gpio: ab8500: Mark broken
[pandora-kernel.git] / drivers / net / cxgb3 / cxgb3_main.c
1 /*
2  * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/mdio.h>
41 #include <linux/sockios.h>
42 #include <linux/workqueue.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/firmware.h>
46 #include <linux/log2.h>
47 #include <linux/stringify.h>
48 #include <linux/sched.h>
49 #include <linux/slab.h>
50 #include <asm/uaccess.h>
51
52 #include "common.h"
53 #include "cxgb3_ioctl.h"
54 #include "regs.h"
55 #include "cxgb3_offload.h"
56 #include "version.h"
57
58 #include "cxgb3_ctl_defs.h"
59 #include "t3_cpl.h"
60 #include "firmware_exports.h"
61
62 enum {
63         MAX_TXQ_ENTRIES = 16384,
64         MAX_CTRL_TXQ_ENTRIES = 1024,
65         MAX_RSPQ_ENTRIES = 16384,
66         MAX_RX_BUFFERS = 16384,
67         MAX_RX_JUMBO_BUFFERS = 16384,
68         MIN_TXQ_ENTRIES = 4,
69         MIN_CTRL_TXQ_ENTRIES = 4,
70         MIN_RSPQ_ENTRIES = 32,
71         MIN_FL_ENTRIES = 32
72 };
73
74 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
75
76 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
77                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
78                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
79
80 #define EEPROM_MAGIC 0x38E2F10C
81
82 #define CH_DEVICE(devid, idx) \
83         { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
84
85 static DEFINE_PCI_DEVICE_TABLE(cxgb3_pci_tbl) = {
86         CH_DEVICE(0x20, 0),     /* PE9000 */
87         CH_DEVICE(0x21, 1),     /* T302E */
88         CH_DEVICE(0x22, 2),     /* T310E */
89         CH_DEVICE(0x23, 3),     /* T320X */
90         CH_DEVICE(0x24, 1),     /* T302X */
91         CH_DEVICE(0x25, 3),     /* T320E */
92         CH_DEVICE(0x26, 2),     /* T310X */
93         CH_DEVICE(0x30, 2),     /* T3B10 */
94         CH_DEVICE(0x31, 3),     /* T3B20 */
95         CH_DEVICE(0x32, 1),     /* T3B02 */
96         CH_DEVICE(0x35, 6),     /* T3C20-derived T3C10 */
97         CH_DEVICE(0x36, 3),     /* S320E-CR */
98         CH_DEVICE(0x37, 7),     /* N320E-G2 */
99         {0,}
100 };
101
102 MODULE_DESCRIPTION(DRV_DESC);
103 MODULE_AUTHOR("Chelsio Communications");
104 MODULE_LICENSE("Dual BSD/GPL");
105 MODULE_VERSION(DRV_VERSION);
106 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
107
108 static int dflt_msg_enable = DFLT_MSG_ENABLE;
109
110 module_param(dflt_msg_enable, int, 0644);
111 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
112
113 /*
114  * The driver uses the best interrupt scheme available on a platform in the
115  * order MSI-X, MSI, legacy pin interrupts.  This parameter determines which
116  * of these schemes the driver may consider as follows:
117  *
118  * msi = 2: choose from among all three options
119  * msi = 1: only consider MSI and pin interrupts
120  * msi = 0: force pin interrupts
121  */
122 static int msi = 2;
123
124 module_param(msi, int, 0644);
125 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
126
127 /*
128  * The driver enables offload as a default.
129  * To disable it, use ofld_disable = 1.
130  */
131
132 static int ofld_disable = 0;
133
134 module_param(ofld_disable, int, 0644);
135 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
136
137 /*
138  * We have work elements that we need to cancel when an interface is taken
139  * down.  Normally the work elements would be executed by keventd but that
140  * can deadlock because of linkwatch.  If our close method takes the rtnl
141  * lock and linkwatch is ahead of our work elements in keventd, linkwatch
142  * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
143  * for our work to complete.  Get our own work queue to solve this.
144  */
145 struct workqueue_struct *cxgb3_wq;
146
147 /**
148  *      link_report - show link status and link speed/duplex
149  *      @p: the port whose settings are to be reported
150  *
151  *      Shows the link status, speed, and duplex of a port.
152  */
153 static void link_report(struct net_device *dev)
154 {
155         if (!netif_carrier_ok(dev))
156                 printk(KERN_INFO "%s: link down\n", dev->name);
157         else {
158                 const char *s = "10Mbps";
159                 const struct port_info *p = netdev_priv(dev);
160
161                 switch (p->link_config.speed) {
162                 case SPEED_10000:
163                         s = "10Gbps";
164                         break;
165                 case SPEED_1000:
166                         s = "1000Mbps";
167                         break;
168                 case SPEED_100:
169                         s = "100Mbps";
170                         break;
171                 }
172
173                 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s,
174                        p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
175         }
176 }
177
178 static void enable_tx_fifo_drain(struct adapter *adapter,
179                                  struct port_info *pi)
180 {
181         t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
182                          F_ENDROPPKT);
183         t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
184         t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
185         t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
186 }
187
188 static void disable_tx_fifo_drain(struct adapter *adapter,
189                                   struct port_info *pi)
190 {
191         t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
192                          F_ENDROPPKT, 0);
193 }
194
195 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
196 {
197         struct net_device *dev = adap->port[port_id];
198         struct port_info *pi = netdev_priv(dev);
199
200         if (state == netif_carrier_ok(dev))
201                 return;
202
203         if (state) {
204                 struct cmac *mac = &pi->mac;
205
206                 netif_carrier_on(dev);
207
208                 disable_tx_fifo_drain(adap, pi);
209
210                 /* Clear local faults */
211                 t3_xgm_intr_disable(adap, pi->port_id);
212                 t3_read_reg(adap, A_XGM_INT_STATUS +
213                                     pi->mac.offset);
214                 t3_write_reg(adap,
215                              A_XGM_INT_CAUSE + pi->mac.offset,
216                              F_XGM_INT);
217
218                 t3_set_reg_field(adap,
219                                  A_XGM_INT_ENABLE +
220                                  pi->mac.offset,
221                                  F_XGM_INT, F_XGM_INT);
222                 t3_xgm_intr_enable(adap, pi->port_id);
223
224                 t3_mac_enable(mac, MAC_DIRECTION_TX);
225         } else {
226                 netif_carrier_off(dev);
227
228                 /* Flush TX FIFO */
229                 enable_tx_fifo_drain(adap, pi);
230         }
231         link_report(dev);
232 }
233
234 /**
235  *      t3_os_link_changed - handle link status changes
236  *      @adapter: the adapter associated with the link change
237  *      @port_id: the port index whose limk status has changed
238  *      @link_stat: the new status of the link
239  *      @speed: the new speed setting
240  *      @duplex: the new duplex setting
241  *      @pause: the new flow-control setting
242  *
243  *      This is the OS-dependent handler for link status changes.  The OS
244  *      neutral handler takes care of most of the processing for these events,
245  *      then calls this handler for any OS-specific processing.
246  */
247 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
248                         int speed, int duplex, int pause)
249 {
250         struct net_device *dev = adapter->port[port_id];
251         struct port_info *pi = netdev_priv(dev);
252         struct cmac *mac = &pi->mac;
253
254         /* Skip changes from disabled ports. */
255         if (!netif_running(dev))
256                 return;
257
258         if (link_stat != netif_carrier_ok(dev)) {
259                 if (link_stat) {
260                         disable_tx_fifo_drain(adapter, pi);
261
262                         t3_mac_enable(mac, MAC_DIRECTION_RX);
263
264                         /* Clear local faults */
265                         t3_xgm_intr_disable(adapter, pi->port_id);
266                         t3_read_reg(adapter, A_XGM_INT_STATUS +
267                                     pi->mac.offset);
268                         t3_write_reg(adapter,
269                                      A_XGM_INT_CAUSE + pi->mac.offset,
270                                      F_XGM_INT);
271
272                         t3_set_reg_field(adapter,
273                                          A_XGM_INT_ENABLE + pi->mac.offset,
274                                          F_XGM_INT, F_XGM_INT);
275                         t3_xgm_intr_enable(adapter, pi->port_id);
276
277                         netif_carrier_on(dev);
278                 } else {
279                         netif_carrier_off(dev);
280
281                         t3_xgm_intr_disable(adapter, pi->port_id);
282                         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
283                         t3_set_reg_field(adapter,
284                                          A_XGM_INT_ENABLE + pi->mac.offset,
285                                          F_XGM_INT, 0);
286
287                         if (is_10G(adapter))
288                                 pi->phy.ops->power_down(&pi->phy, 1);
289
290                         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
291                         t3_mac_disable(mac, MAC_DIRECTION_RX);
292                         t3_link_start(&pi->phy, mac, &pi->link_config);
293
294                         /* Flush TX FIFO */
295                         enable_tx_fifo_drain(adapter, pi);
296                 }
297
298                 link_report(dev);
299         }
300 }
301
302 /**
303  *      t3_os_phymod_changed - handle PHY module changes
304  *      @phy: the PHY reporting the module change
305  *      @mod_type: new module type
306  *
307  *      This is the OS-dependent handler for PHY module changes.  It is
308  *      invoked when a PHY module is removed or inserted for any OS-specific
309  *      processing.
310  */
311 void t3_os_phymod_changed(struct adapter *adap, int port_id)
312 {
313         static const char *mod_str[] = {
314                 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
315         };
316
317         const struct net_device *dev = adap->port[port_id];
318         const struct port_info *pi = netdev_priv(dev);
319
320         if (pi->phy.modtype == phy_modtype_none)
321                 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name);
322         else
323                 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name,
324                        mod_str[pi->phy.modtype]);
325 }
326
327 static void cxgb_set_rxmode(struct net_device *dev)
328 {
329         struct port_info *pi = netdev_priv(dev);
330
331         t3_mac_set_rx_mode(&pi->mac, dev);
332 }
333
334 /**
335  *      link_start - enable a port
336  *      @dev: the device to enable
337  *
338  *      Performs the MAC and PHY actions needed to enable a port.
339  */
340 static void link_start(struct net_device *dev)
341 {
342         struct port_info *pi = netdev_priv(dev);
343         struct cmac *mac = &pi->mac;
344
345         t3_mac_reset(mac);
346         t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
347         t3_mac_set_mtu(mac, dev->mtu);
348         t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
349         t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
350         t3_mac_set_rx_mode(mac, dev);
351         t3_link_start(&pi->phy, mac, &pi->link_config);
352         t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
353 }
354
355 static inline void cxgb_disable_msi(struct adapter *adapter)
356 {
357         if (adapter->flags & USING_MSIX) {
358                 pci_disable_msix(adapter->pdev);
359                 adapter->flags &= ~USING_MSIX;
360         } else if (adapter->flags & USING_MSI) {
361                 pci_disable_msi(adapter->pdev);
362                 adapter->flags &= ~USING_MSI;
363         }
364 }
365
366 /*
367  * Interrupt handler for asynchronous events used with MSI-X.
368  */
369 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
370 {
371         t3_slow_intr_handler(cookie);
372         return IRQ_HANDLED;
373 }
374
375 /*
376  * Name the MSI-X interrupts.
377  */
378 static void name_msix_vecs(struct adapter *adap)
379 {
380         int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
381
382         snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
383         adap->msix_info[0].desc[n] = 0;
384
385         for_each_port(adap, j) {
386                 struct net_device *d = adap->port[j];
387                 const struct port_info *pi = netdev_priv(d);
388
389                 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
390                         snprintf(adap->msix_info[msi_idx].desc, n,
391                                  "%s-%d", d->name, pi->first_qset + i);
392                         adap->msix_info[msi_idx].desc[n] = 0;
393                 }
394         }
395 }
396
397 static int request_msix_data_irqs(struct adapter *adap)
398 {
399         int i, j, err, qidx = 0;
400
401         for_each_port(adap, i) {
402                 int nqsets = adap2pinfo(adap, i)->nqsets;
403
404                 for (j = 0; j < nqsets; ++j) {
405                         err = request_irq(adap->msix_info[qidx + 1].vec,
406                                           t3_intr_handler(adap,
407                                                           adap->sge.qs[qidx].
