Merge branch 'e1000-fixes' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[pandora-kernel.git] / drivers / net / cxgb3 / cxgb3_offload.c
1 /*
2  * Copyright (c) 2006-2007 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <linux/list.h>
34 #include <net/neighbour.h>
35 #include <linux/notifier.h>
36 #include <asm/atomic.h>
37 #include <linux/proc_fs.h>
38 #include <linux/if_vlan.h>
39 #include <net/netevent.h>
40 #include <linux/highmem.h>
41 #include <linux/vmalloc.h>
42
43 #include "common.h"
44 #include "regs.h"
45 #include "cxgb3_ioctl.h"
46 #include "cxgb3_ctl_defs.h"
47 #include "cxgb3_defs.h"
48 #include "l2t.h"
49 #include "firmware_exports.h"
50 #include "cxgb3_offload.h"
51
52 static LIST_HEAD(client_list);
53 static LIST_HEAD(ofld_dev_list);
54 static DEFINE_MUTEX(cxgb3_db_lock);
55
56 static DEFINE_RWLOCK(adapter_list_lock);
57 static LIST_HEAD(adapter_list);
58
59 static const unsigned int MAX_ATIDS = 64 * 1024;
60 static const unsigned int ATID_BASE = 0x100000;
61
62 static inline int offload_activated(struct t3cdev *tdev)
63 {
64         const struct adapter *adapter = tdev2adap(tdev);
65
66         return (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map));
67 }
68
69 /**
70  *      cxgb3_register_client - register an offload client
71  *      @client: the client
72  *
73  *      Add the client to the client list,
74  *      and call backs the client for each activated offload device
75  */
76 void cxgb3_register_client(struct cxgb3_client *client)
77 {
78         struct t3cdev *tdev;
79
80         mutex_lock(&cxgb3_db_lock);
81         list_add_tail(&client->client_list, &client_list);
82
83         if (client->add) {
84                 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
85                         if (offload_activated(tdev))
86                                 client->add(tdev);
87                 }
88         }
89         mutex_unlock(&cxgb3_db_lock);
90 }
91
92 EXPORT_SYMBOL(cxgb3_register_client);
93
94 /**
95  *      cxgb3_unregister_client - unregister an offload client
96  *      @client: the client
97  *
98  *      Remove the client to the client list,
99  *      and call backs the client for each activated offload device.
100  */
101 void cxgb3_unregister_client(struct cxgb3_client *client)
102 {
103         struct t3cdev *tdev;
104
105         mutex_lock(&cxgb3_db_lock);
106         list_del(&client->client_list);
107
108         if (client->remove) {
109                 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
110                         if (offload_activated(tdev))
111                                 client->remove(tdev);
112                 }
113         }
114         mutex_unlock(&cxgb3_db_lock);
115 }
116
117 EXPORT_SYMBOL(cxgb3_unregister_client);
118
119 /**
120  *      cxgb3_add_clients - activate registered clients for an offload device
121  *      @tdev: the offload device
122  *
123  *      Call backs all registered clients once a offload device is activated
124  */
125 void cxgb3_add_clients(struct t3cdev *tdev)
126 {
127         struct cxgb3_client *client;
128
129         mutex_lock(&cxgb3_db_lock);
130         list_for_each_entry(client, &client_list, client_list) {
131                 if (client->add)
132                         client->add(tdev);
133         }
134         mutex_unlock(&cxgb3_db_lock);
135 }
136
137 /**
138  *      cxgb3_remove_clients - deactivates registered clients
139  *                             for an offload device
140  *      @tdev: the offload device
141  *
142  *      Call backs all registered clients once a offload device is deactivated
143  */
144 void cxgb3_remove_clients(struct t3cdev *tdev)
145 {
146         struct cxgb3_client *client;
147
148         mutex_lock(&cxgb3_db_lock);
149         list_for_each_entry(client, &client_list, client_list) {
150                 if (client->remove)
151                         client->remove(tdev);
152         }
153         mutex_unlock(&cxgb3_db_lock);
154 }
155
156 static struct net_device *get_iff_from_mac(struct adapter *adapter,
157                                            const unsigned char *mac,
158                                            unsigned int vlan)
159 {
160         int i;
161
162         for_each_port(adapter, i) {
163                 struct vlan_group *grp;
164                 struct net_device *dev = adapter->port[i];
165                 const struct port_info *p = netdev_priv(dev);
166
167                 if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
168                         if (vlan && vlan != VLAN_VID_MASK) {
169                                 grp = p->vlan_grp;
170                                 dev = NULL;
171                                 if (grp)
172                                         dev = vlan_group_get_device(grp, vlan);
173                         } else
174                                 while (dev->master)
175                                         dev = dev->master;
176                         return dev;
177                 }
178         }
179         return NULL;
180 }
181
182 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
183                               void *data)
184 {
185         int ret = 0;
186         struct ulp_iscsi_info *uiip = data;
187
188         switch (req) {
189         case ULP_ISCSI_GET_PARAMS:
190                 uiip->pdev = adapter->pdev;
191                 uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
192                 uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
193                 uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
194                 /*
195                  * On tx, the iscsi pdu has to be <= tx page size and has to
196                  * fit into the Tx PM FIFO.
