Merge branch 'rcu/next' of git://github.com/paulmckrcu/linux into core/rcu
[pandora-kernel.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32 #include <asm/uaccess.h>
33
34 enum {NETDEV_STATS, E1000_STATS};
35
36 struct e1000_stats {
37         char stat_string[ETH_GSTRING_LEN];
38         int type;
39         int sizeof_stat;
40         int stat_offset;
41 };
42
43 #define E1000_STAT(m)           E1000_STATS, \
44                                 sizeof(((struct e1000_adapter *)0)->m), \
45                                 offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
47                                 sizeof(((struct net_device *)0)->m), \
48                                 offsetof(struct net_device, m)
49
50 static const struct e1000_stats e1000_gstrings_stats[] = {
51         { "rx_packets", E1000_STAT(stats.gprc) },
52         { "tx_packets", E1000_STAT(stats.gptc) },
53         { "rx_bytes", E1000_STAT(stats.gorcl) },
54         { "tx_bytes", E1000_STAT(stats.gotcl) },
55         { "rx_broadcast", E1000_STAT(stats.bprc) },
56         { "tx_broadcast", E1000_STAT(stats.bptc) },
57         { "rx_multicast", E1000_STAT(stats.mprc) },
58         { "tx_multicast", E1000_STAT(stats.mptc) },
59         { "rx_errors", E1000_STAT(stats.rxerrc) },
60         { "tx_errors", E1000_STAT(stats.txerrc) },
61         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
62         { "multicast", E1000_STAT(stats.mprc) },
63         { "collisions", E1000_STAT(stats.colc) },
64         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
65         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
66         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
67         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
68         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
69         { "rx_missed_errors", E1000_STAT(stats.mpc) },
70         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
71         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
72         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
73         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
74         { "tx_window_errors", E1000_STAT(stats.latecol) },
75         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
76         { "tx_deferred_ok", E1000_STAT(stats.dc) },
77         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
78         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
79         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
80         { "tx_restart_queue", E1000_STAT(restart_queue) },
81         { "rx_long_length_errors", E1000_STAT(stats.roc) },
82         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
83         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
84         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
85         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
86         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
87         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
88         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
89         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
90         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
91         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
92         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
93         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
94         { "tx_smbus", E1000_STAT(stats.mgptc) },
95         { "rx_smbus", E1000_STAT(stats.mgprc) },
96         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
97 };
98
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103         "Register test  (offline)", "Eeprom test    (offline)",
104         "Interrupt test (offline)", "Loopback test  (offline)",
105         "Link test   (on/offline)"
106 };
107 #define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
108
109 static int e1000_get_settings(struct net_device *netdev,
110                               struct ethtool_cmd *ecmd)
111 {
112         struct e1000_adapter *adapter = netdev_priv(netdev);
113         struct e1000_hw *hw = &adapter->hw;
114
115         if (hw->media_type == e1000_media_type_copper) {
116
117                 ecmd->supported = (SUPPORTED_10baseT_Half |
118                                    SUPPORTED_10baseT_Full |
119                                    SUPPORTED_100baseT_Half |
120                                    SUPPORTED_100baseT_Full |
121                                    SUPPORTED_1000baseT_Full|
122                                    SUPPORTED_Autoneg |
123                                    SUPPORTED_TP);
124                 ecmd->advertising = ADVERTISED_TP;
125
126                 if (hw->autoneg == 1) {
127                         ecmd->advertising |= ADVERTISED_Autoneg;
128                         /* the e1000 autoneg seems to match ethtool nicely */
129                         ecmd->advertising |= hw->autoneg_advertised;
130                 }
131
132                 ecmd->port = PORT_TP;
133                 ecmd->phy_address = hw->phy_addr;
134
135                 if (hw->mac_type == e1000_82543)
136                         ecmd->transceiver = XCVR_EXTERNAL;
137                 else
138                         ecmd->transceiver = XCVR_INTERNAL;
139
140         } else {
141                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
142                                      SUPPORTED_FIBRE |
143                                      SUPPORTED_Autoneg);
144
145                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
146                                      ADVERTISED_FIBRE |
147                                      ADVERTISED_Autoneg);
148
149                 ecmd->port = PORT_FIBRE;
150
151                 if (hw->mac_type >= e1000_82545)
152                         ecmd->transceiver = XCVR_INTERNAL;
153                 else
154                         ecmd->transceiver = XCVR_EXTERNAL;
155         }
156
157         if (er32(STATUS) & E1000_STATUS_LU) {
158
159                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
160                                                    &adapter->link_duplex);
161                 ethtool_cmd_speed_set(ecmd, adapter->link_speed);
162
163                 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
164                  *          and HALF_DUPLEX != DUPLEX_HALF */
165
166                 if (adapter->link_duplex == FULL_DUPLEX)
167                         ecmd->duplex = DUPLEX_FULL;
168                 else
169                         ecmd->duplex = DUPLEX_HALF;
170         } else {
171                 ethtool_cmd_speed_set(ecmd, -1);
172                 ecmd->duplex = -1;
173         }
174
175         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
176                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
177         return 0;
178 }
179
180 static int e1000_set_settings(struct net_device *netdev,
181                               struct ethtool_cmd *ecmd)
182 {
183         struct e1000_adapter *adapter = netdev_priv(netdev);
184         struct e1000_hw *hw = &adapter->hw;
185
186         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
187                 msleep(1);
188
189         if (ecmd->autoneg == AUTONEG_ENABLE) {
190                 hw->autoneg = 1;
191                 if (hw->media_type == e1000_media_type_fiber)
192                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
193                                      ADVERTISED_FIBRE |
194                                      ADVERTISED_Autoneg;
195                 else
196                         hw->autoneg_advertised = ecmd->advertising |
197                                                  ADVERTISED_TP |
198                                                  ADVERTISED_Autoneg;
199                 ecmd->advertising = hw->autoneg_advertised;
200         } else {
201                 u32 speed = ethtool_cmd_speed(ecmd);
202                 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
203                         clear_bit(__E1000_RESETTING, &adapter->flags);
204                         return -EINVAL;
205                 }
206         }
207
208         /* reset the link */
209
210         if (netif_running(adapter->netdev)) {
211                 e1000_down(adapter);
212                 e1000_up(adapter);
213         } else
214                 e1000_reset(adapter);
215
216         clear_bit(__E1000_RESETTING, &adapter->flags);
217         return 0;
218 }
219
220 static u32 e1000_get_link(struct net_device *netdev)
221 {
222         struct e1000_adapter *adapter = netdev_priv(netdev);
223
224         /*
225          * If the link is not reported up to netdev, interrupts are disabled,
226          * and so the physical link state may have changed since we last
227          * looked. Set get_link_status to make sure that the true link
228          * state is interrogated, rather than pulling a cached and possibly
229          * stale link state from the driver.
