Pull address_range into release branch
[pandora-kernel.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 struct e1000_stats {
36         char stat_string[ETH_GSTRING_LEN];
37         int sizeof_stat;
38         int stat_offset;
39 };
40
41 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
42                       offsetof(struct e1000_adapter, m)
43 static const struct e1000_stats e1000_gstrings_stats[] = {
44         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
45         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
46         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
47         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
48         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
49         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
50         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
51         { "multicast", E1000_STAT(net_stats.multicast) },
52         { "collisions", E1000_STAT(net_stats.collisions) },
53         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
54         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
55         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
56         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
57         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
58         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
59         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
60         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
61         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
62         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
63         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
64         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
65         { "tx_deferred_ok", E1000_STAT(stats.dc) },
66         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
67         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
68         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
69         { "rx_long_length_errors", E1000_STAT(stats.roc) },
70         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
71         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
72         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
73         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
74         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
75         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
76         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
77         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
78         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
79         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
80         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
81         { "rx_header_split", E1000_STAT(rx_hdr_split) },
82         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
83 };
84
85 #define E1000_QUEUE_STATS_LEN 0
86 #define E1000_GLOBAL_STATS_LEN  \
87         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
88 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
89 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
90         "Register test  (offline)", "Eeprom test    (offline)",
91         "Interrupt test (offline)", "Loopback test  (offline)",
92         "Link test   (on/offline)"
93 };
94 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
95
96 static int
97 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
98 {
99         struct e1000_adapter *adapter = netdev_priv(netdev);
100         struct e1000_hw *hw = &adapter->hw;
101
102         if (hw->media_type == e1000_media_type_copper) {
103
104                 ecmd->supported = (SUPPORTED_10baseT_Half |
105                                    SUPPORTED_10baseT_Full |
106                                    SUPPORTED_100baseT_Half |
107                                    SUPPORTED_100baseT_Full |
108                                    SUPPORTED_1000baseT_Full|
109                                    SUPPORTED_Autoneg |
110                                    SUPPORTED_TP);
111
112                 ecmd->advertising = ADVERTISED_TP;
113
114                 if (hw->autoneg == 1) {
115                         ecmd->advertising |= ADVERTISED_Autoneg;
116
117                         /* the e1000 autoneg seems to match ethtool nicely */
118
119                         ecmd->advertising |= hw->autoneg_advertised;
120                 }
121
122                 ecmd->port = PORT_TP;
123                 ecmd->phy_address = hw->phy_addr;
124
125                 if (hw->mac_type == e1000_82543)
126                         ecmd->transceiver = XCVR_EXTERNAL;
127                 else
128                         ecmd->transceiver = XCVR_INTERNAL;
129
130         } else {
131                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
132                                      SUPPORTED_FIBRE |
133                                      SUPPORTED_Autoneg);
134
135                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
136                                      ADVERTISED_FIBRE |
137                                      ADVERTISED_Autoneg);
138
139                 ecmd->port = PORT_FIBRE;
140
141                 if (hw->mac_type >= e1000_82545)
142                         ecmd->transceiver = XCVR_INTERNAL;
143                 else
144                         ecmd->transceiver = XCVR_EXTERNAL;
145         }
146
147         if (netif_carrier_ok(adapter->netdev)) {
148
149                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
150                                                    &adapter->link_duplex);
151                 ecmd->speed = adapter->link_speed;
152
153                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
154                  *          and HALF_DUPLEX != DUPLEX_HALF */
155
156                 if (adapter->link_duplex == FULL_DUPLEX)
157                         ecmd->duplex = DUPLEX_FULL;
158                 else
159                         ecmd->duplex = DUPLEX_HALF;
160         } else {
161                 ecmd->speed = -1;
162                 ecmd->duplex = -1;
163         }
164
165         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
166                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
167         return 0;
168 }
169
170 static int
171 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
172 {
173         struct e1000_adapter *adapter = netdev_priv(netdev);
174         struct e1000_hw *hw = &adapter->hw;
175
176         /* When SoL/IDER sessions are active, autoneg/speed/duplex
177          * cannot be changed */
178         if (e1000_check_phy_reset_block(hw)) {
179                 DPRINTK(DRV, ERR, "Cannot change link characteristics "
180                         "when SoL/IDER is active.\n");
181                 return -EINVAL;
182         }
183
184         if (ecmd->autoneg == AUTONEG_ENABLE) {
185                 hw->autoneg = 1;
186                 if (hw->media_type == e1000_media_type_fiber)
187                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
188                                      ADVERTISED_FIBRE |
189                                      ADVERTISED_Autoneg;
190                 else
191                         hw->autoneg_advertised = ADVERTISED_10baseT_Half |
192                                                   ADVERTISED_10baseT_Full |
193                                                   ADVERTISED_100baseT_Half |
194                                                   ADVERTISED_100baseT_Full |
195                                                   ADVERTISED_1000baseT_Full|
196                                                   ADVERTISED_Autoneg |
197                                                   ADVERTISED_TP;
198                 ecmd->advertising = hw->autoneg_advertised;
199         } else
200                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
201                         return -EINVAL;
202
203         /* reset the link */
204
205         if (netif_running(adapter->netdev)) {
206                 e1000_down(adapter);
207                 e1000_reset(adapter);
208                 e1000_up(adapter);
209         } else
210                 e1000_reset(adapter);
211
212         return 0;
213 }
214
215 static void
216 e1000_get_pauseparam(struct net_device *netdev,
217                      struct ethtool_pauseparam *pause)
218 {
219         struct e1000_adapter *adapter = netdev_priv(netdev);
220         struct e1000_hw *hw = &adapter->hw;
221
222         pause->autoneg =
223                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
224
225         if (hw->fc == e1000_fc_rx_pause)
226                 pause->rx_pause = 1;
227         else if (hw->fc == e1000_fc_tx_pause)
228                 pause->tx_pause = 1;
229         else if (hw->fc == e1000_fc_full) {
230                 pause->rx_pause = 1;
231                 pause->tx_pause = 1;
232         }
233 }
234
235 static int
236 e1000_set_pauseparam(struct net_device *netdev,
237                      struct ethtool_pauseparam *pause)
238 {
239         struct e1000_adapter *adapter = netdev_priv(netdev);
240         struct e1000_hw *hw = &adapter->hw;
241
242         adapter->fc_autoneg = pause->autoneg;
243
244         if (pause->rx_pause && pause->tx_pause)
245                 hw->fc = e1000_fc_full;
246         else if (pause->rx_pause && !pause->tx_pause)
247                 hw->fc = e1000_fc_rx_pause;
248         else if (!pause->rx_pause && pause->tx_pause)
249                 hw->fc = e1000_fc_tx_pause;
250         else if (!pause->rx_pause && !pause->tx_pause)
251                 hw->fc = e1000_fc_none;
252
253         hw->original_fc = hw->fc;
254
255         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
256                 if (netif_running(adapter->netdev)) {
257                         e1000_down(adapter);
258                         e1000_up(adapter);
259                 } else
260                         e1000_reset(adapter);
261         } else
262                 return ((hw->media_type == e1000_media_type_fiber) ?
