Merge branch 'devicetree/next' of git://git.secretlab.ca/git/linux-2.6
[pandora-kernel.git] / drivers / net / bnx2x / bnx2x_init_ops.h
1 /* bnx2x_init_ops.h: Broadcom Everest network driver.
2  *               Static functions needed during the initialization.
3  *               This file is "included" in bnx2x_main.c.
4  *
5  * Copyright (c) 2007-2011 Broadcom Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
12  * Written by: Vladislav Zolotarov <vladz@broadcom.com>
13  */
14
15 #ifndef BNX2X_INIT_OPS_H
16 #define BNX2X_INIT_OPS_H
17
18
19 #ifndef BP_ILT
20 #define BP_ILT(bp)      NULL
21 #endif
22
23 #ifndef BP_FUNC
24 #define BP_FUNC(bp)     0
25 #endif
26
27 #ifndef BP_PORT
28 #define BP_PORT(bp)     0
29 #endif
30
31 #ifndef BNX2X_ILT_FREE
32 #define BNX2X_ILT_FREE(x, y, sz)
33 #endif
34
35 #ifndef BNX2X_ILT_ZALLOC
36 #define BNX2X_ILT_ZALLOC(x, y, sz)
37 #endif
38
39 #ifndef ILOG2
40 #define ILOG2(x)        x
41 #endif
42
43 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
44 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
45 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp,
46                                       dma_addr_t phys_addr, u32 addr,
47                                       u32 len);
48
49 static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr,
50                               const u32 *data, u32 len)
51 {
52         u32 i;
53
54         for (i = 0; i < len; i++)
55                 REG_WR(bp, addr + i*4, data[i]);
56 }
57
58 static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr,
59                               const u32 *data, u32 len)
60 {
61         u32 i;
62
63         for (i = 0; i < len; i++)
64                 bnx2x_reg_wr_ind(bp, addr + i*4, data[i]);
65 }
66
67 static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len,
68                                 u8 wb)
69 {
70         if (bp->dmae_ready)
71                 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
72         else if (wb)
73                 /*
74                  * Wide bus registers with no dmae need to be written
75                  * using indirect write.
76                  */
77                 bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
78         else
79                 bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
80 }
81
82 static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill,
83                             u32 len, u8 wb)
84 {
85         u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
86         u32 buf_len32 = buf_len/4;
87         u32 i;
88
89         memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
90
91         for (i = 0; i < len; i += buf_len32) {
92                 u32 cur_len = min(buf_len32, len - i);
93
94                 bnx2x_write_big_buf(bp, addr + i*4, cur_len, wb);
95         }
96 }
97
98 static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
99 {
100         if (bp->dmae_ready)
101                 bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
102         else
103                 bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
104 }
105
106 static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr,
107                              const u32 *data, u32 len64)
108 {
109         u32 buf_len32 = FW_BUF_SIZE/4;
110         u32 len = len64*2;
111         u64 data64 = 0;
112         u32 i;
113
114         /* 64 bit value is in a blob: first low DWORD, then high DWORD */
115         data64 = HILO_U64((*(data + 1)), (*data));
116
117         len64 = min((u32)(FW_BUF_SIZE/8), len64);
118         for (i = 0; i < len64; i++) {
119                 u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
120
121                 *pdata = data64;
122         }
123
124         for (i = 0; i < len; i += buf_len32) {
125                 u32 cur_len = min(buf_len32, len - i);
126
127                 bnx2x_write_big_buf_wb(bp, addr + i*4, cur_len);
128         }
129 }
130
131 /*********************************************************
132    There are different blobs for each PRAM section.
133    In addition, each blob write operation is divided into a few operations
134    in order to decrease the amount of phys. contiguous buffer needed.
135    Thus, when we select a blob the address may be with some offset
136    from the beginning of PRAM section.