230          */
231         if (!netif_carrier_ok(netdev))
232                 adapter->hw.get_link_status = 1;
233
234         return e1000_has_link(adapter);
235 }
236
237 static void e1000_get_pauseparam(struct net_device *netdev,
238                                  struct ethtool_pauseparam *pause)
239 {
240         struct e1000_adapter *adapter = netdev_priv(netdev);
241         struct e1000_hw *hw = &adapter->hw;
242
243         pause->autoneg =
244                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
245
246         if (hw->fc == E1000_FC_RX_PAUSE)
247                 pause->rx_pause = 1;
248         else if (hw->fc == E1000_FC_TX_PAUSE)
249                 pause->tx_pause = 1;
250         else if (hw->fc == E1000_FC_FULL) {
251                 pause->rx_pause = 1;
252                 pause->tx_pause = 1;
253         }
254 }
255
256 static int e1000_set_pauseparam(struct net_device *netdev,
257                                 struct ethtool_pauseparam *pause)
258 {
259         struct e1000_adapter *adapter = netdev_priv(netdev);
260         struct e1000_hw *hw = &adapter->hw;
261         int retval = 0;
262
263         adapter->fc_autoneg = pause->autoneg;
264
265         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
266                 msleep(1);
267
268         if (pause->rx_pause && pause->tx_pause)
269                 hw->fc = E1000_FC_FULL;
270         else if (pause->rx_pause && !pause->tx_pause)
271                 hw->fc = E1000_FC_RX_PAUSE;
272         else if (!pause->rx_pause && pause->tx_pause)
273                 hw->fc = E1000_FC_TX_PAUSE;
274         else if (!pause->rx_pause && !pause->tx_pause)
275                 hw->fc = E1000_FC_NONE;
276
277         hw->original_fc = hw->fc;
278
279         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
280                 if (netif_running(adapter->netdev)) {
281                         e1000_down(adapter);
282                         e1000_up(adapter);
283                 } else
284                         e1000_reset(adapter);
285         } else
286                 retval = ((hw->media_type == e1000_media_type_fiber) ?
287                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
288
289         clear_bit(__E1000_RESETTING, &adapter->flags);
290         return retval;
291 }
292
293 static u32 e1000_get_msglevel(struct net_device *netdev)
294 {
295         struct e1000_adapter *adapter = netdev_priv(netdev);
296         return adapter->msg_enable;
297 }
298
299 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
300 {
301         struct e1000_adapter *adapter = netdev_priv(netdev);
302         adapter->msg_enable = data;
303 }
304
305 static int e1000_get_regs_len(struct net_device *netdev)
306 {
307 #define E1000_REGS_LEN 32
308         return E1000_REGS_LEN * sizeof(u32);
309 }
310
311 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
312                            void *p)
313 {
314         struct e1000_adapter *adapter = netdev_priv(netdev);
315         struct e1000_hw *hw = &adapter->hw;
316         u32 *regs_buff = p;
317         u16 phy_data;
318
319         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
320
321         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
322
323         regs_buff[0]  = er32(CTRL);
324         regs_buff[1]  = er32(STATUS);
325
326         regs_buff[2]  = er32(RCTL);
327         regs_buff[3]  = er32(RDLEN);
328         regs_buff[4]  = er32(RDH);
329         regs_buff[5]  = er32(RDT);
330         regs_buff[6]  = er32(RDTR);
331
332         regs_buff[7]  = er32(TCTL);
333         regs_buff[8]  = er32(TDLEN);
334         regs_buff[9]  = er32(TDH);
335         regs_buff[10] = er32(TDT);
336         regs_buff[11] = er32(TIDV);
337
338         regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
339         if (hw->phy_type == e1000_phy_igp) {
340                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
341                                     IGP01E1000_PHY_AGC_A);
342                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
343                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
344                 regs_buff[13] = (u32)phy_data; /* cable length */
345                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
346                                     IGP01E1000_PHY_AGC_B);
347                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
348                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
349                 regs_buff[14] = (u32)phy_data; /* cable length */
350                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
351                                     IGP01E1000_PHY_AGC_C);
352                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
353                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
354                 regs_buff[15] = (u32)phy_data; /* cable length */
355                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
356                                     IGP01E1000_PHY_AGC_D);
357                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
358                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
359                 regs_buff[16] = (u32)phy_data; /* cable length */
360                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
361                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
362                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
363                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
364                 regs_buff[18] = (u32)phy_data; /* cable polarity */
365                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
366                                     IGP01E1000_PHY_PCS_INIT_REG);
367                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
368                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
369                 regs_buff[19] = (u32)phy_data; /* cable polarity */
370                 regs_buff[20] = 0; /* polarity correction enabled (always) */
371                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
372                 regs_buff[23] = regs_buff[18]; /* mdix mode */
373                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
374         } else {
375                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
376                 regs_buff[13] = (u32)phy_data; /* cable length */
377                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
378                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
379                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
380                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
381                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
382                 regs_buff[18] = regs_buff[13]; /* cable polarity */
383                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
384                 regs_buff[20] = regs_buff[17]; /* polarity correction */
385                 /* phy receive errors */
386                 regs_buff[22] = adapter->phy_stats.receive_errors;
387                 regs_buff[23] = regs_buff[13]; /* mdix mode */
388         }
389         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
390         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
391         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
392         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
393         if (hw->mac_type >= e1000_82540 &&
394             hw->media_type == e1000_media_type_copper) {
395                 regs_buff[26] = er32(MANC);
396         }
397 }
398
399 static int e1000_get_eeprom_len(struct net_device *netdev)
400 {
401         struct e1000_adapter *adapter = netdev_priv(netdev);
402         struct e1000_hw *hw = &adapter->hw;
403
404         return hw->eeprom.word_size * 2;
405 }
406
407 static int e1000_get_eeprom(struct net_device *netdev,
408                             struct ethtool_eeprom *eeprom, u8 *bytes)
409 {
410         struct e1000_adapter *adapter = netdev_priv(netdev);
411         struct e1000_hw *hw = &adapter->hw;
412         u16 *eeprom_buff;
413         int first_word, last_word;
414         int ret_val = 0;
415         u16 i;
416
417         if (eeprom->len == 0)
418                 return -EINVAL;
419
420         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
421
422         first_word = eeprom->offset >> 1;
423         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
424
425         eeprom_buff = kmalloc(sizeof(u16) *
426                         (last_word - first_word + 1), GFP_KERNEL);
427         if (!eeprom_buff)
428                 return -ENOMEM;
429
430         if (hw->eeprom.type == e1000_eeprom_spi)
431                 ret_val = e1000_read_eeprom(hw, first_word,
432                                             last_word - first_word + 1,
433                                             eeprom_buff);
434         else {
435                 for (i = 0; i < last_word - first_word + 1; i++) {
436                         ret_val = e1000_read_eeprom(hw, first_word + i, 1,
437                                                     &eeprom_buff[i]);
438                         if (ret_val)
439                                 break;
440                 }
441         }
442
443         /* Device's eeprom is always little-endian, word addressable */
444         for (i = 0; i < last_word - first_word + 1; i++)
445                 le16_to_cpus(&eeprom_buff[i]);
446
447         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
448                         eeprom->len);
449         kfree(eeprom_buff);
450
451         return ret_val;
452 }
453
454 static int e1000_set_eeprom(struct net_device *netdev,
455                             struct ethtool_eeprom *eeprom, u8 *bytes)
456 {
457         struct e1000_adapter *adapter = netdev_priv(netdev);
458         struct e1000_hw *hw = &adapter->hw;
459         u16 *eeprom_buff;
460         void *ptr;
461         int max_len, first_word, last_word, ret_val = 0;
