Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32 #include <asm/uaccess.h>
33
34 enum {NETDEV_STATS, E1000_STATS};
35
36 struct e1000_stats {
37         char stat_string[ETH_GSTRING_LEN];
38         int type;
39         int sizeof_stat;
40         int stat_offset;
41 };
42
43 #define E1000_STAT(m)           E1000_STATS, \
44                                 sizeof(((struct e1000_adapter *)0)->m), \
45                                 offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
47                                 sizeof(((struct net_device *)0)->m), \
48                                 offsetof(struct net_device, m)
49
50 static const struct e1000_stats e1000_gstrings_stats[] = {
51         { "rx_packets", E1000_STAT(stats.gprc) },
52         { "tx_packets", E1000_STAT(stats.gptc) },
53         { "rx_bytes", E1000_STAT(stats.gorcl) },
54         { "tx_bytes", E1000_STAT(stats.gotcl) },
55         { "rx_broadcast", E1000_STAT(stats.bprc) },
56         { "tx_broadcast", E1000_STAT(stats.bptc) },
57         { "rx_multicast", E1000_STAT(stats.mprc) },
58         { "tx_multicast", E1000_STAT(stats.mptc) },
59         { "rx_errors", E1000_STAT(stats.rxerrc) },
60         { "tx_errors", E1000_STAT(stats.txerrc) },
61         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
62         { "multicast", E1000_STAT(stats.mprc) },
63         { "collisions", E1000_STAT(stats.colc) },
64         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
65         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
66         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
67         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
68         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
69         { "rx_missed_errors", E1000_STAT(stats.mpc) },
70         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
71         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
72         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
73         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
74         { "tx_window_errors", E1000_STAT(stats.latecol) },
75         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
76         { "tx_deferred_ok", E1000_STAT(stats.dc) },
77         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
78         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
79         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
80         { "tx_restart_queue", E1000_STAT(restart_queue) },
81         { "rx_long_length_errors", E1000_STAT(stats.roc) },
82         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
83         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
84         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
85         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
86         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
87         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
88         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
89         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
90         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
91         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
92         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
93         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
94         { "tx_smbus", E1000_STAT(stats.mgptc) },
95         { "rx_smbus", E1000_STAT(stats.mgprc) },
96         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
97 };
98
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103         "Register test  (offline)", "Eeprom test    (offline)",
104         "Interrupt test (offline)", "Loopback test  (offline)",
105         "Link test   (on/offline)"
106 };
107 #define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
108
109 static int e1000_get_settings(struct net_device *netdev,
110                               struct ethtool_cmd *ecmd)
111 {
112         struct e1000_adapter *adapter = netdev_priv(netdev);
113         struct e1000_hw *hw = &adapter->hw;
114
115         if (hw->media_type == e1000_media_type_copper) {
116
117                 ecmd->supported = (SUPPORTED_10baseT_Half |
118                                    SUPPORTED_10baseT_Full |
119                                    SUPPORTED_100baseT_Half |
120                                    SUPPORTED_100baseT_Full |
121                                    SUPPORTED_1000baseT_Full|
122                                    SUPPORTED_Autoneg |
123                                    SUPPORTED_TP);
124                 ecmd->advertising = ADVERTISED_TP;
125
126                 if (hw->autoneg == 1) {
127                         ecmd->advertising |= ADVERTISED_Autoneg;
128                         /* the e1000 autoneg seems to match ethtool nicely */
129                         ecmd->advertising |= hw->autoneg_advertised;
130                 }
131
132                 ecmd->port = PORT_TP;
133                 ecmd->phy_address = hw->phy_addr;
134
135                 if (hw->mac_type == e1000_82543)
136                         ecmd->transceiver = XCVR_EXTERNAL;
137                 else
138                         ecmd->transceiver = XCVR_INTERNAL;
139
140         } else {
141                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
142                                      SUPPORTED_FIBRE |
143                                      SUPPORTED_Autoneg);
144
145                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
146                                      ADVERTISED_FIBRE |
147                                      ADVERTISED_Autoneg);
148
149                 ecmd->port = PORT_FIBRE;
150
151                 if (hw->mac_type >= e1000_82545)
152                         ecmd->transceiver = XCVR_INTERNAL;
153                 else
154                         ecmd->transceiver = XCVR_EXTERNAL;
155         }
156
157         if (er32(STATUS) & E1000_STATUS_LU) {
158
159                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
160                                                    &adapter->link_duplex);
161                 ethtool_cmd_speed_set(ecmd, adapter->link_speed);
162
163                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
164                  *          and HALF_DUPLEX != DUPLEX_HALF */
165
166                 if (adapter->link_duplex == FULL_DUPLEX)
167                         ecmd->duplex = DUPLEX_FULL;
168                 else
169                         ecmd->duplex = DUPLEX_HALF;
170         } else {
171                 ethtool_cmd_speed_set(ecmd, -1);
172                 ecmd->duplex = -1;
173         }
174
175         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
176                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
177         return 0;
178 }
179
180 static int e1000_set_settings(struct net_device *netdev,
181                               struct ethtool_cmd *ecmd)
182 {
183         struct e1000_adapter *adapter = netdev_priv(netdev);
184         struct e1000_hw *hw = &adapter->hw;
185
186         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
187                 msleep(1);
188
189         if (ecmd->autoneg == AUTONEG_ENABLE) {
190                 hw->autoneg = 1;
191                 if (hw->media_type == e1000_media_type_fiber)
192                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
193                                      ADVERTISED_FIBRE |
194                                      ADVERTISED_Autoneg;
195                 else
196                         hw->autoneg_advertised = ecmd->advertising |
197                                                  ADVERTISED_TP |
198                                                  ADVERTISED_Autoneg;
199                 ecmd->advertising = hw->autoneg_advertised;
200         } else {
201                 u32 speed = ethtool_cmd_speed(ecmd);
202                 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
203                         clear_bit(__E1000_RESETTING, &adapter->flags);
204                         return -EINVAL;
205                 }
206         }
207
208         /* reset the link */
209
210         if (netif_running(adapter->netdev)) {
211                 e1000_down(adapter);
212                 e1000_up(adapter);
213         } else
214                 e1000_reset(adapter);
215
216         clear_bit(__E1000_RESETTING, &adapter->flags);
217         return 0;
218 }
219
220 static u32 e1000_get_link(struct net_device *netdev)
221 {
222         struct e1000_adapter *adapter = netdev_priv(netdev);
223
224         /*
225          * If the link is not reported up to netdev, interrupts are disabled,
226          * and so the physical link state may have changed since we last
227          * looked. Set get_link_status to make sure that the true link
228          * state is interrogated, rather than pulling a cached and possibly
229          * stale link state from the driver.
