Merge ../linux-2.6-watchdog-mm
[pandora-kernel.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reinit_locked(struct e1000_adapter *adapter);
41 extern void e1000_reset(struct e1000_adapter *adapter);
42 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
43 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
44 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
46 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
47 extern void e1000_update_stats(struct e1000_adapter *adapter);
48
49
50 struct e1000_stats {
51         char stat_string[ETH_GSTRING_LEN];
52         int sizeof_stat;
53         int stat_offset;
54 };
55
56 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
57                       offsetof(struct e1000_adapter, m)
58 static const struct e1000_stats e1000_gstrings_stats[] = {
59         { "rx_packets", E1000_STAT(stats.gprc) },
60         { "tx_packets", E1000_STAT(stats.gptc) },
61         { "rx_bytes", E1000_STAT(stats.gorcl) },
62         { "tx_bytes", E1000_STAT(stats.gotcl) },
63         { "rx_broadcast", E1000_STAT(stats.bprc) },
64         { "tx_broadcast", E1000_STAT(stats.bptc) },
65         { "rx_multicast", E1000_STAT(stats.mprc) },
66         { "tx_multicast", E1000_STAT(stats.mptc) },
67         { "rx_errors", E1000_STAT(stats.rxerrc) },
68         { "tx_errors", E1000_STAT(stats.txerrc) },
69         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
70         { "multicast", E1000_STAT(stats.mprc) },
71         { "collisions", E1000_STAT(stats.colc) },
72         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
73         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
74         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
75         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
76         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
77         { "rx_missed_errors", E1000_STAT(stats.mpc) },
78         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
79         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
80         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
81         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
82         { "tx_window_errors", E1000_STAT(stats.latecol) },
83         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
84         { "tx_deferred_ok", E1000_STAT(stats.dc) },
85         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
86         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
87         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
88         { "tx_restart_queue", E1000_STAT(restart_queue) },
89         { "rx_long_length_errors", E1000_STAT(stats.roc) },
90         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
91         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
92         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
93         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
94         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
95         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
96         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
97         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
98         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
99         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
100         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
101         { "rx_header_split", E1000_STAT(rx_hdr_split) },
102         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
103         { "tx_smbus", E1000_STAT(stats.mgptc) },
104         { "rx_smbus", E1000_STAT(stats.mgprc) },
105         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
106 };
107
108 #define E1000_QUEUE_STATS_LEN 0
109 #define E1000_GLOBAL_STATS_LEN  \
110         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
111 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
112 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
113         "Register test  (offline)", "Eeprom test    (offline)",
114         "Interrupt test (offline)", "Loopback test  (offline)",
115         "Link test   (on/offline)"
116 };
117 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
118
119 static int
120 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
121 {
122         struct e1000_adapter *adapter = netdev_priv(netdev);
123         struct e1000_hw *hw = &adapter->hw;
124
125         if (hw->media_type == e1000_media_type_copper) {
126
127                 ecmd->supported = (SUPPORTED_10baseT_Half |
128                                    SUPPORTED_10baseT_Full |
129                                    SUPPORTED_100baseT_Half |
130                                    SUPPORTED_100baseT_Full |
131                                    SUPPORTED_1000baseT_Full|
132                                    SUPPORTED_Autoneg |
133                                    SUPPORTED_TP);
134                 if (hw->phy_type == e1000_phy_ife)
135                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
136                 ecmd->advertising = ADVERTISED_TP;
137
138                 if (hw->autoneg == 1) {
139                         ecmd->advertising |= ADVERTISED_Autoneg;
140                         /* the e1000 autoneg seems to match ethtool nicely */
141                         ecmd->advertising |= hw->autoneg_advertised;
142                 }
143
144                 ecmd->port = PORT_TP;
145                 ecmd->phy_address = hw->phy_addr;
146
147                 if (hw->mac_type == e1000_82543)
148                         ecmd->transceiver = XCVR_EXTERNAL;
149                 else
150                         ecmd->transceiver = XCVR_INTERNAL;
151
152         } else {
153                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
154                                      SUPPORTED_FIBRE |
155                                      SUPPORTED_Autoneg);
156
157                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
158                                      ADVERTISED_FIBRE |
159                                      ADVERTISED_Autoneg);
160
161                 ecmd->port = PORT_FIBRE;
162
163                 if (hw->mac_type >= e1000_82545)
164                         ecmd->transceiver = XCVR_INTERNAL;
165                 else
166                         ecmd->transceiver = XCVR_EXTERNAL;
167         }
168
169         if (netif_carrier_ok(adapter->netdev)) {
170
171                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
172                                                    &adapter->link_duplex);
173                 ecmd->speed = adapter->link_speed;
174
175                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
176                  *          and HALF_DUPLEX != DUPLEX_HALF */
177
178                 if (adapter->link_duplex == FULL_DUPLEX)
179                         ecmd->duplex = DUPLEX_FULL;
180                 else
181                         ecmd->duplex = DUPLEX_HALF;
182         } else {
183                 ecmd->speed = -1;
184                 ecmd->duplex = -1;
185         }
186
187         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
188                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
189         return 0;
190 }
191
192 static int
193 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
194 {
195         struct e1000_adapter *adapter = netdev_priv(netdev);
196         struct e1000_hw *hw = &adapter->hw;
197
198         /* When SoL/IDER sessions are active, autoneg/speed/duplex
199          * cannot be changed */
200         if (e1000_check_phy_reset_block(hw)) {
201                 DPRINTK(DRV, ERR, "Cannot change link characteristics "
202                         "when SoL/IDER is active.\n");
203                 return -EINVAL;
204         }
205
206         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
207                 msleep(1);
208
209         if (ecmd->autoneg == AUTONEG_ENABLE) {
210                 hw->autoneg = 1;
211                 if (hw->media_type == e1000_media_type_fiber)
212                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
213                                      ADVERTISED_FIBRE |
214                                      ADVERTISED_Autoneg;
215                 else
216                         hw->autoneg_advertised = ecmd->advertising |
217                                                  ADVERTISED_TP |
218                                                  ADVERTISED_Autoneg;
219                 ecmd->advertising = hw->autoneg_advertised;
220         } else
221                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
222                         clear_bit(__E1000_RESETTING, &adapter->flags);
223                         return -EINVAL;
224                 }
225
226         /* reset the link */
227
228         if (netif_running(adapter->netdev)) {
229                 e1000_down(adapter);
230                 e1000_up(adapter);
231         } else
232                 e1000_reset(adapter);
233
234         clear_bit(__E1000_RESETTING, &adapter->flags);
235         return 0;
236 }
237
238 static void
239 e1000_get_pauseparam(struct net_device *netdev,
240                      struct ethtool_pauseparam *pause)
241 {
242         struct e1000_adapter *adapter = netdev_priv(netdev);
243         struct e1000_hw *hw = &adapter->hw;
244
245         pause->autoneg =
246                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
247
248         if (hw->fc == E1000_FC_RX_PAUSE)
249                 pause->rx_pause = 1;
250         else if (hw->fc == E1000_FC_TX_PAUSE)
251                 pause->tx_pause = 1;
252         else if (hw->fc == E1000_FC_FULL) {
253                 pause->rx_pause = 1;
254                 pause->tx_pause = 1;
255         }
256 }
257
258 static int
259 e1000_set_pauseparam(struct net_device *netdev,
260                      struct ethtool_pauseparam *pause)
261 {
262         struct e1000_adapter *adapter = netdev_priv(netdev);
263         struct e1000_hw *hw = &adapter->hw;
264         int retval = 0;
265
266         adapter->fc_autoneg = pause->autoneg;
267
268         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
269                 msleep(1);
270
271         if (pause->rx_pause && pause->tx_pause)
272                 hw->fc = E1000_FC_FULL;
273         else if (pause->rx_pause && !pause->tx_pause)
274                 hw->fc = E1000_FC_RX_PAUSE;
275         else if (!pause->rx_pause && pause->tx_pause)
276                 hw->fc = E1000_FC_TX_PAUSE;
277         else if (!pause->rx_pause && !pause->tx_pause)
278                 hw->fc = E1000_FC_NONE;
279
280         hw->original_fc = hw->fc;
281
282         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
283                 if (netif_running(adapter->netdev)) {
284                         e1000_down(adapter);
285                         e1000_up(adapter);
286                 } else
287                         e1000_reset(adapter);
288         } else
289                 retval = ((hw->media_type == e1000_media_type_fiber) ?
