Merge branch 'misc' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[pandora-kernel.git] / drivers / net / can / dev.c
1 /*
2  * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3  * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4  * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the version 2 of the GNU General Public License
8  * as published by the Free Software Foundation
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/netdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/can.h>
25 #include <linux/can/dev.h>
26 #include <linux/can/skb.h>
27 #include <linux/can/netlink.h>
28 #include <linux/can/led.h>
29 #include <net/rtnetlink.h>
30
31 #define MOD_DESC "CAN device driver interface"
32
33 MODULE_DESCRIPTION(MOD_DESC);
34 MODULE_LICENSE("GPL v2");
35 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
36
37 /* CAN DLC to real data length conversion helpers */
38
39 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
40                              8, 12, 16, 20, 24, 32, 48, 64};
41
42 /* get data length from can_dlc with sanitized can_dlc */
43 u8 can_dlc2len(u8 can_dlc)
44 {
45         return dlc2len[can_dlc & 0x0F];
46 }
47 EXPORT_SYMBOL_GPL(can_dlc2len);
48
49 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,         /* 0 - 8 */
50                              9, 9, 9, 9,                        /* 9 - 12 */
51                              10, 10, 10, 10,                    /* 13 - 16 */
52                              11, 11, 11, 11,                    /* 17 - 20 */
53                              12, 12, 12, 12,                    /* 21 - 24 */
54                              13, 13, 13, 13, 13, 13, 13, 13,    /* 25 - 32 */
55                              14, 14, 14, 14, 14, 14, 14, 14,    /* 33 - 40 */
56                              14, 14, 14, 14, 14, 14, 14, 14,    /* 41 - 48 */
57                              15, 15, 15, 15, 15, 15, 15, 15,    /* 49 - 56 */
58                              15, 15, 15, 15, 15, 15, 15, 15};   /* 57 - 64 */
59
60 /* map the sanitized data length to an appropriate data length code */
61 u8 can_len2dlc(u8 len)
62 {
63         if (unlikely(len > 64))
64                 return 0xF;
65
66         return len2dlc[len];
67 }
68 EXPORT_SYMBOL_GPL(can_len2dlc);
69
70 #ifdef CONFIG_CAN_CALC_BITTIMING
71 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
72
73 /*
74  * Bit-timing calculation derived from:
75  *
76  * Code based on LinCAN sources and H8S2638 project
77  * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
78  * Copyright 2005      Stanislav Marek
79  * email: pisa@cmp.felk.cvut.cz
80  *
81  * Calculates proper bit-timing parameters for a specified bit-rate
82  * and sample-point, which can then be used to set the bit-timing
83  * registers of the CAN controller. You can find more information
84  * in the header file linux/can/netlink.h.
85  */
86 static int can_update_spt(const struct can_bittiming_const *btc,
87                           int sampl_pt, int tseg, int *tseg1, int *tseg2)
88 {
89         *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
90         if (*tseg2 < btc->tseg2_min)
91                 *tseg2 = btc->tseg2_min;
92         if (*tseg2 > btc->tseg2_max)
93                 *tseg2 = btc->tseg2_max;
94         *tseg1 = tseg - *tseg2;
95         if (*tseg1 > btc->tseg1_max) {
96                 *tseg1 = btc->tseg1_max;
97                 *tseg2 = tseg - *tseg1;
98         }
99         return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
100 }
101
102 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
103                               const struct can_bittiming_const *btc)
104 {
105         struct can_priv *priv = netdev_priv(dev);
106         long best_error = 1000000000, error = 0;
107         int best_tseg = 0, best_brp = 0, brp = 0;
108         int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
109         int spt_error = 1000, spt = 0, sampl_pt;
110         long rate;
111         u64 v64;
112
113         /* Use CiA recommended sample points */
114         if (bt->sample_point) {
115                 sampl_pt = bt->sample_point;
116         } else {
117                 if (bt->bitrate > 800000)
118                         sampl_pt = 750;
119                 else if (bt->bitrate > 500000)
120                         sampl_pt = 800;
121                 else
122                         sampl_pt = 875;
123         }
124
125         /* tseg even = round down, odd = round up */
126         for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
127              tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
128                 tsegall = 1 + tseg / 2;
129                 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
130                 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
131                 /* chose brp step which is possible in system */
132                 brp = (brp / btc->brp_inc) * btc->brp_inc;
133                 if ((brp < btc->brp_min) || (brp > btc->brp_max))
134                         continue;
135                 rate = priv->clock.freq / (brp * tsegall);