263                         e1000_setup_link(hw) : e1000_force_mac_fc(hw));
264
265         return 0;
266 }
267
268 static uint32_t
269 e1000_get_rx_csum(struct net_device *netdev)
270 {
271         struct e1000_adapter *adapter = netdev_priv(netdev);
272         return adapter->rx_csum;
273 }
274
275 static int
276 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
277 {
278         struct e1000_adapter *adapter = netdev_priv(netdev);
279         adapter->rx_csum = data;
280
281         if (netif_running(netdev)) {
282                 e1000_down(adapter);
283                 e1000_up(adapter);
284         } else
285                 e1000_reset(adapter);
286         return 0;
287 }
288
289 static uint32_t
290 e1000_get_tx_csum(struct net_device *netdev)
291 {
292         return (netdev->features & NETIF_F_HW_CSUM) != 0;
293 }
294
295 static int
296 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
297 {
298         struct e1000_adapter *adapter = netdev_priv(netdev);
299
300         if (adapter->hw.mac_type < e1000_82543) {
301                 if (!data)
302                         return -EINVAL;
303                 return 0;
304         }
305
306         if (data)
307                 netdev->features |= NETIF_F_HW_CSUM;
308         else
309                 netdev->features &= ~NETIF_F_HW_CSUM;
310
311         return 0;
312 }
313
314 #ifdef NETIF_F_TSO
315 static int
316 e1000_set_tso(struct net_device *netdev, uint32_t data)
317 {
318         struct e1000_adapter *adapter = netdev_priv(netdev);
319         if ((adapter->hw.mac_type < e1000_82544) ||
320             (adapter->hw.mac_type == e1000_82547))
321                 return data ? -EINVAL : 0;
322
323         if (data)
324                 netdev->features |= NETIF_F_TSO;
325         else
326                 netdev->features &= ~NETIF_F_TSO;
327
328         DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
329         adapter->tso_force = TRUE;
330         return 0;
331 }
332 #endif /* NETIF_F_TSO */
333
334 static uint32_t
335 e1000_get_msglevel(struct net_device *netdev)
336 {
337         struct e1000_adapter *adapter = netdev_priv(netdev);
338         return adapter->msg_enable;
339 }
340
341 static void
342 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
343 {
344         struct e1000_adapter *adapter = netdev_priv(netdev);
345         adapter->msg_enable = data;
346 }
347
348 static int
349 e1000_get_regs_len(struct net_device *netdev)
350 {
351 #define E1000_REGS_LEN 32
352         return E1000_REGS_LEN * sizeof(uint32_t);
353 }
354
355 static void
356 e1000_get_regs(struct net_device *netdev,
357                struct ethtool_regs *regs, void *p)
358 {
359         struct e1000_adapter *adapter = netdev_priv(netdev);
360         struct e1000_hw *hw = &adapter->hw;
361         uint32_t *regs_buff = p;
362         uint16_t phy_data;
363
364         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
365
366         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
367
368         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
369         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
370
371         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
372         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
373         regs_buff[4]  = E1000_READ_REG(hw, RDH);
374         regs_buff[5]  = E1000_READ_REG(hw, RDT);
375         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
376
377         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
378         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
379         regs_buff[9]  = E1000_READ_REG(hw, TDH);
380         regs_buff[10] = E1000_READ_REG(hw, TDT);
381         regs_buff[11] = E1000_READ_REG(hw, TIDV);
382
383         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
384         if (hw->phy_type == e1000_phy_igp) {
385                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
386                                     IGP01E1000_PHY_AGC_A);
387                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
388                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
389                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
390                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
391                                     IGP01E1000_PHY_AGC_B);
392                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
393                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
394                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
395                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
396                                     IGP01E1000_PHY_AGC_C);
397                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
398                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
399                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
400                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
401                                     IGP01E1000_PHY_AGC_D);
402                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
403                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
404                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
405                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
406                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
407                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
408                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
409                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
410                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
411                                     IGP01E1000_PHY_PCS_INIT_REG);
412                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
413                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
414                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
415                 regs_buff[20] = 0; /* polarity correction enabled (always) */
416                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
417                 regs_buff[23] = regs_buff[18]; /* mdix mode */
418                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
419         } else {
420                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
421                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
422                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
423                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
424                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
425                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
426                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
427                 regs_buff[18] = regs_buff[13]; /* cable polarity */
428                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
429                 regs_buff[20] = regs_buff[17]; /* polarity correction */
430                 /* phy receive errors */
431                 regs_buff[22] = adapter->phy_stats.receive_errors;
432                 regs_buff[23] = regs_buff[13]; /* mdix mode */
433         }
434         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
435         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
436         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
437         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
438         if (hw->mac_type >= e1000_82540 &&
439            hw->media_type == e1000_media_type_copper) {
440                 regs_buff[26] = E1000_READ_REG(hw, MANC);
441         }
442 }
443
444 static int
445 e1000_get_eeprom_len(struct net_device *netdev)
446 {
447         struct e1000_adapter *adapter = netdev_priv(netdev);
448         return adapter->hw.eeprom.word_size * 2;
449 }
450
451 static int
452 e1000_get_eeprom(struct net_device *netdev,
453                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
454 {
455         struct e1000_adapter *adapter = netdev_priv(netdev);
456         struct e1000_hw *hw = &adapter->hw;
457         uint16_t *eeprom_buff;
458         int first_word, last_word;
459         int ret_val = 0;
460         uint16_t i;
461
462         if (eeprom->len == 0)
463                 return -EINVAL;
464
465         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
466
467         first_word = eeprom->offset >> 1;
468         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
469
470         eeprom_buff = kmalloc(sizeof(uint16_t) *
471                         (last_word - first_word + 1), GFP_KERNEL);
472         if (!eeprom_buff)
473                 return -ENOMEM;
474
475         if (hw->eeprom.type == e1000_eeprom_spi)
476                 ret_val = e1000_read_eeprom(hw, first_word,
477                                             last_word - first_word + 1,
478                                             eeprom_buff);
479         else {
480                 for (i = 0; i < last_word - first_word + 1; i++)
481                         if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
482                                                         &eeprom_buff[i])))
483                                 break;
484         }
485
486         /* Device's eeprom is always little-endian, word addressable */
487         for (i = 0; i < last_word - first_word + 1; i++)
488                 le16_to_cpus(&eeprom_buff[i]);
489
490         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
491                         eeprom->len);
492         kfree(eeprom_buff);
493
494         return ret_val;
495 }
496
497 static int
498 e1000_set_eeprom(struct net_device *netdev,
499                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
500 {
501         struct e1000_adapter *adapter = netdev_priv(netdev);
502         struct e1000_hw *hw = &adapter->hw;
503         uint16_t *eeprom_buff;
504         void *ptr;
505         int max_len, first_word, last_word, ret_val = 0;
506         uint16_t i;
507
508         if (eeprom->len == 0)
509                 return -EOPNOTSUPP;
510
511         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
512                 return -EFAULT;
513
514         max_len = hw->eeprom.word_size * 2;
515
516         first_word = eeprom->offset >> 1;