462         u16 i;
463
464         if (eeprom->len == 0)
465                 return -EOPNOTSUPP;
466
467         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
468                 return -EFAULT;
469
470         max_len = hw->eeprom.word_size * 2;
471
472         first_word = eeprom->offset >> 1;
473         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
474         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
475         if (!eeprom_buff)
476                 return -ENOMEM;
477
478         ptr = (void *)eeprom_buff;
479
480         if (eeprom->offset & 1) {
481                 /* need read/modify/write of first changed EEPROM word */
482                 /* only the second byte of the word is being modified */
483                 ret_val = e1000_read_eeprom(hw, first_word, 1,
484                                             &eeprom_buff[0]);
485                 ptr++;
486         }
487         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
488                 /* need read/modify/write of last changed EEPROM word */
489                 /* only the first byte of the word is being modified */
490                 ret_val = e1000_read_eeprom(hw, last_word, 1,
491                                   &eeprom_buff[last_word - first_word]);
492         }
493
494         /* Device's eeprom is always little-endian, word addressable */
495         for (i = 0; i < last_word - first_word + 1; i++)
496                 le16_to_cpus(&eeprom_buff[i]);
497
498         memcpy(ptr, bytes, eeprom->len);
499
500         for (i = 0; i < last_word - first_word + 1; i++)
501                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
502
503         ret_val = e1000_write_eeprom(hw, first_word,
504                                      last_word - first_word + 1, eeprom_buff);
505
506         /* Update the checksum over the first part of the EEPROM if needed */
507         if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
508                 e1000_update_eeprom_checksum(hw);
509
510         kfree(eeprom_buff);
511         return ret_val;
512 }
513
514 static void e1000_get_drvinfo(struct net_device *netdev,
515                               struct ethtool_drvinfo *drvinfo)
516 {
517         struct e1000_adapter *adapter = netdev_priv(netdev);
518         char firmware_version[32];
519
520         strncpy(drvinfo->driver,  e1000_driver_name, 32);
521         strncpy(drvinfo->version, e1000_driver_version, 32);
522
523         sprintf(firmware_version, "N/A");
524         strncpy(drvinfo->fw_version, firmware_version, 32);
525         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
526         drvinfo->regdump_len = e1000_get_regs_len(netdev);
527         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
528 }
529
530 static void e1000_get_ringparam(struct net_device *netdev,
531                                 struct ethtool_ringparam *ring)
532 {
533         struct e1000_adapter *adapter = netdev_priv(netdev);
534         struct e1000_hw *hw = &adapter->hw;
535         e1000_mac_type mac_type = hw->mac_type;
536         struct e1000_tx_ring *txdr = adapter->tx_ring;
537         struct e1000_rx_ring *rxdr = adapter->rx_ring;
538
539         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
540                 E1000_MAX_82544_RXD;
541         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
542                 E1000_MAX_82544_TXD;
543         ring->rx_mini_max_pending = 0;
544         ring->rx_jumbo_max_pending = 0;
545         ring->rx_pending = rxdr->count;
546         ring->tx_pending = txdr->count;
547         ring->rx_mini_pending = 0;
548         ring->rx_jumbo_pending = 0;
549 }
550
551 static int e1000_set_ringparam(struct net_device *netdev,
552                                struct ethtool_ringparam *ring)
553 {
554         struct e1000_adapter *adapter = netdev_priv(netdev);
555         struct e1000_hw *hw = &adapter->hw;
556         e1000_mac_type mac_type = hw->mac_type;
557         struct e1000_tx_ring *txdr, *tx_old;
558         struct e1000_rx_ring *rxdr, *rx_old;
559         int i, err;
560
561         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
562                 return -EINVAL;
563
564         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
565                 msleep(1);
566
567         if (netif_running(adapter->netdev))
568                 e1000_down(adapter);
569
570         tx_old = adapter->tx_ring;
571         rx_old = adapter->rx_ring;
572
573         err = -ENOMEM;
574         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
575         if (!txdr)
576                 goto err_alloc_tx;
577
578         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
579         if (!rxdr)
580                 goto err_alloc_rx;
581
582         adapter->tx_ring = txdr;
583         adapter->rx_ring = rxdr;
584
585         rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
586         rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
587                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
588         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
589
590         txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
591         txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
592                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
593         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
594
595         for (i = 0; i < adapter->num_tx_queues; i++)
596                 txdr[i].count = txdr->count;
597         for (i = 0; i < adapter->num_rx_queues; i++)
598                 rxdr[i].count = rxdr->count;
599
600         if (netif_running(adapter->netdev)) {
601                 /* Try to get new resources before deleting old */
602                 err = e1000_setup_all_rx_resources(adapter);
603                 if (err)
604                         goto err_setup_rx;
605                 err = e1000_setup_all_tx_resources(adapter);
606                 if (err)
607                         goto err_setup_tx;
608
609                 /* save the new, restore the old in order to free it,
610                  * then restore the new back again */
611
612                 adapter->rx_ring = rx_old;
613                 adapter->tx_ring = tx_old;
614                 e1000_free_all_rx_resources(adapter);
615                 e1000_free_all_tx_resources(adapter);
616                 kfree(tx_old);
617                 kfree(rx_old);
618                 adapter->rx_ring = rxdr;
619                 adapter->tx_ring = txdr;
620                 err = e1000_up(adapter);
621                 if (err)
622                         goto err_setup;
623         }
624
625         clear_bit(__E1000_RESETTING, &adapter->flags);
626         return 0;
627 err_setup_tx:
628         e1000_free_all_rx_resources(adapter);
629 err_setup_rx:
630         adapter->rx_ring = rx_old;
631         adapter->tx_ring = tx_old;
632         kfree(rxdr);
633 err_alloc_rx:
634         kfree(txdr);
635 err_alloc_tx:
636         e1000_up(adapter);
637 err_setup:
638         clear_bit(__E1000_RESETTING, &adapter->flags);
639         return err;
640 }
641
642 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
643                              u32 mask, u32 write)
644 {
645         struct e1000_hw *hw = &adapter->hw;
646         static const u32 test[] =
647                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
648         u8 __iomem *address = hw->hw_addr + reg;
649         u32 read;
650         int i;
651
652         for (i = 0; i < ARRAY_SIZE(test); i++) {
653                 writel(write & test[i], address);
654                 read = readl(address);
655                 if (read != (write & test[i] & mask)) {
656                         e_err(drv, "pattern test reg %04X failed: "
657                               "got 0x%08X expected 0x%08X\n",
658                               reg, read, (write & test[i] & mask));
659                         *data = reg;
660                         return true;
661                 }
662         }
663         return false;
664 }
665
666 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
667                               u32 mask, u32 write)
668 {
669         struct e1000_hw *hw = &adapter->hw;
670         u8 __iomem *address = hw->hw_addr + reg;
671         u32 read;
672
673         writel(write & mask, address);
674         read = readl(address);
675         if ((read & mask) != (write & mask)) {
676                 e_err(drv, "set/check reg %04X test failed: "
677                       "got 0x%08X expected 0x%08X\n",
678                       reg, (read & mask), (write & mask));
679                 *data = reg;
680                 return true;
681         }
682         return false;
683 }
684
685 #define REG_PATTERN_TEST(reg, mask, write)                           \
686         do {                                                         \
687                 if (reg_pattern_test(adapter, data,                  \
688                              (hw->mac_type >= e1000_82543)   \
689                              ? E1000_##reg : E1000_82542_##reg,      \
690                              mask, write))                           \
691                         return 1;                                    \
692         } while (0)
693
694 #define REG_SET_AND_CHECK(reg, mask, write)                          \
695         do {                                                         \
696                 if (reg_set_and_check(adapter, data,                 \
697                               (hw->mac_type >= e1000_82543)  \
698                               ? E1000_##reg : E1000_82542_##reg,     \
699                               mask, write))                          \
700                         return 1;                                    \
701         } while (0)
702
703 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
704 {
705         u32 value, before, after;
706         u32 i, toggle;
707         struct e1000_hw *hw = &adapter->hw;
708
709         /* The status register is Read Only, so a write should fail.