136                 error = bt->bitrate - rate;
137                 /* tseg brp biterror */
138                 if (error < 0)
139                         error = -error;
140                 if (error > best_error)
141                         continue;
142                 best_error = error;
143                 if (error == 0) {
144                         spt = can_update_spt(btc, sampl_pt, tseg / 2,
145                                              &tseg1, &tseg2);
146                         error = sampl_pt - spt;
147                         if (error < 0)
148                                 error = -error;
149                         if (error > spt_error)
150                                 continue;
151                         spt_error = error;
152                 }
153                 best_tseg = tseg / 2;
154                 best_brp = brp;
155                 if (error == 0)
156                         break;
157         }
158
159         if (best_error) {
160                 /* Error in one-tenth of a percent */
161                 error = (best_error * 1000) / bt->bitrate;
162                 if (error > CAN_CALC_MAX_ERROR) {
163                         netdev_err(dev,
164                                    "bitrate error %ld.%ld%% too high\n",
165                                    error / 10, error % 10);
166                         return -EDOM;
167                 } else {
168                         netdev_warn(dev, "bitrate error %ld.%ld%%\n",
169                                     error / 10, error % 10);
170                 }
171         }
172
173         /* real sample point */
174         bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
175                                           &tseg1, &tseg2);
176
177         v64 = (u64)best_brp * 1000000000UL;
178         do_div(v64, priv->clock.freq);
179         bt->tq = (u32)v64;
180         bt->prop_seg = tseg1 / 2;
181         bt->phase_seg1 = tseg1 - bt->prop_seg;
182         bt->phase_seg2 = tseg2;
183
184         /* check for sjw user settings */
185         if (!bt->sjw || !btc->sjw_max)
186                 bt->sjw = 1;
187         else {
188                 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
189                 if (bt->sjw > btc->sjw_max)
190                         bt->sjw = btc->sjw_max;
191                 /* bt->sjw must not be higher than tseg2 */
192                 if (tseg2 < bt->sjw)
193                         bt->sjw = tseg2;
194         }
195
196         bt->brp = best_brp;
197         /* real bit-rate */
198         bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
199
200         return 0;
201 }
202 #else /* !CONFIG_CAN_CALC_BITTIMING */
203 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
204                               const struct can_bittiming_const *btc)
205 {
206         netdev_err(dev, "bit-timing calculation not available\n");
207         return -EINVAL;
208 }
209 #endif /* CONFIG_CAN_CALC_BITTIMING */
210
211 /*
212  * Checks the validity of the specified bit-timing parameters prop_seg,
213  * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
214  * prescaler value brp. You can find more information in the header
215  * file linux/can/netlink.h.
216  */
217 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
218                                const struct can_bittiming_const *btc)
219 {
220         struct can_priv *priv = netdev_priv(dev);
221         int tseg1, alltseg;
222         u64 brp64;
223
224         tseg1 = bt->prop_seg + bt->phase_seg1;
225         if (!bt->sjw)
226                 bt->sjw = 1;
227         if (bt->sjw > btc->sjw_max ||
228             tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
229             bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
230                 return -ERANGE;
231
232         brp64 = (u64)priv->clock.freq * (u64)bt->tq;
233         if (btc->brp_inc > 1)
234                 do_div(brp64, btc->brp_inc);
235         brp64 += 500000000UL - 1;
236         do_div(brp64, 1000000000UL); /* the practicable BRP */
237         if (btc->brp_inc > 1)
238                 brp64 *= btc->brp_inc;
239         bt->brp = (u32)brp64;
240
241         if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
242                 return -EINVAL;
243
244         alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
245         bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
246         bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
247
248         return 0;
249 }
250
251 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
252                              const struct can_bittiming_const *btc)
253 {
254         int err;
255
256         /* Check if the CAN device has bit-timing parameters */
257         if (!btc)
258                 return -EOPNOTSUPP;
259
260         /*
261          * Depending on the given can_bittiming parameter structure the CAN
262          * timing parameters are calculated based on the provided bitrate OR
263          * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
264          * provided directly which are then checked and fixed up.