290                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
291
292         clear_bit(__E1000_RESETTING, &adapter->flags);
293         return retval;
294 }
295
296 static uint32_t
297 e1000_get_rx_csum(struct net_device *netdev)
298 {
299         struct e1000_adapter *adapter = netdev_priv(netdev);
300         return adapter->rx_csum;
301 }
302
303 static int
304 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
305 {
306         struct e1000_adapter *adapter = netdev_priv(netdev);
307         adapter->rx_csum = data;
308
309         if (netif_running(netdev))
310                 e1000_reinit_locked(adapter);
311         else
312                 e1000_reset(adapter);
313         return 0;
314 }
315
316 static uint32_t
317 e1000_get_tx_csum(struct net_device *netdev)
318 {
319         return (netdev->features & NETIF_F_HW_CSUM) != 0;
320 }
321
322 static int
323 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
324 {
325         struct e1000_adapter *adapter = netdev_priv(netdev);
326
327         if (adapter->hw.mac_type < e1000_82543) {
328                 if (!data)
329                         return -EINVAL;
330                 return 0;
331         }
332
333         if (data)
334                 netdev->features |= NETIF_F_HW_CSUM;
335         else
336                 netdev->features &= ~NETIF_F_HW_CSUM;
337
338         return 0;
339 }
340
341 #ifdef NETIF_F_TSO
342 static int
343 e1000_set_tso(struct net_device *netdev, uint32_t data)
344 {
345         struct e1000_adapter *adapter = netdev_priv(netdev);
346         if ((adapter->hw.mac_type < e1000_82544) ||
347             (adapter->hw.mac_type == e1000_82547))
348                 return data ? -EINVAL : 0;
349
350         if (data)
351                 netdev->features |= NETIF_F_TSO;
352         else
353                 netdev->features &= ~NETIF_F_TSO;
354
355 #ifdef NETIF_F_TSO6
356         if (data)
357                 netdev->features |= NETIF_F_TSO6;
358         else
359                 netdev->features &= ~NETIF_F_TSO6;
360 #endif
361
362         DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
363         adapter->tso_force = TRUE;
364         return 0;
365 }
366 #endif /* NETIF_F_TSO */
367
368 static uint32_t
369 e1000_get_msglevel(struct net_device *netdev)
370 {
371         struct e1000_adapter *adapter = netdev_priv(netdev);
372         return adapter->msg_enable;
373 }
374
375 static void
376 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
377 {
378         struct e1000_adapter *adapter = netdev_priv(netdev);
379         adapter->msg_enable = data;
380 }
381
382 static int
383 e1000_get_regs_len(struct net_device *netdev)
384 {
385 #define E1000_REGS_LEN 32
386         return E1000_REGS_LEN * sizeof(uint32_t);
387 }
388
389 static void
390 e1000_get_regs(struct net_device *netdev,
391                struct ethtool_regs *regs, void *p)
392 {
393         struct e1000_adapter *adapter = netdev_priv(netdev);
394         struct e1000_hw *hw = &adapter->hw;
395         uint32_t *regs_buff = p;
396         uint16_t phy_data;
397
398         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
399
400         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
401
402         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
403         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
404
405         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
406         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
407         regs_buff[4]  = E1000_READ_REG(hw, RDH);
408         regs_buff[5]  = E1000_READ_REG(hw, RDT);
409         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
410
411         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
412         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
413         regs_buff[9]  = E1000_READ_REG(hw, TDH);
414         regs_buff[10] = E1000_READ_REG(hw, TDT);
415         regs_buff[11] = E1000_READ_REG(hw, TIDV);
416
417         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
418         if (hw->phy_type == e1000_phy_igp) {
419                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
420                                     IGP01E1000_PHY_AGC_A);
421                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
422                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
423                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
424                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
425                                     IGP01E1000_PHY_AGC_B);
426                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
427                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
428                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
429                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
430                                     IGP01E1000_PHY_AGC_C);
431                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
432                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
433                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
434                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
435                                     IGP01E1000_PHY_AGC_D);
436                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
437                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
438                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
439                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
440                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
441                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
442                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
443                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
444                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
445                                     IGP01E1000_PHY_PCS_INIT_REG);
446                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
447                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
448                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
449                 regs_buff[20] = 0; /* polarity correction enabled (always) */
450                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
451                 regs_buff[23] = regs_buff[18]; /* mdix mode */
452                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
453         } else {
454                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
455                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
456                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
457                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
458                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
459                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
460                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
461                 regs_buff[18] = regs_buff[13]; /* cable polarity */
462                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
463                 regs_buff[20] = regs_buff[17]; /* polarity correction */
464                 /* phy receive errors */
465                 regs_buff[22] = adapter->phy_stats.receive_errors;
466                 regs_buff[23] = regs_buff[13]; /* mdix mode */
467         }
468         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
469         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
470         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
471         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
472         if (hw->mac_type >= e1000_82540 &&
473             hw->mac_type < e1000_82571 &&
474             hw->media_type == e1000_media_type_copper) {
475                 regs_buff[26] = E1000_READ_REG(hw, MANC);
476         }
477 }
478
479 static int
480 e1000_get_eeprom_len(struct net_device *netdev)
481 {
482         struct e1000_adapter *adapter = netdev_priv(netdev);
483         return adapter->hw.eeprom.word_size * 2;
484 }
485
486 static int
487 e1000_get_eeprom(struct net_device *netdev,
488                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
489 {
490         struct e1000_adapter *adapter = netdev_priv(netdev);
491         struct e1000_hw *hw = &adapter->hw;
492         uint16_t *eeprom_buff;
493         int first_word, last_word;
494         int ret_val = 0;
495         uint16_t i;
496
497         if (eeprom->len == 0)
498                 return -EINVAL;
499
500         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
501
502         first_word = eeprom->offset >> 1;
503         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
504
505         eeprom_buff = kmalloc(sizeof(uint16_t) *
506                         (last_word - first_word + 1), GFP_KERNEL);
507         if (!eeprom_buff)
508                 return -ENOMEM;
509
510         if (hw->eeprom.type == e1000_eeprom_spi)
511                 ret_val = e1000_read_eeprom(hw, first_word,
512                                             last_word - first_word + 1,
513                                             eeprom_buff);
514         else {
515                 for (i = 0; i < last_word - first_word + 1; i++)
516                         if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
517                                                         &eeprom_buff[i])))
518                                 break;
519         }
520
521         /* Device's eeprom is always little-endian, word addressable */
522         for (i = 0; i < last_word - first_word + 1; i++)
523                 le16_to_cpus(&eeprom_buff[i]);
524
525         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
526                         eeprom->len);
527         kfree(eeprom_buff);
528
529         return ret_val;
530 }
531
532 static int
533 e1000_set_eeprom(struct net_device *netdev,
534                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
535 {
536         struct e1000_adapter *adapter = netdev_priv(netdev);
537         struct e1000_hw *hw = &adapter->hw;
538         uint16_t *eeprom_buff;
539         void *ptr;
540         int max_len, first_word, last_word, ret_val = 0;
541         uint16_t i;
542
543         if (eeprom->len == 0)
544                 return -EOPNOTSUPP;
545
546         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