517         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
518         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
519         if (!eeprom_buff)
520                 return -ENOMEM;
521
522         ptr = (void *)eeprom_buff;
523
524         if (eeprom->offset & 1) {
525                 /* need read/modify/write of first changed EEPROM word */
526                 /* only the second byte of the word is being modified */
527                 ret_val = e1000_read_eeprom(hw, first_word, 1,
528                                             &eeprom_buff[0]);
529                 ptr++;
530         }
531         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
532                 /* need read/modify/write of last changed EEPROM word */
533                 /* only the first byte of the word is being modified */
534                 ret_val = e1000_read_eeprom(hw, last_word, 1,
535                                   &eeprom_buff[last_word - first_word]);
536         }
537
538         /* Device's eeprom is always little-endian, word addressable */
539         for (i = 0; i < last_word - first_word + 1; i++)
540                 le16_to_cpus(&eeprom_buff[i]);
541
542         memcpy(ptr, bytes, eeprom->len);
543
544         for (i = 0; i < last_word - first_word + 1; i++)
545                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
546
547         ret_val = e1000_write_eeprom(hw, first_word,
548                                      last_word - first_word + 1, eeprom_buff);
549
550         /* Update the checksum over the first part of the EEPROM if needed
551          * and flush shadow RAM for 82573 conrollers */
552         if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
553                                 (hw->mac_type == e1000_82573)))
554                 e1000_update_eeprom_checksum(hw);
555
556         kfree(eeprom_buff);
557         return ret_val;
558 }
559
560 static void
561 e1000_get_drvinfo(struct net_device *netdev,
562                        struct ethtool_drvinfo *drvinfo)
563 {
564         struct e1000_adapter *adapter = netdev_priv(netdev);
565         char firmware_version[32];
566         uint16_t eeprom_data;
567
568         strncpy(drvinfo->driver,  e1000_driver_name, 32);
569         strncpy(drvinfo->version, e1000_driver_version, 32);
570
571         /* EEPROM image version # is reported as firmware version # for
572          * 8257{1|2|3} controllers */
573         e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
574         switch (adapter->hw.mac_type) {
575         case e1000_82571:
576         case e1000_82572:
577         case e1000_82573:
578         case e1000_80003es2lan:
579                 sprintf(firmware_version, "%d.%d-%d",
580                         (eeprom_data & 0xF000) >> 12,
581                         (eeprom_data & 0x0FF0) >> 4,
582                         eeprom_data & 0x000F);
583                 break;
584         default:
585                 sprintf(firmware_version, "N/A");
586         }
587
588         strncpy(drvinfo->fw_version, firmware_version, 32);
589         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
590         drvinfo->n_stats = E1000_STATS_LEN;
591         drvinfo->testinfo_len = E1000_TEST_LEN;
592         drvinfo->regdump_len = e1000_get_regs_len(netdev);
593         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
594 }
595
596 static void
597 e1000_get_ringparam(struct net_device *netdev,
598                     struct ethtool_ringparam *ring)
599 {
600         struct e1000_adapter *adapter = netdev_priv(netdev);
601         e1000_mac_type mac_type = adapter->hw.mac_type;
602         struct e1000_tx_ring *txdr = adapter->tx_ring;
603         struct e1000_rx_ring *rxdr = adapter->rx_ring;
604
605         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
606                 E1000_MAX_82544_RXD;
607         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
608                 E1000_MAX_82544_TXD;
609         ring->rx_mini_max_pending = 0;
610         ring->rx_jumbo_max_pending = 0;
611         ring->rx_pending = rxdr->count;
612         ring->tx_pending = txdr->count;
613         ring->rx_mini_pending = 0;
614         ring->rx_jumbo_pending = 0;
615 }
616
617 static int
618 e1000_set_ringparam(struct net_device *netdev,
619                     struct ethtool_ringparam *ring)
620 {
621         struct e1000_adapter *adapter = netdev_priv(netdev);
622         e1000_mac_type mac_type = adapter->hw.mac_type;
623         struct e1000_tx_ring *txdr, *tx_old, *tx_new;
624         struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
625         int i, err, tx_ring_size, rx_ring_size;
626
627         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
628                 return -EINVAL;
629
630         tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
631         rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
632
633         if (netif_running(adapter->netdev))
634                 e1000_down(adapter);
635
636         tx_old = adapter->tx_ring;
637         rx_old = adapter->rx_ring;
638
639         adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
640         if (!adapter->tx_ring) {
641                 err = -ENOMEM;
642                 goto err_setup_rx;
643         }
644         memset(adapter->tx_ring, 0, tx_ring_size);
645
646         adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
647         if (!adapter->rx_ring) {
648                 kfree(adapter->tx_ring);
649                 err = -ENOMEM;
650                 goto err_setup_rx;
651         }
652         memset(adapter->rx_ring, 0, rx_ring_size);
653
654         txdr = adapter->tx_ring;
655         rxdr = adapter->rx_ring;
656
657         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
658         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
659                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
660         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
661
662         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
663         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
664                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
665         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
666
667         for (i = 0; i < adapter->num_tx_queues; i++)
668                 txdr[i].count = txdr->count;
669         for (i = 0; i < adapter->num_rx_queues; i++)
670                 rxdr[i].count = rxdr->count;
671
672         if (netif_running(adapter->netdev)) {
673                 /* Try to get new resources before deleting old */
674                 if ((err = e1000_setup_all_rx_resources(adapter)))
675                         goto err_setup_rx;
676                 if ((err = e1000_setup_all_tx_resources(adapter)))
677                         goto err_setup_tx;
678
679                 /* save the new, restore the old in order to free it,
680                  * then restore the new back again */
681
682                 rx_new = adapter->rx_ring;
683                 tx_new = adapter->tx_ring;
684                 adapter->rx_ring = rx_old;
685                 adapter->tx_ring = tx_old;
686                 e1000_free_all_rx_resources(adapter);
687                 e1000_free_all_tx_resources(adapter);
688                 kfree(tx_old);
689                 kfree(rx_old);
690                 adapter->rx_ring = rx_new;
691                 adapter->tx_ring = tx_new;
692                 if ((err = e1000_up(adapter)))
693                         return err;
694         }
695
696         return 0;
697 err_setup_tx:
698         e1000_free_all_rx_resources(adapter);
699 err_setup_rx:
700         adapter->rx_ring = rx_old;
701         adapter->tx_ring = tx_old;
702         e1000_up(adapter);
703         return err;
704 }
705
706 #define REG_PATTERN_TEST(R, M, W)                                              \
707 {                                                                              \
708         uint32_t pat, value;                                                   \
709         uint32_t test[] =                                                      \
710                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
711         for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
712                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
713                 value = E1000_READ_REG(&adapter->hw, R);                       \
714                 if (value != (test[pat] & W & M)) {                             \
715                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
716                                 "0x%08X expected 0x%08X\n",                    \
717                                 E1000_##R, value, (test[pat] & W & M));        \
718                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
719                                 E1000_82542_##R : E1000_##R;                   \
720                         return 1;                                              \
721                 }                                                              \
722         }                                                                      \
723 }
724
725 #define REG_SET_AND_CHECK(R, M, W)                                             \
726 {                                                                              \
727         uint32_t value;                                                        \
728         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
729         value = E1000_READ_REG(&adapter->hw, R);                               \
730         if ((W & M) != (value & M)) {                                          \
731                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
732                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
733                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
734                         E1000_82542_##R : E1000_##R;                           \
735                 return 1;                                                      \
736         }                                                                      \
737 }
738
739 static int
740 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
741 {
742         uint32_t value, before, after;
743         uint32_t i, toggle;
744
745         /* The status register is Read Only, so a write should fail.