265          */
266         if (!bt->tq && bt->bitrate)
267                 err = can_calc_bittiming(dev, bt, btc);
268         else if (bt->tq && !bt->bitrate)
269                 err = can_fixup_bittiming(dev, bt, btc);
270         else
271                 err = -EINVAL;
272
273         return err;
274 }
275
276 static void can_update_state_error_stats(struct net_device *dev,
277                                          enum can_state new_state)
278 {
279         struct can_priv *priv = netdev_priv(dev);
280
281         if (new_state <= priv->state)
282                 return;
283
284         switch (new_state) {
285         case CAN_STATE_ERROR_WARNING:
286                 priv->can_stats.error_warning++;
287                 break;
288         case CAN_STATE_ERROR_PASSIVE:
289                 priv->can_stats.error_passive++;
290                 break;
291         case CAN_STATE_BUS_OFF:
292         default:
293                 break;
294         };
295 }
296
297 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
298 {
299         switch (state) {
300         case CAN_STATE_ERROR_ACTIVE:
301                 return CAN_ERR_CRTL_ACTIVE;
302         case CAN_STATE_ERROR_WARNING:
303                 return CAN_ERR_CRTL_TX_WARNING;
304         case CAN_STATE_ERROR_PASSIVE:
305                 return CAN_ERR_CRTL_TX_PASSIVE;
306         default:
307                 return 0;
308         }
309 }
310
311 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
312 {
313         switch (state) {
314         case CAN_STATE_ERROR_ACTIVE:
315                 return CAN_ERR_CRTL_ACTIVE;
316         case CAN_STATE_ERROR_WARNING:
317                 return CAN_ERR_CRTL_RX_WARNING;
318         case CAN_STATE_ERROR_PASSIVE:
319                 return CAN_ERR_CRTL_RX_PASSIVE;
320         default:
321                 return 0;
322         }
323 }
324
325 void can_change_state(struct net_device *dev, struct can_frame *cf,
326                       enum can_state tx_state, enum can_state rx_state)
327 {
328         struct can_priv *priv = netdev_priv(dev);
329         enum can_state new_state = max(tx_state, rx_state);
330
331         if (unlikely(new_state == priv->state)) {
332                 netdev_warn(dev, "%s: oops, state did not change", __func__);
333                 return;
334         }
335
336         netdev_dbg(dev, "New error state: %d\n", new_state);
337
338         can_update_state_error_stats(dev, new_state);
339         priv->state = new_state;
340
341         if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
342                 cf->can_id |= CAN_ERR_BUSOFF;
343                 return;
344         }
345
346         cf->can_id |= CAN_ERR_CRTL;
347         cf->data[1] |= tx_state >= rx_state ?
348                        can_tx_state_to_frame(dev, tx_state) : 0;
349         cf->data[1] |= tx_state <= rx_state ?
350                        can_rx_state_to_frame(dev, rx_state) : 0;
351 }
352 EXPORT_SYMBOL_GPL(can_change_state);
353
354 /*
355  * Local echo of CAN messages
356  *
357  * CAN network devices *should* support a local echo functionality
358  * (see Documentation/networking/can.txt). To test the handling of CAN
359  * interfaces that do not support the local echo both driver types are
360  * implemented. In the case that the driver does not support the echo
361  * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
362  * to perform the echo as a fallback solution.