710          * Some bits that get toggled are ignored.
711          */
712
713         /* there are several bits on newer hardware that are r/w */
714         toggle = 0xFFFFF833;
715
716         before = er32(STATUS);
717         value = (er32(STATUS) & toggle);
718         ew32(STATUS, toggle);
719         after = er32(STATUS) & toggle;
720         if (value != after) {
721                 e_err(drv, "failed STATUS register test got: "
722                       "0x%08X expected: 0x%08X\n", after, value);
723                 *data = 1;
724                 return 1;
725         }
726         /* restore previous status */
727         ew32(STATUS, before);
728
729         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
730         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
731         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
732         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
733
734         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
735         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
736         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
737         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
738         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
739         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
740         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
741         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
742         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
743         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
744
745         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
746
747         before = 0x06DFB3FE;
748         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
749         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
750
751         if (hw->mac_type >= e1000_82543) {
752
753                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
754                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
755                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
756                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
757                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
758                 value = E1000_RAR_ENTRIES;
759                 for (i = 0; i < value; i++) {
760                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
761                                          0xFFFFFFFF);
762                 }
763
764         } else {
765
766                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
767                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
768                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
769                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
770
771         }
772
773         value = E1000_MC_TBL_SIZE;
774         for (i = 0; i < value; i++)
775                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
776
777         *data = 0;
778         return 0;
779 }
780
781 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
782 {
783         struct e1000_hw *hw = &adapter->hw;
784         u16 temp;
785         u16 checksum = 0;
786         u16 i;
787
788         *data = 0;
789         /* Read and add up the contents of the EEPROM */
790         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
791                 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
792                         *data = 1;
793                         break;
794                 }
795                 checksum += temp;
796         }
797
798         /* If Checksum is not Correct return error else test passed */
799         if ((checksum != (u16)EEPROM_SUM) && !(*data))
800                 *data = 2;
801
802         return *data;
803 }
804
805 static irqreturn_t e1000_test_intr(int irq, void *data)
806 {
807         struct net_device *netdev = (struct net_device *)data;
808         struct e1000_adapter *adapter = netdev_priv(netdev);
809         struct e1000_hw *hw = &adapter->hw;
810
811         adapter->test_icr |= er32(ICR);
812
813         return IRQ_HANDLED;
814 }
815
816 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
817 {
818         struct net_device *netdev = adapter->netdev;
819         u32 mask, i = 0;
820         bool shared_int = true;
821         u32 irq = adapter->pdev->irq;
822         struct e1000_hw *hw = &adapter->hw;
823
824         *data = 0;
825
826         /* NOTE: we don't test MSI interrupts here, yet */
827         /* Hook up test interrupt handler just for this test */
828         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
829                          netdev))
830                 shared_int = false;
831         else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
832                  netdev->name, netdev)) {
833                 *data = 1;
834                 return -1;
835         }
836         e_info(hw, "testing %s interrupt\n", (shared_int ?
837                "shared" : "unshared"));
838
839         /* Disable all the interrupts */
840         ew32(IMC, 0xFFFFFFFF);
841         E1000_WRITE_FLUSH();
842         msleep(10);
843
844         /* Test each interrupt */
845         for (; i < 10; i++) {
846
847                 /* Interrupt to test */
848                 mask = 1 << i;
849
850                 if (!shared_int) {
851                         /* Disable the interrupt to be reported in
852                          * the cause register and then force the same
853                          * interrupt and see if one gets posted.  If
854                          * an interrupt was posted to the bus, the
855                          * test failed.
856                          */
857                         adapter->test_icr = 0;
858                         ew32(IMC, mask);
859                         ew32(ICS, mask);
860                         E1000_WRITE_FLUSH();
861                         msleep(10);
862
863                         if (adapter->test_icr & mask) {
864                                 *data = 3;
865                                 break;
866                         }
867                 }
868
869                 /* Enable the interrupt to be reported in
870                  * the cause register and then force the same
871                  * interrupt and see if one gets posted.  If
872                  * an interrupt was not posted to the bus, the
873                  * test failed.
874                  */
875                 adapter->test_icr = 0;
876                 ew32(IMS, mask);
877                 ew32(ICS, mask);
878                 E1000_WRITE_FLUSH();
879                 msleep(10);
880
881                 if (!(adapter->test_icr & mask)) {
882                         *data = 4;
883                         break;
884                 }
885
886                 if (!shared_int) {
887                         /* Disable the other interrupts to be reported in
888                          * the cause register and then force the other
889                          * interrupts and see if any get posted.  If
890                          * an interrupt was posted to the bus, the
891                          * test failed.
892                          */
893                         adapter->test_icr = 0;
894                         ew32(IMC, ~mask & 0x00007FFF);
895                         ew32(ICS, ~mask & 0x00007FFF);
896                         E1000_WRITE_FLUSH();
897                         msleep(10);
898
899                         if (adapter->test_icr) {
900                                 *data = 5;
901                                 break;
902                         }
903                 }
904         }
905
906         /* Disable all the interrupts */
907         ew32(IMC, 0xFFFFFFFF);
908         E1000_WRITE_FLUSH();
909         msleep(10);
910
911         /* Unhook test interrupt handler */
912         free_irq(irq, netdev);
913
914         return *data;
915 }
916
917 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
918 {
919         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
920         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
921         struct pci_dev *pdev = adapter->pdev;
922         int i;
923
924         if (txdr->desc && txdr->buffer_info) {
925                 for (i = 0; i < txdr->count; i++) {
926                         if (txdr->buffer_info[i].dma)
927                                 dma_unmap_single(&pdev->dev,
928                                                  txdr->buffer_info[i].dma,
929                                                  txdr->buffer_info[i].length,
930                                                  DMA_TO_DEVICE);
931                         if (txdr->buffer_info[i].skb)
932                                 dev_kfree_skb(txdr->buffer_info[i].skb);
933                 }
934         }
935
936         if (rxdr->desc && rxdr->buffer_info) {
937                 for (i = 0; i < rxdr->count; i++) {
938                         if (rxdr->buffer_info[i].dma)
939                                 dma_unmap_single(&pdev->dev,
940                                                  rxdr->buffer_info[i].dma,
941                                                  rxdr->buffer_info[i].length,
942                                                  DMA_FROM_DEVICE);
943                         if (rxdr->buffer_info[i].skb)
944                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
945                 }
946         }
947
948         if (txdr->desc) {
949                 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
950                                   txdr->dma);
951                 txdr->desc = NULL;
952         }
953         if (rxdr->desc) {
954                 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
955                                   rxdr->dma);
956                 rxdr->desc = NULL;
957         }
958
959         kfree(txdr->buffer_info);
960         txdr->buffer_info = NULL;
961         kfree(rxdr->buffer_info);
962         rxdr->buffer_info = NULL;
963 }
964
965 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
966 {
967         struct e1000_hw *hw = &adapter->hw;
968         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
969         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
970         struct pci_dev *pdev = adapter->pdev;
971         u32 rctl;
972         int i, ret_val;
973
974         /* Setup Tx descriptor ring and Tx buffers */
975
976         if (!txdr->count)
977                 txdr->count = E1000_DEFAULT_TXD;
978
979         txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
980                                     GFP_KERNEL);
981         if (!txdr->buffer_info) {
982                 ret_val = 1;
983                 goto err_nomem;
984         }
985
986         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
987         txdr->size = ALIGN(txdr->size, 4096);
988         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
989                                         GFP_KERNEL);
