Merge branches 'msm-fixes' and 'msm-video' of git://codeaurora.org/quic/kernel/dwalke...
[pandora-kernel.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k6-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * Macro expands to...
43  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44  */
45 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
46         INTEL_E1000_ETHERNET_DEVICE(0x1000),
47         INTEL_E1000_ETHERNET_DEVICE(0x1001),
48         INTEL_E1000_ETHERNET_DEVICE(0x1004),
49         INTEL_E1000_ETHERNET_DEVICE(0x1008),
50         INTEL_E1000_ETHERNET_DEVICE(0x1009),
51         INTEL_E1000_ETHERNET_DEVICE(0x100C),
52         INTEL_E1000_ETHERNET_DEVICE(0x100D),
53         INTEL_E1000_ETHERNET_DEVICE(0x100E),
54         INTEL_E1000_ETHERNET_DEVICE(0x100F),
55         INTEL_E1000_ETHERNET_DEVICE(0x1010),
56         INTEL_E1000_ETHERNET_DEVICE(0x1011),
57         INTEL_E1000_ETHERNET_DEVICE(0x1012),
58         INTEL_E1000_ETHERNET_DEVICE(0x1013),
59         INTEL_E1000_ETHERNET_DEVICE(0x1014),
60         INTEL_E1000_ETHERNET_DEVICE(0x1015),
61         INTEL_E1000_ETHERNET_DEVICE(0x1016),
62         INTEL_E1000_ETHERNET_DEVICE(0x1017),
63         INTEL_E1000_ETHERNET_DEVICE(0x1018),
64         INTEL_E1000_ETHERNET_DEVICE(0x1019),
65         INTEL_E1000_ETHERNET_DEVICE(0x101A),
66         INTEL_E1000_ETHERNET_DEVICE(0x101D),
67         INTEL_E1000_ETHERNET_DEVICE(0x101E),
68         INTEL_E1000_ETHERNET_DEVICE(0x1026),
69         INTEL_E1000_ETHERNET_DEVICE(0x1027),
70         INTEL_E1000_ETHERNET_DEVICE(0x1028),
71         INTEL_E1000_ETHERNET_DEVICE(0x1075),
72         INTEL_E1000_ETHERNET_DEVICE(0x1076),
73         INTEL_E1000_ETHERNET_DEVICE(0x1077),
74         INTEL_E1000_ETHERNET_DEVICE(0x1078),
75         INTEL_E1000_ETHERNET_DEVICE(0x1079),
76         INTEL_E1000_ETHERNET_DEVICE(0x107A),
77         INTEL_E1000_ETHERNET_DEVICE(0x107B),
78         INTEL_E1000_ETHERNET_DEVICE(0x107C),
79         INTEL_E1000_ETHERNET_DEVICE(0x108A),
80         INTEL_E1000_ETHERNET_DEVICE(0x1099),
81         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82         /* required last entry */
83         {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98                              struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100                              struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121                                 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123                                 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_update_phy_info_task(struct work_struct *work);
127 static void e1000_watchdog(unsigned long data);
128 static void e1000_82547_tx_fifo_stall(unsigned long data);
129 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
130 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
131                                     struct net_device *netdev);
132 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
133 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
134 static int e1000_set_mac(struct net_device *netdev, void *p);
135 static irqreturn_t e1000_intr(int irq, void *data);
136 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
137                                struct e1000_tx_ring *tx_ring);
138 static int e1000_clean(struct napi_struct *napi, int budget);
139 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
140                                struct e1000_rx_ring *rx_ring,
141                                int *work_done, int work_to_do);
142 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
143                                      struct e1000_rx_ring *rx_ring,
144                                      int *work_done, int work_to_do);
145 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
146                                    struct e1000_rx_ring *rx_ring,
147                                    int cleaned_count);
148 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
149                                          struct e1000_rx_ring *rx_ring,
150                                          int cleaned_count);
151 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
152 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
153                            int cmd);
154 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
155 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
156 static void e1000_tx_timeout(struct net_device *dev);
157 static void e1000_reset_task(struct work_struct *work);
158 static void e1000_smartspeed(struct e1000_adapter *adapter);
159 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
160                                        struct sk_buff *skb);
161
162 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
163 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
164 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
165 static void e1000_restore_vlan(struct e1000_adapter *adapter);
166
167 #ifdef CONFIG_PM
168 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
169 static int e1000_resume(struct pci_dev *pdev);
170 #endif
171 static void e1000_shutdown(struct pci_dev *pdev);
172
173 #ifdef CONFIG_NET_POLL_CONTROLLER
174 /* for netdump / net console */
175 static void e1000_netpoll (struct net_device *netdev);
176 #endif
177
178 #define COPYBREAK_DEFAULT 256
179 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
180 module_param(copybreak, uint, 0644);
181 MODULE_PARM_DESC(copybreak,
182         "Maximum size of packet that is copied to a new buffer on receive");
183
184 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
185                      pci_channel_state_t state);
186 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
187 static void e1000_io_resume(struct pci_dev *pdev);
188
189 static struct pci_error_handlers e1000_err_handler = {
190         .error_detected = e1000_io_error_detected,
191         .slot_reset = e1000_io_slot_reset,
192         .resume = e1000_io_resume,
193 };
194
195 static struct pci_driver e1000_driver = {
196         .name     = e1000_driver_name,
197         .id_table = e1000_pci_tbl,
198         .probe    = e1000_probe,
199         .remove   = __devexit_p(e1000_remove),
200 #ifdef CONFIG_PM
201         /* Power Managment Hooks */
202         .suspend  = e1000_suspend,
203         .resume   = e1000_resume,
204 #endif
205         .shutdown = e1000_shutdown,
206         .err_handler = &e1000_err_handler
207 };
208
209 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
210 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
211 MODULE_LICENSE("GPL");
212 MODULE_VERSION(DRV_VERSION);
213
214 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
215 module_param(debug, int, 0);
216 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
217
218 /**
219  * e1000_get_hw_dev - return device
220  * used by hardware layer to print debugging information
221  *
222  **/
223 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
224 {
225         struct e1000_adapter *adapter = hw->back;
226         return adapter->netdev;
227 }
228
229 /**
230  * e1000_init_module - Driver Registration Routine
231  *
232  * e1000_init_module is the first routine called when the driver is
233  * loaded. All it does is register with the PCI subsystem.
234  **/
235
236 static int __init e1000_init_module(void)
237 {
238         int ret;
239         pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
240
241         pr_info("%s\n", e1000_copyright);
242
243         ret = pci_register_driver(&e1000_driver);
244         if (copybreak != COPYBREAK_DEFAULT) {
245                 if (copybreak == 0)
246                         pr_info("copybreak disabled\n");
247                 else
248                         pr_info("copybreak enabled for "
249                                    "packets <= %u bytes\n", copybreak);
250         }
251         return ret;
252 }
253
254 module_init(e1000_init_module);
255
256 /**
257  * e1000_exit_module - Driver Exit Cleanup Routine
258  *
259  * e1000_exit_module is called just before the driver is removed
260  * from memory.
261  **/
262
263 static void __exit e1000_exit_module(void)
264 {
265         pci_unregister_driver(&e1000_driver);
266 }
267
268 module_exit(e1000_exit_module);
269
270 static int e1000_request_irq(struct e1000_adapter *adapter)
271 {
272         struct net_device *netdev = adapter->netdev;
273         irq_handler_t handler = e1000_intr;
274         int irq_flags = IRQF_SHARED;
275         int err;
276
277         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
278                           netdev);
279         if (err) {
280                 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
281         }
282
283         return err;
284 }
285
286 static void e1000_free_irq(struct e1000_adapter *adapter)
287 {
288         struct net_device *netdev = adapter->netdev;
289
290         free_irq(adapter->pdev->irq, netdev);
291 }
292
293 /**
294  * e1000_irq_disable - Mask off interrupt generation on the NIC
295  * @adapter: board private structure
296  **/
297
298 static void e1000_irq_disable(struct e1000_adapter *adapter)
299 {
300         struct e1000_hw *hw = &adapter->hw;
301
302         ew32(IMC, ~0);
303         E1000_WRITE_FLUSH();
304         synchronize_irq(adapter->pdev->irq);
305 }
306
307 /**
308  * e1000_irq_enable - Enable default interrupt generation settings
309  * @adapter: board private structure
310  **/
311
312 static void e1000_irq_enable(struct e1000_adapter *adapter)
313 {
314         struct e1000_hw *hw = &adapter->hw;
315
316         ew32(IMS, IMS_ENABLE_MASK);
317         E1000_WRITE_FLUSH();
318 }
319
320 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
321 {
322         struct e1000_hw *hw = &adapter->hw;
323         struct net_device *netdev = adapter->netdev;
324         u16 vid = hw->mng_cookie.vlan_id;
325         u16 old_vid = adapter->mng_vlan_id;
326         if (adapter->vlgrp) {
327                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
328                         if (hw->mng_cookie.status &
329                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
330                                 e1000_vlan_rx_add_vid(netdev, vid);
331                                 adapter->mng_vlan_id = vid;
332                         } else
333                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
334
335                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
336                                         (vid != old_vid) &&
337                             !vlan_group_get_device(adapter->vlgrp, old_vid))
338                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
339                 } else
340                         adapter->mng_vlan_id = vid;
341         }
342 }
343
344 static void e1000_init_manageability(struct e1000_adapter *adapter)
345 {
346         struct e1000_hw *hw = &adapter->hw;
347
348         if (adapter->en_mng_pt) {
349                 u32 manc = er32(MANC);
350
351                 /* disable hardware interception of ARP */
352                 manc &= ~(E1000_MANC_ARP_EN);
353
354                 ew32(MANC, manc);
355         }
356 }
357
358 static void e1000_release_manageability(struct e1000_adapter *adapter)
359 {
360         struct e1000_hw *hw = &adapter->hw;
361
362         if (adapter->en_mng_pt) {
363                 u32 manc = er32(MANC);
364
365                 /* re-enable hardware interception of ARP */
366                 manc |= E1000_MANC_ARP_EN;
367
368                 ew32(MANC, manc);
369         }
370 }
371
372 /**
373  * e1000_configure - configure the hardware for RX and TX
374  * @adapter = private board structure
375  **/
376 static void e1000_configure(struct e1000_adapter *adapter)
377 {
378         struct net_device *netdev = adapter->netdev;
379         int i;
380
381         e1000_set_rx_mode(netdev);
382
383         e1000_restore_vlan(adapter);
384         e1000_init_manageability(adapter);
385
386         e1000_configure_tx(adapter);
387         e1000_setup_rctl(adapter);
388         e1000_configure_rx(adapter);
389         /* call E1000_DESC_UNUSED which always leaves
390          * at least 1 descriptor unused to make sure
391          * next_to_use != next_to_clean */
392         for (i = 0; i < adapter->num_rx_queues; i++) {
393                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
394                 adapter->alloc_rx_buf(adapter, ring,
395                                       E1000_DESC_UNUSED(ring));
396         }
397 }
398
399 int e1000_up(struct e1000_adapter *adapter)
400 {
401         struct e1000_hw *hw = &adapter->hw;
402
403         /* hardware has been reset, we need to reload some things */
404         e1000_configure(adapter);
405
406         clear_bit(__E1000_DOWN, &adapter->flags);
407
408         napi_enable(&adapter->napi);
409
410         e1000_irq_enable(adapter);
411
412         netif_wake_queue(adapter->netdev);
413
414         /* fire a link change interrupt to start the watchdog */
415         ew32(ICS, E1000_ICS_LSC);
416         return 0;
417 }
418
419 /**
420  * e1000_power_up_phy - restore link in case the phy was powered down
421  * @adapter: address of board private structure
422  *
423  * The phy may be powered down to save power and turn off link when the
424  * driver is unloaded and wake on lan is not enabled (among others)
425  * *** this routine MUST be followed by a call to e1000_reset ***
426  *
427  **/
428
429 void e1000_power_up_phy(struct e1000_adapter *adapter)
430 {
431         struct e1000_hw *hw = &adapter->hw;
432         u16 mii_reg = 0;
433
434         /* Just clear the power down bit to wake the phy back up */
435         if (hw->media_type == e1000_media_type_copper) {
436                 /* according to the manual, the phy will retain its
437                  * settings across a power-down/up cycle */
438                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
439                 mii_reg &= ~MII_CR_POWER_DOWN;
440                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
441         }
442 }
443
444 static void e1000_power_down_phy(struct e1000_adapter *adapter)
445 {
446         struct e1000_hw *hw = &adapter->hw;
447
448         /* Power down the PHY so no link is implied when interface is down *
449          * The PHY cannot be powered down if any of the following is true *
450          * (a) WoL is enabled
451          * (b) AMT is active
452          * (c) SoL/IDER session is active */
453         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
454            hw->media_type == e1000_media_type_copper) {
455                 u16 mii_reg = 0;
456
457                 switch (hw->mac_type) {
458                 case e1000_82540:
459                 case e1000_82545:
460                 case e1000_82545_rev_3:
461                 case e1000_82546:
462                 case e1000_82546_rev_3:
463                 case e1000_82541:
464                 case e1000_82541_rev_2:
465                 case e1000_82547:
466                 case e1000_82547_rev_2:
467                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
468                                 goto out;
469                         break;
470                 default:
471                         goto out;
472                 }
473                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
474                 mii_reg |= MII_CR_POWER_DOWN;
475                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
476                 mdelay(1);
477         }
478 out:
479         return;
480 }
481
482 void e1000_down(struct e1000_adapter *adapter)
483 {
484         struct e1000_hw *hw = &adapter->hw;
485         struct net_device *netdev = adapter->netdev;
486         u32 rctl, tctl;
487
488         /* signal that we're down so the interrupt handler does not
489          * reschedule our watchdog timer */
490         set_bit(__E1000_DOWN, &adapter->flags);
491
492         /* disable receives in the hardware */
493         rctl = er32(RCTL);
494         ew32(RCTL, rctl & ~E1000_RCTL_EN);
495         /* flush and sleep below */
496
497         netif_tx_disable(netdev);
498
499         /* disable transmits in the hardware */
500         tctl = er32(TCTL);
501         tctl &= ~E1000_TCTL_EN;
502         ew32(TCTL, tctl);
503         /* flush both disables and wait for them to finish */
504         E1000_WRITE_FLUSH();
505         msleep(10);
506
507         napi_disable(&adapter->napi);
508
509         e1000_irq_disable(adapter);
510
511         del_timer_sync(&adapter->tx_fifo_stall_timer);
512         del_timer_sync(&adapter->watchdog_timer);
513         del_timer_sync(&adapter->phy_info_timer);
514
515         adapter->link_speed = 0;
516         adapter->link_duplex = 0;
517         netif_carrier_off(netdev);
518
519         e1000_reset(adapter);
520         e1000_clean_all_tx_rings(adapter);
521         e1000_clean_all_rx_rings(adapter);
522 }
523
524 static void e1000_reinit_safe(struct e1000_adapter *adapter)
525 {
526         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
527                 msleep(1);
528         rtnl_lock();
529         e1000_down(adapter);
530         e1000_up(adapter);
531         rtnl_unlock();
532         clear_bit(__E1000_RESETTING, &adapter->flags);
533 }
534
535 void e1000_reinit_locked(struct e1000_adapter *adapter)
536 {
537         /* if rtnl_lock is not held the call path is bogus */
538         ASSERT_RTNL();
539         WARN_ON(in_interrupt());
540         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
541                 msleep(1);
542         e1000_down(adapter);
543         e1000_up(adapter);
544         clear_bit(__E1000_RESETTING, &adapter->flags);
545 }
546
547 void e1000_reset(struct e1000_adapter *adapter)
548 {
549         struct e1000_hw *hw = &adapter->hw;
550         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
551         bool legacy_pba_adjust = false;
552         u16 hwm;
553
554         /* Repartition Pba for greater than 9k mtu
555          * To take effect CTRL.RST is required.
556          */
557
558         switch (hw->mac_type) {
559         case e1000_82542_rev2_0:
560         case e1000_82542_rev2_1:
561         case e1000_82543:
562         case e1000_82544:
563         case e1000_82540:
564         case e1000_82541:
565         case e1000_82541_rev_2:
566                 legacy_pba_adjust = true;
567                 pba = E1000_PBA_48K;
568                 break;
569         case e1000_82545:
570         case e1000_82545_rev_3:
571         case e1000_82546:
572         case e1000_82546_rev_3:
573                 pba = E1000_PBA_48K;
574                 break;
575         case e1000_82547:
576         case e1000_82547_rev_2:
577                 legacy_pba_adjust = true;
578                 pba = E1000_PBA_30K;
579                 break;
580         case e1000_undefined:
581         case e1000_num_macs:
582                 break;
583         }
584
585         if (legacy_pba_adjust) {
586                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
587                         pba -= 8; /* allocate more FIFO for Tx */
588
589                 if (hw->mac_type == e1000_82547) {
590                         adapter->tx_fifo_head = 0;
591                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
592                         adapter->tx_fifo_size =
593                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
594                         atomic_set(&adapter->tx_fifo_stall, 0);
595                 }
596         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
597                 /* adjust PBA for jumbo frames */
598                 ew32(PBA, pba);
599
600                 /* To maintain wire speed transmits, the Tx FIFO should be
601                  * large enough to accommodate two full transmit packets,
602                  * rounded up to the next 1KB and expressed in KB.  Likewise,
603                  * the Rx FIFO should be large enough to accommodate at least
604                  * one full receive packet and is similarly rounded up and
605                  * expressed in KB. */
606                 pba = er32(PBA);
607                 /* upper 16 bits has Tx packet buffer allocation size in KB */
608                 tx_space = pba >> 16;
609                 /* lower 16 bits has Rx packet buffer allocation size in KB */
610                 pba &= 0xffff;
611                 /*
612                  * the tx fifo also stores 16 bytes of information about the tx
613                  * but don't include ethernet FCS because hardware appends it
614                  */
615                 min_tx_space = (hw->max_frame_size +
616                                 sizeof(struct e1000_tx_desc) -
617                                 ETH_FCS_LEN) * 2;
618                 min_tx_space = ALIGN(min_tx_space, 1024);
619                 min_tx_space >>= 10;
620                 /* software strips receive CRC, so leave room for it */
621                 min_rx_space = hw->max_frame_size;
622                 min_rx_space = ALIGN(min_rx_space, 1024);
623                 min_rx_space >>= 10;
624
625                 /* If current Tx allocation is less than the min Tx FIFO size,
626                  * and the min Tx FIFO size is less than the current Rx FIFO
627                  * allocation, take space away from current Rx allocation */
628                 if (tx_space < min_tx_space &&
629                     ((min_tx_space - tx_space) < pba)) {
630                         pba = pba - (min_tx_space - tx_space);
631
632                         /* PCI/PCIx hardware has PBA alignment constraints */
633                         switch (hw->mac_type) {
634                         case e1000_82545 ... e1000_82546_rev_3:
635                                 pba &= ~(E1000_PBA_8K - 1);
636                                 break;
637                         default:
638                                 break;
639                         }
640
641                         /* if short on rx space, rx wins and must trump tx
642                          * adjustment or use Early Receive if available */
643                         if (pba < min_rx_space)
644                                 pba = min_rx_space;
645                 }
646         }
647
648         ew32(PBA, pba);
649
650         /*
651          * flow control settings:
652          * The high water mark must be low enough to fit one full frame
653          * (or the size used for early receive) above it in the Rx FIFO.