197                  */
198                 uiip->max_txsz = min(adapter->params.tp.tx_pg_size,
199                                      t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
200                 /* on rx, the iscsi pdu has to be < rx page size and the
201                    whole pdu + cpl headers has to fit into one sge buffer */
202                 uiip->max_rxsz = min_t(unsigned int,
203                                        adapter->params.tp.rx_pg_size,
204                                        (adapter->sge.qs[0].fl[1].buf_size -
205                                         sizeof(struct cpl_rx_data) * 2 -
206                                         sizeof(struct cpl_rx_data_ddp)));
207                 break;
208         case ULP_ISCSI_SET_PARAMS:
209                 t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
210                 break;
211         default:
212                 ret = -EOPNOTSUPP;
213         }
214         return ret;
215 }
216
217 /* Response queue used for RDMA events. */
218 #define ASYNC_NOTIF_RSPQ 0
219
220 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
221 {
222         int ret = 0;
223
224         switch (req) {
225         case RDMA_GET_PARAMS:{
226                 struct rdma_info *req = data;
227                 struct pci_dev *pdev = adapter->pdev;
228
229                 req->udbell_physbase = pci_resource_start(pdev, 2);
230                 req->udbell_len = pci_resource_len(pdev, 2);
231                 req->tpt_base =
232                         t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
233                 req->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
234                 req->pbl_base =
235                         t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
236                 req->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
237                 req->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
238                 req->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
239                 req->kdb_addr = adapter->regs + A_SG_KDOORBELL;
240                 req->pdev = pdev;
241                 break;
242         }
243         case RDMA_CQ_OP:{
244                 unsigned long flags;
245                 struct rdma_cq_op *req = data;
246
247                 /* may be called in any context */
248                 spin_lock_irqsave(&adapter->sge.reg_lock, flags);
249                 ret = t3_sge_cqcntxt_op(adapter, req->id, req->op,
250                                         req->credits);
251                 spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
252                 break;
253         }
254         case RDMA_GET_MEM:{
255                 struct ch_mem_range *t = data;
256                 struct mc7 *mem;
257
258                 if ((t->addr & 7) || (t->len & 7))
259                         return -EINVAL;
260                 if (t->mem_id == MEM_CM)
261                         mem = &adapter->cm;
262                 else if (t->mem_id == MEM_PMRX)
263                         mem = &adapter->pmrx;
264                 else if (t->mem_id == MEM_PMTX)
265                         mem = &adapter->pmtx;
266                 else
267                         return -EINVAL;
268
269                 ret =
270                         t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
271                                         (u64 *) t->buf);
272                 if (ret)
273                         return ret;
274                 break;
275         }
276         case RDMA_CQ_SETUP:{
277                 struct rdma_cq_setup *req = data;
278
279                 spin_lock_irq(&adapter->sge.reg_lock);
280                 ret =
281                         t3_sge_init_cqcntxt(adapter, req->id,
282                                         req->base_addr, req->size,
283                                         ASYNC_NOTIF_RSPQ,
284                                         req->ovfl_mode, req->credits,
285                                         req->credit_thres);
286                 spin_unlock_irq(&adapter->sge.reg_lock);
287                 break;
288         }
289         case RDMA_CQ_DISABLE:
290                 spin_lock_irq(&adapter->sge.reg_lock);
291                 ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
292                 spin_unlock_irq(&adapter->sge.reg_lock);
293                 break;
294         case RDMA_CTRL_QP_SETUP:{
295                 struct rdma_ctrlqp_setup *req = data;
296
297                 spin_lock_irq(&adapter->sge.reg_lock);
298                 ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
299                                                 SGE_CNTXT_RDMA,
300                                                 ASYNC_NOTIF_RSPQ,
301                                                 req->base_addr, req->size,
302                                                 FW_RI_TID_START, 1, 0);
303                 spin_unlock_irq(&adapter->sge.reg_lock);
304                 break;
305         }
306         default:
307                 ret = -EOPNOTSUPP;
308         }
309         return ret;
310 }
311
312 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
313 {
314         struct adapter *adapter = tdev2adap(tdev);
315         struct tid_range *tid;
316         struct mtutab *mtup;