408                                                           rspq.polling), 0,
409                                           adap->msix_info[qidx + 1].desc,
410                                           &adap->sge.qs[qidx]);
411                         if (err) {
412                                 while (--qidx >= 0)
413                                         free_irq(adap->msix_info[qidx + 1].vec,
414                                                  &adap->sge.qs[qidx]);
415                                 return err;
416                         }
417                         qidx++;
418                 }
419         }
420         return 0;
421 }
422
423 static void free_irq_resources(struct adapter *adapter)
424 {
425         if (adapter->flags & USING_MSIX) {
426                 int i, n = 0;
427
428                 free_irq(adapter->msix_info[0].vec, adapter);
429                 for_each_port(adapter, i)
430                         n += adap2pinfo(adapter, i)->nqsets;
431
432                 for (i = 0; i < n; ++i)
433                         free_irq(adapter->msix_info[i + 1].vec,
434                                  &adapter->sge.qs[i]);
435         } else
436                 free_irq(adapter->pdev->irq, adapter);
437 }
438
439 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
440                               unsigned long n)
441 {
442         int attempts = 10;
443
444         while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
445                 if (!--attempts)
446                         return -ETIMEDOUT;
447                 msleep(10);
448         }
449         return 0;
450 }
451
452 static int init_tp_parity(struct adapter *adap)
453 {
454         int i;
455         struct sk_buff *skb;
456         struct cpl_set_tcb_field *greq;
457         unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
458
459         t3_tp_set_offload_mode(adap, 1);
460
461         for (i = 0; i < 16; i++) {
462                 struct cpl_smt_write_req *req;
463
464                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
465                 if (!skb)
466                         skb = adap->nofail_skb;
467                 if (!skb)
468                         goto alloc_skb_fail;
469
470                 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
471                 memset(req, 0, sizeof(*req));
472                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
473                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
474                 req->mtu_idx = NMTUS - 1;
475                 req->iff = i;
476                 t3_mgmt_tx(adap, skb);
477                 if (skb == adap->nofail_skb) {
478                         await_mgmt_replies(adap, cnt, i + 1);
479                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
480                         if (!adap->nofail_skb)
481                                 goto alloc_skb_fail;
482                 }
483         }
484
485         for (i = 0; i < 2048; i++) {
486                 struct cpl_l2t_write_req *req;
487
488                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
489                 if (!skb)
490                         skb = adap->nofail_skb;
491                 if (!skb)
492                         goto alloc_skb_fail;
493
494                 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
495                 memset(req, 0, sizeof(*req));
496                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
497                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
498                 req->params = htonl(V_L2T_W_IDX(i));
499                 t3_mgmt_tx(adap, skb);
500                 if (skb == adap->nofail_skb) {
501                         await_mgmt_replies(adap, cnt, 16 + i + 1);
502                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
503                         if (!adap->nofail_skb)
504                                 goto alloc_skb_fail;
505                 }
506         }
507
508         for (i = 0; i < 2048; i++) {
509                 struct cpl_rte_write_req *req;
510
511                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
512                 if (!skb)
513                         skb = adap->nofail_skb;
514                 if (!skb)
515                         goto alloc_skb_fail;
516
517                 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
518                 memset(req, 0, sizeof(*req));
519                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
520                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
521                 req->l2t_idx = htonl(V_L2T_W_IDX(i));
522                 t3_mgmt_tx(adap, skb);
523                 if (skb == adap->nofail_skb) {
524                         await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
525                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
526                         if (!adap->nofail_skb)
527                                 goto alloc_skb_fail;
528                 }
529         }
530
531         skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
532         if (!skb)
533                 skb = adap->nofail_skb;
534         if (!skb)
535                 goto alloc_skb_fail;
536
537         greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
538         memset(greq, 0, sizeof(*greq));
539         greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
540         OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
541         greq->mask = cpu_to_be64(1);
542         t3_mgmt_tx(adap, skb);
543
544         i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
545         if (skb == adap->nofail_skb) {
546                 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
547                 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
548         }
549
550         t3_tp_set_offload_mode(adap, 0);
551         return i;
552
553 alloc_skb_fail:
554         t3_tp_set_offload_mode(adap, 0);
555         return -ENOMEM;
556 }
557
558 /**
559  *      setup_rss - configure RSS
560  *      @adap: the adapter
561  *
562  *      Sets up RSS to distribute packets to multiple receive queues.  We
563  *      configure the RSS CPU lookup table to distribute to the number of HW
564  *      receive queues, and the response queue lookup table to narrow that
565  *      down to the response queues actually configured for each port.
566  *      We always configure the RSS mapping for two ports since the mapping
567  *      table has plenty of entries.
568  */
569 static void setup_rss(struct adapter *adap)
570 {
571         int i;
572         unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
573         unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
574         u8 cpus[SGE_QSETS + 1];
575         u16 rspq_map[RSS_TABLE_SIZE];
576
577         for (i = 0; i < SGE_QSETS; ++i)
578                 cpus[i] = i;
579         cpus[SGE_QSETS] = 0xff; /* terminator */
580
581         for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
582                 rspq_map[i] = i % nq0;
583                 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
584         }
585
586         t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
587                       F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
588                       V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
589 }
590
591 static void ring_dbs(struct adapter *adap)
592 {
593         int i, j;
594
595         for (i = 0; i < SGE_QSETS; i++) {
596                 struct sge_qset *qs = &adap->sge.qs[i];
597
598                 if (qs->adap)
599                         for (j = 0; j < SGE_TXQ_PER_SET; j++)
600                                 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
601         }
602 }
603
604 static void init_napi(struct adapter *adap)
605 {
606         int i;
607
608         for (i = 0; i < SGE_QSETS; i++) {
609                 struct sge_qset *qs = &adap->sge.qs[i];
610
611                 if (qs->adap)
612                         netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
613                                        64);
614         }
615
616         /*
617          * netif_napi_add() can be called only once per napi_struct because it
618          * adds each new napi_struct to a list.  Be careful not to call it a
619          * second time, e.g., during EEH recovery, by making a note of it.
620          */
621         adap->flags |= NAPI_INIT;
622 }
623
624 /*
625  * Wait until all NAPI handlers are descheduled.  This includes the handlers of
626  * both netdevices representing interfaces and the dummy ones for the extra
627  * queues.
628  */
629 static void quiesce_rx(struct adapter *adap)
630 {
631         int i;
632
633         for (i = 0; i < SGE_QSETS; i++)
634                 if (adap->sge.qs[i].adap)
635                         napi_disable(&adap->sge.qs[i].napi);
636 }
637
638 static void enable_all_napi(struct adapter *adap)
639 {
640         int i;
641         for (i = 0; i < SGE_QSETS; i++)
642                 if (adap->sge.qs[i].adap)
643                         napi_enable(&adap->sge.qs[i].napi);
644 }
645
646 /**
647  *      set_qset_lro - Turn a queue set's LRO capability on and off
648  *      @dev: the device the qset is attached to
649  *      @qset_idx: the queue set index
650  *      @val: the LRO switch
651  *
652  *      Sets LRO on or off for a particular queue set.
653  *      the device's features flag is updated to reflect the LRO
654  *      capability when all queues belonging to the device are
655  *      in the same state.
656  */
657 static void set_qset_lro(struct net_device *dev, int qset_idx, int val)
658 {
659         struct port_info *pi = netdev_priv(dev);
660         struct adapter *adapter = pi->adapter;
661
662         adapter->params.sge.qset[qset_idx].lro = !!val;
663         adapter->sge.qs[qset_idx].lro_enabled = !!val;
664 }
665
666 /**
667  *      setup_sge_qsets - configure SGE Tx/Rx/response queues
668  *      @adap: the adapter
669  *
670  *      Determines how many sets of SGE queues to use and initializes them.
671  *      We support multiple queue sets per port if we have MSI-X, otherwise
672  *      just one queue set per port.
673  */
674 static int setup_sge_qsets(struct adapter *adap)
675 {
676         int i, j, err, irq_idx = 0, qset_idx = 0;
677         unsigned int ntxq = SGE_TXQ_PER_SET;
678
679         if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
680                 irq_idx = -1;
681
682         for_each_port(adap, i) {
683                 struct net_device *dev = adap->port[i];
684                 struct port_info *pi = netdev_priv(dev);
685
686                 pi->qs = &adap->sge.qs[pi->first_qset];
687                 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
688                         set_qset_lro(dev, qset_idx, pi->rx_offload & T3_LRO);
689                         err = t3_sge_alloc_qset(adap, qset_idx, 1,
690                                 (adap->flags & USING_MSIX) ? qset_idx + 1 :
691                                                              irq_idx,
692                                 &adap->params.sge.qset[qset_idx], ntxq, dev,
693                                 netdev_get_tx_queue(dev, j));
694                         if (err) {
695                                 t3_free_sge_resources(adap);
696                                 return err;
697                         }
698                 }
699         }
700
701         return 0;
702 }
703
704 static ssize_t attr_show(struct device *d, char *buf,
705                          ssize_t(*format) (struct net_device *, char *))
706 {
707         ssize_t len;
708
709         /* Synchronize with ioctls that may shut down the device */
710         rtnl_lock();
711         len = (*format) (to_net_dev(d), buf);
712         rtnl_unlock();
713         return len;
714 }
715
716 static ssize_t attr_store(struct device *d,
717                           const char *buf, size_t len,
718                           ssize_t(*set) (struct net_device *, unsigned int),
719                           unsigned int min_val, unsigned int max_val)
720 {
721         char *endp;
722         ssize_t ret;
723         unsigned int val;
724
725         if (!capable(CAP_NET_ADMIN))
726                 return -EPERM;
727
728         val = simple_strtoul(buf, &endp, 0);
729         if (endp == buf || val < min_val || val > max_val)
730                 return -EINVAL;
731
732         rtnl_lock();
733         ret = (*set) (to_net_dev(d), val);
734         if (!ret)
735                 ret = len;
736         rtnl_unlock();
737         return ret;
738 }
739
740 #define CXGB3_SHOW(name, val_expr) \
741 static ssize_t format_##name(struct net_device *dev, char *buf) \
742 { \
743         struct port_info *pi = netdev_priv(dev); \
744         struct adapter *adap = pi->adapter; \
745         return sprintf(buf, "%u\n", val_expr); \
746 } \
747 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
748                            char *buf) \
749 { \
750         return attr_show(d, buf, format_##name); \
751 }
752
753 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
754 {
755         struct port_info *pi = netdev_priv(dev);
756         struct adapter *adap = pi->adapter;
757         int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
758
759         if (adap->flags & FULL_INIT_DONE)
760                 return -EBUSY;
761         if (val && adap->params.rev == 0)
762                 return -EINVAL;
763         if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
764             min_tids)
765                 return -EINVAL;
766         adap->params.mc5.nfilters = val;
767         return 0;
768 }
769
770 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
771                               const char *buf, size_t len)
772 {
773         return attr_store(d, buf, len, set_nfilters, 0, ~0);
774 }
775
776 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
777 {
778         struct port_info *pi = netdev_priv(dev);
779         struct adapter *adap = pi->adapter;
780
781         if (adap->flags & FULL_INIT_DONE)
782                 return -EBUSY;
783         if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
784             MC5_MIN_TIDS)
785                 return -EINVAL;
786         adap->params.mc5.nservers = val;
787         return 0;
788 }
789
790 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
791                               const char *buf, size_t len)
792 {
793         return attr_store(d, buf, len, set_nservers, 0, ~0);
794 }
795
796 #define CXGB3_ATTR_R(name, val_expr) \
797 CXGB3_SHOW(name, val_expr) \
798 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
799
800 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
801 CXGB3_SHOW(name, val_expr) \
802 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
803
804 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
805 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
806 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
807
808 static struct attribute *cxgb3_attrs[] = {
809         &dev_attr_cam_size.attr,
810         &dev_attr_nfilters.attr,
811         &dev_attr_nservers.attr,
812         NULL
813 };
814
815 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
816
817 static ssize_t tm_attr_show(struct device *d,
818                             char *buf, int sched)
819 {
820         struct port_info *pi = netdev_priv(to_net_dev(d));
821         struct adapter *adap = pi->adapter;
822         unsigned int v, addr, bpt, cpt;
823         ssize_t len;
824
825         addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
826         rtnl_lock();
827         t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
828         v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
829         if (sched & 1)
830                 v >>= 16;
831         bpt = (v >> 8) & 0xff;
832         cpt = v & 0xff;
833         if (!cpt)
834                 len = sprintf(buf, "disabled\n");
835         else {
836                 v = (adap->params.vpd.cclk * 1000) / cpt;
837                 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
838         }
839         rtnl_unlock();
840         return len;
841 }
842
843 static ssize_t tm_attr_store(struct device *d,
844                              const char *buf, size_t len, int sched)
845 {
846         struct port_info *pi = netdev_priv(to_net_dev(d));
847         struct adapter *adap = pi->adapter;
848         unsigned int val;
849         char *endp;
850         ssize_t ret;
851
852         if (!capable(CAP_NET_ADMIN))
853                 return -EPERM;
854
855         val = simple_strtoul(buf, &endp, 0);
856         if (endp == buf || val > 10000000)
857                 return -EINVAL;
858
859         rtnl_lock();
860         ret = t3_config_sched(adap, val, sched);
861         if (!ret)
862                 ret = len;
863         rtnl_unlock();
864         return ret;
865 }
866
867 #define TM_ATTR(name, sched) \
868 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
869                            char *buf) \
870 { \
871         return tm_attr_show(d, buf, sched); \
872 } \
873 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
874                             const char *buf, size_t len) \
875 { \
876         return tm_attr_store(d, buf, len, sched); \
877 } \
878 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
879
880 TM_ATTR(sched0, 0);
881 TM_ATTR(sched1, 1);
882 TM_ATTR(sched2, 2);
883 TM_ATTR(sched3, 3);
884 TM_ATTR(sched4, 4);
885 TM_ATTR(sched5, 5);
886 TM_ATTR(sched6, 6);
887 TM_ATTR(sched7, 7);
888
889 static struct attribute *offload_attrs[] = {
890         &dev_attr_sched0.attr,
891         &dev_attr_sched1.attr,
892         &dev_attr_sched2.attr,
893         &dev_attr_sched3.attr,
894         &dev_attr_sched4.attr,
895         &dev_attr_sched5.attr,
896         &dev_attr_sched6.attr,
897         &dev_attr_sched7.attr,
898         NULL
899 };
900
901 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
902
903 /*
904  * Sends an sk_buff to an offload queue driver
905  * after dealing with any active network taps.
