Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / drivers / net / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if_vlan.h>
45 #include <linux/init.h>
46 #include <linux/log2.h>
47 #include <linux/mdio.h>
48 #include <linux/module.h>
49 #include <linux/moduleparam.h>
50 #include <linux/mutex.h>
51 #include <linux/netdevice.h>
52 #include <linux/pci.h>
53 #include <linux/aer.h>
54 #include <linux/rtnetlink.h>
55 #include <linux/sched.h>
56 #include <linux/seq_file.h>
57 #include <linux/sockios.h>
58 #include <linux/vmalloc.h>
59 #include <linux/workqueue.h>
60 #include <net/neighbour.h>
61 #include <net/netevent.h>
62 #include <asm/uaccess.h>
63
64 #include "cxgb4.h"
65 #include "t4_regs.h"
66 #include "t4_msg.h"
67 #include "t4fw_api.h"
68 #include "l2t.h"
69
70 #define DRV_VERSION "1.3.0-ko"
71 #define DRV_DESC "Chelsio T4 Network Driver"
72
73 /*
74  * Max interrupt hold-off timer value in us.  Queues fall back to this value
75  * under extreme memory pressure so it's largish to give the system time to
76  * recover.
77  */
78 #define MAX_SGE_TIMERVAL 200U
79
80 #ifdef CONFIG_PCI_IOV
81 /*
82  * Virtual Function provisioning constants.  We need two extra Ingress Queues
83  * with Interrupt capability to serve as the VF's Firmware Event Queue and
84  * Forwarded Interrupt Queue (when using MSI mode) -- neither will have Free
85  * Lists associated with them).  For each Ethernet/Control Egress Queue and
86  * for each Free List, we need an Egress Context.
87  */
88 enum {
89         VFRES_NPORTS = 1,               /* # of "ports" per VF */
90         VFRES_NQSETS = 2,               /* # of "Queue Sets" per VF */
91
92         VFRES_NVI = VFRES_NPORTS,       /* # of Virtual Interfaces */
93         VFRES_NETHCTRL = VFRES_NQSETS,  /* # of EQs used for ETH or CTRL Qs */
94         VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
95         VFRES_NIQ = 0,                  /* # of non-fl/int ingress queues */
96         VFRES_NEQ = VFRES_NQSETS*2,     /* # of egress queues */
97         VFRES_TC = 0,                   /* PCI-E traffic class */
98         VFRES_NEXACTF = 16,             /* # of exact MPS filters */
99
100         VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
101         VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
102 };
103
104 /*
105  * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
106  * static and likely not to be useful in the long run.  We really need to
107  * implement some form of persistent configuration which the firmware
108  * controls.
109  */
110 static unsigned int pfvfres_pmask(struct adapter *adapter,
111                                   unsigned int pf, unsigned int vf)
112 {
113         unsigned int portn, portvec;
114
115         /*
116          * Give PF's access to all of the ports.
117          */
118         if (vf == 0)
119                 return FW_PFVF_CMD_PMASK_MASK;
120
121         /*
122          * For VFs, we'll assign them access to the ports based purely on the
123          * PF.  We assign active ports in order, wrapping around if there are
124          * fewer active ports than PFs: e.g. active port[pf % nports].
125          * Unfortunately the adapter's port_info structs haven't been
126          * initialized yet so we have to compute this.
127          */
128         if (adapter->params.nports == 0)
129                 return 0;
130
131         portn = pf % adapter->params.nports;
132         portvec = adapter->params.portvec;
133         for (;;) {
134                 /*
135                  * Isolate the lowest set bit in the port vector.  If we're at
136                  * the port number that we want, return that as the pmask.
137                  * otherwise mask that bit out of the port vector and
138                  * decrement our port number ...
139                  */
140                 unsigned int pmask = portvec ^ (portvec & (portvec-1));
141                 if (portn == 0)
142                         return pmask;
143                 portn--;
144                 portvec &= ~pmask;
145         }
146         /*NOTREACHED*/
147 }
148 #endif
149
150 enum {
151         MEMWIN0_APERTURE = 65536,
152         MEMWIN0_BASE     = 0x30000,
153         MEMWIN1_APERTURE = 32768,
154         MEMWIN1_BASE     = 0x28000,
155         MEMWIN2_APERTURE = 2048,
156         MEMWIN2_BASE     = 0x1b800,
157 };
158
159 enum {
160         MAX_TXQ_ENTRIES      = 16384,
161         MAX_CTRL_TXQ_ENTRIES = 1024,
162         MAX_RSPQ_ENTRIES     = 16384,
163         MAX_RX_BUFFERS       = 16384,
164         MIN_TXQ_ENTRIES      = 32,
165         MIN_CTRL_TXQ_ENTRIES = 32,
166         MIN_RSPQ_ENTRIES     = 128,
167         MIN_FL_ENTRIES       = 16
168 };
169
170 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
171                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
172                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
173
174 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
175
176 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
177         CH_DEVICE(0xa000, 0),  /* PE10K */
178         CH_DEVICE(0x4001, -1),
179         CH_DEVICE(0x4002, -1),
180         CH_DEVICE(0x4003, -1),
181         CH_DEVICE(0x4004, -1),
182         CH_DEVICE(0x4005, -1),
183         CH_DEVICE(0x4006, -1),
184         CH_DEVICE(0x4007, -1),
185         CH_DEVICE(0x4008, -1),
186         CH_DEVICE(0x4009, -1),
187         CH_DEVICE(0x400a, -1),
188         CH_DEVICE(0x4401, 4),
189         CH_DEVICE(0x4402, 4),
190         CH_DEVICE(0x4403, 4),
191         CH_DEVICE(0x4404, 4),
192         CH_DEVICE(0x4405, 4),
193         CH_DEVICE(0x4406, 4),
194         CH_DEVICE(0x4407, 4),
195         CH_DEVICE(0x4408, 4),
196         CH_DEVICE(0x4409, 4),
197         CH_DEVICE(0x440a, 4),
198         { 0, }
199 };
200
201 #define FW_FNAME "cxgb4/t4fw.bin"
202
203 MODULE_DESCRIPTION(DRV_DESC);
204 MODULE_AUTHOR("Chelsio Communications");
205 MODULE_LICENSE("Dual BSD/GPL");
206 MODULE_VERSION(DRV_VERSION);
207 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
208 MODULE_FIRMWARE(FW_FNAME);
209
210 static int dflt_msg_enable = DFLT_MSG_ENABLE;
211
212 module_param(dflt_msg_enable, int, 0644);
213 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
214
215 /*
216  * The driver uses the best interrupt scheme available on a platform in the
217  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
218  * of these schemes the driver may consider as follows:
219  *
220  * msi = 2: choose from among all three options
221  * msi = 1: only consider MSI and INTx interrupts
222  * msi = 0: force INTx interrupts
223  */
224 static int msi = 2;
225
226 module_param(msi, int, 0644);
227 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
228
229 /*
230  * Queue interrupt hold-off timer values.  Queues default to the first of these
231  * upon creation.
232  */
233 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
234
235 module_param_array(intr_holdoff, uint, NULL, 0644);
236 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
237                  "0..4 in microseconds");
238
239 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
240
241 module_param_array(intr_cnt, uint, NULL, 0644);
242 MODULE_PARM_DESC(intr_cnt,
243                  "thresholds 1..3 for queue interrupt packet counters");
244
245 static int vf_acls;
246
247 #ifdef CONFIG_PCI_IOV
248 module_param(vf_acls, bool, 0644);
249 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
250
251 static unsigned int num_vf[4];
252
253 module_param_array(num_vf, uint, NULL, 0644);
254 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
255 #endif
256
257 static struct dentry *cxgb4_debugfs_root;
258
259 static LIST_HEAD(adapter_list);
260 static DEFINE_MUTEX(uld_mutex);
261 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
262 static const char *uld_str[] = { "RDMA", "iSCSI" };
263
264 static void link_report(struct net_device *dev)
265 {
266         if (!netif_carrier_ok(dev))
267                 netdev_info(dev, "link down\n");
268         else {
269                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
270
271                 const char *s = "10Mbps";
272                 const struct port_info *p = netdev_priv(dev);
273
274                 switch (p->link_cfg.speed) {
275                 case SPEED_10000:
276                         s = "10Gbps";
277                         break;
278                 case SPEED_1000:
279                         s = "1000Mbps";
280                         break;
281                 case SPEED_100:
282                         s = "100Mbps";
283                         break;
284                 }
285
286                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
287                             fc[p->link_cfg.fc]);
288         }
289 }
290
291 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
292 {
293         struct net_device *dev = adapter->port[port_id];
294
295         /* Skip changes from disabled ports. */
296         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
297                 if (link_stat)
298                         netif_carrier_on(dev);
299                 else
300                         netif_carrier_off(dev);
301
302                 link_report(dev);
303         }
304 }
305
306 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
307 {
308         static const char *mod_str[] = {
309                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
310         };
311
312         const struct net_device *dev = adap->port[port_id];
313         const struct port_info *pi = netdev_priv(dev);
314
315         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
316                 netdev_info(dev, "port module unplugged\n");
317         else if (pi->mod_type < ARRAY_SIZE(mod_str))
318                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
319 }
320
321 /*
322  * Configure the exact and hash address filters to handle a port's multicast
323  * and secondary unicast MAC addresses.
324  */
325 static int set_addr_filters(const struct net_device *dev, bool sleep)
326 {
327         u64 mhash = 0;
328         u64 uhash = 0;
329         bool free = true;
330         u16 filt_idx[7];
331         const u8 *addr[7];
332         int ret, naddr = 0;
333         const struct netdev_hw_addr *ha;
334         int uc_cnt = netdev_uc_count(dev);
335         int mc_cnt = netdev_mc_count(dev);
336         const struct port_info *pi = netdev_priv(dev);
337         unsigned int mb = pi->adapter->fn;
338
339         /* first do the secondary unicast addresses */
340         netdev_for_each_uc_addr(ha, dev) {
341                 addr[naddr++] = ha->addr;
342                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
343                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
344                                         naddr, addr, filt_idx, &uhash, sleep);
345                         if (ret < 0)
346                                 return ret;
347
348                         free = false;
349                         naddr = 0;
350                 }
351         }
352
353         /* next set up the multicast addresses */
354         netdev_for_each_mc_addr(ha, dev) {
355                 addr[naddr++] = ha->addr;
356                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
357                         ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
358                                         naddr, addr, filt_idx, &mhash, sleep);
359                         if (ret < 0)
360                                 return ret;
361
362                         free = false;
363                         naddr = 0;
364                 }
365         }
366
367         return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
368                                 uhash | mhash, sleep);
369 }
370
371 /*
372  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
373  * If @mtu is -1 it is left unchanged.
374  */
375 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
376 {
377         int ret;
378         struct port_info *pi = netdev_priv(dev);
379
380         ret = set_addr_filters(dev, sleep_ok);
381         if (ret == 0)
382                 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
383                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
384                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
385                                     sleep_ok);
386         return ret;
387 }
388
389 /**
390  *      link_start - enable a port
391  *      @dev: the port to enable
392  *
393  *      Performs the MAC and PHY actions needed to enable a port.
394  */
395 static int link_start(struct net_device *dev)
396 {
397         int ret;
398         struct port_info *pi = netdev_priv(dev);
399         unsigned int mb = pi->adapter->fn;
400
401         /*
402          * We do not set address filters and promiscuity here, the stack does
403          * that step explicitly.
404          */
405         ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
406                             !!(dev->features & NETIF_F_HW_VLAN_RX), true);
407         if (ret == 0) {
408                 ret = t4_change_mac(pi->adapter, mb, pi->viid,
409                                     pi->xact_addr_filt, dev->dev_addr, true,
410                                     true);
411                 if (ret >= 0) {
412                         pi->xact_addr_filt = ret;
413                         ret = 0;
414                 }
415         }
416         if (ret == 0)
417                 ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
418                                     &pi->link_cfg);
419         if (ret == 0)
420                 ret = t4_enable_vi(pi->adapter, mb, pi->viid, true, true);
421         return ret;
422 }
423
424 /*
425  * Response queue handler for the FW event queue.
426  */
427 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
428                           const struct pkt_gl *gl)
429 {
430         u8 opcode = ((const struct rss_header *)rsp)->opcode;
431
432         rsp++;                                          /* skip RSS header */
433         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
434                 const struct cpl_sge_egr_update *p = (void *)rsp;
435                 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
436                 struct sge_txq *txq;
437
438                 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
439                 txq->restarts++;
440                 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
441                         struct sge_eth_txq *eq;
442
443                         eq = container_of(txq, struct sge_eth_txq, q);
444                         netif_tx_wake_queue(eq->txq);
445                 } else {
446                         struct sge_ofld_txq *oq;
447
448                         oq = container_of(txq, struct sge_ofld_txq, q);
449                         tasklet_schedule(&oq->qresume_tsk);
450                 }
451         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
452                 const struct cpl_fw6_msg *p = (void *)rsp;
453
454                 if (p->type == 0)
455                         t4_handle_fw_rpl(q->adap, p->data);
456         } else if (opcode == CPL_L2T_WRITE_RPL) {
457                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
458
459                 do_l2t_write_rpl(q->adap, p);
460         } else
461                 dev_err(q->adap->pdev_dev,
462                         "unexpected CPL %#x on FW event queue\n", opcode);
463         return 0;
464 }
465
466 /**
467  *      uldrx_handler - response queue handler for ULD queues
468  *      @q: the response queue that received the packet
469  *      @rsp: the response queue descriptor holding the offload message
470  *      @gl: the gather list of packet fragments
471  *
472  *      Deliver an ingress offload packet to a ULD.  All processing is done by
473  *      the ULD, we just maintain statistics.
474  */
475 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
476                          const struct pkt_gl *gl)
477 {
478         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
479
480         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
481                 rxq->stats.nomem++;
482                 return -1;
483         }
484         if (gl == NULL)
485                 rxq->stats.imm++;
486         else if (gl == CXGB4_MSG_AN)
487                 rxq->stats.an++;
488         else
489                 rxq->stats.pkts++;
490         return 0;
491 }
492
493 static void disable_msi(struct adapter *adapter)
494 {
495         if (adapter->flags & USING_MSIX) {
496                 pci_disable_msix(adapter->pdev);
497                 adapter->flags &= ~USING_MSIX;
498         } else if (adapter->flags & USING_MSI) {
499                 pci_disable_msi(adapter->pdev);
500                 adapter->flags &= ~USING_MSI;
501         }
502 }
503
504 /*
505  * Interrupt handler for non-data events used with MSI-X.
506  */
507 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
508 {
509         struct adapter *adap = cookie;
510
511         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
512         if (v & PFSW) {
513                 adap->swintr = 1;
514                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
515         }
516         t4_slow_intr_handler(adap);
517         return IRQ_HANDLED;
518 }
519
520 /*
521  * Name the MSI-X interrupts.