317         struct iff_mac *iffmacp;
318         struct ddp_params *ddpp;
319         struct adap_ports *ports;
320         int i;
321
322         switch (req) {
323         case GET_MAX_OUTSTANDING_WR:
324                 *(unsigned int *)data = FW_WR_NUM;
325                 break;
326         case GET_WR_LEN:
327                 *(unsigned int *)data = WR_FLITS;
328                 break;
329         case GET_TX_MAX_CHUNK:
330                 *(unsigned int *)data = 1 << 20;        /* 1MB */
331                 break;
332         case GET_TID_RANGE:
333                 tid = data;
334                 tid->num = t3_mc5_size(&adapter->mc5) -
335                     adapter->params.mc5.nroutes -
336                     adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
337                 tid->base = 0;
338                 break;
339         case GET_STID_RANGE:
340                 tid = data;
341                 tid->num = adapter->params.mc5.nservers;
342                 tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
343                     adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
344                 break;
345         case GET_L2T_CAPACITY:
346                 *(unsigned int *)data = 2048;
347                 break;
348         case GET_MTUS:
349                 mtup = data;
350                 mtup->size = NMTUS;
351                 mtup->mtus = adapter->params.mtus;
352                 break;
353         case GET_IFF_FROM_MAC:
354                 iffmacp = data;
355                 iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
356                                                 iffmacp->vlan_tag &
357                                                 VLAN_VID_MASK);
358                 break;
359         case GET_DDP_PARAMS:
360                 ddpp = data;
361                 ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
362                 ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
363                 ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
364                 break;
365         case GET_PORTS:
366                 ports = data;
367                 ports->nports = adapter->params.nports;
368                 for_each_port(adapter, i)
369                         ports->lldevs[i] = adapter->port[i];
370                 break;
371         case ULP_ISCSI_GET_PARAMS:
372         case ULP_ISCSI_SET_PARAMS:
373                 if (!offload_running(adapter))
374                         return -EAGAIN;
375                 return cxgb_ulp_iscsi_ctl(adapter, req, data);
376         case RDMA_GET_PARAMS:
377         case RDMA_CQ_OP:
378         case RDMA_CQ_SETUP:
379         case RDMA_CQ_DISABLE:
380         case RDMA_CTRL_QP_SETUP:
381         case RDMA_GET_MEM:
382                 if (!offload_running(adapter))
383                         return -EAGAIN;
384                 return cxgb_rdma_ctl(adapter, req, data);
385         default:
386                 return -EOPNOTSUPP;
387         }
388         return 0;
389 }
390
391 /*
392  * Dummy handler for Rx offload packets in case we get an offload packet before
393  * proper processing is setup.  This complains and drops the packet as it isn't
394  * normal to get offload packets at this stage.
395  */
396 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
397                                 int n)
398 {
399         CH_ERR(tdev2adap(dev), "%d unexpected offload packets, first data %u\n",
400                n, ntohl(*(__be32 *)skbs[0]->data));
401         while (n--)
402                 dev_kfree_skb_any(skbs[n]);
403         return 0;
404 }
405
406 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
407 {
408 }
409
410 void cxgb3_set_dummy_ops(struct t3cdev *dev)
411 {
412         dev->recv = rx_offload_blackhole;
413         dev->neigh_update = dummy_neigh_update;
414 }
415
416 /*
417  * Free an active-open TID.
418  */
419 void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
420 {
421         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
422         union active_open_entry *p = atid2entry(t, atid);
423         void *ctx = p->t3c_tid.ctx;
424
425         spin_lock_bh(&t->atid_lock);
426         p->next = t->afree;
427         t->afree = p;
428         t->atids_in_use--;
429         spin_unlock_bh(&t->atid_lock);
430
431         return ctx;
432 }
433
434 EXPORT_SYMBOL(cxgb3_free_atid);
435
436 /*
437  * Free a server TID and return it to the free pool.
438  */
439 void cxgb3_free_stid(struct t3cdev *tdev, int stid)
440 {
441         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
442         union listen_entry *p = stid2entry(t, stid);
443
444         spin_lock_bh(&t->stid_lock);
445         p->next = t->sfree;
446         t->sfree = p;
447         t->stids_in_use--;
448         spin_unlock_bh(&t->stid_lock);
449 }
450
451 EXPORT_SYMBOL(cxgb3_free_stid);
452
453 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
454                       void *ctx, unsigned int tid)
455 {
456         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
457
458         t->tid_tab[tid].client = client;
459         t->tid_tab[tid].ctx = ctx;
460         atomic_inc(&t->tids_in_use);
461 }
462
463 EXPORT_SYMBOL(cxgb3_insert_tid);
464
465 /*
466  * Populate a TID_RELEASE WR.  The skb must be already propely sized.