230          */
231         if (!netif_carrier_ok(netdev))
232                 adapter->hw.get_link_status = 1;
233
234         return e1000_has_link(adapter);
235 }
236
237 static void e1000_get_pauseparam(struct net_device *netdev,
238                                  struct ethtool_pauseparam *pause)
239 {
240         struct e1000_adapter *adapter = netdev_priv(netdev);
241         struct e1000_hw *hw = &adapter->hw;
242
243         pause->autoneg =
244                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
245
246         if (hw->fc == E1000_FC_RX_PAUSE)
247                 pause->rx_pause = 1;
248         else if (hw->fc == E1000_FC_TX_PAUSE)
249                 pause->tx_pause = 1;
250         else if (hw->fc == E1000_FC_FULL) {
251                 pause->rx_pause = 1;
252                 pause->tx_pause = 1;
253         }
254 }
255
256 static int e1000_set_pauseparam(struct net_device *netdev,
257                                 struct ethtool_pauseparam *pause)
258 {
259         struct e1000_adapter *adapter = netdev_priv(netdev);
260         struct e1000_hw *hw = &adapter->hw;
261         int retval = 0;
262
263         adapter->fc_autoneg = pause->autoneg;
264
265         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
266                 msleep(1);
267
268         if (pause->rx_pause && pause->tx_pause)
269                 hw->fc = E1000_FC_FULL;
270         else if (pause->rx_pause && !pause->tx_pause)
271                 hw->fc = E1000_FC_RX_PAUSE;
272         else if (!pause->rx_pause && pause->tx_pause)
273                 hw->fc = E1000_FC_TX_PAUSE;
274         else if (!pause->rx_pause && !pause->tx_pause)
275                 hw->fc = E1000_FC_NONE;
276
277         hw->original_fc = hw->fc;
278
279         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
280                 if (netif_running(adapter->netdev)) {
281                         e1000_down(adapter);
282                         e1000_up(adapter);
283                 } else
284                         e1000_reset(adapter);
285         } else
286                 retval = ((hw->media_type == e1000_media_type_fiber) ?
287                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
288
289         clear_bit(__E1000_RESETTING, &adapter->flags);
290         return retval;
291 }
292
293 static u32 e1000_get_rx_csum(struct net_device *netdev)
294 {
295         struct e1000_adapter *adapter = netdev_priv(netdev);
296         return adapter->rx_csum;
297 }
298
299 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
300 {
301         struct e1000_adapter *adapter = netdev_priv(netdev);
302         adapter->rx_csum = data;
303
304         if (netif_running(netdev))
305                 e1000_reinit_locked(adapter);
306         else
307                 e1000_reset(adapter);
308         return 0;
309 }
310
311 static u32 e1000_get_tx_csum(struct net_device *netdev)
312 {
313         return (netdev->features & NETIF_F_HW_CSUM) != 0;
314 }
315
316 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
317 {
318         struct e1000_adapter *adapter = netdev_priv(netdev);
319         struct e1000_hw *hw = &adapter->hw;
320
321         if (hw->mac_type < e1000_82543) {
322                 if (!data)
323                         return -EINVAL;
324                 return 0;
325         }
326
327         if (data)
328                 netdev->features |= NETIF_F_HW_CSUM;
329         else
330                 netdev->features &= ~NETIF_F_HW_CSUM;
331
332         return 0;
333 }
334
335 static int e1000_set_tso(struct net_device *netdev, u32 data)
336 {
337         struct e1000_adapter *adapter = netdev_priv(netdev);
338         struct e1000_hw *hw = &adapter->hw;
339
340         if ((hw->mac_type < e1000_82544) ||
341             (hw->mac_type == e1000_82547))
342                 return data ? -EINVAL : 0;
343
344         if (data)
345                 netdev->features |= NETIF_F_TSO;
346         else
347                 netdev->features &= ~NETIF_F_TSO;
348
349         netdev->features &= ~NETIF_F_TSO6;
350
351         e_info(probe, "TSO is %s\n", data ? "Enabled" : "Disabled");
352         adapter->tso_force = true;
353         return 0;
354 }
355
356 static u32 e1000_get_msglevel(struct net_device *netdev)
357 {
358         struct e1000_adapter *adapter = netdev_priv(netdev);
359         return adapter->msg_enable;
360 }
361
362 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
363 {
364         struct e1000_adapter *adapter = netdev_priv(netdev);
365         adapter->msg_enable = data;
366 }
367
368 static int e1000_get_regs_len(struct net_device *netdev)
369 {
370 #define E1000_REGS_LEN 32
371         return E1000_REGS_LEN * sizeof(u32);
372 }
373
374 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
375                            void *p)
376 {
377         struct e1000_adapter *adapter = netdev_priv(netdev);
378         struct e1000_hw *hw = &adapter->hw;
379         u32 *regs_buff = p;
380         u16 phy_data;
381
382         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
383
384         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
385
386         regs_buff[0]  = er32(CTRL);
387         regs_buff[1]  = er32(STATUS);
388
389         regs_buff[2]  = er32(RCTL);
390         regs_buff[3]  = er32(RDLEN);
391         regs_buff[4]  = er32(RDH);
392         regs_buff[5]  = er32(RDT);
393         regs_buff[6]  = er32(RDTR);
394
395         regs_buff[7]  = er32(TCTL);
396         regs_buff[8]  = er32(TDLEN);
397         regs_buff[9]  = er32(TDH);
398         regs_buff[10] = er32(TDT);
399         regs_buff[11] = er32(TIDV);
400
401         regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
402         if (hw->phy_type == e1000_phy_igp) {
403                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
404                                     IGP01E1000_PHY_AGC_A);
405                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
406                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
407                 regs_buff[13] = (u32)phy_data; /* cable length */
408                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
409                                     IGP01E1000_PHY_AGC_B);
410                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
411                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
412                 regs_buff[14] = (u32)phy_data; /* cable length */
413                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
414                                     IGP01E1000_PHY_AGC_C);
415                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
416                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
417                 regs_buff[15] = (u32)phy_data; /* cable length */
418                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
419                                     IGP01E1000_PHY_AGC_D);
420                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
421                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
422                 regs_buff[16] = (u32)phy_data; /* cable length */
423                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
424                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
425                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
426                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
427                 regs_buff[18] = (u32)phy_data; /* cable polarity */
428                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
429                                     IGP01E1000_PHY_PCS_INIT_REG);
430                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
431                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
432                 regs_buff[19] = (u32)phy_data; /* cable polarity */
433                 regs_buff[20] = 0; /* polarity correction enabled (always) */
434                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
435                 regs_buff[23] = regs_buff[18]; /* mdix mode */
436                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
437         } else {
438                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
439                 regs_buff[13] = (u32)phy_data; /* cable length */
440                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
441                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
442                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
443                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
444                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
445                 regs_buff[18] = regs_buff[13]; /* cable polarity */
446                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
447                 regs_buff[20] = regs_buff[17]; /* polarity correction */
448                 /* phy receive errors */
449                 regs_buff[22] = adapter->phy_stats.receive_errors;
450                 regs_buff[23] = regs_buff[13]; /* mdix mode */
451         }
452         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
453         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
454         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
455         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
456         if (hw->mac_type >= e1000_82540 &&
457             hw->media_type == e1000_media_type_copper) {
458                 regs_buff[26] = er32(MANC);
459         }
460 }
461
462 static int e1000_get_eeprom_len(struct net_device *netdev)
463 {
464         struct e1000_adapter *adapter = netdev_priv(netdev);
465         struct e1000_hw *hw = &adapter->hw;
466
467         return hw->eeprom.word_size * 2;
468 }
469
470 static int e1000_get_eeprom(struct net_device *netdev,
471                             struct ethtool_eeprom *eeprom, u8 *bytes)
472 {
473         struct e1000_adapter *adapter = netdev_priv(netdev);
474         struct e1000_hw *hw = &adapter->hw;
475         u16 *eeprom_buff;
476         int first_word, last_word;
477         int ret_val = 0;
478         u16 i;
479
480         if (eeprom->len == 0)
481                 return -EINVAL;
482
483         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
484
485         first_word = eeprom->offset >> 1;
486         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
487
488         eeprom_buff = kmalloc(sizeof(u16) *
489                         (last_word - first_word + 1), GFP_KERNEL);
490         if (!eeprom_buff)
491                 return -ENOMEM;
492
493         if (hw->eeprom.type == e1000_eeprom_spi)
494                 ret_val = e1000_read_eeprom(hw, first_word,
495                                             last_word - first_word + 1,
496                                             eeprom_buff);
497         else {
498                 for (i = 0; i < last_word - first_word + 1; i++) {
499                         ret_val = e1000_read_eeprom(hw, first_word + i, 1,