137    The same holds for the INT_TABLE sections.
138 **********************************************************/
139 #define IF_IS_INT_TABLE_ADDR(base, addr) \
140                         if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
141
142 #define IF_IS_PRAM_ADDR(base, addr) \
143                         if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
144
145 static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr,
146                                 const u8 *data)
147 {
148         IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
149                 data = INIT_TSEM_INT_TABLE_DATA(bp);
150         else
151                 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
152                         data = INIT_CSEM_INT_TABLE_DATA(bp);
153         else
154                 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
155                         data = INIT_USEM_INT_TABLE_DATA(bp);
156         else
157                 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
158                         data = INIT_XSEM_INT_TABLE_DATA(bp);
159         else
160                 IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
161                         data = INIT_TSEM_PRAM_DATA(bp);
162         else
163                 IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
164                         data = INIT_CSEM_PRAM_DATA(bp);
165         else
166                 IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
167                         data = INIT_USEM_PRAM_DATA(bp);
168         else
169                 IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
170                         data = INIT_XSEM_PRAM_DATA(bp);
171
172         return data;
173 }
174
175 static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr,
176                              const u32 *data, u32 len)
177 {
178         if (bp->dmae_ready)
179                 VIRT_WR_DMAE_LEN(bp, data, addr, len, 0);
180         else
181                 bnx2x_init_ind_wr(bp, addr, data, len);
182 }
183
184 static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo,
185                         u32 val_hi)
186 {
187         u32 wb_write[2];
188
189         wb_write[0] = val_lo;
190         wb_write[1] = val_hi;
191         REG_WR_DMAE_LEN(bp, reg, wb_write, 2);
192 }
193 static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len,
194                              u32 blob_off)
195 {
196         const u8 *data = NULL;
197         int rc;
198         u32 i;
199
200         data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
201
202         rc = bnx2x_gunzip(bp, data, len);
203         if (rc)
204                 return;
205
206         /* gunzip_outlen is in dwords */
207         len = GUNZIP_OUTLEN(bp);
208         for (i = 0; i < len; i++)
209                 ((u32 *)GUNZIP_BUF(bp))[i] =
210                                 cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
211
212         bnx2x_write_big_buf_wb(bp, addr, len);
213 }
214
215 static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
216 {
217         u16 op_start =
218                 INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
219                                                      STAGE_START)];
220         u16 op_end =
221                 INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage,
222                                                      STAGE_END)];
223         union init_op *op;
224         u32 op_idx, op_type, addr, len;
225         const u32 *data, *data_base;
226
227         /* If empty block */
228         if (op_start == op_end)
229                 return;
230
231         data_base = INIT_DATA(bp);
232
233         for (op_idx = op_start; op_idx < op_end; op_idx++) {
234
235                 op = (union init_op *)&(INIT_OPS(bp)[op_idx]);
236                 /* Get generic data */
237                 op_type = op->raw.op;
238                 addr = op->raw.offset;
239                 /* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
240                  * OP_WR64 (we assume that op_arr_write and op_write have the
241                  * same structure).
242                  */
243                 len = op->arr_wr.data_len;
244                 data = data_base + op->arr_wr.data_off;
245
246                 switch (op_type) {
247                 case OP_RD:
248                         REG_RD(bp, addr);
249                         break;
250                 case OP_WR:
251                         REG_WR(bp, addr, op->write.val);
252                         break;
253                 case OP_SW:
254                         bnx2x_init_str_wr(bp, addr, data, len);
255                         break;
256                 case OP_WB:
257                         bnx2x_init_wr_wb(bp, addr, data, len);
258                         break;
259                 case OP_ZR:
260                         bnx2x_init_fill(bp, addr, 0, op->zero.len, 0);
261                         break;
262                 case OP_WB_ZR:
263                         bnx2x_init_fill(bp, addr, 0, op->zero.len, 1);
264                         break;
265                 case OP_ZP:
266                         bnx2x_init_wr_zp(bp, addr, len,
267                                          op->arr_wr.data_off);
268                         break;
269                 case OP_WR_64:
270                         bnx2x_init_wr_64(bp, addr, data, len);
271                         break;
272                 case OP_IF_MODE_AND:
273                         /* if any of the flags doesn't match, skip the
274                          * conditional block.
