *netdev = adapter->netdev;
4646         struct pci_dev *pdev = adapter->pdev;
4647         union e1000_rx_desc_packet_split *rx_desc;
4648         struct e1000_buffer *buffer_info;
4649         struct e1000_ps_page *ps_page;
4650         struct e1000_ps_page_dma *ps_page_dma;
4651         struct sk_buff *skb;
4652         unsigned int i, j;
4653
4654         i = rx_ring->next_to_use;
4655         buffer_info = &rx_ring->buffer_info[i];
4656         ps_page = &rx_ring->ps_page[i];
4657         ps_page_dma = &rx_ring->ps_page_dma[i];
4658
4659         while (cleaned_count--) {
4660                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4661
4662                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4663                         if (j < adapter->rx_ps_pages) {
4664                                 if (likely(!ps_page->ps_page[j])) {
4665                                         ps_page->ps_page[j] =
4666                                                 alloc_page(GFP_ATOMIC);
4667                                         if (unlikely(!ps_page->ps_page[j])) {
4668                                                 adapter->alloc_rx_buff_failed++;
4669                                                 goto no_buffers;
4670                                         }
4671                                         ps_page_dma->ps_page_dma[j] =
4672                                                 pci_map_page(pdev,
4673                                                             ps_page->ps_page[j],
4674                                                             0, PAGE_SIZE,
4675                                                             PCI_DMA_FROMDEVICE);
4676                                 }
4677                                 /* Refresh the desc even if buffer_addrs didn't
4678                                  * change because each write-back erases
4679                                  * this info.
4680                                  */
4681                                 rx_desc->read.buffer_addr[j+1] =
4682                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4683                         } else
4684                                 rx_desc->read.buffer_addr[j+1] = ~0;
4685                 }
4686
4687                 skb = netdev_alloc_skb(netdev,
4688                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4689
4690                 if (unlikely(!skb)) {
4691                         adapter->alloc_rx_buff_failed++;
4692                         break;
4693                 }
4694
4695                 /* Make buffer alignment 2 beyond a 16 byte boundary
4696                  * this will result in a 16 byte aligned IP header after
4697                  * the 14 byte MAC header is removed
4698                  */
4699                 skb_reserve(skb, NET_IP_ALIGN);
4700
4701                 buffer_info->skb = skb;
4702                 buffer_info->length = adapter->rx_ps_bsize0;
4703                 buffer_info->dma = pci_map_single(pdev, skb->data,
4704                                                   adapter->rx_ps_bsize0,
4705                                                   PCI_DMA_FROMDEVICE);
4706
4707                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4708
4709                 if (unlikely(++i == rx_ring->count)) i = 0;
4710                 buffer_info = &rx_ring->buffer_info[i];
4711                 ps_page = &rx_ring->ps_page[i];
4712                 ps_page_dma = &rx_ring->ps_page_dma[i];
4713         }
4714
4715 no_buffers:
4716         if (likely(rx_ring->next_to_use != i)) {
4717                 rx_ring->next_to_use = i;
4718                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4719
4720                 /* Force memory writes to complete before letting h/w
4721                  * know there are new descriptors to fetch.  (Only
4722                  * applicable for weak-ordered memory model archs,
4723                  * such as IA-64). */
4724                 wmb();
4725                 /* Hardware increments by 16 bytes, but packet split
4726                  * descriptors are 32 bytes...so we increment tail
4727                  * twice as much.