467  */
468 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
469 {
470         struct cpl_tid_release *req;
471
472         skb->priority = CPL_PRIORITY_SETUP;
473         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
474         req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
475         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
476 }
477
478 static void t3_process_tid_release_list(struct work_struct *work)
479 {
480         struct t3c_data *td = container_of(work, struct t3c_data,
481                                            tid_release_task);
482         struct sk_buff *skb;
483         struct t3cdev *tdev = td->dev;
484         
485
486         spin_lock_bh(&td->tid_release_lock);
487         while (td->tid_release_list) {
488                 struct t3c_tid_entry *p = td->tid_release_list;
489
490                 td->tid_release_list = (struct t3c_tid_entry *)p->ctx;
491                 spin_unlock_bh(&td->tid_release_lock);
492
493                 skb = alloc_skb(sizeof(struct cpl_tid_release),
494                                 GFP_KERNEL | __GFP_NOFAIL);
495                 mk_tid_release(skb, p - td->tid_maps.tid_tab);
496                 cxgb3_ofld_send(tdev, skb);
497                 p->ctx = NULL;
498                 spin_lock_bh(&td->tid_release_lock);
499         }
500         spin_unlock_bh(&td->tid_release_lock);
501 }
502
503 /* use ctx as a next pointer in the tid release list */
504 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
505 {
506         struct t3c_data *td = T3C_DATA(tdev);
507         struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
508
509         spin_lock_bh(&td->tid_release_lock);
510         p->ctx = (void *)td->tid_release_list;
511         p->client = NULL;
512         td->tid_release_list = p;
513         if (!p->ctx)
514                 schedule_work(&td->tid_release_task);
515         spin_unlock_bh(&td->tid_release_lock);
516 }
517
518 EXPORT_SYMBOL(cxgb3_queue_tid_release);
519
520 /*
521  * Remove a tid from the TID table.  A client may defer processing its last
522  * CPL message if it is locked at the time it arrives, and while the message
523  * sits in the client's backlog the TID may be reused for another connection.
524  * To handle this we atomically switch the TID association if it still points
525  * to the original client context.
526  */
527 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
528 {
529         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
530
531         BUG_ON(tid >= t->ntids);
532         if (tdev->type == T3A)
533                 (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
534         else {
535                 struct sk_buff *skb;
536
537                 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
538                 if (likely(skb)) {
539                         mk_tid_release(skb, tid);
540                         cxgb3_ofld_send(tdev, skb);
541                         t->tid_tab[tid].ctx = NULL;
542                 } else
543                         cxgb3_queue_tid_release(tdev, tid);
544         }
545         atomic_dec(&t->tids_in_use);
546 }
547
548 EXPORT_SYMBOL(cxgb3_remove_tid);
549
550 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
551                      void *ctx)
552 {
553         int atid = -1;
554         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
555
556         spin_lock_bh(&t->atid_lock);
557         if (t->afree &&
558             t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
559             t->ntids) {
560                 union active_open_entry *p = t->afree;
561
562                 atid = (p - t->atid_tab) + t->atid_base;
563                 t->afree = p->next;
564                 p->t3c_tid.ctx = ctx;
565                 p->t3c_tid.client = client;
566                 t->atids_in_use++;
567         }
568         spin_unlock_bh(&t->atid_lock);
569         return atid;
570 }
571
572 EXPORT_SYMBOL(cxgb3_alloc_atid);
573
574 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
575                      void *ctx)
576 {
577         int stid = -1;
578         struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
579
580         spin_lock_bh(&t->stid_lock);
581         if (t->sfree) {
582                 union listen_entry *p = t->sfree;
583
584                 stid = (p - t->stid_tab) + t->stid_base;
585                 t->sfree = p->next;
586                 p->t3c_tid.ctx = ctx;
587                 p->t3c_tid.client = client;
588                 t->stids_in_use++;
589         }
590         spin_unlock_bh(&t->stid_lock);
591         return stid;
592 }
593
594 EXPORT_SYMBOL(cxgb3_alloc_stid);
595
596 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
597 {
598         struct cpl_smt_write_rpl *rpl = cplhdr(skb);
599
600         if (rpl->status != CPL_ERR_NONE)
601                 printk(KERN_ERR
602                        "Unexpected SMT_WRITE_RPL status %u for entry %u\n",
603                        rpl->status, GET_TID(rpl));
604
605         return CPL_RET_BUF_DONE;
606 }
607
608 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
609 {
610         struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
611
612         if (rpl->status != CPL_ERR_NONE)
613                 printk(KERN_ERR
614                        "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
615                        rpl->status, GET_TID(rpl));
616
617         return CPL_RET_BUF_DONE;
618 }
619
620 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
621 {
622         struct cpl_act_open_rpl *rpl = cplhdr(skb);
