Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-serial
[pandora-kernel.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28 *******************************************************************************/
29
30 /* ethtool support for e1000 */
31
32 #include "e1000.h"
33
34 #include <asm/uaccess.h>
35
36 struct e1000_stats {
37         char stat_string[ETH_GSTRING_LEN];
38         int sizeof_stat;
39         int stat_offset;
40 };
41
42 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
43                       offsetof(struct e1000_adapter, m)
44 static const struct e1000_stats e1000_gstrings_stats[] = {
45         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
46         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
47         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
48         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
49         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
50         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
51         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
52         { "multicast", E1000_STAT(net_stats.multicast) },
53         { "collisions", E1000_STAT(net_stats.collisions) },
54         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
55         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
56         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
57         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
58         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
59         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
60         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
61         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
62         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
63         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
64         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
65         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
66         { "tx_deferred_ok", E1000_STAT(stats.dc) },
67         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
68         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
69         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
70         { "rx_long_length_errors", E1000_STAT(stats.roc) },
71         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
72         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
73         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
74         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
75         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
76         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
77         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
78         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
79         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
80         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
81         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
82         { "rx_header_split", E1000_STAT(rx_hdr_split) },
83         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
84 };
85
86 #define E1000_QUEUE_STATS_LEN 0
87 #define E1000_GLOBAL_STATS_LEN  \
88         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
89 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
90 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
91         "Register test  (offline)", "Eeprom test    (offline)",
92         "Interrupt test (offline)", "Loopback test  (offline)",
93         "Link test   (on/offline)"
94 };
95 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
96
97 static int
98 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
99 {
100         struct e1000_adapter *adapter = netdev_priv(netdev);
101         struct e1000_hw *hw = &adapter->hw;
102
103         if (hw->media_type == e1000_media_type_copper) {
104
105                 ecmd->supported = (SUPPORTED_10baseT_Half |
106                                    SUPPORTED_10baseT_Full |
107                                    SUPPORTED_100baseT_Half |
108                                    SUPPORTED_100baseT_Full |
109                                    SUPPORTED_1000baseT_Full|
110                                    SUPPORTED_Autoneg |
111                                    SUPPORTED_TP);
112
113                 ecmd->advertising = ADVERTISED_TP;
114
115                 if (hw->autoneg == 1) {
116                         ecmd->advertising |= ADVERTISED_Autoneg;
117
118                         /* the e1000 autoneg seems to match ethtool nicely */
119
120                         ecmd->advertising |= hw->autoneg_advertised;
121                 }
122
123                 ecmd->port = PORT_TP;
124                 ecmd->phy_address = hw->phy_addr;
125
126                 if (hw->mac_type == e1000_82543)
127                         ecmd->transceiver = XCVR_EXTERNAL;
128                 else
129                         ecmd->transceiver = XCVR_INTERNAL;
130
131         } else {
132                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
133                                      SUPPORTED_FIBRE |
134                                      SUPPORTED_Autoneg);
135
136                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
137                                      ADVERTISED_FIBRE |
138                                      ADVERTISED_Autoneg);
139
140                 ecmd->port = PORT_FIBRE;
141
142                 if (hw->mac_type >= e1000_82545)
143                         ecmd->transceiver = XCVR_INTERNAL;
144                 else
145                         ecmd->transceiver = XCVR_EXTERNAL;
146         }
147
148         if (netif_carrier_ok(adapter->netdev)) {
149
150                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
151                                                    &adapter->link_duplex);
152                 ecmd->speed = adapter->link_speed;
153
154                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
155                  *          and HALF_DUPLEX != DUPLEX_HALF */
156
157                 if (adapter->link_duplex == FULL_DUPLEX)
158                         ecmd->duplex = DUPLEX_FULL;
159                 else
160                         ecmd->duplex = DUPLEX_HALF;
161         } else {
162                 ecmd->speed = -1;
163                 ecmd->duplex = -1;
164         }
165
166         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
167                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
168         return 0;
169 }
170
171 static int
172 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
173 {
174         struct e1000_adapter *adapter = netdev_priv(netdev);
175         struct e1000_hw *hw = &adapter->hw;
176
177         /* When SoL/IDER sessions are active, autoneg/speed/duplex
178          * cannot be changed */
179         if (e1000_check_phy_reset_block(hw)) {
180                 DPRINTK(DRV, ERR, "Cannot change link characteristics "
181                         "when SoL/IDER is active.\n");
182                 return -EINVAL;
183         }
184
185         if (ecmd->autoneg == AUTONEG_ENABLE) {
186                 hw->autoneg = 1;
187                 if (hw->media_type == e1000_media_type_fiber)
188                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
189                                      ADVERTISED_FIBRE |
190                                      ADVERTISED_Autoneg;
191                 else
192                         hw->autoneg_advertised = ADVERTISED_10baseT_Half |
193                                                   ADVERTISED_10baseT_Full |
194                                                   ADVERTISED_100baseT_Half |
195                                                   ADVERTISED_100baseT_Full |
196                                                   ADVERTISED_1000baseT_Full|
197                                                   ADVERTISED_Autoneg |
198                                                   ADVERTISED_TP;
199                 ecmd->advertising = hw->autoneg_advertised;
200         } else
201                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
202                         return -EINVAL;
203
204         /* reset the link */
205
206         if (netif_running(adapter->netdev)) {
207                 e1000_down(adapter);
208                 e1000_reset(adapter);
209                 e1000_up(adapter);
210         } else
211                 e1000_reset(adapter);
212
213         return 0;
214 }
215
216 static void
217 e1000_get_pauseparam(struct net_device *netdev,
218                      struct ethtool_pauseparam *pause)
219 {
220         struct e1000_adapter *adapter = netdev_priv(netdev);
221         struct e1000_hw *hw = &adapter->hw;
222
223         pause->autoneg =
224                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
225
226         if (hw->fc == e1000_fc_rx_pause)
227                 pause->rx_pause = 1;
228         else if (hw->fc == e1000_fc_tx_pause)
229                 pause->tx_pause = 1;
230         else if (hw->fc == e1000_fc_full) {
231                 pause->rx_pause = 1;
232                 pause->tx_pause = 1;
233         }
234 }
235
236 static int
237 e1000_set_pauseparam(struct net_device *netdev,
238                      struct ethtool_pauseparam *pause)
239 {
240         struct e1000_adapter *adapter = netdev_priv(netdev);
241         struct e1000_hw *hw = &adapter->hw;
242
243         adapter->fc_autoneg = pause->autoneg;
244
245         if (pause->rx_pause && pause->tx_pause)
246                 hw->fc = e1000_fc_full;
247         else if (pause->rx_pause && !pause->tx_pause)
248                 hw->fc = e1000_fc_rx_pause;
249         else if (!pause->rx_pause && pause->tx_pause)
250                 hw->fc = e1000_fc_tx_pause;
251         else if (!pause->rx_pause && !pause->tx_pause)
252                 hw->fc = e1000_fc_none;
253
254         hw->original_fc = hw->fc;
255
256         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
257                 if (netif_running(adapter->netdev)) {
258                         e1000_down(adapter);
259                         e1000_up(adapter);
260                 } else
261                         e1000_reset(adapter);
262         } else
263                 return ((hw->media_type == e1000_media_type_fiber) ?