4728                  */
4729                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4730         }
4731 }
4732
4733 /**
4734  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4735  * @adapter:
4736  **/
4737
4738 static void
4739 e1000_smartspeed(struct e1000_adapter *adapter)
4740 {
4741         uint16_t phy_status;
4742         uint16_t phy_ctrl;
4743
4744         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4745            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4746                 return;
4747
4748         if (adapter->smartspeed == 0) {
4749                 /* If Master/Slave config fault is asserted twice,
4750                  * we assume back-to-back */
4751                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4752                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4753                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4754                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4755                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4756                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4757                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4758                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4759                                             phy_ctrl);
4760                         adapter->smartspeed++;
4761                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4762                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4763                                                &phy_ctrl)) {
4764                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4765                                              MII_CR_RESTART_AUTO_NEG);
4766                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4767                                                     phy_ctrl);
4768                         }
4769                 }
4770                 return;
4771         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4772                 /* If still no link, perhaps using 2/3 pair cable */
4773                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4774                 phy_ctrl |= CR_1000T_MS_ENABLE;
4775                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4776                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4777                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4778                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4779                                      MII_CR_RESTART_AUTO_NEG);
4780                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4781                 }
4782         }
4783         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4784         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4785                 adapter->smartspeed = 0;
4786 }
4787
4788 /**
4789  * e1000_ioctl -
4790  * @netdev:
4791  * @ifreq:
4792  * @cmd:
4793  **/
4794
4795 static int
4796 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4797 {
4798         switch (cmd) {
4799         case SIOCGMIIPHY:
4800         case SIOCGMIIREG:
4801         case SIOCSMIIREG:
4802                 return e1000_mii_ioctl(netdev, ifr, cmd);
4803         default:
4804                 return -EOPNOTSUPP;
4805         }
4806 }
4807
4808 /**
4809  * e1000_mii_ioctl -
4810  * @netdev:
4811  * @ifreq:
4812  * @cmd:
4813  **/
4814
4815 static int
4816 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4817 {
4818         struct e1000_adapter *adapter = netdev_priv(netdev);
4819         struct mii_ioctl_data *data = if_mii(ifr);
4820         int retval;
4821         uint16_t mii_reg;
4822         uint16_t spddplx;
4823         unsigned long flags;
4824
4825         if (adapter->hw.media_type != e1000_media_type_copper)
4826                 return -EOPNOTSUPP;
4827
4828         switch (cmd) {
4829         case SIOCGMIIPHY:
4830                 data->phy_id = adapter->hw.phy_addr;
4831                 break;
4832         case SIOCGMIIREG:
4833                 if (!capable(CAP_NET_ADMIN))
4834                         return -EPERM;
4835                 spin_lock_irqsave(&adapter->stats_lock, flags);
4836                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4837                                    &data->val_out)) {
4838                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4839                         return -EIO;
4840                 }
4841                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4842                 break;
4843         case SIOCSMIIREG:
4844                 if (!capable(CAP_NET_ADMIN))
4845                         return -EPERM;
4846                 if (data->reg_num & ~(0x1F))
4847                         return -EFAULT;
4848                 mii_reg = data->val_in;
4849                 spin_lock_irqsave(&adapter->stats_lock, flags);
4850                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4851                                         mii_reg)) {
4852                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4853                         return -EIO;
4854                 }
4855                 if (adapter->hw.media_type == e1000_media_type_copper) {
4856                         switch (data->reg_num) {
4857                         case PHY_CTRL:
4858                                 if (mii_reg & MII_CR_POWER_DOWN)
4859                                         break;
4860                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4861                                         adapter->hw.autoneg = 1;
4862                                         adapter->hw.autoneg_advertised = 0x2F;
4863                                 } else {
4864                                         if (mii_reg & 0x40)
4865                                                 spddplx = SPEED_1000;