623         unsigned int atid = G_TID(ntohl(rpl->atid));
624         struct t3c_tid_entry *t3c_tid;
625
626         t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
627         if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
628             t3c_tid->client->handlers &&
629             t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
630                 return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
631                                                                     t3c_tid->
632                                                                     ctx);
633         } else {
634                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
635                        dev->name, CPL_ACT_OPEN_RPL);
636                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
637         }
638 }
639
640 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
641 {
642         union opcode_tid *p = cplhdr(skb);
643         unsigned int stid = G_TID(ntohl(p->opcode_tid));
644         struct t3c_tid_entry *t3c_tid;
645
646         t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
647         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
648             t3c_tid->client->handlers[p->opcode]) {
649                 return t3c_tid->client->handlers[p->opcode] (dev, skb,
650                                                              t3c_tid->ctx);
651         } else {
652                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
653                        dev->name, p->opcode);
654                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
655         }
656 }
657
658 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
659 {
660         union opcode_tid *p = cplhdr(skb);
661         unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
662         struct t3c_tid_entry *t3c_tid;
663
664         t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
665         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
666             t3c_tid->client->handlers[p->opcode]) {
667                 return t3c_tid->client->handlers[p->opcode]
668                     (dev, skb, t3c_tid->ctx);
669         } else {
670                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
671                        dev->name, p->opcode);
672                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
673         }
674 }
675
676 static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
677 {
678         struct cpl_pass_accept_req *req = cplhdr(skb);
679         unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
680         struct t3c_tid_entry *t3c_tid;
681
682         t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
683         if (t3c_tid->ctx && t3c_tid->client->handlers &&
684             t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
685                 return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
686                     (dev, skb, t3c_tid->ctx);
687         } else {
688                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
689                        dev->name, CPL_PASS_ACCEPT_REQ);
690                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
691         }
692 }
693
694 /*
695  * Returns an sk_buff for a reply CPL message of size len.  If the input
696  * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
697  * is allocated.  The input skb must be of size at least len.  Note that this
698  * operation does not destroy the original skb data even if it decides to reuse
699  * the buffer.
700  */
701 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
702                                                int gfp)
703 {
704         if (likely(!skb_cloned(skb))) {
705                 BUG_ON(skb->len < len);
706                 __skb_trim(skb, len);
707                 skb_get(skb);
708         } else {
709                 skb = alloc_skb(len, gfp);
710                 if (skb)
711                         __skb_put(skb, len);
712         }
713         return skb;
714 }
715
716 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
717 {
718         union opcode_tid *p = cplhdr(skb);
719         unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
720         struct t3c_tid_entry *t3c_tid;
721
722         t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
723         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
724             t3c_tid->client->handlers[p->opcode]) {
725                 return t3c_tid->client->handlers[p->opcode]
726                     (dev, skb, t3c_tid->ctx);
727         } else {
728                 struct cpl_abort_req_rss *req = cplhdr(skb);
729                 struct cpl_abort_rpl *rpl;
730                 struct sk_buff *reply_skb;
731                 unsigned int tid = GET_TID(req);
732                 u8 cmd = req->status;
733
734                 if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
735                     req->status == CPL_ERR_PERSIST_NEG_ADVICE)
736                         goto out;
737
738                 reply_skb = cxgb3_get_cpl_reply_skb(skb,
739                                                     sizeof(struct
740                                                            cpl_abort_rpl),
741                                                     GFP_ATOMIC);
742
743                 if (!reply_skb) {
744                         printk("do_abort_req_rss: couldn't get skb!\n");
745                         goto out;
746                 }
747                 reply_skb->priority = CPL_PRIORITY_DATA;