547                 return -EFAULT;
548
549         max_len = hw->eeprom.word_size * 2;
550
551         first_word = eeprom->offset >> 1;
552         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
553         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
554         if (!eeprom_buff)
555                 return -ENOMEM;
556
557         ptr = (void *)eeprom_buff;
558
559         if (eeprom->offset & 1) {
560                 /* need read/modify/write of first changed EEPROM word */
561                 /* only the second byte of the word is being modified */
562                 ret_val = e1000_read_eeprom(hw, first_word, 1,
563                                             &eeprom_buff[0]);
564                 ptr++;
565         }
566         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
567                 /* need read/modify/write of last changed EEPROM word */
568                 /* only the first byte of the word is being modified */
569                 ret_val = e1000_read_eeprom(hw, last_word, 1,
570                                   &eeprom_buff[last_word - first_word]);
571         }
572
573         /* Device's eeprom is always little-endian, word addressable */
574         for (i = 0; i < last_word - first_word + 1; i++)
575                 le16_to_cpus(&eeprom_buff[i]);
576
577         memcpy(ptr, bytes, eeprom->len);
578
579         for (i = 0; i < last_word - first_word + 1; i++)
580                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
581
582         ret_val = e1000_write_eeprom(hw, first_word,
583                                      last_word - first_word + 1, eeprom_buff);
584
585         /* Update the checksum over the first part of the EEPROM if needed
586          * and flush shadow RAM for 82573 conrollers */
587         if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
588                                 (hw->mac_type == e1000_82573)))
589                 e1000_update_eeprom_checksum(hw);
590
591         kfree(eeprom_buff);
592         return ret_val;
593 }
594
595 static void
596 e1000_get_drvinfo(struct net_device *netdev,
597                        struct ethtool_drvinfo *drvinfo)
598 {
599         struct e1000_adapter *adapter = netdev_priv(netdev);
600         char firmware_version[32];
601         uint16_t eeprom_data;
602
603         strncpy(drvinfo->driver,  e1000_driver_name, 32);
604         strncpy(drvinfo->version, e1000_driver_version, 32);
605
606         /* EEPROM image version # is reported as firmware version # for
607          * 8257{1|2|3} controllers */
608         e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
609         switch (adapter->hw.mac_type) {
610         case e1000_82571:
611         case e1000_82572:
612         case e1000_82573:
613         case e1000_80003es2lan:
614         case e1000_ich8lan:
615                 sprintf(firmware_version, "%d.%d-%d",
616                         (eeprom_data & 0xF000) >> 12,
617                         (eeprom_data & 0x0FF0) >> 4,
618                         eeprom_data & 0x000F);
619                 break;
620         default:
621                 sprintf(firmware_version, "N/A");
622         }
623
624         strncpy(drvinfo->fw_version, firmware_version, 32);
625         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
626         drvinfo->n_stats = E1000_STATS_LEN;
627         drvinfo->testinfo_len = E1000_TEST_LEN;
628         drvinfo->regdump_len = e1000_get_regs_len(netdev);
629         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
630 }
631
632 static void
633 e1000_get_ringparam(struct net_device *netdev,
634                     struct ethtool_ringparam *ring)
635 {
636         struct e1000_adapter *adapter = netdev_priv(netdev);
637         e1000_mac_type mac_type = adapter->hw.mac_type;
638         struct e1000_tx_ring *txdr = adapter->tx_ring;
639         struct e1000_rx_ring *rxdr = adapter->rx_ring;
640
641         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
642                 E1000_MAX_82544_RXD;
643         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
644                 E1000_MAX_82544_TXD;
645         ring->rx_mini_max_pending = 0;
646         ring->rx_jumbo_max_pending = 0;
647         ring->rx_pending = rxdr->count;
648         ring->tx_pending = txdr->count;
649         ring->rx_mini_pending = 0;
650         ring->rx_jumbo_pending = 0;
651 }
652
653 static int
654 e1000_set_ringparam(struct net_device *netdev,
655                     struct ethtool_ringparam *ring)
656 {
657         struct e1000_adapter *adapter = netdev_priv(netdev);
658         e1000_mac_type mac_type = adapter->hw.mac_type;
659         struct e1000_tx_ring *txdr, *tx_old;
660         struct e1000_rx_ring *rxdr, *rx_old;
661         int i, err, tx_ring_size, rx_ring_size;
662
663         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
664                 return -EINVAL;
665
666         tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
667         rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
668
669         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
670                 msleep(1);
671
672         if (netif_running(adapter->netdev))
673                 e1000_down(adapter);
674
675         tx_old = adapter->tx_ring;
676         rx_old = adapter->rx_ring;
677
678         err = -ENOMEM;
679         txdr = kzalloc(tx_ring_size, GFP_KERNEL);
680         if (!txdr)
681                 goto err_alloc_tx;
682
683         rxdr = kzalloc(rx_ring_size, GFP_KERNEL);
684         if (!rxdr)
685                 goto err_alloc_rx;
686
687         adapter->tx_ring = txdr;
688         adapter->rx_ring = rxdr;
689
690         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
691         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
692                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
693         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
694
695         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
696         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
697                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
698         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
699
700         for (i = 0; i < adapter->num_tx_queues; i++)
701                 txdr[i].count = txdr->count;
702         for (i = 0; i < adapter->num_rx_queues; i++)
703                 rxdr[i].count = rxdr->count;
704
705         if (netif_running(adapter->netdev)) {
706                 /* Try to get new resources before deleting old */
707                 if ((err = e1000_setup_all_rx_resources(adapter)))
708                         goto err_setup_rx;
709                 if ((err = e1000_setup_all_tx_resources(adapter)))
710                         goto err_setup_tx;
711
712                 /* save the new, restore the old in order to free it,
713                  * then restore the new back again */
714
715                 adapter->rx_ring = rx_old;
716                 adapter->tx_ring = tx_old;
717                 e1000_free_all_rx_resources(adapter);
718                 e1000_free_all_tx_resources(adapter);
719                 kfree(tx_old);
720                 kfree(rx_old);
721                 adapter->rx_ring = rxdr;
722                 adapter->tx_ring = txdr;
723                 if ((err = e1000_up(adapter)))
724                         goto err_setup;
725         }
726
727         clear_bit(__E1000_RESETTING, &adapter->flags);
728         return 0;
729 err_setup_tx:
730         e1000_free_all_rx_resources(adapter);
731 err_setup_rx:
732         adapter->rx_ring = rx_old;
733         adapter->tx_ring = tx_old;
734         kfree(rxdr);
735 err_alloc_rx:
736         kfree(txdr);
737 err_alloc_tx:
738         e1000_up(adapter);
739 err_setup:
740         clear_bit(__E1000_RESETTING, &adapter->flags);
741         return err;
742 }
743
744 #define REG_PATTERN_TEST(R, M, W)                                              \
745 {                                                                              \
746         uint32_t pat, value;                                                   \
747         uint32_t test[] =                                                      \
748                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
749         for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
750                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
751                 value = E1000_READ_REG(&adapter->hw, R);                       \
752                 if (value != (test[pat] & W & M)) {                             \
753                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
754                                 "0x%08X expected 0x%08X\n",                    \
755                                 E1000_##R, value, (test[pat] & W & M));        \
756                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
757                                 E1000_82542_##R : E1000_##R;                   \
758                         return 1;                                              \
759                 }                                                              \
760         }                                                                      \
761 }
762
763 #define REG_SET_AND_CHECK(R, M, W)                                             \
764 {                                                                              \
765         uint32_t value;                                                        \
766         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
767         value = E1000_READ_REG(&adapter->hw, R);                               \
768         if ((W & M) != (value & M)) {                                          \
769                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
770                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
771                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
772                         E1000_82542_##R : E1000_##R;                           \
773                 return 1;                                                      \
774         }                                                                      \
775 }
776
777 static int
778 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
779 {
780         uint32_t value, before, after;
781         uint32_t i, toggle;
782
783         /* The status register is Read Only, so a write should fail.