500                                                     &eeprom_buff[i]);
501                         if (ret_val)
502                                 break;
503                 }
504         }
505
506         /* Device's eeprom is always little-endian, word addressable */
507         for (i = 0; i < last_word - first_word + 1; i++)
508                 le16_to_cpus(&eeprom_buff[i]);
509
510         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
511                         eeprom->len);
512         kfree(eeprom_buff);
513
514         return ret_val;
515 }
516
517 static int e1000_set_eeprom(struct net_device *netdev,
518                             struct ethtool_eeprom *eeprom, u8 *bytes)
519 {
520         struct e1000_adapter *adapter = netdev_priv(netdev);
521         struct e1000_hw *hw = &adapter->hw;
522         u16 *eeprom_buff;
523         void *ptr;
524         int max_len, first_word, last_word, ret_val = 0;
525         u16 i;
526
527         if (eeprom->len == 0)
528                 return -EOPNOTSUPP;
529
530         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
531                 return -EFAULT;
532
533         max_len = hw->eeprom.word_size * 2;
534
535         first_word = eeprom->offset >> 1;
536         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
537         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
538         if (!eeprom_buff)
539                 return -ENOMEM;
540
541         ptr = (void *)eeprom_buff;
542
543         if (eeprom->offset & 1) {
544                 /* need read/modify/write of first changed EEPROM word */
545                 /* only the second byte of the word is being modified */
546                 ret_val = e1000_read_eeprom(hw, first_word, 1,
547                                             &eeprom_buff[0]);
548                 ptr++;
549         }
550         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
551                 /* need read/modify/write of last changed EEPROM word */
552                 /* only the first byte of the word is being modified */
553                 ret_val = e1000_read_eeprom(hw, last_word, 1,
554                                   &eeprom_buff[last_word - first_word]);
555         }
556
557         /* Device's eeprom is always little-endian, word addressable */
558         for (i = 0; i < last_word - first_word + 1; i++)
559                 le16_to_cpus(&eeprom_buff[i]);
560
561         memcpy(ptr, bytes, eeprom->len);
562
563         for (i = 0; i < last_word - first_word + 1; i++)
564                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
565
566         ret_val = e1000_write_eeprom(hw, first_word,
567                                      last_word - first_word + 1, eeprom_buff);
568
569         /* Update the checksum over the first part of the EEPROM if needed */
570         if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
571                 e1000_update_eeprom_checksum(hw);
572
573         kfree(eeprom_buff);
574         return ret_val;
575 }
576
577 static void e1000_get_drvinfo(struct net_device *netdev,
578                               struct ethtool_drvinfo *drvinfo)
579 {
580         struct e1000_adapter *adapter = netdev_priv(netdev);
581         char firmware_version[32];
582
583         strncpy(drvinfo->driver,  e1000_driver_name, 32);
584         strncpy(drvinfo->version, e1000_driver_version, 32);
585
586         sprintf(firmware_version, "N/A");
587         strncpy(drvinfo->fw_version, firmware_version, 32);
588         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
589         drvinfo->regdump_len = e1000_get_regs_len(netdev);
590         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
591 }
592
593 static void e1000_get_ringparam(struct net_device *netdev,
594                                 struct ethtool_ringparam *ring)
595 {
596         struct e1000_adapter *adapter = netdev_priv(netdev);
597         struct e1000_hw *hw = &adapter->hw;
598         e1000_mac_type mac_type = hw->mac_type;
599         struct e1000_tx_ring *txdr = adapter->tx_ring;
600         struct e1000_rx_ring *rxdr = adapter->rx_ring;
601
602         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
603                 E1000_MAX_82544_RXD;
604         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
605                 E1000_MAX_82544_TXD;
606         ring->rx_mini_max_pending = 0;
607         ring->rx_jumbo_max_pending = 0;
608         ring->rx_pending = rxdr->count;
609         ring->tx_pending = txdr->count;
610         ring->rx_mini_pending = 0;
611         ring->rx_jumbo_pending = 0;
612 }
613
614 static int e1000_set_ringparam(struct net_device *netdev,
615                                struct ethtool_ringparam *ring)
616 {
617         struct e1000_adapter *adapter = netdev_priv(netdev);
618         struct e1000_hw *hw = &adapter->hw;
619         e1000_mac_type mac_type = hw->mac_type;
620         struct e1000_tx_ring *txdr, *tx_old;
621         struct e1000_rx_ring *rxdr, *rx_old;
622         int i, err;
623
624         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
625                 return -EINVAL;
626
627         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
628                 msleep(1);
629
630         if (netif_running(adapter->netdev))
631                 e1000_down(adapter);
632
633         tx_old = adapter->tx_ring;
634         rx_old = adapter->rx_ring;
635
636         err = -ENOMEM;
637         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
638         if (!txdr)
639                 goto err_alloc_tx;
640
641         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
642         if (!rxdr)
643                 goto err_alloc_rx;
644
645         adapter->tx_ring = txdr;
646         adapter->rx_ring = rxdr;
647
648         rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
649         rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
650                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
651         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
652
653         txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
654         txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
655                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
656         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
657
658         for (i = 0; i < adapter->num_tx_queues; i++)
659                 txdr[i].count = txdr->count;
660         for (i = 0; i < adapter->num_rx_queues; i++)
661                 rxdr[i].count = rxdr->count;
662
663         if (netif_running(adapter->netdev)) {
664                 /* Try to get new resources before deleting old */
665                 err = e1000_setup_all_rx_resources(adapter);
666                 if (err)
667                         goto err_setup_rx;
668                 err = e1000_setup_all_tx_resources(adapter);
669                 if (err)
670                         goto err_setup_tx;
671
672                 /* save the new, restore the old in order to free it,
673                  * then restore the new back again */
674
675                 adapter->rx_ring = rx_old;
676                 adapter->tx_ring = tx_old;
677                 e1000_free_all_rx_resources(adapter);
678                 e1000_free_all_tx_resources(adapter);
679                 kfree(tx_old);
680                 kfree(rx_old);
681                 adapter->rx_ring = rxdr;
682                 adapter->tx_ring = txdr;
683                 err = e1000_up(adapter);
684                 if (err)
685                         goto err_setup;
686         }
687
688         clear_bit(__E1000_RESETTING, &adapter->flags);
689         return 0;
690 err_setup_tx:
691         e1000_free_all_rx_resources(adapter);
692 err_setup_rx:
693         adapter->rx_ring = rx_old;
694         adapter->tx_ring = tx_old;
695         kfree(rxdr);
696 err_alloc_rx:
697         kfree(txdr);
698 err_alloc_tx:
699         e1000_up(adapter);
700 err_setup:
701         clear_bit(__E1000_RESETTING, &adapter->flags);
702         return err;
703 }
704
705 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
706                              u32 mask, u32 write)
707 {
708         struct e1000_hw *hw = &adapter->hw;
709         static const u32 test[] =
710                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
711         u8 __iomem *address = hw->hw_addr + reg;
712         u32 read;
713         int i;
714
715         for (i = 0; i < ARRAY_SIZE(test); i++) {
716                 writel(write & test[i], address);
717                 read = readl(address);
718                 if (read != (write & test[i] & mask)) {
719                         e_err(drv, "pattern test reg %04X failed: "
720                               "got 0x%08X expected 0x%08X\n",
721                               reg, read, (write & test[i] & mask));
722                         *data = reg;
723                         return true;
724                 }
725         }
726         return false;
727 }
728
729 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
730                               u32 mask, u32 write)
731 {
732         struct e1000_hw *hw = &adapter->hw;
733         u8 __iomem *address = hw->hw_addr + reg;
734         u32 read;
735
736         writel(write & mask, address);
737         read = readl(address);
738         if ((read & mask) != (write & mask)) {
739                 e_err(drv, "set/check reg %04X test failed: "
740                       "got 0x%08X expected 0x%08X\n",
741                       reg, (read & mask), (write & mask));
742                 *data = reg;
743                 return true;
744         }
745         return false;
746 }
747
748 #define REG_PATTERN_TEST(reg, mask, write)                           \
749         do {                                                         \
750                 if (reg_pattern_test(adapter, data,                  \
751                              (hw->mac_type >= e1000_82543)   \
752                              ? E1000_##reg : E1000_82542_##reg,      \
753                              mask, write))                           \
754                         return 1;                                    \
755         } while (0)
756
757 #define REG_SET_AND_CHECK(reg, mask, write)                          \
758         do {                                                         \
759                 if (reg_set_and_check(adapter, data,                 \
760                               (hw->mac_type >= e1000_82543)  \
761                               ? E1000_##reg : E1000_82542_##reg,     \
762                               mask, write))                          \
763                         return 1;                                    \
764         } while (0)
765
766 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
767 {
768         u32 value, before, after;
769         u32 i, toggle;
770         struct e1000_hw *hw = &adapter->hw;
771
772         /* The status register is Read Only, so a write should fail.