654          * Set it to the lower of:
655          * - 90% of the Rx FIFO size, and
656          * - the full Rx FIFO size minus the early receive size (for parts
657          *   with ERT support assuming ERT set to E1000_ERT_2048), or
658          * - the full Rx FIFO size minus one full frame
659          */
660         hwm = min(((pba << 10) * 9 / 10),
661                   ((pba << 10) - hw->max_frame_size));
662
663         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
664         hw->fc_low_water = hw->fc_high_water - 8;
665         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
666         hw->fc_send_xon = 1;
667         hw->fc = hw->original_fc;
668
669         /* Allow time for pending master requests to run */
670         e1000_reset_hw(hw);
671         if (hw->mac_type >= e1000_82544)
672                 ew32(WUC, 0);
673
674         if (e1000_init_hw(hw))
675                 e_dev_err("Hardware Error\n");
676         e1000_update_mng_vlan(adapter);
677
678         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
679         if (hw->mac_type >= e1000_82544 &&
680             hw->autoneg == 1 &&
681             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
682                 u32 ctrl = er32(CTRL);
683                 /* clear phy power management bit if we are in gig only mode,
684                  * which if enabled will attempt negotiation to 100Mb, which
685                  * can cause a loss of link at power off or driver unload */
686                 ctrl &= ~E1000_CTRL_SWDPIN3;
687                 ew32(CTRL, ctrl);
688         }
689
690         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
691         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
692
693         e1000_reset_adaptive(hw);
694         e1000_phy_get_info(hw, &adapter->phy_info);
695
696         e1000_release_manageability(adapter);
697 }
698
699 /**
700  *  Dump the eeprom for users having checksum issues
701  **/
702 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
703 {
704         struct net_device *netdev = adapter->netdev;
705         struct ethtool_eeprom eeprom;
706         const struct ethtool_ops *ops = netdev->ethtool_ops;
707         u8 *data;
708         int i;
709         u16 csum_old, csum_new = 0;
710
711         eeprom.len = ops->get_eeprom_len(netdev);
712         eeprom.offset = 0;
713
714         data = kmalloc(eeprom.len, GFP_KERNEL);
715         if (!data) {
716                 pr_err("Unable to allocate memory to dump EEPROM data\n");
717                 return;
718         }
719
720         ops->get_eeprom(netdev, &eeprom, data);
721
722         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
723                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
724         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
725                 csum_new += data[i] + (data[i + 1] << 8);
726         csum_new = EEPROM_SUM - csum_new;
727
728         pr_err("/*********************/\n");
729         pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
730         pr_err("Calculated              : 0x%04x\n", csum_new);
731
732         pr_err("Offset    Values\n");
733         pr_err("========  ======\n");
734         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
735
736         pr_err("Include this output when contacting your support provider.\n");
737         pr_err("This is not a software error! Something bad happened to\n");
738         pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
739         pr_err("result in further problems, possibly loss of data,\n");
740         pr_err("corruption or system hangs!\n");
741         pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
742         pr_err("which is invalid and requires you to set the proper MAC\n");
743         pr_err("address manually before continuing to enable this network\n");
744         pr_err("device. Please inspect the EEPROM dump and report the\n");
745         pr_err("issue to your hardware vendor or Intel Customer Support.\n");
746         pr_err("/*********************/\n");
747
748         kfree(data);
749 }
750
751 /**
752  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
753  * @pdev: PCI device information struct
754  *
755  * Return true if an adapter needs ioport resources
756  **/
757 static int e1000_is_need_ioport(struct pci_dev *pdev)
758 {
759         switch (pdev->device) {
760         case E1000_DEV_ID_82540EM:
761         case E1000_DEV_ID_82540EM_LOM:
762         case E1000_DEV_ID_82540EP:
763         case E1000_DEV_ID_82540EP_LOM:
764         case E1000_DEV_ID_82540EP_LP:
765         case E1000_DEV_ID_82541EI:
766         case E1000_DEV_ID_82541EI_MOBILE:
767         case E1000_DEV_ID_82541ER:
768         case E1000_DEV_ID_82541ER_LOM:
769         case E1000_DEV_ID_82541GI:
770         case E1000_DEV_ID_82541GI_LF:
771         case E1000_DEV_ID_82541GI_MOBILE:
772         case E1000_DEV_ID_82544EI_COPPER:
773         case E1000_DEV_ID_82544EI_FIBER:
774         case E1000_DEV_ID_82544GC_COPPER:
775         case E1000_DEV_ID_82544GC_LOM:
776         case E1000_DEV_ID_82545EM_COPPER:
777         case E1000_DEV_ID_82545EM_FIBER:
778         case E1000_DEV_ID_82546EB_COPPER:
779         case E1000_DEV_ID_82546EB_FIBER:
780         case E1000_DEV_ID_82546EB_QUAD_COPPER:
781                 return true;
782         default:
783                 return false;
784         }
785 }
786
787 static const struct net_device_ops e1000_netdev_ops = {
788         .ndo_open               = e1000_open,
789         .ndo_stop               = e1000_close,
790         .ndo_start_xmit         = e1000_xmit_frame,
791         .ndo_get_stats          = e1000_get_stats,
792         .ndo_set_rx_mode        = e1000_set_rx_mode,
793         .ndo_set_mac_address    = e1000_set_mac,
794         .ndo_tx_timeout         = e1000_tx_timeout,
795         .ndo_change_mtu         = e1000_change_mtu,
796         .ndo_do_ioctl           = e1000_ioctl,
797         .ndo_validate_addr      = eth_validate_addr,
798
799         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
800         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
801         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
802 #ifdef CONFIG_NET_POLL_CONTROLLER
803         .ndo_poll_controller    = e1000_netpoll,
804 #endif
805 };
806
807 /**
808  * e1000_init_hw_struct - initialize members of hw struct
809  * @adapter: board private struct
810  * @hw: structure used by e1000_hw.c
811  *
812  * Factors out initialization of the e1000_hw struct to its own function
813  * that can be called very early at init (just after struct allocation).
814  * Fields are initialized based on PCI device information and
815  * OS network device settings (MTU size).
816  * Returns negative error codes if MAC type setup fails.
817  */
818 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
819                                 struct e1000_hw *hw)
820 {
821         struct pci_dev *pdev = adapter->pdev;
822
823         /* PCI config space info */
824         hw->vendor_id = pdev->vendor;
825         hw->device_id = pdev->device;
826         hw->subsystem_vendor_id = pdev->subsystem_vendor;
827         hw->subsystem_id = pdev->subsystem_device;
828         hw->revision_id = pdev->revision;
829
830         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
831
832         hw->max_frame_size = adapter->netdev->mtu +
833                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
834         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
835
836         /* identify the MAC */
837         if (e1000_set_mac_type(hw)) {
838                 e_err(probe, "Unknown MAC Type\n");
839                 return -EIO;
840         }
841
842         switch (hw->mac_type) {
843         default:
844                 break;
845         case e1000_82541:
846         case e1000_82547:
847         case e1000_82541_rev_2:
848         case e1000_82547_rev_2:
849                 hw->phy_init_script = 1;
850                 break;
851         }
852
853         e1000_set_media_type(hw);
854         e1000_get_bus_info(hw);
855
856         hw->wait_autoneg_complete = false;
857         hw->tbi_compatibility_en = true;
858         hw->adaptive_ifs = true;
859
860         /* Copper options */
861
862         if (hw->media_type == e1000_media_type_copper) {
863                 hw->mdix = AUTO_ALL_MODES;
864                 hw->disable_polarity_correction = false;
865                 hw->master_slave = E1000_MASTER_SLAVE;
866         }
867
868         return 0;
869 }
870
871 /**
872  * e1000_probe - Device Initialization Routine
873  * @pdev: PCI device information struct
874  * @ent: entry in e1000_pci_tbl
875  *
876  * Returns 0 on success, negative on failure
877  *
878  * e1000_probe initializes an adapter identified by a pci_dev structure.
879  * The OS initialization, configuring of the adapter private structure,
880  * and a hardware reset occur.
881  **/
882 static int __devinit e1000_probe(struct pci_dev *pdev,
883                                  const struct pci_device_id *ent)
884 {
885         struct net_device *netdev;
886         struct e1000_adapter *adapter;
887         struct e1000_hw *hw;
888
889         static int cards_found = 0;
890         static int global_quad_port_a = 0; /* global ksp3 port a indication */
891         int i, err, pci_using_dac;
892         u16 eeprom_data = 0;
893         u16 eeprom_apme_mask = E1000_EEPROM_APME;
894         int bars, need_ioport;
895
896         /* do not allocate ioport bars when not needed */
897         need_ioport = e1000_is_need_ioport(pdev);
898         if (need_ioport) {
899                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
900                 err = pci_enable_device(pdev);
901         } else {
902                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
903                 err = pci_enable_device_mem(pdev);
904         }
905         if (err)
906                 return err;
907
908         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
909         if (err)
910                 goto err_pci_reg;
911
912         pci_set_master(pdev);
913         err = pci_save_state(pdev);
914         if (err)
915                 goto err_alloc_etherdev;
916
917         err = -ENOMEM;
918         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
919         if (!netdev)
920                 goto err_alloc_etherdev;
921
922         SET_NETDEV_DEV(netdev, &pdev->dev);
923
924         pci_set_drvdata(pdev, netdev);
925         adapter = netdev_priv(netdev);
926         adapter->netdev = netdev;
927         adapter->pdev = pdev;
928         adapter->msg_enable = (1 << debug) - 1;
929         adapter->bars = bars;
930         adapter->need_ioport = need_ioport;
931
932         hw = &adapter->hw;
933         hw->back = adapter;
934
935         err = -EIO;
936         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
937         if (!hw->hw_addr)
938                 goto err_ioremap;
939
940         if (adapter->need_ioport) {
941                 for (i = BAR_1; i <= BAR_5; i++) {
942                         if (pci_resource_len(pdev, i) == 0)
943                                 continue;
944                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
945                                 hw->io_base = pci_resource_start(pdev, i);
946                                 break;
947                         }
948                 }
949         }
950
951         /* make ready for any if (hw->...) below */
952         err = e1000_init_hw_struct(adapter, hw);
953         if (err)
954                 goto err_sw_init;
955
956         /*
957          * there is a workaround being applied below that limits
958          * 64-bit DMA addresses to 64-bit hardware.  There are some
959          * 32-bit adapters that Tx hang when given 64-bit DMA addresses
960          */
961         pci_using_dac = 0;
962         if ((hw->bus_type == e1000_bus_type_pcix) &&
963             !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
964                 /*
965                  * according to DMA-API-HOWTO, coherent calls will always
966                  * succeed if the set call did
967                  */
968                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
969                 pci_using_dac = 1;
970         } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
971                 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
972         } else {
973                 pr_err("No usable DMA config, aborting\n");
974                 goto err_dma;
975         }
976
977         netdev->netdev_ops = &e1000_netdev_ops;
978         e1000_set_ethtool_ops(netdev);
979         netdev->watchdog_timeo = 5 * HZ;
980         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
981
982         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
983
984         adapter->bd_number = cards_found;
985
986         /* setup the private structure */
987
988         err = e1000_sw_init(adapter);
989         if (err)
990                 goto err_sw_init;
991
992         err = -EIO;
993
994         if (hw->mac_type >= e1000_82543) {
995                 netdev->features = NETIF_F_SG |
996                                    NETIF_F_HW_CSUM |
997                                    NETIF_F_HW_VLAN_TX |
998                                    NETIF_F_HW_VLAN_RX |
999                                    NETIF_F_HW_VLAN_FILTER;
1000         }
1001
1002         if ((hw->mac_type >= e1000_82544) &&
1003            (hw->mac_type != e1000_82547))
1004                 netdev->features |= NETIF_F_TSO;
1005
1006         if (pci_using_dac) {
1007                 netdev->features |= NETIF_F_HIGHDMA;
1008                 netdev->vlan_features |= NETIF_F_HIGHDMA;
1009         }
1010
1011         netdev->vlan_features |= NETIF_F_TSO;
1012         netdev->vlan_features |= NETIF_F_HW_CSUM;
1013         netdev->vlan_features |= NETIF_F_SG;
1014
1015         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1016
1017         /* initialize eeprom parameters */
1018         if (e1000_init_eeprom_params(hw)) {
1019                 e_err(probe, "EEPROM initialization failed\n");
1020                 goto err_eeprom;
1021         }
1022
1023         /* before reading the EEPROM, reset the controller to
1024          * put the device in a known good starting state */
1025
1026         e1000_reset_hw(hw);
1027
1028         /* make sure the EEPROM is good */
1029         if (e1000_validate_eeprom_checksum(hw) < 0) {
1030                 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1031                 e1000_dump_eeprom(adapter);
1032                 /*
1033                  * set MAC address to all zeroes to invalidate and temporary
1034                  * disable this device for the user. This blocks regular
1035                  * traffic while still permitting ethtool ioctls from reaching
1036                  * the hardware as well as allowing the user to run the
1037                  * interface after manually setting a hw addr using
1038                  * `ip set address`
1039                  */
1040                 memset(hw->mac_addr, 0, netdev->addr_len);
1041         } else {
1042                 /* copy the MAC address out of the EEPROM */
1043                 if (e1000_read_mac_addr(hw))
1044                         e_err(probe, "EEPROM Read Error\n");
1045         }
1046         /* don't block initalization here due to bad MAC address */
1047         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1048         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1049
1050         if (!is_valid_ether_addr(netdev->perm_addr))
1051                 e_err(probe, "Invalid MAC Address\n");
1052
1053         init_timer(&adapter->tx_fifo_stall_timer);
1054         adapter->tx_fifo_stall_timer.function = e1000_82547_tx_fifo_stall;
1055         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1056
1057         init_timer(&adapter->watchdog_timer);
1058         adapter->watchdog_timer.function = e1000_watchdog;
1059         adapter->watchdog_timer.data = (unsigned long) adapter;
1060
1061         init_timer(&adapter->phy_info_timer);
1062         adapter->phy_info_timer.function = e1000_update_phy_info;
1063         adapter->phy_info_timer.data = (unsigned long)adapter;
1064
1065         INIT_WORK(&adapter->fifo_stall_task, e1000_82547_tx_fifo_stall_task);
1066         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1067         INIT_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1068
1069         e1000_check_options(adapter);
1070
1071         /* Initial Wake on LAN setting
1072          * If APM wake is enabled in the EEPROM,
1073          * enable the ACPI Magic Packet filter
1074          */
1075
1076         switch (hw->mac_type) {
1077         case e1000_82542_rev2_0:
1078         case e1000_82542_rev2_1:
1079         case e1000_82543:
1080                 break;
1081         case e1000_82544:
1082                 e1000_read_eeprom(hw,
1083                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1084                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1085                 break;
1086         case e1000_82546:
1087         case e1000_82546_rev_3:
1088                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1089                         e1000_read_eeprom(hw,
1090                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1091                         break;
1092                 }
1093                 /* Fall Through */
1094         default:
1095                 e1000_read_eeprom(hw,
1096                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1097                 break;
1098         }
1099         if (eeprom_data & eeprom_apme_mask)
1100                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1101
1102         /* now that we have the eeprom settings, apply the special cases
1103          * where the eeprom may be wrong or the board simply won't support
1104          * wake on lan on a particular port */
1105         switch (pdev->device) {
1106         case E1000_DEV_ID_82546GB_PCIE:
1107                 adapter->eeprom_wol = 0;
1108                 break;
1109         case E1000_DEV_ID_82546EB_FIBER:
1110         case E1000_DEV_ID_82546GB_FIBER:
1111                 /* Wake events only supported on port A for dual fiber
1112                  * regardless of eeprom setting */
1113                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1114                         adapter->eeprom_wol = 0;
1115                 break;
1116         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1117                 /* if quad port adapter, disable WoL on all but port A */
1118                 if (global_quad_port_a != 0)
1119                         adapter->eeprom_wol = 0;
1120                 else
1121                         adapter->quad_port_a = 1;
1122                 /* Reset for multiple quad port adapters */
1123                 if (++global_quad_port_a == 4)
1124                         global_quad_port_a = 0;
1125                 break;
1126         }
1127
1128         /* initialize the wol settings based on the eeprom settings */
1129         adapter->wol = adapter->eeprom_wol;
1130         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1131
1132         /* reset the hardware with the new settings */
1133         e1000_reset(adapter);
1134
1135         strcpy(netdev->name, "eth%d");
1136         err = register_netdev(netdev);
1137         if (err)
1138                 goto err_register;
1139
1140         /* print bus type/speed/width info */
1141         e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1142                ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1143                ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1144                 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1145                 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1146                 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1147                ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1148                netdev->dev_addr);
1149
1150         /* carrier off reporting is important to ethtool even BEFORE open */
1151         netif_carrier_off(netdev);
1152
1153         e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1154
1155         cards_found++;
1156         return 0;
1157
1158 err_register:
1159 err_eeprom:
1160         e1000_phy_hw_reset(hw);
1161
1162         if (hw->flash_address)
1163                 iounmap(hw->flash_address);
1164         kfree(adapter->tx_ring);
1165         kfree(adapter->rx_ring);
1166 err_dma:
1167 err_sw_init:
1168         iounmap(hw->hw_addr);
1169 err_ioremap:
1170         free_netdev(netdev);
1171 err_alloc_etherdev:
1172         pci_release_selected_regions(pdev, bars);
1173 err_pci_reg:
1174         pci_disable_device(pdev);
1175         return err;
1176 }
1177
1178 /**
1179  * e1000_remove - Device Removal Routine
1180  * @pdev: PCI device information struct
1181  *
1182  * e1000_remove is called by the PCI subsystem to alert the driver
1183  * that it should release a PCI device.  The could be caused by a
1184  * Hot-Plug event, or because the driver is going to be removed from
1185  * memory.
1186  **/
1187
1188 static void __devexit e1000_remove(struct pci_dev *pdev)
1189 {
1190         struct net_device *netdev = pci_get_drvdata(pdev);
1191         struct e1000_adapter *adapter = netdev_priv(netdev);
1192         struct e1000_hw *hw = &adapter->hw;
1193
1194         set_bit(__E1000_DOWN, &adapter->flags);
1195         del_timer_sync(&adapter->tx_fifo_stall_timer);
1196         del_timer_sync(&adapter->watchdog_timer);
1197         del_timer_sync(&adapter->phy_info_timer);
1198
1199         cancel_work_sync(&adapter->reset_task);
1200
1201         e1000_release_manageability(adapter);
1202
1203         unregister_netdev(netdev);
1204
1205         e1000_phy_hw_reset(hw);
1206
1207         kfree(adapter->tx_ring);
1208         kfree(adapter->rx_ring);
1209
1210         iounmap(hw->hw_addr);
1211         if (hw->flash_address)
1212                 iounmap(hw->flash_address);
1213         pci_release_selected_regions(pdev, adapter->bars);
1214
1215         free_netdev(netdev);
1216
1217         pci_disable_device(pdev);
1218 }
1219
1220 /**
1221  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1222  * @adapter: board private structure to initialize
1223  *
1224  * e1000_sw_init initializes the Adapter private data structure.
1225  * e1000_init_hw_struct MUST be called before this function
1226  **/
1227
1228 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1229 {
1230         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1231
1232         adapter->num_tx_queues = 1;
1233         adapter->num_rx_queues = 1;
1234
1235         if (e1000_alloc_queues(adapter)) {
1236                 e_err(probe, "Unable to allocate memory for queues\n");
1237                 return -ENOMEM;
1238         }
1239
1240         /* Explicitly disable IRQ since the NIC can be in any state. */
1241         e1000_irq_disable(adapter);
1242
1243         spin_lock_init(&adapter->stats_lock);
1244
1245         set_bit(__E1000_DOWN, &adapter->flags);
1246
1247         return 0;
1248 }
1249
1250 /**
1251  * e1000_alloc_queues - Allocate memory for all rings
1252  * @adapter: board private structure to initialize
1253  *
1254  * We allocate one ring per queue at run-time since we don't know the
1255  * number of queues at compile-time.