4866                                         else if (mii_reg & 0x2000)
4867                                                 spddplx = SPEED_100;
4868                                         else
4869                                                 spddplx = SPEED_10;
4870                                         spddplx += (mii_reg & 0x100)
4871                                                    ? DUPLEX_FULL :
4872                                                    DUPLEX_HALF;
4873                                         retval = e1000_set_spd_dplx(adapter,
4874                                                                     spddplx);
4875                                         if (retval) {
4876                                                 spin_unlock_irqrestore(
4877                                                         &adapter->stats_lock,
4878                                                         flags);
4879                                                 return retval;
4880                                         }
4881                                 }
4882                                 if (netif_running(adapter->netdev))
4883                                         e1000_reinit_locked(adapter);
4884                                 else
4885                                         e1000_reset(adapter);
4886                                 break;
4887                         case M88E1000_PHY_SPEC_CTRL:
4888                         case M88E1000_EXT_PHY_SPEC_CTRL:
4889                                 if (e1000_phy_reset(&adapter->hw)) {
4890                                         spin_unlock_irqrestore(
4891                                                 &adapter->stats_lock, flags);
4892                                         return -EIO;
4893                                 }
4894                                 break;
4895                         }
4896                 } else {
4897                         switch (data->reg_num) {
4898                         case PHY_CTRL:
4899                                 if (mii_reg & MII_CR_POWER_DOWN)
4900                                         break;
4901                                 if (netif_running(adapter->netdev))
4902                                         e1000_reinit_locked(adapter);
4903                                 else
4904                                         e1000_reset(adapter);
4905                                 break;
4906                         }
4907                 }
4908                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4909                 break;
4910         default:
4911                 return -EOPNOTSUPP;
4912         }
4913         return E1000_SUCCESS;
4914 }
4915
4916 void
4917 e1000_pci_set_mwi(struct e1000_hw *hw)
4918 {
4919         struct e1000_adapter *adapter = hw->back;
4920         int ret_val = pci_set_mwi(adapter->pdev);
4921
4922         if (ret_val)
4923                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4924 }
4925
4926 void
4927 e1000_pci_clear_mwi(struct e1000_hw *hw)
4928 {
4929         struct e1000_adapter *adapter = hw->back;
4930
4931         pci_clear_mwi(adapter->pdev);
4932 }
4933
4934 void
4935 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4936 {
4937         struct e1000_adapter *adapter = hw->back;
4938
4939         pci_read_config_word(adapter->pdev, reg, value);
4940 }
4941
4942 void
4943 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4944 {
4945         struct e1000_adapter *adapter = hw->back;
4946
4947         pci_write_config_word(adapter->pdev, reg, *value);
4948 }
4949
4950 int32_t
4951 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4952 {
4953     struct e1000_adapter *adapter = hw->back;
4954     uint16_t cap_offset;
4955
4956     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4957     if (!cap_offset)
4958         return -E1000_ERR_CONFIG;
4959
4960     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4961
4962     return E1000_SUCCESS;
4963 }
4964
4965 void
4966 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4967 {
4968         outl(value, port);
4969 }
4970
4971 static void
4972 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4973 {
4974         struct e1000_adapter *adapter = netdev_priv(netdev);
4975         uint32_t ctrl, rctl;
4976
4977         e1000_irq_disable(adapter);
4978         adapter->vlgrp = grp;
4979
4980         if (grp) {
4981                 /* enable VLAN tag insert/strip */
4982                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4983                 ctrl |= E1000_CTRL_VME;
4984                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4985
4986                 if (adapter->hw.mac_type != e1000_ich8lan) {
4987                         /* enable VLAN receive filtering */
4988                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4989                         rctl |= E1000_RCTL_VFE;
4990                         rctl &= ~E1000_RCTL_CFIEN;
4991                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4992                         e1000_update_mng_vlan(adapter);
4993                 }
4994         } else {
4995                 /* disable VLAN tag insert/strip */
4996                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4997                 ctrl &= ~E1000_CTRL_VME;
4998                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4999
5000                 if (adapter->hw.mac_type != e1000_ich8lan) {
5001                         /* disable VLAN filtering */
5002                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5003                         rctl &= ~E1000_RCTL_VFE;
5004                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5005                         if (adapter->mng_vlan_id !=
5006                             (uint16_t)E1000_MNG_VLAN_NONE) {