773          * Some bits that get toggled are ignored.
774          */
775
776         /* there are several bits on newer hardware that are r/w */
777         toggle = 0xFFFFF833;
778
779         before = er32(STATUS);
780         value = (er32(STATUS) & toggle);
781         ew32(STATUS, toggle);
782         after = er32(STATUS) & toggle;
783         if (value != after) {
784                 e_err(drv, "failed STATUS register test got: "
785                       "0x%08X expected: 0x%08X\n", after, value);
786                 *data = 1;
787                 return 1;
788         }
789         /* restore previous status */
790         ew32(STATUS, before);
791
792         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
793         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
794         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
795         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
796
797         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
798         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
799         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
800         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
801         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
802         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
803         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
804         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
805         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
806         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
807
808         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
809
810         before = 0x06DFB3FE;
811         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
812         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
813
814         if (hw->mac_type >= e1000_82543) {
815
816                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
817                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
818                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
819                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
820                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
821                 value = E1000_RAR_ENTRIES;
822                 for (i = 0; i < value; i++) {
823                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
824                                          0xFFFFFFFF);
825                 }
826
827         } else {
828
829                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
830                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
831                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
832                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
833
834         }
835
836         value = E1000_MC_TBL_SIZE;
837         for (i = 0; i < value; i++)
838                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
839
840         *data = 0;
841         return 0;
842 }
843
844 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
845 {
846         struct e1000_hw *hw = &adapter->hw;
847         u16 temp;
848         u16 checksum = 0;
849         u16 i;
850
851         *data = 0;
852         /* Read and add up the contents of the EEPROM */
853         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
854                 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
855                         *data = 1;
856                         break;
857                 }
858                 checksum += temp;
859         }
860
861         /* If Checksum is not Correct return error else test passed */
862         if ((checksum != (u16)EEPROM_SUM) && !(*data))
863                 *data = 2;
864
865         return *data;
866 }
867
868 static irqreturn_t e1000_test_intr(int irq, void *data)
869 {
870         struct net_device *netdev = (struct net_device *)data;
871         struct e1000_adapter *adapter = netdev_priv(netdev);
872         struct e1000_hw *hw = &adapter->hw;
873
874         adapter->test_icr |= er32(ICR);
875
876         return IRQ_HANDLED;
877 }
878
879 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
880 {
881         struct net_device *netdev = adapter->netdev;
882         u32 mask, i = 0;
883         bool shared_int = true;
884         u32 irq = adapter->pdev->irq;
885         struct e1000_hw *hw = &adapter->hw;
886
887         *data = 0;
888
889         /* NOTE: we don't test MSI interrupts here, yet */
890         /* Hook up test interrupt handler just for this test */
891         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
892                          netdev))
893                 shared_int = false;
894         else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
895                  netdev->name, netdev)) {
896                 *data = 1;
897                 return -1;
898         }
899         e_info(hw, "testing %s interrupt\n", (shared_int ?
900                "shared" : "unshared"));
901
902         /* Disable all the interrupts */
903         ew32(IMC, 0xFFFFFFFF);
904         msleep(10);
905
906         /* Test each interrupt */
907         for (; i < 10; i++) {
908
909                 /* Interrupt to test */
910                 mask = 1 << i;
911
912                 if (!shared_int) {
913                         /* Disable the interrupt to be reported in
914                          * the cause register and then force the same
915                          * interrupt and see if one gets posted.  If
916                          * an interrupt was posted to the bus, the
917                          * test failed.
918                          */
919                         adapter->test_icr = 0;
920                         ew32(IMC, mask);
921                         ew32(ICS, mask);
922                         msleep(10);
923
924                         if (adapter->test_icr & mask) {
925                                 *data = 3;
926                                 break;
927                         }
928                 }
929
930                 /* Enable the interrupt to be reported in
931                  * the cause register and then force the same
932                  * interrupt and see if one gets posted.  If
933                  * an interrupt was not posted to the bus, the
934                  * test failed.
935                  */
936                 adapter->test_icr = 0;
937                 ew32(IMS, mask);
938                 ew32(ICS, mask);
939                 msleep(10);
940
941                 if (!(adapter->test_icr & mask)) {
942                         *data = 4;
943                         break;
944                 }
945
946                 if (!shared_int) {
947                         /* Disable the other interrupts to be reported in
948                          * the cause register and then force the other
949                          * interrupts and see if any get posted.  If
950                          * an interrupt was posted to the bus, the
951                          * test failed.