264                         e1000_setup_link(hw) : e1000_force_mac_fc(hw));
265
266         return 0;
267 }
268
269 static uint32_t
270 e1000_get_rx_csum(struct net_device *netdev)
271 {
272         struct e1000_adapter *adapter = netdev_priv(netdev);
273         return adapter->rx_csum;
274 }
275
276 static int
277 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
278 {
279         struct e1000_adapter *adapter = netdev_priv(netdev);
280         adapter->rx_csum = data;
281
282         if (netif_running(netdev)) {
283                 e1000_down(adapter);
284                 e1000_up(adapter);
285         } else
286                 e1000_reset(adapter);
287         return 0;
288 }
289
290 static uint32_t
291 e1000_get_tx_csum(struct net_device *netdev)
292 {
293         return (netdev->features & NETIF_F_HW_CSUM) != 0;
294 }
295
296 static int
297 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
298 {
299         struct e1000_adapter *adapter = netdev_priv(netdev);
300
301         if (adapter->hw.mac_type < e1000_82543) {
302                 if (!data)
303                         return -EINVAL;
304                 return 0;
305         }
306
307         if (data)
308                 netdev->features |= NETIF_F_HW_CSUM;
309         else
310                 netdev->features &= ~NETIF_F_HW_CSUM;
311
312         return 0;
313 }
314
315 #ifdef NETIF_F_TSO
316 static int
317 e1000_set_tso(struct net_device *netdev, uint32_t data)
318 {
319         struct e1000_adapter *adapter = netdev_priv(netdev);
320         if ((adapter->hw.mac_type < e1000_82544) ||
321             (adapter->hw.mac_type == e1000_82547))
322                 return data ? -EINVAL : 0;
323
324         if (data)
325                 netdev->features |= NETIF_F_TSO;
326         else
327                 netdev->features &= ~NETIF_F_TSO;
328
329         DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
330         adapter->tso_force = TRUE;
331         return 0;
332 }
333 #endif /* NETIF_F_TSO */
334
335 static uint32_t
336 e1000_get_msglevel(struct net_device *netdev)
337 {
338         struct e1000_adapter *adapter = netdev_priv(netdev);
339         return adapter->msg_enable;
340 }
341
342 static void
343 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
344 {
345         struct e1000_adapter *adapter = netdev_priv(netdev);
346         adapter->msg_enable = data;
347 }
348
349 static int
350 e1000_get_regs_len(struct net_device *netdev)
351 {
352 #define E1000_REGS_LEN 32
353         return E1000_REGS_LEN * sizeof(uint32_t);
354 }
355
356 static void
357 e1000_get_regs(struct net_device *netdev,
358                struct ethtool_regs *regs, void *p)
359 {
360         struct e1000_adapter *adapter = netdev_priv(netdev);
361         struct e1000_hw *hw = &adapter->hw;
362         uint32_t *regs_buff = p;
363         uint16_t phy_data;
364
365         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
366
367         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
368
369         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
370         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
371
372         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
373         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
374         regs_buff[4]  = E1000_READ_REG(hw, RDH);
375         regs_buff[5]  = E1000_READ_REG(hw, RDT);
376         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
377
378         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
379         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
380         regs_buff[9]  = E1000_READ_REG(hw, TDH);
381         regs_buff[10] = E1000_READ_REG(hw, TDT);
382         regs_buff[11] = E1000_READ_REG(hw, TIDV);
383
384         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
385         if (hw->phy_type == e1000_phy_igp) {
386                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
387                                     IGP01E1000_PHY_AGC_A);
388                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
389                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
390                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
391                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
392                                     IGP01E1000_PHY_AGC_B);
393                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
394                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
395                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
396                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
397                                     IGP01E1000_PHY_AGC_C);
398                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
399                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
400                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
401                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
402                                     IGP01E1000_PHY_AGC_D);
403                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
404                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
405                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
406                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
407                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
408                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
409                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
410                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
411                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
412                                     IGP01E1000_PHY_PCS_INIT_REG);
413                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
414                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
415                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
416                 regs_buff[20] = 0; /* polarity correction enabled (always) */
417                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
418                 regs_buff[23] = regs_buff[18]; /* mdix mode */
419                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
420         } else {
421                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
422                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
423                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
424                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
425                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
426                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
427                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
428                 regs_buff[18] = regs_buff[13]; /* cable polarity */
429                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
430                 regs_buff[20] = regs_buff[17]; /* polarity correction */
431                 /* phy receive errors */
432                 regs_buff[22] = adapter->phy_stats.receive_errors;
433                 regs_buff[23] = regs_buff[13]; /* mdix mode */
434         }
435         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
436         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
437         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
438         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
439         if (hw->mac_type >= e1000_82540 &&
440            hw->media_type == e1000_media_type_copper) {
441                 regs_buff[26] = E1000_READ_REG(hw, MANC);
442         }
443 }
444
445 static int
446 e1000_get_eeprom_len(struct net_device *netdev)
447 {
448         struct e1000_adapter *adapter = netdev_priv(netdev);
449         return adapter->hw.eeprom.word_size * 2;
450 }
451
452 static int
453 e1000_get_eeprom(struct net_device *netdev,
454                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
455 {
456         struct e1000_adapter *adapter = netdev_priv(netdev);
457         struct e1000_hw *hw = &adapter->hw;
458         uint16_t *eeprom_buff;
459         int first_word, last_word;
460         int ret_val = 0;
461         uint16_t i;
462
463         if (eeprom->len == 0)
464                 return -EINVAL;
465
466         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
467
468         first_word = eeprom->offset >> 1;
469         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
470
471         eeprom_buff = kmalloc(sizeof(uint16_t) *
472                         (last_word - first_word + 1), GFP_KERNEL);
473         if (!eeprom_buff)
474                 return -ENOMEM;
475
476         if (hw->eeprom.type == e1000_eeprom_spi)
477                 ret_val = e1000_read_eeprom(hw, first_word,
478                                             last_word - first_word + 1,
479                                             eeprom_buff);
480         else {
481                 for (i = 0; i < last_word - first_word + 1; i++)
482                         if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
483                                                         &eeprom_buff[i])))
484                                 break;
485         }
486
487         /* Device's eeprom is always little-endian, word addressable */
488         for (i = 0; i < last_word - first_word + 1; i++)
489                 le16_to_cpus(&eeprom_buff[i]);
490
491         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
492                         eeprom->len);
493         kfree(eeprom_buff);
494
495         return ret_val;
496 }
497
498 static int
499 e1000_set_eeprom(struct net_device *netdev,
500                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
501 {
502         struct e1000_adapter *adapter = netdev_priv(netdev);
503         struct e1000_hw *hw = &adapter->hw;
504         uint16_t *eeprom_buff;
505         void *ptr;
506         int max_len, first_word, last_word, ret_val = 0;
507         uint16_t i;
508
509         if (eeprom->len == 0)
510                 return -EOPNOTSUPP;
511
512         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
513                 return -EFAULT;
514
515         max_len = hw->eeprom.word_size * 2;
516
517         first_word = eeprom->offset >> 1;