5007                                 e1000_vlan_rx_kill_vid(netdev,
5008                                                        adapter->mng_vlan_id);
5009                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
5010                         }
5011                 }
5012         }
5013
5014         e1000_irq_enable(adapter);
5015 }
5016
5017 static void
5018 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
5019 {
5020         struct e1000_adapter *adapter = netdev_priv(netdev);
5021         uint32_t vfta, index;
5022
5023         if ((adapter->hw.mng_cookie.status &
5024              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5025             (vid == adapter->mng_vlan_id))
5026                 return;
5027         /* add VID to filter table */
5028         index = (vid >> 5) & 0x7F;
5029         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5030         vfta |= (1 << (vid & 0x1F));
5031         e1000_write_vfta(&adapter->hw, index, vfta);
5032 }
5033
5034 static void
5035 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
5036 {
5037         struct e1000_adapter *adapter = netdev_priv(netdev);
5038         uint32_t vfta, index;
5039
5040         e1000_irq_disable(adapter);
5041
5042         if (adapter->vlgrp)
5043                 adapter->vlgrp->vlan_devices[vid] = NULL;
5044
5045         e1000_irq_enable(adapter);
5046
5047         if ((adapter->hw.mng_cookie.status &
5048              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5049             (vid == adapter->mng_vlan_id)) {
5050                 /* release control to f/w */
5051                 e1000_release_hw_control(adapter);
5052                 return;
5053         }
5054
5055         /* remove VID from filter table */
5056         index = (vid >> 5) & 0x7F;
5057         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5058         vfta &= ~(1 << (vid & 0x1F));
5059         e1000_write_vfta(&adapter->hw, index, vfta);
5060 }
5061
5062 static void
5063 e1000_restore_vlan(struct e1000_adapter *adapter)
5064 {
5065         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5066
5067         if (adapter->vlgrp) {
5068                 uint16_t vid;
5069                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5070                         if (!adapter->vlgrp->vlan_devices[vid])
5071                                 continue;
5072                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
5073                 }
5074         }
5075 }
5076
5077 int
5078 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
5079 {
5080         adapter->hw.autoneg = 0;
5081
5082         /* Fiber NICs only allow 1000 gbps Full duplex */
5083         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
5084                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5085                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5086                 return -EINVAL;
5087         }
5088
5089         switch (spddplx) {
5090         case SPEED_10 + DUPLEX_HALF:
5091                 adapter->hw.forced_speed_duplex = e1000_10_half;
5092                 break;
5093         case SPEED_10 + DUPLEX_FULL:
5094                 adapter->hw.forced_speed_duplex = e1000_10_full;
5095                 break;
5096         case SPEED_100 + DUPLEX_HALF:
5097                 adapter->hw.forced_speed_duplex = e1000_100_half;
5098                 break;
5099         case SPEED_100 + DUPLEX_FULL:
5100                 adapter->hw.forced_speed_duplex = e1000_100_full;
5101                 break;
5102         case SPEED_1000 + DUPLEX_FULL:
5103                 adapter->hw.autoneg = 1;
5104                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
5105                 break;
5106         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5107         default:
5108                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5109                 return -EINVAL;
5110         }
5111         return 0;
5112 }
5113
5114 #ifdef CONFIG_PM
5115 /* Save/restore 16 or 64 dwords of PCI config space depending on which
5116  * bus we're on (PCI(X) vs. PCI-E)
5117  */
5118 #define PCIE_CONFIG_SPACE_LEN 256
5119 #define PCI_CONFIG_SPACE_LEN 64
5120 static int
5121 e1000_pci_save_state(struct e1000_adapter *adapter)
5122 {
5123         struct pci_dev *dev = adapter->pdev;
5124         int size;
5125         int i;
5126
5127         if (adapter->hw.mac_type >= e1000_82571)
5128                 size = PCIE_CONFIG_SPACE_LEN;
5129         else
5130                 size = PCI_CONFIG_SPACE_LEN;
5131
5132         WARN_ON(adapter->config_space != NULL);
5133
5134         adapter->config_space = kmalloc(size, GFP_KERNEL);
5135         if (!adapter->config_space) {
5136                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
5137                 return -ENOMEM;
5138         }
5139         for (i = 0; i < (size / 4); i++)
5140                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
5141         return 0;
5142 }
5143
5144 static void
5145 e1000_pci_restore_state(struct e1000_adapter *adapter)
5146 {
5147         struct pci_dev *dev = adapter->pdev;
5148         int size;
5149         int i;
5150
5151         if (adapter->config_space == NULL)
5152                 return;
5153
5154         if (adapter->hw.mac_type >= e1000_82571)
5155                 size = PCIE_CONFIG_SPACE_LEN;
5156         else
5157                 size = PCI_CONFIG_SPACE_LEN;
5158         for (i = 0; i < (size / 4); i++)
5159                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
5160         kfree(adapter->config_space);
5161         adapter->config_space = NULL;
5162         return;
5163 }
5164 #endif /* CONFIG_PM */
5165
5166 static int
5167 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5168 {
5169         struct net_device *netdev = pci_get_drvdata(pdev);
5170         struct e1000_adapter *adapter = netdev_priv(netdev);