275                          */
276                         if ((INIT_MODE_FLAGS(bp) &
277                                 op->if_mode.mode_bit_map) !=
278                                 op->if_mode.mode_bit_map)
279                                 op_idx += op->if_mode.cmd_offset;
280                         break;
281                 case OP_IF_MODE_OR:
282                         /* if all the flags don't match, skip the conditional
283                          * block.
284                          */
285                         if ((INIT_MODE_FLAGS(bp) &
286                                 op->if_mode.mode_bit_map) == 0)
287                                 op_idx += op->if_mode.cmd_offset;
288                         break;
289                 default:
290                         /* Should never get here! */
291
292                         break;
293                 }
294         }
295 }
296
297
298 /****************************************************************************
299 * PXP Arbiter
300 ****************************************************************************/
301 /*
302  * This code configures the PCI read/write arbiter
303  * which implements a weighted round robin
304  * between the virtual queues in the chip.
305  *
306  * The values were derived for each PCI max payload and max request size.
307  * since max payload and max request size are only known at run time,
308  * this is done as a separate init stage.
309  */
310
311 #define NUM_WR_Q                        13
312 #define NUM_RD_Q                        29
313 #define MAX_RD_ORD                      3
314 #define MAX_WR_ORD                      2
315
316 /* configuration for one arbiter queue */
317 struct arb_line {
318         int l;
319         int add;
320         int ubound;
321 };
322
323 /* derived configuration for each read queue for each max request size */
324 static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
325 /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
326         { {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  },
327         { {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  },
328         { {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} },
329         { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
330         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
331         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
332         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
333         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} },
334 /* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
335         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
336         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
337         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
338         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
339         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
340         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
341         { {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
342         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
343         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
344 /* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
345         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
346         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
347         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
348         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
349         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
350         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
351         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
352         { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} },
353         { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
354 };
355
356 /* derived configuration for each write queue for each max request size */
357 static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
358 /* 1 */ { {4, 6,  3},  {4,  6,  3},  {4,  6,  3} },
359         { {4, 2,  3},  {4,  2,  3},  {4,  2,  3} },
360         { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
361         { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
362         { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
363         { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} },
364         { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
365         { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
366         { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} },
367 /* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} },
368         { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
369         { {8, 9,  6},  {16, 9,  11}, {16, 9,  11} },
370         { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
371 };
372
373 /* register addresses for read queues */
374 static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
375 /* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
376                 PXP2_REG_RQ_BW_RD_UBOUND0},
377         {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
378                 PXP2_REG_PSWRQ_BW_UB1},
379         {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
380                 PXP2_REG_PSWRQ_BW_UB2},
381         {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
382                 PXP2_REG_PSWRQ_BW_UB3},
383         {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
384                 PXP2_REG_RQ_BW_RD_UBOUND4},
385         {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
386                 PXP2_REG_RQ_BW_RD_UBOUND5},
387         {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
388                 PXP2_REG_PSWRQ_BW_UB6},
389         {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
390                 PXP2_REG_PSWRQ_BW_UB7},
391         {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
392                 PXP2_REG_PSWRQ_BW_UB8},