952                          */
953                         adapter->test_icr = 0;
954                         ew32(IMC, ~mask & 0x00007FFF);
955                         ew32(ICS, ~mask & 0x00007FFF);
956                         msleep(10);
957
958                         if (adapter->test_icr) {
959                                 *data = 5;
960                                 break;
961                         }
962                 }
963         }
964
965         /* Disable all the interrupts */
966         ew32(IMC, 0xFFFFFFFF);
967         msleep(10);
968
969         /* Unhook test interrupt handler */
970         free_irq(irq, netdev);
971
972         return *data;
973 }
974
975 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
976 {
977         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
978         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
979         struct pci_dev *pdev = adapter->pdev;
980         int i;
981
982         if (txdr->desc && txdr->buffer_info) {
983                 for (i = 0; i < txdr->count; i++) {
984                         if (txdr->buffer_info[i].dma)
985                                 dma_unmap_single(&pdev->dev,
986                                                  txdr->buffer_info[i].dma,
987                                                  txdr->buffer_info[i].length,
988                                                  DMA_TO_DEVICE);
989                         if (txdr->buffer_info[i].skb)
990                                 dev_kfree_skb(txdr->buffer_info[i].skb);
991                 }
992         }
993
994         if (rxdr->desc && rxdr->buffer_info) {
995                 for (i = 0; i < rxdr->count; i++) {
996                         if (rxdr->buffer_info[i].dma)
997                                 dma_unmap_single(&pdev->dev,
998                                                  rxdr->buffer_info[i].dma,
999                                                  rxdr->buffer_info[i].length,
1000                                                  DMA_FROM_DEVICE);
1001                         if (rxdr->buffer_info[i].skb)
1002                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
1003                 }
1004         }
1005
1006         if (txdr->desc) {
1007                 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1008                                   txdr->dma);
1009                 txdr->desc = NULL;
1010         }
1011         if (rxdr->desc) {
1012                 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1013                                   rxdr->dma);
1014                 rxdr->desc = NULL;
1015         }
1016
1017         kfree(txdr->buffer_info);
1018         txdr->buffer_info = NULL;
1019         kfree(rxdr->buffer_info);
1020         rxdr->buffer_info = NULL;
1021 }
1022
1023 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1024 {
1025         struct e1000_hw *hw = &adapter->hw;
1026         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1027         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1028         struct pci_dev *pdev = adapter->pdev;
1029         u32 rctl;
1030         int i, ret_val;
1031
1032         /* Setup Tx descriptor ring and Tx buffers */
1033
1034         if (!txdr->count)
1035                 txdr->count = E1000_DEFAULT_TXD;
1036
1037         txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
1038                                     GFP_KERNEL);
1039         if (!txdr->buffer_info) {
1040                 ret_val = 1;
1041                 goto err_nomem;
1042         }
1043
1044         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1045         txdr->size = ALIGN(txdr->size, 4096);
1046         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1047                                         GFP_KERNEL);
1048         if (!txdr->desc) {
1049                 ret_val = 2;
1050                 goto err_nomem;
1051         }
1052         memset(txdr->desc, 0, txdr->size);
1053         txdr->next_to_use = txdr->next_to_clean = 0;
1054
1055         ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1056         ew32(TDBAH, ((u64)txdr->dma >> 32));
1057         ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1058         ew32(TDH, 0);
1059         ew32(TDT, 0);
1060         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1061              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1062              E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1063
1064         for (i = 0; i < txdr->count; i++) {
1065                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1066                 struct sk_buff *skb;
1067                 unsigned int size = 1024;
1068
1069                 skb = alloc_skb(size, GFP_KERNEL);
1070                 if (!skb) {
1071                         ret_val = 3;
1072                         goto err_nomem;
1073                 }
1074                 skb_put(skb, size);
1075                 txdr->buffer_info[i].skb = skb;
1076                 txdr->buffer_info[i].length = skb->len;
1077                 txdr->buffer_info[i].dma =
1078                         dma_map_single(&pdev->dev, skb->data, skb->len,
1079                                        DMA_TO_DEVICE);
1080                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1081                 tx_desc->lower.data = cpu_to_le32(skb->len);
1082                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1083                                                    E1000_TXD_CMD_IFCS |
1084                                                    E1000_TXD_CMD_RPS);
1085                 tx_desc->upper.data = 0;
1086         }
1087
1088         /* Setup Rx descriptor ring and Rx buffers */
1089
1090         if (!rxdr->count)
1091                 rxdr->count = E1000_DEFAULT_RXD;
1092
1093         rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1094                                     GFP_KERNEL);
1095         if (!rxdr->buffer_info) {
1096                 ret_val = 4;
1097                 goto err_nomem;
1098         }
1099
1100         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1101         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1102                                         GFP_KERNEL);
1103         if (!rxdr->desc) {
1104                 ret_val = 5;
1105                 goto err_nomem;
1106         }
1107         memset(rxdr->desc, 0, rxdr->size);
1108         rxdr->next_to_use = rxdr->next_to_clean = 0;
1109
1110         rctl = er32(RCTL);
1111         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1112         ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1113         ew32(RDBAH, ((u64)rxdr->dma >> 32));
1114         ew32(RDLEN, rxdr->size);
1115         ew32(RDH, 0);
1116         ew32(RDT, 0);
1117         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1118                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1119                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1120         ew32(RCTL, rctl);
1121
1122         for (i = 0; i < rxdr->count; i++) {
1123                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1124                 struct sk_buff *skb;
1125
1126                 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1127                 if (!skb) {
1128                         ret_val = 6;
1129                         goto err_nomem;
1130                 }
1131                 skb_reserve(skb, NET_IP_ALIGN);
1132                 rxdr->buffer_info[i].skb = skb;
1133                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1134                 rxdr->buffer_info[i].dma =
1135                         dma_map_single(&pdev->dev, skb->data,
1136                                        E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1137                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1138                 memset(skb->data, 0x00, skb->len);
1139         }
1140
1141         return 0;
1142
1143 err_nomem:
1144         e1000_free_desc_rings(adapter);
1145         return ret_val;
1146 }
1147
1148 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1149 {
1150         struct e1000_hw *hw = &adapter->hw;
1151
1152         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1153         e1000_write_phy_reg(hw, 29, 0x001F);
1154         e1000_write_phy_reg(hw, 30, 0x8FFC);
1155         e1000_write_phy_reg(hw, 29, 0x001A);
1156         e1000_write_phy_reg(hw, 30, 0x8FF0);
1157 }
1158
1159 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1160 {
1161         struct e1000_hw *hw = &adapter->hw;
1162         u16 phy_reg;
1163
1164         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1165          * Extended PHY Specific Control Register to 25MHz clock.  This
1166          * value defaults back to a 2.5MHz clock when the PHY is reset.
1167          */
1168         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1169         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1170         e1000_write_phy_reg(hw,
1171                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1172
1173         /* In addition, because of the s/w reset above, we need to enable
1174          * CRS on TX.  This must be set for both full and half duplex
1175          * operation.
1176          */
1177         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1178         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1179         e1000_write_phy_reg(hw,
1180                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1181 }
1182
1183 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1184 {
1185         struct e1000_hw *hw = &adapter->hw;
1186         u32 ctrl_reg;
1187         u16 phy_reg;
1188
1189         /* Setup the Device Control Register for PHY loopback test. */
1190
1191         ctrl_reg = er32(CTRL);
1192         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1193                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1194                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1195                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1196                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1197
1198         ew32(CTRL, ctrl_reg);
1199
1200         /* Read the PHY Specific Control Register (0x10) */
1201         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1202
1203         /* Clear Auto-Crossover bits in PHY Specific Control Register
1204          * (bits 6:5).
1205          */
1206         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1207         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1208
1209         /* Perform software reset on the PHY */
1210         e1000_phy_reset(hw);
1211
1212         /* Have to setup TX_CLK and TX_CRS after software reset */
1213         e1000_phy_reset_clk_and_crs(adapter);
1214
1215         e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1216
1217         /* Wait for reset to complete. */
1218         udelay(500);
1219
1220         /* Have to setup TX_CLK and TX_CRS after software reset */
1221         e1000_phy_reset_clk_and_crs(adapter);
1222
1223         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1224         e1000_phy_disable_receiver(adapter);
1225
1226         /* Set the loopback bit in the PHY control register. */
1227         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1228         phy_reg |= MII_CR_LOOPBACK;
1229         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1230
1231         /* Setup TX_CLK and TX_CRS one more time. */
1232         e1000_phy_reset_clk_and_crs(adapter);
1233
1234         /* Check Phy Configuration */
1235         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1236         if (phy_reg != 0x4100)
1237                  return 9;
1238
1239         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1240         if (phy_reg != 0x0070)
1241                 return 10;
1242
1243         e1000_read_phy_reg(hw, 29, &phy_reg);
1244         if (phy_reg != 0x001A)
1245                 return 11;
1246
1247         return 0;
1248 }
1249
1250 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1251 {
1252         struct e1000_hw *hw = &adapter->hw;
1253         u32 ctrl_reg = 0;
1254         u32 stat_reg = 0;
1255
1256         hw->autoneg = false;
1257
1258         if (hw->phy_type == e1000_phy_m88) {
1259                 /* Auto-MDI/MDIX Off */
1260                 e1000_write_phy_reg(hw,
1261                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1262                 /* reset to update Auto-MDI/MDIX */
1263                 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1264                 /* autoneg off */
1265                 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1266         }
1267
1268         ctrl_reg = er32(CTRL);
1269
1270         /* force 1000, set loopback */
1271         e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1272
1273         /* Now set up the MAC to the same speed/duplex as the PHY. */
1274         ctrl_reg = er32(CTRL);
1275         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1276         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1277                         E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1278                         E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1279                         E1000_CTRL_FD);  /* Force Duplex to FULL */
1280
1281         if (hw->media_type == e1000_media_type_copper &&
1282            hw->phy_type == e1000_phy_m88)
1283                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1284         else {
1285                 /* Set the ILOS bit on the fiber Nic is half
1286                  * duplex link is detected. */
1287                 stat_reg = er32(STATUS);
1288                 if ((stat_reg & E1000_STATUS_FD) == 0)
1289                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1290         }
1291
1292         ew32(CTRL, ctrl_reg);
1293
1294         /* Disable the receiver on the PHY so when a cable is plugged in, the
1295          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1296          */
1297         if (hw->phy_type == e1000_phy_m88)
1298                 e1000_phy_disable_receiver(adapter);
1299
1300         udelay(500);
1301
1302         return 0;
1303 }
1304
1305 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1306 {
1307         struct e1000_hw *hw = &adapter->hw;
1308         u16 phy_reg = 0;
1309         u16 count = 0;
1310
1311         switch (hw->mac_type) {
1312         case e1000_82543:
1313                 if (hw->media_type == e1000_media_type_copper) {
1314                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1315                          * Some PHY registers get corrupted at random, so
1316                          * attempt this 10 times.