5171         uint32_t ctrl, ctrl_ext, rctl, status;
5172         uint32_t wufc = adapter->wol;
5173 #ifdef CONFIG_PM
5174         int retval = 0;
5175 #endif
5176
5177         netif_device_detach(netdev);
5178
5179         if (netif_running(netdev)) {
5180                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5181                 e1000_down(adapter);
5182         }
5183
5184 #ifdef CONFIG_PM
5185         /* Implement our own version of pci_save_state(pdev) because pci-
5186          * express adapters have 256-byte config spaces. */
5187         retval = e1000_pci_save_state(adapter);
5188         if (retval)
5189                 return retval;
5190 #endif
5191
5192         status = E1000_READ_REG(&adapter->hw, STATUS);
5193         if (status & E1000_STATUS_LU)
5194                 wufc &= ~E1000_WUFC_LNKC;
5195
5196         if (wufc) {
5197                 e1000_setup_rctl(adapter);
5198                 e1000_set_multi(netdev);
5199
5200                 /* turn on all-multi mode if wake on multicast is enabled */
5201                 if (wufc & E1000_WUFC_MC) {
5202                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5203                         rctl |= E1000_RCTL_MPE;
5204                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5205                 }
5206
5207                 if (adapter->hw.mac_type >= e1000_82540) {
5208                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5209                         /* advertise wake from D3Cold */
5210                         #define E1000_CTRL_ADVD3WUC 0x00100000
5211                         /* phy power management enable */
5212                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5213                         ctrl |= E1000_CTRL_ADVD3WUC |
5214                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5215                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5216                 }
5217
5218                 if (adapter->hw.media_type == e1000_media_type_fiber ||
5219                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
5220                         /* keep the laser running in D3 */
5221                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5222                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5223                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5224                 }
5225
5226                 /* Allow time for pending master requests to run */
5227                 e1000_disable_pciex_master(&adapter->hw);
5228
5229                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5230                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5231                 pci_enable_wake(pdev, PCI_D3hot, 1);
5232                 pci_enable_wake(pdev, PCI_D3cold, 1);
5233         } else {
5234                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5235                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5236                 pci_enable_wake(pdev, PCI_D3hot, 0);
5237                 pci_enable_wake(pdev, PCI_D3cold, 0);
5238         }
5239
5240         e1000_release_manageability(adapter);
5241
5242         /* make sure adapter isn't asleep if manageability is enabled */
5243         if (adapter->en_mng_pt) {
5244                 pci_enable_wake(pdev, PCI_D3hot, 1);
5245                 pci_enable_wake(pdev, PCI_D3cold, 1);
5246         }
5247
5248         if (adapter->hw.phy_type == e1000_phy_igp_3)
5249                 e1000_phy_powerdown_workaround(&adapter->hw);
5250
5251         if (netif_running(netdev))
5252                 e1000_free_irq(adapter);
5253
5254         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5255          * would have already happened in close and is redundant. */
5256         e1000_release_hw_control(adapter);
5257
5258         pci_disable_device(pdev);
5259
5260         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5261
5262         return 0;
5263 }
5264
5265 #ifdef CONFIG_PM
5266 static int
5267 e1000_resume(struct pci_dev *pdev)
5268 {
5269         struct net_device *netdev = pci_get_drvdata(pdev);
5270         struct e1000_adapter *adapter = netdev_priv(netdev);
5271         uint32_t err;
5272
5273         pci_set_power_state(pdev, PCI_D0);
5274         e1000_pci_restore_state(adapter);
5275         if ((err = pci_enable_device(pdev))) {
5276                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5277                 return err;
5278         }
5279         pci_set_master(pdev);
5280
5281         pci_enable_wake(pdev, PCI_D3hot, 0);
5282         pci_enable_wake(pdev, PCI_D3cold, 0);
5283
5284         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5285                 return err;
5286
5287         e1000_power_up_phy(adapter);
5288         e1000_reset(adapter);
5289         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5290
5291         e1000_init_manageability(adapter);
5292
5293         if (netif_running(netdev))
5294                 e1000_up(adapter);
5295
5296         netif_device_attach(netdev);
5297
5298         /* If the controller is 82573 and f/w is AMT, do not set
5299          * DRV_LOAD until the interface is up.  For all other cases,
5300          * let the f/w know that the h/w is now under the control
5301          * of the driver. */
5302         if (adapter->hw.mac_type != e1000_82573 ||
5303             !e1000_check_mng_mode(&adapter->hw))
5304                 e1000_get_hw_control(adapter);
5305
5306         return 0;
5307 }
5308 #endif
5309
5310 static void e1000_shutdown(struct pci_dev *pdev)
5311 {
5312         e1000_suspend(pdev, PMSG_SUSPEND);
5313 }
5314
5315 #ifdef CONFIG_NET_POLL_CONTROLLER
5316 /*
5317  * Polling 'interrupt' - used by things like netconsole to send skbs
5318  * without having to re-enable interrupts. It's not called while
5319  * the interrupt routine is executing.