1256  **/
1257
1258 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1259 {
1260         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1261                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1262         if (!adapter->tx_ring)
1263                 return -ENOMEM;
1264
1265         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1266                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1267         if (!adapter->rx_ring) {
1268                 kfree(adapter->tx_ring);
1269                 return -ENOMEM;
1270         }
1271
1272         return E1000_SUCCESS;
1273 }
1274
1275 /**
1276  * e1000_open - Called when a network interface is made active
1277  * @netdev: network interface device structure
1278  *
1279  * Returns 0 on success, negative value on failure
1280  *
1281  * The open entry point is called when a network interface is made
1282  * active by the system (IFF_UP).  At this point all resources needed
1283  * for transmit and receive operations are allocated, the interrupt
1284  * handler is registered with the OS, the watchdog timer is started,
1285  * and the stack is notified that the interface is ready.
1286  **/
1287
1288 static int e1000_open(struct net_device *netdev)
1289 {
1290         struct e1000_adapter *adapter = netdev_priv(netdev);
1291         struct e1000_hw *hw = &adapter->hw;
1292         int err;
1293
1294         /* disallow open during test */
1295         if (test_bit(__E1000_TESTING, &adapter->flags))
1296                 return -EBUSY;
1297
1298         netif_carrier_off(netdev);
1299
1300         /* allocate transmit descriptors */
1301         err = e1000_setup_all_tx_resources(adapter);
1302         if (err)
1303                 goto err_setup_tx;
1304
1305         /* allocate receive descriptors */
1306         err = e1000_setup_all_rx_resources(adapter);
1307         if (err)
1308                 goto err_setup_rx;
1309
1310         e1000_power_up_phy(adapter);
1311
1312         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1313         if ((hw->mng_cookie.status &
1314                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1315                 e1000_update_mng_vlan(adapter);
1316         }
1317
1318         /* before we allocate an interrupt, we must be ready to handle it.
1319          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1320          * as soon as we call pci_request_irq, so we have to setup our
1321          * clean_rx handler before we do so.  */
1322         e1000_configure(adapter);
1323
1324         err = e1000_request_irq(adapter);
1325         if (err)
1326                 goto err_req_irq;
1327
1328         /* From here on the code is the same as e1000_up() */
1329         clear_bit(__E1000_DOWN, &adapter->flags);
1330
1331         napi_enable(&adapter->napi);
1332
1333         e1000_irq_enable(adapter);
1334
1335         netif_start_queue(netdev);
1336
1337         /* fire a link status change interrupt to start the watchdog */
1338         ew32(ICS, E1000_ICS_LSC);
1339
1340         return E1000_SUCCESS;
1341
1342 err_req_irq:
1343         e1000_power_down_phy(adapter);
1344         e1000_free_all_rx_resources(adapter);
1345 err_setup_rx:
1346         e1000_free_all_tx_resources(adapter);
1347 err_setup_tx:
1348         e1000_reset(adapter);
1349
1350         return err;
1351 }
1352
1353 /**
1354  * e1000_close - Disables a network interface
1355  * @netdev: network interface device structure
1356  *
1357  * Returns 0, this is not allowed to fail
1358  *
1359  * The close entry point is called when an interface is de-activated
1360  * by the OS.  The hardware is still under the drivers control, but
1361  * needs to be disabled.  A global MAC reset is issued to stop the
1362  * hardware, and all transmit and receive resources are freed.
1363  **/
1364
1365 static int e1000_close(struct net_device *netdev)
1366 {
1367         struct e1000_adapter *adapter = netdev_priv(netdev);
1368         struct e1000_hw *hw = &adapter->hw;
1369
1370         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1371         e1000_down(adapter);
1372         e1000_power_down_phy(adapter);
1373         e1000_free_irq(adapter);
1374
1375         e1000_free_all_tx_resources(adapter);
1376         e1000_free_all_rx_resources(adapter);
1377
1378         /* kill manageability vlan ID if supported, but not if a vlan with
1379          * the same ID is registered on the host OS (let 8021q kill it) */
1380         if ((hw->mng_cookie.status &
1381                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1382              !(adapter->vlgrp &&
1383                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1384                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1385         }
1386
1387         return 0;
1388 }
1389
1390 /**
1391  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1392  * @adapter: address of board private structure
1393  * @start: address of beginning of memory
1394  * @len: length of memory
1395  **/
1396 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1397                                   unsigned long len)
1398 {
1399         struct e1000_hw *hw = &adapter->hw;
1400         unsigned long begin = (unsigned long)start;
1401         unsigned long end = begin + len;
1402
1403         /* First rev 82545 and 82546 need to not allow any memory
1404          * write location to cross 64k boundary due to errata 23 */
1405         if (hw->mac_type == e1000_82545 ||
1406             hw->mac_type == e1000_82546) {
1407                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1408         }
1409
1410         return true;
1411 }
1412
1413 /**
1414  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1415  * @adapter: board private structure
1416  * @txdr:    tx descriptor ring (for a specific queue) to setup
1417  *
1418  * Return 0 on success, negative on failure
1419  **/
1420
1421 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1422                                     struct e1000_tx_ring *txdr)
1423 {
1424         struct pci_dev *pdev = adapter->pdev;
1425         int size;
1426
1427         size = sizeof(struct e1000_buffer) * txdr->count;
1428         txdr->buffer_info = vmalloc(size);
1429         if (!txdr->buffer_info) {
1430                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1431                       "ring\n");
1432                 return -ENOMEM;
1433         }
1434         memset(txdr->buffer_info, 0, size);
1435
1436         /* round up to nearest 4K */
1437
1438         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1439         txdr->size = ALIGN(txdr->size, 4096);
1440
1441         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1442                                         GFP_KERNEL);
1443         if (!txdr->desc) {
1444 setup_tx_desc_die:
1445                 vfree(txdr->buffer_info);
1446                 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1447                       "ring\n");
1448                 return -ENOMEM;
1449         }
1450
1451         /* Fix for errata 23, can't cross 64kB boundary */
1452         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1453                 void *olddesc = txdr->desc;
1454                 dma_addr_t olddma = txdr->dma;
1455                 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1456                       txdr->size, txdr->desc);
1457                 /* Try again, without freeing the previous */
1458                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1459                                                 &txdr->dma, GFP_KERNEL);
1460                 /* Failed allocation, critical failure */
1461                 if (!txdr->desc) {
1462                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1463                                           olddma);
1464                         goto setup_tx_desc_die;
1465                 }
1466
1467                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1468                         /* give up */
1469                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1470                                           txdr->dma);
1471                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1472                                           olddma);
1473                         e_err(probe, "Unable to allocate aligned memory "
1474                               "for the transmit descriptor ring\n");
1475                         vfree(txdr->buffer_info);
1476                         return -ENOMEM;
1477                 } else {
1478                         /* Free old allocation, new allocation was successful */
1479                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1480                                           olddma);
1481                 }
1482         }
1483         memset(txdr->desc, 0, txdr->size);
1484
1485         txdr->next_to_use = 0;
1486         txdr->next_to_clean = 0;
1487
1488         return 0;
1489 }
1490
1491 /**
1492  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1493  *                                (Descriptors) for all queues
1494  * @adapter: board private structure
1495  *
1496  * Return 0 on success, negative on failure
1497  **/
1498
1499 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1500 {
1501         int i, err = 0;
1502
1503         for (i = 0; i < adapter->num_tx_queues; i++) {
1504                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1505                 if (err) {
1506                         e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1507                         for (i-- ; i >= 0; i--)
1508                                 e1000_free_tx_resources(adapter,
1509                                                         &adapter->tx_ring[i]);
1510                         break;
1511                 }
1512         }
1513
1514         return err;
1515 }
1516
1517 /**
1518  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1519  * @adapter: board private structure
1520  *
1521  * Configure the Tx unit of the MAC after a reset.
1522  **/
1523
1524 static void e1000_configure_tx(struct e1000_adapter *adapter)
1525 {
1526         u64 tdba;
1527         struct e1000_hw *hw = &adapter->hw;
1528         u32 tdlen, tctl, tipg;
1529         u32 ipgr1, ipgr2;
1530
1531         /* Setup the HW Tx Head and Tail descriptor pointers */
1532
1533         switch (adapter->num_tx_queues) {
1534         case 1:
1535         default:
1536                 tdba = adapter->tx_ring[0].dma;
1537                 tdlen = adapter->tx_ring[0].count *
1538                         sizeof(struct e1000_tx_desc);
1539                 ew32(TDLEN, tdlen);
1540                 ew32(TDBAH, (tdba >> 32));
1541                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1542                 ew32(TDT, 0);
1543                 ew32(TDH, 0);
1544                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1545                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1546                 break;
1547         }
1548
1549         /* Set the default values for the Tx Inter Packet Gap timer */
1550         if ((hw->media_type == e1000_media_type_fiber ||
1551              hw->media_type == e1000_media_type_internal_serdes))
1552                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1553         else
1554                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1555
1556         switch (hw->mac_type) {
1557         case e1000_82542_rev2_0:
1558         case e1000_82542_rev2_1:
1559                 tipg = DEFAULT_82542_TIPG_IPGT;
1560                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1561                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1562                 break;
1563         default:
1564                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1565                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1566                 break;
1567         }
1568         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1569         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1570         ew32(TIPG, tipg);
1571
1572         /* Set the Tx Interrupt Delay register */
1573
1574         ew32(TIDV, adapter->tx_int_delay);
1575         if (hw->mac_type >= e1000_82540)
1576                 ew32(TADV, adapter->tx_abs_int_delay);
1577
1578         /* Program the Transmit Control Register */
1579
1580         tctl = er32(TCTL);
1581         tctl &= ~E1000_TCTL_CT;
1582         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1583                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1584
1585         e1000_config_collision_dist(hw);
1586
1587         /* Setup Transmit Descriptor Settings for eop descriptor */
1588         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1589
1590         /* only set IDE if we are delaying interrupts using the timers */
1591         if (adapter->tx_int_delay)
1592                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1593
1594         if (hw->mac_type < e1000_82543)
1595                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1596         else
1597                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1598
1599         /* Cache if we're 82544 running in PCI-X because we'll
1600          * need this to apply a workaround later in the send path. */
1601         if (hw->mac_type == e1000_82544 &&
1602             hw->bus_type == e1000_bus_type_pcix)
1603                 adapter->pcix_82544 = 1;
1604
1605         ew32(TCTL, tctl);
1606
1607 }
1608
1609 /**
1610  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1611  * @adapter: board private structure
1612  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1613  *
1614  * Returns 0 on success, negative on failure
1615  **/
1616
1617 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1618                                     struct e1000_rx_ring *rxdr)
1619 {
1620         struct pci_dev *pdev = adapter->pdev;
1621         int size, desc_len;
1622
1623         size = sizeof(struct e1000_buffer) * rxdr->count;
1624         rxdr->buffer_info = vmalloc(size);
1625         if (!rxdr->buffer_info) {
1626                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1627                       "ring\n");
1628                 return -ENOMEM;
1629         }
1630         memset(rxdr->buffer_info, 0, size);
1631
1632         desc_len = sizeof(struct e1000_rx_desc);
1633
1634         /* Round up to nearest 4K */
1635
1636         rxdr->size = rxdr->count * desc_len;
1637         rxdr->size = ALIGN(rxdr->size, 4096);
1638
1639         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1640                                         GFP_KERNEL);
1641
1642         if (!rxdr->desc) {
1643                 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1644                       "ring\n");
1645 setup_rx_desc_die:
1646                 vfree(rxdr->buffer_info);
1647                 return -ENOMEM;
1648         }
1649
1650         /* Fix for errata 23, can't cross 64kB boundary */
1651         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1652                 void *olddesc = rxdr->desc;
1653                 dma_addr_t olddma = rxdr->dma;
1654                 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1655                       rxdr->size, rxdr->desc);
1656                 /* Try again, without freeing the previous */
1657                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1658                                                 &rxdr->dma, GFP_KERNEL);
1659                 /* Failed allocation, critical failure */
1660                 if (!rxdr->desc) {
1661                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1662                                           olddma);
1663                         e_err(probe, "Unable to allocate memory for the Rx "
1664                               "descriptor ring\n");
1665                         goto setup_rx_desc_die;
1666                 }
1667
1668                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1669                         /* give up */
1670                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1671                                           rxdr->dma);
1672                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1673                                           olddma);
1674                         e_err(probe, "Unable to allocate aligned memory for "
1675                               "the Rx descriptor ring\n");
1676                         goto setup_rx_desc_die;
1677                 } else {
1678                         /* Free old allocation, new allocation was successful */
1679                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1680                                           olddma);
1681                 }
1682         }
1683         memset(rxdr->desc, 0, rxdr->size);
1684
1685         rxdr->next_to_clean = 0;
1686         rxdr->next_to_use = 0;
1687         rxdr->rx_skb_top = NULL;
1688
1689         return 0;
1690 }
1691
1692 /**
1693  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1694  *                                (Descriptors) for all queues
1695  * @adapter: board private structure
1696  *
1697  * Return 0 on success, negative on failure
1698  **/
1699
1700 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1701 {
1702         int i, err = 0;
1703
1704         for (i = 0; i < adapter->num_rx_queues; i++) {
1705                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1706                 if (err) {
1707                         e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1708                         for (i-- ; i >= 0; i--)
1709                                 e1000_free_rx_resources(adapter,
1710                                                         &adapter->rx_ring[i]);
1711                         break;
1712                 }
1713         }
1714
1715         return err;
1716 }
1717
1718 /**
1719  * e1000_setup_rctl - configure the receive control registers
1720  * @adapter: Board private structure
1721  **/
1722 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1723 {
1724         struct e1000_hw *hw = &adapter->hw;
1725         u32 rctl;
1726
1727         rctl = er32(RCTL);
1728
1729         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1730
1731         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1732                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1733                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1734
1735         if (hw->tbi_compatibility_on == 1)
1736                 rctl |= E1000_RCTL_SBP;
1737         else
1738                 rctl &= ~E1000_RCTL_SBP;
1739
1740         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1741                 rctl &= ~E1000_RCTL_LPE;
1742         else
1743                 rctl |= E1000_RCTL_LPE;
1744
1745         /* Setup buffer sizes */
1746         rctl &= ~E1000_RCTL_SZ_4096;
1747         rctl |= E1000_RCTL_BSEX;
1748         switch (adapter->rx_buffer_len) {
1749                 case E1000_RXBUFFER_2048:
1750                 default:
1751                         rctl |= E1000_RCTL_SZ_2048;
1752                         rctl &= ~E1000_RCTL_BSEX;
1753                         break;
1754                 case E1000_RXBUFFER_4096:
1755                         rctl |= E1000_RCTL_SZ_4096;
1756                         break;
1757                 case E1000_RXBUFFER_8192:
1758                         rctl |= E1000_RCTL_SZ_8192;
1759                         break;
1760                 case E1000_RXBUFFER_16384:
1761                         rctl |= E1000_RCTL_SZ_16384;
1762                         break;
1763         }
1764
1765         ew32(RCTL, rctl);
1766 }
1767
1768 /**
1769  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1770  * @adapter: board private structure
1771  *
1772  * Configure the Rx unit of the MAC after a reset.