518         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
519         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
520         if (!eeprom_buff)
521                 return -ENOMEM;
522
523         ptr = (void *)eeprom_buff;
524
525         if (eeprom->offset & 1) {
526                 /* need read/modify/write of first changed EEPROM word */
527                 /* only the second byte of the word is being modified */
528                 ret_val = e1000_read_eeprom(hw, first_word, 1,
529                                             &eeprom_buff[0]);
530                 ptr++;
531         }
532         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
533                 /* need read/modify/write of last changed EEPROM word */
534                 /* only the first byte of the word is being modified */
535                 ret_val = e1000_read_eeprom(hw, last_word, 1,
536                                   &eeprom_buff[last_word - first_word]);
537         }
538
539         /* Device's eeprom is always little-endian, word addressable */
540         for (i = 0; i < last_word - first_word + 1; i++)
541                 le16_to_cpus(&eeprom_buff[i]);
542
543         memcpy(ptr, bytes, eeprom->len);
544
545         for (i = 0; i < last_word - first_word + 1; i++)
546                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
547
548         ret_val = e1000_write_eeprom(hw, first_word,
549                                      last_word - first_word + 1, eeprom_buff);
550
551         /* Update the checksum over the first part of the EEPROM if needed
552          * and flush shadow RAM for 82573 conrollers */
553         if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
554                                 (hw->mac_type == e1000_82573)))
555                 e1000_update_eeprom_checksum(hw);
556
557         kfree(eeprom_buff);
558         return ret_val;
559 }
560
561 static void
562 e1000_get_drvinfo(struct net_device *netdev,
563                        struct ethtool_drvinfo *drvinfo)
564 {
565         struct e1000_adapter *adapter = netdev_priv(netdev);
566         char firmware_version[32];
567         uint16_t eeprom_data;
568
569         strncpy(drvinfo->driver,  e1000_driver_name, 32);
570         strncpy(drvinfo->version, e1000_driver_version, 32);
571
572         /* EEPROM image version # is reported as firmware version # for
573          * 8257{1|2|3} controllers */
574         e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
575         switch (adapter->hw.mac_type) {
576         case e1000_82571:
577         case e1000_82572:
578         case e1000_82573:
579         case e1000_80003es2lan:
580                 sprintf(firmware_version, "%d.%d-%d",
581                         (eeprom_data & 0xF000) >> 12,
582                         (eeprom_data & 0x0FF0) >> 4,
583                         eeprom_data & 0x000F);
584                 break;
585         default:
586                 sprintf(firmware_version, "N/A");
587         }
588
589         strncpy(drvinfo->fw_version, firmware_version, 32);
590         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
591         drvinfo->n_stats = E1000_STATS_LEN;
592         drvinfo->testinfo_len = E1000_TEST_LEN;
593         drvinfo->regdump_len = e1000_get_regs_len(netdev);
594         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
595 }
596
597 static void
598 e1000_get_ringparam(struct net_device *netdev,
599                     struct ethtool_ringparam *ring)
600 {
601         struct e1000_adapter *adapter = netdev_priv(netdev);
602         e1000_mac_type mac_type = adapter->hw.mac_type;
603         struct e1000_tx_ring *txdr = adapter->tx_ring;
604         struct e1000_rx_ring *rxdr = adapter->rx_ring;
605
606         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
607                 E1000_MAX_82544_RXD;
608         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
609                 E1000_MAX_82544_TXD;
610         ring->rx_mini_max_pending = 0;
611         ring->rx_jumbo_max_pending = 0;
612         ring->rx_pending = rxdr->count;
613         ring->tx_pending = txdr->count;
614         ring->rx_mini_pending = 0;
615         ring->rx_jumbo_pending = 0;
616 }
617
618 static int
619 e1000_set_ringparam(struct net_device *netdev,
620                     struct ethtool_ringparam *ring)
621 {
622         struct e1000_adapter *adapter = netdev_priv(netdev);
623         e1000_mac_type mac_type = adapter->hw.mac_type;
624         struct e1000_tx_ring *txdr, *tx_old, *tx_new;
625         struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
626         int i, err, tx_ring_size, rx_ring_size;
627
628         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
629                 return -EINVAL;
630
631         tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
632         rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
633
634         if (netif_running(adapter->netdev))
635                 e1000_down(adapter);
636
637         tx_old = adapter->tx_ring;
638         rx_old = adapter->rx_ring;
639
640         adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
641         if (!adapter->tx_ring) {
642                 err = -ENOMEM;
643                 goto err_setup_rx;
644         }
645         memset(adapter->tx_ring, 0, tx_ring_size);
646
647         adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
648         if (!adapter->rx_ring) {
649                 kfree(adapter->tx_ring);
650                 err = -ENOMEM;
651                 goto err_setup_rx;
652         }
653         memset(adapter->rx_ring, 0, rx_ring_size);
654
655         txdr = adapter->tx_ring;
656         rxdr = adapter->rx_ring;
657
658         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
659         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
660                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
661         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
662
663         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
664         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
665                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
666         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
667
668         for (i = 0; i < adapter->num_tx_queues; i++)
669                 txdr[i].count = txdr->count;
670         for (i = 0; i < adapter->num_rx_queues; i++)
671                 rxdr[i].count = rxdr->count;
672
673         if (netif_running(adapter->netdev)) {
674                 /* Try to get new resources before deleting old */
675                 if ((err = e1000_setup_all_rx_resources(adapter)))
676                         goto err_setup_rx;
677                 if ((err = e1000_setup_all_tx_resources(adapter)))
678                         goto err_setup_tx;
679
680                 /* save the new, restore the old in order to free it,
681                  * then restore the new back again */
682
683                 rx_new = adapter->rx_ring;
684                 tx_new = adapter->tx_ring;
685                 adapter->rx_ring = rx_old;
686                 adapter->tx_ring = tx_old;
687                 e1000_free_all_rx_resources(adapter);
688                 e1000_free_all_tx_resources(adapter);
689                 kfree(tx_old);
690                 kfree(rx_old);
691                 adapter->rx_ring = rx_new;
692                 adapter->tx_ring = tx_new;
693                 if ((err = e1000_up(adapter)))
694                         return err;
695         }
696
697         return 0;
698 err_setup_tx:
699         e1000_free_all_rx_resources(adapter);
700 err_setup_rx:
701         adapter->rx_ring = rx_old;
702         adapter->tx_ring = tx_old;
703         e1000_up(adapter);
704         return err;
705 }
706
707 #define REG_PATTERN_TEST(R, M, W)                                              \
708 {                                                                              \
709         uint32_t pat, value;                                                   \
710         uint32_t test[] =                                                      \
711                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
712         for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
713                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
714                 value = E1000_READ_REG(&adapter->hw, R);                       \
715                 if (value != (test[pat] & W & M)) {                             \
716                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
717                                 "0x%08X expected 0x%08X\n",                    \
718                                 E1000_##R, value, (test[pat] & W & M));        \
719                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
720                                 E1000_82542_##R : E1000_##R;                   \
721                         return 1;                                              \
722                 }                                                              \
723         }                                                                      \
724 }
725
726 #define REG_SET_AND_CHECK(R, M, W)                                             \
727 {                                                                              \
728         uint32_t value;                                                        \
729         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
730         value = E1000_READ_REG(&adapter->hw, R);                               \
731         if ((W & M) != (value & M)) {                                          \
732                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
733                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
734                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
735                         E1000_82542_##R : E1000_##R;                           \
736                 return 1;                                                      \
737         }                                                                      \
738 }
739
740 static int
741 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
742 {
743         uint32_t value, before, after;
744         uint32_t i, toggle;
745
746         /* The status register is Read Only, so a write should fail.