906  */
907 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
908 {
909         int ret;
910
911         local_bh_disable();
912         ret = t3_offload_tx(tdev, skb);
913         local_bh_enable();
914         return ret;
915 }
916
917 static int write_smt_entry(struct adapter *adapter, int idx)
918 {
919         struct cpl_smt_write_req *req;
920         struct port_info *pi = netdev_priv(adapter->port[idx]);
921         struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
922
923         if (!skb)
924                 return -ENOMEM;
925
926         req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
927         req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
928         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
929         req->mtu_idx = NMTUS - 1;       /* should be 0 but there's a T3 bug */
930         req->iff = idx;
931         memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
932         memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
933         skb->priority = 1;
934         offload_tx(&adapter->tdev, skb);
935         return 0;
936 }
937
938 static int init_smt(struct adapter *adapter)
939 {
940         int i;
941
942         for_each_port(adapter, i)
943             write_smt_entry(adapter, i);
944         return 0;
945 }
946
947 static void init_port_mtus(struct adapter *adapter)
948 {
949         unsigned int mtus = adapter->port[0]->mtu;
950
951         if (adapter->port[1])
952                 mtus |= adapter->port[1]->mtu << 16;
953         t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
954 }
955
956 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
957                               int hi, int port)
958 {
959         struct sk_buff *skb;
960         struct mngt_pktsched_wr *req;
961         int ret;
962
963         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
964         if (!skb)
965                 skb = adap->nofail_skb;
966         if (!skb)
967                 return -ENOMEM;
968
969         req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
970         req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
971         req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
972         req->sched = sched;
973         req->idx = qidx;
974         req->min = lo;
975         req->max = hi;
976         req->binding = port;
977         ret = t3_mgmt_tx(adap, skb);
978         if (skb == adap->nofail_skb) {
979                 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
980                                              GFP_KERNEL);
981                 if (!adap->nofail_skb)
982                         ret = -ENOMEM;
983         }
984
985         return ret;
986 }
987
988 static int bind_qsets(struct adapter *adap)
989 {
990         int i, j, err = 0;
991
992         for_each_port(adap, i) {
993                 const struct port_info *pi = adap2pinfo(adap, i);
994
995                 for (j = 0; j < pi->nqsets; ++j) {
996                         int ret = send_pktsched_cmd(adap, 1,
997                                                     pi->first_qset + j, -1,
998                                                     -1, i);
999                         if (ret)
1000                                 err = ret;
1001                 }
1002         }
1003
1004         return err;
1005 }
1006
1007 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "."                    \
1008         __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
1009 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
1010 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "."                \
1011         __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
1012 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
1013 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
1014 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
1015 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
1016 MODULE_FIRMWARE(FW_FNAME);
1017 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
1018 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
1019 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
1020 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1021 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1022
1023 static inline const char *get_edc_fw_name(int edc_idx)
1024 {
1025         const char *fw_name = NULL;
1026
1027         switch (edc_idx) {
1028         case EDC_OPT_AEL2005:
1029                 fw_name = AEL2005_OPT_EDC_NAME;
1030                 break;
1031         case EDC_TWX_AEL2005:
1032                 fw_name = AEL2005_TWX_EDC_NAME;
1033                 break;
1034         case EDC_TWX_AEL2020:
1035                 fw_name = AEL2020_TWX_EDC_NAME;
1036                 break;
1037         }
1038         return fw_name;
1039 }
1040
1041 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1042 {
1043         struct adapter *adapter = phy->adapter;
1044         const struct firmware *fw;
1045         char buf[64];
1046         u32 csum;
1047         const __be32 *p;
1048         u16 *cache = phy->phy_cache;
1049         int i, ret;
1050
1051         snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx));
1052
1053         ret = request_firmware(&fw, buf, &adapter->pdev->dev);
1054         if (ret < 0) {
1055                 dev_err(&adapter->pdev->dev,
1056                         "could not upgrade firmware: unable to load %s\n",
1057                         buf);
1058                 return ret;
1059         }
1060
1061         /* check size, take checksum in account */
1062         if (fw->size > size + 4) {
1063                 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1064                        (unsigned int)fw->size, size + 4);
1065                 ret = -EINVAL;
1066         }
1067
1068         /* compute checksum */
1069         p = (const __be32 *)fw->data;
1070         for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1071                 csum += ntohl(p[i]);
1072
1073         if (csum != 0xffffffff) {
1074                 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1075                        csum);
1076                 ret = -EINVAL;
1077         }
1078
1079         for (i = 0; i < size / 4 ; i++) {
1080                 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1081                 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1082         }
1083
1084         release_firmware(fw);
1085
1086         return ret;
1087 }
1088
1089 static int upgrade_fw(struct adapter *adap)
1090 {
1091         int ret;
1092         const struct firmware *fw;
1093         struct device *dev = &adap->pdev->dev;
1094
1095         ret = request_firmware(&fw, FW_FNAME, dev);
1096         if (ret < 0) {
1097                 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1098                         FW_FNAME);
1099                 return ret;
1100         }
1101         ret = t3_load_fw(adap, fw->data, fw->size);
1102         release_firmware(fw);
1103
1104         if (ret == 0)
1105                 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1106                          FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1107         else
1108                 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1109                         FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1110
1111         return ret;
1112 }
1113
1114 static inline char t3rev2char(struct adapter *adapter)
1115 {
1116         char rev = 0;
1117
1118         switch(adapter->params.rev) {
1119         case T3_REV_B:
1120         case T3_REV_B2:
1121                 rev = 'b';
1122                 break;
1123         case T3_REV_C:
1124                 rev = 'c';
1125                 break;
1126         }
1127         return rev;
1128 }
1129
1130 static int update_tpsram(struct adapter *adap)
1131 {
1132         const struct firmware *tpsram;
1133         char buf[64];
1134         struct device *dev = &adap->pdev->dev;
1135         int ret;
1136         char rev;
1137
1138         rev = t3rev2char(adap);
1139         if (!rev)
1140                 return 0;
1141
1142         snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1143
1144         ret = request_firmware(&tpsram, buf, dev);
1145         if (ret < 0) {
1146                 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1147                         buf);
1148                 return ret;
1149         }
1150
1151         ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1152         if (ret)
1153                 goto release_tpsram;
1154
1155         ret = t3_set_proto_sram(adap, tpsram->data);
1156         if (ret == 0)
1157                 dev_info(dev,
1158                          "successful update of protocol engine "
1159                          "to %d.%d.%d\n",
1160                          TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1161         else
1162                 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1163                         TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1164         if (ret)
1165                 dev_err(dev, "loading protocol SRAM failed\n");
1166
1167 release_tpsram:
1168         release_firmware(tpsram);
1169
1170         return ret;
1171 }
1172
1173 /**
1174  *      cxgb_up - enable the adapter
1175  *      @adapter: adapter being enabled
1176  *
1177  *      Called when the first port is enabled, this function performs the
1178  *      actions necessary to make an adapter operational, such as completing
1179  *      the initialization of HW modules, and enabling interrupts.
1180  *
1181  *      Must be called with the rtnl lock held.
1182  */
1183 static int cxgb_up(struct adapter *adap)
1184 {
1185         int err;
1186
1187         if (!(adap->flags & FULL_INIT_DONE)) {
1188                 err = t3_check_fw_version(adap);
1189                 if (err == -EINVAL) {
1190                         err = upgrade_fw(adap);
1191                         CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1192                                 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1193                                 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1194                 }
1195
1196                 err = t3_check_tpsram_version(adap);
1197                 if (err == -EINVAL) {
1198                         err = update_tpsram(adap);
1199                         CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1200                                 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1201                                 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1202                 }
1203
1204                 /*
1205                  * Clear interrupts now to catch errors if t3_init_hw fails.
1206                  * We clear them again later as initialization may trigger
1207                  * conditions that can interrupt.
1208                  */
1209                 t3_intr_clear(adap);
1210
1211                 err = t3_init_hw(adap, 0);
1212                 if (err)
1213                         goto out;
1214
1215                 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1216                 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1217
1218                 err = setup_sge_qsets(adap);
1219                 if (err)
1220                         goto out;
1221
1222                 setup_rss(adap);
1223                 if (!(adap->flags & NAPI_INIT))
1224                         init_napi(adap);
1225
1226                 t3_start_sge_timers(adap);
1227                 adap->flags |= FULL_INIT_DONE;
1228         }
1229
1230         t3_intr_clear(adap);
1231
1232         if (adap->flags & USING_MSIX) {
1233                 name_msix_vecs(adap);
1234                 err = request_irq(adap->msix_info[0].vec,
1235                                   t3_async_intr_handler, 0,
1236                                   adap->msix_info[0].desc, adap);
1237                 if (err)
1238                         goto irq_err;
1239
1240                 err = request_msix_data_irqs(adap);
1241                 if (err) {
1242                         free_irq(adap->msix_info[0].vec, adap);
1243                         goto irq_err;
1244                 }
1245         } else if ((err = request_irq(adap->pdev->irq,
1246                                       t3_intr_handler(adap,
1247                                                       adap->sge.qs[0].rspq.
1248                                                       polling),
1249                                       (adap->flags & USING_MSI) ?
1250                                        0 : IRQF_SHARED,
1251                                       adap->name, adap)))
1252                 goto irq_err;
1253
1254         enable_all_napi(adap);
1255         t3_sge_start(adap);
1256         t3_intr_enable(adap);
1257
1258         if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1259             is_offload(adap) && init_tp_parity(adap) == 0)
1260                 adap->flags |= TP_PARITY_INIT;
1261
1262         if (adap->flags & TP_PARITY_INIT) {
1263                 t3_write_reg(adap, A_TP_INT_CAUSE,
1264                              F_CMCACHEPERR | F_ARPLUTPERR);
1265                 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1266         }
1267
1268         if (!(adap->flags & QUEUES_BOUND)) {
1269                 int ret = bind_qsets(adap);
1270
1271                 if (ret < 0) {
1272                         CH_ERR(adap, "failed to bind qsets, err %d\n", ret);
1273                         t3_intr_disable(adap);
1274                         free_irq_resources(adap);
1275                         err = ret;
1276                         goto out;
1277                 }
1278                 adap->flags |= QUEUES_BOUND;
1279         }
1280
1281 out:
1282         return err;
1283 irq_err:
1284         CH_ERR(adap, "request_irq failed, err %d\n", err);
1285         goto out;
1286 }
1287
1288 /*
1289  * Release resources when all the ports and offloading have been stopped.
1290  */
1291 static void cxgb_down(struct adapter *adapter, int on_wq)
1292 {
1293         t3_sge_stop(adapter);
1294         spin_lock_irq(&adapter->work_lock);     /* sync with PHY intr task */
1295         t3_intr_disable(adapter);
1296         spin_unlock_irq(&adapter->work_lock);
1297
1298         free_irq_resources(adapter);
1299         quiesce_rx(adapter);
1300         t3_sge_stop(adapter);
1301         if (!on_wq)
1302                 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */
1303 }
1304
1305 static void schedule_chk_task(struct adapter *adap)
1306 {
1307         unsigned int timeo;
1308
1309         timeo = adap->params.linkpoll_period ?
1310             (HZ * adap->params.linkpoll_period) / 10 :
1311             adap->params.stats_update_period * HZ;
1312         if (timeo)
1313                 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1314 }
1315
1316 static int offload_open(struct net_device *dev)
1317 {
1318         struct port_info *pi = netdev_priv(dev);
1319         struct adapter *adapter = pi->adapter;
1320         struct t3cdev *tdev = dev2t3cdev(dev);
1321         int adap_up = adapter->open_device_map & PORT_MASK;
1322         int err;
1323
1324         if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1325                 return 0;
1326
1327         if (!adap_up && (err = cxgb_up(adapter)) < 0)
1328                 goto out;
1329
1330         t3_tp_set_offload_mode(adapter, 1);
1331         tdev->lldev = adapter->port[0];
1332         err = cxgb3_offload_activate(adapter);
1333         if (err)
1334                 goto out;
1335
1336         init_port_mtus(adapter);
1337         t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1338                      adapter->params.b_wnd,
1339                      adapter->params.rev == 0 ?