1317                          */
1318                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1319                               count++ < 10);
1320                         if (count < 11)
1321                                 return 0;
1322                 }
1323                 break;
1324
1325         case e1000_82544:
1326         case e1000_82540:
1327         case e1000_82545:
1328         case e1000_82545_rev_3:
1329         case e1000_82546:
1330         case e1000_82546_rev_3:
1331         case e1000_82541:
1332         case e1000_82541_rev_2:
1333         case e1000_82547:
1334         case e1000_82547_rev_2:
1335                 return e1000_integrated_phy_loopback(adapter);
1336                 break;
1337         default:
1338                 /* Default PHY loopback work is to read the MII
1339                  * control register and assert bit 14 (loopback mode).
1340                  */
1341                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1342                 phy_reg |= MII_CR_LOOPBACK;
1343                 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1344                 return 0;
1345                 break;
1346         }
1347
1348         return 8;
1349 }
1350
1351 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1352 {
1353         struct e1000_hw *hw = &adapter->hw;
1354         u32 rctl;
1355
1356         if (hw->media_type == e1000_media_type_fiber ||
1357             hw->media_type == e1000_media_type_internal_serdes) {
1358                 switch (hw->mac_type) {
1359                 case e1000_82545:
1360                 case e1000_82546:
1361                 case e1000_82545_rev_3:
1362                 case e1000_82546_rev_3:
1363                         return e1000_set_phy_loopback(adapter);
1364                         break;
1365                 default:
1366                         rctl = er32(RCTL);
1367                         rctl |= E1000_RCTL_LBM_TCVR;
1368                         ew32(RCTL, rctl);
1369                         return 0;
1370                 }
1371         } else if (hw->media_type == e1000_media_type_copper)
1372                 return e1000_set_phy_loopback(adapter);
1373
1374         return 7;
1375 }
1376
1377 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1378 {
1379         struct e1000_hw *hw = &adapter->hw;
1380         u32 rctl;
1381         u16 phy_reg;
1382
1383         rctl = er32(RCTL);
1384         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1385         ew32(RCTL, rctl);
1386
1387         switch (hw->mac_type) {
1388         case e1000_82545:
1389         case e1000_82546:
1390         case e1000_82545_rev_3:
1391         case e1000_82546_rev_3:
1392         default:
1393                 hw->autoneg = true;
1394                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1395                 if (phy_reg & MII_CR_LOOPBACK) {
1396                         phy_reg &= ~MII_CR_LOOPBACK;
1397                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1398                         e1000_phy_reset(hw);
1399                 }
1400                 break;
1401         }
1402 }
1403
1404 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1405                                       unsigned int frame_size)
1406 {
1407         memset(skb->data, 0xFF, frame_size);
1408         frame_size &= ~1;
1409         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1410         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1411         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1412 }
1413
1414 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1415                                     unsigned int frame_size)
1416 {
1417         frame_size &= ~1;
1418         if (*(skb->data + 3) == 0xFF) {
1419                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1420                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1421                         return 0;
1422                 }
1423         }
1424         return 13;
1425 }
1426
1427 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1428 {
1429         struct e1000_hw *hw = &adapter->hw;
1430         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1431         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1432         struct pci_dev *pdev = adapter->pdev;
1433         int i, j, k, l, lc, good_cnt, ret_val=0;
1434         unsigned long time;
1435
1436         ew32(RDT, rxdr->count - 1);
1437
1438         /* Calculate the loop count based on the largest descriptor ring
1439          * The idea is to wrap the largest ring a number of times using 64
1440          * send/receive pairs during each loop
1441          */
1442
1443         if (rxdr->count <= txdr->count)
1444                 lc = ((txdr->count / 64) * 2) + 1;
1445         else
1446                 lc = ((rxdr->count / 64) * 2) + 1;
1447
1448         k = l = 0;
1449         for (j = 0; j <= lc; j++) { /* loop count loop */
1450                 for (i = 0; i < 64; i++) { /* send the packets */
1451                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1452                                         1024);
1453                         dma_sync_single_for_device(&pdev->dev,
1454                                                    txdr->buffer_info[k].dma,
1455                                                    txdr->buffer_info[k].length,
1456                                                    DMA_TO_DEVICE);
1457                         if (unlikely(++k == txdr->count)) k = 0;
1458                 }
1459                 ew32(TDT, k);
1460                 msleep(200);
1461                 time = jiffies; /* set the start time for the receive */
1462                 good_cnt = 0;
1463                 do { /* receive the sent packets */
1464                         dma_sync_single_for_cpu(&pdev->dev,
1465                                                 rxdr->buffer_info[l].dma,
1466                                                 rxdr->buffer_info[l].length,
1467                                                 DMA_FROM_DEVICE);
1468
1469                         ret_val = e1000_check_lbtest_frame(
1470                                         rxdr->buffer_info[l].skb,
1471                                         1024);
1472                         if (!ret_val)
1473                                 good_cnt++;
1474                         if (unlikely(++l == rxdr->count)) l = 0;
1475                         /* time + 20 msecs (200 msecs on 2.4) is more than
1476                          * enough time to complete the receives, if it's
1477                          * exceeded, break and error off
1478                          */
1479                 } while (good_cnt < 64 && jiffies < (time + 20));
1480                 if (good_cnt != 64) {
1481                         ret_val = 13; /* ret_val is the same as mis-compare */
1482                         break;
1483                 }
1484                 if (jiffies >= (time + 2)) {
1485                         ret_val = 14; /* error code for time out error */
1486                         break;
1487                 }
1488         } /* end loop count loop */
1489         return ret_val;
1490 }
1491
1492 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1493 {
1494         *data = e1000_setup_desc_rings(adapter);
1495         if (*data)
1496                 goto out;
1497         *data = e1000_setup_loopback_test(adapter);
1498         if (*data)
1499                 goto err_loopback;
1500         *data = e1000_run_loopback_test(adapter);
1501         e1000_loopback_cleanup(adapter);
1502
1503 err_loopback:
1504         e1000_free_desc_rings(adapter);
1505 out:
1506         return *data;
1507 }
1508
1509 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1510 {
1511         struct e1000_hw *hw = &adapter->hw;
1512         *data = 0;
1513         if (hw->media_type == e1000_media_type_internal_serdes) {
1514                 int i = 0;
1515                 hw->serdes_has_link = false;
1516
1517                 /* On some blade server designs, link establishment
1518                  * could take as long as 2-3 minutes */
1519                 do {