1773  **/
1774
1775 static void e1000_configure_rx(struct e1000_adapter *adapter)
1776 {
1777         u64 rdba;
1778         struct e1000_hw *hw = &adapter->hw;
1779         u32 rdlen, rctl, rxcsum;
1780
1781         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1782                 rdlen = adapter->rx_ring[0].count *
1783                         sizeof(struct e1000_rx_desc);
1784                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1785                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1786         } else {
1787                 rdlen = adapter->rx_ring[0].count *
1788                         sizeof(struct e1000_rx_desc);
1789                 adapter->clean_rx = e1000_clean_rx_irq;
1790                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1791         }
1792
1793         /* disable receives while setting up the descriptors */
1794         rctl = er32(RCTL);
1795         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1796
1797         /* set the Receive Delay Timer Register */
1798         ew32(RDTR, adapter->rx_int_delay);
1799
1800         if (hw->mac_type >= e1000_82540) {
1801                 ew32(RADV, adapter->rx_abs_int_delay);
1802                 if (adapter->itr_setting != 0)
1803                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1804         }
1805
1806         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1807          * the Base and Length of the Rx Descriptor Ring */
1808         switch (adapter->num_rx_queues) {
1809         case 1:
1810         default:
1811                 rdba = adapter->rx_ring[0].dma;
1812                 ew32(RDLEN, rdlen);
1813                 ew32(RDBAH, (rdba >> 32));
1814                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1815                 ew32(RDT, 0);
1816                 ew32(RDH, 0);
1817                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1818                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1819                 break;
1820         }
1821
1822         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1823         if (hw->mac_type >= e1000_82543) {
1824                 rxcsum = er32(RXCSUM);
1825                 if (adapter->rx_csum)
1826                         rxcsum |= E1000_RXCSUM_TUOFL;
1827                 else
1828                         /* don't need to clear IPPCSE as it defaults to 0 */
1829                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1830                 ew32(RXCSUM, rxcsum);
1831         }
1832
1833         /* Enable Receives */
1834         ew32(RCTL, rctl);
1835 }
1836
1837 /**
1838  * e1000_free_tx_resources - Free Tx Resources per Queue
1839  * @adapter: board private structure
1840  * @tx_ring: Tx descriptor ring for a specific queue
1841  *
1842  * Free all transmit software resources
1843  **/
1844
1845 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1846                                     struct e1000_tx_ring *tx_ring)
1847 {
1848         struct pci_dev *pdev = adapter->pdev;
1849
1850         e1000_clean_tx_ring(adapter, tx_ring);
1851
1852         vfree(tx_ring->buffer_info);
1853         tx_ring->buffer_info = NULL;
1854
1855         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1856                           tx_ring->dma);
1857
1858         tx_ring->desc = NULL;
1859 }
1860
1861 /**
1862  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1863  * @adapter: board private structure
1864  *
1865  * Free all transmit software resources
1866  **/
1867
1868 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1869 {
1870         int i;
1871
1872         for (i = 0; i < adapter->num_tx_queues; i++)
1873                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1874 }
1875
1876 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1877                                              struct e1000_buffer *buffer_info)
1878 {
1879         if (buffer_info->dma) {
1880                 if (buffer_info->mapped_as_page)
1881                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1882                                        buffer_info->length, DMA_TO_DEVICE);
1883                 else
1884                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1885                                          buffer_info->length,
1886                                          DMA_TO_DEVICE);
1887                 buffer_info->dma = 0;
1888         }
1889         if (buffer_info->skb) {
1890                 dev_kfree_skb_any(buffer_info->skb);
1891                 buffer_info->skb = NULL;
1892         }
1893         buffer_info->time_stamp = 0;
1894         /* buffer_info must be completely set up in the transmit path */
1895 }
1896
1897 /**
1898  * e1000_clean_tx_ring - Free Tx Buffers
1899  * @adapter: board private structure
1900  * @tx_ring: ring to be cleaned
1901  **/
1902
1903 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1904                                 struct e1000_tx_ring *tx_ring)
1905 {
1906         struct e1000_hw *hw = &adapter->hw;
1907         struct e1000_buffer *buffer_info;
1908         unsigned long size;
1909         unsigned int i;
1910
1911         /* Free all the Tx ring sk_buffs */
1912
1913         for (i = 0; i < tx_ring->count; i++) {
1914                 buffer_info = &tx_ring->buffer_info[i];
1915                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1916         }
1917
1918         size = sizeof(struct e1000_buffer) * tx_ring->count;
1919         memset(tx_ring->buffer_info, 0, size);
1920
1921         /* Zero out the descriptor ring */
1922
1923         memset(tx_ring->desc, 0, tx_ring->size);
1924
1925         tx_ring->next_to_use = 0;
1926         tx_ring->next_to_clean = 0;
1927         tx_ring->last_tx_tso = 0;
1928
1929         writel(0, hw->hw_addr + tx_ring->tdh);
1930         writel(0, hw->hw_addr + tx_ring->tdt);
1931 }
1932
1933 /**
1934  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1935  * @adapter: board private structure
1936  **/
1937
1938 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1939 {
1940         int i;
1941
1942         for (i = 0; i < adapter->num_tx_queues; i++)
1943                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1944 }
1945
1946 /**
1947  * e1000_free_rx_resources - Free Rx Resources
1948  * @adapter: board private structure
1949  * @rx_ring: ring to clean the resources from
1950  *
1951  * Free all receive software resources
1952  **/
1953
1954 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
1955                                     struct e1000_rx_ring *rx_ring)
1956 {
1957         struct pci_dev *pdev = adapter->pdev;
1958
1959         e1000_clean_rx_ring(adapter, rx_ring);
1960
1961         vfree(rx_ring->buffer_info);
1962         rx_ring->buffer_info = NULL;
1963
1964         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1965                           rx_ring->dma);
1966
1967         rx_ring->desc = NULL;
1968 }
1969
1970 /**
1971  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1972  * @adapter: board private structure
1973  *
1974  * Free all receive software resources
1975  **/
1976
1977 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1978 {
1979         int i;
1980
1981         for (i = 0; i < adapter->num_rx_queues; i++)
1982                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1983 }
1984
1985 /**
1986  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1987  * @adapter: board private structure
1988  * @rx_ring: ring to free buffers from
1989  **/
1990
1991 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
1992                                 struct e1000_rx_ring *rx_ring)
1993 {
1994         struct e1000_hw *hw = &adapter->hw;
1995         struct e1000_buffer *buffer_info;
1996         struct pci_dev *pdev = adapter->pdev;
1997         unsigned long size;
1998         unsigned int i;
1999
2000         /* Free all the Rx ring sk_buffs */
2001         for (i = 0; i < rx_ring->count; i++) {
2002                 buffer_info = &rx_ring->buffer_info[i];
2003                 if (buffer_info->dma &&
2004                     adapter->clean_rx == e1000_clean_rx_irq) {
2005                         dma_unmap_single(&pdev->dev, buffer_info->dma,
2006                                          buffer_info->length,
2007                                          DMA_FROM_DEVICE);
2008                 } else if (buffer_info->dma &&
2009                            adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2010                         dma_unmap_page(&pdev->dev, buffer_info->dma,
2011                                        buffer_info->length,
2012                                        DMA_FROM_DEVICE);
2013                 }
2014
2015                 buffer_info->dma = 0;
2016                 if (buffer_info->page) {
2017                         put_page(buffer_info->page);
2018                         buffer_info->page = NULL;
2019                 }
2020                 if (buffer_info->skb) {
2021                         dev_kfree_skb(buffer_info->skb);
2022                         buffer_info->skb = NULL;
2023                 }
2024         }
2025
2026         /* there also may be some cached data from a chained receive */
2027         if (rx_ring->rx_skb_top) {
2028                 dev_kfree_skb(rx_ring->rx_skb_top);
2029                 rx_ring->rx_skb_top = NULL;
2030         }
2031
2032         size = sizeof(struct e1000_buffer) * rx_ring->count;
2033         memset(rx_ring->buffer_info, 0, size);
2034
2035         /* Zero out the descriptor ring */
2036         memset(rx_ring->desc, 0, rx_ring->size);
2037
2038         rx_ring->next_to_clean = 0;
2039         rx_ring->next_to_use = 0;
2040
2041         writel(0, hw->hw_addr + rx_ring->rdh);
2042         writel(0, hw->hw_addr + rx_ring->rdt);
2043 }
2044
2045 /**
2046  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2047  * @adapter: board private structure
2048  **/
2049
2050 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2051 {
2052         int i;
2053
2054         for (i = 0; i < adapter->num_rx_queues; i++)
2055                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2056 }
2057
2058 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2059  * and memory write and invalidate disabled for certain operations
2060  */
2061 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2062 {
2063         struct e1000_hw *hw = &adapter->hw;
2064         struct net_device *netdev = adapter->netdev;
2065         u32 rctl;
2066
2067         e1000_pci_clear_mwi(hw);
2068
2069         rctl = er32(RCTL);
2070         rctl |= E1000_RCTL_RST;
2071         ew32(RCTL, rctl);
2072         E1000_WRITE_FLUSH();
2073         mdelay(5);
2074
2075         if (netif_running(netdev))
2076                 e1000_clean_all_rx_rings(adapter);
2077 }
2078
2079 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2080 {
2081         struct e1000_hw *hw = &adapter->hw;
2082         struct net_device *netdev = adapter->netdev;
2083         u32 rctl;
2084
2085         rctl = er32(RCTL);
2086         rctl &= ~E1000_RCTL_RST;
2087         ew32(RCTL, rctl);
2088         E1000_WRITE_FLUSH();
2089         mdelay(5);
2090
2091         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2092                 e1000_pci_set_mwi(hw);
2093
2094         if (netif_running(netdev)) {
2095                 /* No need to loop, because 82542 supports only 1 queue */
2096                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2097                 e1000_configure_rx(adapter);
2098                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2099         }
2100 }
2101
2102 /**
2103  * e1000_set_mac - Change the Ethernet Address of the NIC
2104  * @netdev: network interface device structure
2105  * @p: pointer to an address structure
2106  *
2107  * Returns 0 on success, negative on failure
2108  **/
2109
2110 static int e1000_set_mac(struct net_device *netdev, void *p)
2111 {
2112         struct e1000_adapter *adapter = netdev_priv(netdev);
2113         struct e1000_hw *hw = &adapter->hw;
2114         struct sockaddr *addr = p;
2115
2116         if (!is_valid_ether_addr(addr->sa_data))
2117                 return -EADDRNOTAVAIL;
2118
2119         /* 82542 2.0 needs to be in reset to write receive address registers */
2120
2121         if (hw->mac_type == e1000_82542_rev2_0)
2122                 e1000_enter_82542_rst(adapter);
2123
2124         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2125         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2126
2127         e1000_rar_set(hw, hw->mac_addr, 0);
2128
2129         if (hw->mac_type == e1000_82542_rev2_0)
2130                 e1000_leave_82542_rst(adapter);
2131
2132         return 0;
2133 }
2134
2135 /**
2136  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2137  * @netdev: network interface device structure
2138  *
2139  * The set_rx_mode entry point is called whenever the unicast or multicast
2140  * address lists or the network interface flags are updated. This routine is
2141  * responsible for configuring the hardware for proper unicast, multicast,
2142  * promiscuous mode, and all-multi behavior.
2143  **/
2144
2145 static void e1000_set_rx_mode(struct net_device *netdev)
2146 {
2147         struct e1000_adapter *adapter = netdev_priv(netdev);
2148         struct e1000_hw *hw = &adapter->hw;
2149         struct netdev_hw_addr *ha;
2150         bool use_uc = false;
2151         u32 rctl;
2152         u32 hash_value;
2153         int i, rar_entries = E1000_RAR_ENTRIES;
2154         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2155         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2156
2157         if (!mcarray) {
2158                 e_err(probe, "memory allocation failed\n");
2159                 return;
2160         }
2161
2162         /* Check for Promiscuous and All Multicast modes */
2163
2164         rctl = er32(RCTL);
2165
2166         if (netdev->flags & IFF_PROMISC) {
2167                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2168                 rctl &= ~E1000_RCTL_VFE;
2169         } else {
2170                 if (netdev->flags & IFF_ALLMULTI)
2171                         rctl |= E1000_RCTL_MPE;
2172                 else
2173                         rctl &= ~E1000_RCTL_MPE;
2174                 /* Enable VLAN filter if there is a VLAN */
2175                 if (adapter->vlgrp)
2176                         rctl |= E1000_RCTL_VFE;
2177         }
2178
2179         if (netdev_uc_count(netdev) > rar_entries - 1) {
2180                 rctl |= E1000_RCTL_UPE;
2181         } else if (!(netdev->flags & IFF_PROMISC)) {
2182                 rctl &= ~E1000_RCTL_UPE;
2183                 use_uc = true;
2184         }
2185
2186         ew32(RCTL, rctl);
2187
2188         /* 82542 2.0 needs to be in reset to write receive address registers */
2189
2190         if (hw->mac_type == e1000_82542_rev2_0)
2191                 e1000_enter_82542_rst(adapter);
2192
2193         /* load the first 14 addresses into the exact filters 1-14. Unicast
2194          * addresses take precedence to avoid disabling unicast filtering
2195          * when possible.
2196          *
2197          * RAR 0 is used for the station MAC adddress
2198          * if there are not 14 addresses, go ahead and clear the filters
2199          */
2200         i = 1;
2201         if (use_uc)
2202                 netdev_for_each_uc_addr(ha, netdev) {
2203                         if (i == rar_entries)
2204                                 break;
2205                         e1000_rar_set(hw, ha->addr, i++);
2206                 }
2207
2208         netdev_for_each_mc_addr(ha, netdev) {
2209                 if (i == rar_entries) {
2210                         /* load any remaining addresses into the hash table */
2211                         u32 hash_reg, hash_bit, mta;
2212                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
2213                         hash_reg = (hash_value >> 5) & 0x7F;
2214                         hash_bit = hash_value & 0x1F;
2215                         mta = (1 << hash_bit);
2216                         mcarray[hash_reg] |= mta;
2217                 } else {
2218                         e1000_rar_set(hw, ha->addr, i++);
2219                 }
2220         }
2221
2222         for (; i < rar_entries; i++) {
2223                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2224                 E1000_WRITE_FLUSH();
2225                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2226                 E1000_WRITE_FLUSH();
2227         }
2228
2229         /* write the hash table completely, write from bottom to avoid
2230          * both stupid write combining chipsets, and flushing each write */
2231         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2232                 /*
2233                  * If we are on an 82544 has an errata where writing odd
2234                  * offsets overwrites the previous even offset, but writing
2235                  * backwards over the range solves the issue by always
2236                  * writing the odd offset first
2237                  */
2238                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2239         }
2240         E1000_WRITE_FLUSH();
2241
2242         if (hw->mac_type == e1000_82542_rev2_0)
2243                 e1000_leave_82542_rst(adapter);
2244
2245         kfree(mcarray);
2246 }
2247
2248 /* Need to wait a few seconds after link up to get diagnostic information from
2249  * the phy */
2250
2251 static void e1000_update_phy_info(unsigned long data)
2252 {
2253         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2254         schedule_work(&adapter->phy_info_task);
2255 }
2256
2257 static void e1000_update_phy_info_task(struct work_struct *work)
2258 {
2259         struct e1000_adapter *adapter = container_of(work,
2260                                                      struct e1000_adapter,
2261                                                      phy_info_task);
2262         struct e1000_hw *hw = &adapter->hw;
2263
2264         rtnl_lock();
2265         e1000_phy_get_info(hw, &adapter->phy_info);
2266         rtnl_unlock();
2267 }
2268
2269 /**
2270  * e1000_82547_tx_fifo_stall - Timer Call-back
2271  * @data: pointer to adapter cast into an unsigned long
2272  **/
2273 static void e1000_82547_tx_fifo_stall(unsigned long data)
2274 {
2275         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2276         schedule_work(&adapter->fifo_stall_task);
2277 }
2278
2279 /**
2280  * e1000_82547_tx_fifo_stall_task - task to complete work
2281  * @work: work struct contained inside adapter struct
2282  **/
2283 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2284 {
2285         struct e1000_adapter *adapter = container_of(work,
2286                                                      struct e1000_adapter,
2287                                                      fifo_stall_task);
2288         struct e1000_hw *hw = &adapter->hw;
2289         struct net_device *netdev = adapter->netdev;
2290         u32 tctl;
2291
2292         rtnl_lock();
2293         if (atomic_read(&adapter->tx_fifo_stall)) {
2294                 if ((er32(TDT) == er32(TDH)) &&
2295                    (er32(TDFT) == er32(TDFH)) &&
2296                    (er32(TDFTS) == er32(TDFHS))) {
2297                         tctl = er32(TCTL);
2298                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2299                         ew32(TDFT, adapter->tx_head_addr);
2300                         ew32(TDFH, adapter->tx_head_addr);
2301                         ew32(TDFTS, adapter->tx_head_addr);
2302                         ew32(TDFHS, adapter->tx_head_addr);
2303                         ew32(TCTL, tctl);
2304                         E1000_WRITE_FLUSH();
2305
2306                         adapter->tx_fifo_head = 0;
2307                         atomic_set(&adapter->tx_fifo_stall, 0);
2308                         netif_wake_queue(netdev);
2309                 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2310                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2311                 }
2312         }
2313         rtnl_unlock();
2314 }
2315
2316 bool e1000_has_link(struct e1000_adapter *adapter)
2317 {
2318         struct e1000_hw *hw = &adapter->hw;
2319         bool link_active = false;
2320
2321         /* get_link_status is set on LSC (link status) interrupt or
2322          * rx sequence error interrupt.  get_link_status will stay
2323          * false until the e1000_check_for_link establishes link
2324          * for copper adapters ONLY
2325          */
2326         switch (hw->media_type) {
2327         case e1000_media_type_copper:
2328                 if (hw->get_link_status) {
2329                         e1000_check_for_link(hw);
2330                         link_active = !hw->get_link_status;
2331                 } else {
2332                         link_active = true;
2333                 }
2334                 break;
2335         case e1000_media_type_fiber:
2336                 e1000_check_for_link(hw);
2337                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2338                 break;
2339         case e1000_media_type_internal_serdes:
2340                 e1000_check_for_link(hw);
2341                 link_active = hw->serdes_has_link;
2342                 break;
2343         default:
2344                 break;
2345         }
2346
2347         return link_active;
2348 }
2349
2350 /**
2351  * e1000_watchdog - Timer Call-back
2352  * @data: pointer to adapter cast into an unsigned long
2353  **/
2354 static void e1000_watchdog(unsigned long data)
2355 {
2356         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2357         struct e1000_hw *hw = &adapter->hw;
2358         struct net_device *netdev = adapter->netdev;
2359         struct e1000_tx_ring *txdr = adapter->tx_ring;
2360         u32 link, tctl;
2361
2362         link = e1000_has_link(adapter);
2363         if ((netif_carrier_ok(netdev)) && link)
2364                 goto link_up;
2365
2366         if (link) {
2367                 if (!netif_carrier_ok(netdev)) {
2368                         u32 ctrl;
2369                         bool txb2b = true;
2370                         /* update snapshot of PHY registers on LSC */
2371                         e1000_get_speed_and_duplex(hw,
2372                                                    &adapter->link_speed,
2373                                                    &adapter->link_duplex);
2374
2375                         ctrl = er32(CTRL);
2376                         pr_info("%s NIC Link is Up %d Mbps %s, "
2377                                 "Flow Control: %s\n",
2378                                 netdev->name,
2379                                 adapter->link_speed,
2380                                 adapter->link_duplex == FULL_DUPLEX ?
2381                                 "Full Duplex" : "Half Duplex",
2382                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2383                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2384                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2385                                 E1000_CTRL_TFCE) ? "TX" : "None")));
2386
2387                         /* adjust timeout factor according to speed/duplex */
2388                         adapter->tx_timeout_factor = 1;
2389                         switch (adapter->link_speed) {
2390                         case SPEED_10:
2391                                 txb2b = false;
2392                                 adapter->tx_timeout_factor = 16;
2393                                 break;
2394                         case SPEED_100:
2395                                 txb2b = false;
2396                                 /* maybe add some timeout factor ? */
2397                                 break;
2398                         }
2399
2400                         /* enable transmits in the hardware */
2401                         tctl = er32(TCTL);
2402                         tctl |= E1000_TCTL_EN;
2403                         ew32(TCTL, tctl);
2404
2405                         netif_carrier_on(netdev);
2406                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2407                                 mod_timer(&adapter->phy_info_timer,
2408                                           round_jiffies(jiffies + 2 * HZ));
2409                         adapter->smartspeed = 0;
2410                 }
2411         } else {
2412                 if (netif_carrier_ok(netdev)) {
2413                         adapter->link_speed = 0;
2414                         adapter->link_duplex = 0;
2415                         pr_info("%s NIC Link is Down\n",
2416                                 netdev->name);
2417                         netif_carrier_off(netdev);
2418
2419                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2420                                 mod_timer(&adapter->phy_info_timer,
2421                                           round_jiffies(jiffies + 2 * HZ));
2422                 }
2423
2424                 e1000_smartspeed(adapter);
2425         }
2426
2427 link_up:
2428         e1000_update_stats(adapter);
2429
2430         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2431         adapter->tpt_old = adapter->stats.tpt;
2432         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2433         adapter->colc_old = adapter->stats.colc;
2434
2435         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2436         adapter->gorcl_old = adapter->stats.gorcl;
2437         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2438         adapter->gotcl_old = adapter->stats.gotcl;
2439
2440         e1000_update_adaptive(hw);
2441
2442         if (!netif_carrier_ok(netdev)) {
2443                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2444                         /* We've lost link, so the controller stops DMA,
2445                          * but we've got queued Tx work that's never going
2446                          * to get done, so reset controller to flush Tx.
2447                          * (Do the reset outside of interrupt context). */
2448                         adapter->tx_timeout_count++;
2449                         schedule_work(&adapter->reset_task);
2450                         /* return immediately since reset is imminent */
2451                         return;
2452                 }
2453         }
2454
2455         /* Simple mode for Interrupt Throttle Rate (ITR) */
2456         if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2457                 /*
2458                  * Symmetric Tx/Rx gets a reduced ITR=2000;
2459                  * Total asymmetrical Tx or Rx gets ITR=8000;
2460                  * everyone else is between 2000-8000.
2461                  */
2462                 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2463                 u32 dif = (adapter->gotcl > adapter->gorcl ?
2464                             adapter->gotcl - adapter->gorcl :
2465                             adapter->gorcl - adapter->gotcl) / 10000;
2466                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2467
2468                 ew32(ITR, 1000000000 / (itr * 256));
2469         }
2470
2471         /* Cause software interrupt to ensure rx ring is cleaned */
2472         ew32(ICS, E1000_ICS_RXDMT0);
2473
2474         /* Force detection of hung controller every watchdog period */
2475         adapter->detect_tx_hung = true;
2476
2477         /* Reset the timer */
2478         if (!test_bit(__E1000_DOWN, &adapter->flags))
2479                 mod_timer(&adapter->watchdog_timer,
2480                           round_jiffies(jiffies + 2 * HZ));
2481 }
2482
2483 enum latency_range {
2484         lowest_latency = 0,
2485         low_latency = 1,
2486         bulk_latency = 2,
2487         latency_invalid = 255
2488 };
2489
2490 /**
2491  * e1000_update_itr - update the dynamic ITR value based on statistics
2492  * @adapter: pointer to adapter
2493  * @itr_setting: current adapter->itr
2494  * @packets: the number of packets during this measurement interval
2495  * @bytes: the number of bytes during this measurement interval
2496  *
2497  *      Stores a new ITR value based on packets and byte
2498  *      counts during the last interrupt.  The advantage of per interrupt
2499  *      computation is faster updates and more accurate ITR for the current
2500  *      traffic pattern.  Constants in this function were computed
2501  *      based on theoretical maximum wire speed and thresholds were set based
2502  *      on testing data as well as attempting to minimize response time
2503  *      while increasing bulk throughput.