363  */
364 static void can_flush_echo_skb(struct net_device *dev)
365 {
366         struct can_priv *priv = netdev_priv(dev);
367         struct net_device_stats *stats = &dev->stats;
368         int i;
369
370         for (i = 0; i < priv->echo_skb_max; i++) {
371                 if (priv->echo_skb[i]) {
372                         kfree_skb(priv->echo_skb[i]);
373                         priv->echo_skb[i] = NULL;
374                         stats->tx_dropped++;
375                         stats->tx_aborted_errors++;
376                 }
377         }
378 }
379
380 /*
381  * Put the skb on the stack to be looped backed locally lateron
382  *
383  * The function is typically called in the start_xmit function
384  * of the device driver. The driver must protect access to
385  * priv->echo_skb, if necessary.
386  */
387 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
388                       unsigned int idx)
389 {
390         struct can_priv *priv = netdev_priv(dev);
391
392         BUG_ON(idx >= priv->echo_skb_max);
393
394         /* check flag whether this packet has to be looped back */
395         if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
396             (skb->protocol != htons(ETH_P_CAN) &&
397              skb->protocol != htons(ETH_P_CANFD))) {
398                 kfree_skb(skb);
399                 return;
400         }
401
402         if (!priv->echo_skb[idx]) {
403
404                 skb = can_create_echo_skb(skb);
405                 if (!skb)
406                         return;
407
408                 /* make settings for echo to reduce code in irq context */
409                 skb->pkt_type = PACKET_BROADCAST;
410                 skb->ip_summed = CHECKSUM_UNNECESSARY;
411                 skb->dev = dev;
412
413                 /* save this skb for tx interrupt echo handling */
414                 priv->echo_skb[idx] = skb;
415         } else {
416                 /* locking problem with netif_stop_queue() ?? */
417                 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
418                 kfree_skb(skb);
419         }
420 }
421 EXPORT_SYMBOL_GPL(can_put_echo_skb);
422
423 /*
424  * Get the skb from the stack and loop it back locally
425  *
426  * The function is typically called when the TX done interrupt
427  * is handled in the device driver. The driver must protect
428  * access to priv->echo_skb, if necessary.
429  */
430 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
431 {
432         struct can_priv *priv = netdev_priv(dev);
433
434         BUG_ON(idx >= priv->echo_skb_max);
435
436         if (priv->echo_skb[idx]) {
437                 struct sk_buff *skb = priv->echo_skb[idx];
438                 struct can_frame *cf = (struct can_frame *)skb->data;
439                 u8 dlc = cf->can_dlc;
440
441                 netif_rx(priv->echo_skb[idx]);
442                 priv->echo_skb[idx] = NULL;
443
444                 return dlc;
445         }
446
447         return 0;
448 }
449 EXPORT_SYMBOL_GPL(can_get_echo_skb);
450
451 /*
452   * Remove the skb from the stack and free it.
453   *
454   * The function is typically called when TX failed.
455   */
456 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
457 {
458         struct can_priv *priv = netdev_priv(dev);
459
460         BUG_ON(idx >= priv->echo_skb_max);
461
462         if (priv->echo_skb[idx]) {
463                 dev_kfree_skb_any(priv->echo_skb[idx]);
464                 priv->echo_skb[idx] = NULL;
465         }
466 }
467 EXPORT_SYMBOL_GPL(can_free_echo_skb);
468
469 /*
470  * CAN device restart for bus-off recovery
471  */
472 static void can_restart(unsigned long data)
473 {
474         struct net_device *dev = (struct net_device *)data;
475         struct can_priv *priv = netdev_priv(dev);
476         struct net_device_stats *stats = &dev->stats;
477         struct sk_buff *skb;
478         struct can_frame *cf;
479         int err;
480
481         BUG_ON(netif_carrier_ok(dev));
482
483         /*
484          * No synchronization needed because the device is bus-off and
485          * no messages can come in or go out.