748                 __skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
749                 rpl = cplhdr(reply_skb);
750                 rpl->wr.wr_hi =
751                     htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
752                 rpl->wr.wr_lo = htonl(V_WR_TID(tid));
753                 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
754                 rpl->cmd = cmd;
755                 cxgb3_ofld_send(dev, reply_skb);
756 out:
757                 return CPL_RET_BUF_DONE;
758         }
759 }
760
761 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
762 {
763         struct cpl_act_establish *req = cplhdr(skb);
764         unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
765         struct t3c_tid_entry *t3c_tid;
766
767         t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
768         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
769             t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
770                 return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
771                     (dev, skb, t3c_tid->ctx);
772         } else {
773                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
774                        dev->name, CPL_PASS_ACCEPT_REQ);
775                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
776         }
777 }
778
779 static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
780 {
781         struct cpl_trace_pkt *p = cplhdr(skb);
782
783         skb->protocol = htons(0xffff);
784         skb->dev = dev->lldev;
785         skb_pull(skb, sizeof(*p));
786         skb_reset_mac_header(skb);
787         netif_receive_skb(skb);
788         return 0;
789 }
790
791 static int do_term(struct t3cdev *dev, struct sk_buff *skb)
792 {
793         unsigned int hwtid = ntohl(skb->priority) >> 8 & 0xfffff;
794         unsigned int opcode = G_OPCODE(ntohl(skb->csum));
795         struct t3c_tid_entry *t3c_tid;
796
797         t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
798         if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
799             t3c_tid->client->handlers[opcode]) {
800                 return t3c_tid->client->handlers[opcode] (dev, skb,
801                                                           t3c_tid->ctx);
802         } else {
803                 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
804                        dev->name, opcode);
805                 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
806         }
807 }
808
809 static int nb_callback(struct notifier_block *self, unsigned long event,
810                        void *ctx)
811 {
812         switch (event) {
813         case (NETEVENT_NEIGH_UPDATE):{
814                 cxgb_neigh_update((struct neighbour *)ctx);
815                 break;
816         }
817         case (NETEVENT_PMTU_UPDATE):
818                 break;
819         case (NETEVENT_REDIRECT):{
820                 struct netevent_redirect *nr = ctx;
821                 cxgb_redirect(nr->old, nr->new);
822                 cxgb_neigh_update(nr->new->neighbour);
823                 break;
824         }
825         default:
826                 break;
827         }
828         return 0;
829 }
830
831 static struct notifier_block nb = {
832         .notifier_call = nb_callback
833 };
834
835 /*
836  * Process a received packet with an unknown/unexpected CPL opcode.
837  */
838 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
839 {
840         printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name,
841                *skb->data);
842         return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
843 }
844
845 /*
846  * Handlers for each CPL opcode
847  */
848 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
849
850 /*
851  * Add a new handler to the CPL dispatch table.  A NULL handler may be supplied
852  * to unregister an existing handler.
853  */
854 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
855 {
856         if (opcode < NUM_CPL_CMDS)
857                 cpl_handlers[opcode] = h ? h : do_bad_cpl;
858         else
859                 printk(KERN_ERR "T3C: handler registration for "
860                        "opcode %x failed\n", opcode);
861 }
862
863 EXPORT_SYMBOL(t3_register_cpl_handler);
864
865 /*
866  * T3CDEV's receive method.
867  */
868 int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
869 {
870         while (n--) {
871                 struct sk_buff *skb = *skbs++;
872                 unsigned int opcode = G_OPCODE(ntohl(skb->csum));
873                 int ret = cpl_handlers[opcode] (dev, skb);
874
875 #if VALIDATE_TID
876                 if (ret & CPL_RET_UNKNOWN_TID) {
877                         union opcode_tid *p = cplhdr(skb);
878
879                         printk(KERN_ERR "%s: CPL message (opcode %u) had "
880                                "unknown TID %u\n", dev->name, opcode,
881                                G_TID(ntohl(p->opcode_tid)));
882                 }
883 #endif
884                 if (ret & CPL_RET_BUF_DONE)
885                         kfree_skb(skb);
886         }
887         return 0;
888 }
889
890 /*
891  * Sends an sk_buff to a T3C driver after dealing with any active network taps.
892  */
893 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
894 {
895         int r;
896
897         local_bh_disable();
898         r = dev->send(dev, skb);
899         local_bh_enable();
900         return r;
901 }
902
903 EXPORT_SYMBOL(cxgb3_ofld_send);
904
905 static int is_offloading(struct net_device *dev)
906 {
907         struct adapter *adapter;
908         int i;