2504  *      this functionality is controlled by the InterruptThrottleRate module
2505  *      parameter (see e1000_param.c)
2506  **/
2507 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2508                                      u16 itr_setting, int packets, int bytes)
2509 {
2510         unsigned int retval = itr_setting;
2511         struct e1000_hw *hw = &adapter->hw;
2512
2513         if (unlikely(hw->mac_type < e1000_82540))
2514                 goto update_itr_done;
2515
2516         if (packets == 0)
2517                 goto update_itr_done;
2518
2519         switch (itr_setting) {
2520         case lowest_latency:
2521                 /* jumbo frames get bulk treatment*/
2522                 if (bytes/packets > 8000)
2523                         retval = bulk_latency;
2524                 else if ((packets < 5) && (bytes > 512))
2525                         retval = low_latency;
2526                 break;
2527         case low_latency:  /* 50 usec aka 20000 ints/s */
2528                 if (bytes > 10000) {
2529                         /* jumbo frames need bulk latency setting */
2530                         if (bytes/packets > 8000)
2531                                 retval = bulk_latency;
2532                         else if ((packets < 10) || ((bytes/packets) > 1200))
2533                                 retval = bulk_latency;
2534                         else if ((packets > 35))
2535                                 retval = lowest_latency;
2536                 } else if (bytes/packets > 2000)
2537                         retval = bulk_latency;
2538                 else if (packets <= 2 && bytes < 512)
2539                         retval = lowest_latency;
2540                 break;
2541         case bulk_latency: /* 250 usec aka 4000 ints/s */
2542                 if (bytes > 25000) {
2543                         if (packets > 35)
2544                                 retval = low_latency;
2545                 } else if (bytes < 6000) {
2546                         retval = low_latency;
2547                 }
2548                 break;
2549         }
2550
2551 update_itr_done:
2552         return retval;
2553 }
2554
2555 static void e1000_set_itr(struct e1000_adapter *adapter)
2556 {
2557         struct e1000_hw *hw = &adapter->hw;
2558         u16 current_itr;
2559         u32 new_itr = adapter->itr;
2560
2561         if (unlikely(hw->mac_type < e1000_82540))
2562                 return;
2563
2564         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2565         if (unlikely(adapter->link_speed != SPEED_1000)) {
2566                 current_itr = 0;
2567                 new_itr = 4000;
2568                 goto set_itr_now;
2569         }
2570
2571         adapter->tx_itr = e1000_update_itr(adapter,
2572                                     adapter->tx_itr,
2573                                     adapter->total_tx_packets,
2574                                     adapter->total_tx_bytes);
2575         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2576         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2577                 adapter->tx_itr = low_latency;
2578
2579         adapter->rx_itr = e1000_update_itr(adapter,
2580                                     adapter->rx_itr,
2581                                     adapter->total_rx_packets,
2582                                     adapter->total_rx_bytes);
2583         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2584         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2585                 adapter->rx_itr = low_latency;
2586
2587         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2588
2589         switch (current_itr) {
2590         /* counts and packets in update_itr are dependent on these numbers */
2591         case lowest_latency:
2592                 new_itr = 70000;
2593                 break;
2594         case low_latency:
2595                 new_itr = 20000; /* aka hwitr = ~200 */
2596                 break;
2597         case bulk_latency:
2598                 new_itr = 4000;
2599                 break;
2600         default:
2601                 break;
2602         }
2603
2604 set_itr_now:
2605         if (new_itr != adapter->itr) {
2606                 /* this attempts to bias the interrupt rate towards Bulk
2607                  * by adding intermediate steps when interrupt rate is
2608                  * increasing */
2609                 new_itr = new_itr > adapter->itr ?
2610                              min(adapter->itr + (new_itr >> 2), new_itr) :
2611                              new_itr;
2612                 adapter->itr = new_itr;
2613                 ew32(ITR, 1000000000 / (new_itr * 256));
2614         }
2615 }
2616
2617 #define E1000_TX_FLAGS_CSUM             0x00000001
2618 #define E1000_TX_FLAGS_VLAN             0x00000002
2619 #define E1000_TX_FLAGS_TSO              0x00000004
2620 #define E1000_TX_FLAGS_IPV4             0x00000008
2621 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2622 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2623
2624 static int e1000_tso(struct e1000_adapter *adapter,
2625                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2626 {
2627         struct e1000_context_desc *context_desc;
2628         struct e1000_buffer *buffer_info;
2629         unsigned int i;
2630         u32 cmd_length = 0;
2631         u16 ipcse = 0, tucse, mss;
2632         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2633         int err;
2634
2635         if (skb_is_gso(skb)) {
2636                 if (skb_header_cloned(skb)) {
2637                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2638                         if (err)
2639                                 return err;
2640                 }
2641
2642                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2643                 mss = skb_shinfo(skb)->gso_size;
2644                 if (skb->protocol == htons(ETH_P_IP)) {
2645                         struct iphdr *iph = ip_hdr(skb);
2646                         iph->tot_len = 0;
2647                         iph->check = 0;
2648                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2649                                                                  iph->daddr, 0,
2650                                                                  IPPROTO_TCP,
2651                                                                  0);
2652                         cmd_length = E1000_TXD_CMD_IP;
2653                         ipcse = skb_transport_offset(skb) - 1;
2654                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2655                         ipv6_hdr(skb)->payload_len = 0;
2656                         tcp_hdr(skb)->check =
2657                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2658                                                  &ipv6_hdr(skb)->daddr,
2659                                                  0, IPPROTO_TCP, 0);
2660                         ipcse = 0;
2661                 }
2662                 ipcss = skb_network_offset(skb);
2663                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2664                 tucss = skb_transport_offset(skb);
2665                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2666                 tucse = 0;
2667
2668                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2669                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2670
2671                 i = tx_ring->next_to_use;
2672                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2673                 buffer_info = &tx_ring->buffer_info[i];
2674
2675                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2676                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2677                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2678                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2679                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2680                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2681                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2682                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2683                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2684
2685                 buffer_info->time_stamp = jiffies;
2686                 buffer_info->next_to_watch = i;
2687
2688                 if (++i == tx_ring->count) i = 0;
2689                 tx_ring->next_to_use = i;
2690
2691                 return true;
2692         }
2693         return false;
2694 }
2695
2696 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2697                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2698 {
2699         struct e1000_context_desc *context_desc;
2700         struct e1000_buffer *buffer_info;
2701         unsigned int i;
2702         u8 css;
2703         u32 cmd_len = E1000_TXD_CMD_DEXT;
2704
2705         if (skb->ip_summed != CHECKSUM_PARTIAL)
2706                 return false;
2707
2708         switch (skb->protocol) {
2709         case cpu_to_be16(ETH_P_IP):
2710                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2711                         cmd_len |= E1000_TXD_CMD_TCP;
2712                 break;
2713         case cpu_to_be16(ETH_P_IPV6):
2714                 /* XXX not handling all IPV6 headers */
2715                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2716                         cmd_len |= E1000_TXD_CMD_TCP;
2717                 break;
2718         default:
2719                 if (unlikely(net_ratelimit()))
2720                         e_warn(drv, "checksum_partial proto=%x!\n",
2721                                skb->protocol);
2722                 break;
2723         }
2724
2725         css = skb_transport_offset(skb);
2726
2727         i = tx_ring->next_to_use;
2728         buffer_info = &tx_ring->buffer_info[i];
2729         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2730
2731         context_desc->lower_setup.ip_config = 0;
2732         context_desc->upper_setup.tcp_fields.tucss = css;
2733         context_desc->upper_setup.tcp_fields.tucso =
2734                 css + skb->csum_offset;
2735         context_desc->upper_setup.tcp_fields.tucse = 0;
2736         context_desc->tcp_seg_setup.data = 0;
2737         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2738
2739         buffer_info->time_stamp = jiffies;
2740         buffer_info->next_to_watch = i;
2741
2742         if (unlikely(++i == tx_ring->count)) i = 0;
2743         tx_ring->next_to_use = i;
2744
2745         return true;
2746 }
2747
2748 #define E1000_MAX_TXD_PWR       12
2749 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2750
2751 static int e1000_tx_map(struct e1000_adapter *adapter,
2752                         struct e1000_tx_ring *tx_ring,
2753                         struct sk_buff *skb, unsigned int first,
2754                         unsigned int max_per_txd, unsigned int nr_frags,
2755                         unsigned int mss)
2756 {
2757         struct e1000_hw *hw = &adapter->hw;
2758         struct pci_dev *pdev = adapter->pdev;
2759         struct e1000_buffer *buffer_info;
2760         unsigned int len = skb_headlen(skb);
2761         unsigned int offset = 0, size, count = 0, i;
2762         unsigned int f;
2763
2764         i = tx_ring->next_to_use;
2765
2766         while (len) {
2767                 buffer_info = &tx_ring->buffer_info[i];
2768                 size = min(len, max_per_txd);
2769                 /* Workaround for Controller erratum --
2770                  * descriptor for non-tso packet in a linear SKB that follows a
2771                  * tso gets written back prematurely before the data is fully
2772                  * DMA'd to the controller */
2773                 if (!skb->data_len && tx_ring->last_tx_tso &&
2774                     !skb_is_gso(skb)) {
2775                         tx_ring->last_tx_tso = 0;
2776                         size -= 4;
2777                 }
2778
2779                 /* Workaround for premature desc write-backs
2780                  * in TSO mode.  Append 4-byte sentinel desc */
2781                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2782                         size -= 4;
2783                 /* work-around for errata 10 and it applies
2784                  * to all controllers in PCI-X mode
2785                  * The fix is to make sure that the first descriptor of a
2786                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2787                  */
2788                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2789                                 (size > 2015) && count == 0))
2790                         size = 2015;
2791
2792                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2793                  * terminating buffers within evenly-aligned dwords. */
2794                 if (unlikely(adapter->pcix_82544 &&
2795                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2796                    size > 4))
2797                         size -= 4;
2798
2799                 buffer_info->length = size;
2800                 /* set time_stamp *before* dma to help avoid a possible race */
2801                 buffer_info->time_stamp = jiffies;
2802                 buffer_info->mapped_as_page = false;
2803                 buffer_info->dma = dma_map_single(&pdev->dev,
2804                                                   skb->data + offset,
2805                                                   size, DMA_TO_DEVICE);
2806                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2807                         goto dma_error;
2808                 buffer_info->next_to_watch = i;
2809
2810                 len -= size;
2811                 offset += size;
2812                 count++;
2813                 if (len) {
2814                         i++;
2815                         if (unlikely(i == tx_ring->count))
2816                                 i = 0;
2817                 }
2818         }
2819
2820         for (f = 0; f < nr_frags; f++) {
2821                 struct skb_frag_struct *frag;
2822
2823                 frag = &skb_shinfo(skb)->frags[f];
2824                 len = frag->size;
2825                 offset = frag->page_offset;
2826
2827                 while (len) {
2828                         i++;
2829                         if (unlikely(i == tx_ring->count))
2830                                 i = 0;
2831
2832                         buffer_info = &tx_ring->buffer_info[i];
2833                         size = min(len, max_per_txd);
2834                         /* Workaround for premature desc write-backs
2835                          * in TSO mode.  Append 4-byte sentinel desc */
2836                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2837                                 size -= 4;
2838                         /* Workaround for potential 82544 hang in PCI-X.
2839                          * Avoid terminating buffers within evenly-aligned
2840                          * dwords. */
2841                         if (unlikely(adapter->pcix_82544 &&
2842                             !((unsigned long)(page_to_phys(frag->page) + offset
2843                                               + size - 1) & 4) &&
2844                             size > 4))
2845                                 size -= 4;
2846
2847                         buffer_info->length = size;
2848                         buffer_info->time_stamp = jiffies;
2849                         buffer_info->mapped_as_page = true;
2850                         buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
2851                                                         offset, size,
2852                                                         DMA_TO_DEVICE);
2853                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2854                                 goto dma_error;
2855                         buffer_info->next_to_watch = i;
2856
2857                         len -= size;
2858                         offset += size;
2859                         count++;
2860                 }
2861         }
2862
2863         tx_ring->buffer_info[i].skb = skb;
2864         tx_ring->buffer_info[first].next_to_watch = i;
2865
2866         return count;
2867
2868 dma_error:
2869         dev_err(&pdev->dev, "TX DMA map failed\n");
2870         buffer_info->dma = 0;
2871         if (count)
2872                 count--;
2873
2874         while (count--) {
2875                 if (i==0)
2876                         i += tx_ring->count;
2877                 i--;
2878                 buffer_info = &tx_ring->buffer_info[i];
2879                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2880         }
2881
2882         return 0;
2883 }
2884
2885 static void e1000_tx_queue(struct e1000_adapter *adapter,
2886                            struct e1000_tx_ring *tx_ring, int tx_flags,
2887                            int count)
2888 {
2889         struct e1000_hw *hw = &adapter->hw;
2890         struct e1000_tx_desc *tx_desc = NULL;
2891         struct e1000_buffer *buffer_info;
2892         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2893         unsigned int i;
2894
2895         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2896                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2897                              E1000_TXD_CMD_TSE;
2898                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2899
2900                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2901                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2902         }
2903
2904         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2905                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2906                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2907         }
2908
2909         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2910                 txd_lower |= E1000_TXD_CMD_VLE;
2911                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2912         }
2913
2914         i = tx_ring->next_to_use;
2915
2916         while (count--) {
2917                 buffer_info = &tx_ring->buffer_info[i];
2918                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2919                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2920                 tx_desc->lower.data =
2921                         cpu_to_le32(txd_lower | buffer_info->length);
2922                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2923                 if (unlikely(++i == tx_ring->count)) i = 0;
2924         }
2925
2926         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2927
2928         /* Force memory writes to complete before letting h/w
2929          * know there are new descriptors to fetch.  (Only
2930          * applicable for weak-ordered memory model archs,
2931          * such as IA-64). */
2932         wmb();
2933
2934         tx_ring->next_to_use = i;
2935         writel(i, hw->hw_addr + tx_ring->tdt);
2936         /* we need this if more than one processor can write to our tail
2937          * at a time, it syncronizes IO on IA64/Altix systems */
2938         mmiowb();
2939 }
2940
2941 /**
2942  * 82547 workaround to avoid controller hang in half-duplex environment.
2943  * The workaround is to avoid queuing a large packet that would span
2944  * the internal Tx FIFO ring boundary by notifying the stack to resend
2945  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2946  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2947  * to the beginning of the Tx FIFO.
2948  **/
2949
2950 #define E1000_FIFO_HDR                  0x10
2951 #define E1000_82547_PAD_LEN             0x3E0
2952
2953 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
2954                                        struct sk_buff *skb)
2955 {
2956         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2957         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
2958
2959         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
2960
2961         if (adapter->link_duplex != HALF_DUPLEX)
2962                 goto no_fifo_stall_required;
2963
2964         if (atomic_read(&adapter->tx_fifo_stall))
2965                 return 1;
2966
2967         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2968                 atomic_set(&adapter->tx_fifo_stall, 1);
2969                 return 1;
2970         }
2971
2972 no_fifo_stall_required:
2973         adapter->tx_fifo_head += skb_fifo_len;
2974         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2975                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2976         return 0;
2977 }
2978
2979 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2980 {
2981         struct e1000_adapter *adapter = netdev_priv(netdev);
2982         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2983
2984         netif_stop_queue(netdev);
2985         /* Herbert's original patch had:
2986          *  smp_mb__after_netif_stop_queue();
2987          * but since that doesn't exist yet, just open code it. */
2988         smp_mb();
2989
2990         /* We need to check again in a case another CPU has just
2991          * made room available. */
2992         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2993                 return -EBUSY;
2994
2995         /* A reprieve! */
2996         netif_start_queue(netdev);
2997         ++adapter->restart_queue;
2998         return 0;
2999 }
3000
3001 static int e1000_maybe_stop_tx(struct net_device *netdev,
3002                                struct e1000_tx_ring *tx_ring, int size)
3003 {
3004         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3005                 return 0;
3006         return __e1000_maybe_stop_tx(netdev, size);
3007 }
3008
3009 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3010 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3011                                     struct net_device *netdev)
3012 {
3013         struct e1000_adapter *adapter = netdev_priv(netdev);
3014         struct e1000_hw *hw = &adapter->hw;
3015         struct e1000_tx_ring *tx_ring;
3016         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3017         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3018         unsigned int tx_flags = 0;
3019         unsigned int len = skb_headlen(skb);
3020         unsigned int nr_frags;
3021         unsigned int mss;
3022         int count = 0;
3023         int tso;
3024         unsigned int f;
3025
3026         /* This goes back to the question of how to logically map a tx queue
3027          * to a flow.  Right now, performance is impacted slightly negatively
3028          * if using multiple tx queues.  If the stack breaks away from a
3029          * single qdisc implementation, we can look at this again. */
3030         tx_ring = adapter->tx_ring;
3031
3032         if (unlikely(skb->len <= 0)) {
3033                 dev_kfree_skb_any(skb);
3034                 return NETDEV_TX_OK;
3035         }
3036
3037         mss = skb_shinfo(skb)->gso_size;
3038         /* The controller does a simple calculation to
3039          * make sure there is enough room in the FIFO before
3040          * initiating the DMA for each buffer.  The calc is:
3041          * 4 = ceil(buffer len/mss).  To make sure we don't
3042          * overrun the FIFO, adjust the max buffer len if mss
3043          * drops. */
3044         if (mss) {
3045                 u8 hdr_len;
3046                 max_per_txd = min(mss << 2, max_per_txd);
3047                 max_txd_pwr = fls(max_per_txd) - 1;
3048
3049                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3050                 if (skb->data_len && hdr_len == len) {
3051                         switch (hw->mac_type) {
3052                                 unsigned int pull_size;
3053                         case e1000_82544:
3054                                 /* Make sure we have room to chop off 4 bytes,
3055                                  * and that the end alignment will work out to
3056                                  * this hardware's requirements
3057                                  * NOTE: this is a TSO only workaround
3058                                  * if end byte alignment not correct move us
3059                                  * into the next dword */
3060                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3061                                         break;
3062                                 /* fall through */
3063                                 pull_size = min((unsigned int)4, skb->data_len);
3064                                 if (!__pskb_pull_tail(skb, pull_size)) {
3065                                         e_err(drv, "__pskb_pull_tail "
3066                                               "failed.\n");
3067                                         dev_kfree_skb_any(skb);
3068                                         return NETDEV_TX_OK;
3069                                 }
3070                                 len = skb_headlen(skb);
3071                                 break;
3072                         default:
3073                                 /* do nothing */
3074                                 break;
3075                         }
3076                 }
3077         }
3078
3079         /* reserve a descriptor for the offload context */
3080         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3081                 count++;
3082         count++;
3083
3084         /* Controller Erratum workaround */
3085         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3086                 count++;
3087
3088         count += TXD_USE_COUNT(len, max_txd_pwr);
3089
3090         if (adapter->pcix_82544)
3091                 count++;
3092
3093         /* work-around for errata 10 and it applies to all controllers
3094          * in PCI-X mode, so add one more descriptor to the count
3095          */
3096         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3097                         (len > 2015)))
3098                 count++;
3099
3100         nr_frags = skb_shinfo(skb)->nr_frags;
3101         for (f = 0; f < nr_frags; f++)
3102                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3103                                        max_txd_pwr);
3104         if (adapter->pcix_82544)
3105                 count += nr_frags;
3106
3107         /* need: count + 2 desc gap to keep tail from touching
3108          * head, otherwise try next time */
3109         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3110                 return NETDEV_TX_BUSY;
3111
3112         if (unlikely(hw->mac_type == e1000_82547)) {
3113                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3114                         netif_stop_queue(netdev);
3115                         if (!test_bit(__E1000_DOWN, &adapter->flags))
3116                                 mod_timer(&adapter->tx_fifo_stall_timer,
3117                                           jiffies + 1);
3118                         return NETDEV_TX_BUSY;
3119                 }
3120         }
3121
3122         if (unlikely(vlan_tx_tag_present(skb))) {
3123                 tx_flags |= E1000_TX_FLAGS_VLAN;
3124                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3125         }
3126
3127         first = tx_ring->next_to_use;
3128
3129         tso = e1000_tso(adapter, tx_ring, skb);
3130         if (tso < 0) {
3131                 dev_kfree_skb_any(skb);
3132                 return NETDEV_TX_OK;
3133         }
3134
3135         if (likely(tso)) {
3136                 if (likely(hw->mac_type != e1000_82544))
3137                         tx_ring->last_tx_tso = 1;
3138                 tx_flags |= E1000_TX_FLAGS_TSO;
3139         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3140                 tx_flags |= E1000_TX_FLAGS_CSUM;
3141
3142         if (likely(skb->protocol == htons(ETH_P_IP)))
3143                 tx_flags |= E1000_TX_FLAGS_IPV4;
3144
3145         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3146                              nr_frags, mss);
3147
3148         if (count) {
3149                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3150                 /* Make sure there is space in the ring for the next send. */
3151                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3152
3153         } else {
3154                 dev_kfree_skb_any(skb);
3155                 tx_ring->buffer_info[first].time_stamp = 0;
3156                 tx_ring->next_to_use = first;
3157         }
3158
3159         return NETDEV_TX_OK;
3160 }
3161
3162 /**
3163  * e1000_tx_timeout - Respond to a Tx Hang
3164  * @netdev: network interface device structure
3165  **/
3166
3167 static void e1000_tx_timeout(struct net_device *netdev)
3168 {
3169         struct e1000_adapter *adapter = netdev_priv(netdev);
3170
3171         /* Do the reset outside of interrupt context */
3172         adapter->tx_timeout_count++;
3173         schedule_work(&adapter->reset_task);
3174 }
3175
3176 static void e1000_reset_task(struct work_struct *work)
3177 {
3178         struct e1000_adapter *adapter =
3179                 container_of(work, struct e1000_adapter, reset_task);
3180
3181         e1000_reinit_safe(adapter);
3182 }
3183
3184 /**
3185  * e1000_get_stats - Get System Network Statistics
3186  * @netdev: network interface device structure
3187  *
3188  * Returns the address of the device statistics structure.