784          * Some bits that get toggled are ignored.
785          */
786         switch (adapter->hw.mac_type) {
787         /* there are several bits on newer hardware that are r/w */
788         case e1000_82571:
789         case e1000_82572:
790         case e1000_80003es2lan:
791                 toggle = 0x7FFFF3FF;
792                 break;
793         case e1000_82573:
794         case e1000_ich8lan:
795                 toggle = 0x7FFFF033;
796                 break;
797         default:
798                 toggle = 0xFFFFF833;
799                 break;
800         }
801
802         before = E1000_READ_REG(&adapter->hw, STATUS);
803         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
804         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
805         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
806         if (value != after) {
807                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
808                         "0x%08X expected: 0x%08X\n", after, value);
809                 *data = 1;
810                 return 1;
811         }
812         /* restore previous status */
813         E1000_WRITE_REG(&adapter->hw, STATUS, before);
814
815         if (adapter->hw.mac_type != e1000_ich8lan) {
816                 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
817                 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
818                 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
819                 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
820         }
821
822         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
823         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
824         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
825         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
826         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
827         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
828         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
829         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
830         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
831         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
832
833         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
834
835         before = (adapter->hw.mac_type == e1000_ich8lan ?
836                   0x06C3B33E : 0x06DFB3FE);
837         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
838         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
839
840         if (adapter->hw.mac_type >= e1000_82543) {
841
842                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
843                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
844                 if (adapter->hw.mac_type != e1000_ich8lan)
845                         REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
846                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
847                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
848                 value = (adapter->hw.mac_type == e1000_ich8lan ?
849                          E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
850                 for (i = 0; i < value; i++) {
851                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
852                                          0xFFFFFFFF);
853                 }
854
855         } else {
856
857                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
858                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
859                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
860                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
861
862         }
863
864         value = (adapter->hw.mac_type == e1000_ich8lan ?
865                         E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
866         for (i = 0; i < value; i++)
867                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
868
869         *data = 0;
870         return 0;
871 }
872
873 static int
874 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
875 {
876         uint16_t temp;
877         uint16_t checksum = 0;
878         uint16_t i;
879
880         *data = 0;
881         /* Read and add up the contents of the EEPROM */
882         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
883                 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
884                         *data = 1;
885                         break;
886                 }
887                 checksum += temp;
888         }
889
890         /* If Checksum is not Correct return error else test passed */
891         if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
892                 *data = 2;
893
894         return *data;
895 }
896
897 static irqreturn_t
898 e1000_test_intr(int irq, void *data)
899 {
900         struct net_device *netdev = (struct net_device *) data;
901         struct e1000_adapter *adapter = netdev_priv(netdev);
902
903         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
904
905         return IRQ_HANDLED;
906 }
907
908 static int
909 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
910 {
911         struct net_device *netdev = adapter->netdev;
912         uint32_t mask, i=0, shared_int = TRUE;
913         uint32_t irq = adapter->pdev->irq;
914
915         *data = 0;
916
917         /* NOTE: we don't test MSI interrupts here, yet */
918         /* Hook up test interrupt handler just for this test */
919         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
920                          netdev))
921                 shared_int = FALSE;
922         else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
923                  netdev->name, netdev)) {
924                 *data = 1;
925                 return -1;
926         }
927         DPRINTK(HW, INFO, "testing %s interrupt\n",
928                 (shared_int ? "shared" : "unshared"));
929
930         /* Disable all the interrupts */
931         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
932         msleep(10);
933
934         /* Test each interrupt */
935         for (; i < 10; i++) {
936
937                 if (adapter->hw.mac_type == e1000_ich8lan && i == 8)
938                         continue;
939
940                 /* Interrupt to test */
941                 mask = 1 << i;
942
943                 if (!shared_int) {
944                         /* Disable the interrupt to be reported in
945                          * the cause register and then force the same
946                          * interrupt and see if one gets posted.  If
947                          * an interrupt was posted to the bus, the
948                          * test failed.
949                          */
950                         adapter->test_icr = 0;
951                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
952                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
953                         msleep(10);
954
955                         if (adapter->test_icr & mask) {
956                                 *data = 3;
957                                 break;
958                         }
959                 }
960
961                 /* Enable the interrupt to be reported in
962                  * the cause register and then force the same
963                  * interrupt and see if one gets posted.  If
964                  * an interrupt was not posted to the bus, the
965                  * test failed.
966                  */
967                 adapter->test_icr = 0;
968                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
969                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
970                 msleep(10);
971
972                 if (!(adapter->test_icr & mask)) {
973                         *data = 4;
974                         break;
975                 }
976
977                 if (!shared_int) {
978                         /* Disable the other interrupts to be reported in
979                          * the cause register and then force the other
980                          * interrupts and see if any get posted.  If
981                          * an interrupt was posted to the bus, the
982                          * test failed.