746          * Some bits that get toggled are ignored.
747          */
748         switch (adapter->hw.mac_type) {
749         /* there are several bits on newer hardware that are r/w */
750         case e1000_82571:
751         case e1000_82572:
752         case e1000_80003es2lan:
753                 toggle = 0x7FFFF3FF;
754                 break;
755         case e1000_82573:
756                 toggle = 0x7FFFF033;
757                 break;
758         default:
759                 toggle = 0xFFFFF833;
760                 break;
761         }
762
763         before = E1000_READ_REG(&adapter->hw, STATUS);
764         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
765         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
766         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
767         if (value != after) {
768                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
769                         "0x%08X expected: 0x%08X\n", after, value);
770                 *data = 1;
771                 return 1;
772         }
773         /* restore previous status */
774         E1000_WRITE_REG(&adapter->hw, STATUS, before);
775
776         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
777         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
778         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
779         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
780         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
781         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
782         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
783         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
784         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
785         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
786         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
787         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
788         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
789         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
790
791         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
792         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
793         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
794
795         if (adapter->hw.mac_type >= e1000_82543) {
796
797                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
798                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
799                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
800                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
801                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
802
803                 for (i = 0; i < E1000_RAR_ENTRIES; i++) {
804                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
805                                          0xFFFFFFFF);
806                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
807                                          0xFFFFFFFF);
808                 }
809
810         } else {
811
812                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
813                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
814                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
815                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
816
817         }
818
819         for (i = 0; i < E1000_MC_TBL_SIZE; i++)
820                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
821
822         *data = 0;
823         return 0;
824 }
825
826 static int
827 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
828 {
829         uint16_t temp;
830         uint16_t checksum = 0;
831         uint16_t i;
832
833         *data = 0;
834         /* Read and add up the contents of the EEPROM */
835         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
836                 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
837                         *data = 1;
838                         break;
839                 }
840                 checksum += temp;
841         }
842
843         /* If Checksum is not Correct return error else test passed */
844         if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
845                 *data = 2;
846
847         return *data;
848 }
849
850 static irqreturn_t
851 e1000_test_intr(int irq,
852                 void *data,
853                 struct pt_regs *regs)
854 {
855         struct net_device *netdev = (struct net_device *) data;
856         struct e1000_adapter *adapter = netdev_priv(netdev);
857
858         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
859
860         return IRQ_HANDLED;
861 }
862
863 static int
864 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
865 {
866         struct net_device *netdev = adapter->netdev;
867         uint32_t mask, i=0, shared_int = TRUE;
868         uint32_t irq = adapter->pdev->irq;
869
870         *data = 0;
871
872         /* Hook up test interrupt handler just for this test */
873         if (!request_irq(irq, &e1000_test_intr, SA_PROBEIRQ, netdev->name,
874                          netdev)) {
875                 shared_int = FALSE;
876         } else if (request_irq(irq, &e1000_test_intr, SA_SHIRQ,
877                               netdev->name, netdev)){
878                 *data = 1;
879                 return -1;
880         }
881         DPRINTK(PROBE,INFO, "testing %s interrupt\n",
882                 (shared_int ? "shared" : "unshared"));
883
884         /* Disable all the interrupts */
885         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
886         msec_delay(10);
887
888         /* Test each interrupt */
889         for (; i < 10; i++) {
890
891                 /* Interrupt to test */
892                 mask = 1 << i;
893
894                 if (!shared_int) {
895                         /* Disable the interrupt to be reported in
896                          * the cause register and then force the same
897                          * interrupt and see if one gets posted.  If
898                          * an interrupt was posted to the bus, the
899                          * test failed.
900                          */
901                         adapter->test_icr = 0;
902                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
903                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
904                         msec_delay(10);
905
906                         if (adapter->test_icr & mask) {
907                                 *data = 3;
908                                 break;
909                         }
910                 }
911
912                 /* Enable the interrupt to be reported in
913                  * the cause register and then force the same
914                  * interrupt and see if one gets posted.  If
915                  * an interrupt was not posted to the bus, the
916                  * test failed.
917                  */
918                 adapter->test_icr = 0;
919                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
920                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
921                 msec_delay(10);
922
923                 if (!(adapter->test_icr & mask)) {
924                         *data = 4;
925                         break;
926                 }
927
928                 if (!shared_int) {
929                         /* Disable the other interrupts to be reported in
930                          * the cause register and then force the other
931                          * interrupts and see if any get posted.  If
932                          * an interrupt was posted to the bus, the
933                          * test failed.
934                          */
935                         adapter->test_icr = 0;
936                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
937                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
938                         msec_delay(10);
939
940                         if (adapter->test_icr) {
941                                 *data = 5;
942                                 break;
943                         }
944                 }
945         }
946
947         /* Disable all the interrupts */
948         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
949         msec_delay(10);
950
951         /* Unhook test interrupt handler */
952         free_irq(irq, netdev);
953
954         return *data;
955 }
956
957 static void
958 e1000_free_desc_rings(struct e1000_adapter *adapter)
959 {
960         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
961         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
962         struct pci_dev *pdev = adapter->pdev;
963         int i;
964
965         if (txdr->desc && txdr->buffer_info) {
966                 for (i = 0; i < txdr->count; i++) {
967                         if (txdr->buffer_info[i].dma)
968                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
969                                                  txdr->buffer_info[i].length,
970                                                  PCI_DMA_TODEVICE);
971                         if (txdr->buffer_info[i].skb)
972                                 dev_kfree_skb(txdr->buffer_info[i].skb);
973                 }
974         }
975
976         if (rxdr->desc && rxdr->buffer_info) {
977                 for (i = 0; i < rxdr->count; i++) {
978                         if (rxdr->buffer_info[i].dma)
979                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
980                                                  rxdr->buffer_info[i].length,
981                                                  PCI_DMA_FROMDEVICE);
982                         if (rxdr->buffer_info[i].skb)
983                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
984                 }
985         }
986
987         if (txdr->desc) {
988                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
989                 txdr->desc = NULL;
990         }
991         if (rxdr->desc) {
992                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
993                 rxdr->desc = NULL;
994         }
995
996         kfree(txdr->buffer_info);
997         txdr->buffer_info = NULL;
998         kfree(rxdr->buffer_info);
999         rxdr->buffer_info = NULL;
1000
1001         return;
1002 }
1003
1004 static int
1005 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1006 {
1007         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1008         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1009         struct pci_dev *pdev = adapter->pdev;
1010         uint32_t rctl;
1011         int size, i, ret_val;
1012
1013         /* Setup Tx descriptor ring and Tx buffers */
1014
1015         if (!txdr->count)
1016                 txdr->count = E1000_DEFAULT_TXD;
1017
1018         size = txdr->count * sizeof(struct e1000_buffer);
1019         if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1020                 ret_val = 1;
1021                 goto err_nomem;
1022         }
1023         memset(txdr->buffer_info, 0, size);
1024
1025         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1026         E1000_ROUNDUP(txdr->size, 4096);
1027         if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1028                 ret_val = 2;
1029                 goto err_nomem;
1030         }
1031         memset(txdr->desc, 0, txdr->size);
1032         txdr->next_to_use = txdr->next_to_clean = 0;
1033