1340                      adapter->port[0]->mtu : 0xffff);
1341         init_smt(adapter);
1342
1343         if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1344                 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1345
1346         /* Call back all registered clients */
1347         cxgb3_add_clients(tdev);
1348
1349 out:
1350         /* restore them in case the offload module has changed them */
1351         if (err) {
1352                 t3_tp_set_offload_mode(adapter, 0);
1353                 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1354                 cxgb3_set_dummy_ops(tdev);
1355         }
1356         return err;
1357 }
1358
1359 static int offload_close(struct t3cdev *tdev)
1360 {
1361         struct adapter *adapter = tdev2adap(tdev);
1362         struct t3c_data *td = T3C_DATA(tdev);
1363
1364         if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1365                 return 0;
1366
1367         /* Call back all registered clients */
1368         cxgb3_remove_clients(tdev);
1369
1370         sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1371
1372         /* Flush work scheduled while releasing TIDs */
1373         flush_work_sync(&td->tid_release_task);
1374
1375         tdev->lldev = NULL;
1376         cxgb3_set_dummy_ops(tdev);
1377         t3_tp_set_offload_mode(adapter, 0);
1378         clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1379
1380         if (!adapter->open_device_map)
1381                 cxgb_down(adapter, 0);
1382
1383         cxgb3_offload_deactivate(adapter);
1384         return 0;
1385 }
1386
1387 static int cxgb_open(struct net_device *dev)
1388 {
1389         struct port_info *pi = netdev_priv(dev);
1390         struct adapter *adapter = pi->adapter;
1391         int other_ports = adapter->open_device_map & PORT_MASK;
1392         int err;
1393
1394         if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1395                 return err;
1396
1397         set_bit(pi->port_id, &adapter->open_device_map);
1398         if (is_offload(adapter) && !ofld_disable) {
1399                 err = offload_open(dev);
1400                 if (err)
1401                         printk(KERN_WARNING
1402                                "Could not initialize offload capabilities\n");
1403         }
1404
1405         netif_set_real_num_tx_queues(dev, pi->nqsets);
1406         err = netif_set_real_num_rx_queues(dev, pi->nqsets);
1407         if (err)
1408                 return err;
1409         link_start(dev);
1410         t3_port_intr_enable(adapter, pi->port_id);
1411         netif_tx_start_all_queues(dev);
1412         if (!other_ports)
1413                 schedule_chk_task(adapter);
1414
1415         cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1416         return 0;
1417 }
1418
1419 static int __cxgb_close(struct net_device *dev, int on_wq)
1420 {
1421         struct port_info *pi = netdev_priv(dev);
1422         struct adapter *adapter = pi->adapter;
1423
1424         
1425         if (!adapter->open_device_map)
1426                 return 0;
1427
1428         /* Stop link fault interrupts */
1429         t3_xgm_intr_disable(adapter, pi->port_id);
1430         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1431
1432         t3_port_intr_disable(adapter, pi->port_id);
1433         netif_tx_stop_all_queues(dev);
1434         pi->phy.ops->power_down(&pi->phy, 1);
1435         netif_carrier_off(dev);
1436         t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1437
1438         spin_lock_irq(&adapter->work_lock);     /* sync with update task */
1439         clear_bit(pi->port_id, &adapter->open_device_map);
1440         spin_unlock_irq(&adapter->work_lock);
1441
1442         if (!(adapter->open_device_map & PORT_MASK))
1443                 cancel_delayed_work_sync(&adapter->adap_check_task);
1444
1445         if (!adapter->open_device_map)
1446                 cxgb_down(adapter, on_wq);
1447
1448         cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1449         return 0;
1450 }
1451
1452 static int cxgb_close(struct net_device *dev)
1453 {
1454         return __cxgb_close(dev, 0);
1455 }
1456
1457 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1458 {
1459         struct port_info *pi = netdev_priv(dev);
1460         struct adapter *adapter = pi->adapter;
1461         struct net_device_stats *ns = &pi->netstats;
1462         const struct mac_stats *pstats;
1463
1464         spin_lock(&adapter->stats_lock);
1465         pstats = t3_mac_update_stats(&pi->mac);
1466         spin_unlock(&adapter->stats_lock);
1467
1468         ns->tx_bytes = pstats->tx_octets;
1469         ns->tx_packets = pstats->tx_frames;
1470         ns->rx_bytes = pstats->rx_octets;
1471         ns->rx_packets = pstats->rx_frames;
1472         ns->multicast = pstats->rx_mcast_frames;
1473
1474         ns->tx_errors = pstats->tx_underrun;
1475         ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1476             pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1477             pstats->rx_fifo_ovfl;
1478
1479         /* detailed rx_errors */
1480         ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1481         ns->rx_over_errors = 0;
1482         ns->rx_crc_errors = pstats->rx_fcs_errs;
1483         ns->rx_frame_errors = pstats->rx_symbol_errs;
1484         ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1485         ns->rx_missed_errors = pstats->rx_cong_drops;
1486
1487         /* detailed tx_errors */
1488         ns->tx_aborted_errors = 0;
1489         ns->tx_carrier_errors = 0;
1490         ns->tx_fifo_errors = pstats->tx_underrun;
1491         ns->tx_heartbeat_errors = 0;
1492         ns->tx_window_errors = 0;
1493         return ns;
1494 }
1495
1496 static u32 get_msglevel(struct net_device *dev)
1497 {
1498         struct port_info *pi = netdev_priv(dev);
1499         struct adapter *adapter = pi->adapter;
1500
1501         return adapter->msg_enable;
1502 }
1503
1504 static void set_msglevel(struct net_device *dev, u32 val)
1505 {
1506         struct port_info *pi = netdev_priv(dev);
1507         struct adapter *adapter = pi->adapter;
1508
1509         adapter->msg_enable = val;
1510 }
1511
1512 static char stats_strings[][ETH_GSTRING_LEN] = {
1513         "TxOctetsOK         ",
1514         "TxFramesOK         ",
1515         "TxMulticastFramesOK",
1516         "TxBroadcastFramesOK",
1517         "TxPauseFrames      ",
1518         "TxUnderrun         ",
1519         "TxExtUnderrun      ",
1520
1521         "TxFrames64         ",
1522         "TxFrames65To127    ",
1523         "TxFrames128To255   ",
1524         "TxFrames256To511   ",
1525         "TxFrames512To1023  ",
1526         "TxFrames1024To1518 ",
1527         "TxFrames1519ToMax  ",
1528
1529         "RxOctetsOK         ",
1530         "RxFramesOK         ",
1531         "RxMulticastFramesOK",
1532         "RxBroadcastFramesOK",
1533         "RxPauseFrames      ",
1534         "RxFCSErrors        ",
1535         "RxSymbolErrors     ",
1536         "RxShortErrors      ",
1537         "RxJabberErrors     ",
1538         "RxLengthErrors     ",
1539         "RxFIFOoverflow     ",
1540
1541         "RxFrames64         ",
1542         "RxFrames65To127    ",
1543         "RxFrames128To255   ",
1544         "RxFrames256To511   ",
1545         "RxFrames512To1023  ",
1546         "RxFrames1024To1518 ",
1547         "RxFrames1519ToMax  ",
1548
1549         "PhyFIFOErrors      ",
1550         "TSO                ",
1551         "VLANextractions    ",
1552         "VLANinsertions     ",
1553         "TxCsumOffload      ",
1554         "RxCsumGood         ",
1555         "LroAggregated      ",
1556         "LroFlushed         ",
1557         "LroNoDesc          ",
1558         "RxDrops            ",
1559
1560         "CheckTXEnToggled   ",
1561         "CheckResets        ",
1562
1563         "LinkFaults         ",
1564 };
1565
1566 static int get_sset_count(struct net_device *dev, int sset)
1567 {
1568         switch (sset) {
1569         case ETH_SS_STATS:
1570                 return ARRAY_SIZE(stats_strings);
1571         default:
1572                 return -EOPNOTSUPP;
1573         }
1574 }
1575
1576 #define T3_REGMAP_SIZE (3 * 1024)
1577
1578 static int get_regs_len(struct net_device *dev)
1579 {
1580         return T3_REGMAP_SIZE;
1581 }
1582
1583 static int get_eeprom_len(struct net_device *dev)
1584 {
1585         return EEPROMSIZE;
1586 }
1587
1588 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1589 {
1590         struct port_info *pi = netdev_priv(dev);
1591         struct adapter *adapter = pi->adapter;
1592         u32 fw_vers = 0;
1593         u32 tp_vers = 0;
1594
1595         spin_lock(&adapter->stats_lock);
1596         t3_get_fw_version(adapter, &fw_vers);
1597         t3_get_tp_version(adapter, &tp_vers);
1598         spin_unlock(&adapter->stats_lock);
1599
1600         strcpy(info->driver, DRV_NAME);
1601         strcpy(info->version, DRV_VERSION);
1602         strcpy(info->bus_info, pci_name(adapter->pdev));
1603         if (!fw_vers)
1604                 strcpy(info->fw_version, "N/A");
1605         else {
1606                 snprintf(info->fw_version, sizeof(info->fw_version),
1607                          "%s %u.%u.%u TP %u.%u.%u",
1608                          G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1609                          G_FW_VERSION_MAJOR(fw_vers),
1610                          G_FW_VERSION_MINOR(fw_vers),
1611                          G_FW_VERSION_MICRO(fw_vers),
1612                          G_TP_VERSION_MAJOR(tp_vers),
1613                          G_TP_VERSION_MINOR(tp_vers),
1614                          G_TP_VERSION_MICRO(tp_vers));
1615         }
1616 }
1617
1618 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1619 {
1620         if (stringset == ETH_SS_STATS)
1621                 memcpy(data, stats_strings, sizeof(stats_strings));
1622 }
1623
1624 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1625                                             struct port_info *p, int idx)
1626 {
1627         int i;
1628         unsigned long tot = 0;
1629
1630         for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1631                 tot += adapter->sge.qs[i].port_stats[idx];
1632         return tot;
1633 }
1634
1635 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1636                       u64 *data)
1637 {
1638         struct port_info *pi = netdev_priv(dev);
1639         struct adapter *adapter = pi->adapter;
1640         const struct mac_stats *s;
1641
1642         spin_lock(&adapter->stats_lock);
1643         s = t3_mac_update_stats(&pi->mac);
1644         spin_unlock(&adapter->stats_lock);
1645
1646         *data++ = s->tx_octets;
1647         *data++ = s->tx_frames;
1648         *data++ = s->tx_mcast_frames;
1649         *data++ = s->tx_bcast_frames;
1650         *data++ = s->tx_pause;
1651         *data++ = s->tx_underrun;
1652         *data++ = s->tx_fifo_urun;
1653
1654         *data++ = s->tx_frames_64;
1655         *data++ = s->tx_frames_65_127;
1656         *data++ = s->tx_frames_128_255;
1657         *data++ = s->tx_frames_256_511;
1658         *data++ = s->tx_frames_512_1023;
1659         *data++ = s->tx_frames_1024_1518;
1660         *data++ = s->tx_frames_1519_max;
1661
1662         *data++ = s->rx_octets;
1663         *data++ = s->rx_frames;
1664         *data++ = s->rx_mcast_frames;
1665         *data++ = s->rx_bcast_frames;
1666         *data++ = s->rx_pause;
1667         *data++ = s->rx_fcs_errs;
1668         *data++ = s->rx_symbol_errs;
1669         *data++ = s->rx_short;
1670         *data++ = s->rx_jabber;
1671         *data++ = s->rx_too_long;
1672         *data++ = s->rx_fifo_ovfl;
1673
1674         *data++ = s->rx_frames_64;
1675         *data++ = s->rx_frames_65_127;
1676         *data++ = s->rx_frames_128_255;
1677         *data++ = s->rx_frames_256_511;
1678         *data++ = s->rx_frames_512_1023;
1679         *data++ = s->rx_frames_1024_1518;
1680         *data++ = s->rx_frames_1519_max;
1681
1682         *data++ = pi->phy.fifo_errors;
1683
1684         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1685         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1686         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1687         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1688         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1689         *data++ = 0;
1690         *data++ = 0;
1691         *data++ = 0;
1692         *data++ = s->rx_cong_drops;
1693
1694         *data++ = s->num_toggled;
1695         *data++ = s->num_resets;
1696
1697         *data++ = s->link_faults;
1698 }
1699
1700 static inline void reg_block_dump(struct adapter *ap, void *buf,
1701                                   unsigned int start, unsigned int end)
1702 {
1703         u32 *p = buf + start;
1704
1705         for (; start <= end; start += sizeof(u32))
1706                 *p++ = t3_read_reg(ap, start);
1707 }
1708
1709 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1710                      void *buf)
1711 {
1712         struct port_info *pi = netdev_priv(dev);
1713         struct adapter *ap = pi->adapter;
1714
1715         /*
1716          * Version scheme:
1717          * bits 0..9: chip version
1718          * bits 10..15: chip revision
1719          * bit 31: set for PCIe cards
1720          */
1721         regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1722
1723         /*
1724          * We skip the MAC statistics registers because they are clear-on-read.
1725          * Also reading multi-register stats would need to synchronize with the
1726          * periodic mac stats accumulation.  Hard to justify the complexity.
1727          */
1728         memset(buf, 0, T3_REGMAP_SIZE);
1729         reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1730         reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1731         reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1732         reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1733         reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1734         reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1735                        XGM_REG(A_XGM_SERDES_STAT3, 1));
1736         reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1737                        XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1738 }
1739
1740 static int restart_autoneg(struct net_device *dev)
1741 {
1742         struct port_info *p = netdev_priv(dev);
1743
1744         if (!netif_running(dev))
1745                 return -EAGAIN;
1746         if (p->link_config.autoneg != AUTONEG_ENABLE)
1747                 return -EINVAL;
1748         p->phy.ops->autoneg_restart(&p->phy);
1749         return 0;
1750 }
1751
1752 static int cxgb3_phys_id(struct net_device *dev, u32 data)
1753 {
1754         struct port_info *pi = netdev_priv(dev);
1755         struct adapter *adapter = pi->adapter;
1756         int i;
1757
1758         if (data == 0)
1759                 data = 2;
1760
1761         for (i = 0; i < data * 2; i++) {
1762                 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1763                                  (i & 1) ? F_GPIO0_OUT_VAL : 0);
1764                 if (msleep_interruptible(500))
1765                         break;
1766         }
1767         t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1768                          F_GPIO0_OUT_VAL);
1769         return 0;
1770 }
1771
1772 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1773 {
1774         struct port_info *p = netdev_priv(dev);
1775
1776         cmd->supported = p->link_config.supported;
1777         cmd->advertising = p->link_config.advertising;
1778
1779         if (netif_carrier_ok(dev)) {
1780                 cmd->speed = p->link_config.speed;
1781                 cmd->duplex = p->link_config.duplex;
1782         } else {
1783                 cmd->speed = -1;
1784                 cmd->duplex = -1;
1785         }
1786
1787         cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1788         cmd->phy_address = p->phy.mdio.prtad;
1789         cmd->transceiver = XCVR_EXTERNAL;
1790         cmd->autoneg = p->link_config.autoneg;
1791         cmd->maxtxpkt = 0;
1792         cmd->maxrxpkt = 0;
1793         return 0;
1794 }
1795
1796 static int speed_duplex_to_caps(int speed, int duplex)
1797 {
1798         int cap = 0;
1799
1800         switch (speed) {
1801         case SPEED_10:
1802                 if (duplex == DUPLEX_FULL)
1803                         cap = SUPPORTED_10baseT_Full;
1804                 else
1805                         cap = SUPPORTED_10baseT_Half;
1806                 break;
1807         case SPEED_100:
1808                 if (duplex == DUPLEX_FULL)
1809                         cap = SUPPORTED_100baseT_Full;
1810                 else
1811                         cap = SUPPORTED_100baseT_Half;
1812                 break;
1813         case SPEED_1000:
1814                 if (duplex == DUPLEX_FULL)
1815                         cap = SUPPORTED_1000baseT_Full;
1816                 else
1817                         cap = SUPPORTED_1000baseT_Half;
1818                 break;
1819         case SPEED_10000:
1820                 if (duplex == DUPLEX_FULL)
1821                         cap = SUPPORTED_10000baseT_Full;
1822         }
1823         return cap;
1824 }
1825
1826 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1827                       ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1828                       ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1829                       ADVERTISED_10000baseT_Full)
1830
1831 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1832 {
1833         struct port_info *p = netdev_priv(dev);
1834         struct link_config *lc = &p->link_config;
1835
1836         if (!(lc->supported & SUPPORTED_Autoneg)) {
1837                 /*
1838                  * PHY offers a single speed/duplex.  See if that's what's
1839                  * being requested.