990         if (!txdr->desc) {
991                 ret_val = 2;
992                 goto err_nomem;
993         }
994         memset(txdr->desc, 0, txdr->size);
995         txdr->next_to_use = txdr->next_to_clean = 0;
996
997         ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
998         ew32(TDBAH, ((u64)txdr->dma >> 32));
999         ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1000         ew32(TDH, 0);
1001         ew32(TDT, 0);
1002         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1003              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1004              E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1005
1006         for (i = 0; i < txdr->count; i++) {
1007                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1008                 struct sk_buff *skb;
1009                 unsigned int size = 1024;
1010
1011                 skb = alloc_skb(size, GFP_KERNEL);
1012                 if (!skb) {
1013                         ret_val = 3;
1014                         goto err_nomem;
1015                 }
1016                 skb_put(skb, size);
1017                 txdr->buffer_info[i].skb = skb;
1018                 txdr->buffer_info[i].length = skb->len;
1019                 txdr->buffer_info[i].dma =
1020                         dma_map_single(&pdev->dev, skb->data, skb->len,
1021                                        DMA_TO_DEVICE);
1022                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1023                 tx_desc->lower.data = cpu_to_le32(skb->len);
1024                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1025                                                    E1000_TXD_CMD_IFCS |
1026                                                    E1000_TXD_CMD_RPS);
1027                 tx_desc->upper.data = 0;
1028         }
1029
1030         /* Setup Rx descriptor ring and Rx buffers */
1031
1032         if (!rxdr->count)
1033                 rxdr->count = E1000_DEFAULT_RXD;
1034
1035         rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1036                                     GFP_KERNEL);
1037         if (!rxdr->buffer_info) {
1038                 ret_val = 4;
1039                 goto err_nomem;
1040         }
1041
1042         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1043         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1044                                         GFP_KERNEL);
1045         if (!rxdr->desc) {
1046                 ret_val = 5;
1047                 goto err_nomem;
1048         }
1049         memset(rxdr->desc, 0, rxdr->size);
1050         rxdr->next_to_use = rxdr->next_to_clean = 0;
1051
1052         rctl = er32(RCTL);
1053         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1054         ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1055         ew32(RDBAH, ((u64)rxdr->dma >> 32));
1056         ew32(RDLEN, rxdr->size);
1057         ew32(RDH, 0);
1058         ew32(RDT, 0);
1059         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1060                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1061                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1062         ew32(RCTL, rctl);
1063
1064         for (i = 0; i < rxdr->count; i++) {
1065                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1066                 struct sk_buff *skb;
1067
1068                 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1069                 if (!skb) {
1070                         ret_val = 6;
1071                         goto err_nomem;
1072                 }
1073                 skb_reserve(skb, NET_IP_ALIGN);
1074                 rxdr->buffer_info[i].skb = skb;
1075                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1076                 rxdr->buffer_info[i].dma =
1077                         dma_map_single(&pdev->dev, skb->data,
1078                                        E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1079                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1080                 memset(skb->data, 0x00, skb->len);
1081         }
1082
1083         return 0;
1084
1085 err_nomem:
1086         e1000_free_desc_rings(adapter);
1087         return ret_val;
1088 }
1089
1090 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1091 {
1092         struct e1000_hw *hw = &adapter->hw;
1093
1094         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1095         e1000_write_phy_reg(hw, 29, 0x001F);
1096         e1000_write_phy_reg(hw, 30, 0x8FFC);
1097         e1000_write_phy_reg(hw, 29, 0x001A);
1098         e1000_write_phy_reg(hw, 30, 0x8FF0);
1099 }
1100
1101 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1102 {
1103         struct e1000_hw *hw = &adapter->hw;
1104         u16 phy_reg;
1105
1106         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1107          * Extended PHY Specific Control Register to 25MHz clock.  This
1108          * value defaults back to a 2.5MHz clock when the PHY is reset.
1109          */
1110         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1111         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1112         e1000_write_phy_reg(hw,
1113                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1114
1115         /* In addition, because of the s/w reset above, we need to enable
1116          * CRS on TX.  This must be set for both full and half duplex
1117          * operation.
1118          */
1119         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1120         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1121         e1000_write_phy_reg(hw,
1122                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1123 }
1124
1125 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1126 {
1127         struct e1000_hw *hw = &adapter->hw;
1128         u32 ctrl_reg;
1129         u16 phy_reg;
1130
1131         /* Setup the Device Control Register for PHY loopback test. */
1132
1133         ctrl_reg = er32(CTRL);
1134         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1135                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1136                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1137                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1138                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1139
1140         ew32(CTRL, ctrl_reg);
1141
1142         /* Read the PHY Specific Control Register (0x10) */
1143         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1144
1145         /* Clear Auto-Crossover bits in PHY Specific Control Register
1146          * (bits 6:5).
1147          */
1148         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1149         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1150
1151         /* Perform software reset on the PHY */
1152         e1000_phy_reset(hw);
1153
1154         /* Have to setup TX_CLK and TX_CRS after software reset */
1155         e1000_phy_reset_clk_and_crs(adapter);
1156
1157         e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1158
1159         /* Wait for reset to complete. */
1160         udelay(500);
1161
1162         /* Have to setup TX_CLK and TX_CRS after software reset */
1163         e1000_phy_reset_clk_and_crs(adapter);
1164
1165         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1166         e1000_phy_disable_receiver(adapter);
1167
1168         /* Set the loopback bit in the PHY control register. */
1169         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1170         phy_reg |= MII_CR_LOOPBACK;
1171         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1172
1173         /* Setup TX_CLK and TX_CRS one more time. */
1174         e1000_phy_reset_clk_and_crs(adapter);
1175
1176         /* Check Phy Configuration */
1177         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1178         if (phy_reg != 0x4100)
1179                  return 9;
1180
1181         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1182         if (phy_reg != 0x0070)
1183                 return 10;
1184
1185         e1000_read_phy_reg(hw, 29, &phy_reg);
1186         if (phy_reg != 0x001A)
1187                 return 11;
1188
1189         return 0;
1190 }
1191
1192 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1193 {
1194         struct e1000_hw *hw = &adapter->hw;
1195         u32 ctrl_reg = 0;
1196         u32 stat_reg = 0;
1197
1198         hw->autoneg = false;
1199
1200         if (hw->phy_type == e1000_phy_m88) {
1201                 /* Auto-MDI/MDIX Off */
1202                 e1000_write_phy_reg(hw,
1203                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1204                 /* reset to update Auto-MDI/MDIX */
1205                 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1206                 /* autoneg off */
1207                 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1208         }
1209
1210         ctrl_reg = er32(CTRL);
1211
1212         /* force 1000, set loopback */
1213         e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1214
1215         /* Now set up the MAC to the same speed/duplex as the PHY. */
1216         ctrl_reg = er32(CTRL);
1217         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1218         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1219                         E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1220                         E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1221                         E1000_CTRL_FD);  /* Force Duplex to FULL */
1222
1223         if (hw->media_type == e1000_media_type_copper &&
1224            hw->phy_type == e1000_phy_m88)
1225                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1226         else {
1227                 /* Set the ILOS bit on the fiber Nic is half
1228                  * duplex link is detected. */
1229                 stat_reg = er32(STATUS);
1230                 if ((stat_reg & E1000_STATUS_FD) == 0)
1231                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1232         }
1233
1234         ew32(CTRL, ctrl_reg);
1235
1236         /* Disable the receiver on the PHY so when a cable is plugged in, the
1237          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1238          */
1239         if (hw->phy_type == e1000_phy_m88)
1240                 e1000_phy_disable_receiver(adapter);
1241
1242         udelay(500);
1243
1244         return 0;
1245 }
1246
1247 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1248 {
1249         struct e1000_hw *hw = &adapter->hw;
1250         u16 phy_reg = 0;
1251         u16 count = 0;
1252
1253         switch (hw->mac_type) {
1254         case e1000_82543:
1255                 if (hw->media_type == e1000_media_type_copper) {
1256                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1257                          * Some PHY registers get corrupted at random, so
1258                          * attempt this 10 times.