486          */
487         can_flush_echo_skb(dev);
488
489         /* send restart message upstream */
490         skb = alloc_can_err_skb(dev, &cf);
491         if (skb == NULL) {
492                 err = -ENOMEM;
493                 goto restart;
494         }
495         cf->can_id |= CAN_ERR_RESTARTED;
496
497         netif_rx(skb);
498
499         stats->rx_packets++;
500         stats->rx_bytes += cf->can_dlc;
501
502 restart:
503         netdev_dbg(dev, "restarted\n");
504         priv->can_stats.restarts++;
505
506         /* Now restart the device */
507         err = priv->do_set_mode(dev, CAN_MODE_START);
508
509         netif_carrier_on(dev);
510         if (err)
511                 netdev_err(dev, "Error %d during restart", err);
512 }
513
514 int can_restart_now(struct net_device *dev)
515 {
516         struct can_priv *priv = netdev_priv(dev);
517
518         /*
519          * A manual restart is only permitted if automatic restart is
520          * disabled and the device is in the bus-off state
521          */
522         if (priv->restart_ms)
523                 return -EINVAL;
524         if (priv->state != CAN_STATE_BUS_OFF)
525                 return -EBUSY;
526
527         /* Runs as soon as possible in the timer context */
528         mod_timer(&priv->restart_timer, jiffies);
529
530         return 0;
531 }
532
533 /*
534  * CAN bus-off
535  *
536  * This functions should be called when the device goes bus-off to
537  * tell the netif layer that no more packets can be sent or received.
538  * If enabled, a timer is started to trigger bus-off recovery.
539  */
540 void can_bus_off(struct net_device *dev)
541 {
542         struct can_priv *priv = netdev_priv(dev);
543
544         netdev_dbg(dev, "bus-off\n");
545
546         netif_carrier_off(dev);
547         priv->can_stats.bus_off++;
548
549         if (priv->restart_ms)
550                 mod_timer(&priv->restart_timer,
551                           jiffies + (priv->restart_ms * HZ) / 1000);
552 }
553 EXPORT_SYMBOL_GPL(can_bus_off);
554
555 static void can_setup(struct net_device *dev)
556 {
557         dev->type = ARPHRD_CAN;
558         dev->mtu = CAN_MTU;
559         dev->hard_header_len = 0;
560         dev->addr_len = 0;
561         dev->tx_queue_len = 10;
562
563         /* New-style flags. */
564         dev->flags = IFF_NOARP;
565         dev->features = NETIF_F_HW_CSUM;
566 }
567
568 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
569 {
570         struct sk_buff *skb;
571
572         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
573                                sizeof(struct can_frame));
574         if (unlikely(!skb))
575                 return NULL;
576
577         skb->protocol = htons(ETH_P_CAN);
578         skb->pkt_type = PACKET_BROADCAST;
579         skb->ip_summed = CHECKSUM_UNNECESSARY;
580
581         can_skb_reserve(skb);
582         can_skb_prv(skb)->ifindex = dev->ifindex;
583
584         *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
585         memset(*cf, 0, sizeof(struct can_frame));
586
587         return skb;
588 }
589 EXPORT_SYMBOL_GPL(alloc_can_skb);
590
591 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
592                                 struct canfd_frame **cfd)
593 {
594         struct sk_buff *skb;
595
596         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
597                                sizeof(struct canfd_frame));
598         if (unlikely(!skb))
599                 return NULL;
600
601         skb->protocol = htons(ETH_P_CANFD);
602         skb->pkt_type = PACKET_BROADCAST;
603         skb->ip_summed = CHECKSUM_UNNECESSARY;
604
605         can_skb_reserve(skb);
606         can_skb_prv(skb)->ifindex = dev->ifindex;
607
608         *cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
609         memset(*cfd, 0, sizeof(struct canfd_frame));
610
611         return skb;
612 }
613 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
614
615 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
616 {
617         struct sk_buff *skb;
618
619         skb = alloc_can_skb(dev, cf);
620         if (unlikely(!skb))
621                 return NULL;
622
623         (*cf)->can_id = CAN_ERR_FLAG;
624         (*cf)->can_dlc = CAN_ERR_DLC;
625
626         return skb;
627 }
628 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
629
630 /*
631  * Allocate and setup space for the CAN network device
632  */
633 struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
634 {
635         struct net_device *dev;
636         struct can_priv *priv;