1840                  */
1841                 if (cmd->autoneg == AUTONEG_DISABLE) {
1842                         int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1843                         if (lc->supported & cap)
1844                                 return 0;
1845                 }
1846                 return -EINVAL;
1847         }
1848
1849         if (cmd->autoneg == AUTONEG_DISABLE) {
1850                 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1851
1852                 if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
1853                         return -EINVAL;
1854                 lc->requested_speed = cmd->speed;
1855                 lc->requested_duplex = cmd->duplex;
1856                 lc->advertising = 0;
1857         } else {
1858                 cmd->advertising &= ADVERTISED_MASK;
1859                 cmd->advertising &= lc->supported;
1860                 if (!cmd->advertising)
1861                         return -EINVAL;
1862                 lc->requested_speed = SPEED_INVALID;
1863                 lc->requested_duplex = DUPLEX_INVALID;
1864                 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1865         }
1866         lc->autoneg = cmd->autoneg;
1867         if (netif_running(dev))
1868                 t3_link_start(&p->phy, &p->mac, lc);
1869         return 0;
1870 }
1871
1872 static void get_pauseparam(struct net_device *dev,
1873                            struct ethtool_pauseparam *epause)
1874 {
1875         struct port_info *p = netdev_priv(dev);
1876
1877         epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1878         epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1879         epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1880 }
1881
1882 static int set_pauseparam(struct net_device *dev,
1883                           struct ethtool_pauseparam *epause)
1884 {
1885         struct port_info *p = netdev_priv(dev);
1886         struct link_config *lc = &p->link_config;
1887
1888         if (epause->autoneg == AUTONEG_DISABLE)
1889                 lc->requested_fc = 0;
1890         else if (lc->supported & SUPPORTED_Autoneg)
1891                 lc->requested_fc = PAUSE_AUTONEG;
1892         else
1893                 return -EINVAL;
1894
1895         if (epause->rx_pause)
1896                 lc->requested_fc |= PAUSE_RX;
1897         if (epause->tx_pause)
1898                 lc->requested_fc |= PAUSE_TX;
1899         if (lc->autoneg == AUTONEG_ENABLE) {
1900                 if (netif_running(dev))
1901                         t3_link_start(&p->phy, &p->mac, lc);
1902         } else {
1903                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1904                 if (netif_running(dev))
1905                         t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1906         }
1907         return 0;
1908 }
1909
1910 static u32 get_rx_csum(struct net_device *dev)
1911 {
1912         struct port_info *p = netdev_priv(dev);
1913
1914         return p->rx_offload & T3_RX_CSUM;
1915 }
1916
1917 static int set_rx_csum(struct net_device *dev, u32 data)
1918 {
1919         struct port_info *p = netdev_priv(dev);
1920
1921         if (data) {
1922                 p->rx_offload |= T3_RX_CSUM;
1923         } else {
1924                 int i;
1925
1926                 p->rx_offload &= ~(T3_RX_CSUM | T3_LRO);
1927                 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++)
1928                         set_qset_lro(dev, i, 0);
1929         }
1930         return 0;
1931 }
1932
1933 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1934 {
1935         struct port_info *pi = netdev_priv(dev);
1936         struct adapter *adapter = pi->adapter;
1937         const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1938
1939         e->rx_max_pending = MAX_RX_BUFFERS;
1940         e->rx_mini_max_pending = 0;
1941         e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1942         e->tx_max_pending = MAX_TXQ_ENTRIES;
1943
1944         e->rx_pending = q->fl_size;
1945         e->rx_mini_pending = q->rspq_size;
1946         e->rx_jumbo_pending = q->jumbo_size;
1947         e->tx_pending = q->txq_size[0];
1948 }
1949
1950 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1951 {
1952         struct port_info *pi = netdev_priv(dev);
1953         struct adapter *adapter = pi->adapter;
1954         struct qset_params *q;
1955         int i;
1956
1957         if (e->rx_pending > MAX_RX_BUFFERS ||
1958             e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1959             e->tx_pending > MAX_TXQ_ENTRIES ||
1960             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1961             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1962             e->rx_pending < MIN_FL_ENTRIES ||
1963             e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1964             e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1965                 return -EINVAL;
1966
1967         if (adapter->flags & FULL_INIT_DONE)
1968                 return -EBUSY;
1969
1970         q = &adapter->params.sge.qset[pi->first_qset];
1971         for (i = 0; i < pi->nqsets; ++i, ++q) {
1972                 q->rspq_size = e->rx_mini_pending;
1973                 q->fl_size = e->rx_pending;
1974                 q->jumbo_size = e->rx_jumbo_pending;
1975                 q->txq_size[0] = e->tx_pending;
1976                 q->txq_size[1] = e->tx_pending;
1977                 q->txq_size[2] = e->tx_pending;
1978         }
1979         return 0;
1980 }
1981
1982 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1983 {
1984         struct port_info *pi = netdev_priv(dev);
1985         struct adapter *adapter = pi->adapter;
1986         struct qset_params *qsp = &adapter->params.sge.qset[0];
1987         struct sge_qset *qs = &adapter->sge.qs[0];
1988
1989         if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1990                 return -EINVAL;
1991
1992         qsp->coalesce_usecs = c->rx_coalesce_usecs;
1993         t3_update_qset_coalesce(qs, qsp);
1994         return 0;
1995 }
1996
1997 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1998 {
1999         struct port_info *pi = netdev_priv(dev);
2000         struct adapter *adapter = pi->adapter;
2001         struct qset_params *q = adapter->params.sge.qset;
2002
2003         c->rx_coalesce_usecs = q->coalesce_usecs;
2004         return 0;
2005 }
2006
2007 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2008                       u8 * data)
2009 {
2010         struct port_info *pi = netdev_priv(dev);
2011         struct adapter *adapter = pi->adapter;
2012         int i, err = 0;
2013
2014         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2015         if (!buf)
2016                 return -ENOMEM;
2017
2018         e->magic = EEPROM_MAGIC;
2019         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2020                 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
2021
2022         if (!err)
2023                 memcpy(data, buf + e->offset, e->len);
2024         kfree(buf);
2025         return err;
2026 }
2027
2028 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2029                       u8 * data)
2030 {
2031         struct port_info *pi = netdev_priv(dev);
2032         struct adapter *adapter = pi->adapter;
2033         u32 aligned_offset, aligned_len;
2034         __le32 *p;
2035         u8 *buf;
2036         int err;
2037
2038         if (eeprom->magic != EEPROM_MAGIC)
2039                 return -EINVAL;
2040
2041         aligned_offset = eeprom->offset & ~3;
2042         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2043
2044         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2045                 buf = kmalloc(aligned_len, GFP_KERNEL);
2046                 if (!buf)
2047                         return -ENOMEM;
2048                 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2049                 if (!err && aligned_len > 4)
2050                         err = t3_seeprom_read(adapter,
2051                                               aligned_offset + aligned_len - 4,
2052                                               (__le32 *) & buf[aligned_len - 4]);
2053                 if (err)
2054                         goto out;
2055                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2056         } else
2057                 buf = data;
2058
2059         err = t3_seeprom_wp(adapter, 0);
2060         if (err)
2061                 goto out;
2062
2063         for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2064                 err = t3_seeprom_write(adapter, aligned_offset, *p);
2065                 aligned_offset += 4;
2066         }
2067
2068         if (!err)
2069                 err = t3_seeprom_wp(adapter, 1);
2070 out:
2071         if (buf != data)
2072                 kfree(buf);
2073         return err;
2074 }
2075
2076 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2077 {
2078         wol->supported = 0;
2079         wol->wolopts = 0;
2080         memset(&wol->sopass, 0, sizeof(wol->sopass));
2081 }
2082
2083 static const struct ethtool_ops cxgb_ethtool_ops = {
2084         .get_settings = get_settings,
2085         .set_settings = set_settings,
2086         .get_drvinfo = get_drvinfo,
2087         .get_msglevel = get_msglevel,
2088         .set_msglevel = set_msglevel,
2089         .get_ringparam = get_sge_param,
2090         .set_ringparam = set_sge_param,
2091         .get_coalesce = get_coalesce,
2092         .set_coalesce = set_coalesce,
2093         .get_eeprom_len = get_eeprom_len,
2094         .get_eeprom = get_eeprom,
2095         .set_eeprom = set_eeprom,
2096         .get_pauseparam = get_pauseparam,
2097         .set_pauseparam = set_pauseparam,
2098         .get_rx_csum = get_rx_csum,
2099         .set_rx_csum = set_rx_csum,
2100         .set_tx_csum = ethtool_op_set_tx_csum,
2101         .set_sg = ethtool_op_set_sg,
2102         .get_link = ethtool_op_get_link,
2103         .get_strings = get_strings,
2104         .phys_id = cxgb3_phys_id,
2105         .nway_reset = restart_autoneg,
2106         .get_sset_count = get_sset_count,
2107         .get_ethtool_stats = get_stats,
2108         .get_regs_len = get_regs_len,
2109         .get_regs = get_regs,
2110         .get_wol = get_wol,
2111         .set_tso = ethtool_op_set_tso,
2112 };
2113
2114 static int in_range(int val, int lo, int hi)
2115 {
2116         return val < 0 || (val <= hi && val >= lo);
2117 }
2118
2119 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2120 {
2121         struct port_info *pi = netdev_priv(dev);
2122         struct adapter *adapter = pi->adapter;
2123         u32 cmd;
2124         int ret;
2125
2126         if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2127                 return -EFAULT;
2128
2129         switch (cmd) {
2130         case CHELSIO_SET_QSET_PARAMS:{
2131                 int i;
2132                 struct qset_params *q;
2133                 struct ch_qset_params t;
2134                 int q1 = pi->first_qset;
2135                 int nqsets = pi->nqsets;
2136
2137                 if (!capable(CAP_NET_ADMIN))
2138                         return -EPERM;
2139                 if (copy_from_user(&t, useraddr, sizeof(t)))
2140                         return -EFAULT;
2141                 if (t.qset_idx >= SGE_QSETS)
2142                         return -EINVAL;
2143                 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2144                     !in_range(t.cong_thres, 0, 255) ||
2145                     !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2146                               MAX_TXQ_ENTRIES) ||
2147                     !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2148                               MAX_TXQ_ENTRIES) ||
2149                     !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2150                               MAX_CTRL_TXQ_ENTRIES) ||
2151                     !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2152                               MAX_RX_BUFFERS) ||
2153                     !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2154                               MAX_RX_JUMBO_BUFFERS) ||
2155                     !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2156                               MAX_RSPQ_ENTRIES))
2157                         return -EINVAL;
2158
2159                 if ((adapter->flags & FULL_INIT_DONE) && t.lro > 0)
2160                         for_each_port(adapter, i) {
2161                                 pi = adap2pinfo(adapter, i);
2162                                 if (t.qset_idx >= pi->first_qset &&
2163                                     t.qset_idx < pi->first_qset + pi->nqsets &&
2164                                     !(pi->rx_offload & T3_RX_CSUM))
2165                                         return -EINVAL;
2166                         }
2167
2168                 if ((adapter->flags & FULL_INIT_DONE) &&
2169                         (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2170                         t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2171                         t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2172                         t.polling >= 0 || t.cong_thres >= 0))
2173                         return -EBUSY;
2174
2175                 /* Allow setting of any available qset when offload enabled */
2176                 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2177                         q1 = 0;
2178                         for_each_port(adapter, i) {
2179                                 pi = adap2pinfo(adapter, i);
2180                                 nqsets += pi->first_qset + pi->nqsets;
2181                         }
2182                 }
2183
2184                 if (t.qset_idx < q1)
2185                         return -EINVAL;
2186                 if (t.qset_idx > q1 + nqsets - 1)
2187                         return -EINVAL;
2188
2189                 q = &adapter->params.sge.qset[t.qset_idx];
2190
2191                 if (t.rspq_size >= 0)
2192                         q->rspq_size = t.rspq_size;
2193                 if (t.fl_size[0] >= 0)
2194                         q->fl_size = t.fl_size[0];
2195                 if (t.fl_size[1] >= 0)
2196                         q->jumbo_size = t.fl_size[1];
2197                 if (t.txq_size[0] >= 0)
2198                         q->txq_size[0] = t.txq_size[0];
2199                 if (t.txq_size[1] >= 0)
2200                         q->txq_size[1] = t.txq_size[1];
2201                 if (t.txq_size[2] >= 0)
2202                         q->txq_size[2] = t.txq_size[2];
2203                 if (t.cong_thres >= 0)
2204                         q->cong_thres = t.cong_thres;
2205                 if (t.intr_lat >= 0) {
2206                         struct sge_qset *qs =
2207                                 &adapter->sge.qs[t.qset_idx];
2208
2209                         q->coalesce_usecs = t.intr_lat;
2210                         t3_update_qset_coalesce(qs, q);
2211                 }
2212                 if (t.polling >= 0) {
2213                         if (adapter->flags & USING_MSIX)
2214                                 q->polling = t.polling;
2215                         else {
2216                                 /* No polling with INTx for T3A */
2217                                 if (adapter->params.rev == 0 &&
2218                                         !(adapter->flags & USING_MSI))
2219                                         t.polling = 0;
2220
2221                                 for (i = 0; i < SGE_QSETS; i++) {
2222                                         q = &adapter->params.sge.