983                          */
984                         adapter->test_icr = 0;
985                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
986                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
987                         msleep(10);
988
989                         if (adapter->test_icr) {
990                                 *data = 5;
991                                 break;
992                         }
993                 }
994         }
995
996         /* Disable all the interrupts */
997         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
998         msleep(10);
999
1000         /* Unhook test interrupt handler */
1001         free_irq(irq, netdev);
1002
1003         return *data;
1004 }
1005
1006 static void
1007 e1000_free_desc_rings(struct e1000_adapter *adapter)
1008 {
1009         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1010         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1011         struct pci_dev *pdev = adapter->pdev;
1012         int i;
1013
1014         if (txdr->desc && txdr->buffer_info) {
1015                 for (i = 0; i < txdr->count; i++) {
1016                         if (txdr->buffer_info[i].dma)
1017                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
1018                                                  txdr->buffer_info[i].length,
1019                                                  PCI_DMA_TODEVICE);
1020                         if (txdr->buffer_info[i].skb)
1021                                 dev_kfree_skb(txdr->buffer_info[i].skb);
1022                 }
1023         }
1024
1025         if (rxdr->desc && rxdr->buffer_info) {
1026                 for (i = 0; i < rxdr->count; i++) {
1027                         if (rxdr->buffer_info[i].dma)
1028                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
1029                                                  rxdr->buffer_info[i].length,
1030                                                  PCI_DMA_FROMDEVICE);
1031                         if (rxdr->buffer_info[i].skb)
1032                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
1033                 }
1034         }
1035
1036         if (txdr->desc) {
1037                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
1038                 txdr->desc = NULL;
1039         }
1040         if (rxdr->desc) {
1041                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1042                 rxdr->desc = NULL;
1043         }
1044
1045         kfree(txdr->buffer_info);
1046         txdr->buffer_info = NULL;
1047         kfree(rxdr->buffer_info);
1048         rxdr->buffer_info = NULL;
1049
1050         return;
1051 }
1052
1053 static int
1054 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1055 {
1056         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1057         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1058         struct pci_dev *pdev = adapter->pdev;
1059         uint32_t rctl;
1060         int size, i, ret_val;
1061
1062         /* Setup Tx descriptor ring and Tx buffers */
1063
1064         if (!txdr->count)
1065                 txdr->count = E1000_DEFAULT_TXD;
1066
1067         size = txdr->count * sizeof(struct e1000_buffer);
1068         if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1069                 ret_val = 1;
1070                 goto err_nomem;
1071         }
1072         memset(txdr->buffer_info, 0, size);
1073
1074         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1075         E1000_ROUNDUP(txdr->size, 4096);
1076         if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1077                 ret_val = 2;
1078                 goto err_nomem;
1079         }
1080         memset(txdr->desc, 0, txdr->size);
1081         txdr->next_to_use = txdr->next_to_clean = 0;
1082
1083         E1000_WRITE_REG(&adapter->hw, TDBAL,
1084                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1085         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1086         E1000_WRITE_REG(&adapter->hw, TDLEN,
1087                         txdr->count * sizeof(struct e1000_tx_desc));
1088         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1089         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1090         E1000_WRITE_REG(&adapter->hw, TCTL,
1091                         E1000_TCTL_PSP | E1000_TCTL_EN |
1092                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1093                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1094
1095         for (i = 0; i < txdr->count; i++) {
1096                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1097                 struct sk_buff *skb;
1098                 unsigned int size = 1024;
1099
1100                 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1101                         ret_val = 3;
1102                         goto err_nomem;
1103                 }
1104                 skb_put(skb, size);
1105                 txdr->buffer_info[i].skb = skb;
1106                 txdr->buffer_info[i].length = skb->len;
1107                 txdr->buffer_info[i].dma =
1108                         pci_map_single(pdev, skb->data, skb->len,
1109                                        PCI_DMA_TODEVICE);
1110                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1111                 tx_desc->lower.data = cpu_to_le32(skb->len);
1112                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1113                                                    E1000_TXD_CMD_IFCS |
1114                                                    E1000_TXD_CMD_RPS);
1115                 tx_desc->upper.data = 0;
1116         }
1117
1118         /* Setup Rx descriptor ring and Rx buffers */
1119
1120         if (!rxdr->count)
1121                 rxdr->count = E1000_DEFAULT_RXD;
1122
1123         size = rxdr->count * sizeof(struct e1000_buffer);
1124         if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1125                 ret_val = 4;
1126                 goto err_nomem;
1127         }
1128         memset(rxdr->buffer_info, 0, size);
1129
1130         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1131         if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1132                 ret_val = 5;
1133                 goto err_nomem;
1134         }
1135         memset(rxdr->desc, 0, rxdr->size);
1136         rxdr->next_to_use = rxdr->next_to_clean = 0;
1137
1138         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1139         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1140         E1000_WRITE_REG(&adapter->hw, RDBAL,
1141                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1142         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1143         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1144         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1145         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1146         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1147                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1148                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1149         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1150
1151         for (i = 0; i < rxdr->count; i++) {
1152                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1153                 struct sk_buff *skb;
1154
1155                 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1156                                 GFP_KERNEL))) {
1157                         ret_val = 6;
1158                         goto err_nomem;
1159                 }
1160                 skb_reserve(skb, NET_IP_ALIGN);
1161                 rxdr->buffer_info[i].skb = skb;
1162                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1163                 rxdr->buffer_info[i].dma =
1164                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1165                                        PCI_DMA_FROMDEVICE);
1166                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1167                 memset(skb->data, 0x00, skb->len);
1168         }
1169
1170         return 0;
1171
1172 err_nomem:
1173         e1000_free_desc_rings(adapter);
1174         return ret_val;
1175 }
1176
1177 static void
1178 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1179 {
1180         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1181         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1182         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1183         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1184         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1185 }
1186
1187 static void
1188 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1189 {
1190         uint16_t phy_reg;
1191
1192         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1193          * Extended PHY Specific Control Register to 25MHz clock.  This
1194          * value defaults back to a 2.5MHz clock when the PHY is reset.
1195          */
1196         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1197         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1198         e1000_write_phy_reg(&adapter->hw,
1199                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1200
1201         /* In addition, because of the s/w reset above, we need to enable
1202          * CRS on TX.  This must be set for both full and half duplex
1203          * operation.
1204          */
1205         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1206         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1207         e1000_write_phy_reg(&adapter->hw,
1208                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1209 }
1210
1211 static int
1212 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1213 {
1214         uint32_t ctrl_reg;
1215         uint16_t phy_reg;
1216
1217         /* Setup the Device Control Register for PHY loopback test. */
1218
1219         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1220         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1221                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1222                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1223                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1224                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1225
1226         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1227
1228         /* Read the PHY Specific Control Register (0x10) */
1229         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1230
1231         /* Clear Auto-Crossover bits in PHY Specific Control Register
1232          * (bits 6:5).
1233          */
1234         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1235         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1236
1237         /* Perform software reset on the PHY */
1238         e1000_phy_reset(&adapter->hw);
1239
1240         /* Have to setup TX_CLK and TX_CRS after software reset */
1241         e1000_phy_reset_clk_and_crs(adapter);
1242
1243         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1244
1245         /* Wait for reset to complete. */
1246         udelay(500);
1247
1248         /* Have to setup TX_CLK and TX_CRS after software reset */
1249         e1000_phy_reset_clk_and_crs(adapter);
1250
1251         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1252         e1000_phy_disable_receiver(adapter);
1253
1254         /* Set the loopback bit in the PHY control register. */
1255         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1256         phy_reg |= MII_CR_LOOPBACK;
1257         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1258
1259         /* Setup TX_CLK and TX_CRS one more time. */
1260         e1000_phy_reset_clk_and_crs(adapter);
1261
1262         /* Check Phy Configuration */
1263         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1264         if (phy_reg != 0x4100)
1265                  return 9;
1266
1267         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1268         if (phy_reg != 0x0070)
1269                 return 10;
1270
1271         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1272         if (phy_reg != 0x001A)
1273                 return 11;
1274
1275         return 0;
1276 }
1277
1278 static int
1279 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1280 {
1281         uint32_t ctrl_reg = 0;
1282         uint32_t stat_reg = 0;
1283
1284         adapter->hw.autoneg = FALSE;
1285
1286         if (adapter->hw.phy_type == e1000_phy_m88) {
1287                 /* Auto-MDI/MDIX Off */
1288                 e1000_write_phy_reg(&adapter->hw,
1289                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1290                 /* reset to update Auto-MDI/MDIX */
1291                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1292                 /* autoneg off */
1293                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1294         } else if (adapter->hw.phy_type == e1000_phy_gg82563)
1295                 e1000_write_phy_reg(&adapter->hw,
1296                                     GG82563_PHY_KMRN_MODE_CTRL,
1297                                     0x1CC);
1298
1299         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1300
1301         if (adapter->hw.phy_type == e1000_phy_ife) {
1302                 /* force 100, set loopback */
1303                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x6100);
1304
1305                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1306                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1307                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1308                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1309                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1310                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1311         } else {
1312                 /* force 1000, set loopback */
1313                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1314
1315                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1316                 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1317                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1318                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1319                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1320                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1321                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1322         }
1323
1324         if (adapter->hw.media_type == e1000_media_type_copper &&
1325            adapter->hw.phy_type == e1000_phy_m88)
1326                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1327         else {
1328                 /* Set the ILOS bit on the fiber Nic is half
1329                  * duplex link is detected. */
1330                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1331                 if ((stat_reg & E1000_STATUS_FD) == 0)
1332                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1333         }
1334
1335         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1336
1337         /* Disable the receiver on the PHY so when a cable is plugged in, the
1338          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1339          */
1340         if (adapter->hw.phy_type == e1000_phy_m88)
1341                 e1000_phy_disable_receiver(adapter);
1342
1343         udelay(500);
1344
1345         return 0;
1346 }
1347
1348 static int
1349 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1350 {
1351         uint16_t phy_reg = 0;
1352         uint16_t count = 0;
1353
1354         switch (adapter->hw.mac_type) {
1355         case e1000_82543:
1356                 if (adapter->hw.media_type == e1000_media_type_copper) {
1357                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1358                          * Some PHY registers get corrupted at random, so
1359                          * attempt this 10 times.