1259                          */
1260                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1261                               count++ < 10);
1262                         if (count < 11)
1263                                 return 0;
1264                 }
1265                 break;
1266
1267         case e1000_82544:
1268         case e1000_82540:
1269         case e1000_82545:
1270         case e1000_82545_rev_3:
1271         case e1000_82546:
1272         case e1000_82546_rev_3:
1273         case e1000_82541:
1274         case e1000_82541_rev_2:
1275         case e1000_82547:
1276         case e1000_82547_rev_2:
1277                 return e1000_integrated_phy_loopback(adapter);
1278                 break;
1279         default:
1280                 /* Default PHY loopback work is to read the MII
1281                  * control register and assert bit 14 (loopback mode).
1282                  */
1283                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1284                 phy_reg |= MII_CR_LOOPBACK;
1285                 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1286                 return 0;
1287                 break;
1288         }
1289
1290         return 8;
1291 }
1292
1293 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1294 {
1295         struct e1000_hw *hw = &adapter->hw;
1296         u32 rctl;
1297
1298         if (hw->media_type == e1000_media_type_fiber ||
1299             hw->media_type == e1000_media_type_internal_serdes) {
1300                 switch (hw->mac_type) {
1301                 case e1000_82545:
1302                 case e1000_82546:
1303                 case e1000_82545_rev_3:
1304                 case e1000_82546_rev_3:
1305                         return e1000_set_phy_loopback(adapter);
1306                         break;
1307                 default:
1308                         rctl = er32(RCTL);
1309                         rctl |= E1000_RCTL_LBM_TCVR;
1310                         ew32(RCTL, rctl);
1311                         return 0;
1312                 }
1313         } else if (hw->media_type == e1000_media_type_copper)
1314                 return e1000_set_phy_loopback(adapter);
1315
1316         return 7;
1317 }
1318
1319 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1320 {
1321         struct e1000_hw *hw = &adapter->hw;
1322         u32 rctl;
1323         u16 phy_reg;
1324
1325         rctl = er32(RCTL);
1326         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1327         ew32(RCTL, rctl);
1328
1329         switch (hw->mac_type) {
1330         case e1000_82545:
1331         case e1000_82546:
1332         case e1000_82545_rev_3:
1333         case e1000_82546_rev_3:
1334         default:
1335                 hw->autoneg = true;
1336                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1337                 if (phy_reg & MII_CR_LOOPBACK) {
1338                         phy_reg &= ~MII_CR_LOOPBACK;
1339                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1340                         e1000_phy_reset(hw);
1341                 }
1342                 break;
1343         }
1344 }
1345
1346 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1347                                       unsigned int frame_size)
1348 {
1349         memset(skb->data, 0xFF, frame_size);
1350         frame_size &= ~1;
1351         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1352         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1353         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1354 }
1355
1356 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1357                                     unsigned int frame_size)
1358 {
1359         frame_size &= ~1;
1360         if (*(skb->data + 3) == 0xFF) {
1361                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1362                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1363                         return 0;
1364                 }
1365         }
1366         return 13;
1367 }
1368
1369 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1370 {
1371         struct e1000_hw *hw = &adapter->hw;
1372         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1373         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1374         struct pci_dev *pdev = adapter->pdev;
1375         int i, j, k, l, lc, good_cnt, ret_val=0;
1376         unsigned long time;
1377
1378         ew32(RDT, rxdr->count - 1);
1379
1380         /* Calculate the loop count based on the largest descriptor ring
1381          * The idea is to wrap the largest ring a number of times using 64
1382          * send/receive pairs during each loop
1383          */
1384
1385         if (rxdr->count <= txdr->count)
1386                 lc = ((txdr->count / 64) * 2) + 1;
1387         else
1388                 lc = ((rxdr->count / 64) * 2) + 1;
1389
1390         k = l = 0;
1391         for (j = 0; j <= lc; j++) { /* loop count loop */
1392                 for (i = 0; i < 64; i++) { /* send the packets */
1393                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1394                                         1024);
1395                         dma_sync_single_for_device(&pdev->dev,
1396                                                    txdr->buffer_info[k].dma,
1397                                                    txdr->buffer_info[k].length,
1398                                                    DMA_TO_DEVICE);
1399                         if (unlikely(++k == txdr->count)) k = 0;
1400                 }
1401                 ew32(TDT, k);
1402                 E1000_WRITE_FLUSH();
1403                 msleep(200);
1404                 time = jiffies; /* set the start time for the receive */
1405                 good_cnt = 0;
1406                 do { /* receive the sent packets */
1407                         dma_sync_single_for_cpu(&pdev->dev,
1408                                                 rxdr->buffer_info[l].dma,
1409                                                 rxdr->buffer_info[l].length,
1410                                                 DMA_FROM_DEVICE);
1411
1412                         ret_val = e1000_check_lbtest_frame(
1413                                         rxdr->buffer_info[l].skb,
1414                                         1024);
1415                         if (!ret_val)
1416                                 good_cnt++;
1417                         if (unlikely(++l == rxdr->count)) l = 0;
1418                         /* time + 20 msecs (200 msecs on 2.4) is more than
1419                          * enough time to complete the receives, if it's
1420                          * exceeded, break and error off
1421                          */
1422                 } while (good_cnt < 64 && jiffies < (time + 20));
1423                 if (good_cnt != 64) {
1424                         ret_val = 13; /* ret_val is the same as mis-compare */
1425                         break;
1426                 }
1427                 if (jiffies >= (time + 2)) {
1428                         ret_val = 14; /* error code for time out error */
1429                         break;
1430                 }
1431         } /* end loop count loop */
1432         return ret_val;
1433 }
1434
1435 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1436 {
1437         *data = e1000_setup_desc_rings(adapter);
1438         if (*data)
1439                 goto out;
1440         *data = e1000_setup_loopback_test(adapter);
1441         if (*data)
1442                 goto err_loopback;
1443         *data = e1000_run_loopback_test(adapter);
1444         e1000_loopback_cleanup(adapter);
1445
1446 err_loopback:
1447         e1000_free_desc_rings(adapter);
1448 out:
1449         return *data;
1450 }
1451
1452 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1453 {
1454         struct e1000_hw *hw = &adapter->hw;
1455         *data = 0;
1456         if (hw->media_type == e1000_media_type_internal_serdes) {
1457                 int i = 0;
1458                 hw->serdes_has_link = false;
1459