2223                                                 qset[i];
2224                                         q->polling = t.polling;
2225                                 }
2226                         }
2227                 }
2228                 if (t.lro >= 0)
2229                         set_qset_lro(dev, t.qset_idx, t.lro);
2230
2231                 break;
2232         }
2233         case CHELSIO_GET_QSET_PARAMS:{
2234                 struct qset_params *q;
2235                 struct ch_qset_params t;
2236                 int q1 = pi->first_qset;
2237                 int nqsets = pi->nqsets;
2238                 int i;
2239
2240                 if (copy_from_user(&t, useraddr, sizeof(t)))
2241                         return -EFAULT;
2242
2243                 /* Display qsets for all ports when offload enabled */
2244                 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2245                         q1 = 0;
2246                         for_each_port(adapter, i) {
2247                                 pi = adap2pinfo(adapter, i);
2248                                 nqsets = pi->first_qset + pi->nqsets;
2249                         }
2250                 }
2251
2252                 if (t.qset_idx >= nqsets)
2253                         return -EINVAL;
2254
2255                 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2256                 t.rspq_size = q->rspq_size;
2257                 t.txq_size[0] = q->txq_size[0];
2258                 t.txq_size[1] = q->txq_size[1];
2259                 t.txq_size[2] = q->txq_size[2];
2260                 t.fl_size[0] = q->fl_size;
2261                 t.fl_size[1] = q->jumbo_size;
2262                 t.polling = q->polling;
2263                 t.lro = q->lro;
2264                 t.intr_lat = q->coalesce_usecs;
2265                 t.cong_thres = q->cong_thres;
2266                 t.qnum = q1;
2267
2268                 if (adapter->flags & USING_MSIX)
2269                         t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2270                 else
2271                         t.vector = adapter->pdev->irq;
2272
2273                 if (copy_to_user(useraddr, &t, sizeof(t)))
2274                         return -EFAULT;
2275                 break;
2276         }
2277         case CHELSIO_SET_QSET_NUM:{
2278                 struct ch_reg edata;
2279                 unsigned int i, first_qset = 0, other_qsets = 0;
2280
2281                 if (!capable(CAP_NET_ADMIN))
2282                         return -EPERM;
2283                 if (adapter->flags & FULL_INIT_DONE)
2284                         return -EBUSY;
2285                 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2286                         return -EFAULT;
2287                 if (edata.val < 1 ||
2288                         (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2289                         return -EINVAL;
2290
2291                 for_each_port(adapter, i)
2292                         if (adapter->port[i] && adapter->port[i] != dev)
2293                                 other_qsets += adap2pinfo(adapter, i)->nqsets;
2294
2295                 if (edata.val + other_qsets > SGE_QSETS)
2296                         return -EINVAL;
2297
2298                 pi->nqsets = edata.val;
2299
2300                 for_each_port(adapter, i)
2301                         if (adapter->port[i]) {
2302                                 pi = adap2pinfo(adapter, i);
2303                                 pi->first_qset = first_qset;
2304                                 first_qset += pi->nqsets;
2305                         }
2306                 break;
2307         }
2308         case CHELSIO_GET_QSET_NUM:{
2309                 struct ch_reg edata;
2310
2311                 memset(&edata, 0, sizeof(struct ch_reg));
2312
2313                 edata.cmd = CHELSIO_GET_QSET_NUM;
2314                 edata.val = pi->nqsets;
2315                 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2316                         return -EFAULT;
2317                 break;
2318         }
2319         case CHELSIO_LOAD_FW:{
2320                 u8 *fw_data;
2321                 struct ch_mem_range t;
2322
2323                 if (!capable(CAP_SYS_RAWIO))
2324                         return -EPERM;
2325                 if (copy_from_user(&t, useraddr, sizeof(t)))
2326                         return -EFAULT;
2327                 /* Check t.len sanity ? */
2328                 fw_data = memdup_user(useraddr + sizeof(t), t.len);
2329                 if (IS_ERR(fw_data))
2330                         return PTR_ERR(fw_data);
2331
2332                 ret = t3_load_fw(adapter, fw_data, t.len);
2333                 kfree(fw_data);
2334                 if (ret)
2335                         return ret;
2336                 break;
2337         }
2338         case CHELSIO_SETMTUTAB:{
2339                 struct ch_mtus m;
2340                 int i;
2341
2342                 if (!is_offload(adapter))
2343                         return -EOPNOTSUPP;
2344                 if (!capable(CAP_NET_ADMIN))
2345                         return -EPERM;
2346                 if (offload_running(adapter))
2347                         return -EBUSY;
2348                 if (copy_from_user(&m, useraddr, sizeof(m)))
2349                         return -EFAULT;
2350                 if (m.nmtus != NMTUS)
2351                         return -EINVAL;
2352                 if (m.mtus[0] < 81)     /* accommodate SACK */
2353                         return -EINVAL;
2354
2355                 /* MTUs must be in ascending order */
2356                 for (i = 1; i < NMTUS; ++i)
2357                         if (m.mtus[i] < m.mtus[i - 1])
2358                                 return -EINVAL;
2359
2360                 memcpy(adapter->params.mtus, m.mtus,
2361                         sizeof(adapter->params.mtus));
2362                 break;
2363         }
2364         case CHELSIO_GET_PM:{
2365                 struct tp_params *p = &adapter->params.tp;
2366                 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2367
2368                 if (!is_offload(adapter))
2369                         return -EOPNOTSUPP;
2370                 m.tx_pg_sz = p->tx_pg_size;
2371                 m.tx_num_pg = p->tx_num_pgs;
2372                 m.rx_pg_sz = p->rx_pg_size;
2373                 m.rx_num_pg = p->rx_num_pgs;
2374                 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2375                 if (copy_to_user(useraddr, &m, sizeof(m)))
2376                         return -EFAULT;
2377                 break;
2378         }
2379         case CHELSIO_SET_PM:{
2380                 struct ch_pm m;
2381                 struct tp_params *p = &adapter->params.tp;
2382
2383                 if (!is_offload(adapter))
2384                         return -EOPNOTSUPP;
2385                 if (!capable(CAP_NET_ADMIN))
2386                         return -EPERM;
2387                 if (adapter->flags & FULL_INIT_DONE)
2388                         return -EBUSY;
2389                 if (copy_from_user(&m, useraddr, sizeof(m)))
2390                         return -EFAULT;
2391                 if (!is_power_of_2(m.rx_pg_sz) ||
2392                         !is_power_of_2(m.tx_pg_sz))
2393                         return -EINVAL; /* not power of 2 */
2394                 if (!(m.rx_pg_sz & 0x14000))
2395                         return -EINVAL; /* not 16KB or 64KB */
2396                 if (!(m.tx_pg_sz & 0x1554000))
2397                         return -EINVAL;
2398                 if (m.tx_num_pg == -1)
2399                         m.tx_num_pg = p->tx_num_pgs;
2400                 if (m.rx_num_pg == -1)
2401                         m.rx_num_pg = p->rx_num_pgs;
2402                 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2403                         return -EINVAL;
2404                 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2405                         m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2406                         return -EINVAL;
2407                 p->rx_pg_size = m.rx_pg_sz;
2408                 p->tx_pg_size = m.tx_pg_sz;
2409                 p->rx_num_pgs = m.rx_num_pg;
2410                 p->tx_num_pgs = m.tx_num_pg;
2411                 break;
2412         }
2413         case CHELSIO_GET_MEM:{
2414                 struct ch_mem_range t;
2415                 struct mc7 *mem;
2416                 u64 buf[32];
2417
2418                 if (!is_offload(adapter))
2419                         return -EOPNOTSUPP;
2420                 if (!(adapter->flags & FULL_INIT_DONE))
2421                         return -EIO;    /* need the memory controllers */
2422                 if (copy_from_user(&t, useraddr, sizeof(t)))
2423                         return -EFAULT;
2424                 if ((t.addr & 7) || (t.len & 7))
2425                         return -EINVAL;
2426                 if (t.mem_id == MEM_CM)
2427                         mem = &adapter->cm;
2428                 else if (t.mem_id == MEM_PMRX)
2429                         mem = &adapter->pmrx;
2430                 else if (t.mem_id == MEM_PMTX)
2431                         mem = &adapter->pmtx;
2432                 else
2433                         return -EINVAL;
2434
2435                 /*
2436                  * Version scheme:
2437                  * bits 0..9: chip version
2438                  * bits 10..15: chip revision
2439                  */
2440                 t.version = 3 | (adapter->params.rev << 10);
2441                 if (copy_to_user(useraddr, &t, sizeof(t)))
2442                         return -EFAULT;
2443
2444                 /*
2445                  * Read 256 bytes at a time as len can be large and we don't
2446                  * want to use huge intermediate buffers.
2447                  */
2448                 useraddr += sizeof(t);  /* advance to start of buffer */
2449                 while (t.len) {
2450                         unsigned int chunk =
2451                                 min_t(unsigned int, t.len, sizeof(buf));
2452
2453                         ret =
2454                                 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2455                                                 buf);
2456                         if (ret)
2457                                 return ret;
2458                         if (copy_to_user(useraddr, buf, chunk))
2459                                 return -EFAULT;
2460                         useraddr += chunk;
2461                         t.addr += chunk;
2462                         t.len -= chunk;
2463                 }
2464                 break;
2465         }
2466         case CHELSIO_SET_TRACE_FILTER:{
2467                 struct ch_trace t;
2468                 const struct trace_params *tp;
2469
2470                 if (!capable(CAP_NET_ADMIN))
2471                         return -EPERM;
2472                 if (!offload_running(adapter))
2473                         return -EAGAIN;
2474                 if (copy_from_user(&t, useraddr, sizeof(t)))
2475                         return -EFAULT;
2476
2477                 tp = (const struct trace_params *)&t.sip;
2478                 if (t.config_tx)
2479                         t3_config_trace_filter(adapter, tp, 0,
2480                                                 t.invert_match,
2481                                                 t.trace_tx);
2482                 if (t.config_rx)
2483                         t3_config_trace_filter(adapter, tp, 1,
2484                                                 t.invert_match,
2485                                                 t.trace_rx);
2486                 break;
2487         }
2488         default:
2489                 return -EOPNOTSUPP;
2490         }
2491         return 0;
2492 }
2493
2494 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2495 {
2496         struct mii_ioctl_data *data = if_mii(req);
2497         struct port_info *pi = netdev_priv(dev);
2498         struct adapter *adapter = pi->adapter;
2499
2500         switch (cmd) {
2501         case SIOCGMIIREG:
2502         case SIOCSMIIREG:
2503                 /* Convert phy_id from older PRTAD/DEVAD format */
2504                 if (is_10G(adapter) &&
2505                     !mdio_phy_id_is_c45(data->phy_id) &&
2506                     (data->phy_id & 0x1f00) &&
2507                     !(data->phy_id & 0xe0e0))
2508                         data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2509                                                        data->phy_id & 0x1f);
2510                 /* FALLTHRU */
2511         case SIOCGMIIPHY:
2512                 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2513         case SIOCCHIOCTL:
2514                 return cxgb_extension_ioctl(dev, req->ifr_data);
2515         default:
2516                 return -EOPNOTSUPP;
2517         }
2518 }
2519
2520 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2521 {
2522         struct port_info *pi = netdev_priv(dev);
2523         struct adapter *adapter = pi->adapter;
2524         int ret;
2525
2526         if (new_mtu < 81)       /* accommodate SACK */
2527                 return -EINVAL;
2528         if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2529                 return ret;
2530         dev->mtu = new_mtu;
2531         init_port_mtus(adapter);
2532         if (adapter->params.rev == 0 && offload_running(adapter))
2533                 t3_load_mtus(adapter, adapter->params.mtus,
2534                              adapter->params.a_wnd, adapter->params.b_wnd,
2535                              adapter->port[0]->mtu);
2536         return 0;
2537 }
2538
2539 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2540 {
2541         struct port_info *pi = netdev_priv(dev);
2542         struct adapter *adapter = pi->adapter;
2543         struct sockaddr *addr = p;
2544
2545         if (!is_valid_ether_addr(addr->sa_data))
2546                 return -EINVAL;
2547
2548         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2549         t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2550         if (offload_running(adapter))
2551                 write_smt_entry(adapter, pi->port_id);
2552         return 0;
2553 }
2554
2555 /**
2556  * t3_synchronize_rx - wait for current Rx processing on a port to complete
2557  * @adap: the adapter
2558  * @p: the port
2559  *
2560  * Ensures that current Rx processing on any of the queues associated with
2561  * the given port completes before returning.  We do this by acquiring and
2562  * releasing the locks of the response queues associated with the port.
2563  */
2564 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
2565 {
2566         int i;
2567
2568         for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
2569                 struct sge_rspq *q = &adap->sge.qs[i].rspq;
2570
2571                 spin_lock_irq(&q->lock);
2572                 spin_unlock_irq(&q->lock);
2573         }
2574 }
2575
2576 static void vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2577 {
2578         struct port_info *pi = netdev_priv(dev);
2579         struct adapter *adapter = pi->adapter;
2580
2581         pi->vlan_grp = grp;
2582         if (adapter->params.rev > 0)
2583                 t3_set_vlan_accel(adapter, 1 << pi->port_id, grp != NULL);
2584         else {
2585                 /* single control for all ports */
2586                 unsigned int i, have_vlans = 0;
2587                 for_each_port(adapter, i)
2588                     have_vlans |= adap2pinfo(adapter, i)->vlan_grp != NULL;
2589
2590                 t3_set_vlan_accel(adapter, 1, have_vlans);
2591         }
2592         t3_synchronize_rx(adapter, pi);
2593 }
2594
2595 #ifdef CONFIG_NET_POLL_CONTROLLER
2596 static void cxgb_netpoll(struct net_device *dev)
2597 {
2598         struct port_info *pi = netdev_priv(dev);
2599         struct adapter *adapter = pi->adapter;
2600         int qidx;
2601
2602         for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2603                 struct sge_qset *qs = &adapter->sge.qs[qidx];
2604                 void *source;
2605
2606                 if (adapter->flags & USING_MSIX)
2607                         source = qs;
2608                 else
2609                         source = adapter;
2610
2611                 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2612         }
2613 }
2614 #endif
2615
2616 /*
2617  * Periodic accumulation of MAC statistics.