1360                          */
1361                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1362                               count++ < 10);
1363                         if (count < 11)
1364                                 return 0;
1365                 }
1366                 break;
1367
1368         case e1000_82544:
1369         case e1000_82540:
1370         case e1000_82545:
1371         case e1000_82545_rev_3:
1372         case e1000_82546:
1373         case e1000_82546_rev_3:
1374         case e1000_82541:
1375         case e1000_82541_rev_2:
1376         case e1000_82547:
1377         case e1000_82547_rev_2:
1378         case e1000_82571:
1379         case e1000_82572:
1380         case e1000_82573:
1381         case e1000_80003es2lan:
1382         case e1000_ich8lan:
1383                 return e1000_integrated_phy_loopback(adapter);
1384                 break;
1385
1386         default:
1387                 /* Default PHY loopback work is to read the MII
1388                  * control register and assert bit 14 (loopback mode).
1389                  */
1390                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1391                 phy_reg |= MII_CR_LOOPBACK;
1392                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1393                 return 0;
1394                 break;
1395         }
1396
1397         return 8;
1398 }
1399
1400 static int
1401 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1402 {
1403         struct e1000_hw *hw = &adapter->hw;
1404         uint32_t rctl;
1405
1406         if (hw->media_type == e1000_media_type_fiber ||
1407             hw->media_type == e1000_media_type_internal_serdes) {
1408                 switch (hw->mac_type) {
1409                 case e1000_82545:
1410                 case e1000_82546:
1411                 case e1000_82545_rev_3:
1412                 case e1000_82546_rev_3:
1413                         return e1000_set_phy_loopback(adapter);
1414                         break;
1415                 case e1000_82571:
1416                 case e1000_82572:
1417 #define E1000_SERDES_LB_ON 0x410
1418                         e1000_set_phy_loopback(adapter);
1419                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1420                         msleep(10);
1421                         return 0;
1422                         break;
1423                 default:
1424                         rctl = E1000_READ_REG(hw, RCTL);
1425                         rctl |= E1000_RCTL_LBM_TCVR;
1426                         E1000_WRITE_REG(hw, RCTL, rctl);
1427                         return 0;
1428                 }
1429         } else if (hw->media_type == e1000_media_type_copper)
1430                 return e1000_set_phy_loopback(adapter);
1431
1432         return 7;
1433 }
1434
1435 static void
1436 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1437 {
1438         struct e1000_hw *hw = &adapter->hw;
1439         uint32_t rctl;
1440         uint16_t phy_reg;
1441
1442         rctl = E1000_READ_REG(hw, RCTL);
1443         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1444         E1000_WRITE_REG(hw, RCTL, rctl);
1445
1446         switch (hw->mac_type) {
1447         case e1000_82571:
1448         case e1000_82572:
1449                 if (hw->media_type == e1000_media_type_fiber ||
1450                     hw->media_type == e1000_media_type_internal_serdes) {
1451 #define E1000_SERDES_LB_OFF 0x400
1452                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1453                         msleep(10);
1454                         break;
1455                 }
1456                 /* Fall Through */
1457         case e1000_82545:
1458         case e1000_82546:
1459         case e1000_82545_rev_3:
1460         case e1000_82546_rev_3:
1461         default:
1462                 hw->autoneg = TRUE;
1463                 if (hw->phy_type == e1000_phy_gg82563)
1464                         e1000_write_phy_reg(hw,
1465                                             GG82563_PHY_KMRN_MODE_CTRL,
1466                                             0x180);
1467                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1468                 if (phy_reg & MII_CR_LOOPBACK) {
1469                         phy_reg &= ~MII_CR_LOOPBACK;
1470                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1471                         e1000_phy_reset(hw);
1472                 }
1473                 break;
1474         }
1475 }
1476
1477 static void
1478 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1479 {
1480         memset(skb->data, 0xFF, frame_size);
1481         frame_size &= ~1;
1482         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1483         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1484         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1485 }
1486
1487 static int
1488 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1489 {
1490         frame_size &= ~1;
1491         if (*(skb->data + 3) == 0xFF) {
1492                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1493                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1494                         return 0;
1495                 }
1496         }
1497         return 13;
1498 }
1499
1500 static int
1501 e1000_run_loopback_test(struct e1000_adapter *adapter)
1502 {
1503         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1504         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1505         struct pci_dev *pdev = adapter->pdev;
1506         int i, j, k, l, lc, good_cnt, ret_val=0;
1507         unsigned long time;
1508
1509         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1510
1511         /* Calculate the loop count based on the largest descriptor ring
1512          * The idea is to wrap the largest ring a number of times using 64
1513          * send/receive pairs during each loop
1514          */
1515
1516         if (rxdr->count <= txdr->count)
1517                 lc = ((txdr->count / 64) * 2) + 1;
1518         else
1519                 lc = ((rxdr->count / 64) * 2) + 1;
1520
1521         k = l = 0;
1522         for (j = 0; j <= lc; j++) { /* loop count loop */
1523                 for (i = 0; i < 64; i++) { /* send the packets */
1524                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1525                                         1024);
1526                         pci_dma_sync_single_for_device(pdev,
1527                                         txdr->buffer_info[k].dma,
1528                                         txdr->buffer_info[k].length,
1529                                         PCI_DMA_TODEVICE);
1530                         if (unlikely(++k == txdr->count)) k = 0;
1531                 }
1532                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1533                 msleep(200);
1534                 time = jiffies; /* set the start time for the receive */
1535                 good_cnt = 0;
1536                 do { /* receive the sent packets */
1537                         pci_dma_sync_single_for_cpu(pdev,
1538                                         rxdr->buffer_info[l].dma,
1539                                         rxdr->buffer_info[l].length,
1540                                         PCI_DMA_FROMDEVICE);
1541
1542                         ret_val = e1000_check_lbtest_frame(
1543                                         rxdr->buffer_info[l].skb,
1544                                         1024);
1545                         if (!ret_val)
1546                                 good_cnt++;
1547                         if (unlikely(++l == rxdr->count)) l = 0;
1548                         /* time + 20 msecs (200 msecs on 2.4) is more than
1549                          * enough time to complete the receives, if it's
1550                          * exceeded, break and error off
1551                          */
1552                 } while (good_cnt < 64 && jiffies < (time + 20));
1553                 if (good_cnt != 64) {
1554                         ret_val = 13; /* ret_val is the same as mis-compare */
1555                         break;
1556                 }
1557                 if (jiffies >= (time + 2)) {
1558                         ret_val = 14; /* error code for time out error */
1559                         break;
1560                 }
1561         } /* end loop count loop */
1562         return ret_val;
1563 }
1564
1565 static int
1566 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1567 {
1568         /* PHY loopback cannot be performed if SoL/IDER