5320  */
5321 static void
5322 e1000_netpoll(struct net_device *netdev)
5323 {
5324         struct e1000_adapter *adapter = netdev_priv(netdev);
5325
5326         disable_irq(adapter->pdev->irq);
5327         e1000_intr(adapter->pdev->irq, netdev);
5328         e1000_clean_tx_irq(adapter, adapter->tx_ring);
5329 #ifndef CONFIG_E1000_NAPI
5330         adapter->clean_rx(adapter, adapter->rx_ring);
5331 #endif
5332         enable_irq(adapter->pdev->irq);
5333 }
5334 #endif
5335
5336 /**
5337  * e1000_io_error_detected - called when PCI error is detected
5338  * @pdev: Pointer to PCI device
5339  * @state: The current pci conneection state
5340  *
5341  * This function is called after a PCI bus error affecting
5342  * this device has been detected.
5343  */
5344 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5345 {
5346         struct net_device *netdev = pci_get_drvdata(pdev);
5347         struct e1000_adapter *adapter = netdev->priv;
5348
5349         netif_device_detach(netdev);
5350
5351         if (netif_running(netdev))
5352                 e1000_down(adapter);
5353         pci_disable_device(pdev);
5354
5355         /* Request a slot slot reset. */
5356         return PCI_ERS_RESULT_NEED_RESET;
5357 }
5358
5359 /**
5360  * e1000_io_slot_reset - called after the pci bus has been reset.
5361  * @pdev: Pointer to PCI device
5362  *
5363  * Restart the card from scratch, as if from a cold-boot. Implementation
5364  * resembles the first-half of the e1000_resume routine.
5365  */
5366 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5367 {
5368         struct net_device *netdev = pci_get_drvdata(pdev);
5369         struct e1000_adapter *adapter = netdev->priv;
5370
5371         if (pci_enable_device(pdev)) {
5372                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5373                 return PCI_ERS_RESULT_DISCONNECT;
5374         }
5375         pci_set_master(pdev);
5376
5377         pci_enable_wake(pdev, PCI_D3hot, 0);
5378         pci_enable_wake(pdev, PCI_D3cold, 0);
5379
5380         e1000_reset(adapter);
5381         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5382
5383         return PCI_ERS_RESULT_RECOVERED;
5384 }
5385
5386 /**
5387  * e1000_io_resume - called when traffic can start flowing again.
5388  * @pdev: Pointer to PCI device
5389  *
5390  * This callback is called when the error recovery driver tells us that
5391  * its OK to resume normal operation. Implementation resembles the
5392  * second-half of the e1000_resume routine.
5393  */
5394 static void e1000_io_resume(struct pci_dev *pdev)
5395 {
5396         struct net_device *netdev = pci_get_drvdata(pdev);
5397         struct e1000_adapter *adapter = netdev->priv;
5398
5399         e1000_init_manageability(adapter);
5400
5401         if (netif_running(netdev)) {
5402                 if (e1000_up(adapter)) {
5403                         printk("e1000: can't bring device back up after reset\n");
5404                         return;
5405                 }
5406         }
5407
5408         netif_device_attach(netdev);
5409
5410         /* If the controller is 82573 and f/w is AMT, do not set
5411          * DRV_LOAD until the interface is up.  For all other cases,
5412          * let the f/w know that the h/w is now under the control
5413          * of the driver. */
5414         if (adapter->hw.mac_type != e1000_82573 ||
5415             !e1000_check_mng_mode(&adapter->hw))
5416                 e1000_get_hw_control(adapter);
5417
5418 }
5419
5420 /* e1000_main.c */