637         int size;
638
639         if (echo_skb_max)
640                 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
641                         echo_skb_max * sizeof(struct sk_buff *);
642         else
643                 size = sizeof_priv;
644
645         dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
646         if (!dev)
647                 return NULL;
648
649         priv = netdev_priv(dev);
650
651         if (echo_skb_max) {
652                 priv->echo_skb_max = echo_skb_max;
653                 priv->echo_skb = (void *)priv +
654                         ALIGN(sizeof_priv, sizeof(struct sk_buff *));
655         }
656
657         priv->state = CAN_STATE_STOPPED;
658
659         init_timer(&priv->restart_timer);
660
661         return dev;
662 }
663 EXPORT_SYMBOL_GPL(alloc_candev);
664
665 /*
666  * Free space of the CAN network device
667  */
668 void free_candev(struct net_device *dev)
669 {
670         free_netdev(dev);
671 }
672 EXPORT_SYMBOL_GPL(free_candev);
673
674 /*
675  * changing MTU and control mode for CAN/CANFD devices
676  */
677 int can_change_mtu(struct net_device *dev, int new_mtu)
678 {
679         struct can_priv *priv = netdev_priv(dev);
680
681         /* Do not allow changing the MTU while running */
682         if (dev->flags & IFF_UP)
683                 return -EBUSY;
684
685         /* allow change of MTU according to the CANFD ability of the device */
686         switch (new_mtu) {
687         case CAN_MTU:
688                 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
689                 break;
690
691         case CANFD_MTU:
692                 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD))
693                         return -EINVAL;
694
695                 priv->ctrlmode |= CAN_CTRLMODE_FD;
696                 break;
697
698         default:
699                 return -EINVAL;
700         }
701
702         dev->mtu = new_mtu;
703         return 0;
704 }
705 EXPORT_SYMBOL_GPL(can_change_mtu);
706
707 /*
708  * Common open function when the device gets opened.
709  *
710  * This function should be called in the open function of the device
711  * driver.
712  */
713 int open_candev(struct net_device *dev)
714 {
715         struct can_priv *priv = netdev_priv(dev);
716
717         if (!priv->bittiming.bitrate) {
718                 netdev_err(dev, "bit-timing not yet defined\n");
719                 return -EINVAL;
720         }
721
722         /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
723         if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
724             (!priv->data_bittiming.bitrate ||
725              (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
726                 netdev_err(dev, "incorrect/missing data bit-timing\n");
727                 return -EINVAL;
728         }
729
730         /* Switch carrier on if device was stopped while in bus-off state */
731         if (!netif_carrier_ok(dev))
732                 netif_carrier_on(dev);
733
734         setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
735
736         return 0;
737 }
738 EXPORT_SYMBOL_GPL(open_candev);
739
740 /*
741  * Common close function for cleanup before the device gets closed.
742  *
743  * This function should be called in the close function of the device
744  * driver.
745  */
746 void close_candev(struct net_device *dev)
747 {
748         struct can_priv *priv = netdev_priv(dev);
749
750         del_timer_sync(&priv->restart_timer);
751         can_flush_echo_skb(dev);
752 }
753 EXPORT_SYMBOL_GPL(close_candev);
754
755 /*
756  * CAN netlink interface
757  */
758 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
759         [IFLA_CAN_STATE]        = { .type = NLA_U32 },
760         [IFLA_CAN_CTRLMODE]     = { .len = sizeof(struct can_ctrlmode) },
761         [IFLA_CAN_RESTART_MS]   = { .type = NLA_U32 },
762         [IFLA_CAN_RESTART]      = { .type = NLA_U32 },
763         [IFLA_CAN_BITTIMING]    = { .len = sizeof(struct can_bittiming) },
764         [IFLA_CAN_BITTIMING_CONST]
765                                 = { .len = sizeof(struct can_bittiming_const) },
766         [IFLA_CAN_CLOCK]        = { .len = sizeof(struct can_clock) },
767         [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
768         [IFLA_CAN_DATA_BITTIMING]
769                                 = { .len = sizeof(struct can_bittiming) },
770         [IFLA_CAN_DATA_BITTIMING_CONST]
771                                 = { .len = sizeof(struct can_bittiming_const) },
772 };
773
774 static int can_changelink(struct net_device *dev,