3189  * The statistics are actually updated from the timer callback.
3190  **/
3191
3192 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3193 {
3194         /* only return the current stats */
3195         return &netdev->stats;
3196 }
3197
3198 /**
3199  * e1000_change_mtu - Change the Maximum Transfer Unit
3200  * @netdev: network interface device structure
3201  * @new_mtu: new value for maximum frame size
3202  *
3203  * Returns 0 on success, negative on failure
3204  **/
3205
3206 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3207 {
3208         struct e1000_adapter *adapter = netdev_priv(netdev);
3209         struct e1000_hw *hw = &adapter->hw;
3210         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3211
3212         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3213             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3214                 e_err(probe, "Invalid MTU setting\n");
3215                 return -EINVAL;
3216         }
3217
3218         /* Adapter-specific max frame size limits. */
3219         switch (hw->mac_type) {
3220         case e1000_undefined ... e1000_82542_rev2_1:
3221                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3222                         e_err(probe, "Jumbo Frames not supported.\n");
3223                         return -EINVAL;
3224                 }
3225                 break;
3226         default:
3227                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3228                 break;
3229         }
3230
3231         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3232                 msleep(1);
3233         /* e1000_down has a dependency on max_frame_size */
3234         hw->max_frame_size = max_frame;
3235         if (netif_running(netdev))
3236                 e1000_down(adapter);
3237
3238         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3239          * means we reserve 2 more, this pushes us to allocate from the next
3240          * larger slab size.
3241          * i.e. RXBUFFER_2048 --> size-4096 slab
3242          *  however with the new *_jumbo_rx* routines, jumbo receives will use
3243          *  fragmented skbs */
3244
3245         if (max_frame <= E1000_RXBUFFER_2048)
3246                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3247         else
3248 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3249                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3250 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3251                 adapter->rx_buffer_len = PAGE_SIZE;
3252 #endif
3253
3254         /* adjust allocation if LPE protects us, and we aren't using SBP */
3255         if (!hw->tbi_compatibility_on &&
3256             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3257              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3258                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3259
3260         pr_info("%s changing MTU from %d to %d\n",
3261                 netdev->name, netdev->mtu, new_mtu);
3262         netdev->mtu = new_mtu;
3263
3264         if (netif_running(netdev))
3265                 e1000_up(adapter);
3266         else
3267                 e1000_reset(adapter);
3268
3269         clear_bit(__E1000_RESETTING, &adapter->flags);
3270
3271         return 0;
3272 }
3273
3274 /**
3275  * e1000_update_stats - Update the board statistics counters
3276  * @adapter: board private structure
3277  **/
3278
3279 void e1000_update_stats(struct e1000_adapter *adapter)
3280 {
3281         struct net_device *netdev = adapter->netdev;
3282         struct e1000_hw *hw = &adapter->hw;
3283         struct pci_dev *pdev = adapter->pdev;
3284         unsigned long flags;
3285         u16 phy_tmp;
3286
3287 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3288
3289         /*
3290          * Prevent stats update while adapter is being reset, or if the pci
3291          * connection is down.
3292          */
3293         if (adapter->link_speed == 0)
3294                 return;
3295         if (pci_channel_offline(pdev))
3296                 return;
3297
3298         spin_lock_irqsave(&adapter->stats_lock, flags);
3299
3300         /* these counters are modified from e1000_tbi_adjust_stats,
3301          * called from the interrupt context, so they must only
3302          * be written while holding adapter->stats_lock
3303          */
3304
3305         adapter->stats.crcerrs += er32(CRCERRS);
3306         adapter->stats.gprc += er32(GPRC);
3307         adapter->stats.gorcl += er32(GORCL);
3308         adapter->stats.gorch += er32(GORCH);
3309         adapter->stats.bprc += er32(BPRC);
3310         adapter->stats.mprc += er32(MPRC);
3311         adapter->stats.roc += er32(ROC);
3312
3313         adapter->stats.prc64 += er32(PRC64);
3314         adapter->stats.prc127 += er32(PRC127);
3315         adapter->stats.prc255 += er32(PRC255);
3316         adapter->stats.prc511 += er32(PRC511);
3317         adapter->stats.prc1023 += er32(PRC1023);
3318         adapter->stats.prc1522 += er32(PRC1522);
3319
3320         adapter->stats.symerrs += er32(SYMERRS);
3321         adapter->stats.mpc += er32(MPC);
3322         adapter->stats.scc += er32(SCC);
3323         adapter->stats.ecol += er32(ECOL);
3324         adapter->stats.mcc += er32(MCC);
3325         adapter->stats.latecol += er32(LATECOL);
3326         adapter->stats.dc += er32(DC);
3327         adapter->stats.sec += er32(SEC);
3328         adapter->stats.rlec += er32(RLEC);
3329         adapter->stats.xonrxc += er32(XONRXC);
3330         adapter->stats.xontxc += er32(XONTXC);
3331         adapter->stats.xoffrxc += er32(XOFFRXC);
3332         adapter->stats.xofftxc += er32(XOFFTXC);
3333         adapter->stats.fcruc += er32(FCRUC);
3334         adapter->stats.gptc += er32(GPTC);
3335         adapter->stats.gotcl += er32(GOTCL);
3336         adapter->stats.gotch += er32(GOTCH);
3337         adapter->stats.rnbc += er32(RNBC);
3338         adapter->stats.ruc += er32(RUC);
3339         adapter->stats.rfc += er32(RFC);
3340         adapter->stats.rjc += er32(RJC);
3341         adapter->stats.torl += er32(TORL);
3342         adapter->stats.torh += er32(TORH);
3343         adapter->stats.totl += er32(TOTL);
3344         adapter->stats.toth += er32(TOTH);
3345         adapter->stats.tpr += er32(TPR);
3346
3347         adapter->stats.ptc64 += er32(PTC64);
3348         adapter->stats.ptc127 += er32(PTC127);
3349         adapter->stats.ptc255 += er32(PTC255);
3350         adapter->stats.ptc511 += er32(PTC511);
3351         adapter->stats.ptc1023 += er32(PTC1023);
3352         adapter->stats.ptc1522 += er32(PTC1522);
3353
3354         adapter->stats.mptc += er32(MPTC);
3355         adapter->stats.bptc += er32(BPTC);
3356
3357         /* used for adaptive IFS */
3358
3359         hw->tx_packet_delta = er32(TPT);
3360         adapter->stats.tpt += hw->tx_packet_delta;
3361         hw->collision_delta = er32(COLC);
3362         adapter->stats.colc += hw->collision_delta;
3363
3364         if (hw->mac_type >= e1000_82543) {
3365                 adapter->stats.algnerrc += er32(ALGNERRC);
3366                 adapter->stats.rxerrc += er32(RXERRC);
3367                 adapter->stats.tncrs += er32(TNCRS);
3368                 adapter->stats.cexterr += er32(CEXTERR);
3369                 adapter->stats.tsctc += er32(TSCTC);
3370                 adapter->stats.tsctfc += er32(TSCTFC);
3371         }
3372
3373         /* Fill out the OS statistics structure */
3374         netdev->stats.multicast = adapter->stats.mprc;
3375         netdev->stats.collisions = adapter->stats.colc;
3376
3377         /* Rx Errors */
3378
3379         /* RLEC on some newer hardware can be incorrect so build
3380         * our own version based on RUC and ROC */
3381         netdev->stats.rx_errors = adapter->stats.rxerrc +
3382                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3383                 adapter->stats.ruc + adapter->stats.roc +
3384                 adapter->stats.cexterr;
3385         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3386         netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3387         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3388         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3389         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3390
3391         /* Tx Errors */
3392         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3393         netdev->stats.tx_errors = adapter->stats.txerrc;
3394         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3395         netdev->stats.tx_window_errors = adapter->stats.latecol;
3396         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3397         if (hw->bad_tx_carr_stats_fd &&
3398             adapter->link_duplex == FULL_DUPLEX) {
3399                 netdev->stats.tx_carrier_errors = 0;
3400                 adapter->stats.tncrs = 0;
3401         }
3402
3403         /* Tx Dropped needs to be maintained elsewhere */
3404
3405         /* Phy Stats */
3406         if (hw->media_type == e1000_media_type_copper) {
3407                 if ((adapter->link_speed == SPEED_1000) &&
3408                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3409                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3410                         adapter->phy_stats.idle_errors += phy_tmp;
3411                 }
3412
3413                 if ((hw->mac_type <= e1000_82546) &&
3414                    (hw->phy_type == e1000_phy_m88) &&
3415                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3416                         adapter->phy_stats.receive_errors += phy_tmp;
3417         }
3418
3419         /* Management Stats */
3420         if (hw->has_smbus) {
3421                 adapter->stats.mgptc += er32(MGTPTC);
3422                 adapter->stats.mgprc += er32(MGTPRC);
3423                 adapter->stats.mgpdc += er32(MGTPDC);
3424         }
3425
3426         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3427 }
3428
3429 /**
3430  * e1000_intr - Interrupt Handler
3431  * @irq: interrupt number
3432  * @data: pointer to a network interface device structure
3433  **/
3434
3435 static irqreturn_t e1000_intr(int irq, void *data)
3436 {
3437         struct net_device *netdev = data;
3438         struct e1000_adapter *adapter = netdev_priv(netdev);
3439         struct e1000_hw *hw = &adapter->hw;
3440         u32 icr = er32(ICR);
3441
3442         if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
3443                 return IRQ_NONE;  /* Not our interrupt */
3444
3445         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3446                 hw->get_link_status = 1;
3447                 /* guard against interrupt when we're going down */
3448                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3449                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3450         }
3451
3452         /* disable interrupts, without the synchronize_irq bit */
3453         ew32(IMC, ~0);
3454         E1000_WRITE_FLUSH();
3455
3456         if (likely(napi_schedule_prep(&adapter->napi))) {
3457                 adapter->total_tx_bytes = 0;
3458                 adapter->total_tx_packets = 0;
3459                 adapter->total_rx_bytes = 0;
3460                 adapter->total_rx_packets = 0;
3461                 __napi_schedule(&adapter->napi);
3462         } else {
3463                 /* this really should not happen! if it does it is basically a
3464                  * bug, but not a hard error, so enable ints and continue */
3465                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3466                         e1000_irq_enable(adapter);
3467         }
3468
3469         return IRQ_HANDLED;
3470 }
3471
3472 /**
3473  * e1000_clean - NAPI Rx polling callback
3474  * @adapter: board private structure
3475  **/
3476 static int e1000_clean(struct napi_struct *napi, int budget)
3477 {
3478         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3479         int tx_clean_complete = 0, work_done = 0;
3480
3481         tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3482
3483         adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3484
3485         if (!tx_clean_complete)
3486                 work_done = budget;
3487
3488         /* If budget not fully consumed, exit the polling mode */
3489         if (work_done < budget) {
3490                 if (likely(adapter->itr_setting & 3))
3491                         e1000_set_itr(adapter);
3492                 napi_complete(napi);
3493                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3494                         e1000_irq_enable(adapter);
3495         }
3496
3497         return work_done;
3498 }
3499
3500 /**
3501  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3502  * @adapter: board private structure
3503  **/
3504 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3505                                struct e1000_tx_ring *tx_ring)
3506 {
3507         struct e1000_hw *hw = &adapter->hw;
3508         struct net_device *netdev = adapter->netdev;
3509         struct e1000_tx_desc *tx_desc, *eop_desc;
3510         struct e1000_buffer *buffer_info;
3511         unsigned int i, eop;
3512         unsigned int count = 0;
3513         unsigned int total_tx_bytes=0, total_tx_packets=0;
3514
3515         i = tx_ring->next_to_clean;
3516         eop = tx_ring->buffer_info[i].next_to_watch;
3517         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3518
3519         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3520                (count < tx_ring->count)) {
3521                 bool cleaned = false;
3522                 rmb();  /* read buffer_info after eop_desc */
3523                 for ( ; !cleaned; count++) {
3524                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3525                         buffer_info = &tx_ring->buffer_info[i];
3526                         cleaned = (i == eop);
3527
3528                         if (cleaned) {
3529                                 struct sk_buff *skb = buffer_info->skb;
3530                                 unsigned int segs, bytecount;
3531                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3532                                 /* multiply data chunks by size of headers */
3533                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3534                                             skb->len;
3535                                 total_tx_packets += segs;
3536                                 total_tx_bytes += bytecount;
3537                         }
3538                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3539                         tx_desc->upper.data = 0;
3540
3541                         if (unlikely(++i == tx_ring->count)) i = 0;
3542                 }
3543
3544                 eop = tx_ring->buffer_info[i].next_to_watch;
3545                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3546         }
3547
3548         tx_ring->next_to_clean = i;
3549
3550 #define TX_WAKE_THRESHOLD 32
3551         if (unlikely(count && netif_carrier_ok(netdev) &&
3552                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3553                 /* Make sure that anybody stopping the queue after this
3554                  * sees the new next_to_clean.