1569          * sessions are active */
1570         if (e1000_check_phy_reset_block(&adapter->hw)) {
1571                 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1572                         "when SoL/IDER is active.\n");
1573                 *data = 0;
1574                 goto out;
1575         }
1576
1577         if ((*data = e1000_setup_desc_rings(adapter)))
1578                 goto out;
1579         if ((*data = e1000_setup_loopback_test(adapter)))
1580                 goto err_loopback;
1581         *data = e1000_run_loopback_test(adapter);
1582         e1000_loopback_cleanup(adapter);
1583
1584 err_loopback:
1585         e1000_free_desc_rings(adapter);
1586 out:
1587         return *data;
1588 }
1589
1590 static int
1591 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1592 {
1593         *data = 0;
1594         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1595                 int i = 0;
1596                 adapter->hw.serdes_link_down = TRUE;
1597
1598                 /* On some blade server designs, link establishment
1599                  * could take as long as 2-3 minutes */
1600                 do {
1601                         e1000_check_for_link(&adapter->hw);
1602                         if (adapter->hw.serdes_link_down == FALSE)
1603                                 return *data;
1604                         msleep(20);
1605                 } while (i++ < 3750);
1606
1607                 *data = 1;
1608         } else {
1609                 e1000_check_for_link(&adapter->hw);
1610                 if (adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1611                         msleep(4000);
1612
1613                 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1614                         *data = 1;
1615                 }
1616         }
1617         return *data;
1618 }
1619
1620 static int
1621 e1000_diag_test_count(struct net_device *netdev)
1622 {
1623         return E1000_TEST_LEN;
1624 }
1625
1626 extern void e1000_power_up_phy(struct e1000_adapter *);
1627
1628 static void
1629 e1000_diag_test(struct net_device *netdev,
1630                    struct ethtool_test *eth_test, uint64_t *data)
1631 {
1632         struct e1000_adapter *adapter = netdev_priv(netdev);
1633         boolean_t if_running = netif_running(netdev);
1634
1635         set_bit(__E1000_TESTING, &adapter->flags);
1636         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1637                 /* Offline tests */
1638
1639                 /* save speed, duplex, autoneg settings */
1640                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1641                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1642                 uint8_t autoneg = adapter->hw.autoneg;
1643
1644                 DPRINTK(HW, INFO, "offline testing starting\n");
1645
1646                 /* Link test performed before hardware reset so autoneg doesn't
1647                  * interfere with test result */
1648                 if (e1000_link_test(adapter, &data[4]))
1649                         eth_test->flags |= ETH_TEST_FL_FAILED;
1650
1651                 if (if_running)
1652                         /* indicate we're in test mode */
1653                         dev_close(netdev);
1654                 else
1655                         e1000_reset(adapter);
1656
1657                 if (e1000_reg_test(adapter, &data[0]))
1658                         eth_test->flags |= ETH_TEST_FL_FAILED;
1659
1660                 e1000_reset(adapter);
1661                 if (e1000_eeprom_test(adapter, &data[1]))
1662                         eth_test->flags |= ETH_TEST_FL_FAILED;
1663
1664                 e1000_reset(adapter);
1665                 if (e1000_intr_test(adapter, &data[2]))
1666                         eth_test->flags |= ETH_TEST_FL_FAILED;
1667
1668                 e1000_reset(adapter);
1669                 /* make sure the phy is powered up */
1670                 e1000_power_up_phy(adapter);
1671                 if (e1000_loopback_test(adapter, &data[3]))
1672                         eth_test->flags |= ETH_TEST_FL_FAILED;
1673
1674                 /* restore speed, duplex, autoneg settings */
1675                 adapter->hw.autoneg_advertised = autoneg_advertised;
1676                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1677                 adapter->hw.autoneg = autoneg;
1678
1679                 e1000_reset(adapter);
1680                 clear_bit(__E1000_TESTING, &adapter->flags);
1681                 if (if_running)
1682                         dev_open(netdev);
1683         } else {
1684                 DPRINTK(HW, INFO, "online testing starting\n");
1685                 /* Online tests */
1686                 if (e1000_link_test(adapter, &data[4]))
1687                         eth_test->flags |= ETH_TEST_FL_FAILED;
1688
1689                 /* Online tests aren't run; pass by default */
1690                 data[0] = 0;
1691                 data[1] = 0;
1692                 data[2] = 0;
1693                 data[3] = 0;
1694
1695                 clear_bit(__E1000_TESTING, &adapter->flags);
1696         }
1697         msleep_interruptible(4 * 1000);
1698 }
1699
1700 static int e1000_wol_exclusion(struct e1000_adapter *adapter, struct ethtool_wolinfo *wol)
1701 {
1702         struct e1000_hw *hw = &adapter->hw;
1703         int retval = 1; /* fail by default */
1704
1705         switch (hw->device_id) {
1706         case E1000_DEV_ID_82542:
1707         case E1000_DEV_ID_82543GC_FIBER:
1708         case E1000_DEV_ID_82543GC_COPPER:
1709         case E1000_DEV_ID_82544EI_FIBER:
1710         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1711         case E1000_DEV_ID_82545EM_FIBER:
1712         case E1000_DEV_ID_82545EM_COPPER:
1713         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1714         case E1000_DEV_ID_82546GB_PCIE:
1715                 /* these don't support WoL at all */
1716                 wol->supported = 0;
1717                 break;
1718         case E1000_DEV_ID_82546EB_FIBER:
1719         case E1000_DEV_ID_82546GB_FIBER:
1720         case E1000_DEV_ID_82571EB_FIBER:
1721         case E1000_DEV_ID_82571EB_SERDES:
1722         case E1000_DEV_ID_82571EB_COPPER:
1723                 /* Wake events not supported on port B */
1724                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1725                         wol->supported = 0;
1726                         break;
1727                 }
1728                 /* return success for non excluded adapter ports */
1729                 retval = 0;
1730                 break;
1731         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1732         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1733         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1734                 /* quad port adapters only support WoL on port A */
1735                 if (!adapter->quad_port_a) {
1736                         wol->supported = 0;
1737                         break;
1738                 }
1739                 /* return success for non excluded adapter ports */
1740                 retval = 0;
1741                 break;
1742         default:
1743                 /* dual port cards only support WoL on port A from now on
1744                  * unless it was enabled in the eeprom for port B
1745                  * so exclude FUNC_1 ports from having WoL enabled */
1746                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1 &&
1747                     !adapter->eeprom_wol) {
1748                         wol->supported = 0;
1749                         break;
1750                 }
1751
1752                 retval = 0;
1753         }
1754
1755         return retval;
1756 }
1757
1758 static void
1759 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1760 {
1761         struct e1000_adapter *adapter = netdev_priv(netdev);
1762
1763         wol->supported = WAKE_UCAST | WAKE_MCAST |
1764                          WAKE_BCAST | WAKE_MAGIC;
1765         wol->wolopts = 0;
1766
1767         /* this function will set ->supported = 0 and return 1 if wol is not
1768          * supported by this hardware */
1769         if (e1000_wol_exclusion(adapter, wol))
1770                 return;
1771
1772         /* apply any specific unsupported masks here */
1773         switch (adapter->hw.device_id) {
1774         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1775                 /* KSP3 does not suppport UCAST wake-ups */
1776                 wol->supported &= ~WAKE_UCAST;
1777
1778                 if (adapter->wol & E1000_WUFC_EX)