747          * Some bits that get toggled are ignored.
748          */
749         switch (adapter->hw.mac_type) {
750         /* there are several bits on newer hardware that are r/w */
751         case e1000_82571:
752         case e1000_82572:
753         case e1000_80003es2lan:
754                 toggle = 0x7FFFF3FF;
755                 break;
756         case e1000_82573:
757                 toggle = 0x7FFFF033;
758                 break;
759         default:
760                 toggle = 0xFFFFF833;
761                 break;
762         }
763
764         before = E1000_READ_REG(&adapter->hw, STATUS);
765         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
766         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
767         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
768         if (value != after) {
769                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
770                         "0x%08X expected: 0x%08X\n", after, value);
771                 *data = 1;
772                 return 1;
773         }
774         /* restore previous status */
775         E1000_WRITE_REG(&adapter->hw, STATUS, before);
776
777         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
778         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
779         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
780         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
781         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
782         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
783         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
784         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
785         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
786         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
787         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
788         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
789         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
790         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
791
792         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
793         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
794         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
795
796         if (adapter->hw.mac_type >= e1000_82543) {
797
798                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
799                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
800                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
801                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
802                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
803
804                 for (i = 0; i < E1000_RAR_ENTRIES; i++) {
805                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
806                                          0xFFFFFFFF);
807                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
808                                          0xFFFFFFFF);
809                 }
810
811         } else {
812
813                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
814                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
815                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
816                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
817
818         }
819
820         for (i = 0; i < E1000_MC_TBL_SIZE; i++)
821                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
822
823         *data = 0;
824         return 0;
825 }
826
827 static int
828 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
829 {
830         uint16_t temp;
831         uint16_t checksum = 0;
832         uint16_t i;
833
834         *data = 0;
835         /* Read and add up the contents of the EEPROM */
836         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
837                 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
838                         *data = 1;
839                         break;
840                 }
841                 checksum += temp;
842         }
843
844         /* If Checksum is not Correct return error else test passed */
845         if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
846                 *data = 2;
847
848         return *data;
849 }
850
851 static irqreturn_t
852 e1000_test_intr(int irq,
853                 void *data,
854                 struct pt_regs *regs)
855 {
856         struct net_device *netdev = (struct net_device *) data;
857         struct e1000_adapter *adapter = netdev_priv(netdev);
858
859         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
860
861         return IRQ_HANDLED;
862 }
863
864 static int
865 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
866 {
867         struct net_device *netdev = adapter->netdev;
868         uint32_t mask, i=0, shared_int = TRUE;
869         uint32_t irq = adapter->pdev->irq;
870
871         *data = 0;
872
873         /* Hook up test interrupt handler just for this test */
874         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED,
875                          netdev->name, netdev)) {
876                 shared_int = FALSE;
877         } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
878                               netdev->name, netdev)){
879                 *data = 1;
880                 return -1;
881         }
882         DPRINTK(PROBE,INFO, "testing %s interrupt\n",
883                 (shared_int ? "shared" : "unshared"));
884
885         /* Disable all the interrupts */
886         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
887         msec_delay(10);
888
889         /* Test each interrupt */
890         for (; i < 10; i++) {
891
892                 /* Interrupt to test */
893                 mask = 1 << i;
894
895                 if (!shared_int) {
896                         /* Disable the interrupt to be reported in
897                          * the cause register and then force the same
898                          * interrupt and see if one gets posted.  If
899                          * an interrupt was posted to the bus, the
900                          * test failed.
901                          */
902                         adapter->test_icr = 0;
903                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
904                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
905                         msec_delay(10);
906
907                         if (adapter->test_icr & mask) {
908                                 *data = 3;
909                                 break;
910                         }
911                 }
912
913                 /* Enable the interrupt to be reported in
914                  * the cause register and then force the same
915                  * interrupt and see if one gets posted.  If
916                  * an interrupt was not posted to the bus, the
917                  * test failed.
918                  */
919                 adapter->test_icr = 0;
920                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
921                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
922                 msec_delay(10);
923
924                 if (!(adapter->test_icr & mask)) {
925                         *data = 4;
926                         break;
927                 }
928
929                 if (!shared_int) {
930                         /* Disable the other interrupts to be reported in
931                          * the cause register and then force the other
932                          * interrupts and see if any get posted.  If
933                          * an interrupt was posted to the bus, the
934                          * test failed.
935                          */
936                         adapter->test_icr = 0;
937                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
938                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
939                         msec_delay(10);
940
941                         if (adapter->test_icr) {
942                                 *data = 5;
943                                 break;
944                         }
945                 }
946         }
947
948         /* Disable all the interrupts */
949         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
950         msec_delay(10);
951
952         /* Unhook test interrupt handler */
953         free_irq(irq, netdev);
954
955         return *data;
956 }
957
958 static void
959 e1000_free_desc_rings(struct e1000_adapter *adapter)
960 {
961         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
962         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
963         struct pci_dev *pdev = adapter->pdev;
964         int i;
965
966         if (txdr->desc && txdr->buffer_info) {
967                 for (i = 0; i < txdr->count; i++) {
968                         if (txdr->buffer_info[i].dma)
969                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
970                                                  txdr->buffer_info[i].length,
971                                                  PCI_DMA_TODEVICE);
972                         if (txdr->buffer_info[i].skb)
973                                 dev_kfree_skb(txdr->buffer_info[i].skb);
974                 }
975         }
976
977         if (rxdr->desc && rxdr->buffer_info) {
978                 for (i = 0; i < rxdr->count; i++) {
979                         if (rxdr->buffer_info[i].dma)
980                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
981                                                  rxdr->buffer_info[i].length,
982                                                  PCI_DMA_FROMDEVICE);
983                         if (rxdr->buffer_info[i].skb)
984                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
985                 }
986         }
987
988         if (txdr->desc) {
989                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
990                 txdr->desc = NULL;
991         }
992         if (rxdr->desc) {
993                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
994                 rxdr->desc = NULL;
995         }
996
997         kfree(txdr->buffer_info);
998         txdr->buffer_info = NULL;
999         kfree(rxdr->buffer_info);
1000         rxdr->buffer_info = NULL;
1001
1002         return;
1003 }
1004
1005 static int
1006 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1007 {
1008         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1009         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1010         struct pci_dev *pdev = adapter->pdev;
1011         uint32_t rctl;
1012         int size, i, ret_val;
1013
1014         /* Setup Tx descriptor ring and Tx buffers */
1015
1016         if (!txdr->count)
1017                 txdr->count = E1000_DEFAULT_TXD;
1018
1019         size = txdr->count * sizeof(struct e1000_buffer);
1020         if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1021                 ret_val = 1;
1022                 goto err_nomem;
1023         }
1024         memset(txdr->buffer_info, 0, size);
1025
1026         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1027         E1000_ROUNDUP(txdr->size, 4096);
1028         if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1029                 ret_val = 2;
1030                 goto err_nomem;
1031         }
1032         memset(txdr->desc, 0, txdr->size);
1033         txdr->next_to_use = txdr->next_to_clean = 0;
1034