2618  */
2619 static void mac_stats_update(struct adapter *adapter)
2620 {
2621         int i;
2622
2623         for_each_port(adapter, i) {
2624                 struct net_device *dev = adapter->port[i];
2625                 struct port_info *p = netdev_priv(dev);
2626
2627                 if (netif_running(dev)) {
2628                         spin_lock(&adapter->stats_lock);
2629                         t3_mac_update_stats(&p->mac);
2630                         spin_unlock(&adapter->stats_lock);
2631                 }
2632         }
2633 }
2634
2635 static void check_link_status(struct adapter *adapter)
2636 {
2637         int i;
2638
2639         for_each_port(adapter, i) {
2640                 struct net_device *dev = adapter->port[i];
2641                 struct port_info *p = netdev_priv(dev);
2642                 int link_fault;
2643
2644                 spin_lock_irq(&adapter->work_lock);
2645                 link_fault = p->link_fault;
2646                 spin_unlock_irq(&adapter->work_lock);
2647
2648                 if (link_fault) {
2649                         t3_link_fault(adapter, i);
2650                         continue;
2651                 }
2652
2653                 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2654                         t3_xgm_intr_disable(adapter, i);
2655                         t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2656
2657                         t3_link_changed(adapter, i);
2658                         t3_xgm_intr_enable(adapter, i);
2659                 }
2660         }
2661 }
2662
2663 static void check_t3b2_mac(struct adapter *adapter)
2664 {
2665         int i;
2666
2667         if (!rtnl_trylock())    /* synchronize with ifdown */
2668                 return;
2669
2670         for_each_port(adapter, i) {
2671                 struct net_device *dev = adapter->port[i];
2672                 struct port_info *p = netdev_priv(dev);
2673                 int status;
2674
2675                 if (!netif_running(dev))
2676                         continue;
2677
2678                 status = 0;
2679                 if (netif_running(dev) && netif_carrier_ok(dev))
2680                         status = t3b2_mac_watchdog_task(&p->mac);
2681                 if (status == 1)
2682                         p->mac.stats.num_toggled++;
2683                 else if (status == 2) {
2684                         struct cmac *mac = &p->mac;
2685
2686                         t3_mac_set_mtu(mac, dev->mtu);
2687                         t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2688                         cxgb_set_rxmode(dev);
2689                         t3_link_start(&p->phy, mac, &p->link_config);
2690                         t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2691                         t3_port_intr_enable(adapter, p->port_id);
2692                         p->mac.stats.num_resets++;
2693                 }
2694         }
2695         rtnl_unlock();
2696 }
2697
2698
2699 static void t3_adap_check_task(struct work_struct *work)
2700 {
2701         struct adapter *adapter = container_of(work, struct adapter,
2702                                                adap_check_task.work);
2703         const struct adapter_params *p = &adapter->params;
2704         int port;
2705         unsigned int v, status, reset;
2706
2707         adapter->check_task_cnt++;
2708
2709         check_link_status(adapter);
2710
2711         /* Accumulate MAC stats if needed */
2712         if (!p->linkpoll_period ||
2713             (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2714             p->stats_update_period) {
2715                 mac_stats_update(adapter);
2716                 adapter->check_task_cnt = 0;
2717         }
2718
2719         if (p->rev == T3_REV_B2)
2720                 check_t3b2_mac(adapter);
2721
2722         /*
2723          * Scan the XGMAC's to check for various conditions which we want to
2724          * monitor in a periodic polling manner rather than via an interrupt
2725          * condition.  This is used for conditions which would otherwise flood
2726          * the system with interrupts and we only really need to know that the
2727          * conditions are "happening" ...  For each condition we count the
2728          * detection of the condition and reset it for the next polling loop.
2729          */
2730         for_each_port(adapter, port) {
2731                 struct cmac *mac =  &adap2pinfo(adapter, port)->mac;
2732                 u32 cause;
2733
2734                 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2735                 reset = 0;
2736                 if (cause & F_RXFIFO_OVERFLOW) {
2737                         mac->stats.rx_fifo_ovfl++;
2738                         reset |= F_RXFIFO_OVERFLOW;
2739                 }
2740
2741                 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2742         }
2743
2744         /*
2745          * We do the same as above for FL_EMPTY interrupts.
2746          */
2747         status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2748         reset = 0;
2749
2750         if (status & F_FLEMPTY) {
2751                 struct sge_qset *qs = &adapter->sge.qs[0];
2752                 int i = 0;
2753
2754                 reset |= F_FLEMPTY;
2755
2756                 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2757                     0xffff;
2758
2759                 while (v) {
2760                         qs->fl[i].empty += (v & 1);
2761                         if (i)
2762                                 qs++;
2763                         i ^= 1;
2764                         v >>= 1;
2765                 }
2766         }
2767
2768         t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2769
2770         /* Schedule the next check update if any port is active. */
2771         spin_lock_irq(&adapter->work_lock);
2772         if (adapter->open_device_map & PORT_MASK)
2773                 schedule_chk_task(adapter);
2774         spin_unlock_irq(&adapter->work_lock);
2775 }
2776
2777 static void db_full_task(struct work_struct *work)
2778 {
2779         struct adapter *adapter = container_of(work, struct adapter,
2780                                                db_full_task);
2781
2782         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2783 }
2784
2785 static void db_empty_task(struct work_struct *work)
2786 {
2787         struct adapter *adapter = container_of(work, struct adapter,
2788                                                db_empty_task);
2789
2790         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2791 }
2792
2793 static void db_drop_task(struct work_struct *work)
2794 {
2795         struct adapter *adapter = container_of(work, struct adapter,
2796                                                db_drop_task);
2797         unsigned long delay = 1000;
2798         unsigned short r;
2799
2800         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2801
2802         /*
2803          * Sleep a while before ringing the driver qset dbs.
2804          * The delay is between 1000-2023 usecs.
2805          */
2806         get_random_bytes(&r, 2);
2807         delay += r & 1023;
2808         set_current_state(TASK_UNINTERRUPTIBLE);
2809         schedule_timeout(usecs_to_jiffies(delay));
2810         ring_dbs(adapter);
2811 }
2812
2813 /*
2814  * Processes external (PHY) interrupts in process context.
2815  */
2816 static void ext_intr_task(struct work_struct *work)
2817 {
2818         struct adapter *adapter = container_of(work, struct adapter,
2819                                                ext_intr_handler_task);
2820         int i;
2821
2822         /* Disable link fault interrupts */
2823         for_each_port(adapter, i) {
2824                 struct net_device *dev = adapter->port[i];
2825                 struct port_info *p = netdev_priv(dev);
2826
2827                 t3_xgm_intr_disable(adapter, i);
2828                 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2829         }
2830
2831         /* Re-enable link fault interrupts */
2832         t3_phy_intr_handler(adapter);
2833
2834         for_each_port(adapter, i)
2835                 t3_xgm_intr_enable(adapter, i);
2836
2837         /* Now reenable external interrupts */
2838         spin_lock_irq(&adapter->work_lock);
2839         if (adapter->slow_intr_mask) {
2840                 adapter->slow_intr_mask |= F_T3DBG;
2841                 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2842                 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2843                              adapter->slow_intr_mask);
2844         }
2845         spin_unlock_irq(&adapter->work_lock);
2846 }
2847
2848 /*
2849  * Interrupt-context handler for external (PHY) interrupts.
2850  */
2851 void t3_os_ext_intr_handler(struct adapter *adapter)
2852 {
2853         /*
2854          * Schedule a task to handle external interrupts as they may be slow
2855          * and we use a mutex to protect MDIO registers.  We disable PHY
2856          * interrupts in the meantime and let the task reenable them when
2857          * it's done.
2858          */
2859         spin_lock(&adapter->work_lock);
2860         if (adapter->slow_intr_mask) {
2861                 adapter->slow_intr_mask &= ~F_T3DBG;
2862                 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2863                              adapter->slow_intr_mask);
2864                 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2865         }
2866         spin_unlock(&adapter->work_lock);
2867 }
2868
2869 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2870 {
2871         struct net_device *netdev = adapter->port[port_id];
2872         struct port_info *pi = netdev_priv(netdev);
2873
2874         spin_lock(&adapter->work_lock);
2875         pi->link_fault = 1;
2876         spin_unlock(&adapter->work_lock);
2877 }
2878
2879 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq)
2880 {
2881         int i, ret = 0;
2882
2883         if (is_offload(adapter) &&
2884             test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2885                 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2886                 offload_close(&adapter->tdev);
2887         }
2888
2889         /* Stop all ports */
2890         for_each_port(adapter, i) {
2891                 struct net_device *netdev = adapter->port[i];
2892
2893                 if (netif_running(netdev))
2894                         __cxgb_close(netdev, on_wq);
2895         }
2896
2897         /* Stop SGE timers */
2898         t3_stop_sge_timers(adapter);
2899
2900         adapter->flags &= ~FULL_INIT_DONE;
2901
2902         if (reset)
2903                 ret = t3_reset_adapter(adapter);
2904
2905         pci_disable_device(adapter->pdev);
2906
2907         return ret;
2908 }
2909
2910 static int t3_reenable_adapter(struct adapter *adapter)
2911 {
2912         if (pci_enable_device(adapter->pdev)) {
2913                 dev_err(&adapter->pdev->dev,
2914                         "Cannot re-enable PCI device after reset.\n");
2915                 goto err;
2916         }
2917         pci_set_master(adapter->pdev);
2918         pci_restore_state(adapter->pdev);
2919         pci_save_state(adapter->pdev);
2920
2921         /* Free sge resources */
2922         t3_free_sge_resources(adapter);
2923
2924         if (t3_replay_prep_adapter(adapter))
2925                 goto err;
2926
2927         return 0;
2928 err:
2929         return -1;
2930 }
2931
2932 static void t3_resume_ports(struct adapter *adapter)
2933 {
2934         int i;
2935
2936         /* Restart the ports */
2937         for_each_port(adapter, i) {
2938                 struct net_device *netdev = adapter->port[i];
2939
2940                 if (netif_running(netdev)) {
2941                         if (cxgb_open(netdev)) {
2942                                 dev_err(&adapter->pdev->dev,
2943                                         "can't bring device back up"
2944                                         " after reset\n");
2945                                 continue;
2946                         }
2947                 }
2948         }
2949
2950         if (is_offload(adapter) && !ofld_disable)
2951                 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2952 }
2953
2954 /*
2955  * processes a fatal error.
2956  * Bring the ports down, reset the chip, bring the ports back up.
2957  */
2958 static void fatal_error_task(struct work_struct *work)
2959 {
2960         struct adapter *adapter = container_of(work, struct adapter,
2961                                                fatal_error_handler_task);
2962         int err = 0;
2963
2964         rtnl_lock();
2965         err = t3_adapter_error(adapter, 1, 1);
2966         if (!err)
2967                 err = t3_reenable_adapter(adapter);
2968         if (!err)
2969                 t3_resume_ports(adapter);
2970
2971         CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2972         rtnl_unlock();
2973 }
2974
2975 void t3_fatal_err(struct adapter *adapter)
2976 {
2977         unsigned int fw_status[4];
2978
2979         if (adapter->flags & FULL_INIT_DONE) {
2980                 t3_sge_stop(adapter);
2981                 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2982                 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2983                 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2984                 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2985
2986                 spin_lock(&adapter->work_lock);
2987                 t3_intr_disable(adapter);
2988                 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2989                 spin_unlock(&adapter->work_lock);
2990         }
2991         CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2992         if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2993                 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2994                          fw_status[0], fw_status[1],
2995                          fw_status[2], fw_status[3]);
2996 }
2997
2998 /**
2999  * t3_io_error_detected - called when PCI error is detected
3000  * @pdev: Pointer to PCI device
3001  * @state: The current pci connection state
3002  *
3003  * This function is called after a PCI bus error affecting
3004  * this device has been detected.
3005  */
3006 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
3007                                              pci_channel_state_t state)
3008 {
3009         struct adapter *adapter = pci_get_drvdata(pdev);
3010
3011         if (state == pci_channel_io_perm_failure)
3012                 return PCI_ERS_RESULT_DISCONNECT;
3013
3014         t3_adapter_error(adapter, 0, 0);
3015
3016         /* Request a slot reset. */
3017         return PCI_ERS_RESULT_NEED_RESET;
3018 }
3019
3020 /**
3021  * t3_io_slot_reset - called after the pci bus has been reset.
3022  * @pdev: Pointer to PCI device
3023  *
3024  * Restart the card from scratch, as if from a cold-boot.
3025  */
3026 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3027 {
3028         struct adapter *adapter = pci_get_drvdata(pdev);
3029
3030         if (!t3_reenable_adapter(adapter))
3031                 return PCI_ERS_RESULT_RECOVERED;
3032
3033         return PCI_ERS_RESULT_DISCONNECT;
3034 }
3035
3036 /**
3037  * t3_io_resume - called when traffic can start flowing again.
3038  * @pdev: Pointer to PCI device
3039  *
3040  * This callback is called when the error recovery driver tells us that
3041  * its OK to resume normal operation.