775                           struct nlattr *tb[], struct nlattr *data[])
776 {
777         struct can_priv *priv = netdev_priv(dev);
778         int err;
779
780         /* We need synchronization with dev->stop() */
781         ASSERT_RTNL();
782
783         if (data[IFLA_CAN_BITTIMING]) {
784                 struct can_bittiming bt;
785
786                 /* Do not allow changing bittiming while running */
787                 if (dev->flags & IFF_UP)
788                         return -EBUSY;
789                 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
790                 err = can_get_bittiming(dev, &bt, priv->bittiming_const);
791                 if (err)
792                         return err;
793                 memcpy(&priv->bittiming, &bt, sizeof(bt));
794
795                 if (priv->do_set_bittiming) {
796                         /* Finally, set the bit-timing registers */
797                         err = priv->do_set_bittiming(dev);
798                         if (err)
799                                 return err;
800                 }
801         }
802
803         if (data[IFLA_CAN_CTRLMODE]) {
804                 struct can_ctrlmode *cm;
805
806                 /* Do not allow changing controller mode while running */
807                 if (dev->flags & IFF_UP)
808                         return -EBUSY;
809                 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
810                 if (cm->flags & ~priv->ctrlmode_supported)
811                         return -EOPNOTSUPP;
812                 priv->ctrlmode &= ~cm->mask;
813                 priv->ctrlmode |= cm->flags;
814
815                 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
816                 if (priv->ctrlmode & CAN_CTRLMODE_FD)
817                         dev->mtu = CANFD_MTU;
818                 else
819                         dev->mtu = CAN_MTU;
820         }
821
822         if (data[IFLA_CAN_RESTART_MS]) {
823                 /* Do not allow changing restart delay while running */
824                 if (dev->flags & IFF_UP)
825                         return -EBUSY;
826                 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
827         }
828
829         if (data[IFLA_CAN_RESTART]) {
830                 /* Do not allow a restart while not running */
831                 if (!(dev->flags & IFF_UP))
832                         return -EINVAL;
833                 err = can_restart_now(dev);
834                 if (err)
835                         return err;
836         }
837
838         if (data[IFLA_CAN_DATA_BITTIMING]) {
839                 struct can_bittiming dbt;
840
841                 /* Do not allow changing bittiming while running */
842                 if (dev->flags & IFF_UP)
843                         return -EBUSY;
844                 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
845                        sizeof(dbt));
846                 err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
847                 if (err)
848                         return err;
849                 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
850
851                 if (priv->do_set_data_bittiming) {
852                         /* Finally, set the bit-timing registers */
853                         err = priv->do_set_data_bittiming(dev);
854                         if (err)
855                                 return err;
856                 }
857         }
858
859         return 0;
860 }
861
862 static size_t can_get_size(const struct net_device *dev)
863 {
864         struct can_priv *priv = netdev_priv(dev);
865         size_t size = 0;
866
867         if (priv->bittiming.bitrate)                            /* IFLA_CAN_BITTIMING */
868                 size += nla_total_size(sizeof(struct can_bittiming));
869         if (priv->bittiming_const)                              /* IFLA_CAN_BITTIMING_CONST */
870                 size += nla_total_size(sizeof(struct can_bittiming_const));
871         size += nla_total_size(sizeof(struct can_clock));       /* IFLA_CAN_CLOCK */
872         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_STATE */
873         size += nla_total_size(sizeof(struct can_ctrlmode));    /* IFLA_CAN_CTRLMODE */
874         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_RESTART_MS */
875         if (priv->do_get_berr_counter)                          /* IFLA_CAN_BERR_COUNTER */
876                 size += nla_total_size(sizeof(struct can_berr_counter));
877         if (priv->data_bittiming.bitrate)                       /* IFLA_CAN_DATA_BITTIMING */