522  */
523 static void name_msix_vecs(struct adapter *adap)
524 {
525         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc) - 1;
526
527         /* non-data interrupts */
528         snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
529         adap->msix_info[0].desc[n] = 0;
530
531         /* FW events */
532         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", adap->name);
533         adap->msix_info[1].desc[n] = 0;
534
535         /* Ethernet queues */
536         for_each_port(adap, j) {
537                 struct net_device *d = adap->port[j];
538                 const struct port_info *pi = netdev_priv(d);
539
540                 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
541                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
542                                  d->name, i);
543                         adap->msix_info[msi_idx].desc[n] = 0;
544                 }
545         }
546
547         /* offload queues */
548         for_each_ofldrxq(&adap->sge, i) {
549                 snprintf(adap->msix_info[msi_idx].desc, n, "%s-ofld%d",
550                          adap->name, i);
551                 adap->msix_info[msi_idx++].desc[n] = 0;
552         }
553         for_each_rdmarxq(&adap->sge, i) {
554                 snprintf(adap->msix_info[msi_idx].desc, n, "%s-rdma%d",
555                          adap->name, i);
556                 adap->msix_info[msi_idx++].desc[n] = 0;
557         }
558 }
559
560 static int request_msix_queue_irqs(struct adapter *adap)
561 {
562         struct sge *s = &adap->sge;
563         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, msi = 2;
564
565         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
566                           adap->msix_info[1].desc, &s->fw_evtq);
567         if (err)
568                 return err;
569
570         for_each_ethrxq(s, ethqidx) {
571                 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
572                                   adap->msix_info[msi].desc,
573                                   &s->ethrxq[ethqidx].rspq);
574                 if (err)
575                         goto unwind;
576                 msi++;
577         }
578         for_each_ofldrxq(s, ofldqidx) {
579                 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
580                                   adap->msix_info[msi].desc,
581                                   &s->ofldrxq[ofldqidx].rspq);
582                 if (err)
583                         goto unwind;
584                 msi++;
585         }
586         for_each_rdmarxq(s, rdmaqidx) {
587                 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
588                                   adap->msix_info[msi].desc,
589                                   &s->rdmarxq[rdmaqidx].rspq);
590                 if (err)
591                         goto unwind;
592                 msi++;
593         }
594         return 0;
595
596 unwind:
597         while (--rdmaqidx >= 0)
598                 free_irq(adap->msix_info[--msi].vec,
599                          &s->rdmarxq[rdmaqidx].rspq);
600         while (--ofldqidx >= 0)
601                 free_irq(adap->msix_info[--msi].vec,
602                          &s->ofldrxq[ofldqidx].rspq);
603         while (--ethqidx >= 0)
604                 free_irq(adap->msix_info[--msi].vec, &s->ethrxq[ethqidx].rspq);
605         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
606         return err;
607 }
608
609 static void free_msix_queue_irqs(struct adapter *adap)
610 {
611         int i, msi = 2;
612         struct sge *s = &adap->sge;
613
614         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
615         for_each_ethrxq(s, i)
616                 free_irq(adap->msix_info[msi++].vec, &s->ethrxq[i].rspq);
617         for_each_ofldrxq(s, i)
618                 free_irq(adap->msix_info[msi++].vec, &s->ofldrxq[i].rspq);
619         for_each_rdmarxq(s, i)
620                 free_irq(adap->msix_info[msi++].vec, &s->rdmarxq[i].rspq);
621 }
622
623 /**
624  *      write_rss - write the RSS table for a given port
625  *      @pi: the port
626  *      @queues: array of queue indices for RSS
627  *
628  *      Sets up the portion of the HW RSS table for the port's VI to distribute
629  *      packets to the Rx queues in @queues.
630  */
631 static int write_rss(const struct port_info *pi, const u16 *queues)
632 {
633         u16 *rss;
634         int i, err;
635         const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
636
637         rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
638         if (!rss)
639                 return -ENOMEM;
640
641         /* map the queue indices to queue ids */
642         for (i = 0; i < pi->rss_size; i++, queues++)
643                 rss[i] = q[*queues].rspq.abs_id;
644
645         err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
646                                   pi->rss_size, rss, pi->rss_size);
647         kfree(rss);
648         return err;
649 }
650
651 /**
652  *      setup_rss - configure RSS
653  *      @adap: the adapter
654  *
655  *      Sets up RSS for each port.
656  */
657 static int setup_rss(struct adapter *adap)
658 {
659         int i, err;
660
661         for_each_port(adap, i) {
662                 const struct port_info *pi = adap2pinfo(adap, i);
663
664                 err = write_rss(pi, pi->rss);
665                 if (err)
666                         return err;
667         }
668         return 0;
669 }
670
671 /*
672  * Return the channel of the ingress queue with the given qid.
673  */
674 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
675 {
676         qid -= p->ingr_start;
677         return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
678 }
679
680 /*
681  * Wait until all NAPI handlers are descheduled.
682  */
683 static void quiesce_rx(struct adapter *adap)
684 {
685         int i;
686
687         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
688                 struct sge_rspq *q = adap->sge.ingr_map[i];
689
690                 if (q && q->handler)
691                         napi_disable(&q->napi);
692         }
693 }
694
695 /*
696  * Enable NAPI scheduling and interrupt generation for all Rx queues.
697  */
698 static void enable_rx(struct adapter *adap)
699 {
700         int i;
701
702         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
703                 struct sge_rspq *q = adap->sge.ingr_map[i];
704
705                 if (!q)
706                         continue;
707                 if (q->handler)
708                         napi_enable(&q->napi);
709                 /* 0-increment GTS to start the timer and enable interrupts */
710                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
711                              SEINTARM(q->intr_params) |
712                              INGRESSQID(q->cntxt_id));
713         }
714 }
715
716 /**
717  *      setup_sge_queues - configure SGE Tx/Rx/response queues
718  *      @adap: the adapter
719  *
720  *      Determines how many sets of SGE queues to use and initializes them.
721  *      We support multiple queue sets per port if we have MSI-X, otherwise
722  *      just one queue set per port.
723  */
724 static int setup_sge_queues(struct adapter *adap)
725 {
726         int err, msi_idx, i, j;
727         struct sge *s = &adap->sge;
728
729         bitmap_zero(s->starving_fl, MAX_EGRQ);
730         bitmap_zero(s->txq_maperr, MAX_EGRQ);
731
732         if (adap->flags & USING_MSIX)
733                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
734         else {
735                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
736                                        NULL, NULL);
737                 if (err)
738                         return err;
739                 msi_idx = -((int)s->intrq.abs_id + 1);
740         }
741
742         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
743                                msi_idx, NULL, fwevtq_handler);
744         if (err) {
745 freeout:        t4_free_sge_resources(adap);
746                 return err;
747         }
748
749         for_each_port(adap, i) {
750                 struct net_device *dev = adap->port[i];
751                 struct port_info *pi = netdev_priv(dev);
752                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
753                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
754
755                 for (j = 0; j < pi->nqsets; j++, q++) {
756                         if (msi_idx > 0)
757                                 msi_idx++;
758                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
759                                                msi_idx, &q->fl,
760                                                t4_ethrx_handler);
761                         if (err)
762                                 goto freeout;
763                         q->rspq.idx = j;
764                         memset(&q->stats, 0, sizeof(q->stats));
765                 }
766                 for (j = 0; j < pi->nqsets; j++, t++) {
767                         err = t4_sge_alloc_eth_txq(adap, t, dev,
768                                         netdev_get_tx_queue(dev, j),
769                                         s->fw_evtq.cntxt_id);
770                         if (err)
771                                 goto freeout;
772                 }
773         }
774
775         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
776         for_each_ofldrxq(s, i) {
777                 struct sge_ofld_rxq *q = &s->ofldrxq[i];
778                 struct net_device *dev = adap->port[i / j];
779
780                 if (msi_idx > 0)
781                         msi_idx++;
782                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
783                                        &q->fl, uldrx_handler);
784                 if (err)
785                         goto freeout;
786                 memset(&q->stats, 0, sizeof(q->stats));
787                 s->ofld_rxq[i] = q->rspq.abs_id;
788                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
789                                             s->fw_evtq.cntxt_id);
790                 if (err)
791                         goto freeout;
792         }
793
794         for_each_rdmarxq(s, i) {
795                 struct sge_ofld_rxq *q = &s->rdmarxq[i];
796
797                 if (msi_idx > 0)
798                         msi_idx++;
799                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
800                                        msi_idx, &q->fl, uldrx_handler);
801                 if (err)
802                         goto freeout;
803                 memset(&q->stats, 0, sizeof(q->stats));
804                 s->rdma_rxq[i] = q->rspq.abs_id;
805         }
806
807         for_each_port(adap, i) {
808                 /*
809                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
810                  * have RDMA queues, and that's the right value.
811                  */
812                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
813                                             s->fw_evtq.cntxt_id,
814                                             s->rdmarxq[i].rspq.cntxt_id);
815                 if (err)
816                         goto freeout;
817         }
818
819         t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
820                      RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
821                      QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
822         return 0;
823 }
824
825 /*
826  * Returns 0 if new FW was successfully loaded, a positive errno if a load was
827  * started but failed, and a negative errno if flash load couldn't start.
828  */
829 static int upgrade_fw(struct adapter *adap)
830 {
831         int ret;
832         u32 vers;
833         const struct fw_hdr *hdr;
834         const struct firmware *fw;
835         struct device *dev = adap->pdev_dev;
836
837         ret = request_firmware(&fw, FW_FNAME, dev);
838         if (ret < 0) {
839                 dev_err(dev, "unable to load firmware image " FW_FNAME
840                         ", error %d\n", ret);
841                 return ret;
842         }
843
844         hdr = (const struct fw_hdr *)fw->data;
845         vers = ntohl(hdr->fw_ver);
846         if (FW_HDR_FW_VER_MAJOR_GET(vers) != FW_VERSION_MAJOR) {
847                 ret = -EINVAL;              /* wrong major version, won't do */
848                 goto out;
849         }
850
851         /*
852          * If the flash FW is unusable or we found something newer, load it.
853          */
854         if (FW_HDR_FW_VER_MAJOR_GET(adap->params.fw_vers) != FW_VERSION_MAJOR ||
855             vers > adap->params.fw_vers) {
856                 ret = -t4_load_fw(adap, fw->data, fw->size);
857                 if (!ret)
858                         dev_info(dev, "firmware upgraded to version %pI4 from "
859                                  FW_FNAME "\n", &hdr->fw_ver);
860         }
861 out:    release_firmware(fw);
862         return ret;
863 }
864
865 /*
866  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
867  * The allocated memory is cleared.
868  */
869 void *t4_alloc_mem(size_t size)
870 {
871         void *p = kmalloc(size, GFP_KERNEL);
872
873         if (!p)
874                 p = vmalloc(size);
875         if (p)
876                 memset(p, 0, size);
877         return p;
878 }
879
880 /*
881  * Free memory allocated through alloc_mem().
882  */
883 static void t4_free_mem(void *addr)
884 {
885         if (is_vmalloc_addr(addr))
886                 vfree(addr);
887         else
888                 kfree(addr);
889 }
890
891 static inline int is_offload(const struct adapter *adap)
892 {
893         return adap->params.offload;
894 }
895
896 /*
897  * Implementation of ethtool operations.
898  */
899
900 static u32 get_msglevel(struct net_device *dev)
901 {
902         return netdev2adap(dev)->msg_enable;
903 }
904
905 static void set_msglevel(struct net_device *dev, u32 val)
906 {
907         netdev2adap(dev)->msg_enable = val;
908 }
909
910 static char stats_strings[][ETH_GSTRING_LEN] = {
911         "TxOctetsOK         ",
912         "TxFramesOK         ",
913         "TxBroadcastFrames  ",
914         "TxMulticastFrames  ",
915         "TxUnicastFrames    ",
916         "TxErrorFrames      ",
917
918         "TxFrames64         ",
919         "TxFrames65To127    ",
920         "TxFrames128To255   ",
921         "TxFrames256To511   ",
922         "TxFrames512To1023  ",
923         "TxFrames1024To1518 ",
924         "TxFrames1519ToMax  ",
925
926         "TxFramesDropped    ",
927         "TxPauseFrames      ",
928         "TxPPP0Frames       ",
929         "TxPPP1Frames       ",
930         "TxPPP2Frames       ",
931         "TxPPP3Frames       ",
932         "TxPPP4Frames       ",
933         "TxPPP5Frames       ",
934         "TxPPP6Frames       ",
935         "TxPPP7Frames       ",
936
937         "RxOctetsOK         ",
938         "RxFramesOK         ",
939         "RxBroadcastFrames  ",
940         "RxMulticastFrames  ",
941         "RxUnicastFrames    ",
942
943         "RxFramesTooLong    ",
944         "RxJabberErrors     ",
945         "RxFCSErrors        ",
946         "RxLengthErrors     ",
947         "RxSymbolErrors     ",
948         "RxRuntFrames       ",
949
950         "RxFrames64         ",
951         "RxFrames65To127    ",
952         "RxFrames128To255   ",
953         "RxFrames256To511   ",
954         "RxFrames512To1023  ",
955         "RxFrames1024To1518 ",
956         "RxFrames1519ToMax  ",
957
958         "RxPauseFrames      ",
959         "RxPPP0Frames       ",
960         "RxPPP1Frames       ",
961         "RxPPP2Frames       ",
962         "RxPPP3Frames       ",
963         "RxPPP4Frames       ",
964         "RxPPP5Frames       ",
965         "RxPPP6Frames       ",
966         "RxPPP7Frames       ",
967
968         "RxBG0FramesDropped ",
969         "RxBG1FramesDropped ",
970         "RxBG2FramesDropped ",
971         "RxBG3FramesDropped ",
972         "RxBG0FramesTrunc   ",
973         "RxBG1FramesTrunc   ",
974         "RxBG2FramesTrunc   ",
975         "RxBG3FramesTrunc   ",
976
977         "TSO                ",
978         "TxCsumOffload      ",
979         "RxCsumGood         ",
980         "VLANextractions    ",
981         "VLANinsertions     ",
982         "GROpackets         ",
983         "GROmerged          ",
984 };
985
986 static int get_sset_count(struct net_device *dev, int sset)
987 {
988         switch (sset) {
989         case ETH_SS_STATS:
990                 return ARRAY_SIZE(stats_strings);
991         default:
992                 return -EOPNOTSUPP;
993         }
994 }
995
996 #define T4_REGMAP_SIZE (160 * 1024)
997
998 static int get_regs_len(struct net_device *dev)
999 {
1000         return T4_REGMAP_SIZE;
1001 }
1002
1003 static int get_eeprom_len(struct net_device *dev)
1004 {
1005         return EEPROMSIZE;
1006 }
1007
1008 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1009 {
1010         struct adapter *adapter = netdev2adap(dev);
1011
1012         strcpy(info->driver, KBUILD_MODNAME);
1013         strcpy(info->version, DRV_VERSION);
1014         strcpy(info->bus_info, pci_name(adapter->pdev));
1015
1016         if (!adapter->params.fw_vers)
1017                 strcpy(info->fw_version, "N/A");
1018         else
1019                 snprintf(info->fw_version, sizeof(info->fw_version),
1020                         "%u.%u.%u.%u, TP %u.%u.%u.%u",
1021                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1022                         FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1023                         FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1024                         FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1025                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1026                         FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1027                         FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1028                         FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1029 }
1030
1031 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1032 {
1033         if (stringset == ETH_SS_STATS)
1034                 memcpy(data, stats_strings, sizeof(stats_strings));
1035 }
1036
1037 /*
1038  * port stats maintained per queue of the port.  They should be in the same
1039  * order as in stats_strings above.