393 /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
394                 PXP2_REG_PSWRQ_BW_UB9},
395         {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
396                 PXP2_REG_PSWRQ_BW_UB10},
397         {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
398                 PXP2_REG_PSWRQ_BW_UB11},
399         {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
400                 PXP2_REG_RQ_BW_RD_UBOUND12},
401         {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
402                 PXP2_REG_RQ_BW_RD_UBOUND13},
403         {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
404                 PXP2_REG_RQ_BW_RD_UBOUND14},
405         {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
406                 PXP2_REG_RQ_BW_RD_UBOUND15},
407         {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
408                 PXP2_REG_RQ_BW_RD_UBOUND16},
409         {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
410                 PXP2_REG_RQ_BW_RD_UBOUND17},
411         {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
412                 PXP2_REG_RQ_BW_RD_UBOUND18},
413 /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
414                 PXP2_REG_RQ_BW_RD_UBOUND19},
415         {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
416                 PXP2_REG_RQ_BW_RD_UBOUND20},
417         {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
418                 PXP2_REG_RQ_BW_RD_UBOUND22},
419         {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
420                 PXP2_REG_RQ_BW_RD_UBOUND23},
421         {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
422                 PXP2_REG_RQ_BW_RD_UBOUND24},
423         {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
424                 PXP2_REG_RQ_BW_RD_UBOUND25},
425         {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
426                 PXP2_REG_RQ_BW_RD_UBOUND26},
427         {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
428                 PXP2_REG_RQ_BW_RD_UBOUND27},
429         {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
430                 PXP2_REG_PSWRQ_BW_UB28}
431 };
432
433 /* register addresses for write queues */
434 static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
435 /* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
436                 PXP2_REG_PSWRQ_BW_UB1},
437         {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
438                 PXP2_REG_PSWRQ_BW_UB2},
439         {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
440                 PXP2_REG_PSWRQ_BW_UB3},
441         {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
442                 PXP2_REG_PSWRQ_BW_UB6},
443         {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
444                 PXP2_REG_PSWRQ_BW_UB7},
445         {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
446                 PXP2_REG_PSWRQ_BW_UB8},
447         {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
448                 PXP2_REG_PSWRQ_BW_UB9},
449         {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
450                 PXP2_REG_PSWRQ_BW_UB10},
451         {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
452                 PXP2_REG_PSWRQ_BW_UB11},
453 /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
454                 PXP2_REG_PSWRQ_BW_UB28},
455         {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
456                 PXP2_REG_RQ_BW_WR_UBOUND29},
457         {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
458                 PXP2_REG_RQ_BW_WR_UBOUND30}
459 };
460
461 static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order,
462                                int w_order)
463 {
464         u32 val, i;
465
466         if (r_order > MAX_RD_ORD) {
467                 DP(NETIF_MSG_HW, "read order of %d  order adjusted to %d\n",
468                    r_order, MAX_RD_ORD);
469                 r_order = MAX_RD_ORD;
470         }
471         if (w_order > MAX_WR_ORD) {
472                 DP(NETIF_MSG_HW, "write order of %d  order adjusted to %d\n",
473                    w_order, MAX_WR_ORD);
474                 w_order = MAX_WR_ORD;
475         }
476         if (CHIP_REV_IS_FPGA(bp)) {
477                 DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
478                 w_order = 0;
479         }
480         DP(NETIF_MSG_HW, "read order %d  write order %d\n", r_order, w_order);
481
482         for (i = 0; i < NUM_RD_Q-1; i++) {
483                 REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
484                 REG_WR(bp, read_arb_addr[i].add,
485                        read_arb_data[i][r_order].add);
486                 REG_WR(bp, read_arb_addr[i].ubound,
487                        read_arb_data[i][r_order].ubound);
488         }
489
490         for (i = 0; i < NUM_WR_Q-1; i++) {
491                 if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
492                     (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
493
494                         REG_WR(bp, write_arb_addr[i].l,
495                                write_arb_data[i][w_order].l);
496
497                         REG_WR(bp, write_arb_addr[i].add,
498                                write_arb_data[i][w_order].add);
499
500                         REG_WR(bp, write_arb_addr[i].ubound,
501                                write_arb_data[i][w_order].ubound);
502                 } else {
503
504                         val = REG_RD(bp, write_arb_addr[i].l);
505                         REG_WR(bp, write_arb_addr[i].l,
506                                val | (write_arb_data[i][w_order].l << 10));
507
508                         val = REG_RD(bp, write_arb_addr[i].add);
509                         REG_WR(bp, write_arb_addr[i].add,
510                                val | (write_arb_data[i][w_order].add << 10));
511
512                         val = REG_RD(bp, write_arb_addr[i].ubound);
513                         REG_WR(bp, write_arb_addr[i].ubound,