878                 size += nla_total_size(sizeof(struct can_bittiming));
879         if (priv->data_bittiming_const)                         /* IFLA_CAN_DATA_BITTIMING_CONST */
880                 size += nla_total_size(sizeof(struct can_bittiming_const));
881
882         return size;
883 }
884
885 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
886 {
887         struct can_priv *priv = netdev_priv(dev);
888         struct can_ctrlmode cm = {.flags = priv->ctrlmode};
889         struct can_berr_counter bec;
890         enum can_state state = priv->state;
891
892         if (priv->do_get_state)
893                 priv->do_get_state(dev, &state);
894
895         if ((priv->bittiming.bitrate &&
896              nla_put(skb, IFLA_CAN_BITTIMING,
897                      sizeof(priv->bittiming), &priv->bittiming)) ||
898
899             (priv->bittiming_const &&
900              nla_put(skb, IFLA_CAN_BITTIMING_CONST,
901                      sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
902
903             nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
904             nla_put_u32(skb, IFLA_CAN_STATE, state) ||
905             nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
906             nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
907
908             (priv->do_get_berr_counter &&
909              !priv->do_get_berr_counter(dev, &bec) &&
910              nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
911
912             (priv->data_bittiming.bitrate &&
913              nla_put(skb, IFLA_CAN_DATA_BITTIMING,
914                      sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
915
916             (priv->data_bittiming_const &&
917              nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
918                      sizeof(*priv->data_bittiming_const),
919                      priv->data_bittiming_const)))
920                 return -EMSGSIZE;
921
922         return 0;
923 }
924
925 static size_t can_get_xstats_size(const struct net_device *dev)
926 {
927         return sizeof(struct can_device_stats);
928 }
929
930 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
931 {
932         struct can_priv *priv = netdev_priv(dev);
933
934         if (nla_put(skb, IFLA_INFO_XSTATS,
935                     sizeof(priv->can_stats), &priv->can_stats))
936                 goto nla_put_failure;
937         return 0;
938
939 nla_put_failure:
940         return -EMSGSIZE;
941 }
942
943 static int can_newlink(struct net *src_net, struct net_device *dev,
944                        struct nlattr *tb[], struct nlattr *data[])
945 {
946         return -EOPNOTSUPP;
947 }
948
949 static struct rtnl_link_ops can_link_ops __read_mostly = {
950         .kind           = "can",
951         .maxtype        = IFLA_CAN_MAX,
952         .policy         = can_policy,
953         .setup          = can_setup,
954         .newlink        = can_newlink,
955         .changelink     = can_changelink,
956         .get_size       = can_get_size,
957         .fill_info      = can_fill_info,
958         .get_xstats_size = can_get_xstats_size,
959         .fill_xstats    = can_fill_xstats,
960 };
961
962 /*
963  * Register the CAN network device
964  */
965 int register_candev(struct net_device *dev)
966 {
967         dev->rtnl_link_ops = &can_link_ops;
968         return register_netdev(dev);
969 }
970 EXPORT_SYMBOL_GPL(register_candev);
971
972 /*
973  * Unregister the CAN network device
974  */
975 void unregister_candev(struct net_device *dev)
976 {
977         unregister_netdev(dev);
978 }
979 EXPORT_SYMBOL_GPL(unregister_candev);
980
981 /*
982  * Test if a network device is a candev based device
983  * and return the can_priv* if so.
984  */
985 struct can_priv *safe_candev_priv(struct net_device *dev)
986 {
987         if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
988                 return NULL;
989
990         return netdev_priv(dev);
991 }
992 EXPORT_SYMBOL_GPL(safe_candev_priv);
993
994 static __init int can_dev_init(void)
995 {
996         int err;
997
998         can_led_notifier_init();
999
1000         err = rtnl_link_register(&can_link_ops);
1001         if (!err)
1002                 printk(KERN_INFO MOD_DESC "\n");
1003
1004         return err;
1005 }
1006 module_init(can_dev_init);
1007
1008 static __exit void can_dev_exit(void)
1009 {
1010         rtnl_link_unregister(&can_link_ops);
1011
1012         can_led_notifier_exit();
1013 }
1014 module_exit(can_dev_exit);
1015
1016 MODULE_ALIAS_RTNL_LINK("can");