1040  */
1041 struct queue_port_stats {
1042         u64 tso;
1043         u64 tx_csum;
1044         u64 rx_csum;
1045         u64 vlan_ex;
1046         u64 vlan_ins;
1047         u64 gro_pkts;
1048         u64 gro_merged;
1049 };
1050
1051 static void collect_sge_port_stats(const struct adapter *adap,
1052                 const struct port_info *p, struct queue_port_stats *s)
1053 {
1054         int i;
1055         const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1056         const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1057
1058         memset(s, 0, sizeof(*s));
1059         for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1060                 s->tso += tx->tso;
1061                 s->tx_csum += tx->tx_cso;
1062                 s->rx_csum += rx->stats.rx_cso;
1063                 s->vlan_ex += rx->stats.vlan_ex;
1064                 s->vlan_ins += tx->vlan_ins;
1065                 s->gro_pkts += rx->stats.lro_pkts;
1066                 s->gro_merged += rx->stats.lro_merged;
1067         }
1068 }
1069
1070 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1071                       u64 *data)
1072 {
1073         struct port_info *pi = netdev_priv(dev);
1074         struct adapter *adapter = pi->adapter;
1075
1076         t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1077
1078         data += sizeof(struct port_stats) / sizeof(u64);
1079         collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1080 }
1081
1082 /*
1083  * Return a version number to identify the type of adapter.  The scheme is:
1084  * - bits 0..9: chip version
1085  * - bits 10..15: chip revision
1086  * - bits 16..23: register dump version
1087  */
1088 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1089 {
1090         return 4 | (ap->params.rev << 10) | (1 << 16);
1091 }
1092
1093 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1094                            unsigned int end)
1095 {
1096         u32 *p = buf + start;
1097
1098         for ( ; start <= end; start += sizeof(u32))
1099                 *p++ = t4_read_reg(ap, start);
1100 }
1101
1102 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1103                      void *buf)
1104 {
1105         static const unsigned int reg_ranges[] = {
1106                 0x1008, 0x1108,
1107                 0x1180, 0x11b4,
1108                 0x11fc, 0x123c,
1109                 0x1300, 0x173c,
1110                 0x1800, 0x18fc,
1111                 0x3000, 0x30d8,
1112                 0x30e0, 0x5924,
1113                 0x5960, 0x59d4,
1114                 0x5a00, 0x5af8,
1115                 0x6000, 0x6098,
1116                 0x6100, 0x6150,
1117                 0x6200, 0x6208,
1118                 0x6240, 0x6248,
1119                 0x6280, 0x6338,
1120                 0x6370, 0x638c,
1121                 0x6400, 0x643c,
1122                 0x6500, 0x6524,
1123                 0x6a00, 0x6a38,
1124                 0x6a60, 0x6a78,
1125                 0x6b00, 0x6b84,
1126                 0x6bf0, 0x6c84,
1127                 0x6cf0, 0x6d84,
1128                 0x6df0, 0x6e84,
1129                 0x6ef0, 0x6f84,
1130                 0x6ff0, 0x7084,
1131                 0x70f0, 0x7184,
1132                 0x71f0, 0x7284,
1133                 0x72f0, 0x7384,
1134                 0x73f0, 0x7450,
1135                 0x7500, 0x7530,
1136                 0x7600, 0x761c,
1137                 0x7680, 0x76cc,
1138                 0x7700, 0x7798,
1139                 0x77c0, 0x77fc,
1140                 0x7900, 0x79fc,
1141                 0x7b00, 0x7c38,
1142                 0x7d00, 0x7efc,
1143                 0x8dc0, 0x8e1c,
1144                 0x8e30, 0x8e78,
1145                 0x8ea0, 0x8f6c,
1146                 0x8fc0, 0x9074,
1147                 0x90fc, 0x90fc,
1148                 0x9400, 0x9458,
1149                 0x9600, 0x96bc,
1150                 0x9800, 0x9808,
1151                 0x9820, 0x983c,
1152                 0x9850, 0x9864,
1153                 0x9c00, 0x9c6c,
1154                 0x9c80, 0x9cec,
1155                 0x9d00, 0x9d6c,
1156                 0x9d80, 0x9dec,
1157                 0x9e00, 0x9e6c,
1158                 0x9e80, 0x9eec,
1159                 0x9f00, 0x9f6c,
1160                 0x9f80, 0x9fec,
1161                 0xd004, 0xd03c,
1162                 0xdfc0, 0xdfe0,
1163                 0xe000, 0xea7c,
1164                 0xf000, 0x11190,
1165                 0x19040, 0x1906c,
1166                 0x19078, 0x19080,
1167                 0x1908c, 0x19124,
1168                 0x19150, 0x191b0,
1169                 0x191d0, 0x191e8,
1170                 0x19238, 0x1924c,
1171                 0x193f8, 0x19474,
1172                 0x19490, 0x194f8,
1173                 0x19800, 0x19f30,
1174                 0x1a000, 0x1a06c,
1175                 0x1a0b0, 0x1a120,
1176                 0x1a128, 0x1a138,
1177                 0x1a190, 0x1a1c4,
1178                 0x1a1fc, 0x1a1fc,
1179                 0x1e040, 0x1e04c,
1180                 0x1e284, 0x1e28c,
1181                 0x1e2c0, 0x1e2c0,
1182                 0x1e2e0, 0x1e2e0,
1183                 0x1e300, 0x1e384,
1184                 0x1e3c0, 0x1e3c8,
1185                 0x1e440, 0x1e44c,
1186                 0x1e684, 0x1e68c,
1187                 0x1e6c0, 0x1e6c0,
1188                 0x1e6e0, 0x1e6e0,
1189                 0x1e700, 0x1e784,
1190                 0x1e7c0, 0x1e7c8,
1191                 0x1e840, 0x1e84c,
1192                 0x1ea84, 0x1ea8c,
1193                 0x1eac0, 0x1eac0,
1194                 0x1eae0, 0x1eae0,
1195                 0x1eb00, 0x1eb84,
1196                 0x1ebc0, 0x1ebc8,
1197                 0x1ec40, 0x1ec4c,
1198                 0x1ee84, 0x1ee8c,
1199                 0x1eec0, 0x1eec0,
1200                 0x1eee0, 0x1eee0,
1201                 0x1ef00, 0x1ef84,
1202                 0x1efc0, 0x1efc8,
1203                 0x1f040, 0x1f04c,
1204                 0x1f284, 0x1f28c,
1205                 0x1f2c0, 0x1f2c0,
1206                 0x1f2e0, 0x1f2e0,
1207                 0x1f300, 0x1f384,
1208                 0x1f3c0, 0x1f3c8,
1209                 0x1f440, 0x1f44c,
1210                 0x1f684, 0x1f68c,
1211                 0x1f6c0, 0x1f6c0,
1212                 0x1f6e0, 0x1f6e0,
1213                 0x1f700, 0x1f784,
1214                 0x1f7c0, 0x1f7c8,
1215                 0x1f840, 0x1f84c,
1216                 0x1fa84, 0x1fa8c,
1217                 0x1fac0, 0x1fac0,
1218                 0x1fae0, 0x1fae0,
1219                 0x1fb00, 0x1fb84,
1220                 0x1fbc0, 0x1fbc8,
1221                 0x1fc40, 0x1fc4c,
1222                 0x1fe84, 0x1fe8c,
1223                 0x1fec0, 0x1fec0,
1224                 0x1fee0, 0x1fee0,
1225                 0x1ff00, 0x1ff84,
1226                 0x1ffc0, 0x1ffc8,
1227                 0x20000, 0x2002c,
1228                 0x20100, 0x2013c,
1229                 0x20190, 0x201c8,
1230                 0x20200, 0x20318,
1231                 0x20400, 0x20528,
1232                 0x20540, 0x20614,
1233                 0x21000, 0x21040,
1234                 0x2104c, 0x21060,
1235                 0x210c0, 0x210ec,
1236                 0x21200, 0x21268,
1237                 0x21270, 0x21284,
1238                 0x212fc, 0x21388,
1239                 0x21400, 0x21404,
1240                 0x21500, 0x21518,
1241                 0x2152c, 0x2153c,
1242                 0x21550, 0x21554,
1243                 0x21600, 0x21600,
1244                 0x21608, 0x21628,
1245                 0x21630, 0x2163c,
1246                 0x21700, 0x2171c,
1247                 0x21780, 0x2178c,
1248                 0x21800, 0x21c38,
1249                 0x21c80, 0x21d7c,
1250                 0x21e00, 0x21e04,
1251                 0x22000, 0x2202c,
1252                 0x22100, 0x2213c,
1253                 0x22190, 0x221c8,
1254                 0x22200, 0x22318,
1255                 0x22400, 0x22528,
1256                 0x22540, 0x22614,
1257                 0x23000, 0x23040,
1258                 0x2304c, 0x23060,
1259                 0x230c0, 0x230ec,
1260                 0x23200, 0x23268,
1261                 0x23270, 0x23284,
1262                 0x232fc, 0x23388,
1263                 0x23400, 0x23404,
1264                 0x23500, 0x23518,
1265                 0x2352c, 0x2353c,
1266                 0x23550, 0x23554,
1267                 0x23600, 0x23600,
1268                 0x23608, 0x23628,
1269                 0x23630, 0x2363c,
1270                 0x23700, 0x2371c,
1271                 0x23780, 0x2378c,
1272                 0x23800, 0x23c38,
1273                 0x23c80, 0x23d7c,
1274                 0x23e00, 0x23e04,
1275                 0x24000, 0x2402c,
1276                 0x24100, 0x2413c,
1277                 0x24190, 0x241c8,
1278                 0x24200, 0x24318,
1279                 0x24400, 0x24528,
1280                 0x24540, 0x24614,
1281                 0x25000, 0x25040,
1282                 0x2504c, 0x25060,
1283                 0x250c0, 0x250ec,
1284                 0x25200, 0x25268,
1285                 0x25270, 0x25284,
1286                 0x252fc, 0x25388,
1287                 0x25400, 0x25404,
1288                 0x25500, 0x25518,
1289                 0x2552c, 0x2553c,
1290                 0x25550, 0x25554,
1291                 0x25600, 0x25600,
1292                 0x25608, 0x25628,
1293                 0x25630, 0x2563c,
1294                 0x25700, 0x2571c,
1295                 0x25780, 0x2578c,
1296                 0x25800, 0x25c38,
1297                 0x25c80, 0x25d7c,
1298                 0x25e00, 0x25e04,
1299                 0x26000, 0x2602c,
1300                 0x26100, 0x2613c,
1301                 0x26190, 0x261c8,
1302                 0x26200, 0x26318,
1303                 0x26400, 0x26528,
1304                 0x26540, 0x26614,
1305                 0x27000, 0x27040,
1306                 0x2704c, 0x27060,
1307                 0x270c0, 0x270ec,
1308                 0x27200, 0x27268,
1309                 0x27270, 0x27284,
1310                 0x272fc, 0x27388,
1311                 0x27400, 0x27404,
1312                 0x27500, 0x27518,
1313                 0x2752c, 0x2753c,
1314                 0x27550, 0x27554,
1315                 0x27600, 0x27600,
1316                 0x27608, 0x27628,
1317                 0x27630, 0x2763c,
1318                 0x27700, 0x2771c,
1319                 0x27780, 0x2778c,
1320                 0x27800, 0x27c38,
1321                 0x27c80, 0x27d7c,
1322                 0x27e00, 0x27e04
1323         };
1324
1325         int i;
1326         struct adapter *ap = netdev2adap(dev);
1327
1328         regs->version = mk_adap_vers(ap);
1329
1330         memset(buf, 0, T4_REGMAP_SIZE);
1331         for (i = 0; i < ARRAY_SIZE(reg_ranges); i += 2)
1332                 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
1333 }
1334
1335 static int restart_autoneg(struct net_device *dev)
1336 {
1337         struct port_info *p = netdev_priv(dev);
1338
1339         if (!netif_running(dev))
1340                 return -EAGAIN;
1341         if (p->link_cfg.autoneg != AUTONEG_ENABLE)
1342                 return -EINVAL;
1343         t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
1344         return 0;
1345 }
1346
1347 static int identify_port(struct net_device *dev, u32 data)
1348 {
1349         struct adapter *adap = netdev2adap(dev);
1350
1351         if (data == 0)
1352                 data = 2;     /* default to 2 seconds */
1353
1354         return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid,
1355                                 data * 5);
1356 }
1357
1358 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
1359 {
1360         unsigned int v = 0;
1361
1362         if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
1363             type == FW_PORT_TYPE_BT_XAUI) {
1364                 v |= SUPPORTED_TP;
1365                 if (caps & FW_PORT_CAP_SPEED_100M)
1366                         v |= SUPPORTED_100baseT_Full;
1367                 if (caps & FW_PORT_CAP_SPEED_1G)
1368                         v |= SUPPORTED_1000baseT_Full;
1369                 if (caps & FW_PORT_CAP_SPEED_10G)
1370                         v |= SUPPORTED_10000baseT_Full;
1371         } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
1372                 v |= SUPPORTED_Backplane;
1373                 if (caps & FW_PORT_CAP_SPEED_1G)
1374                         v |= SUPPORTED_1000baseKX_Full;
1375                 if (caps & FW_PORT_CAP_SPEED_10G)
1376                         v |= SUPPORTED_10000baseKX4_Full;
1377         } else if (type == FW_PORT_TYPE_KR)
1378                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
1379         else if (type == FW_PORT_TYPE_BP_AP)
1380                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC;
1381         else if (type == FW_PORT_TYPE_FIBER_XFI ||
1382                  type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
1383                 v |= SUPPORTED_FIBRE;
1384
1385         if (caps & FW_PORT_CAP_ANEG)
1386                 v |= SUPPORTED_Autoneg;
1387         return v;
1388 }
1389
1390 static unsigned int to_fw_linkcaps(unsigned int caps)
1391 {
1392         unsigned int v = 0;
1393
1394         if (caps & ADVERTISED_100baseT_Full)
1395                 v |= FW_PORT_CAP_SPEED_100M;
1396         if (caps & ADVERTISED_1000baseT_Full)
1397                 v |= FW_PORT_CAP_SPEED_1G;
1398         if (caps & ADVERTISED_10000baseT_Full)
1399                 v |= FW_PORT_CAP_SPEED_10G;
1400         return v;
1401 }
1402
1403 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1404 {
1405         const struct port_info *p = netdev_priv(dev);
1406
1407         if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
1408             p->port_type == FW_PORT_TYPE_BT_XFI ||
1409             p->port_type == FW_PORT_TYPE_BT_XAUI)
1410                 cmd->port = PORT_TP;
1411         else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
1412                  p->port_type == FW_PORT_TYPE_FIBER_XAUI)
1413                 cmd->port = PORT_FIBRE;
1414         else if (p->port_type == FW_PORT_TYPE_SFP) {
1415                 if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1416                     p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1417                         cmd->port = PORT_DA;
1418                 else
1419                         cmd->port = PORT_FIBRE;
1420         } else
1421                 cmd->port = PORT_OTHER;
1422
1423         if (p->mdio_addr >= 0) {
1424                 cmd->phy_address = p->mdio_addr;
1425                 cmd->transceiver = XCVR_EXTERNAL;
1426                 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
1427                         MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
1428         } else {
1429                 cmd->phy_address = 0;  /* not really, but no better option */
1430                 cmd->transceiver = XCVR_INTERNAL;
1431                 cmd->mdio_support = 0;
1432         }
1433
1434         cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
1435         cmd->advertising = from_fw_linkcaps(p->port_type,
1436                                             p->link_cfg.advertising);
1437         cmd->speed = netif_carrier_ok(dev) ? p->link_cfg.speed : 0;
1438         cmd->duplex = DUPLEX_FULL;
1439         cmd->autoneg = p->link_cfg.autoneg;
1440         cmd->maxtxpkt = 0;
1441         cmd->maxrxpkt = 0;
1442         return 0;
1443 }
1444
1445 static unsigned int speed_to_caps(int speed)
1446 {
1447         if (speed == SPEED_100)
1448                 return FW_PORT_CAP_SPEED_100M;
1449         if (speed == SPEED_1000)
1450                 return FW_PORT_CAP_SPEED_1G;
1451         if (speed == SPEED_10000)
1452                 return FW_PORT_CAP_SPEED_10G;
1453         return 0;
1454 }
1455
1456 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1457 {
1458         unsigned int cap;
1459         struct port_info *p = netdev_priv(dev);
1460         struct link_config *lc = &p->link_cfg;
1461
1462         if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
1463                 return -EINVAL;
1464
1465         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
1466                 /*
1467                  * PHY offers a single speed.  See if that's what's
1468                  * being requested.