1035         E1000_WRITE_REG(&adapter->hw, TDBAL,
1036                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1037         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1038         E1000_WRITE_REG(&adapter->hw, TDLEN,
1039                         txdr->count * sizeof(struct e1000_tx_desc));
1040         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1041         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1042         E1000_WRITE_REG(&adapter->hw, TCTL,
1043                         E1000_TCTL_PSP | E1000_TCTL_EN |
1044                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1045                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1046
1047         for (i = 0; i < txdr->count; i++) {
1048                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1049                 struct sk_buff *skb;
1050                 unsigned int size = 1024;
1051
1052                 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1053                         ret_val = 3;
1054                         goto err_nomem;
1055                 }
1056                 skb_put(skb, size);
1057                 txdr->buffer_info[i].skb = skb;
1058                 txdr->buffer_info[i].length = skb->len;
1059                 txdr->buffer_info[i].dma =
1060                         pci_map_single(pdev, skb->data, skb->len,
1061                                        PCI_DMA_TODEVICE);
1062                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1063                 tx_desc->lower.data = cpu_to_le32(skb->len);
1064                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1065                                                    E1000_TXD_CMD_IFCS |
1066                                                    E1000_TXD_CMD_RPS);
1067                 tx_desc->upper.data = 0;
1068         }
1069
1070         /* Setup Rx descriptor ring and Rx buffers */
1071
1072         if (!rxdr->count)
1073                 rxdr->count = E1000_DEFAULT_RXD;
1074
1075         size = rxdr->count * sizeof(struct e1000_buffer);
1076         if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1077                 ret_val = 4;
1078                 goto err_nomem;
1079         }
1080         memset(rxdr->buffer_info, 0, size);
1081
1082         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1083         if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1084                 ret_val = 5;
1085                 goto err_nomem;
1086         }
1087         memset(rxdr->desc, 0, rxdr->size);
1088         rxdr->next_to_use = rxdr->next_to_clean = 0;
1089
1090         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1091         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1092         E1000_WRITE_REG(&adapter->hw, RDBAL,
1093                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1094         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1095         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1096         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1097         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1098         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1099                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1100                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1101         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1102
1103         for (i = 0; i < rxdr->count; i++) {
1104                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1105                 struct sk_buff *skb;
1106
1107                 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1108                                 GFP_KERNEL))) {
1109                         ret_val = 6;
1110                         goto err_nomem;
1111                 }
1112                 skb_reserve(skb, NET_IP_ALIGN);
1113                 rxdr->buffer_info[i].skb = skb;
1114                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1115                 rxdr->buffer_info[i].dma =
1116                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1117                                        PCI_DMA_FROMDEVICE);
1118                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1119                 memset(skb->data, 0x00, skb->len);
1120         }
1121
1122         return 0;
1123
1124 err_nomem:
1125         e1000_free_desc_rings(adapter);
1126         return ret_val;
1127 }
1128
1129 static void
1130 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1131 {
1132         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1133         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1134         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1135         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1136         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1137 }
1138
1139 static void
1140 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1141 {
1142         uint16_t phy_reg;
1143
1144         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1145          * Extended PHY Specific Control Register to 25MHz clock.  This
1146          * value defaults back to a 2.5MHz clock when the PHY is reset.
1147          */
1148         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1149         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1150         e1000_write_phy_reg(&adapter->hw,
1151                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1152
1153         /* In addition, because of the s/w reset above, we need to enable
1154          * CRS on TX.  This must be set for both full and half duplex
1155          * operation.
1156          */
1157         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1158         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1159         e1000_write_phy_reg(&adapter->hw,
1160                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1161 }
1162
1163 static int
1164 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1165 {
1166         uint32_t ctrl_reg;
1167         uint16_t phy_reg;
1168
1169         /* Setup the Device Control Register for PHY loopback test. */
1170
1171         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1172         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1173                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1174                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1175                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1176                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1177
1178         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1179
1180         /* Read the PHY Specific Control Register (0x10) */
1181         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1182
1183         /* Clear Auto-Crossover bits in PHY Specific Control Register
1184          * (bits 6:5).
1185          */
1186         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1187         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1188
1189         /* Perform software reset on the PHY */
1190         e1000_phy_reset(&adapter->hw);
1191
1192         /* Have to setup TX_CLK and TX_CRS after software reset */
1193         e1000_phy_reset_clk_and_crs(adapter);
1194
1195         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1196
1197         /* Wait for reset to complete. */
1198         udelay(500);
1199
1200         /* Have to setup TX_CLK and TX_CRS after software reset */
1201         e1000_phy_reset_clk_and_crs(adapter);
1202
1203         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1204         e1000_phy_disable_receiver(adapter);
1205
1206         /* Set the loopback bit in the PHY control register. */
1207         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1208         phy_reg |= MII_CR_LOOPBACK;
1209         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1210
1211         /* Setup TX_CLK and TX_CRS one more time. */
1212         e1000_phy_reset_clk_and_crs(adapter);
1213
1214         /* Check Phy Configuration */
1215         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1216         if (phy_reg != 0x4100)
1217                  return 9;
1218
1219         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1220         if (phy_reg != 0x0070)
1221                 return 10;
1222
1223         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1224         if (phy_reg != 0x001A)
1225                 return 11;
1226
1227         return 0;
1228 }
1229
1230 static int
1231 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1232 {
1233         uint32_t ctrl_reg = 0;
1234         uint32_t stat_reg = 0;
1235
1236         adapter->hw.autoneg = FALSE;
1237
1238         if (adapter->hw.phy_type == e1000_phy_m88) {
1239                 /* Auto-MDI/MDIX Off */
1240                 e1000_write_phy_reg(&adapter->hw,
1241                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1242                 /* reset to update Auto-MDI/MDIX */
1243                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1244                 /* autoneg off */
1245                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1246         } else if (adapter->hw.phy_type == e1000_phy_gg82563) {
1247                 e1000_write_phy_reg(&adapter->hw,
1248                                     GG82563_PHY_KMRN_MODE_CTRL,
1249                                     0x1CE);
1250         }
1251         /* force 1000, set loopback */
1252         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1253
1254         /* Now set up the MAC to the same speed/duplex as the PHY. */
1255         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1256         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1257         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1258                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1259                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1260                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1261
1262         if (adapter->hw.media_type == e1000_media_type_copper &&
1263            adapter->hw.phy_type == e1000_phy_m88) {
1264                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1265         } else {
1266                 /* Set the ILOS bit on the fiber Nic is half
1267                  * duplex link is detected. */
1268                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1269                 if ((stat_reg & E1000_STATUS_FD) == 0)
1270                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1271         }
1272
1273         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1274
1275         /* Disable the receiver on the PHY so when a cable is plugged in, the
1276          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1277          */
1278         if (adapter->hw.phy_type == e1000_phy_m88)
1279                 e1000_phy_disable_receiver(adapter);
1280
1281         udelay(500);
1282
1283         return 0;
1284 }
1285
1286 static int
1287 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1288 {
1289         uint16_t phy_reg = 0;
1290         uint16_t count = 0;
1291
1292         switch (adapter->hw.mac_type) {
1293         case e1000_82543:
1294                 if (adapter->hw.media_type == e1000_media_type_copper) {
1295                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1296                          * Some PHY registers get corrupted at random, so
1297                          * attempt this 10 times.