1034         E1000_WRITE_REG(&adapter->hw, TDBAL,
1035                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1036         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1037         E1000_WRITE_REG(&adapter->hw, TDLEN,
1038                         txdr->count * sizeof(struct e1000_tx_desc));
1039         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1040         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1041         E1000_WRITE_REG(&adapter->hw, TCTL,
1042                         E1000_TCTL_PSP | E1000_TCTL_EN |
1043                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1044                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1045
1046         for (i = 0; i < txdr->count; i++) {
1047                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1048                 struct sk_buff *skb;
1049                 unsigned int size = 1024;
1050
1051                 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1052                         ret_val = 3;
1053                         goto err_nomem;
1054                 }
1055                 skb_put(skb, size);
1056                 txdr->buffer_info[i].skb = skb;
1057                 txdr->buffer_info[i].length = skb->len;
1058                 txdr->buffer_info[i].dma =
1059                         pci_map_single(pdev, skb->data, skb->len,
1060                                        PCI_DMA_TODEVICE);
1061                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1062                 tx_desc->lower.data = cpu_to_le32(skb->len);
1063                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1064                                                    E1000_TXD_CMD_IFCS |
1065                                                    E1000_TXD_CMD_RPS);
1066                 tx_desc->upper.data = 0;
1067         }
1068
1069         /* Setup Rx descriptor ring and Rx buffers */
1070
1071         if (!rxdr->count)
1072                 rxdr->count = E1000_DEFAULT_RXD;
1073
1074         size = rxdr->count * sizeof(struct e1000_buffer);
1075         if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1076                 ret_val = 4;
1077                 goto err_nomem;
1078         }
1079         memset(rxdr->buffer_info, 0, size);
1080
1081         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1082         if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1083                 ret_val = 5;
1084                 goto err_nomem;
1085         }
1086         memset(rxdr->desc, 0, rxdr->size);
1087         rxdr->next_to_use = rxdr->next_to_clean = 0;
1088
1089         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1090         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1091         E1000_WRITE_REG(&adapter->hw, RDBAL,
1092                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1093         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1094         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1095         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1096         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1097         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1098                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1099                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1100         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1101
1102         for (i = 0; i < rxdr->count; i++) {
1103                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1104                 struct sk_buff *skb;
1105
1106                 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1107                                 GFP_KERNEL))) {
1108                         ret_val = 6;
1109                         goto err_nomem;
1110                 }
1111                 skb_reserve(skb, NET_IP_ALIGN);
1112                 rxdr->buffer_info[i].skb = skb;
1113                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1114                 rxdr->buffer_info[i].dma =
1115                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1116                                        PCI_DMA_FROMDEVICE);
1117                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1118                 memset(skb->data, 0x00, skb->len);
1119         }
1120
1121         return 0;
1122
1123 err_nomem:
1124         e1000_free_desc_rings(adapter);
1125         return ret_val;
1126 }
1127
1128 static void
1129 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1130 {
1131         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1132         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1133         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1134         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1135         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1136 }
1137
1138 static void
1139 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1140 {
1141         uint16_t phy_reg;
1142
1143         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1144          * Extended PHY Specific Control Register to 25MHz clock.  This
1145          * value defaults back to a 2.5MHz clock when the PHY is reset.
1146          */
1147         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1148         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1149         e1000_write_phy_reg(&adapter->hw,
1150                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1151
1152         /* In addition, because of the s/w reset above, we need to enable
1153          * CRS on TX.  This must be set for both full and half duplex
1154          * operation.
1155          */
1156         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1157         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1158         e1000_write_phy_reg(&adapter->hw,
1159                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1160 }
1161
1162 static int
1163 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1164 {
1165         uint32_t ctrl_reg;
1166         uint16_t phy_reg;
1167
1168         /* Setup the Device Control Register for PHY loopback test. */
1169
1170         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1171         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1172                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1173                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1174                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1175                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1176
1177         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1178
1179         /* Read the PHY Specific Control Register (0x10) */
1180         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1181
1182         /* Clear Auto-Crossover bits in PHY Specific Control Register
1183          * (bits 6:5).
1184          */
1185         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1186         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1187
1188         /* Perform software reset on the PHY */
1189         e1000_phy_reset(&adapter->hw);
1190
1191         /* Have to setup TX_CLK and TX_CRS after software reset */
1192         e1000_phy_reset_clk_and_crs(adapter);
1193
1194         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1195
1196         /* Wait for reset to complete. */
1197         udelay(500);
1198
1199         /* Have to setup TX_CLK and TX_CRS after software reset */
1200         e1000_phy_reset_clk_and_crs(adapter);
1201
1202         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1203         e1000_phy_disable_receiver(adapter);
1204
1205         /* Set the loopback bit in the PHY control register. */
1206         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1207         phy_reg |= MII_CR_LOOPBACK;
1208         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1209
1210         /* Setup TX_CLK and TX_CRS one more time. */
1211         e1000_phy_reset_clk_and_crs(adapter);
1212
1213         /* Check Phy Configuration */
1214         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1215         if (phy_reg != 0x4100)
1216                  return 9;
1217
1218         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1219         if (phy_reg != 0x0070)
1220                 return 10;
1221
1222         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1223         if (phy_reg != 0x001A)
1224                 return 11;
1225
1226         return 0;
1227 }
1228
1229 static int
1230 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1231 {
1232         uint32_t ctrl_reg = 0;
1233         uint32_t stat_reg = 0;
1234
1235         adapter->hw.autoneg = FALSE;
1236
1237         if (adapter->hw.phy_type == e1000_phy_m88) {
1238                 /* Auto-MDI/MDIX Off */
1239                 e1000_write_phy_reg(&adapter->hw,
1240                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1241                 /* reset to update Auto-MDI/MDIX */
1242                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1243                 /* autoneg off */
1244                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1245         } else if (adapter->hw.phy_type == e1000_phy_gg82563) {
1246                 e1000_write_phy_reg(&adapter->hw,
1247                                     GG82563_PHY_KMRN_MODE_CTRL,
1248                                     0x1CE);
1249         }
1250         /* force 1000, set loopback */
1251         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1252
1253         /* Now set up the MAC to the same speed/duplex as the PHY. */
1254         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1255         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1256         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1257                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1258                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1259                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1260
1261         if (adapter->hw.media_type == e1000_media_type_copper &&
1262            adapter->hw.phy_type == e1000_phy_m88) {
1263                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1264         } else {
1265                 /* Set the ILOS bit on the fiber Nic is half
1266                  * duplex link is detected. */
1267                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1268                 if ((stat_reg & E1000_STATUS_FD) == 0)
1269                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1270         }
1271
1272         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1273
1274         /* Disable the receiver on the PHY so when a cable is plugged in, the
1275          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1276          */
1277         if (adapter->hw.phy_type == e1000_phy_m88)
1278                 e1000_phy_disable_receiver(adapter);
1279
1280         udelay(500);
1281
1282         return 0;
1283 }
1284
1285 static int
1286 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1287 {
1288         uint16_t phy_reg = 0;
1289         uint16_t count = 0;
1290
1291         switch (adapter->hw.mac_type) {
1292         case e1000_82543:
1293                 if (adapter->hw.media_type == e1000_media_type_copper) {
1294                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1295                          * Some PHY registers get corrupted at random, so
1296                          * attempt this 10 times.