1469                  */
1470                 if (cmd->autoneg == AUTONEG_DISABLE &&
1471                     (lc->supported & speed_to_caps(cmd->speed)))
1472                                 return 0;
1473                 return -EINVAL;
1474         }
1475
1476         if (cmd->autoneg == AUTONEG_DISABLE) {
1477                 cap = speed_to_caps(cmd->speed);
1478
1479                 if (!(lc->supported & cap) || cmd->speed == SPEED_1000 ||
1480                     cmd->speed == SPEED_10000)
1481                         return -EINVAL;
1482                 lc->requested_speed = cap;
1483                 lc->advertising = 0;
1484         } else {
1485                 cap = to_fw_linkcaps(cmd->advertising);
1486                 if (!(lc->supported & cap))
1487                         return -EINVAL;
1488                 lc->requested_speed = 0;
1489                 lc->advertising = cap | FW_PORT_CAP_ANEG;
1490         }
1491         lc->autoneg = cmd->autoneg;
1492
1493         if (netif_running(dev))
1494                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
1495                                      lc);
1496         return 0;
1497 }
1498
1499 static void get_pauseparam(struct net_device *dev,
1500                            struct ethtool_pauseparam *epause)
1501 {
1502         struct port_info *p = netdev_priv(dev);
1503
1504         epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1505         epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
1506         epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
1507 }
1508
1509 static int set_pauseparam(struct net_device *dev,
1510                           struct ethtool_pauseparam *epause)
1511 {
1512         struct port_info *p = netdev_priv(dev);
1513         struct link_config *lc = &p->link_cfg;
1514
1515         if (epause->autoneg == AUTONEG_DISABLE)
1516                 lc->requested_fc = 0;
1517         else if (lc->supported & FW_PORT_CAP_ANEG)
1518                 lc->requested_fc = PAUSE_AUTONEG;
1519         else
1520                 return -EINVAL;
1521
1522         if (epause->rx_pause)
1523                 lc->requested_fc |= PAUSE_RX;
1524         if (epause->tx_pause)
1525                 lc->requested_fc |= PAUSE_TX;
1526         if (netif_running(dev))
1527                 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
1528                                      lc);
1529         return 0;
1530 }
1531
1532 static u32 get_rx_csum(struct net_device *dev)
1533 {
1534         struct port_info *p = netdev_priv(dev);
1535
1536         return p->rx_offload & RX_CSO;
1537 }
1538
1539 static int set_rx_csum(struct net_device *dev, u32 data)
1540 {
1541         struct port_info *p = netdev_priv(dev);
1542
1543         if (data)
1544                 p->rx_offload |= RX_CSO;
1545         else
1546                 p->rx_offload &= ~RX_CSO;
1547         return 0;
1548 }
1549
1550 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1551 {
1552         const struct port_info *pi = netdev_priv(dev);
1553         const struct sge *s = &pi->adapter->sge;
1554
1555         e->rx_max_pending = MAX_RX_BUFFERS;
1556         e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1557         e->rx_jumbo_max_pending = 0;
1558         e->tx_max_pending = MAX_TXQ_ENTRIES;
1559
1560         e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
1561         e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1562         e->rx_jumbo_pending = 0;
1563         e->tx_pending = s->ethtxq[pi->first_qset].q.size;
1564 }
1565
1566 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1567 {
1568         int i;
1569         const struct port_info *pi = netdev_priv(dev);
1570         struct adapter *adapter = pi->adapter;
1571         struct sge *s = &adapter->sge;
1572
1573         if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
1574             e->tx_pending > MAX_TXQ_ENTRIES ||
1575             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1576             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1577             e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
1578                 return -EINVAL;
1579
1580         if (adapter->flags & FULL_INIT_DONE)
1581                 return -EBUSY;
1582
1583         for (i = 0; i < pi->nqsets; ++i) {
1584                 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
1585                 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
1586                 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
1587         }
1588         return 0;
1589 }
1590
1591 static int closest_timer(const struct sge *s, int time)
1592 {
1593         int i, delta, match = 0, min_delta = INT_MAX;
1594
1595         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1596                 delta = time - s->timer_val[i];
1597                 if (delta < 0)
1598                         delta = -delta;
1599                 if (delta < min_delta) {
1600                         min_delta = delta;
1601                         match = i;
1602                 }
1603         }
1604         return match;
1605 }
1606
1607 static int closest_thres(const struct sge *s, int thres)
1608 {
1609         int i, delta, match = 0, min_delta = INT_MAX;
1610
1611         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1612                 delta = thres - s->counter_val[i];
1613                 if (delta < 0)
1614                         delta = -delta;
1615                 if (delta < min_delta) {
1616                         min_delta = delta;
1617                         match = i;
1618                 }
1619         }
1620         return match;
1621 }
1622
1623 /*
1624  * Return a queue's interrupt hold-off time in us.  0 means no timer.
1625  */
1626 static unsigned int qtimer_val(const struct adapter *adap,
1627                                const struct sge_rspq *q)
1628 {
1629         unsigned int idx = q->intr_params >> 1;
1630
1631         return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
1632 }
1633
1634 /**
1635  *      set_rxq_intr_params - set a queue's interrupt holdoff parameters
1636  *      @adap: the adapter
1637  *      @q: the Rx queue
1638  *      @us: the hold-off time in us, or 0 to disable timer
1639  *      @cnt: the hold-off packet count, or 0 to disable counter
1640  *
1641  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1642  *      one of the two needs to be enabled for the queue to generate interrupts.
1643  */
1644 static int set_rxq_intr_params(struct adapter *adap, struct sge_rspq *q,
1645                                unsigned int us, unsigned int cnt)
1646 {
1647         if ((us | cnt) == 0)
1648                 cnt = 1;
1649
1650         if (cnt) {
1651                 int err;
1652                 u32 v, new_idx;
1653
1654                 new_idx = closest_thres(&adap->sge, cnt);
1655                 if (q->desc && q->pktcnt_idx != new_idx) {
1656                         /* the queue has already been created, update it */
1657                         v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1658                             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1659                             FW_PARAMS_PARAM_YZ(q->cntxt_id);
1660                         err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
1661                                             &new_idx);
1662                         if (err)
1663                                 return err;
1664                 }
1665                 q->pktcnt_idx = new_idx;
1666         }
1667
1668         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1669         q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
1670         return 0;
1671 }
1672
1673 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1674 {
1675         const struct port_info *pi = netdev_priv(dev);
1676         struct adapter *adap = pi->adapter;
1677
1678         return set_rxq_intr_params(adap, &adap->sge.ethrxq[pi->first_qset].rspq,
1679                         c->rx_coalesce_usecs, c->rx_max_coalesced_frames);
1680 }
1681
1682 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1683 {
1684         const struct port_info *pi = netdev_priv(dev);
1685         const struct adapter *adap = pi->adapter;
1686         const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
1687
1688         c->rx_coalesce_usecs = qtimer_val(adap, rq);
1689         c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
1690                 adap->sge.counter_val[rq->pktcnt_idx] : 0;
1691         return 0;
1692 }
1693
1694 /**
1695  *      eeprom_ptov - translate a physical EEPROM address to virtual
1696  *      @phys_addr: the physical EEPROM address
1697  *      @fn: the PCI function number
1698  *      @sz: size of function-specific area
1699  *
1700  *      Translate a physical EEPROM address to virtual.  The first 1K is
1701  *      accessed through virtual addresses starting at 31K, the rest is
1702  *      accessed through virtual addresses starting at 0.
1703  *
1704  *      The mapping is as follows:
1705  *      [0..1K) -> [31K..32K)
1706  *      [1K..1K+A) -> [31K-A..31K)
1707  *      [1K+A..ES) -> [0..ES-A-1K)
1708  *
1709  *      where A = @fn * @sz, and ES = EEPROM size.
1710  */
1711 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
1712 {
1713         fn *= sz;
1714         if (phys_addr < 1024)
1715                 return phys_addr + (31 << 10);
1716         if (phys_addr < 1024 + fn)
1717                 return 31744 - fn + phys_addr - 1024;
1718         if (phys_addr < EEPROMSIZE)
1719                 return phys_addr - 1024 - fn;
1720         return -EINVAL;
1721 }
1722
1723 /*
1724  * The next two routines implement eeprom read/write from physical addresses.
1725  */
1726 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
1727 {
1728         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
1729
1730         if (vaddr >= 0)
1731                 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
1732         return vaddr < 0 ? vaddr : 0;
1733 }
1734
1735 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
1736 {
1737         int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
1738
1739         if (vaddr >= 0)
1740                 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
1741         return vaddr < 0 ? vaddr : 0;
1742 }
1743
1744 #define EEPROM_MAGIC 0x38E2F10C
1745
1746 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1747                       u8 *data)
1748 {
1749         int i, err = 0;
1750         struct adapter *adapter = netdev2adap(dev);
1751
1752         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
1753         if (!buf)
1754                 return -ENOMEM;
1755
1756         e->magic = EEPROM_MAGIC;
1757         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1758                 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
1759
1760         if (!err)
1761                 memcpy(data, buf + e->offset, e->len);
1762         kfree(buf);
1763         return err;
1764 }
1765
1766 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1767                       u8 *data)
1768 {
1769         u8 *buf;
1770         int err = 0;
1771         u32 aligned_offset, aligned_len, *p;
1772         struct adapter *adapter = netdev2adap(dev);
1773
1774         if (eeprom->magic != EEPROM_MAGIC)
1775                 return -EINVAL;
1776
1777         aligned_offset = eeprom->offset & ~3;
1778         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
1779
1780         if (adapter->fn > 0) {
1781                 u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
1782
1783                 if (aligned_offset < start ||
1784                     aligned_offset + aligned_len > start + EEPROMPFSIZE)
1785                         return -EPERM;
1786         }
1787
1788         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
1789                 /*
1790                  * RMW possibly needed for first or last words.
1791                  */
1792                 buf = kmalloc(aligned_len, GFP_KERNEL);
1793                 if (!buf)
1794                         return -ENOMEM;
1795                 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
1796                 if (!err && aligned_len > 4)
1797                         err = eeprom_rd_phys(adapter,
1798                                              aligned_offset + aligned_len - 4,
1799                                              (u32 *)&buf[aligned_len - 4]);
1800                 if (err)
1801                         goto out;
1802                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
1803         } else
1804                 buf = data;
1805
1806         err = t4_seeprom_wp(adapter, false);
1807         if (err)
1808                 goto out;
1809
1810         for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
1811                 err = eeprom_wr_phys(adapter, aligned_offset, *p);
1812                 aligned_offset += 4;
1813         }
1814
1815         if (!err)
1816                 err = t4_seeprom_wp(adapter, true);
1817 out:
1818         if (buf != data)
1819                 kfree(buf);
1820         return err;
1821 }
1822
1823 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
1824 {
1825         int ret;
1826         const struct firmware *fw;
1827         struct adapter *adap = netdev2adap(netdev);
1828
1829         ef->data[sizeof(ef->data) - 1] = '\0';
1830         ret = request_firmware(&fw, ef->data, adap->pdev_dev);
1831         if (ret < 0)
1832                 return ret;
1833
1834         ret = t4_load_fw(adap, fw->data, fw->size);
1835         release_firmware(fw);
1836         if (!ret)
1837                 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
1838         return ret;
1839 }
1840
1841 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
1842 #define BCAST_CRC 0xa0ccc1a6
1843
1844 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1845 {
1846         wol->supported = WAKE_BCAST | WAKE_MAGIC;
1847         wol->wolopts = netdev2adap(dev)->wol;
1848         memset(&wol->sopass, 0, sizeof(wol->sopass));
1849 }
1850
1851 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1852 {
1853         int err = 0;
1854         struct port_info *pi = netdev_priv(dev);
1855
1856         if (wol->wolopts & ~WOL_SUPPORTED)
1857                 return -EINVAL;
1858         t4_wol_magic_enable(pi->adapter, pi->tx_chan,
1859                             (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
1860         if (wol->wolopts & WAKE_BCAST) {
1861                 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
1862                                         ~0ULL, 0, false);
1863                 if (!err)
1864                         err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
1865                                                 ~6ULL, ~0ULL, BCAST_CRC, true);
1866         } else
1867                 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
1868         return err;
1869 }
1870
1871 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1872
1873 static int set_tso(struct net_device *dev, u32 value)
1874 {
1875         if (value)
1876                 dev->features |= TSO_FLAGS;
1877         else
1878                 dev->features &= ~TSO_FLAGS;
1879         return 0;
1880 }
1881
1882 static int set_flags(struct net_device *dev, u32 flags)
1883 {
1884         int err;
1885         unsigned long old_feat = dev->features;
1886
1887         err = ethtool_op_set_flags(dev, flags, ETH_FLAG_RXHASH |
1888                                    ETH_FLAG_RXVLAN | ETH_FLAG_TXVLAN);
1889         if (err)
1890                 return err;
1891
1892         if ((old_feat ^ dev->features) & NETIF_F_HW_VLAN_RX) {
1893                 const struct port_info *pi = netdev_priv(dev);
1894
1895                 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
1896                                     -1, -1, -1, !!(flags & ETH_FLAG_RXVLAN),
1897                                     true);
1898                 if (err)
1899                         dev->features = old_feat;
1900         }
1901         return err;
1902 }
1903
1904 static int get_rss_table(struct net_device *dev, struct ethtool_rxfh_indir *p)
1905 {
1906         const struct port_info *pi = netdev_priv(dev);
1907         unsigned int n = min_t(unsigned int, p->size, pi->rss_size);
1908
1909         p->size = pi->rss_size;
1910         while (n--)
1911                 p->ring_index[n] = pi->rss[n];
1912         return 0;
1913 }
1914
1915 static int set_rss_table(struct net_device *dev,
1916                          const struct ethtool_rxfh_indir *p)
1917 {
1918         unsigned int i;
1919         struct port_info *pi = netdev_priv(dev);
1920
1921         if (p->size != pi->rss_size)
1922                 return -EINVAL;
1923         for (i = 0; i < p->size; i++)
1924                 if (p->ring_index[i] >= pi->nqsets)
1925                         return -EINVAL;
1926         for (i = 0; i < p->size; i++)
1927                 pi->rss[i] = p->ring_index[i];
1928         if (pi->adapter->flags & FULL_INIT_DONE)
1929                 return write_rss(pi, pi->rss);
1930         return 0;
1931 }
1932
1933 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1934                      void *rules)
1935 {
1936         const struct port_info *pi = netdev_priv(dev);
1937
1938         switch (info->cmd) {
1939         case ETHTOOL_GRXFH: {
1940                 unsigned int v = pi->rss_mode;
1941
1942                 info->data = 0;
1943                 switch (info->flow_type) {
1944                 case TCP_V4_FLOW:
1945                         if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
1946                                 info->data = RXH_IP_SRC | RXH_IP_DST |
1947                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
1948                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