1460                 /* On some blade server designs, link establishment
1461                  * could take as long as 2-3 minutes */
1462                 do {
1463                         e1000_check_for_link(hw);
1464                         if (hw->serdes_has_link)
1465                                 return *data;
1466                         msleep(20);
1467                 } while (i++ < 3750);
1468
1469                 *data = 1;
1470         } else {
1471                 e1000_check_for_link(hw);
1472                 if (hw->autoneg)  /* if auto_neg is set wait for it */
1473                         msleep(4000);
1474
1475                 if (!(er32(STATUS) & E1000_STATUS_LU)) {
1476                         *data = 1;
1477                 }
1478         }
1479         return *data;
1480 }
1481
1482 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1483 {
1484         switch (sset) {
1485         case ETH_SS_TEST:
1486                 return E1000_TEST_LEN;
1487         case ETH_SS_STATS:
1488                 return E1000_STATS_LEN;
1489         default:
1490                 return -EOPNOTSUPP;
1491         }
1492 }
1493
1494 static void e1000_diag_test(struct net_device *netdev,
1495                             struct ethtool_test *eth_test, u64 *data)
1496 {
1497         struct e1000_adapter *adapter = netdev_priv(netdev);
1498         struct e1000_hw *hw = &adapter->hw;
1499         bool if_running = netif_running(netdev);
1500
1501         set_bit(__E1000_TESTING, &adapter->flags);
1502         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1503                 /* Offline tests */
1504
1505                 /* save speed, duplex, autoneg settings */
1506                 u16 autoneg_advertised = hw->autoneg_advertised;
1507                 u8 forced_speed_duplex = hw->forced_speed_duplex;
1508                 u8 autoneg = hw->autoneg;
1509
1510                 e_info(hw, "offline testing starting\n");
1511
1512                 /* Link test performed before hardware reset so autoneg doesn't
1513                  * interfere with test result */
1514                 if (e1000_link_test(adapter, &data[4]))
1515                         eth_test->flags |= ETH_TEST_FL_FAILED;
1516
1517                 if (if_running)
1518                         /* indicate we're in test mode */
1519                         dev_close(netdev);
1520                 else
1521                         e1000_reset(adapter);
1522
1523                 if (e1000_reg_test(adapter, &data[0]))
1524                         eth_test->flags |= ETH_TEST_FL_FAILED;
1525
1526                 e1000_reset(adapter);
1527                 if (e1000_eeprom_test(adapter, &data[1]))
1528                         eth_test->flags |= ETH_TEST_FL_FAILED;
1529
1530                 e1000_reset(adapter);
1531                 if (e1000_intr_test(adapter, &data[2]))
1532                         eth_test->flags |= ETH_TEST_FL_FAILED;
1533
1534                 e1000_reset(adapter);
1535                 /* make sure the phy is powered up */
1536                 e1000_power_up_phy(adapter);
1537                 if (e1000_loopback_test(adapter, &data[3]))
1538                         eth_test->flags |= ETH_TEST_FL_FAILED;
1539
1540                 /* restore speed, duplex, autoneg settings */
1541                 hw->autoneg_advertised = autoneg_advertised;
1542                 hw->forced_speed_duplex = forced_speed_duplex;
1543                 hw->autoneg = autoneg;
1544
1545                 e1000_reset(adapter);
1546                 clear_bit(__E1000_TESTING, &adapter->flags);
1547                 if (if_running)
1548                         dev_open(netdev);
1549         } else {
1550                 e_info(hw, "online testing starting\n");
1551                 /* Online tests */
1552                 if (e1000_link_test(adapter, &data[4]))
1553                         eth_test->flags |= ETH_TEST_FL_FAILED;
1554
1555                 /* Online tests aren't run; pass by default */
1556                 data[0] = 0;
1557                 data[1] = 0;
1558                 data[2] = 0;
1559                 data[3] = 0;
1560
1561                 clear_bit(__E1000_TESTING, &adapter->flags);
1562         }
1563         msleep_interruptible(4 * 1000);
1564 }
1565
1566 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1567                                struct ethtool_wolinfo *wol)
1568 {
1569         struct e1000_hw *hw = &adapter->hw;
1570         int retval = 1; /* fail by default */
1571
1572         switch (hw->device_id) {
1573         case E1000_DEV_ID_82542:
1574         case E1000_DEV_ID_82543GC_FIBER:
1575         case E1000_DEV_ID_82543GC_COPPER:
1576         case E1000_DEV_ID_82544EI_FIBER:
1577         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1578         case E1000_DEV_ID_82545EM_FIBER:
1579         case E1000_DEV_ID_82545EM_COPPER:
1580         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1581         case E1000_DEV_ID_82546GB_PCIE:
1582                 /* these don't support WoL at all */
1583                 wol->supported = 0;
1584                 break;
1585         case E1000_DEV_ID_82546EB_FIBER:
1586         case E1000_DEV_ID_82546GB_FIBER:
1587                 /* Wake events not supported on port B */
1588                 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1589                         wol->supported = 0;
1590                         break;
1591                 }
1592                 /* return success for non excluded adapter ports */
1593                 retval = 0;
1594                 break;
1595         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1596                 /* quad port adapters only support WoL on port A */
1597                 if (!adapter->quad_port_a) {
1598                         wol->supported = 0;
1599                         break;
1600                 }
1601                 /* return success for non excluded adapter ports */
1602                 retval = 0;
1603                 break;
1604         default:
1605                 /* dual port cards only support WoL on port A from now on
1606                  * unless it was enabled in the eeprom for port B
1607                  * so exclude FUNC_1 ports from having WoL enabled */
1608                 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1609                     !adapter->eeprom_wol) {
1610                         wol->supported = 0;
1611                         break;
1612                 }
1613
1614                 retval = 0;
1615         }
1616
1617         return retval;
1618 }
1619
1620 static void e1000_get_wol(struct net_device *netdev,
1621                           struct ethtool_wolinfo *wol)
1622 {
1623         struct e1000_adapter *adapter = netdev_priv(netdev);
1624         struct e1000_hw *hw = &adapter->hw;
1625
1626         wol->supported = WAKE_UCAST | WAKE_MCAST |
1627                          WAKE_BCAST | WAKE_MAGIC;
1628         wol->wolopts = 0;
1629
1630         /* this function will set ->supported = 0 and return 1 if wol is not
1631          * supported by this hardware */
1632         if (e1000_wol_exclusion(adapter, wol) ||
1633             !device_can_wakeup(&adapter->pdev->dev))
1634                 return;
1635
1636         /* apply any specific unsupported masks here */
1637         switch (hw->device_id) {
1638         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1639                 /* KSP3 does not suppport UCAST wake-ups */
1640                 wol->supported &= ~WAKE_UCAST;
1641
1642                 if (adapter->wol & E1000_WUFC_EX)
1643                         e_err(drv, "Interface does not support directed "
1644                               "(unicast) frame wake-up packets\n");
1645                 break;
1646         default:
1647                 break;
1648         }
1649
1650         if (adapter->wol & E1000_WUFC_EX)
1651                 wol->wolopts |= WAKE_UCAST;
1652         if (adapter->wol & E1000_WUFC_MC)
1653                 wol->wolopts |= WAKE_MCAST;
1654         if (adapter->wol & E1000_WUFC_BC)