3042  */
3043 static void t3_io_resume(struct pci_dev *pdev)
3044 {
3045         struct adapter *adapter = pci_get_drvdata(pdev);
3046
3047         CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3048                  t3_read_reg(adapter, A_PCIE_PEX_ERR));
3049
3050         t3_resume_ports(adapter);
3051 }
3052
3053 static struct pci_error_handlers t3_err_handler = {
3054         .error_detected = t3_io_error_detected,
3055         .slot_reset = t3_io_slot_reset,
3056         .resume = t3_io_resume,
3057 };
3058
3059 /*
3060  * Set the number of qsets based on the number of CPUs and the number of ports,
3061  * not to exceed the number of available qsets, assuming there are enough qsets
3062  * per port in HW.
3063  */
3064 static void set_nqsets(struct adapter *adap)
3065 {
3066         int i, j = 0;
3067         int num_cpus = num_online_cpus();
3068         int hwports = adap->params.nports;
3069         int nqsets = adap->msix_nvectors - 1;
3070
3071         if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3072                 if (hwports == 2 &&
3073                     (hwports * nqsets > SGE_QSETS ||
3074                      num_cpus >= nqsets / hwports))
3075                         nqsets /= hwports;
3076                 if (nqsets > num_cpus)
3077                         nqsets = num_cpus;
3078                 if (nqsets < 1 || hwports == 4)
3079                         nqsets = 1;
3080         } else
3081                 nqsets = 1;
3082
3083         for_each_port(adap, i) {
3084                 struct port_info *pi = adap2pinfo(adap, i);
3085
3086                 pi->first_qset = j;
3087                 pi->nqsets = nqsets;
3088                 j = pi->first_qset + nqsets;
3089
3090                 dev_info(&adap->pdev->dev,
3091                          "Port %d using %d queue sets.\n", i, nqsets);
3092         }
3093 }
3094
3095 static int __devinit cxgb_enable_msix(struct adapter *adap)
3096 {
3097         struct msix_entry entries[SGE_QSETS + 1];
3098         int vectors;
3099         int i, err;
3100
3101         vectors = ARRAY_SIZE(entries);
3102         for (i = 0; i < vectors; ++i)
3103                 entries[i].entry = i;
3104
3105         while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
3106                 vectors = err;
3107
3108         if (err < 0)
3109                 pci_disable_msix(adap->pdev);
3110
3111         if (!err && vectors < (adap->params.nports + 1)) {
3112                 pci_disable_msix(adap->pdev);
3113                 err = -1;
3114         }
3115
3116         if (!err) {
3117                 for (i = 0; i < vectors; ++i)
3118                         adap->msix_info[i].vec = entries[i].vector;
3119                 adap->msix_nvectors = vectors;
3120         }
3121
3122         return err;
3123 }
3124
3125 static void __devinit print_port_info(struct adapter *adap,
3126                                       const struct adapter_info *ai)
3127 {
3128         static const char *pci_variant[] = {
3129                 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3130         };
3131
3132         int i;
3133         char buf[80];
3134
3135         if (is_pcie(adap))
3136                 snprintf(buf, sizeof(buf), "%s x%d",
3137                          pci_variant[adap->params.pci.variant],
3138                          adap->params.pci.width);
3139         else
3140                 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3141                          pci_variant[adap->params.pci.variant],
3142                          adap->params.pci.speed, adap->params.pci.width);
3143
3144         for_each_port(adap, i) {
3145                 struct net_device *dev = adap->port[i];
3146                 const struct port_info *pi = netdev_priv(dev);
3147
3148                 if (!test_bit(i, &adap->registered_device_map))
3149                         continue;
3150                 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n",
3151                        dev->name, ai->desc, pi->phy.desc,
3152                        is_offload(adap) ? "R" : "", adap->params.rev, buf,
3153                        (adap->flags & USING_MSIX) ? " MSI-X" :
3154                        (adap->flags & USING_MSI) ? " MSI" : "");
3155                 if (adap->name == dev->name && adap->params.vpd.mclk)
3156                         printk(KERN_INFO
3157                                "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3158                                adap->name, t3_mc7_size(&adap->cm) >> 20,
3159                                t3_mc7_size(&adap->pmtx) >> 20,
3160                                t3_mc7_size(&adap->pmrx) >> 20,
3161                                adap->params.vpd.sn);
3162         }
3163 }
3164
3165 static const struct net_device_ops cxgb_netdev_ops = {
3166         .ndo_open               = cxgb_open,
3167         .ndo_stop               = cxgb_close,
3168         .ndo_start_xmit         = t3_eth_xmit,
3169         .ndo_get_stats          = cxgb_get_stats,
3170         .ndo_validate_addr      = eth_validate_addr,
3171         .ndo_set_multicast_list = cxgb_set_rxmode,
3172         .ndo_do_ioctl           = cxgb_ioctl,
3173         .ndo_change_mtu         = cxgb_change_mtu,
3174         .ndo_set_mac_address    = cxgb_set_mac_addr,
3175         .ndo_vlan_rx_register   = vlan_rx_register,
3176 #ifdef CONFIG_NET_POLL_CONTROLLER
3177         .ndo_poll_controller    = cxgb_netpoll,
3178 #endif
3179 };
3180
3181 static void __devinit cxgb3_init_iscsi_mac(struct net_device *dev)
3182 {
3183         struct port_info *pi = netdev_priv(dev);
3184
3185         memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3186         pi->iscsic.mac_addr[3] |= 0x80;
3187 }
3188
3189 static int __devinit init_one(struct pci_dev *pdev,
3190                               const struct pci_device_id *ent)
3191 {
3192         static int version_printed;
3193
3194         int i, err, pci_using_dac = 0;
3195         resource_size_t mmio_start, mmio_len;
3196         const struct adapter_info *ai;
3197         struct adapter *adapter = NULL;
3198         struct port_info *pi;
3199
3200         if (!version_printed) {
3201                 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3202                 ++version_printed;
3203         }
3204
3205         if (!cxgb3_wq) {
3206                 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3207                 if (!cxgb3_wq) {
3208                         printk(KERN_ERR DRV_NAME
3209                                ": cannot initialize work queue\n");
3210                         return -ENOMEM;
3211                 }
3212         }
3213
3214         err = pci_enable_device(pdev);
3215         if (err) {
3216                 dev_err(&pdev->dev, "cannot enable PCI device\n");
3217                 goto out;
3218         }
3219
3220         err = pci_request_regions(pdev, DRV_NAME);
3221         if (err) {
3222                 /* Just info, some other driver may have claimed the device. */
3223                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3224                 goto out_disable_device;
3225         }
3226
3227         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3228                 pci_using_dac = 1;
3229                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3230                 if (err) {
3231                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3232                                "coherent allocations\n");
3233                         goto out_release_regions;
3234                 }
3235         } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3236                 dev_err(&pdev->dev, "no usable DMA configuration\n");
3237                 goto out_release_regions;
3238         }
3239
3240         pci_set_master(pdev);
3241         pci_save_state(pdev);
3242
3243         mmio_start = pci_resource_start(pdev, 0);
3244         mmio_len = pci_resource_len(pdev, 0);
3245         ai = t3_get_adapter_info(ent->driver_data);
3246
3247         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3248         if (!adapter) {
3249                 err = -ENOMEM;
3250                 goto out_release_regions;
3251         }
3252
3253         adapter->nofail_skb =
3254                 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3255         if (!adapter->nofail_skb) {
3256                 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3257                 err = -ENOMEM;
3258                 goto out_free_adapter;
3259         }
3260
3261         adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3262         if (!adapter->regs) {
3263                 dev_err(&pdev->dev, "cannot map device registers\n");
3264                 err = -ENOMEM;
3265                 goto out_free_adapter;
3266         }
3267
3268         adapter->pdev = pdev;
3269         adapter->name = pci_name(pdev);
3270         adapter->msg_enable = dflt_msg_enable;
3271         adapter->mmio_len = mmio_len;
3272
3273         mutex_init(&adapter->mdio_lock);
3274         spin_lock_init(&adapter->work_lock);
3275         spin_lock_init(&adapter->stats_lock);
3276
3277         INIT_LIST_HEAD(&adapter->adapter_list);
3278         INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3279         INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3280
3281         INIT_WORK(&adapter->db_full_task, db_full_task);
3282         INIT_WORK(&adapter->db_empty_task, db_empty_task);
3283         INIT_WORK(&adapter->db_drop_task, db_drop_task);
3284
3285         INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3286
3287         for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3288                 struct net_device *netdev;
3289
3290                 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3291                 if (!netdev) {
3292                         err = -ENOMEM;
3293                         goto out_free_dev;
3294                 }
3295
3296                 SET_NETDEV_DEV(netdev, &pdev->dev);
3297
3298                 adapter->port[i] = netdev;
3299                 pi = netdev_priv(netdev);
3300                 pi->adapter = adapter;
3301                 pi->rx_offload = T3_RX_CSUM | T3_LRO;
3302                 pi->port_id = i;
3303                 netif_carrier_off(netdev);
3304                 netdev->irq = pdev->irq;
3305                 netdev->mem_start = mmio_start;
3306                 netdev->mem_end = mmio_start + mmio_len - 1;
3307                 netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3308                 netdev->features |= NETIF_F_GRO;
3309                 if (pci_using_dac)
3310                         netdev->features |= NETIF_F_HIGHDMA;
3311
3312                 netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3313                 netdev->netdev_ops = &cxgb_netdev_ops;
3314                 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3315         }
3316
3317         pci_set_drvdata(pdev, adapter);
3318         if (t3_prep_adapter(adapter, ai, 1) < 0) {
3319                 err = -ENODEV;
3320                 goto out_free_dev;
3321         }
3322
3323         /*
3324          * The card is now ready to go.  If any errors occur during device
3325          * registration we do not fail the whole card but rather proceed only
3326          * with the ports we manage to register successfully.  However we must
3327          * register at least one net device.
3328          */
3329         for_each_port(adapter, i) {
3330                 err = register_netdev(adapter->port[i]);
3331                 if (err)
3332                         dev_warn(&pdev->dev,
3333                                  "cannot register net device %s, skipping\n",
3334                                  adapter->port[i]->name);
3335                 else {
3336                         /*
3337                          * Change the name we use for messages to the name of
3338                          * the first successfully registered interface.
3339                          */
3340                         if (!adapter->registered_device_map)
3341                                 adapter->name = adapter->port[i]->name;
3342
3343                         __set_bit(i, &adapter->registered_device_map);
3344                 }
3345         }
3346         if (!adapter->registered_device_map) {
3347                 dev_err(&pdev->dev, "could not register any net devices\n");
3348                 goto out_free_dev;
3349         }
3350
3351         for_each_port(adapter, i)
3352                 cxgb3_init_iscsi_mac(adapter->port[i]);
3353
3354         /* Driver's ready. Reflect it on LEDs */
3355         t3_led_ready(adapter);
3356
3357         if (is_offload(adapter)) {
3358                 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3359                 cxgb3_adapter_ofld(adapter);
3360         }
3361
3362         /* See what interrupts we'll be using */
3363         if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3364                 adapter->flags |= USING_MSIX;
3365         else if (msi > 0 && pci_enable_msi(pdev) == 0)
3366                 adapter->flags |= USING_MSI;
3367
3368         set_nqsets(adapter);
3369
3370         err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3371                                  &cxgb3_attr_group);
3372
3373         print_port_info(adapter, ai);
3374         return 0;
3375
3376 out_free_dev:
3377         iounmap(adapter->regs);
3378         for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3379                 if (adapter->port[i])
3380                         free_netdev(adapter->port[i]);
3381
3382 out_free_adapter:
3383         kfree(adapter);
3384
3385 out_release_regions:
3386         pci_release_regions(pdev);
3387 out_disable_device:
3388         pci_disable_device(pdev);
3389         pci_set_drvdata(pdev, NULL);
3390 out:
3391         return err;
3392 }
3393
3394 static void __devexit remove_one(struct pci_dev *pdev)
3395 {
3396         struct adapter *adapter = pci_get_drvdata(pdev);
3397
3398         if (adapter) {
3399                 int i;
3400
3401                 t3_sge_stop(adapter);
3402                 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3403                                    &cxgb3_attr_group);
3404
3405                 if (is_offload(adapter)) {
3406                         cxgb3_adapter_unofld(adapter);
3407                         if (test_bit(OFFLOAD_DEVMAP_BIT,
3408                                      &adapter->open_device_map))
3409                                 offload_close(&adapter->tdev);
3410                 }
3411
3412                 for_each_port(adapter, i)
3413                     if (test_bit(i, &adapter->registered_device_map))
3414                         unregister_netdev(adapter->port[i]);
3415
3416                 t3_stop_sge_timers(adapter);
3417                 t3_free_sge_resources(adapter);
3418                 cxgb_disable_msi(adapter);
3419
3420                 for_each_port(adapter, i)
3421                         if (adapter->port[i])
3422                                 free_netdev(adapter->port[i]);
3423
3424                 iounmap(adapter->regs);
3425                 if (adapter->nofail_skb)
3426                         kfree_skb(adapter->nofail_skb);
3427                 kfree(adapter);
3428                 pci_release_regions(pdev);
3429                 pci_disable_device(pdev);
3430                 pci_set_drvdata(pdev, NULL);
3431         }
3432 }
3433
3434 static struct pci_driver driver = {
3435         .name = DRV_NAME,
3436         .id_table = cxgb3_pci_tbl,
3437         .probe = init_one,
3438         .remove = __devexit_p(remove_one),
3439         .err_handler = &t3_err_handler,
3440 };
3441
3442 static int __init cxgb3_init_module(void)
3443 {
3444         int ret;
3445
3446         cxgb3_offload_init();
3447
3448         ret = pci_register_driver(&driver);
3449         return ret;
3450 }
3451
3452 static void __exit cxgb3_cleanup_module(void)
3453 {
3454         pci_unregister_driver(&driver);
3455         if (cxgb3_wq)
3456                 destroy_workqueue(cxgb3_wq);
3457 }
3458
3459 module_init(cxgb3_init_module);
3460 module_exit(cxgb3_cleanup_module);