1949                                 info->data = RXH_IP_SRC | RXH_IP_DST;
1950                         break;
1951                 case UDP_V4_FLOW:
1952                         if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
1953                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
1954                                 info->data = RXH_IP_SRC | RXH_IP_DST |
1955                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
1956                         else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
1957                                 info->data = RXH_IP_SRC | RXH_IP_DST;
1958                         break;
1959                 case SCTP_V4_FLOW:
1960                 case AH_ESP_V4_FLOW:
1961                 case IPV4_FLOW:
1962                         if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
1963                                 info->data = RXH_IP_SRC | RXH_IP_DST;
1964                         break;
1965                 case TCP_V6_FLOW:
1966                         if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
1967                                 info->data = RXH_IP_SRC | RXH_IP_DST |
1968                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
1969                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
1970                                 info->data = RXH_IP_SRC | RXH_IP_DST;
1971                         break;
1972                 case UDP_V6_FLOW:
1973                         if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
1974                             (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
1975                                 info->data = RXH_IP_SRC | RXH_IP_DST |
1976                                              RXH_L4_B_0_1 | RXH_L4_B_2_3;
1977                         else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
1978                                 info->data = RXH_IP_SRC | RXH_IP_DST;
1979                         break;
1980                 case SCTP_V6_FLOW:
1981                 case AH_ESP_V6_FLOW:
1982                 case IPV6_FLOW:
1983                         if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
1984                                 info->data = RXH_IP_SRC | RXH_IP_DST;
1985                         break;
1986                 }
1987                 return 0;
1988         }
1989         case ETHTOOL_GRXRINGS:
1990                 info->data = pi->nqsets;
1991                 return 0;
1992         }
1993         return -EOPNOTSUPP;
1994 }
1995
1996 static struct ethtool_ops cxgb_ethtool_ops = {
1997         .get_settings      = get_settings,
1998         .set_settings      = set_settings,
1999         .get_drvinfo       = get_drvinfo,
2000         .get_msglevel      = get_msglevel,
2001         .set_msglevel      = set_msglevel,
2002         .get_ringparam     = get_sge_param,
2003         .set_ringparam     = set_sge_param,
2004         .get_coalesce      = get_coalesce,
2005         .set_coalesce      = set_coalesce,
2006         .get_eeprom_len    = get_eeprom_len,
2007         .get_eeprom        = get_eeprom,
2008         .set_eeprom        = set_eeprom,
2009         .get_pauseparam    = get_pauseparam,
2010         .set_pauseparam    = set_pauseparam,
2011         .get_rx_csum       = get_rx_csum,
2012         .set_rx_csum       = set_rx_csum,
2013         .set_tx_csum       = ethtool_op_set_tx_ipv6_csum,
2014         .set_sg            = ethtool_op_set_sg,
2015         .get_link          = ethtool_op_get_link,
2016         .get_strings       = get_strings,
2017         .phys_id           = identify_port,
2018         .nway_reset        = restart_autoneg,
2019         .get_sset_count    = get_sset_count,
2020         .get_ethtool_stats = get_stats,
2021         .get_regs_len      = get_regs_len,
2022         .get_regs          = get_regs,
2023         .get_wol           = get_wol,
2024         .set_wol           = set_wol,
2025         .set_tso           = set_tso,
2026         .set_flags         = set_flags,
2027         .get_rxnfc         = get_rxnfc,
2028         .get_rxfh_indir    = get_rss_table,
2029         .set_rxfh_indir    = set_rss_table,
2030         .flash_device      = set_flash,
2031 };
2032
2033 /*
2034  * debugfs support
2035  */
2036
2037 static int mem_open(struct inode *inode, struct file *file)
2038 {
2039         file->private_data = inode->i_private;
2040         return 0;
2041 }
2042
2043 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
2044                         loff_t *ppos)
2045 {
2046         loff_t pos = *ppos;
2047         loff_t avail = file->f_path.dentry->d_inode->i_size;
2048         unsigned int mem = (uintptr_t)file->private_data & 3;
2049         struct adapter *adap = file->private_data - mem;
2050
2051         if (pos < 0)
2052                 return -EINVAL;
2053         if (pos >= avail)
2054                 return 0;
2055         if (count > avail - pos)
2056                 count = avail - pos;
2057
2058         while (count) {
2059                 size_t len;
2060                 int ret, ofst;
2061                 __be32 data[16];
2062
2063                 if (mem == MEM_MC)
2064                         ret = t4_mc_read(adap, pos, data, NULL);
2065                 else
2066                         ret = t4_edc_read(adap, mem, pos, data, NULL);
2067                 if (ret)
2068                         return ret;
2069
2070                 ofst = pos % sizeof(data);
2071                 len = min(count, sizeof(data) - ofst);
2072                 if (copy_to_user(buf, (u8 *)data + ofst, len))
2073                         return -EFAULT;
2074
2075                 buf += len;
2076                 pos += len;
2077                 count -= len;
2078         }
2079         count = pos - *ppos;
2080         *ppos = pos;
2081         return count;
2082 }
2083
2084 static const struct file_operations mem_debugfs_fops = {
2085         .owner   = THIS_MODULE,
2086         .open    = mem_open,
2087         .read    = mem_read,
2088         .llseek  = default_llseek,
2089 };
2090
2091 static void __devinit add_debugfs_mem(struct adapter *adap, const char *name,
2092                                       unsigned int idx, unsigned int size_mb)
2093 {
2094         struct dentry *de;
2095
2096         de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
2097                                  (void *)adap + idx, &mem_debugfs_fops);
2098         if (de && de->d_inode)
2099                 de->d_inode->i_size = size_mb << 20;
2100 }
2101
2102 static int __devinit setup_debugfs(struct adapter *adap)
2103 {
2104         int i;
2105
2106         if (IS_ERR_OR_NULL(adap->debugfs_root))
2107                 return -1;
2108
2109         i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
2110         if (i & EDRAM0_ENABLE)
2111                 add_debugfs_mem(adap, "edc0", MEM_EDC0, 5);
2112         if (i & EDRAM1_ENABLE)
2113                 add_debugfs_mem(adap, "edc1", MEM_EDC1, 5);
2114         if (i & EXT_MEM_ENABLE)
2115                 add_debugfs_mem(adap, "mc", MEM_MC,
2116                         EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)));
2117         if (adap->l2t)
2118                 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
2119                                     &t4_l2t_fops);
2120         return 0;
2121 }
2122
2123 /*
2124  * upper-layer driver support
2125  */
2126
2127 /*
2128  * Allocate an active-open TID and set it to the supplied value.
2129  */
2130 int cxgb4_alloc_atid(struct tid_info *t, void *data)
2131 {
2132         int atid = -1;
2133
2134         spin_lock_bh(&t->atid_lock);
2135         if (t->afree) {
2136                 union aopen_entry *p = t->afree;
2137
2138                 atid = p - t->atid_tab;
2139                 t->afree = p->next;
2140                 p->data = data;
2141                 t->atids_in_use++;
2142         }
2143         spin_unlock_bh(&t->atid_lock);
2144         return atid;
2145 }
2146 EXPORT_SYMBOL(cxgb4_alloc_atid);
2147
2148 /*
2149  * Release an active-open TID.
2150  */
2151 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
2152 {
2153         union aopen_entry *p = &t->atid_tab[atid];
2154
2155         spin_lock_bh(&t->atid_lock);
2156         p->next = t->afree;
2157         t->afree = p;
2158         t->atids_in_use--;
2159         spin_unlock_bh(&t->atid_lock);
2160 }
2161 EXPORT_SYMBOL(cxgb4_free_atid);
2162
2163 /*
2164  * Allocate a server TID and set it to the supplied value.
2165  */
2166 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
2167 {
2168         int stid;
2169
2170         spin_lock_bh(&t->stid_lock);
2171         if (family == PF_INET) {
2172                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
2173                 if (stid < t->nstids)
2174                         __set_bit(stid, t->stid_bmap);
2175                 else
2176                         stid = -1;
2177         } else {
2178                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
2179                 if (stid < 0)
2180                         stid = -1;
2181         }
2182         if (stid >= 0) {
2183                 t->stid_tab[stid].data = data;
2184                 stid += t->stid_base;
2185                 t->stids_in_use++;
2186         }
2187         spin_unlock_bh(&t->stid_lock);
2188         return stid;
2189 }
2190 EXPORT_SYMBOL(cxgb4_alloc_stid);
2191
2192 /*
2193  * Release a server TID.
2194  */
2195 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
2196 {
2197         stid -= t->stid_base;
2198         spin_lock_bh(&t->stid_lock);
2199         if (family == PF_INET)
2200                 __clear_bit(stid, t->stid_bmap);
2201         else
2202                 bitmap_release_region(t->stid_bmap, stid, 2);
2203         t->stid_tab[stid].data = NULL;
2204         t->stids_in_use--;
2205         spin_unlock_bh(&t->stid_lock);
2206 }
2207 EXPORT_SYMBOL(cxgb4_free_stid);
2208
2209 /*
2210  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
2211  */
2212 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
2213                            unsigned int tid)
2214 {
2215         struct cpl_tid_release *req;
2216
2217         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
2218         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
2219         INIT_TP_WR(req, tid);
2220         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
2221 }
2222
2223 /*
2224  * Queue a TID release request and if necessary schedule a work queue to
2225  * process it.
2226  */
2227 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
2228                                     unsigned int tid)
2229 {
2230         void **p = &t->tid_tab[tid];
2231         struct adapter *adap = container_of(t, struct adapter, tids);
2232
2233         spin_lock_bh(&adap->tid_release_lock);
2234         *p = adap->tid_release_head;
2235         /* Low 2 bits encode the Tx channel number */
2236         adap->tid_release_head = (void **)((uintptr_t)p | chan);
2237         if (!adap->tid_release_task_busy) {
2238                 adap->tid_release_task_busy = true;
2239                 schedule_work(&adap->tid_release_task);
2240         }
2241         spin_unlock_bh(&adap->tid_release_lock);
2242 }
2243
2244 /*
2245  * Process the list of pending TID release requests.
2246  */
2247 static void process_tid_release_list(struct work_struct *work)
2248 {
2249         struct sk_buff *skb;
2250         struct adapter *adap;
2251
2252         adap = container_of(work, struct adapter, tid_release_task);
2253
2254         spin_lock_bh(&adap->tid_release_lock);
2255         while (adap->tid_release_head) {
2256                 void **p = adap->tid_release_head;
2257                 unsigned int chan = (uintptr_t)p & 3;
2258                 p = (void *)p - chan;
2259
2260                 adap->tid_release_head = *p;
2261                 *p = NULL;
2262                 spin_unlock_bh(&adap->tid_release_lock);
2263
2264                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
2265                                          GFP_KERNEL)))
2266                         schedule_timeout_uninterruptible(1);
2267
2268                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
2269                 t4_ofld_send(adap, skb);
2270                 spin_lock_bh(&adap->tid_release_lock);
2271         }
2272         adap->tid_release_task_busy = false;
2273         spin_unlock_bh(&adap->tid_release_lock);
2274 }
2275
2276 /*
2277  * Release a TID and inform HW.  If we are unable to allocate the release
2278  * message we defer to a work queue.
2279  */
2280 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
2281 {
2282         void *old;
2283         struct sk_buff *skb;
2284         struct adapter *adap = container_of(t, struct adapter, tids);
2285
2286         old = t->tid_tab[tid];
2287         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
2288         if (likely(skb)) {
2289                 t->tid_tab[tid] = NULL;
2290                 mk_tid_release(skb, chan, tid);
2291                 t4_ofld_send(adap, skb);
2292         } else
2293                 cxgb4_queue_tid_release(t, chan, tid);
2294         if (old)
2295                 atomic_dec(&t->tids_in_use);
2296 }
2297 EXPORT_SYMBOL(cxgb4_remove_tid);
2298
2299 /*
2300  * Allocate and initialize the TID tables.  Returns 0 on success.
2301  */
2302 static int tid_init(struct tid_info *t)
2303 {
2304         size_t size;
2305         unsigned int natids = t->natids;
2306
2307         size = t->ntids * sizeof(*t->tid_tab) + natids * sizeof(*t->atid_tab) +
2308                t->nstids * sizeof(*t->stid_tab) +
2309                BITS_TO_LONGS(t->nstids) * sizeof(long);
2310         t->tid_tab = t4_alloc_mem(size);
2311         if (!t->tid_tab)
2312                 return -ENOMEM;
2313
2314         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
2315         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
2316         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids];
2317         spin_lock_init(&t->stid_lock);
2318         spin_lock_init(&t->atid_lock);
2319
2320         t->stids_in_use = 0;
2321         t->afree = NULL;
2322         t->atids_in_use = 0;
2323         atomic_set(&t->tids_in_use, 0);
2324
2325         /* Setup the free list for atid_tab and clear the stid bitmap. */
2326         if (natids) {
2327                 while (--natids)
2328                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
2329                 t->afree = t->atid_tab;
2330         }
2331         bitmap_zero(t->stid_bmap, t->nstids);
2332         return 0;
2333 }
2334
2335 /**
2336  *      cxgb4_create_server - create an IP server
2337  *      @dev: the device
2338  *      @stid: the server TID
2339  *      @sip: local IP address to bind server to
2340  *      @sport: the server's TCP port
2341  *      @queue: queue to direct messages from this server to
2342  *
2343  *      Create an IP server for the given port and address.
2344  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
2345  */
2346 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
2347                         __be32 sip, __be16 sport, unsigned int queue)
2348 {
2349         unsigned int chan;
2350         struct sk_buff *skb;
2351         struct adapter *adap;
2352         struct cpl_pass_open_req *req;
2353
2354         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2355         if (!skb)
2356                 return -ENOMEM;
2357
2358         adap = netdev2adap(dev);
2359         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
2360         INIT_TP_WR(req, 0);
2361         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
2362         req->local_port = sport;
2363         req->peer_port = htons(0);
2364         req->local_ip = sip;
2365         req->peer_ip = htonl(0);
2366         chan = rxq_to_chan(&adap->sge, queue);
2367         req->opt0 = cpu_to_be64(TX_CHAN(chan));
2368         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
2369                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
2370         return t4_mgmt_tx(adap, skb);
2371 }
2372 EXPORT_SYMBOL(cxgb4_create_server);
2373
2374 /**
2375  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2376  *      @mtus: the HW MTU table
2377  *      @mtu: the target MTU
2378  *      @idx: index of selected entry in the MTU table
2379  *
2380  *      Returns the index and the value in the HW MTU table that is closest to
2381  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
2382  *      table, in which case that smallest available value is selected.
2383  */
2384 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2385                             unsigned int *idx)
2386 {
2387         unsigned int i = 0;
2388
2389         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2390                 ++i;
2391         if (idx)
2392                 *idx = i;
2393         return mtus[i];
2394 }
2395 EXPORT_SYMBOL(cxgb4_best_mtu);
2396
2397 /**
2398  *      cxgb4_port_chan - get the HW channel of a port
2399  *      @dev: the net device for the port
2400  *
2401  *      Return the HW Tx channel of the given port.
2402  */
2403 unsigned int cxgb4_port_chan(const struct net_device *dev)
2404 {
2405         return netdev2pinfo(dev)->tx_chan;
2406 }
2407 EXPORT_SYMBOL(cxgb4_port_chan);
2408
2409 /**
2410  *      cxgb4_port_viid - get the VI id of a port
2411  *      @dev: the net device for the port
2412  *
2413  *      Return the VI id of the given port.
2414  */
2415 unsigned int cxgb4_port_viid(const struct net_device *dev)
2416 {
2417         return netdev2pinfo(dev)->viid;
2418 }
2419 EXPORT_SYMBOL(cxgb4_port_viid);
2420
2421 /**
2422  *      cxgb4_port_idx - get the index of a port
2423  *      @dev: the net device for the port
2424  *
2425  *      Return the index of the given port.