1297                          */
1298                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1299                               count++ < 10);
1300                         if (count < 11)
1301                                 return 0;
1302                 }
1303                 break;
1304
1305         case e1000_82544:
1306         case e1000_82540:
1307         case e1000_82545:
1308         case e1000_82545_rev_3:
1309         case e1000_82546:
1310         case e1000_82546_rev_3:
1311         case e1000_82541:
1312         case e1000_82541_rev_2:
1313         case e1000_82547:
1314         case e1000_82547_rev_2:
1315         case e1000_82571:
1316         case e1000_82572:
1317         case e1000_82573:
1318         case e1000_80003es2lan:
1319                 return e1000_integrated_phy_loopback(adapter);
1320                 break;
1321
1322         default:
1323                 /* Default PHY loopback work is to read the MII
1324                  * control register and assert bit 14 (loopback mode).
1325                  */
1326                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1327                 phy_reg |= MII_CR_LOOPBACK;
1328                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1329                 return 0;
1330                 break;
1331         }
1332
1333         return 8;
1334 }
1335
1336 static int
1337 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1338 {
1339         struct e1000_hw *hw = &adapter->hw;
1340         uint32_t rctl;
1341
1342         if (hw->media_type == e1000_media_type_fiber ||
1343             hw->media_type == e1000_media_type_internal_serdes) {
1344                 switch (hw->mac_type) {
1345                 case e1000_82545:
1346                 case e1000_82546:
1347                 case e1000_82545_rev_3:
1348                 case e1000_82546_rev_3:
1349                         return e1000_set_phy_loopback(adapter);
1350                         break;
1351                 case e1000_82571:
1352                 case e1000_82572:
1353 #define E1000_SERDES_LB_ON 0x410
1354                         e1000_set_phy_loopback(adapter);
1355                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1356                         msec_delay(10);
1357                         return 0;
1358                         break;
1359                 default:
1360                         rctl = E1000_READ_REG(hw, RCTL);
1361                         rctl |= E1000_RCTL_LBM_TCVR;
1362                         E1000_WRITE_REG(hw, RCTL, rctl);
1363                         return 0;
1364                 }
1365         } else if (hw->media_type == e1000_media_type_copper)
1366                 return e1000_set_phy_loopback(adapter);
1367
1368         return 7;
1369 }
1370
1371 static void
1372 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1373 {
1374         struct e1000_hw *hw = &adapter->hw;
1375         uint32_t rctl;
1376         uint16_t phy_reg;
1377
1378         rctl = E1000_READ_REG(hw, RCTL);
1379         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1380         E1000_WRITE_REG(hw, RCTL, rctl);
1381
1382         switch (hw->mac_type) {
1383         case e1000_82571:
1384         case e1000_82572:
1385                 if (hw->media_type == e1000_media_type_fiber ||
1386                     hw->media_type == e1000_media_type_internal_serdes) {
1387 #define E1000_SERDES_LB_OFF 0x400
1388                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1389                         msec_delay(10);
1390                         break;
1391                 }
1392                 /* Fall Through */
1393         case e1000_82545:
1394         case e1000_82546:
1395         case e1000_82545_rev_3:
1396         case e1000_82546_rev_3:
1397         default:
1398                 hw->autoneg = TRUE;
1399                 if (hw->phy_type == e1000_phy_gg82563) {
1400                         e1000_write_phy_reg(hw,
1401                                             GG82563_PHY_KMRN_MODE_CTRL,
1402                                             0x180);
1403                 }
1404                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1405                 if (phy_reg & MII_CR_LOOPBACK) {
1406                         phy_reg &= ~MII_CR_LOOPBACK;
1407                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1408                         e1000_phy_reset(hw);
1409                 }
1410                 break;
1411         }
1412 }
1413
1414 static void
1415 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1416 {
1417         memset(skb->data, 0xFF, frame_size);
1418         frame_size &= ~1;
1419         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1420         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1421         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1422 }
1423
1424 static int
1425 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1426 {
1427         frame_size &= ~1;
1428         if (*(skb->data + 3) == 0xFF) {
1429                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1430                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1431                         return 0;
1432                 }
1433         }
1434         return 13;
1435 }
1436
1437 static int
1438 e1000_run_loopback_test(struct e1000_adapter *adapter)
1439 {
1440         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1441         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1442         struct pci_dev *pdev = adapter->pdev;
1443         int i, j, k, l, lc, good_cnt, ret_val=0;
1444         unsigned long time;
1445
1446         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1447
1448         /* Calculate the loop count based on the largest descriptor ring
1449          * The idea is to wrap the largest ring a number of times using 64
1450          * send/receive pairs during each loop
1451          */
1452
1453         if (rxdr->count <= txdr->count)
1454                 lc = ((txdr->count / 64) * 2) + 1;
1455         else
1456                 lc = ((rxdr->count / 64) * 2) + 1;
1457
1458         k = l = 0;
1459         for (j = 0; j <= lc; j++) { /* loop count loop */
1460                 for (i = 0; i < 64; i++) { /* send the packets */
1461                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1462                                         1024);
1463                         pci_dma_sync_single_for_device(pdev,
1464                                         txdr->buffer_info[k].dma,
1465                                         txdr->buffer_info[k].length,
1466                                         PCI_DMA_TODEVICE);
1467                         if (unlikely(++k == txdr->count)) k = 0;
1468                 }
1469                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1470                 msec_delay(200);
1471                 time = jiffies; /* set the start time for the receive */
1472                 good_cnt = 0;
1473                 do { /* receive the sent packets */
1474                         pci_dma_sync_single_for_cpu(pdev,
1475                                         rxdr->buffer_info[l].dma,
1476                                         rxdr->buffer_info[l].length,
1477                                         PCI_DMA_FROMDEVICE);
1478
1479                         ret_val = e1000_check_lbtest_frame(
1480                                         rxdr->buffer_info[l].skb,
1481                                         1024);
1482                         if (!ret_val)
1483                                 good_cnt++;
1484                         if (unlikely(++l == rxdr->count)) l = 0;
1485                         /* time + 20 msecs (200 msecs on 2.4) is more than
1486                          * enough time to complete the receives, if it's
1487                          * exceeded, break and error off
1488                          */
1489                 } while (good_cnt < 64 && jiffies < (time + 20));
1490                 if (good_cnt != 64) {
1491                         ret_val = 13; /* ret_val is the same as mis-compare */
1492                         break;
1493                 }
1494                 if (jiffies >= (time + 2)) {
1495                         ret_val = 14; /* error code for time out error */
1496                         break;
1497                 }