1779                         DPRINTK(DRV, ERR, "Interface does not support "
1780                         "directed (unicast) frame wake-up packets\n");
1781                 break;
1782         default:
1783                 break;
1784         }
1785
1786         if (adapter->wol & E1000_WUFC_EX)
1787                 wol->wolopts |= WAKE_UCAST;
1788         if (adapter->wol & E1000_WUFC_MC)
1789                 wol->wolopts |= WAKE_MCAST;
1790         if (adapter->wol & E1000_WUFC_BC)
1791                 wol->wolopts |= WAKE_BCAST;
1792         if (adapter->wol & E1000_WUFC_MAG)
1793                 wol->wolopts |= WAKE_MAGIC;
1794
1795         return;
1796 }
1797
1798 static int
1799 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1800 {
1801         struct e1000_adapter *adapter = netdev_priv(netdev);
1802         struct e1000_hw *hw = &adapter->hw;
1803
1804         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1805                 return -EOPNOTSUPP;
1806
1807         if (e1000_wol_exclusion(adapter, wol))
1808                 return wol->wolopts ? -EOPNOTSUPP : 0;
1809
1810         switch (hw->device_id) {
1811         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1812                 if (wol->wolopts & WAKE_UCAST) {
1813                         DPRINTK(DRV, ERR, "Interface does not support "
1814                         "directed (unicast) frame wake-up packets\n");
1815                         return -EOPNOTSUPP;
1816                 }
1817                 break;
1818         default:
1819                 break;
1820         }
1821
1822         /* these settings will always override what we currently have */
1823         adapter->wol = 0;
1824
1825         if (wol->wolopts & WAKE_UCAST)
1826                 adapter->wol |= E1000_WUFC_EX;
1827         if (wol->wolopts & WAKE_MCAST)
1828                 adapter->wol |= E1000_WUFC_MC;
1829         if (wol->wolopts & WAKE_BCAST)
1830                 adapter->wol |= E1000_WUFC_BC;
1831         if (wol->wolopts & WAKE_MAGIC)
1832                 adapter->wol |= E1000_WUFC_MAG;
1833
1834         return 0;
1835 }
1836
1837 /* toggle LED 4 times per second = 2 "blinks" per second */
1838 #define E1000_ID_INTERVAL       (HZ/4)
1839
1840 /* bit defines for adapter->led_status */
1841 #define E1000_LED_ON            0
1842
1843 static void
1844 e1000_led_blink_callback(unsigned long data)
1845 {
1846         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1847
1848         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1849                 e1000_led_off(&adapter->hw);
1850         else
1851                 e1000_led_on(&adapter->hw);
1852
1853         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1854 }
1855
1856 static int
1857 e1000_phys_id(struct net_device *netdev, uint32_t data)
1858 {
1859         struct e1000_adapter *adapter = netdev_priv(netdev);
1860
1861         if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1862                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1863
1864         if (adapter->hw.mac_type < e1000_82571) {
1865                 if (!adapter->blink_timer.function) {
1866                         init_timer(&adapter->blink_timer);
1867                         adapter->blink_timer.function = e1000_led_blink_callback;
1868                         adapter->blink_timer.data = (unsigned long) adapter;
1869                 }
1870                 e1000_setup_led(&adapter->hw);
1871                 mod_timer(&adapter->blink_timer, jiffies);
1872                 msleep_interruptible(data * 1000);
1873                 del_timer_sync(&adapter->blink_timer);
1874         } else if (adapter->hw.phy_type == e1000_phy_ife) {
1875                 if (!adapter->blink_timer.function) {
1876                         init_timer(&adapter->blink_timer);
1877                         adapter->blink_timer.function = e1000_led_blink_callback;
1878                         adapter->blink_timer.data = (unsigned long) adapter;
1879                 }
1880                 mod_timer(&adapter->blink_timer, jiffies);
1881                 msleep_interruptible(data * 1000);
1882                 del_timer_sync(&adapter->blink_timer);
1883                 e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
1884         } else {
1885                 e1000_blink_led_start(&adapter->hw);
1886                 msleep_interruptible(data * 1000);
1887         }
1888
1889         e1000_led_off(&adapter->hw);
1890         clear_bit(E1000_LED_ON, &adapter->led_status);
1891         e1000_cleanup_led(&adapter->hw);
1892
1893         return 0;
1894 }
1895
1896 static int
1897 e1000_nway_reset(struct net_device *netdev)
1898 {
1899         struct e1000_adapter *adapter = netdev_priv(netdev);
1900         if (netif_running(netdev))
1901                 e1000_reinit_locked(adapter);
1902         return 0;
1903 }
1904
1905 static int
1906 e1000_get_stats_count(struct net_device *netdev)
1907 {
1908         return E1000_STATS_LEN;
1909 }
1910
1911 static void
1912 e1000_get_ethtool_stats(struct net_device *netdev,
1913                 struct ethtool_stats *stats, uint64_t *data)
1914 {
1915         struct e1000_adapter *adapter = netdev_priv(netdev);
1916         int i;
1917
1918         e1000_update_stats(adapter);
1919         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1920                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1921                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1922                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1923         }
1924 /*      BUG_ON(i != E1000_STATS_LEN); */
1925 }
1926
1927 static void
1928 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1929 {
1930         uint8_t *p = data;
1931         int i;
1932
1933         switch (stringset) {
1934         case ETH_SS_TEST:
1935                 memcpy(data, *e1000_gstrings_test,
1936                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1937                 break;
1938         case ETH_SS_STATS:
1939                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1940                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1941                                ETH_GSTRING_LEN);
1942                         p += ETH_GSTRING_LEN;
1943                 }
1944 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1945                 break;
1946         }
1947 }
1948
1949 static const struct ethtool_ops e1000_ethtool_ops = {
1950         .get_settings           = e1000_get_settings,
1951         .set_settings           = e1000_set_settings,
1952         .get_drvinfo            = e1000_get_drvinfo,
1953         .get_regs_len           = e1000_get_regs_len,
1954         .get_regs               = e1000_get_regs,
1955         .get_wol                = e1000_get_wol,
1956         .set_wol                = e1000_set_wol,
1957         .get_msglevel           = e1000_get_msglevel,
1958         .set_msglevel           = e1000_set_msglevel,
1959         .nway_reset             = e1000_nway_reset,
1960         .get_link               = ethtool_op_get_link,
1961         .get_eeprom_len         = e1000_get_eeprom_len,
1962         .get_eeprom             = e1000_get_eeprom,
1963         .set_eeprom             = e1000_set_eeprom,
1964         .get_ringparam          = e1000_get_ringparam,
1965         .set_ringparam          = e1000_set_ringparam,
1966         .get_pauseparam         = e1000_get_pauseparam,
1967         .set_pauseparam         = e1000_set_pauseparam,
1968         .get_rx_csum            = e1000_get_rx_csum,
1969         .set_rx_csum            = e1000_set_rx_csum,
1970         .get_tx_csum            = e1000_get_tx_csum,
1971         .set_tx_csum            = e1000_set_tx_csum,
1972         .get_sg                 = ethtool_op_get_sg,
1973         .set_sg                 = ethtool_op_set_sg,
1974 #ifdef NETIF_F_TSO
1975         .get_tso                = ethtool_op_get_tso,
1976         .set_tso                = e1000_set_tso,
1977 #endif
1978         .self_test_count        = e1000_diag_test_count,
1979         .self_test              = e1000_diag_test,
1980         .get_strings            = e1000_get_strings,
1981         .phys_id                = e1000_phys_id,
1982         .get_stats_count        = e1000_get_stats_count,
1983         .get_ethtool_stats      = e1000_get_ethtool_stats,
1984         .get_perm_addr          = ethtool_op_get_perm_addr,
1985 };
1986
1987 void e1000_set_ethtool_ops(struct net_device *netdev)
1988 {
1989         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1990 }