2426  */
2427 unsigned int cxgb4_port_idx(const struct net_device *dev)
2428 {
2429         return netdev2pinfo(dev)->port_id;
2430 }
2431 EXPORT_SYMBOL(cxgb4_port_idx);
2432
2433 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2434                          struct tp_tcp_stats *v6)
2435 {
2436         struct adapter *adap = pci_get_drvdata(pdev);
2437
2438         spin_lock(&adap->stats_lock);
2439         t4_tp_get_tcp_stats(adap, v4, v6);
2440         spin_unlock(&adap->stats_lock);
2441 }
2442 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2443
2444 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2445                       const unsigned int *pgsz_order)
2446 {
2447         struct adapter *adap = netdev2adap(dev);
2448
2449         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
2450         t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
2451                      HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
2452                      HPZ3(pgsz_order[3]));
2453 }
2454 EXPORT_SYMBOL(cxgb4_iscsi_init);
2455
2456 static struct pci_driver cxgb4_driver;
2457
2458 static void check_neigh_update(struct neighbour *neigh)
2459 {
2460         const struct device *parent;
2461         const struct net_device *netdev = neigh->dev;
2462
2463         if (netdev->priv_flags & IFF_802_1Q_VLAN)
2464                 netdev = vlan_dev_real_dev(netdev);
2465         parent = netdev->dev.parent;
2466         if (parent && parent->driver == &cxgb4_driver.driver)
2467                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2468 }
2469
2470 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2471                        void *data)
2472 {
2473         switch (event) {
2474         case NETEVENT_NEIGH_UPDATE:
2475                 check_neigh_update(data);
2476                 break;
2477         case NETEVENT_PMTU_UPDATE:
2478         case NETEVENT_REDIRECT:
2479         default:
2480                 break;
2481         }
2482         return 0;
2483 }
2484
2485 static bool netevent_registered;
2486 static struct notifier_block cxgb4_netevent_nb = {
2487         .notifier_call = netevent_cb
2488 };
2489
2490 static void uld_attach(struct adapter *adap, unsigned int uld)
2491 {
2492         void *handle;
2493         struct cxgb4_lld_info lli;
2494
2495         lli.pdev = adap->pdev;
2496         lli.l2t = adap->l2t;
2497         lli.tids = &adap->tids;
2498         lli.ports = adap->port;
2499         lli.vr = &adap->vres;
2500         lli.mtus = adap->params.mtus;
2501         if (uld == CXGB4_ULD_RDMA) {
2502                 lli.rxq_ids = adap->sge.rdma_rxq;
2503                 lli.nrxq = adap->sge.rdmaqs;
2504         } else if (uld == CXGB4_ULD_ISCSI) {
2505                 lli.rxq_ids = adap->sge.ofld_rxq;
2506                 lli.nrxq = adap->sge.ofldqsets;
2507         }
2508         lli.ntxq = adap->sge.ofldqsets;
2509         lli.nchan = adap->params.nports;
2510         lli.nports = adap->params.nports;
2511         lli.wr_cred = adap->params.ofldq_wr_cred;
2512         lli.adapter_type = adap->params.rev;
2513         lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
2514         lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
2515                         t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
2516                         (adap->fn * 4));
2517         lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
2518                         t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
2519                         (adap->fn * 4));
2520         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
2521         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
2522         lli.fw_vers = adap->params.fw_vers;
2523
2524         handle = ulds[uld].add(&lli);
2525         if (IS_ERR(handle)) {
2526                 dev_warn(adap->pdev_dev,
2527                          "could not attach to the %s driver, error %ld\n",
2528                          uld_str[uld], PTR_ERR(handle));
2529                 return;
2530         }
2531
2532         adap->uld_handle[uld] = handle;
2533
2534         if (!netevent_registered) {
2535                 register_netevent_notifier(&cxgb4_netevent_nb);
2536                 netevent_registered = true;
2537         }
2538
2539         if (adap->flags & FULL_INIT_DONE)
2540                 ulds[uld].state_change(handle, CXGB4_STATE_UP);
2541 }
2542
2543 static void attach_ulds(struct adapter *adap)
2544 {
2545         unsigned int i;
2546
2547         mutex_lock(&uld_mutex);
2548         list_add_tail(&adap->list_node, &adapter_list);
2549         for (i = 0; i < CXGB4_ULD_MAX; i++)
2550                 if (ulds[i].add)
2551                         uld_attach(adap, i);
2552         mutex_unlock(&uld_mutex);
2553 }
2554
2555 static void detach_ulds(struct adapter *adap)
2556 {
2557         unsigned int i;
2558
2559         mutex_lock(&uld_mutex);
2560         list_del(&adap->list_node);
2561         for (i = 0; i < CXGB4_ULD_MAX; i++)
2562                 if (adap->uld_handle[i]) {
2563                         ulds[i].state_change(adap->uld_handle[i],
2564                                              CXGB4_STATE_DETACH);
2565                         adap->uld_handle[i] = NULL;
2566                 }
2567         if (netevent_registered && list_empty(&adapter_list)) {
2568                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2569                 netevent_registered = false;
2570         }
2571         mutex_unlock(&uld_mutex);
2572 }
2573
2574 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2575 {
2576         unsigned int i;
2577
2578         mutex_lock(&uld_mutex);
2579         for (i = 0; i < CXGB4_ULD_MAX; i++)
2580                 if (adap->uld_handle[i])
2581                         ulds[i].state_change(adap->uld_handle[i], new_state);
2582         mutex_unlock(&uld_mutex);
2583 }
2584
2585 /**
2586  *      cxgb4_register_uld - register an upper-layer driver
2587  *      @type: the ULD type
2588  *      @p: the ULD methods
2589  *
2590  *      Registers an upper-layer driver with this driver and notifies the ULD
2591  *      about any presently available devices that support its type.  Returns
2592  *      %-EBUSY if a ULD of the same type is already registered.
2593  */
2594 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2595 {
2596         int ret = 0;
2597         struct adapter *adap;
2598
2599         if (type >= CXGB4_ULD_MAX)
2600                 return -EINVAL;
2601         mutex_lock(&uld_mutex);
2602         if (ulds[type].add) {
2603                 ret = -EBUSY;
2604                 goto out;
2605         }
2606         ulds[type] = *p;
2607         list_for_each_entry(adap, &adapter_list, list_node)
2608                 uld_attach(adap, type);
2609 out:    mutex_unlock(&uld_mutex);
2610         return ret;
2611 }
2612 EXPORT_SYMBOL(cxgb4_register_uld);
2613
2614 /**
2615  *      cxgb4_unregister_uld - unregister an upper-layer driver
2616  *      @type: the ULD type
2617  *
2618  *      Unregisters an existing upper-layer driver.
2619  */
2620 int cxgb4_unregister_uld(enum cxgb4_uld type)
2621 {
2622         struct adapter *adap;
2623
2624         if (type >= CXGB4_ULD_MAX)
2625                 return -EINVAL;
2626         mutex_lock(&uld_mutex);
2627         list_for_each_entry(adap, &adapter_list, list_node)
2628                 adap->uld_handle[type] = NULL;
2629         ulds[type].add = NULL;
2630         mutex_unlock(&uld_mutex);
2631         return 0;
2632 }
2633 EXPORT_SYMBOL(cxgb4_unregister_uld);
2634
2635 /**
2636  *      cxgb_up - enable the adapter
2637  *      @adap: adapter being enabled
2638  *
2639  *      Called when the first port is enabled, this function performs the
2640  *      actions necessary to make an adapter operational, such as completing
2641  *      the initialization of HW modules, and enabling interrupts.
2642  *
2643  *      Must be called with the rtnl lock held.
2644  */
2645 static int cxgb_up(struct adapter *adap)
2646 {
2647         int err;
2648
2649         err = setup_sge_queues(adap);
2650         if (err)
2651                 goto out;
2652         err = setup_rss(adap);
2653         if (err)
2654                 goto freeq;
2655
2656         if (adap->flags & USING_MSIX) {
2657                 name_msix_vecs(adap);
2658                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2659                                   adap->msix_info[0].desc, adap);
2660                 if (err)
2661                         goto irq_err;
2662
2663                 err = request_msix_queue_irqs(adap);
2664                 if (err) {
2665                         free_irq(adap->msix_info[0].vec, adap);
2666                         goto irq_err;
2667                 }
2668         } else {
2669                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2670                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2671                                   adap->name, adap);
2672                 if (err)
2673                         goto irq_err;
2674         }
2675         enable_rx(adap);
2676         t4_sge_start(adap);
2677         t4_intr_enable(adap);
2678         adap->flags |= FULL_INIT_DONE;
2679         notify_ulds(adap, CXGB4_STATE_UP);
2680  out:
2681         return err;
2682  irq_err:
2683         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2684  freeq:
2685         t4_free_sge_resources(adap);
2686         goto out;
2687 }
2688
2689 static void cxgb_down(struct adapter *adapter)
2690 {
2691         t4_intr_disable(adapter);
2692         cancel_work_sync(&adapter->tid_release_task);
2693         adapter->tid_release_task_busy = false;
2694         adapter->tid_release_head = NULL;
2695
2696         if (adapter->flags & USING_MSIX) {
2697                 free_msix_queue_irqs(adapter);
2698                 free_irq(adapter->msix_info[0].vec, adapter);
2699         } else
2700                 free_irq(adapter->pdev->irq, adapter);
2701         quiesce_rx(adapter);
2702         t4_sge_stop(adapter);
2703         t4_free_sge_resources(adapter);
2704         adapter->flags &= ~FULL_INIT_DONE;
2705 }
2706
2707 /*
2708  * net_device operations
2709  */
2710 static int cxgb_open(struct net_device *dev)
2711 {
2712         int err;
2713         struct port_info *pi = netdev_priv(dev);
2714         struct adapter *adapter = pi->adapter;
2715
2716         if (!(adapter->flags & FULL_INIT_DONE)) {
2717                 err = cxgb_up(adapter);
2718                 if (err < 0)
2719                         return err;
2720         }
2721
2722         netif_set_real_num_tx_queues(dev, pi->nqsets);
2723         err = netif_set_real_num_rx_queues(dev, pi->nqsets);
2724         if (err)
2725                 return err;
2726         err = link_start(dev);
2727         if (!err)
2728                 netif_tx_start_all_queues(dev);
2729         return err;
2730 }
2731
2732 static int cxgb_close(struct net_device *dev)
2733 {
2734         struct port_info *pi = netdev_priv(dev);
2735         struct adapter *adapter = pi->adapter;
2736
2737         netif_tx_stop_all_queues(dev);
2738         netif_carrier_off(dev);
2739         return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
2740 }
2741
2742 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2743                                                 struct rtnl_link_stats64 *ns)
2744 {
2745         struct port_stats stats;
2746         struct port_info *p = netdev_priv(dev);
2747         struct adapter *adapter = p->adapter;
2748
2749         spin_lock(&adapter->stats_lock);
2750         t4_get_port_stats(adapter, p->tx_chan, &stats);
2751         spin_unlock(&adapter->stats_lock);
2752
2753         ns->tx_bytes   = stats.tx_octets;
2754         ns->tx_packets = stats.tx_frames;
2755         ns->rx_bytes   = stats.rx_octets;
2756         ns->rx_packets = stats.rx_frames;
2757         ns->multicast  = stats.rx_mcast_frames;
2758
2759         /* detailed rx_errors */
2760         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2761                                stats.rx_runt;
2762         ns->rx_over_errors   = 0;
2763         ns->rx_crc_errors    = stats.rx_fcs_err;
2764         ns->rx_frame_errors  = stats.rx_symbol_err;
2765         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2766                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2767                                stats.rx_trunc0 + stats.rx_trunc1 +
2768                                stats.rx_trunc2 + stats.rx_trunc3;
2769         ns->rx_missed_errors = 0;
2770
2771         /* detailed tx_errors */
2772         ns->tx_aborted_errors   = 0;
2773         ns->tx_carrier_errors   = 0;
2774         ns->tx_fifo_errors      = 0;
2775         ns->tx_heartbeat_errors = 0;
2776         ns->tx_window_errors    = 0;
2777
2778         ns->tx_errors = stats.tx_error_frames;
2779         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2780                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2781         return ns;
2782 }
2783
2784 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2785 {
2786         unsigned int mbox;
2787         int ret = 0, prtad, devad;
2788         struct port_info *pi = netdev_priv(dev);
2789         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2790
2791         switch (cmd) {
2792         case SIOCGMIIPHY:
2793                 if (pi->mdio_addr < 0)
2794                         return -EOPNOTSUPP;
2795                 data->phy_id = pi->mdio_addr;
2796                 break;
2797         case SIOCGMIIREG:
2798         case SIOCSMIIREG:
2799                 if (mdio_phy_id_is_c45(data->phy_id)) {
2800                         prtad = mdio_phy_id_prtad(data->phy_id);
2801                         devad = mdio_phy_id_devad(data->phy_id);
2802                 } else if (data->phy_id < 32) {
2803                         prtad = data->phy_id;
2804                         devad = 0;
2805                         data->reg_num &= 0x1f;
2806                 } else
2807                         return -EINVAL;
2808
2809                 mbox = pi->adapter->fn;
2810                 if (cmd == SIOCGMIIREG)
2811                         ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2812                                          data->reg_num, &data->val_out);
2813                 else
2814                         ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2815                                          data->reg_num, data->val_in);
2816                 break;
2817         default:
2818                 return -EOPNOTSUPP;
2819         }
2820         return ret;
2821 }
2822
2823 static void cxgb_set_rxmode(struct net_device *dev)
2824 {
2825         /* unfortunately we can't return errors to the stack */
2826         set_rxmode(dev, -1, false);
2827 }
2828
2829 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2830 {
2831         int ret;
2832         struct port_info *pi = netdev_priv(dev);
2833
2834         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
2835                 return -EINVAL;
2836         ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
2837                             -1, -1, -1, true);
2838         if (!ret)
2839                 dev->mtu = new_mtu;
2840         return ret;
2841 }
2842
2843 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2844 {
2845         int ret;
2846         struct sockaddr *addr = p;
2847         struct port_info *pi = netdev_priv(dev);
2848
2849         if (!is_valid_ether_addr(addr->sa_data))
2850                 return -EINVAL;
2851
2852         ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
2853                             pi->xact_addr_filt, addr->sa_data, true, true);
2854         if (ret < 0)
2855                 return ret;
2856
2857         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2858         pi->xact_addr_filt = ret;
2859         return 0;
2860 }
2861
2862 #ifdef CONFIG_NET_POLL_CONTROLLER
2863 static void cxgb_netpoll(struct net_device *dev)
2864 {
2865         struct port_info *pi = netdev_priv(dev);
2866         struct adapter *adap = pi->adapter;
2867
2868         if (adap->flags & USING_MSIX) {
2869                 int i;
2870                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2871
2872                 for (i = pi->nqsets; i; i--, rx++)
2873                         t4_sge_intr_msix(0, &rx->rspq);
2874         } else
2875                 t4_intr_handler(adap)(0, adap);
2876 }
2877 #endif
2878
2879 static const struct net_device_ops cxgb4_netdev_ops = {
2880         .ndo_open             = cxgb_open,
2881         .ndo_stop             = cxgb_close,
2882         .ndo_start_xmit       = t4_eth_xmit,
2883         .ndo_get_stats64      = cxgb_get_stats,
2884         .ndo_set_rx_mode      = cxgb_set_rxmode,
2885         .ndo_set_mac_address  = cxgb_set_mac_addr,
2886         .ndo_validate_addr    = eth_validate_addr,
2887         .ndo_do_ioctl         = cxgb_ioctl,
2888         .ndo_change_mtu       = cxgb_change_mtu,
2889 #ifdef CONFIG_NET_POLL_CONTROLLER
2890         .ndo_poll_controller  = cxgb_netpoll,
2891 #endif
2892 };
2893
2894 void t4_fatal_err(struct adapter *adap)
2895 {
2896         t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
2897         t4_intr_disable(adap);
2898         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
2899 }
2900
2901 static void setup_memwin(struct adapter *adap)
2902 {
2903         u32 bar0;
2904
2905         bar0 = pci_resource_start(adap->pdev, 0);  /* truncation intentional */
2906         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
2907                      (bar0 + MEMWIN0_BASE) | BIR(0) |
2908                      WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
2909         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
2910                      (bar0 + MEMWIN1_BASE) | BIR(0) |
2911                      WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
2912         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
2913                      (bar0 + MEMWIN2_BASE) | BIR(0) |
2914                      WINDOW(ilog2(MEMWIN2_APERTURE) - 10));
2915         if (adap->vres.ocq.size) {
2916                 unsigned int start, sz_kb;
2917