1498         } /* end loop count loop */
1499         return ret_val;
1500 }
1501
1502 static int
1503 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1504 {
1505         /* PHY loopback cannot be performed if SoL/IDER
1506          * sessions are active */
1507         if (e1000_check_phy_reset_block(&adapter->hw)) {
1508                 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1509                         "when SoL/IDER is active.\n");
1510                 *data = 0;
1511                 goto out;
1512         }
1513
1514         if ((*data = e1000_setup_desc_rings(adapter)))
1515                 goto out;
1516         if ((*data = e1000_setup_loopback_test(adapter)))
1517                 goto err_loopback;
1518         *data = e1000_run_loopback_test(adapter);
1519         e1000_loopback_cleanup(adapter);
1520
1521 err_loopback:
1522         e1000_free_desc_rings(adapter);
1523 out:
1524         return *data;
1525 }
1526
1527 static int
1528 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1529 {
1530         *data = 0;
1531         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1532                 int i = 0;
1533                 adapter->hw.serdes_link_down = TRUE;
1534
1535                 /* On some blade server designs, link establishment
1536                  * could take as long as 2-3 minutes */
1537                 do {
1538                         e1000_check_for_link(&adapter->hw);
1539                         if (adapter->hw.serdes_link_down == FALSE)
1540                                 return *data;
1541                         msec_delay(20);
1542                 } while (i++ < 3750);
1543
1544                 *data = 1;
1545         } else {
1546                 e1000_check_for_link(&adapter->hw);
1547                 if (adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1548                         msec_delay(4000);
1549
1550                 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1551                         *data = 1;
1552                 }
1553         }
1554         return *data;
1555 }
1556
1557 static int
1558 e1000_diag_test_count(struct net_device *netdev)
1559 {
1560         return E1000_TEST_LEN;
1561 }
1562
1563 static void
1564 e1000_diag_test(struct net_device *netdev,
1565                    struct ethtool_test *eth_test, uint64_t *data)
1566 {
1567         struct e1000_adapter *adapter = netdev_priv(netdev);
1568         boolean_t if_running = netif_running(netdev);
1569
1570         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1571                 /* Offline tests */
1572
1573                 /* save speed, duplex, autoneg settings */
1574                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1575                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1576                 uint8_t autoneg = adapter->hw.autoneg;
1577
1578                 /* Link test performed before hardware reset so autoneg doesn't
1579                  * interfere with test result */
1580                 if (e1000_link_test(adapter, &data[4]))
1581                         eth_test->flags |= ETH_TEST_FL_FAILED;
1582
1583                 if (if_running)
1584                         e1000_down(adapter);
1585                 else
1586                         e1000_reset(adapter);
1587
1588                 if (e1000_reg_test(adapter, &data[0]))
1589                         eth_test->flags |= ETH_TEST_FL_FAILED;
1590
1591                 e1000_reset(adapter);
1592                 if (e1000_eeprom_test(adapter, &data[1]))
1593                         eth_test->flags |= ETH_TEST_FL_FAILED;
1594
1595                 e1000_reset(adapter);
1596                 if (e1000_intr_test(adapter, &data[2]))
1597                         eth_test->flags |= ETH_TEST_FL_FAILED;
1598
1599                 e1000_reset(adapter);
1600                 if (e1000_loopback_test(adapter, &data[3]))
1601                         eth_test->flags |= ETH_TEST_FL_FAILED;
1602
1603                 /* restore speed, duplex, autoneg settings */
1604                 adapter->hw.autoneg_advertised = autoneg_advertised;
1605                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1606                 adapter->hw.autoneg = autoneg;
1607
1608                 e1000_reset(adapter);
1609                 if (if_running)
1610                         e1000_up(adapter);
1611         } else {
1612                 /* Online tests */
1613                 if (e1000_link_test(adapter, &data[4]))
1614                         eth_test->flags |= ETH_TEST_FL_FAILED;
1615
1616                 /* Offline tests aren't run; pass by default */
1617                 data[0] = 0;
1618                 data[1] = 0;
1619                 data[2] = 0;
1620                 data[3] = 0;
1621         }
1622         msleep_interruptible(4 * 1000);
1623 }
1624
1625 static void
1626 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1627 {
1628         struct e1000_adapter *adapter = netdev_priv(netdev);
1629         struct e1000_hw *hw = &adapter->hw;
1630
1631         switch (adapter->hw.device_id) {
1632         case E1000_DEV_ID_82542:
1633         case E1000_DEV_ID_82543GC_FIBER:
1634         case E1000_DEV_ID_82543GC_COPPER:
1635         case E1000_DEV_ID_82544EI_FIBER:
1636         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1637         case E1000_DEV_ID_82545EM_FIBER:
1638         case E1000_DEV_ID_82545EM_COPPER:
1639         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1640                 wol->supported = 0;
1641                 wol->wolopts   = 0;
1642                 return;
1643
1644         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1645                 /* device id 10B5 port-A supports wol */
1646                 if (!adapter->ksp3_port_a) {
1647                         wol->supported = 0;
1648                         return;
1649                 }
1650                 /* KSP3 does not suppport UCAST wake-ups for any interface */
1651                 wol->supported = WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1652
1653                 if (adapter->wol & E1000_WUFC_EX)
1654                         DPRINTK(DRV, ERR, "Interface does not support "
1655                         "directed (unicast) frame wake-up packets\n");
1656                 wol->wolopts = 0;
1657                 goto do_defaults;
1658
1659         case E1000_DEV_ID_82546EB_FIBER:
1660         case E1000_DEV_ID_82546GB_FIBER:
1661         case E1000_DEV_ID_82571EB_FIBER:
1662                 /* Wake events only supported on port A for dual fiber */
1663                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1664                         wol->supported = 0;
1665                         wol->wolopts   = 0;
1666                         return;
1667                 }
1668                 /* Fall Through */
1669
1670         default:
1671                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1672                                  WAKE_BCAST | WAKE_MAGIC;
1673                 wol->wolopts = 0;
1674
1675 do_defaults:
1676                 if (adapter->wol & E1000_WUFC_EX)
1677                         wol->wolopts |= WAKE_UCAST;
1678                 if (adapter->wol & E1000_WUFC_MC)
1679                         wol->wolopts |= WAKE_MCAST;
1680                 if (adapter->wol & E1000_WUFC_BC)
1681                         wol->wolopts |= WAKE_BCAST;
1682                 if (adapter->wol & E1000_WUFC_MAG)
1683                         wol->wolopts |= WAKE_MAGIC;
1684                 return;
1685         }
1686 }
1687
1688 static int
1689 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1690 {
1691         struct e1000_adapter *adapter = netdev_priv(netdev);
1692         struct e1000_hw *hw = &adapter->hw;
1693
1694         switch (adapter->hw.device_id) {
1695         case E1000_DEV_ID_82542:
1696         case E1000_DEV_ID_82543GC_FIBER:
1697         case E1000_DEV_ID_82543GC_COPPER:
1698         case E1000_DEV_ID_82544EI_FIBER:
1699         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1700         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1701         case E1000_DEV_ID_82545EM_FIBER:
1702         case E1000_DEV_ID_82545EM_COPPER:
1703                 return wol->wolopts ? -EOPNOTSUPP : 0;
1704
1705         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1706                 /* device id 10B5 port-A supports wol */