1298                          */
1299                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1300                               count++ < 10);
1301                         if (count < 11)
1302                                 return 0;
1303                 }
1304                 break;
1305
1306         case e1000_82544:
1307         case e1000_82540:
1308         case e1000_82545:
1309         case e1000_82545_rev_3:
1310         case e1000_82546:
1311         case e1000_82546_rev_3:
1312         case e1000_82541:
1313         case e1000_82541_rev_2:
1314         case e1000_82547:
1315         case e1000_82547_rev_2:
1316         case e1000_82571:
1317         case e1000_82572:
1318         case e1000_82573:
1319         case e1000_80003es2lan:
1320                 return e1000_integrated_phy_loopback(adapter);
1321                 break;
1322
1323         default:
1324                 /* Default PHY loopback work is to read the MII
1325                  * control register and assert bit 14 (loopback mode).
1326                  */
1327                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1328                 phy_reg |= MII_CR_LOOPBACK;
1329                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1330                 return 0;
1331                 break;
1332         }
1333
1334         return 8;
1335 }
1336
1337 static int
1338 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1339 {
1340         struct e1000_hw *hw = &adapter->hw;
1341         uint32_t rctl;
1342
1343         if (hw->media_type == e1000_media_type_fiber ||
1344             hw->media_type == e1000_media_type_internal_serdes) {
1345                 switch (hw->mac_type) {
1346                 case e1000_82545:
1347                 case e1000_82546:
1348                 case e1000_82545_rev_3:
1349                 case e1000_82546_rev_3:
1350                         return e1000_set_phy_loopback(adapter);
1351                         break;
1352                 case e1000_82571:
1353                 case e1000_82572:
1354 #define E1000_SERDES_LB_ON 0x410
1355                         e1000_set_phy_loopback(adapter);
1356                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1357                         msec_delay(10);
1358                         return 0;
1359                         break;
1360                 default:
1361                         rctl = E1000_READ_REG(hw, RCTL);
1362                         rctl |= E1000_RCTL_LBM_TCVR;
1363                         E1000_WRITE_REG(hw, RCTL, rctl);
1364                         return 0;
1365                 }
1366         } else if (hw->media_type == e1000_media_type_copper)
1367                 return e1000_set_phy_loopback(adapter);
1368
1369         return 7;
1370 }
1371
1372 static void
1373 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1374 {
1375         struct e1000_hw *hw = &adapter->hw;
1376         uint32_t rctl;
1377         uint16_t phy_reg;
1378
1379         rctl = E1000_READ_REG(hw, RCTL);
1380         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1381         E1000_WRITE_REG(hw, RCTL, rctl);
1382
1383         switch (hw->mac_type) {
1384         case e1000_82571:
1385         case e1000_82572:
1386                 if (hw->media_type == e1000_media_type_fiber ||
1387                     hw->media_type == e1000_media_type_internal_serdes) {
1388 #define E1000_SERDES_LB_OFF 0x400
1389                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1390                         msec_delay(10);
1391                         break;
1392                 }
1393                 /* Fall Through */
1394         case e1000_82545:
1395         case e1000_82546:
1396         case e1000_82545_rev_3:
1397         case e1000_82546_rev_3:
1398         default:
1399                 hw->autoneg = TRUE;
1400                 if (hw->phy_type == e1000_phy_gg82563) {
1401                         e1000_write_phy_reg(hw,
1402                                             GG82563_PHY_KMRN_MODE_CTRL,
1403                                             0x180);
1404                 }
1405                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1406                 if (phy_reg & MII_CR_LOOPBACK) {
1407                         phy_reg &= ~MII_CR_LOOPBACK;
1408                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1409                         e1000_phy_reset(hw);
1410                 }
1411                 break;
1412         }
1413 }
1414
1415 static void
1416 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1417 {
1418         memset(skb->data, 0xFF, frame_size);
1419         frame_size &= ~1;
1420         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1421         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1422         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1423 }
1424
1425 static int
1426 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1427 {
1428         frame_size &= ~1;
1429         if (*(skb->data + 3) == 0xFF) {
1430                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1431                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1432                         return 0;
1433                 }
1434         }
1435         return 13;
1436 }
1437
1438 static int
1439 e1000_run_loopback_test(struct e1000_adapter *adapter)
1440 {
1441         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1442         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1443         struct pci_dev *pdev = adapter->pdev;
1444         int i, j, k, l, lc, good_cnt, ret_val=0;
1445         unsigned long time;
1446
1447         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1448
1449         /* Calculate the loop count based on the largest descriptor ring
1450          * The idea is to wrap the largest ring a number of times using 64
1451          * send/receive pairs during each loop
1452          */
1453
1454         if (rxdr->count <= txdr->count)
1455                 lc = ((txdr->count / 64) * 2) + 1;
1456         else
1457                 lc = ((rxdr->count / 64) * 2) + 1;
1458
1459         k = l = 0;
1460         for (j = 0; j <= lc; j++) { /* loop count loop */
1461                 for (i = 0; i < 64; i++) { /* send the packets */
1462                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1463                                         1024);
1464                         pci_dma_sync_single_for_device(pdev,
1465                                         txdr->buffer_info[k].dma,
1466                                         txdr->buffer_info[k].length,
1467                                         PCI_DMA_TODEVICE);
1468                         if (unlikely(++k == txdr->count)) k = 0;
1469                 }
1470                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1471                 msec_delay(200);
1472                 time = jiffies; /* set the start time for the receive */
1473                 good_cnt = 0;
1474                 do { /* receive the sent packets */
1475                         pci_dma_sync_single_for_cpu(pdev,
1476                                         rxdr->buffer_info[l].dma,
1477                                         rxdr->buffer_info[l].length,
1478                                         PCI_DMA_FROMDEVICE);
1479
1480                         ret_val = e1000_check_lbtest_frame(
1481                                         rxdr->buffer_info[l].skb,
1482                                         1024);
1483                         if (!ret_val)
1484                                 good_cnt++;
1485                         if (unlikely(++l == rxdr->count)) l = 0;
1486                         /* time + 20 msecs (200 msecs on 2.4) is more than
1487                          * enough time to complete the receives, if it's
1488                          * exceeded, break and error off
1489                          */
1490                 } while (good_cnt < 64 && jiffies < (time + 20));
1491                 if (good_cnt != 64) {
1492                         ret_val = 13; /* ret_val is the same as mis-compare */
1493                         break;
1494                 }
1495                 if (jiffies >= (time + 2)) {
1496                         ret_val = 14; /* error code for time out error */
1497                         break;
1498                 }