2918                 start = pci_resource_start(adap->pdev, 2) +
2919                         OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
2920                 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
2921                 t4_write_reg(adap,
2922                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
2923                              start | BIR(1) | WINDOW(ilog2(sz_kb)));
2924                 t4_write_reg(adap,
2925                              PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
2926                              adap->vres.ocq.start);
2927                 t4_read_reg(adap,
2928                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
2929         }
2930 }
2931
2932 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
2933 {
2934         u32 v;
2935         int ret;
2936
2937         /* get device capabilities */
2938         memset(c, 0, sizeof(*c));
2939         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
2940                                FW_CMD_REQUEST | FW_CMD_READ);
2941         c->retval_len16 = htonl(FW_LEN16(*c));
2942         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
2943         if (ret < 0)
2944                 return ret;
2945
2946         /* select capabilities we'll be using */
2947         if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
2948                 if (!vf_acls)
2949                         c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
2950                 else
2951                         c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
2952         } else if (vf_acls) {
2953                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
2954                 return ret;
2955         }
2956         c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
2957                                FW_CMD_REQUEST | FW_CMD_WRITE);
2958         ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
2959         if (ret < 0)
2960                 return ret;
2961
2962         ret = t4_config_glbl_rss(adap, adap->fn,
2963                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
2964                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
2965                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
2966         if (ret < 0)
2967                 return ret;
2968
2969         ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
2970                           0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
2971         if (ret < 0)
2972                 return ret;
2973
2974         t4_sge_init(adap);
2975
2976         /* tweak some settings */
2977         t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
2978         t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
2979         t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
2980         v = t4_read_reg(adap, TP_PIO_DATA);
2981         t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
2982
2983         /* get basic stuff going */
2984         return t4_early_init(adap, adap->fn);
2985 }
2986
2987 /*
2988  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
2989  */
2990 #define MAX_ATIDS 8192U
2991
2992 /*
2993  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
2994  */
2995 static int adap_init0(struct adapter *adap)
2996 {
2997         int ret;
2998         u32 v, port_vec;
2999         enum dev_state state;
3000         u32 params[7], val[7];
3001         struct fw_caps_config_cmd c;
3002
3003         ret = t4_check_fw_version(adap);
3004         if (ret == -EINVAL || ret > 0) {
3005                 if (upgrade_fw(adap) >= 0)             /* recache FW version */
3006                         ret = t4_check_fw_version(adap);
3007         }
3008         if (ret < 0)
3009                 return ret;
3010
3011         /* contact FW, request master */
3012         ret = t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, &state);
3013         if (ret < 0) {
3014                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3015                         ret);
3016                 return ret;
3017         }
3018
3019         /* reset device */
3020         ret = t4_fw_reset(adap, adap->fn, PIORSTMODE | PIORST);
3021         if (ret < 0)
3022                 goto bye;
3023
3024         for (v = 0; v < SGE_NTIMERS - 1; v++)
3025                 adap->sge.timer_val[v] = min(intr_holdoff[v], MAX_SGE_TIMERVAL);
3026         adap->sge.timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
3027         adap->sge.counter_val[0] = 1;
3028         for (v = 1; v < SGE_NCOUNTERS; v++)
3029                 adap->sge.counter_val[v] = min(intr_cnt[v - 1],
3030                                                THRESHOLD_3_MASK);
3031 #define FW_PARAM_DEV(param) \
3032         (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
3033          FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
3034
3035         params[0] = FW_PARAM_DEV(CCLK);
3036         ret = t4_query_params(adap, adap->fn, adap->fn, 0, 1, params, val);
3037         if (ret < 0)
3038                 goto bye;
3039         adap->params.vpd.cclk = val[0];
3040
3041         ret = adap_init1(adap, &c);
3042         if (ret < 0)
3043                 goto bye;
3044
3045 #define FW_PARAM_PFVF(param) \
3046         (FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
3047          FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param) | \
3048          FW_PARAMS_PARAM_Y(adap->fn))
3049
3050         params[0] = FW_PARAM_DEV(PORTVEC);
3051         params[1] = FW_PARAM_PFVF(L2T_START);
3052         params[2] = FW_PARAM_PFVF(L2T_END);
3053         params[3] = FW_PARAM_PFVF(FILTER_START);
3054         params[4] = FW_PARAM_PFVF(FILTER_END);
3055         params[5] = FW_PARAM_PFVF(IQFLINT_START);
3056         params[6] = FW_PARAM_PFVF(EQ_START);
3057         ret = t4_query_params(adap, adap->fn, adap->fn, 0, 7, params, val);
3058         if (ret < 0)
3059                 goto bye;
3060         port_vec = val[0];
3061         adap->tids.ftid_base = val[3];
3062         adap->tids.nftids = val[4] - val[3] + 1;
3063         adap->sge.ingr_start = val[5];
3064         adap->sge.egr_start = val[6];
3065
3066         if (c.ofldcaps) {
3067                 /* query offload-related parameters */
3068                 params[0] = FW_PARAM_DEV(NTID);
3069                 params[1] = FW_PARAM_PFVF(SERVER_START);
3070                 params[2] = FW_PARAM_PFVF(SERVER_END);
3071                 params[3] = FW_PARAM_PFVF(TDDP_START);
3072                 params[4] = FW_PARAM_PFVF(TDDP_END);
3073                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3074                 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params,
3075                                       val);
3076                 if (ret < 0)
3077                         goto bye;
3078                 adap->tids.ntids = val[0];
3079                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3080                 adap->tids.stid_base = val[1];
3081                 adap->tids.nstids = val[2] - val[1] + 1;
3082                 adap->vres.ddp.start = val[3];
3083                 adap->vres.ddp.size = val[4] - val[3] + 1;
3084                 adap->params.ofldq_wr_cred = val[5];
3085                 adap->params.offload = 1;
3086         }
3087         if (c.rdmacaps) {
3088                 params[0] = FW_PARAM_PFVF(STAG_START);
3089                 params[1] = FW_PARAM_PFVF(STAG_END);
3090                 params[2] = FW_PARAM_PFVF(RQ_START);
3091                 params[3] = FW_PARAM_PFVF(RQ_END);
3092                 params[4] = FW_PARAM_PFVF(PBL_START);
3093                 params[5] = FW_PARAM_PFVF(PBL_END);
3094                 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params,
3095                                       val);
3096                 if (ret < 0)
3097                         goto bye;
3098                 adap->vres.stag.start = val[0];
3099                 adap->vres.stag.size = val[1] - val[0] + 1;
3100                 adap->vres.rq.start = val[2];
3101                 adap->vres.rq.size = val[3] - val[2] + 1;
3102                 adap->vres.pbl.start = val[4];
3103                 adap->vres.pbl.size = val[5] - val[4] + 1;
3104
3105                 params[0] = FW_PARAM_PFVF(SQRQ_START);
3106                 params[1] = FW_PARAM_PFVF(SQRQ_END);
3107                 params[2] = FW_PARAM_PFVF(CQ_START);
3108                 params[3] = FW_PARAM_PFVF(CQ_END);
3109                 params[4] = FW_PARAM_PFVF(OCQ_START);
3110                 params[5] = FW_PARAM_PFVF(OCQ_END);
3111                 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 6, params,
3112                                       val);
3113                 if (ret < 0)
3114                         goto bye;
3115                 adap->vres.qp.start = val[0];
3116                 adap->vres.qp.size = val[1] - val[0] + 1;
3117                 adap->vres.cq.start = val[2];
3118                 adap->vres.cq.size = val[3] - val[2] + 1;
3119                 adap->vres.ocq.start = val[4];
3120                 adap->vres.ocq.size = val[5] - val[4] + 1;
3121         }
3122         if (c.iscsicaps) {
3123                 params[0] = FW_PARAM_PFVF(ISCSI_START);
3124                 params[1] = FW_PARAM_PFVF(ISCSI_END);
3125                 ret = t4_query_params(adap, adap->fn, adap->fn, 0, 2, params,
3126                                       val);
3127                 if (ret < 0)
3128                         goto bye;
3129                 adap->vres.iscsi.start = val[0];
3130                 adap->vres.iscsi.size = val[1] - val[0] + 1;
3131         }
3132 #undef FW_PARAM_PFVF
3133 #undef FW_PARAM_DEV
3134
3135         adap->params.nports = hweight32(port_vec);
3136         adap->params.portvec = port_vec;
3137         adap->flags |= FW_OK;
3138
3139         /* These are finalized by FW initialization, load their values now */
3140         v = t4_read_reg(adap, TP_TIMER_RESOLUTION);
3141         adap->params.tp.tre = TIMERRESOLUTION_GET(v);
3142         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3143         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3144                      adap->params.b_wnd);
3145
3146 #ifdef CONFIG_PCI_IOV
3147         /*
3148          * Provision resource limits for Virtual Functions.  We currently
3149          * grant them all the same static resource limits except for the Port
3150          * Access Rights Mask which we're assigning based on the PF.  All of
3151          * the static provisioning stuff for both the PF and VF really needs
3152          * to be managed in a persistent manner for each device which the
3153          * firmware controls.
3154          */
3155         {
3156                 int pf, vf;
3157
3158                 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
3159                         if (num_vf[pf] <= 0)
3160                                 continue;
3161
3162                         /* VF numbering starts at 1! */
3163                         for (vf = 1; vf <= num_vf[pf]; vf++) {
3164                                 ret = t4_cfg_pfvf(adap, adap->fn, pf, vf,
3165                                                   VFRES_NEQ, VFRES_NETHCTRL,
3166                                                   VFRES_NIQFLINT, VFRES_NIQ,
3167                                                   VFRES_TC, VFRES_NVI,
3168                                                   FW_PFVF_CMD_CMASK_MASK,
3169                                                   pfvfres_pmask(adap, pf, vf),
3170                                                   VFRES_NEXACTF,
3171                                                   VFRES_R_CAPS, VFRES_WX_CAPS);
3172                                 if (ret < 0)
3173                                         dev_warn(adap->pdev_dev, "failed to "
3174                                                  "provision pf/vf=%d/%d; "
3175                                                  "err=%d\n", pf, vf, ret);
3176                         }
3177                 }
3178         }
3179 #endif
3180
3181         setup_memwin(adap);
3182         return 0;
3183
3184         /*
3185          * If a command timed out or failed with EIO FW does not operate within
3186          * its spec or something catastrophic happened to HW/FW, stop issuing
3187          * commands.
3188          */
3189 bye:    if (ret != -ETIMEDOUT && ret != -EIO)
3190                 t4_fw_bye(adap, adap->fn);
3191         return ret;
3192 }
3193
3194 /* EEH callbacks */
3195
3196 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3197                                          pci_channel_state_t state)
3198 {
3199         int i;
3200         struct adapter *adap = pci_get_drvdata(pdev);
3201
3202         if (!adap)
3203                 goto out;
3204
3205         rtnl_lock();
3206         adap->flags &= ~FW_OK;
3207         notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3208         for_each_port(adap, i) {
3209                 struct net_device *dev = adap->port[i];
3210
3211                 netif_device_detach(dev);
3212                 netif_carrier_off(dev);
3213         }
3214         if (adap->flags & FULL_INIT_DONE)
3215                 cxgb_down(adap);
3216         rtnl_unlock();
3217         pci_disable_device(pdev);
3218 out:    return state == pci_channel_io_perm_failure ?
3219                 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
3220 }
3221
3222 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
3223 {
3224         int i, ret;
3225         struct fw_caps_config_cmd c;
3226         struct adapter *adap = pci_get_drvdata(pdev);
3227
3228         if (!adap) {
3229                 pci_restore_state(pdev);
3230                 pci_save_state(pdev);
3231                 return PCI_ERS_RESULT_RECOVERED;
3232         }
3233
3234         if (pci_enable_device(pdev)) {
3235                 dev_err(&pdev->dev, "cannot reenable PCI device after reset\n");
3236                 return PCI_ERS_RESULT_DISCONNECT;
3237         }
3238
3239         pci_set_master(pdev);
3240         pci_restore_state(pdev);
3241         pci_save_state(pdev);
3242         pci_cleanup_aer_uncorrect_error_status(pdev);
3243
3244         if (t4_wait_dev_ready(adap) < 0)
3245                 return PCI_ERS_RESULT_DISCONNECT;
3246         if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL))
3247                 return PCI_ERS_RESULT_DISCONNECT;
3248         adap->flags |= FW_OK;
3249         if (adap_init1(adap, &c))
3250                 return PCI_ERS_RESULT_DISCONNECT;
3251
3252         for_each_port(adap, i) {
3253                 struct port_info *p = adap2pinfo(adap, i);
3254
3255                 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
3256                                   NULL, NULL);
3257                 if (ret < 0)
3258                         return PCI_ERS_RESULT_DISCONNECT;
3259                 p->viid = ret;
3260                 p->xact_addr_filt = -1;
3261         }
3262
3263         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3264                      adap->params.b_wnd);
3265         setup_memwin(adap);
3266         if (cxgb_up(adap))
3267                 return PCI_ERS_RESULT_DISCONNECT;
3268         return PCI_ERS_RESULT_RECOVERED;
3269 }
3270
3271 static void eeh_resume(struct pci_dev *pdev)
3272 {
3273         int i;
3274         struct adapter *adap = pci_get_drvdata(pdev);
3275
3276         if (!adap)
3277                 return;
3278
3279         rtnl_lock();
3280         for_each_port(adap, i) {
3281                 struct net_device *dev = adap->port[i];
3282
3283                 if (netif_running(dev)) {
3284                         link_start(dev);
3285                         cxgb_set_rxmode(dev);
3286                 }
3287                 netif_device_attach(dev);
3288         }
3289         rtnl_unlock();
3290 }
3291
3292 static struct pci_error_handlers cxgb4_eeh = {
3293         .error_detected = eeh_err_detected,
3294         .slot_reset     = eeh_slot_reset,
3295         .resume         = eeh_resume,
3296 };
3297
3298 static inline bool is_10g_port(const struct link_config *lc)
3299 {
3300         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0;
3301 }
3302
3303 static inline void init_rspq(struct sge_rspq *q, u8 timer_idx, u8 pkt_cnt_idx,
3304                              unsigned int size, unsigned int iqe_size)
3305 {
3306         q->intr_params = QINTR_TIMER_IDX(timer_idx) |
3307                          (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0);
3308         q->pktcnt_idx = pkt_cnt_idx < SGE_NCOUNTERS ? pkt_cnt_idx : 0;
3309         q->iqe_len = iqe_size;
3310         q->size = size;
3311 }
3312
3313 /*
3314  * Perform default configuration of DMA queues depending on the number and type
3315  * of ports we found and the number of available CPUs.  Most settings can be
3316  * modified by the admin prior to actual use.
3317  */
3318 static void __devinit cfg_queues(struct adapter *adap)
3319 {
3320         struct sge *s = &adap->sge;
3321         int i, q10g = 0, n10g = 0, qidx = 0;
3322
3323         for_each_port(adap, i)
3324                 n10g += is_10g_port(&adap2pinfo(adap, i)->link_cfg);
3325
3326         /*
3327          * We default to 1 queue per non-10G port and up to # of cores queues
3328          * per 10G port.
3329          */
3330         if (n10g)
3331                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
3332         if (q10g > num_online_cpus())
3333                 q10g = num_online_cpus();
3334
3335         for_each_port(adap, i) {
3336                 struct port_info *pi = adap2pinfo(adap, i);
3337
3338                 pi->first_qset = qidx;
3339                 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
3340                 qidx += pi->nqsets;
3341         }
3342
3343         s->ethqsets = qidx;
3344         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
3345
3346         if (is_offload(adap)) {
3347                 /*
3348                  * For offload we use 1 queue/channel if all ports are up to 1G,
3349                  * otherwise we divide all available queues amongst the channels
3350                  * capped by the number of available cores.