1707                 if (!adapter->ksp3_port_a)
1708                         return wol->wolopts ? -EOPNOTSUPP : 0;
1709
1710                 if (wol->wolopts & WAKE_UCAST) {
1711                         DPRINTK(DRV, ERR, "Interface does not support "
1712                         "directed (unicast) frame wake-up packets\n");
1713                         return -EOPNOTSUPP;
1714                 }
1715
1716         case E1000_DEV_ID_82546EB_FIBER:
1717         case E1000_DEV_ID_82546GB_FIBER:
1718         case E1000_DEV_ID_82571EB_FIBER:
1719                 /* Wake events only supported on port A for dual fiber */
1720                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1721                         return wol->wolopts ? -EOPNOTSUPP : 0;
1722                 /* Fall Through */
1723
1724         default:
1725                 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1726                         return -EOPNOTSUPP;
1727
1728                 adapter->wol = 0;
1729
1730                 if (wol->wolopts & WAKE_UCAST)
1731                         adapter->wol |= E1000_WUFC_EX;
1732                 if (wol->wolopts & WAKE_MCAST)
1733                         adapter->wol |= E1000_WUFC_MC;
1734                 if (wol->wolopts & WAKE_BCAST)
1735                         adapter->wol |= E1000_WUFC_BC;
1736                 if (wol->wolopts & WAKE_MAGIC)
1737                         adapter->wol |= E1000_WUFC_MAG;
1738         }
1739
1740         return 0;
1741 }
1742
1743 /* toggle LED 4 times per second = 2 "blinks" per second */
1744 #define E1000_ID_INTERVAL       (HZ/4)
1745
1746 /* bit defines for adapter->led_status */
1747 #define E1000_LED_ON            0
1748
1749 static void
1750 e1000_led_blink_callback(unsigned long data)
1751 {
1752         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1753
1754         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1755                 e1000_led_off(&adapter->hw);
1756         else
1757                 e1000_led_on(&adapter->hw);
1758
1759         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1760 }
1761
1762 static int
1763 e1000_phys_id(struct net_device *netdev, uint32_t data)
1764 {
1765         struct e1000_adapter *adapter = netdev_priv(netdev);
1766
1767         if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1768                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1769
1770         if (adapter->hw.mac_type < e1000_82571) {
1771                 if (!adapter->blink_timer.function) {
1772                         init_timer(&adapter->blink_timer);
1773                         adapter->blink_timer.function = e1000_led_blink_callback;
1774                         adapter->blink_timer.data = (unsigned long) adapter;
1775                 }
1776                 e1000_setup_led(&adapter->hw);
1777                 mod_timer(&adapter->blink_timer, jiffies);
1778                 msleep_interruptible(data * 1000);
1779                 del_timer_sync(&adapter->blink_timer);
1780         } else if (adapter->hw.mac_type < e1000_82573) {
1781                 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1782                         (E1000_LEDCTL_LED2_BLINK_RATE |
1783                          E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
1784                          (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1785                          (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
1786                          (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
1787                 msleep_interruptible(data * 1000);
1788         } else {
1789                 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1790                         (E1000_LEDCTL_LED2_BLINK_RATE |
1791                          E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
1792                          (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1793                          (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1794                          (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1795                 msleep_interruptible(data * 1000);
1796         }
1797
1798         e1000_led_off(&adapter->hw);
1799         clear_bit(E1000_LED_ON, &adapter->led_status);
1800         e1000_cleanup_led(&adapter->hw);
1801
1802         return 0;
1803 }
1804
1805 static int
1806 e1000_nway_reset(struct net_device *netdev)
1807 {
1808         struct e1000_adapter *adapter = netdev_priv(netdev);
1809         if (netif_running(netdev)) {
1810                 e1000_down(adapter);
1811                 e1000_up(adapter);
1812         }
1813         return 0;
1814 }
1815
1816 static int
1817 e1000_get_stats_count(struct net_device *netdev)
1818 {
1819         return E1000_STATS_LEN;
1820 }
1821
1822 static void
1823 e1000_get_ethtool_stats(struct net_device *netdev,
1824                 struct ethtool_stats *stats, uint64_t *data)
1825 {
1826         struct e1000_adapter *adapter = netdev_priv(netdev);
1827         int i;
1828
1829         e1000_update_stats(adapter);
1830         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1831                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1832                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1833                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1834         }
1835 /*      BUG_ON(i != E1000_STATS_LEN); */
1836 }
1837
1838 static void
1839 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1840 {
1841         uint8_t *p = data;
1842         int i;
1843
1844         switch (stringset) {
1845         case ETH_SS_TEST:
1846                 memcpy(data, *e1000_gstrings_test,
1847                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1848                 break;
1849         case ETH_SS_STATS:
1850                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1851                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1852                                ETH_GSTRING_LEN);
1853                         p += ETH_GSTRING_LEN;
1854                 }
1855 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1856                 break;
1857         }
1858 }
1859
1860 static struct ethtool_ops e1000_ethtool_ops = {
1861         .get_settings           = e1000_get_settings,
1862         .set_settings           = e1000_set_settings,
1863         .get_drvinfo            = e1000_get_drvinfo,
1864         .get_regs_len           = e1000_get_regs_len,
1865         .get_regs               = e1000_get_regs,
1866         .get_wol                = e1000_get_wol,
1867         .set_wol                = e1000_set_wol,
1868         .get_msglevel           = e1000_get_msglevel,
1869         .set_msglevel           = e1000_set_msglevel,
1870         .nway_reset             = e1000_nway_reset,
1871         .get_link               = ethtool_op_get_link,
1872         .get_eeprom_len         = e1000_get_eeprom_len,
1873         .get_eeprom             = e1000_get_eeprom,
1874         .set_eeprom             = e1000_set_eeprom,
1875         .get_ringparam          = e1000_get_ringparam,
1876         .set_ringparam          = e1000_set_ringparam,
1877         .get_pauseparam         = e1000_get_pauseparam,
1878         .set_pauseparam         = e1000_set_pauseparam,
1879         .get_rx_csum            = e1000_get_rx_csum,
1880         .set_rx_csum            = e1000_set_rx_csum,
1881         .get_tx_csum            = e1000_get_tx_csum,
1882         .set_tx_csum            = e1000_set_tx_csum,
1883         .get_sg                 = ethtool_op_get_sg,
1884         .set_sg                 = ethtool_op_set_sg,
1885 #ifdef NETIF_F_TSO
1886         .get_tso                = ethtool_op_get_tso,
1887         .set_tso                = e1000_set_tso,
1888 #endif
1889         .self_test_count        = e1000_diag_test_count,
1890         .self_test              = e1000_diag_test,
1891         .get_strings            = e1000_get_strings,
1892         .phys_id                = e1000_phys_id,
1893         .get_stats_count        = e1000_get_stats_count,
1894         .get_ethtool_stats      = e1000_get_ethtool_stats,
1895         .get_perm_addr          = ethtool_op_get_perm_addr,
1896 };
1897
1898 void e1000_set_ethtool_ops(struct net_device *netdev)
1899 {
1900         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1901 }