1499         } /* end loop count loop */
1500         return ret_val;
1501 }
1502
1503 static int
1504 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1505 {
1506         /* PHY loopback cannot be performed if SoL/IDER
1507          * sessions are active */
1508         if (e1000_check_phy_reset_block(&adapter->hw)) {
1509                 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1510                         "when SoL/IDER is active.\n");
1511                 *data = 0;
1512                 goto out;
1513         }
1514
1515         if ((*data = e1000_setup_desc_rings(adapter)))
1516                 goto out;
1517         if ((*data = e1000_setup_loopback_test(adapter)))
1518                 goto err_loopback;
1519         *data = e1000_run_loopback_test(adapter);
1520         e1000_loopback_cleanup(adapter);
1521
1522 err_loopback:
1523         e1000_free_desc_rings(adapter);
1524 out:
1525         return *data;
1526 }
1527
1528 static int
1529 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1530 {
1531         *data = 0;
1532         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1533                 int i = 0;
1534                 adapter->hw.serdes_link_down = TRUE;
1535
1536                 /* On some blade server designs, link establishment
1537                  * could take as long as 2-3 minutes */
1538                 do {
1539                         e1000_check_for_link(&adapter->hw);
1540                         if (adapter->hw.serdes_link_down == FALSE)
1541                                 return *data;
1542                         msec_delay(20);
1543                 } while (i++ < 3750);
1544
1545                 *data = 1;
1546         } else {
1547                 e1000_check_for_link(&adapter->hw);
1548                 if (adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1549                         msec_delay(4000);
1550
1551                 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1552                         *data = 1;
1553                 }
1554         }
1555         return *data;
1556 }
1557
1558 static int
1559 e1000_diag_test_count(struct net_device *netdev)
1560 {
1561         return E1000_TEST_LEN;
1562 }
1563
1564 static void
1565 e1000_diag_test(struct net_device *netdev,
1566                    struct ethtool_test *eth_test, uint64_t *data)
1567 {
1568         struct e1000_adapter *adapter = netdev_priv(netdev);
1569         boolean_t if_running = netif_running(netdev);
1570
1571         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1572                 /* Offline tests */
1573
1574                 /* save speed, duplex, autoneg settings */
1575                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1576                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1577                 uint8_t autoneg = adapter->hw.autoneg;
1578
1579                 /* Link test performed before hardware reset so autoneg doesn't
1580                  * interfere with test result */
1581                 if (e1000_link_test(adapter, &data[4]))
1582                         eth_test->flags |= ETH_TEST_FL_FAILED;
1583
1584                 if (if_running)
1585                         e1000_down(adapter);
1586                 else
1587                         e1000_reset(adapter);
1588
1589                 if (e1000_reg_test(adapter, &data[0]))
1590                         eth_test->flags |= ETH_TEST_FL_FAILED;
1591
1592                 e1000_reset(adapter);
1593                 if (e1000_eeprom_test(adapter, &data[1]))
1594                         eth_test->flags |= ETH_TEST_FL_FAILED;
1595
1596                 e1000_reset(adapter);
1597                 if (e1000_intr_test(adapter, &data[2]))
1598                         eth_test->flags |= ETH_TEST_FL_FAILED;
1599
1600                 e1000_reset(adapter);
1601                 if (e1000_loopback_test(adapter, &data[3]))
1602                         eth_test->flags |= ETH_TEST_FL_FAILED;
1603
1604                 /* restore speed, duplex, autoneg settings */
1605                 adapter->hw.autoneg_advertised = autoneg_advertised;
1606                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1607                 adapter->hw.autoneg = autoneg;
1608
1609                 e1000_reset(adapter);
1610                 if (if_running)
1611                         e1000_up(adapter);
1612         } else {
1613                 /* Online tests */
1614                 if (e1000_link_test(adapter, &data[4]))
1615                         eth_test->flags |= ETH_TEST_FL_FAILED;
1616
1617                 /* Offline tests aren't run; pass by default */
1618                 data[0] = 0;
1619                 data[1] = 0;
1620                 data[2] = 0;
1621                 data[3] = 0;
1622         }
1623         msleep_interruptible(4 * 1000);
1624 }
1625
1626 static void
1627 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1628 {
1629         struct e1000_adapter *adapter = netdev_priv(netdev);
1630         struct e1000_hw *hw = &adapter->hw;
1631
1632         switch (adapter->hw.device_id) {
1633         case E1000_DEV_ID_82542:
1634         case E1000_DEV_ID_82543GC_FIBER:
1635         case E1000_DEV_ID_82543GC_COPPER:
1636         case E1000_DEV_ID_82544EI_FIBER:
1637         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1638         case E1000_DEV_ID_82545EM_FIBER:
1639         case E1000_DEV_ID_82545EM_COPPER:
1640         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1641                 wol->supported = 0;
1642                 wol->wolopts   = 0;
1643                 return;
1644
1645         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1646                 /* device id 10B5 port-A supports wol */
1647                 if (!adapter->ksp3_port_a) {
1648                         wol->supported = 0;
1649                         return;
1650                 }
1651                 /* KSP3 does not suppport UCAST wake-ups for any interface */
1652                 wol->supported = WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1653
1654                 if (adapter->wol & E1000_WUFC_EX)
1655                         DPRINTK(DRV, ERR, "Interface does not support "
1656                         "directed (unicast) frame wake-up packets\n");
1657                 wol->wolopts = 0;
1658                 goto do_defaults;
1659
1660         case E1000_DEV_ID_82546EB_FIBER:
1661         case E1000_DEV_ID_82546GB_FIBER:
1662         case E1000_DEV_ID_82571EB_FIBER:
1663                 /* Wake events only supported on port A for dual fiber */
1664                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1665                         wol->supported = 0;
1666                         wol->wolopts   = 0;
1667                         return;
1668                 }
1669                 /* Fall Through */
1670
1671         default:
1672                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1673                                  WAKE_BCAST | WAKE_MAGIC;
1674                 wol->wolopts = 0;
1675
1676 do_defaults:
1677                 if (adapter->wol & E1000_WUFC_EX)
1678                         wol->wolopts |= WAKE_UCAST;
1679                 if (adapter->wol & E1000_WUFC_MC)
1680                         wol->wolopts |= WAKE_MCAST;
1681                 if (adapter->wol & E1000_WUFC_BC)
1682                         wol->wolopts |= WAKE_BCAST;
1683                 if (adapter->wol & E1000_WUFC_MAG)
1684                         wol->wolopts |= WAKE_MAGIC;
1685                 return;
1686         }
1687 }
1688
1689 static int
1690 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1691 {
1692         struct e1000_adapter *adapter = netdev_priv(netdev);
1693         struct e1000_hw *hw = &adapter->hw;
1694
1695         switch (adapter->hw.device_id) {
1696         case E1000_DEV_ID_82542:
1697         case E1000_DEV_ID_82543GC_FIBER:
1698         case E1000_DEV_ID_82543GC_COPPER:
1699         case E1000_DEV_ID_82544EI_FIBER:
1700         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1701         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1702         case E1000_DEV_ID_82545EM_FIBER:
1703         case E1000_DEV_ID_82545EM_COPPER:
1704                 return wol->wolopts ? -EOPNOTSUPP : 0;
1705
1706         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1707                 /* device id 10B5 port-A supports wol */