909
910         read_lock_bh(&adapter_list_lock);
911         list_for_each_entry(adapter, &adapter_list, adapter_list) {
912                 for_each_port(adapter, i) {
913                         if (dev == adapter->port[i]) {
914                                 read_unlock_bh(&adapter_list_lock);
915                                 return 1;
916                         }
917                 }
918         }
919         read_unlock_bh(&adapter_list_lock);
920         return 0;
921 }
922
923 void cxgb_neigh_update(struct neighbour *neigh)
924 {
925         struct net_device *dev = neigh->dev;
926
927         if (dev && (is_offloading(dev))) {
928                 struct t3cdev *tdev = T3CDEV(dev);
929
930                 BUG_ON(!tdev);
931                 t3_l2t_update(tdev, neigh);
932         }
933 }
934
935 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
936 {
937         struct sk_buff *skb;
938         struct cpl_set_tcb_field *req;
939
940         skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
941         if (!skb) {
942                 printk(KERN_ERR "%s: cannot allocate skb!\n", __FUNCTION__);
943                 return;
944         }
945         skb->priority = CPL_PRIORITY_CONTROL;
946         req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
947         req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
948         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
949         req->reply = 0;
950         req->cpu_idx = 0;
951         req->word = htons(W_TCB_L2T_IX);
952         req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
953         req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
954         tdev->send(tdev, skb);
955 }
956
957 void cxgb_redirect(struct dst_entry *old, struct dst_entry *new)
958 {
959         struct net_device *olddev, *newdev;
960         struct tid_info *ti;
961         struct t3cdev *tdev;
962         u32 tid;
963         int update_tcb;
964         struct l2t_entry *e;
965         struct t3c_tid_entry *te;
966
967         olddev = old->neighbour->dev;
968         newdev = new->neighbour->dev;
969         if (!is_offloading(olddev))
970                 return;
971         if (!is_offloading(newdev)) {
972                 printk(KERN_WARNING "%s: Redirect to non-offload"
973                        "device ignored.\n", __FUNCTION__);
974                 return;
975         }
976         tdev = T3CDEV(olddev);
977         BUG_ON(!tdev);
978         if (tdev != T3CDEV(newdev)) {
979                 printk(KERN_WARNING "%s: Redirect to different "
980                        "offload device ignored.\n", __FUNCTION__);
981                 return;
982         }
983
984         /* Add new L2T entry */
985         e = t3_l2t_get(tdev, new->neighbour, newdev);
986         if (!e) {
987                 printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n",
988                        __FUNCTION__);
989                 return;
990         }
991
992         /* Walk tid table and notify clients of dst change. */
993         ti = &(T3C_DATA(tdev))->tid_maps;
994         for (tid = 0; tid < ti->ntids; tid++) {
995                 te = lookup_tid(ti, tid);
996                 BUG_ON(!te);
997                 if (te && te->ctx && te->client && te->client->redirect) {
998                         update_tcb = te->client->redirect(te->ctx, old, new, e);
999                         if (update_tcb) {
1000                                 l2t_hold(L2DATA(tdev), e);
1001                                 set_l2t_ix(tdev, tid, e);
1002                         }
1003                 }
1004         }
1005         l2t_release(L2DATA(tdev), e);
1006 }
1007
1008 /*
1009  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1010  * The allocated memory is cleared.
1011  */
1012 void *cxgb_alloc_mem(unsigned long size)
1013 {
1014         void *p = kmalloc(size, GFP_KERNEL);
1015
1016         if (!p)
1017                 p = vmalloc(size);
1018         if (p)
1019                 memset(p, 0, size);
1020         return p;
1021 }
1022
1023 /*
1024  * Free memory allocated through t3_alloc_mem().
1025  */
1026 void cxgb_free_mem(void *addr)
1027 {
1028         unsigned long p = (unsigned long)addr;
1029
1030         if (p >= VMALLOC_START && p < VMALLOC_END)
1031                 vfree(addr);
1032         else
1033                 kfree(addr);
1034 }
1035
1036 /*
1037  * Allocate and initialize the TID tables.  Returns 0 on success.
1038  */
1039 static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
1040                          unsigned int natids, unsigned int nstids,
1041                          unsigned int atid_base, unsigned int stid_base)
1042 {
1043         unsigned long size = ntids * sizeof(*t->tid_tab) +
1044             natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
1045
1046         t->tid_tab = cxgb_alloc_mem(size);
1047         if (!t->tid_tab)
1048                 return -ENOMEM;
1049
1050         t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
1051         t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
1052         t->ntids = ntids;
1053         t->nstids = nstids;
1054         t->stid_base = stid_base;
1055         t->sfree = NULL;
1056         t->natids = natids;
1057         t->atid_base = atid_base;
1058         t->afree = NULL;
1059         t->stids_in_use = t->atids_in_use = 0;
1060         atomic_set(&t->tids_in_use, 0);
1061         spin_lock_init(&t->stid_lock);
1062         spin_lock_init(&t->atid_lock);
1063
1064         /*
1065          * Setup the free lists for stid_tab and atid_tab.