3555                  */
3556                 smp_mb();
3557
3558                 if (netif_queue_stopped(netdev) &&
3559                     !(test_bit(__E1000_DOWN, &adapter->flags))) {
3560                         netif_wake_queue(netdev);
3561                         ++adapter->restart_queue;
3562                 }
3563         }
3564
3565         if (adapter->detect_tx_hung) {
3566                 /* Detect a transmit hang in hardware, this serializes the
3567                  * check with the clearing of time_stamp and movement of i */
3568                 adapter->detect_tx_hung = false;
3569                 if (tx_ring->buffer_info[eop].time_stamp &&
3570                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3571                                (adapter->tx_timeout_factor * HZ)) &&
3572                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3573
3574                         /* detected Tx unit hang */
3575                         e_err(drv, "Detected Tx Unit Hang\n"
3576                               "  Tx Queue             <%lu>\n"
3577                               "  TDH                  <%x>\n"
3578                               "  TDT                  <%x>\n"
3579                               "  next_to_use          <%x>\n"
3580                               "  next_to_clean        <%x>\n"
3581                               "buffer_info[next_to_clean]\n"
3582                               "  time_stamp           <%lx>\n"
3583                               "  next_to_watch        <%x>\n"
3584                               "  jiffies              <%lx>\n"
3585                               "  next_to_watch.status <%x>\n",
3586                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3587                                         sizeof(struct e1000_tx_ring)),
3588                                 readl(hw->hw_addr + tx_ring->tdh),
3589                                 readl(hw->hw_addr + tx_ring->tdt),
3590                                 tx_ring->next_to_use,
3591                                 tx_ring->next_to_clean,
3592                                 tx_ring->buffer_info[eop].time_stamp,
3593                                 eop,
3594                                 jiffies,
3595                                 eop_desc->upper.fields.status);
3596                         netif_stop_queue(netdev);
3597                 }
3598         }
3599         adapter->total_tx_bytes += total_tx_bytes;
3600         adapter->total_tx_packets += total_tx_packets;
3601         netdev->stats.tx_bytes += total_tx_bytes;
3602         netdev->stats.tx_packets += total_tx_packets;
3603         return count < tx_ring->count;
3604 }
3605
3606 /**
3607  * e1000_rx_checksum - Receive Checksum Offload for 82543
3608  * @adapter:     board private structure
3609  * @status_err:  receive descriptor status and error fields
3610  * @csum:        receive descriptor csum field
3611  * @sk_buff:     socket buffer with received data
3612  **/
3613
3614 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3615                               u32 csum, struct sk_buff *skb)
3616 {
3617         struct e1000_hw *hw = &adapter->hw;
3618         u16 status = (u16)status_err;
3619         u8 errors = (u8)(status_err >> 24);
3620
3621         skb_checksum_none_assert(skb);
3622
3623         /* 82543 or newer only */
3624         if (unlikely(hw->mac_type < e1000_82543)) return;
3625         /* Ignore Checksum bit is set */
3626         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3627         /* TCP/UDP checksum error bit is set */
3628         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3629                 /* let the stack verify checksum errors */
3630                 adapter->hw_csum_err++;
3631                 return;
3632         }
3633         /* TCP/UDP Checksum has not been calculated */
3634         if (!(status & E1000_RXD_STAT_TCPCS))
3635                 return;
3636
3637         /* It must be a TCP or UDP packet with a valid checksum */
3638         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3639                 /* TCP checksum is good */
3640                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3641         }
3642         adapter->hw_csum_good++;
3643 }
3644
3645 /**
3646  * e1000_consume_page - helper function
3647  **/
3648 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3649                                u16 length)
3650 {
3651         bi->page = NULL;
3652         skb->len += length;
3653         skb->data_len += length;
3654         skb->truesize += length;
3655 }
3656
3657 /**
3658  * e1000_receive_skb - helper function to handle rx indications
3659  * @adapter: board private structure
3660  * @status: descriptor status field as written by hardware
3661  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3662  * @skb: pointer to sk_buff to be indicated to stack
3663  */
3664 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3665                               __le16 vlan, struct sk_buff *skb)
3666 {
3667         skb->protocol = eth_type_trans(skb, adapter->netdev);
3668
3669         if ((unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))))
3670                 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
3671                                  le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK,
3672                                  skb);
3673         else
3674                 napi_gro_receive(&adapter->napi, skb);
3675 }
3676
3677 /**
3678  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3679  * @adapter: board private structure
3680  * @rx_ring: ring to clean
3681  * @work_done: amount of napi work completed this call
3682  * @work_to_do: max amount of work allowed for this call to do
3683  *
3684  * the return value indicates whether actual cleaning was done, there
3685  * is no guarantee that everything was cleaned
3686  */
3687 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3688                                      struct e1000_rx_ring *rx_ring,
3689                                      int *work_done, int work_to_do)
3690 {
3691         struct e1000_hw *hw = &adapter->hw;
3692         struct net_device *netdev = adapter->netdev;
3693         struct pci_dev *pdev = adapter->pdev;
3694         struct e1000_rx_desc *rx_desc, *next_rxd;
3695         struct e1000_buffer *buffer_info, *next_buffer;
3696         unsigned long irq_flags;
3697         u32 length;
3698         unsigned int i;
3699         int cleaned_count = 0;
3700         bool cleaned = false;
3701         unsigned int total_rx_bytes=0, total_rx_packets=0;
3702
3703         i = rx_ring->next_to_clean;
3704         rx_desc = E1000_RX_DESC(*rx_ring, i);
3705         buffer_info = &rx_ring->buffer_info[i];
3706
3707         while (rx_desc->status & E1000_RXD_STAT_DD) {
3708                 struct sk_buff *skb;
3709                 u8 status;
3710
3711                 if (*work_done >= work_to_do)
3712                         break;
3713                 (*work_done)++;
3714                 rmb(); /* read descriptor and rx_buffer_info after status DD */
3715
3716                 status = rx_desc->status;
3717                 skb = buffer_info->skb;
3718                 buffer_info->skb = NULL;
3719
3720                 if (++i == rx_ring->count) i = 0;
3721                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3722                 prefetch(next_rxd);
3723
3724                 next_buffer = &rx_ring->buffer_info[i];
3725
3726                 cleaned = true;
3727                 cleaned_count++;
3728                 dma_unmap_page(&pdev->dev, buffer_info->dma,
3729                                buffer_info->length, DMA_FROM_DEVICE);
3730                 buffer_info->dma = 0;
3731
3732                 length = le16_to_cpu(rx_desc->length);
3733
3734                 /* errors is only valid for DD + EOP descriptors */
3735                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3736                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3737                         u8 last_byte = *(skb->data + length - 1);
3738                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3739                                        last_byte)) {
3740                                 spin_lock_irqsave(&adapter->stats_lock,
3741                                                   irq_flags);
3742                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
3743                                                        length, skb->data);
3744                                 spin_unlock_irqrestore(&adapter->stats_lock,
3745                                                        irq_flags);
3746                                 length--;
3747                         } else {
3748                                 /* recycle both page and skb */
3749                                 buffer_info->skb = skb;
3750                                 /* an error means any chain goes out the window
3751                                  * too */
3752                                 if (rx_ring->rx_skb_top)
3753                                         dev_kfree_skb(rx_ring->rx_skb_top);
3754                                 rx_ring->rx_skb_top = NULL;
3755                                 goto next_desc;
3756                         }
3757                 }
3758
3759 #define rxtop rx_ring->rx_skb_top
3760                 if (!(status & E1000_RXD_STAT_EOP)) {
3761                         /* this descriptor is only the beginning (or middle) */
3762                         if (!rxtop) {
3763                                 /* this is the beginning of a chain */
3764                                 rxtop = skb;
3765                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3766                                                    0, length);
3767                         } else {
3768                                 /* this is the middle of a chain */
3769                                 skb_fill_page_desc(rxtop,
3770                                     skb_shinfo(rxtop)->nr_frags,
3771                                     buffer_info->page, 0, length);
3772                                 /* re-use the skb, only consumed the page */
3773                                 buffer_info->skb = skb;
3774                         }
3775                         e1000_consume_page(buffer_info, rxtop, length);
3776                         goto next_desc;
3777                 } else {
3778                         if (rxtop) {
3779                                 /* end of the chain */
3780                                 skb_fill_page_desc(rxtop,
3781                                     skb_shinfo(rxtop)->nr_frags,
3782                                     buffer_info->page, 0, length);
3783                                 /* re-use the current skb, we only consumed the
3784                                  * page */
3785                                 buffer_info->skb = skb;
3786                                 skb = rxtop;
3787                                 rxtop = NULL;
3788                                 e1000_consume_page(buffer_info, skb, length);
3789                         } else {
3790                                 /* no chain, got EOP, this buf is the packet
3791                                  * copybreak to save the put_page/alloc_page */
3792                                 if (length <= copybreak &&
3793                                     skb_tailroom(skb) >= length) {
3794                                         u8 *vaddr;
3795                                         vaddr = kmap_atomic(buffer_info->page,
3796                                                             KM_SKB_DATA_SOFTIRQ);
3797                                         memcpy(skb_tail_pointer(skb), vaddr, length);
3798                                         kunmap_atomic(vaddr,
3799                                                       KM_SKB_DATA_SOFTIRQ);
3800                                         /* re-use the page, so don't erase
3801                                          * buffer_info->page */
3802                                         skb_put(skb, length);
3803                                 } else {
3804                                         skb_fill_page_desc(skb, 0,
3805                                                            buffer_info->page, 0,
3806                                                            length);
3807                                         e1000_consume_page(buffer_info, skb,
3808                                                            length);
3809                                 }
3810                         }
3811                 }
3812
3813                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3814                 e1000_rx_checksum(adapter,
3815                                   (u32)(status) |
3816                                   ((u32)(rx_desc->errors) << 24),
3817                                   le16_to_cpu(rx_desc->csum), skb);
3818
3819                 pskb_trim(skb, skb->len - 4);
3820
3821                 /* probably a little skewed due to removing CRC */
3822                 total_rx_bytes += skb->len;
3823                 total_rx_packets++;
3824
3825                 /* eth type trans needs skb->data to point to something */
3826                 if (!pskb_may_pull(skb, ETH_HLEN)) {
3827                         e_err(drv, "pskb_may_pull failed.\n");
3828                         dev_kfree_skb(skb);
3829                         goto next_desc;
3830                 }
3831
3832                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3833
3834 next_desc:
3835                 rx_desc->status = 0;
3836
3837                 /* return some buffers to hardware, one at a time is too slow */
3838                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3839                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3840                         cleaned_count = 0;
3841                 }
3842
3843                 /* use prefetched values */
3844                 rx_desc = next_rxd;
3845                 buffer_info = next_buffer;
3846         }
3847         rx_ring->next_to_clean = i;
3848
3849         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3850         if (cleaned_count)
3851                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3852
3853         adapter->total_rx_packets += total_rx_packets;
3854         adapter->total_rx_bytes += total_rx_bytes;
3855         netdev->stats.rx_bytes += total_rx_bytes;
3856         netdev->stats.rx_packets += total_rx_packets;
3857         return cleaned;
3858 }
3859
3860 /*
3861  * this should improve performance for small packets with large amounts
3862  * of reassembly being done in the stack
3863  */
3864 static void e1000_check_copybreak(struct net_device *netdev,
3865                                  struct e1000_buffer *buffer_info,
3866                                  u32 length, struct sk_buff **skb)
3867 {
3868         struct sk_buff *new_skb;
3869
3870         if (length > copybreak)
3871                 return;
3872
3873         new_skb = netdev_alloc_skb_ip_align(netdev, length);
3874         if (!new_skb)
3875                 return;
3876
3877         skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
3878                                        (*skb)->data - NET_IP_ALIGN,
3879                                        length + NET_IP_ALIGN);
3880         /* save the skb in buffer_info as good */
3881         buffer_info->skb = *skb;
3882         *skb = new_skb;
3883 }
3884
3885 /**
3886  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3887  * @adapter: board private structure
3888  * @rx_ring: ring to clean
3889  * @work_done: amount of napi work completed this call
3890  * @work_to_do: max amount of work allowed for this call to do
3891  */
3892 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3893                                struct e1000_rx_ring *rx_ring,
3894                                int *work_done, int work_to_do)
3895 {
3896         struct e1000_hw *hw = &adapter->hw;
3897         struct net_device *netdev = adapter->netdev;
3898         struct pci_dev *pdev = adapter->pdev;
3899         struct e1000_rx_desc *rx_desc, *next_rxd;
3900         struct e1000_buffer *buffer_info, *next_buffer;
3901         unsigned long flags;
3902         u32 length;
3903         unsigned int i;
3904         int cleaned_count = 0;
3905         bool cleaned = false;
3906         unsigned int total_rx_bytes=0, total_rx_packets=0;
3907
3908         i = rx_ring->next_to_clean;
3909         rx_desc = E1000_RX_DESC(*rx_ring, i);
3910         buffer_info = &rx_ring->buffer_info[i];
3911
3912         while (rx_desc->status & E1000_RXD_STAT_DD) {
3913                 struct sk_buff *skb;
3914                 u8 status;
3915
3916                 if (*work_done >= work_to_do)
3917                         break;
3918                 (*work_done)++;
3919                 rmb(); /* read descriptor and rx_buffer_info after status DD */
3920
3921                 status = rx_desc->status;
3922                 skb = buffer_info->skb;
3923                 buffer_info->skb = NULL;
3924
3925                 prefetch(skb->data - NET_IP_ALIGN);
3926
3927                 if (++i == rx_ring->count) i = 0;
3928                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3929                 prefetch(next_rxd);
3930
3931                 next_buffer = &rx_ring->buffer_info[i];
3932
3933                 cleaned = true;
3934                 cleaned_count++;
3935                 dma_unmap_single(&pdev->dev, buffer_info->dma,
3936                                  buffer_info->length, DMA_FROM_DEVICE);
3937                 buffer_info->dma = 0;
3938
3939                 length = le16_to_cpu(rx_desc->length);
3940                 /* !EOP means multiple descriptors were used to store a single
3941                  * packet, if thats the case we need to toss it.  In fact, we
3942                  * to toss every packet with the EOP bit clear and the next
3943                  * frame that _does_ have the EOP bit set, as it is by
3944                  * definition only a frame fragment
3945                  */
3946                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
3947                         adapter->discarding = true;
3948
3949                 if (adapter->discarding) {
3950                         /* All receives must fit into a single buffer */
3951                         e_dbg("Receive packet consumed multiple buffers\n");
3952                         /* recycle */
3953                         buffer_info->skb = skb;
3954                         if (status & E1000_RXD_STAT_EOP)
3955                                 adapter->discarding = false;
3956                         goto next_desc;
3957                 }
3958
3959                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3960                         u8 last_byte = *(skb->data + length - 1);
3961                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3962                                        last_byte)) {
3963                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3964                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
3965                                                        length, skb->data);
3966                                 spin_unlock_irqrestore(&adapter->stats_lock,
3967                                                        flags);
3968                                 length--;
3969                         } else {
3970                                 /* recycle */
3971                                 buffer_info->skb = skb;
3972                                 goto next_desc;
3973                         }
3974                 }
3975
3976                 /* adjust length to remove Ethernet CRC, this must be
3977                  * done after the TBI_ACCEPT workaround above */
3978                 length -= 4;
3979
3980                 /* probably a little skewed due to removing CRC */
3981                 total_rx_bytes += length;
3982                 total_rx_packets++;
3983
3984                 e1000_check_copybreak(netdev, buffer_info, length, &skb);
3985
3986                 skb_put(skb, length);
3987
3988                 /* Receive Checksum Offload */
3989                 e1000_rx_checksum(adapter,
3990                                   (u32)(status) |
3991                                   ((u32)(rx_desc->errors) << 24),
3992                                   le16_to_cpu(rx_desc->csum), skb);
3993
3994                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3995
3996 next_desc:
3997                 rx_desc->status = 0;
3998
3999                 /* return some buffers to hardware, one at a time is too slow */
4000                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4001                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4002                         cleaned_count = 0;
4003                 }
4004
4005                 /* use prefetched values */
4006                 rx_desc = next_rxd;
4007                 buffer_info = next_buffer;
4008         }
4009         rx_ring->next_to_clean = i;
4010
4011         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4012         if (cleaned_count)
4013                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4014
4015         adapter->total_rx_packets += total_rx_packets;
4016         adapter->total_rx_bytes += total_rx_bytes;
4017         netdev->stats.rx_bytes += total_rx_bytes;
4018         netdev->stats.rx_packets += total_rx_packets;
4019         return cleaned;
4020 }
4021
4022 /**
4023  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4024  * @adapter: address of board private structure
4025  * @rx_ring: pointer to receive ring structure
4026  * @cleaned_count: number of buffers to allocate this pass
4027  **/
4028
4029 static void
4030 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4031                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4032 {
4033         struct net_device *netdev = adapter->netdev;
4034         struct pci_dev *pdev = adapter->pdev;
4035         struct e1000_rx_desc *rx_desc;
4036         struct e1000_buffer *buffer_info;
4037         struct sk_buff *skb;
4038         unsigned int i;
4039         unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4040
4041         i = rx_ring->next_to_use;
4042         buffer_info = &rx_ring->buffer_info[i];
4043
4044         while (cleaned_count--) {
4045                 skb = buffer_info->skb;
4046                 if (skb) {
4047                         skb_trim(skb, 0);
4048                         goto check_page;
4049                 }
4050
4051                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4052                 if (unlikely(!skb)) {
4053                         /* Better luck next round */
4054                         adapter->alloc_rx_buff_failed++;
4055                         break;
4056                 }
4057
4058                 /* Fix for errata 23, can't cross 64kB boundary */
4059                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4060                         struct sk_buff *oldskb = skb;
4061                         e_err(rx_err, "skb align check failed: %u bytes at "
4062                               "%p\n", bufsz, skb->data);
4063                         /* Try again, without freeing the previous */
4064                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4065                         /* Failed allocation, critical failure */
4066                         if (!skb) {
4067                                 dev_kfree_skb(oldskb);
4068                                 adapter->alloc_rx_buff_failed++;
4069                                 break;
4070                         }
4071
4072                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4073                                 /* give up */
4074                                 dev_kfree_skb(skb);
4075                                 dev_kfree_skb(oldskb);
4076                                 break; /* while (cleaned_count--) */
4077                         }
4078
4079                         /* Use new allocation */
4080                         dev_kfree_skb(oldskb);
4081                 }
4082                 buffer_info->skb = skb;
4083                 buffer_info->length = adapter->rx_buffer_len;
4084 check_page:
4085                 /* allocate a new page if necessary */
4086                 if (!buffer_info->page) {
4087                         buffer_info->page = alloc_page(GFP_ATOMIC);
4088                         if (unlikely(!buffer_info->page)) {
4089                                 adapter->alloc_rx_buff_failed++;
4090                                 break;
4091                         }
4092                 }
4093
4094                 if (!buffer_info->dma) {
4095                         buffer_info->dma = dma_map_page(&pdev->dev,
4096                                                         buffer_info->page, 0,
4097                                                         buffer_info->length,
4098                                                         DMA_FROM_DEVICE);
4099                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4100                                 put_page(buffer_info->page);
4101                                 dev_kfree_skb(skb);
4102                                 buffer_info->page = NULL;
4103                                 buffer_info->skb = NULL;
4104                                 buffer_info->dma = 0;
4105                                 adapter->alloc_rx_buff_failed++;
4106                                 break; /* while !buffer_info->skb */
4107                         }
4108                 }
4109
4110                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4111                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4112
4113                 if (unlikely(++i == rx_ring->count))
4114                         i = 0;
4115                 buffer_info = &rx_ring->buffer_info[i];
4116         }
4117
4118         if (likely(rx_ring->next_to_use != i)) {
4119                 rx_ring->next_to_use = i;
4120                 if (unlikely(i-- == 0))
4121                         i = (rx_ring->count - 1);
4122
4123                 /* Force memory writes to complete before letting h/w
4124                  * know there are new descriptors to fetch.  (Only
4125                  * applicable for weak-ordered memory model archs,
4126                  * such as IA-64). */
4127                 wmb();
4128                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4129         }
4130 }
4131
4132 /**
4133  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4134  * @adapter: address of board private structure
4135  **/
4136
4137 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4138                                    struct e1000_rx_ring *rx_ring,
4139                                    int cleaned_count)
4140 {
4141         struct e1000_hw *hw = &adapter->hw;
4142         struct net_device *netdev = adapter->netdev;
4143         struct pci_dev *pdev = adapter->pdev;
4144         struct e1000_rx_desc *rx_desc;
4145         struct e1000_buffer *buffer_info;
4146         struct sk_buff *skb;
4147         unsigned int i;
4148         unsigned int bufsz = adapter->rx_buffer_len;