1520                         e1000_check_for_link(hw);
1521                         if (hw->serdes_has_link)
1522                                 return *data;
1523                         msleep(20);
1524                 } while (i++ < 3750);
1525
1526                 *data = 1;
1527         } else {
1528                 e1000_check_for_link(hw);
1529                 if (hw->autoneg)  /* if auto_neg is set wait for it */
1530                         msleep(4000);
1531
1532                 if (!(er32(STATUS) & E1000_STATUS_LU)) {
1533                         *data = 1;
1534                 }
1535         }
1536         return *data;
1537 }
1538
1539 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1540 {
1541         switch (sset) {
1542         case ETH_SS_TEST:
1543                 return E1000_TEST_LEN;
1544         case ETH_SS_STATS:
1545                 return E1000_STATS_LEN;
1546         default:
1547                 return -EOPNOTSUPP;
1548         }
1549 }
1550
1551 static void e1000_diag_test(struct net_device *netdev,
1552                             struct ethtool_test *eth_test, u64 *data)
1553 {
1554         struct e1000_adapter *adapter = netdev_priv(netdev);
1555         struct e1000_hw *hw = &adapter->hw;
1556         bool if_running = netif_running(netdev);
1557
1558         set_bit(__E1000_TESTING, &adapter->flags);
1559         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1560                 /* Offline tests */
1561
1562                 /* save speed, duplex, autoneg settings */
1563                 u16 autoneg_advertised = hw->autoneg_advertised;
1564                 u8 forced_speed_duplex = hw->forced_speed_duplex;
1565                 u8 autoneg = hw->autoneg;
1566
1567                 e_info(hw, "offline testing starting\n");
1568
1569                 /* Link test performed before hardware reset so autoneg doesn't
1570                  * interfere with test result */
1571                 if (e1000_link_test(adapter, &data[4]))
1572                         eth_test->flags |= ETH_TEST_FL_FAILED;
1573
1574                 if (if_running)
1575                         /* indicate we're in test mode */
1576                         dev_close(netdev);
1577                 else
1578                         e1000_reset(adapter);
1579
1580                 if (e1000_reg_test(adapter, &data[0]))
1581                         eth_test->flags |= ETH_TEST_FL_FAILED;
1582
1583                 e1000_reset(adapter);
1584                 if (e1000_eeprom_test(adapter, &data[1]))
1585                         eth_test->flags |= ETH_TEST_FL_FAILED;
1586
1587                 e1000_reset(adapter);
1588                 if (e1000_intr_test(adapter, &data[2]))
1589                         eth_test->flags |= ETH_TEST_FL_FAILED;
1590
1591                 e1000_reset(adapter);
1592                 /* make sure the phy is powered up */
1593                 e1000_power_up_phy(adapter);
1594                 if (e1000_loopback_test(adapter, &data[3]))
1595                         eth_test->flags |= ETH_TEST_FL_FAILED;
1596
1597                 /* restore speed, duplex, autoneg settings */
1598                 hw->autoneg_advertised = autoneg_advertised;
1599                 hw->forced_speed_duplex = forced_speed_duplex;
1600                 hw->autoneg = autoneg;
1601
1602                 e1000_reset(adapter);
1603                 clear_bit(__E1000_TESTING, &adapter->flags);
1604                 if (if_running)
1605                         dev_open(netdev);
1606         } else {
1607                 e_info(hw, "online testing starting\n");
1608                 /* Online tests */
1609                 if (e1000_link_test(adapter, &data[4]))
1610                         eth_test->flags |= ETH_TEST_FL_FAILED;
1611
1612                 /* Online tests aren't run; pass by default */
1613                 data[0] = 0;
1614                 data[1] = 0;
1615                 data[2] = 0;
1616                 data[3] = 0;
1617
1618                 clear_bit(__E1000_TESTING, &adapter->flags);
1619         }
1620         msleep_interruptible(4 * 1000);
1621 }
1622
1623 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1624                                struct ethtool_wolinfo *wol)
1625 {
1626         struct e1000_hw *hw = &adapter->hw;
1627         int retval = 1; /* fail by default */
1628
1629         switch (hw->device_id) {
1630         case E1000_DEV_ID_82542:
1631         case E1000_DEV_ID_82543GC_FIBER:
1632         case E1000_DEV_ID_82543GC_COPPER:
1633         case E1000_DEV_ID_82544EI_FIBER:
1634         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1635         case E1000_DEV_ID_82545EM_FIBER:
1636         case E1000_DEV_ID_82545EM_COPPER:
1637         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1638         case E1000_DEV_ID_82546GB_PCIE:
1639                 /* these don't support WoL at all */
1640                 wol->supported = 0;
1641                 break;
1642         case E1000_DEV_ID_82546EB_FIBER:
1643         case E1000_DEV_ID_82546GB_FIBER:
1644                 /* Wake events not supported on port B */
1645                 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1646                         wol->supported = 0;
1647                         break;
1648                 }
1649                 /* return success for non excluded adapter ports */
1650                 retval = 0;
1651                 break;
1652         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1653                 /* quad port adapters only support WoL on port A */
1654                 if (!adapter->quad_port_a) {
1655                         wol->supported = 0;
1656                         break;
1657                 }
1658                 /* return success for non excluded adapter ports */
1659                 retval = 0;
1660                 break;
1661         default:
1662                 /* dual port cards only support WoL on port A from now on
1663                  * unless it was enabled in the eeprom for port B
1664                  * so exclude FUNC_1 ports from having WoL enabled */
1665                 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1666                     !adapter->eeprom_wol) {
1667                         wol->supported = 0;
1668                         break;
1669                 }
1670
1671                 retval = 0;
1672         }
1673
1674         return retval;
1675 }
1676
1677 static void e1000_get_wol(struct net_device *netdev,
1678                           struct ethtool_wolinfo *wol)
1679 {
1680         struct e1000_adapter *adapter = netdev_priv(netdev);
1681         struct e1000_hw *hw = &adapter->hw;
1682
1683         wol->supported = WAKE_UCAST | WAKE_MCAST |
1684                          WAKE_BCAST | WAKE_MAGIC;
1685         wol->wolopts = 0;
1686
1687         /* this function will set ->supported = 0 and return 1 if wol is not
1688          * supported by this hardware */
1689         if (e1000_wol_exclusion(adapter, wol) ||
1690             !device_can_wakeup(&adapter->pdev->dev))
1691                 return;
1692
1693         /* apply any specific unsupported masks here */
1694         switch (hw->device_id) {
1695         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1696                 /* KSP3 does not suppport UCAST wake-ups */
1697                 wol->supported &= ~WAKE_UCAST;
1698
1699                 if (adapter->wol & E1000_WUFC_EX)
1700                         e_err(drv, "Interface does not support directed "
1701                               "(unicast) frame wake-up packets\n");
1702                 break;
1703         default:
1704                 break;
1705         }
1706
1707         if (adapter->wol & E1000_WUFC_EX)
1708                 wol->wolopts |= WAKE_UCAST;
1709         if (adapter->wol & E1000_WUFC_MC)
1710                 wol->wolopts |= WAKE_MCAST;
1711         if (adapter->wol & E1000_WUFC_BC)
1712                 wol->wolopts |= WAKE_BCAST;
1713         if (adapter->wol & E1000_WUFC_MAG)
1714                 wol->wolopts |= WAKE_MAGIC;
1715 }
1716
1717 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1718 {