1708                 if (!adapter->ksp3_port_a)
1709                         return wol->wolopts ? -EOPNOTSUPP : 0;
1710
1711                 if (wol->wolopts & WAKE_UCAST) {
1712                         DPRINTK(DRV, ERR, "Interface does not support "
1713                         "directed (unicast) frame wake-up packets\n");
1714                         return -EOPNOTSUPP;
1715                 }
1716
1717         case E1000_DEV_ID_82546EB_FIBER:
1718         case E1000_DEV_ID_82546GB_FIBER:
1719         case E1000_DEV_ID_82571EB_FIBER:
1720                 /* Wake events only supported on port A for dual fiber */
1721                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1722                         return wol->wolopts ? -EOPNOTSUPP : 0;
1723                 /* Fall Through */
1724
1725         default:
1726                 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1727                         return -EOPNOTSUPP;
1728
1729                 adapter->wol = 0;
1730
1731                 if (wol->wolopts & WAKE_UCAST)
1732                         adapter->wol |= E1000_WUFC_EX;
1733                 if (wol->wolopts & WAKE_MCAST)
1734                         adapter->wol |= E1000_WUFC_MC;
1735                 if (wol->wolopts & WAKE_BCAST)
1736                         adapter->wol |= E1000_WUFC_BC;
1737                 if (wol->wolopts & WAKE_MAGIC)
1738                         adapter->wol |= E1000_WUFC_MAG;
1739         }
1740
1741         return 0;
1742 }
1743
1744 /* toggle LED 4 times per second = 2 "blinks" per second */
1745 #define E1000_ID_INTERVAL       (HZ/4)
1746
1747 /* bit defines for adapter->led_status */
1748 #define E1000_LED_ON            0
1749
1750 static void
1751 e1000_led_blink_callback(unsigned long data)
1752 {
1753         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1754
1755         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1756                 e1000_led_off(&adapter->hw);
1757         else
1758                 e1000_led_on(&adapter->hw);
1759
1760         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1761 }
1762
1763 static int
1764 e1000_phys_id(struct net_device *netdev, uint32_t data)
1765 {
1766         struct e1000_adapter *adapter = netdev_priv(netdev);
1767
1768         if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1769                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1770
1771         if (adapter->hw.mac_type < e1000_82571) {
1772                 if (!adapter->blink_timer.function) {
1773                         init_timer(&adapter->blink_timer);
1774                         adapter->blink_timer.function = e1000_led_blink_callback;
1775                         adapter->blink_timer.data = (unsigned long) adapter;
1776                 }
1777                 e1000_setup_led(&adapter->hw);
1778                 mod_timer(&adapter->blink_timer, jiffies);
1779                 msleep_interruptible(data * 1000);
1780                 del_timer_sync(&adapter->blink_timer);
1781         } else if (adapter->hw.mac_type < e1000_82573) {
1782                 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1783                         (E1000_LEDCTL_LED2_BLINK_RATE |
1784                          E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
1785                          (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1786                          (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
1787                          (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
1788                 msleep_interruptible(data * 1000);
1789         } else {
1790                 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1791                         (E1000_LEDCTL_LED2_BLINK_RATE |
1792                          E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
1793                          (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1794                          (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1795                          (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1796                 msleep_interruptible(data * 1000);
1797         }
1798
1799         e1000_led_off(&adapter->hw);
1800         clear_bit(E1000_LED_ON, &adapter->led_status);
1801         e1000_cleanup_led(&adapter->hw);
1802
1803         return 0;
1804 }
1805
1806 static int
1807 e1000_nway_reset(struct net_device *netdev)
1808 {
1809         struct e1000_adapter *adapter = netdev_priv(netdev);
1810         if (netif_running(netdev)) {
1811                 e1000_down(adapter);
1812                 e1000_up(adapter);
1813         }
1814         return 0;
1815 }
1816
1817 static int
1818 e1000_get_stats_count(struct net_device *netdev)
1819 {
1820         return E1000_STATS_LEN;
1821 }
1822
1823 static void
1824 e1000_get_ethtool_stats(struct net_device *netdev,
1825                 struct ethtool_stats *stats, uint64_t *data)
1826 {
1827         struct e1000_adapter *adapter = netdev_priv(netdev);
1828         int i;
1829
1830         e1000_update_stats(adapter);
1831         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1832                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1833                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1834                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1835         }
1836 /*      BUG_ON(i != E1000_STATS_LEN); */
1837 }
1838
1839 static void
1840 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1841 {
1842         uint8_t *p = data;
1843         int i;
1844
1845         switch (stringset) {
1846         case ETH_SS_TEST:
1847                 memcpy(data, *e1000_gstrings_test,
1848                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1849                 break;
1850         case ETH_SS_STATS:
1851                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1852                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1853                                ETH_GSTRING_LEN);
1854                         p += ETH_GSTRING_LEN;
1855                 }
1856 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1857                 break;
1858         }
1859 }
1860
1861 static struct ethtool_ops e1000_ethtool_ops = {
1862         .get_settings           = e1000_get_settings,
1863         .set_settings           = e1000_set_settings,
1864         .get_drvinfo            = e1000_get_drvinfo,
1865         .get_regs_len           = e1000_get_regs_len,
1866         .get_regs               = e1000_get_regs,
1867         .get_wol                = e1000_get_wol,
1868         .set_wol                = e1000_set_wol,
1869         .get_msglevel           = e1000_get_msglevel,
1870         .set_msglevel           = e1000_set_msglevel,
1871         .nway_reset             = e1000_nway_reset,
1872         .get_link               = ethtool_op_get_link,
1873         .get_eeprom_len         = e1000_get_eeprom_len,
1874         .get_eeprom             = e1000_get_eeprom,
1875         .set_eeprom             = e1000_set_eeprom,
1876         .get_ringparam          = e1000_get_ringparam,
1877         .set_ringparam          = e1000_set_ringparam,
1878         .get_pauseparam         = e1000_get_pauseparam,
1879         .set_pauseparam         = e1000_set_pauseparam,
1880         .get_rx_csum            = e1000_get_rx_csum,
1881         .set_rx_csum            = e1000_set_rx_csum,
1882         .get_tx_csum            = e1000_get_tx_csum,
1883         .set_tx_csum            = e1000_set_tx_csum,
1884         .get_sg                 = ethtool_op_get_sg,
1885         .set_sg                 = ethtool_op_set_sg,
1886 #ifdef NETIF_F_TSO
1887         .get_tso                = ethtool_op_get_tso,
1888         .set_tso                = e1000_set_tso,
1889 #endif
1890         .self_test_count        = e1000_diag_test_count,
1891         .self_test              = e1000_diag_test,
1892         .get_strings            = e1000_get_strings,
1893         .phys_id                = e1000_phys_id,
1894         .get_stats_count        = e1000_get_stats_count,
1895         .get_ethtool_stats      = e1000_get_ethtool_stats,
1896         .get_perm_addr          = ethtool_op_get_perm_addr,
1897 };
1898
1899 void e1000_set_ethtool_ops(struct net_device *netdev)
1900 {
1901         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1902 }