4149
4150         i = rx_ring->next_to_use;
4151         buffer_info = &rx_ring->buffer_info[i];
4152
4153         while (cleaned_count--) {
4154                 skb = buffer_info->skb;
4155                 if (skb) {
4156                         skb_trim(skb, 0);
4157                         goto map_skb;
4158                 }
4159
4160                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4161                 if (unlikely(!skb)) {
4162                         /* Better luck next round */
4163                         adapter->alloc_rx_buff_failed++;
4164                         break;
4165                 }
4166
4167                 /* Fix for errata 23, can't cross 64kB boundary */
4168                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4169                         struct sk_buff *oldskb = skb;
4170                         e_err(rx_err, "skb align check failed: %u bytes at "
4171                               "%p\n", bufsz, skb->data);
4172                         /* Try again, without freeing the previous */
4173                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4174                         /* Failed allocation, critical failure */
4175                         if (!skb) {
4176                                 dev_kfree_skb(oldskb);
4177                                 adapter->alloc_rx_buff_failed++;
4178                                 break;
4179                         }
4180
4181                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4182                                 /* give up */
4183                                 dev_kfree_skb(skb);
4184                                 dev_kfree_skb(oldskb);
4185                                 adapter->alloc_rx_buff_failed++;
4186                                 break; /* while !buffer_info->skb */
4187                         }
4188
4189                         /* Use new allocation */
4190                         dev_kfree_skb(oldskb);
4191                 }
4192                 buffer_info->skb = skb;
4193                 buffer_info->length = adapter->rx_buffer_len;
4194 map_skb:
4195                 buffer_info->dma = dma_map_single(&pdev->dev,
4196                                                   skb->data,
4197                                                   buffer_info->length,
4198                                                   DMA_FROM_DEVICE);
4199                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4200                         dev_kfree_skb(skb);
4201                         buffer_info->skb = NULL;
4202                         buffer_info->dma = 0;
4203                         adapter->alloc_rx_buff_failed++;
4204                         break; /* while !buffer_info->skb */
4205                 }
4206
4207                 /*
4208                  * XXX if it was allocated cleanly it will never map to a
4209                  * boundary crossing
4210                  */
4211
4212                 /* Fix for errata 23, can't cross 64kB boundary */
4213                 if (!e1000_check_64k_bound(adapter,
4214                                         (void *)(unsigned long)buffer_info->dma,
4215                                         adapter->rx_buffer_len)) {
4216                         e_err(rx_err, "dma align check failed: %u bytes at "
4217                               "%p\n", adapter->rx_buffer_len,
4218                               (void *)(unsigned long)buffer_info->dma);
4219                         dev_kfree_skb(skb);
4220                         buffer_info->skb = NULL;
4221
4222                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4223                                          adapter->rx_buffer_len,
4224                                          DMA_FROM_DEVICE);
4225                         buffer_info->dma = 0;
4226
4227                         adapter->alloc_rx_buff_failed++;
4228                         break; /* while !buffer_info->skb */
4229                 }
4230                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4231                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4232
4233                 if (unlikely(++i == rx_ring->count))
4234                         i = 0;
4235                 buffer_info = &rx_ring->buffer_info[i];
4236         }
4237
4238         if (likely(rx_ring->next_to_use != i)) {
4239                 rx_ring->next_to_use = i;
4240                 if (unlikely(i-- == 0))
4241                         i = (rx_ring->count - 1);
4242
4243                 /* Force memory writes to complete before letting h/w
4244                  * know there are new descriptors to fetch.  (Only
4245                  * applicable for weak-ordered memory model archs,
4246                  * such as IA-64). */
4247                 wmb();
4248                 writel(i, hw->hw_addr + rx_ring->rdt);
4249         }
4250 }
4251
4252 /**
4253  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4254  * @adapter:
4255  **/
4256
4257 static void e1000_smartspeed(struct e1000_adapter *adapter)
4258 {
4259         struct e1000_hw *hw = &adapter->hw;
4260         u16 phy_status;
4261         u16 phy_ctrl;
4262
4263         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4264            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4265                 return;
4266
4267         if (adapter->smartspeed == 0) {
4268                 /* If Master/Slave config fault is asserted twice,
4269                  * we assume back-to-back */
4270                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4271                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4272                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4273                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4274                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4275                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4276                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4277                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4278                                             phy_ctrl);
4279                         adapter->smartspeed++;
4280                         if (!e1000_phy_setup_autoneg(hw) &&
4281                            !e1000_read_phy_reg(hw, PHY_CTRL,
4282                                                &phy_ctrl)) {
4283                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4284                                              MII_CR_RESTART_AUTO_NEG);
4285                                 e1000_write_phy_reg(hw, PHY_CTRL,
4286                                                     phy_ctrl);
4287                         }
4288                 }
4289                 return;
4290         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4291                 /* If still no link, perhaps using 2/3 pair cable */
4292                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4293                 phy_ctrl |= CR_1000T_MS_ENABLE;
4294                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4295                 if (!e1000_phy_setup_autoneg(hw) &&
4296                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4297                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4298                                      MII_CR_RESTART_AUTO_NEG);
4299                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4300                 }
4301         }
4302         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4303         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4304                 adapter->smartspeed = 0;
4305 }
4306
4307 /**
4308  * e1000_ioctl -
4309  * @netdev:
4310  * @ifreq:
4311  * @cmd:
4312  **/
4313
4314 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4315 {
4316         switch (cmd) {
4317         case SIOCGMIIPHY:
4318         case SIOCGMIIREG:
4319         case SIOCSMIIREG:
4320                 return e1000_mii_ioctl(netdev, ifr, cmd);
4321         default:
4322                 return -EOPNOTSUPP;
4323         }
4324 }
4325
4326 /**
4327  * e1000_mii_ioctl -
4328  * @netdev:
4329  * @ifreq:
4330  * @cmd:
4331  **/
4332
4333 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4334                            int cmd)
4335 {
4336         struct e1000_adapter *adapter = netdev_priv(netdev);
4337         struct e1000_hw *hw = &adapter->hw;
4338         struct mii_ioctl_data *data = if_mii(ifr);
4339         int retval;
4340         u16 mii_reg;
4341         u16 spddplx;
4342         unsigned long flags;
4343
4344         if (hw->media_type != e1000_media_type_copper)
4345                 return -EOPNOTSUPP;
4346
4347         switch (cmd) {
4348         case SIOCGMIIPHY:
4349                 data->phy_id = hw->phy_addr;
4350                 break;
4351         case SIOCGMIIREG:
4352                 spin_lock_irqsave(&adapter->stats_lock, flags);
4353                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4354                                    &data->val_out)) {
4355                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4356                         return -EIO;
4357                 }
4358                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4359                 break;
4360         case SIOCSMIIREG:
4361                 if (data->reg_num & ~(0x1F))
4362                         return -EFAULT;
4363                 mii_reg = data->val_in;
4364                 spin_lock_irqsave(&adapter->stats_lock, flags);
4365                 if (e1000_write_phy_reg(hw, data->reg_num,
4366                                         mii_reg)) {
4367                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4368                         return -EIO;
4369                 }
4370                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4371                 if (hw->media_type == e1000_media_type_copper) {
4372                         switch (data->reg_num) {
4373                         case PHY_CTRL:
4374                                 if (mii_reg & MII_CR_POWER_DOWN)
4375                                         break;
4376                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4377                                         hw->autoneg = 1;
4378                                         hw->autoneg_advertised = 0x2F;
4379                                 } else {
4380                                         if (mii_reg & 0x40)
4381                                                 spddplx = SPEED_1000;
4382                                         else if (mii_reg & 0x2000)
4383                                                 spddplx = SPEED_100;
4384                                         else
4385                                                 spddplx = SPEED_10;
4386                                         spddplx += (mii_reg & 0x100)
4387                                                    ? DUPLEX_FULL :
4388                                                    DUPLEX_HALF;
4389                                         retval = e1000_set_spd_dplx(adapter,
4390                                                                     spddplx);
4391                                         if (retval)
4392                                                 return retval;
4393                                 }
4394                                 if (netif_running(adapter->netdev))
4395                                         e1000_reinit_locked(adapter);
4396                                 else
4397                                         e1000_reset(adapter);
4398                                 break;
4399                         case M88E1000_PHY_SPEC_CTRL:
4400                         case M88E1000_EXT_PHY_SPEC_CTRL:
4401                                 if (e1000_phy_reset(hw))
4402                                         return -EIO;
4403                                 break;
4404                         }
4405                 } else {
4406                         switch (data->reg_num) {
4407                         case PHY_CTRL:
4408                                 if (mii_reg & MII_CR_POWER_DOWN)
4409                                         break;
4410                                 if (netif_running(adapter->netdev))
4411                                         e1000_reinit_locked(adapter);
4412                                 else
4413                                         e1000_reset(adapter);
4414                                 break;
4415                         }
4416                 }
4417                 break;
4418         default:
4419                 return -EOPNOTSUPP;
4420         }
4421         return E1000_SUCCESS;
4422 }
4423
4424 void e1000_pci_set_mwi(struct e1000_hw *hw)
4425 {
4426         struct e1000_adapter *adapter = hw->back;
4427         int ret_val = pci_set_mwi(adapter->pdev);
4428
4429         if (ret_val)
4430                 e_err(probe, "Error in setting MWI\n");
4431 }
4432
4433 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4434 {
4435         struct e1000_adapter *adapter = hw->back;
4436
4437         pci_clear_mwi(adapter->pdev);
4438 }
4439
4440 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4441 {
4442         struct e1000_adapter *adapter = hw->back;
4443         return pcix_get_mmrbc(adapter->pdev);
4444 }
4445
4446 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4447 {
4448         struct e1000_adapter *adapter = hw->back;
4449         pcix_set_mmrbc(adapter->pdev, mmrbc);
4450 }
4451
4452 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4453 {
4454         outl(value, port);
4455 }
4456
4457 static void e1000_vlan_rx_register(struct net_device *netdev,
4458                                    struct vlan_group *grp)
4459 {
4460         struct e1000_adapter *adapter = netdev_priv(netdev);
4461         struct e1000_hw *hw = &adapter->hw;
4462         u32 ctrl, rctl;
4463
4464         if (!test_bit(__E1000_DOWN, &adapter->flags))
4465                 e1000_irq_disable(adapter);
4466         adapter->vlgrp = grp;
4467
4468         if (grp) {
4469                 /* enable VLAN tag insert/strip */
4470                 ctrl = er32(CTRL);
4471                 ctrl |= E1000_CTRL_VME;
4472                 ew32(CTRL, ctrl);
4473
4474                 /* enable VLAN receive filtering */
4475                 rctl = er32(RCTL);
4476                 rctl &= ~E1000_RCTL_CFIEN;
4477                 if (!(netdev->flags & IFF_PROMISC))
4478                         rctl |= E1000_RCTL_VFE;
4479                 ew32(RCTL, rctl);
4480                 e1000_update_mng_vlan(adapter);
4481         } else {
4482                 /* disable VLAN tag insert/strip */
4483                 ctrl = er32(CTRL);
4484                 ctrl &= ~E1000_CTRL_VME;
4485                 ew32(CTRL, ctrl);
4486
4487                 /* disable VLAN receive filtering */
4488                 rctl = er32(RCTL);
4489                 rctl &= ~E1000_RCTL_VFE;
4490                 ew32(RCTL, rctl);
4491
4492                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
4493                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4494                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4495                 }
4496         }
4497
4498         if (!test_bit(__E1000_DOWN, &adapter->flags))
4499                 e1000_irq_enable(adapter);
4500 }
4501
4502 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4503 {
4504         struct e1000_adapter *adapter = netdev_priv(netdev);
4505         struct e1000_hw *hw = &adapter->hw;
4506         u32 vfta, index;
4507
4508         if ((hw->mng_cookie.status &
4509              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4510             (vid == adapter->mng_vlan_id))
4511                 return;
4512         /* add VID to filter table */
4513         index = (vid >> 5) & 0x7F;
4514         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4515         vfta |= (1 << (vid & 0x1F));
4516         e1000_write_vfta(hw, index, vfta);
4517 }
4518
4519 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4520 {
4521         struct e1000_adapter *adapter = netdev_priv(netdev);
4522         struct e1000_hw *hw = &adapter->hw;
4523         u32 vfta, index;
4524
4525         if (!test_bit(__E1000_DOWN, &adapter->flags))
4526                 e1000_irq_disable(adapter);
4527         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4528         if (!test_bit(__E1000_DOWN, &adapter->flags))
4529                 e1000_irq_enable(adapter);
4530
4531         /* remove VID from filter table */
4532         index = (vid >> 5) & 0x7F;
4533         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4534         vfta &= ~(1 << (vid & 0x1F));
4535         e1000_write_vfta(hw, index, vfta);
4536 }
4537
4538 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4539 {
4540         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4541
4542         if (adapter->vlgrp) {
4543                 u16 vid;
4544                 for (vid = 0; vid < VLAN_N_VID; vid++) {
4545                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4546                                 continue;
4547                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4548                 }
4549         }
4550 }
4551
4552 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4553 {
4554         struct e1000_hw *hw = &adapter->hw;
4555
4556         hw->autoneg = 0;
4557
4558         /* Fiber NICs only allow 1000 gbps Full duplex */
4559         if ((hw->media_type == e1000_media_type_fiber) &&
4560                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4561                 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4562                 return -EINVAL;
4563         }
4564
4565         switch (spddplx) {
4566         case SPEED_10 + DUPLEX_HALF:
4567                 hw->forced_speed_duplex = e1000_10_half;
4568                 break;
4569         case SPEED_10 + DUPLEX_FULL:
4570                 hw->forced_speed_duplex = e1000_10_full;
4571                 break;
4572         case SPEED_100 + DUPLEX_HALF:
4573                 hw->forced_speed_duplex = e1000_100_half;
4574                 break;
4575         case SPEED_100 + DUPLEX_FULL:
4576                 hw->forced_speed_duplex = e1000_100_full;
4577                 break;
4578         case SPEED_1000 + DUPLEX_FULL:
4579                 hw->autoneg = 1;
4580                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4581                 break;
4582         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4583         default:
4584                 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4585                 return -EINVAL;
4586         }
4587         return 0;
4588 }
4589
4590 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4591 {
4592         struct net_device *netdev = pci_get_drvdata(pdev);
4593         struct e1000_adapter *adapter = netdev_priv(netdev);
4594         struct e1000_hw *hw = &adapter->hw;
4595         u32 ctrl, ctrl_ext, rctl, status;
4596         u32 wufc = adapter->wol;
4597 #ifdef CONFIG_PM
4598         int retval = 0;
4599 #endif
4600
4601         netif_device_detach(netdev);
4602
4603         if (netif_running(netdev)) {
4604                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4605                 e1000_down(adapter);
4606         }
4607
4608 #ifdef CONFIG_PM
4609         retval = pci_save_state(pdev);
4610         if (retval)
4611                 return retval;
4612 #endif
4613
4614         status = er32(STATUS);
4615         if (status & E1000_STATUS_LU)
4616                 wufc &= ~E1000_WUFC_LNKC;
4617
4618         if (wufc) {
4619                 e1000_setup_rctl(adapter);
4620                 e1000_set_rx_mode(netdev);
4621
4622                 /* turn on all-multi mode if wake on multicast is enabled */
4623                 if (wufc & E1000_WUFC_MC) {
4624                         rctl = er32(RCTL);
4625                         rctl |= E1000_RCTL_MPE;
4626                         ew32(RCTL, rctl);
4627                 }
4628
4629                 if (hw->mac_type >= e1000_82540) {
4630                         ctrl = er32(CTRL);
4631                         /* advertise wake from D3Cold */
4632                         #define E1000_CTRL_ADVD3WUC 0x00100000
4633                         /* phy power management enable */
4634                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4635                         ctrl |= E1000_CTRL_ADVD3WUC |
4636                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4637                         ew32(CTRL, ctrl);
4638                 }
4639
4640                 if (hw->media_type == e1000_media_type_fiber ||
4641                     hw->media_type == e1000_media_type_internal_serdes) {
4642                         /* keep the laser running in D3 */
4643                         ctrl_ext = er32(CTRL_EXT);
4644                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4645                         ew32(CTRL_EXT, ctrl_ext);
4646                 }
4647
4648                 ew32(WUC, E1000_WUC_PME_EN);
4649                 ew32(WUFC, wufc);
4650         } else {
4651                 ew32(WUC, 0);
4652                 ew32(WUFC, 0);
4653         }
4654
4655         e1000_release_manageability(adapter);
4656
4657         *enable_wake = !!wufc;
4658
4659         /* make sure adapter isn't asleep if manageability is enabled */
4660         if (adapter->en_mng_pt)
4661                 *enable_wake = true;
4662
4663         if (netif_running(netdev))
4664                 e1000_free_irq(adapter);
4665
4666         pci_disable_device(pdev);
4667
4668         return 0;
4669 }
4670
4671 #ifdef CONFIG_PM
4672 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4673 {
4674         int retval;
4675         bool wake;
4676
4677         retval = __e1000_shutdown(pdev, &wake);
4678         if (retval)
4679                 return retval;
4680
4681         if (wake) {
4682                 pci_prepare_to_sleep(pdev);
4683         } else {
4684                 pci_wake_from_d3(pdev, false);
4685                 pci_set_power_state(pdev, PCI_D3hot);
4686         }
4687
4688         return 0;
4689 }
4690
4691 static int e1000_resume(struct pci_dev *pdev)
4692 {
4693         struct net_device *netdev = pci_get_drvdata(pdev);
4694         struct e1000_adapter *adapter = netdev_priv(netdev);
4695         struct e1000_hw *hw = &adapter->hw;
4696         u32 err;
4697
4698         pci_set_power_state(pdev, PCI_D0);
4699         pci_restore_state(pdev);
4700         pci_save_state(pdev);
4701
4702         if (adapter->need_ioport)
4703                 err = pci_enable_device(pdev);
4704         else
4705                 err = pci_enable_device_mem(pdev);
4706         if (err) {
4707                 pr_err("Cannot enable PCI device from suspend\n");
4708                 return err;
4709         }
4710         pci_set_master(pdev);
4711
4712         pci_enable_wake(pdev, PCI_D3hot, 0);
4713         pci_enable_wake(pdev, PCI_D3cold, 0);
4714
4715         if (netif_running(netdev)) {
4716                 err = e1000_request_irq(adapter);
4717                 if (err)
4718                         return err;
4719         }
4720
4721         e1000_power_up_phy(adapter);
4722         e1000_reset(adapter);
4723         ew32(WUS, ~0);
4724
4725         e1000_init_manageability(adapter);
4726
4727         if (netif_running(netdev))
4728                 e1000_up(adapter);
4729
4730         netif_device_attach(netdev);
4731
4732         return 0;
4733 }
4734 #endif
4735
4736 static void e1000_shutdown(struct pci_dev *pdev)
4737 {
4738         bool wake;
4739
4740         __e1000_shutdown(pdev, &wake);
4741
4742         if (system_state == SYSTEM_POWER_OFF) {
4743                 pci_wake_from_d3(pdev, wake);
4744                 pci_set_power_state(pdev, PCI_D3hot);
4745         }
4746 }
4747
4748 #ifdef CONFIG_NET_POLL_CONTROLLER
4749 /*
4750  * Polling 'interrupt' - used by things like netconsole to send skbs
4751  * without having to re-enable interrupts. It's not called while
4752  * the interrupt routine is executing.
4753  */
4754 static void e1000_netpoll(struct net_device *netdev)
4755 {
4756         struct e1000_adapter *adapter = netdev_priv(netdev);
4757
4758         disable_irq(adapter->pdev->irq);
4759         e1000_intr(adapter->pdev->irq, netdev);
4760         enable_irq(adapter->pdev->irq);
4761 }
4762 #endif
4763
4764 /**
4765  * e1000_io_error_detected - called when PCI error is detected
4766  * @pdev: Pointer to PCI device
4767  * @state: The current pci connection state
4768  *
4769  * This function is called after a PCI bus error affecting
4770  * this device has been detected.
4771  */
4772 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4773                                                 pci_channel_state_t state)
4774 {
4775         struct net_device *netdev = pci_get_drvdata(pdev);
4776         struct e1000_adapter *adapter = netdev_priv(netdev);
4777
4778         netif_device_detach(netdev);
4779
4780         if (state == pci_channel_io_perm_failure)
4781                 return PCI_ERS_RESULT_DISCONNECT;
4782
4783         if (netif_running(netdev))
4784                 e1000_down(adapter);
4785         pci_disable_device(pdev);
4786
4787         /* Request a slot slot reset. */
4788         return PCI_ERS_RESULT_NEED_RESET;
4789 }
4790
4791 /**
4792  * e1000_io_slot_reset - called after the pci bus has been reset.
4793  * @pdev: Pointer to PCI device
4794  *
4795  * Restart the card from scratch, as if from a cold-boot. Implementation
4796  * resembles the first-half of the e1000_resume routine.
4797  */
4798 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4799 {
4800         struct net_device *netdev = pci_get_drvdata(pdev);
4801         struct e1000_adapter *adapter = netdev_priv(netdev);
4802         struct e1000_hw *hw = &adapter->hw;
4803         int err;
4804
4805         if (adapter->need_ioport)
4806                 err = pci_enable_device(pdev);
4807         else
4808                 err = pci_enable_device_mem(pdev);
4809         if (err) {
4810                 pr_err("Cannot re-enable PCI device after reset.\n");
4811                 return PCI_ERS_RESULT_DISCONNECT;
4812         }
4813         pci_set_master(pdev);
4814
4815         pci_enable_wake(pdev, PCI_D3hot, 0);
4816         pci_enable_wake(pdev, PCI_D3cold, 0);
4817
4818         e1000_reset(adapter);
4819         ew32(WUS, ~0);
4820
4821         return PCI_ERS_RESULT_RECOVERED;
4822 }
4823
4824 /**
4825  * e1000_io_resume - called when traffic can start flowing again.
4826  * @pdev: Pointer to PCI device
4827  *
4828  * This callback is called when the error recovery driver tells us that
4829  * its OK to resume normal operation. Implementation resembles the
4830  * second-half of the e1000_resume routine.
4831  */
4832 static void e1000_io_resume(struct pci_dev *pdev)
4833 {
4834         struct net_device *netdev = pci_get_drvdata(pdev);
4835         struct e1000_adapter *adapter = netdev_priv(netdev);
4836
4837         e1000_init_manageability(adapter);
4838
4839         if (netif_running(netdev)) {
4840                 if (e1000_up(adapter)) {
4841                         pr_info("can't bring device back up after reset\n");
4842                         return;
4843                 }
4844         }
4845
4846         netif_device_attach(netdev);
4847 }
4848
4849 /* e1000_main.c */