3351                  */
3352                 if (n10g) {
3353                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
3354                                   num_online_cpus());
3355                         s->ofldqsets = roundup(i, adap->params.nports);
3356                 } else
3357                         s->ofldqsets = adap->params.nports;
3358                 /* For RDMA one Rx queue per channel suffices */
3359                 s->rdmaqs = adap->params.nports;
3360         }
3361
3362         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
3363                 struct sge_eth_rxq *r = &s->ethrxq[i];
3364
3365                 init_rspq(&r->rspq, 0, 0, 1024, 64);
3366                 r->fl.size = 72;
3367         }
3368
3369         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
3370                 s->ethtxq[i].q.size = 1024;
3371
3372         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
3373                 s->ctrlq[i].q.size = 512;
3374
3375         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
3376                 s->ofldtxq[i].q.size = 1024;
3377
3378         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
3379                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
3380
3381                 init_rspq(&r->rspq, 0, 0, 1024, 64);
3382                 r->rspq.uld = CXGB4_ULD_ISCSI;
3383                 r->fl.size = 72;
3384         }
3385
3386         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
3387                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
3388
3389                 init_rspq(&r->rspq, 0, 0, 511, 64);
3390                 r->rspq.uld = CXGB4_ULD_RDMA;
3391                 r->fl.size = 72;
3392         }
3393
3394         init_rspq(&s->fw_evtq, 6, 0, 512, 64);
3395         init_rspq(&s->intrq, 6, 0, 2 * MAX_INGQ, 64);
3396 }
3397
3398 /*
3399  * Reduce the number of Ethernet queues across all ports to at most n.
3400  * n provides at least one queue per port.
3401  */
3402 static void __devinit reduce_ethqs(struct adapter *adap, int n)
3403 {
3404         int i;
3405         struct port_info *pi;
3406
3407         while (n < adap->sge.ethqsets)
3408                 for_each_port(adap, i) {
3409                         pi = adap2pinfo(adap, i);
3410                         if (pi->nqsets > 1) {
3411                                 pi->nqsets--;
3412                                 adap->sge.ethqsets--;
3413                                 if (adap->sge.ethqsets <= n)
3414                                         break;
3415                         }
3416                 }
3417
3418         n = 0;
3419         for_each_port(adap, i) {
3420                 pi = adap2pinfo(adap, i);
3421                 pi->first_qset = n;
3422                 n += pi->nqsets;
3423         }
3424 }
3425
3426 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
3427 #define EXTRA_VECS 2
3428
3429 static int __devinit enable_msix(struct adapter *adap)
3430 {
3431         int ofld_need = 0;
3432         int i, err, want, need;
3433         struct sge *s = &adap->sge;
3434         unsigned int nchan = adap->params.nports;
3435         struct msix_entry entries[MAX_INGQ + 1];
3436
3437         for (i = 0; i < ARRAY_SIZE(entries); ++i)
3438                 entries[i].entry = i;
3439
3440         want = s->max_ethqsets + EXTRA_VECS;
3441         if (is_offload(adap)) {
3442                 want += s->rdmaqs + s->ofldqsets;
3443                 /* need nchan for each possible ULD */
3444                 ofld_need = 2 * nchan;
3445         }
3446         need = adap->params.nports + EXTRA_VECS + ofld_need;
3447
3448         while ((err = pci_enable_msix(adap->pdev, entries, want)) >= need)
3449                 want = err;
3450
3451         if (!err) {
3452                 /*
3453                  * Distribute available vectors to the various queue groups.
3454                  * Every group gets its minimum requirement and NIC gets top
3455                  * priority for leftovers.
3456                  */
3457                 i = want - EXTRA_VECS - ofld_need;
3458                 if (i < s->max_ethqsets) {
3459                         s->max_ethqsets = i;
3460                         if (i < s->ethqsets)
3461                                 reduce_ethqs(adap, i);
3462                 }
3463                 if (is_offload(adap)) {
3464                         i = want - EXTRA_VECS - s->max_ethqsets;
3465                         i -= ofld_need - nchan;
3466                         s->ofldqsets = (i / nchan) * nchan;  /* round down */
3467                 }
3468                 for (i = 0; i < want; ++i)
3469                         adap->msix_info[i].vec = entries[i].vector;
3470         } else if (err > 0)
3471                 dev_info(adap->pdev_dev,
3472                          "only %d MSI-X vectors left, not using MSI-X\n", err);
3473         return err;
3474 }
3475
3476 #undef EXTRA_VECS
3477
3478 static int __devinit init_rss(struct adapter *adap)
3479 {
3480         unsigned int i, j;
3481
3482         for_each_port(adap, i) {
3483                 struct port_info *pi = adap2pinfo(adap, i);
3484
3485                 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
3486                 if (!pi->rss)
3487                         return -ENOMEM;
3488                 for (j = 0; j < pi->rss_size; j++)
3489                         pi->rss[j] = j % pi->nqsets;
3490         }
3491         return 0;
3492 }
3493
3494 static void __devinit print_port_info(struct adapter *adap)
3495 {
3496         static const char *base[] = {
3497                 "R XFI", "R XAUI", "T SGMII", "T XFI", "T XAUI", "KX4", "CX4",
3498                 "KX", "KR", "KR SFP+", "KR FEC"
3499         };
3500
3501         int i;
3502         char buf[80];
3503         const char *spd = "";
3504
3505         if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
3506                 spd = " 2.5 GT/s";
3507         else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
3508                 spd = " 5 GT/s";
3509
3510         for_each_port(adap, i) {
3511                 struct net_device *dev = adap->port[i];
3512                 const struct port_info *pi = netdev_priv(dev);
3513                 char *bufp = buf;
3514
3515                 if (!test_bit(i, &adap->registered_device_map))
3516                         continue;
3517
3518                 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
3519                         bufp += sprintf(bufp, "100/");
3520                 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
3521                         bufp += sprintf(bufp, "1000/");
3522                 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
3523                         bufp += sprintf(bufp, "10G/");
3524                 if (bufp != buf)
3525                         --bufp;
3526                 sprintf(bufp, "BASE-%s", base[pi->port_type]);
3527
3528                 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
3529                             adap->params.vpd.id, adap->params.rev,
3530                             buf, is_offload(adap) ? "R" : "",
3531                             adap->params.pci.width, spd,
3532                             (adap->flags & USING_MSIX) ? " MSI-X" :
3533                             (adap->flags & USING_MSI) ? " MSI" : "");
3534                 if (adap->name == dev->name)
3535                         netdev_info(dev, "S/N: %s, E/C: %s\n",
3536                                     adap->params.vpd.sn, adap->params.vpd.ec);
3537         }
3538 }
3539
3540 /*
3541  * Free the following resources:
3542  * - memory used for tables
3543  * - MSI/MSI-X
3544  * - net devices
3545  * - resources FW is holding for us
3546  */
3547 static void free_some_resources(struct adapter *adapter)
3548 {
3549         unsigned int i;
3550
3551         t4_free_mem(adapter->l2t);
3552         t4_free_mem(adapter->tids.tid_tab);
3553         disable_msi(adapter);
3554
3555         for_each_port(adapter, i)
3556                 if (adapter->port[i]) {
3557                         kfree(adap2pinfo(adapter, i)->rss);
3558                         free_netdev(adapter->port[i]);
3559                 }
3560         if (adapter->flags & FW_OK)
3561                 t4_fw_bye(adapter, adapter->fn);
3562 }
3563
3564 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
3565                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
3566
3567 static int __devinit init_one(struct pci_dev *pdev,
3568                               const struct pci_device_id *ent)
3569 {
3570         int func, i, err;
3571         struct port_info *pi;
3572         unsigned int highdma = 0;
3573         struct adapter *adapter = NULL;
3574
3575         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3576
3577         err = pci_request_regions(pdev, KBUILD_MODNAME);
3578         if (err) {
3579                 /* Just info, some other driver may have claimed the device. */
3580                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3581                 return err;
3582         }
3583
3584         /* We control everything through one PF */
3585         func = PCI_FUNC(pdev->devfn);
3586         if (func != ent->driver_data) {
3587                 pci_save_state(pdev);        /* to restore SR-IOV later */
3588                 goto sriov;
3589         }
3590
3591         err = pci_enable_device(pdev);
3592         if (err) {
3593                 dev_err(&pdev->dev, "cannot enable PCI device\n");
3594                 goto out_release_regions;
3595         }
3596
3597         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3598                 highdma = NETIF_F_HIGHDMA;
3599                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3600                 if (err) {
3601                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3602                                 "coherent allocations\n");
3603                         goto out_disable_device;
3604                 }
3605         } else {
3606                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3607                 if (err) {
3608                         dev_err(&pdev->dev, "no usable DMA configuration\n");
3609                         goto out_disable_device;
3610                 }
3611         }
3612
3613         pci_enable_pcie_error_reporting(pdev);
3614         pci_set_master(pdev);
3615         pci_save_state(pdev);
3616
3617         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3618         if (!adapter) {
3619                 err = -ENOMEM;
3620                 goto out_disable_device;
3621         }
3622
3623         adapter->regs = pci_ioremap_bar(pdev, 0);
3624         if (!adapter->regs) {
3625                 dev_err(&pdev->dev, "cannot map device registers\n");
3626                 err = -ENOMEM;
3627                 goto out_free_adapter;
3628         }
3629
3630         adapter->pdev = pdev;
3631         adapter->pdev_dev = &pdev->dev;
3632         adapter->fn = func;
3633         adapter->name = pci_name(pdev);
3634         adapter->msg_enable = dflt_msg_enable;
3635         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
3636
3637         spin_lock_init(&adapter->stats_lock);
3638         spin_lock_init(&adapter->tid_release_lock);
3639
3640         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
3641
3642         err = t4_prep_adapter(adapter);
3643         if (err)
3644                 goto out_unmap_bar;
3645         err = adap_init0(adapter);
3646         if (err)
3647                 goto out_unmap_bar;
3648
3649         for_each_port(adapter, i) {
3650                 struct net_device *netdev;
3651
3652                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
3653                                            MAX_ETH_QSETS);
3654                 if (!netdev) {
3655                         err = -ENOMEM;
3656                         goto out_free_dev;
3657                 }
3658
3659                 SET_NETDEV_DEV(netdev, &pdev->dev);
3660
3661                 adapter->port[i] = netdev;
3662                 pi = netdev_priv(netdev);
3663                 pi->adapter = adapter;
3664                 pi->xact_addr_filt = -1;
3665                 pi->rx_offload = RX_CSO;
3666                 pi->port_id = i;
3667                 netif_carrier_off(netdev);
3668                 netdev->irq = pdev->irq;
3669
3670                 netdev->features |= NETIF_F_SG | TSO_FLAGS;
3671                 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3672                 netdev->features |= NETIF_F_GRO | NETIF_F_RXHASH | highdma;
3673                 netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3674                 netdev->vlan_features = netdev->features & VLAN_FEAT;
3675
3676                 netdev->netdev_ops = &cxgb4_netdev_ops;
3677                 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3678         }
3679
3680         pci_set_drvdata(pdev, adapter);
3681
3682         if (adapter->flags & FW_OK) {
3683                 err = t4_port_init(adapter, func, func, 0);
3684                 if (err)
3685                         goto out_free_dev;
3686         }
3687
3688         /*
3689          * Configure queues and allocate tables now, they can be needed as
3690          * soon as the first register_netdev completes.
3691          */
3692         cfg_queues(adapter);
3693
3694         adapter->l2t = t4_init_l2t();
3695         if (!adapter->l2t) {
3696                 /* We tolerate a lack of L2T, giving up some functionality */
3697                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
3698                 adapter->params.offload = 0;
3699         }
3700
3701         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
3702                 dev_warn(&pdev->dev, "could not allocate TID table, "
3703                          "continuing\n");
3704                 adapter->params.offload = 0;
3705         }
3706
3707         /* See what interrupts we'll be using */
3708         if (msi > 1 && enable_msix(adapter) == 0)
3709                 adapter->flags |= USING_MSIX;
3710         else if (msi > 0 && pci_enable_msi(pdev) == 0)
3711                 adapter->flags |= USING_MSI;
3712
3713         err = init_rss(adapter);
3714         if (err)
3715                 goto out_free_dev;
3716
3717         /*
3718          * The card is now ready to go.  If any errors occur during device
3719          * registration we do not fail the whole card but rather proceed only
3720          * with the ports we manage to register successfully.  However we must
3721          * register at least one net device.
3722          */
3723         for_each_port(adapter, i) {
3724                 err = register_netdev(adapter->port[i]);
3725                 if (err)
3726                         dev_warn(&pdev->dev,
3727                                  "cannot register net device %s, skipping\n",
3728                                  adapter->port[i]->name);
3729                 else {
3730                         /*
3731                          * Change the name we use for messages to the name of
3732                          * the first successfully registered interface.
3733                          */
3734                         if (!adapter->registered_device_map)
3735                                 adapter->name = adapter->port[i]->name;
3736
3737                         __set_bit(i, &adapter->registered_device_map);
3738                         adapter->chan_map[adap2pinfo(adapter, i)->tx_chan] = i;
3739                         netif_tx_stop_all_queues(adapter->port[i]);
3740                 }
3741         }
3742         if (!adapter->registered_device_map) {
3743                 dev_err(&pdev->dev, "could not register any net devices\n");
3744                 goto out_free_dev;
3745         }
3746
3747         if (cxgb4_debugfs_root) {
3748                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
3749                                                            cxgb4_debugfs_root);
3750                 setup_debugfs(adapter);
3751         }
3752
3753         if (is_offload(adapter))
3754                 attach_ulds(adapter);
3755
3756         print_port_info(adapter);
3757
3758 sriov:
3759 #ifdef CONFIG_PCI_IOV
3760         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
3761                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
3762                         dev_info(&pdev->dev,
3763                                  "instantiated %u virtual functions\n",
3764                                  num_vf[func]);
3765 #endif
3766         return 0;
3767
3768  out_free_dev:
3769         free_some_resources(adapter);
3770  out_unmap_bar:
3771         iounmap(adapter->regs);
3772  out_free_adapter:
3773         kfree(adapter);
3774  out_disable_device:
3775         pci_disable_pcie_error_reporting(pdev);
3776         pci_disable_device(pdev);
3777  out_release_regions:
3778         pci_release_regions(pdev);
3779         pci_set_drvdata(pdev, NULL);
3780         return err;
3781 }
3782
3783 static void __devexit remove_one(struct pci_dev *pdev)
3784 {
3785         struct adapter *adapter = pci_get_drvdata(pdev);
3786
3787         pci_disable_sriov(pdev);
3788
3789         if (adapter) {
3790                 int i;
3791
3792                 if (is_offload(adapter))
3793                         detach_ulds(adapter);
3794
3795                 for_each_port(adapter, i)
3796                         if (test_bit(i, &adapter->registered_device_map))
3797                                 unregister_netdev(adapter->port[i]);
3798
3799                 if (adapter->debugfs_root)
3800                         debugfs_remove_recursive(adapter->debugfs_root);
3801
3802                 if (adapter->flags & FULL_INIT_DONE)
3803                         cxgb_down(adapter);
3804
3805                 free_some_resources(adapter);
3806                 iounmap(adapter->regs);
3807                 kfree(adapter);
3808                 pci_disable_pcie_error_reporting(pdev);
3809                 pci_disable_device(pdev);
3810                 pci_release_regions(pdev);
3811                 pci_set_drvdata(pdev, NULL);
3812         } else
3813                 pci_release_regions(pdev);
3814 }
3815
3816 static struct pci_driver cxgb4_driver = {
3817         .name     = KBUILD_MODNAME,
3818         .id_table = cxgb4_pci_tbl,
3819         .probe    = init_one,
3820         .remove   = __devexit_p(remove_one),
3821         .err_handler = &cxgb4_eeh,
3822 };
3823
3824 static int __init cxgb4_init_module(void)
3825 {
3826         int ret;
3827
3828         /* Debugfs support is optional, just warn if this fails */
3829         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3830         if (!cxgb4_debugfs_root)
3831                 pr_warning("could not create debugfs entry, continuing\n");
3832
3833         ret = pci_register_driver(&cxgb4_driver);
3834         if (ret < 0)
3835                 debugfs_remove(cxgb4_debugfs_root);
3836         return ret;
3837 }
3838
3839 static void __exit cxgb4_cleanup_module(void)
3840 {
3841         pci_unregister_driver(&cxgb4_driver);
3842         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
3843 }
3844
3845 module_init(cxgb4_init_module);
3846 module_exit(cxgb4_cleanup_module);