1066          */
1067         if (nstids) {
1068                 while (--nstids)
1069                         t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
1070                 t->sfree = t->stid_tab;
1071         }
1072         if (natids) {
1073                 while (--natids)
1074                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1075                 t->afree = t->atid_tab;
1076         }
1077         return 0;
1078 }
1079
1080 static void free_tid_maps(struct tid_info *t)
1081 {
1082         cxgb_free_mem(t->tid_tab);
1083 }
1084
1085 static inline void add_adapter(struct adapter *adap)
1086 {
1087         write_lock_bh(&adapter_list_lock);
1088         list_add_tail(&adap->adapter_list, &adapter_list);
1089         write_unlock_bh(&adapter_list_lock);
1090 }
1091
1092 static inline void remove_adapter(struct adapter *adap)
1093 {
1094         write_lock_bh(&adapter_list_lock);
1095         list_del(&adap->adapter_list);
1096         write_unlock_bh(&adapter_list_lock);
1097 }
1098
1099 int cxgb3_offload_activate(struct adapter *adapter)
1100 {
1101         struct t3cdev *dev = &adapter->tdev;
1102         int natids, err;
1103         struct t3c_data *t;
1104         struct tid_range stid_range, tid_range;
1105         struct mtutab mtutab;
1106         unsigned int l2t_capacity;
1107
1108         t = kcalloc(1, sizeof(*t), GFP_KERNEL);
1109         if (!t)
1110                 return -ENOMEM;
1111
1112         err = -EOPNOTSUPP;
1113         if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
1114             dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
1115             dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
1116             dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
1117             dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
1118             dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
1119                 goto out_free;
1120
1121         err = -ENOMEM;
1122         L2DATA(dev) = t3_init_l2t(l2t_capacity);
1123         if (!L2DATA(dev))
1124                 goto out_free;
1125
1126         natids = min(tid_range.num / 2, MAX_ATIDS);
1127         err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
1128                             stid_range.num, ATID_BASE, stid_range.base);
1129         if (err)
1130                 goto out_free_l2t;
1131
1132         t->mtus = mtutab.mtus;
1133         t->nmtus = mtutab.size;
1134
1135         INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
1136         spin_lock_init(&t->tid_release_lock);
1137         INIT_LIST_HEAD(&t->list_node);
1138         t->dev = dev;
1139
1140         T3C_DATA(dev) = t;
1141         dev->recv = process_rx;
1142         dev->neigh_update = t3_l2t_update;
1143
1144         /* Register netevent handler once */
1145         if (list_empty(&adapter_list))
1146                 register_netevent_notifier(&nb);
1147
1148         add_adapter(adapter);
1149         return 0;
1150
1151 out_free_l2t:
1152         t3_free_l2t(L2DATA(dev));
1153         L2DATA(dev) = NULL;
1154 out_free:
1155         kfree(t);
1156         return err;
1157 }
1158
1159 void cxgb3_offload_deactivate(struct adapter *adapter)
1160 {
1161         struct t3cdev *tdev = &adapter->tdev;
1162         struct t3c_data *t = T3C_DATA(tdev);
1163
1164         remove_adapter(adapter);
1165         if (list_empty(&adapter_list))
1166                 unregister_netevent_notifier(&nb);
1167
1168         free_tid_maps(&t->tid_maps);
1169         T3C_DATA(tdev) = NULL;
1170         t3_free_l2t(L2DATA(tdev));
1171         L2DATA(tdev) = NULL;
1172         kfree(t);
1173 }
1174
1175 static inline void register_tdev(struct t3cdev *tdev)
1176 {
1177         static int unit;
1178
1179         mutex_lock(&cxgb3_db_lock);
1180         snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
1181         list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
1182         mutex_unlock(&cxgb3_db_lock);
1183 }
1184
1185 static inline void unregister_tdev(struct t3cdev *tdev)
1186 {
1187         mutex_lock(&cxgb3_db_lock);
1188         list_del(&tdev->ofld_dev_list);
1189         mutex_unlock(&cxgb3_db_lock);
1190 }
1191
1192 void __devinit cxgb3_adapter_ofld(struct adapter *adapter)
1193 {
1194         struct t3cdev *tdev = &adapter->tdev;
1195
1196         INIT_LIST_HEAD(&tdev->ofld_dev_list);
1197
1198         cxgb3_set_dummy_ops(tdev);
1199         tdev->send = t3_offload_tx;
1200         tdev->ctl = cxgb_offload_ctl;
1201         tdev->type = adapter->params.rev == 0 ? T3A : T3B;
1202
1203         register_tdev(tdev);
1204 }
1205
1206 void __devexit cxgb3_adapter_unofld(struct adapter *adapter)
1207 {
1208         struct t3cdev *tdev = &adapter->tdev;
1209
1210         tdev->recv = NULL;
1211         tdev->neigh_update = NULL;
1212
1213         unregister_tdev(tdev);
1214 }
1215
1216 void __init cxgb3_offload_init(void)
1217 {
1218         int i;
1219
1220         for (i = 0; i < NUM_CPL_CMDS; ++i)
1221                 cpl_handlers[i] = do_bad_cpl;
1222
1223         t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
1224         t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
1225         t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
1226         t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
1227         t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
1228         t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
1229         t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
1230         t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
1231         t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
1232         t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
1233         t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
1234         t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
1235         t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
1236         t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
1237         t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
1238         t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
1239         t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
1240         t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
1241         t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
1242         t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
1243         t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
1244         t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
1245         t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
1246         t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
1247         t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);
1248 }