1719         struct e1000_adapter *adapter = netdev_priv(netdev);
1720         struct e1000_hw *hw = &adapter->hw;
1721
1722         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1723                 return -EOPNOTSUPP;
1724
1725         if (e1000_wol_exclusion(adapter, wol) ||
1726             !device_can_wakeup(&adapter->pdev->dev))
1727                 return wol->wolopts ? -EOPNOTSUPP : 0;
1728
1729         switch (hw->device_id) {
1730         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1731                 if (wol->wolopts & WAKE_UCAST) {
1732                         e_err(drv, "Interface does not support directed "
1733                               "(unicast) frame wake-up packets\n");
1734                         return -EOPNOTSUPP;
1735                 }
1736                 break;
1737         default:
1738                 break;
1739         }
1740
1741         /* these settings will always override what we currently have */
1742         adapter->wol = 0;
1743
1744         if (wol->wolopts & WAKE_UCAST)
1745                 adapter->wol |= E1000_WUFC_EX;
1746         if (wol->wolopts & WAKE_MCAST)
1747                 adapter->wol |= E1000_WUFC_MC;
1748         if (wol->wolopts & WAKE_BCAST)
1749                 adapter->wol |= E1000_WUFC_BC;
1750         if (wol->wolopts & WAKE_MAGIC)
1751                 adapter->wol |= E1000_WUFC_MAG;
1752
1753         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1754
1755         return 0;
1756 }
1757
1758 static int e1000_set_phys_id(struct net_device *netdev,
1759                              enum ethtool_phys_id_state state)
1760 {
1761         struct e1000_adapter *adapter = netdev_priv(netdev);
1762         struct e1000_hw *hw = &adapter->hw;
1763
1764         switch (state) {
1765         case ETHTOOL_ID_ACTIVE:
1766                 e1000_setup_led(hw);
1767                 return 2;
1768
1769         case ETHTOOL_ID_ON:
1770                 e1000_led_on(hw);
1771                 break;
1772
1773         case ETHTOOL_ID_OFF:
1774                 e1000_led_off(hw);
1775                 break;
1776
1777         case ETHTOOL_ID_INACTIVE:
1778                 e1000_cleanup_led(hw);
1779         }
1780
1781         return 0;
1782 }
1783
1784 static int e1000_get_coalesce(struct net_device *netdev,
1785                               struct ethtool_coalesce *ec)
1786 {
1787         struct e1000_adapter *adapter = netdev_priv(netdev);
1788
1789         if (adapter->hw.mac_type < e1000_82545)
1790                 return -EOPNOTSUPP;
1791
1792         if (adapter->itr_setting <= 4)
1793                 ec->rx_coalesce_usecs = adapter->itr_setting;
1794         else
1795                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1796
1797         return 0;
1798 }
1799
1800 static int e1000_set_coalesce(struct net_device *netdev,
1801                               struct ethtool_coalesce *ec)
1802 {
1803         struct e1000_adapter *adapter = netdev_priv(netdev);
1804         struct e1000_hw *hw = &adapter->hw;
1805
1806         if (hw->mac_type < e1000_82545)
1807                 return -EOPNOTSUPP;
1808
1809         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1810             ((ec->rx_coalesce_usecs > 4) &&
1811              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1812             (ec->rx_coalesce_usecs == 2))
1813                 return -EINVAL;
1814
1815         if (ec->rx_coalesce_usecs == 4) {
1816                 adapter->itr = adapter->itr_setting = 4;
1817         } else if (ec->rx_coalesce_usecs <= 3) {
1818                 adapter->itr = 20000;
1819                 adapter->itr_setting = ec->rx_coalesce_usecs;
1820         } else {
1821                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1822                 adapter->itr_setting = adapter->itr & ~3;
1823         }
1824
1825         if (adapter->itr_setting != 0)
1826                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1827         else
1828                 ew32(ITR, 0);
1829
1830         return 0;
1831 }
1832
1833 static int e1000_nway_reset(struct net_device *netdev)
1834 {
1835         struct e1000_adapter *adapter = netdev_priv(netdev);
1836         if (netif_running(netdev))
1837                 e1000_reinit_locked(adapter);
1838         return 0;
1839 }
1840
1841 static void e1000_get_ethtool_stats(struct net_device *netdev,
1842                                     struct ethtool_stats *stats, u64 *data)
1843 {
1844         struct e1000_adapter *adapter = netdev_priv(netdev);
1845         int i;
1846         char *p = NULL;
1847
1848         e1000_update_stats(adapter);
1849         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1850                 switch (e1000_gstrings_stats[i].type) {
1851                 case NETDEV_STATS:
1852                         p = (char *) netdev +
1853                                         e1000_gstrings_stats[i].stat_offset;
1854                         break;
1855                 case E1000_STATS:
1856                         p = (char *) adapter +
1857                                         e1000_gstrings_stats[i].stat_offset;
1858                         break;
1859                 }
1860
1861                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1862                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1863         }
1864 /*      BUG_ON(i != E1000_STATS_LEN); */
1865 }
1866
1867 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1868                               u8 *data)
1869 {
1870         u8 *p = data;
1871         int i;
1872
1873         switch (stringset) {
1874         case ETH_SS_TEST:
1875                 memcpy(data, *e1000_gstrings_test,
1876                         sizeof(e1000_gstrings_test));
1877                 break;
1878         case ETH_SS_STATS:
1879                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1880                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1881                                ETH_GSTRING_LEN);
1882                         p += ETH_GSTRING_LEN;
1883                 }
1884 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1885                 break;
1886         }
1887 }
1888
1889 static const struct ethtool_ops e1000_ethtool_ops = {
1890         .get_settings           = e1000_get_settings,
1891         .set_settings           = e1000_set_settings,
1892         .get_drvinfo            = e1000_get_drvinfo,
1893         .get_regs_len           = e1000_get_regs_len,
1894         .get_regs               = e1000_get_regs,
1895         .get_wol                = e1000_get_wol,
1896         .set_wol                = e1000_set_wol,
1897         .get_msglevel           = e1000_get_msglevel,
1898         .set_msglevel           = e1000_set_msglevel,
1899         .nway_reset             = e1000_nway_reset,
1900         .get_link               = e1000_get_link,
1901         .get_eeprom_len         = e1000_get_eeprom_len,
1902         .get_eeprom             = e1000_get_eeprom,
1903         .set_eeprom             = e1000_set_eeprom,
1904         .get_ringparam          = e1000_get_ringparam,
1905         .set_ringparam          = e1000_set_ringparam,
1906         .get_pauseparam         = e1000_get_pauseparam,
1907         .set_pauseparam         = e1000_set_pauseparam,
1908         .get_rx_csum            = e1000_get_rx_csum,
1909         .set_rx_csum            = e1000_set_rx_csum,
1910         .get_tx_csum            = e1000_get_tx_csum,
1911         .set_tx_csum            = e1000_set_tx_csum,
1912         .set_sg                 = ethtool_op_set_sg,
1913         .set_tso                = e1000_set_tso,
1914         .self_test              = e1000_diag_test,
1915         .get_strings            = e1000_get_strings,
1916         .set_phys_id            = e1000_set_phys_id,
1917         .get_ethtool_stats      = e1000_get_ethtool_stats,
1918         .get_sset_count         = e1000_get_sset_count,
1919         .get_coalesce           = e1000_get_coalesce,
1920         .set_coalesce           = e1000_set_coalesce,
1921 };
1922
1923 void e1000_set_ethtool_ops(struct net_device *netdev)
1924 {
1925         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1926 }