1655                 wol->wolopts |= WAKE_BCAST;
1656         if (adapter->wol & E1000_WUFC_MAG)
1657                 wol->wolopts |= WAKE_MAGIC;
1658 }
1659
1660 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1661 {
1662         struct e1000_adapter *adapter = netdev_priv(netdev);
1663         struct e1000_hw *hw = &adapter->hw;
1664
1665         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1666                 return -EOPNOTSUPP;
1667
1668         if (e1000_wol_exclusion(adapter, wol) ||
1669             !device_can_wakeup(&adapter->pdev->dev))
1670                 return wol->wolopts ? -EOPNOTSUPP : 0;
1671
1672         switch (hw->device_id) {
1673         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1674                 if (wol->wolopts & WAKE_UCAST) {
1675                         e_err(drv, "Interface does not support directed "
1676                               "(unicast) frame wake-up packets\n");
1677                         return -EOPNOTSUPP;
1678                 }
1679                 break;
1680         default:
1681                 break;
1682         }
1683
1684         /* these settings will always override what we currently have */
1685         adapter->wol = 0;
1686
1687         if (wol->wolopts & WAKE_UCAST)
1688                 adapter->wol |= E1000_WUFC_EX;
1689         if (wol->wolopts & WAKE_MCAST)
1690                 adapter->wol |= E1000_WUFC_MC;
1691         if (wol->wolopts & WAKE_BCAST)
1692                 adapter->wol |= E1000_WUFC_BC;
1693         if (wol->wolopts & WAKE_MAGIC)
1694                 adapter->wol |= E1000_WUFC_MAG;
1695
1696         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1697
1698         return 0;
1699 }
1700
1701 static int e1000_set_phys_id(struct net_device *netdev,
1702                              enum ethtool_phys_id_state state)
1703 {
1704         struct e1000_adapter *adapter = netdev_priv(netdev);
1705         struct e1000_hw *hw = &adapter->hw;
1706
1707         switch (state) {
1708         case ETHTOOL_ID_ACTIVE:
1709                 e1000_setup_led(hw);
1710                 return 2;
1711
1712         case ETHTOOL_ID_ON:
1713                 e1000_led_on(hw);
1714                 break;
1715
1716         case ETHTOOL_ID_OFF:
1717                 e1000_led_off(hw);
1718                 break;
1719
1720         case ETHTOOL_ID_INACTIVE:
1721                 e1000_cleanup_led(hw);
1722         }
1723
1724         return 0;
1725 }
1726
1727 static int e1000_get_coalesce(struct net_device *netdev,
1728                               struct ethtool_coalesce *ec)
1729 {
1730         struct e1000_adapter *adapter = netdev_priv(netdev);
1731
1732         if (adapter->hw.mac_type < e1000_82545)
1733                 return -EOPNOTSUPP;
1734
1735         if (adapter->itr_setting <= 4)
1736                 ec->rx_coalesce_usecs = adapter->itr_setting;
1737         else
1738                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1739
1740         return 0;
1741 }
1742
1743 static int e1000_set_coalesce(struct net_device *netdev,
1744                               struct ethtool_coalesce *ec)
1745 {
1746         struct e1000_adapter *adapter = netdev_priv(netdev);
1747         struct e1000_hw *hw = &adapter->hw;
1748
1749         if (hw->mac_type < e1000_82545)
1750                 return -EOPNOTSUPP;
1751
1752         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1753             ((ec->rx_coalesce_usecs > 4) &&
1754              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1755             (ec->rx_coalesce_usecs == 2))
1756                 return -EINVAL;
1757
1758         if (ec->rx_coalesce_usecs == 4) {
1759                 adapter->itr = adapter->itr_setting = 4;
1760         } else if (ec->rx_coalesce_usecs <= 3) {
1761                 adapter->itr = 20000;
1762                 adapter->itr_setting = ec->rx_coalesce_usecs;
1763         } else {
1764                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1765                 adapter->itr_setting = adapter->itr & ~3;
1766         }
1767
1768         if (adapter->itr_setting != 0)
1769                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1770         else
1771                 ew32(ITR, 0);
1772
1773         return 0;
1774 }
1775
1776 static int e1000_nway_reset(struct net_device *netdev)
1777 {
1778         struct e1000_adapter *adapter = netdev_priv(netdev);
1779         if (netif_running(netdev))
1780                 e1000_reinit_locked(adapter);
1781         return 0;
1782 }
1783
1784 static void e1000_get_ethtool_stats(struct net_device *netdev,
1785                                     struct ethtool_stats *stats, u64 *data)
1786 {
1787         struct e1000_adapter *adapter = netdev_priv(netdev);
1788         int i;
1789         char *p = NULL;
1790
1791         e1000_update_stats(adapter);
1792         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1793                 switch (e1000_gstrings_stats[i].type) {
1794                 case NETDEV_STATS:
1795                         p = (char *) netdev +
1796                                         e1000_gstrings_stats[i].stat_offset;
1797                         break;
1798                 case E1000_STATS:
1799                         p = (char *) adapter +
1800                                         e1000_gstrings_stats[i].stat_offset;
1801                         break;
1802                 }
1803
1804                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1805                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1806         }
1807 /*      BUG_ON(i != E1000_STATS_LEN); */
1808 }
1809
1810 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1811                               u8 *data)
1812 {
1813         u8 *p = data;
1814         int i;
1815
1816         switch (stringset) {
1817         case ETH_SS_TEST:
1818                 memcpy(data, *e1000_gstrings_test,
1819                         sizeof(e1000_gstrings_test));
1820                 break;
1821         case ETH_SS_STATS:
1822                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1823                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1824                                ETH_GSTRING_LEN);
1825                         p += ETH_GSTRING_LEN;
1826                 }
1827 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1828                 break;
1829         }
1830 }
1831
1832 static const struct ethtool_ops e1000_ethtool_ops = {
1833         .get_settings           = e1000_get_settings,
1834         .set_settings           = e1000_set_settings,
1835         .get_drvinfo            = e1000_get_drvinfo,
1836         .get_regs_len           = e1000_get_regs_len,
1837         .get_regs               = e1000_get_regs,
1838         .get_wol                = e1000_get_wol,
1839         .set_wol                = e1000_set_wol,
1840         .get_msglevel           = e1000_get_msglevel,
1841         .set_msglevel           = e1000_set_msglevel,
1842         .nway_reset             = e1000_nway_reset,
1843         .get_link               = e1000_get_link,
1844         .get_eeprom_len         = e1000_get_eeprom_len,
1845         .get_eeprom             = e1000_get_eeprom,
1846         .set_eeprom             = e1000_set_eeprom,
1847         .get_ringparam          = e1000_get_ringparam,
1848         .set_ringparam          = e1000_set_ringparam,
1849         .get_pauseparam         = e1000_get_pauseparam,
1850         .set_pauseparam         = e1000_set_pauseparam,
1851         .self_test              = e1000_diag_test,
1852         .get_strings            = e1000_get_strings,
1853         .set_phys_id            = e1000_set_phys_id,
1854         .get_ethtool_stats      = e1000_get_ethtool_stats,
1855         .get_sset_count         = e1000_get_sset_count,
1856         .get_coalesce           = e1000_get_coalesce,
1857         .set_coalesce           = e1000_set_coalesce,
1858 };
1859
1860 void e1000_set_ethtool_ops(struct net_device *netdev)
1861 {
1862         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1863 }