514                                val | (write_arb_data[i][w_order].ubound << 7));
515                 }
516         }
517
518         val =  write_arb_data[NUM_WR_Q-1][w_order].add;
519         val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
520         val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
521         REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
522
523         val =  read_arb_data[NUM_RD_Q-1][r_order].add;
524         val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
525         val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
526         REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
527
528         REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
529         REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
530         REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
531         REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
532
533         if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD))
534                 REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
535
536         if (CHIP_IS_E3(bp))
537                 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
538         else if (CHIP_IS_E2(bp))
539                 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
540         else
541                 REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
542
543         if (!CHIP_IS_E1(bp)) {
544                 /*    MPS      w_order     optimal TH      presently TH
545                  *    128         0             0               2
546                  *    256         1             1               3
547                  *    >=512       2             2               3
548                  */
549                 /* DMAE is special */
550                 if (!CHIP_IS_E1H(bp)) {
551                         /* E2 can use optimal TH */
552                         val = w_order;
553                         REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val);
554                 } else {
555                         val = ((w_order == 0) ? 2 : 3);
556                         REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2);
557                 }
558
559                 REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
560                 REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
561                 REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
562                 REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
563                 REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
564                 REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
565                 REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
566                 REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
567                 REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
568                 REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
569         }
570
571         /* Validate number of tags suppoted by device */
572 #define PCIE_REG_PCIER_TL_HDR_FC_ST             0x2980
573         val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST);
574         val &= 0xFF;
575         if (val <= 0x20)
576                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
577 }
578
579 /****************************************************************************
580 * ILT management
581 ****************************************************************************/
582 /*
583  * This codes hides the low level HW interaction for ILT management and
584  * configuration. The API consists of a shadow ILT table which is set by the
585  * driver and a set of routines to use it to configure the HW.
586  *
587  */
588
589 /* ILT HW init operations */
590
591 /* ILT memory management operations */
592 #define ILT_MEMOP_ALLOC         0
593 #define ILT_MEMOP_FREE          1
594
595 /* the phys address is shifted right 12 bits and has an added
596  * 1=valid bit added to the 53rd bit
597  * then since this is a wide register(TM)
598  * we split it into two 32 bit writes
599  */
600 #define ILT_ADDR1(x)            ((u32)(((u64)x >> 12) & 0xFFFFFFFF))
601 #define ILT_ADDR2(x)            ((u32)((1 << 20) | ((u64)x >> 44)))
602 #define ILT_RANGE(f, l)         (((l) << 10) | f)
603
604 static int bnx2x_ilt_line_mem_op(struct bnx2x *bp,
605                                  struct ilt_line *line, u32 size, u8 memop)
606 {
607         if (memop == ILT_MEMOP_FREE) {
608                 BNX2X_ILT_FREE(line->page, line->page_mapping, line->size);
609                 return 0;
610         }
611         BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size);
612         if (!line->page)
613                 return -1;
614         line->size = size;
615         return 0;
616 }
617
618
619 static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num,
620                                    u8 memop)
621 {
622         int i, rc;
623         struct bnx2x_ilt *ilt = BP_ILT(bp);
624         struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
625
626         if (!ilt || !ilt->lines)
627                 return -1;
628
629         if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
630                 return 0;
631
632         for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
633                 rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i],
634                                            ilt_cli->page_size, memop);
635         }
636         return rc;
637 }
638
639 static int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop)
640 {
641         int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop);
642         if (!rc)
643                 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop);
644         if (!rc)
645                 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
646         if (!rc)
647                 rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop);
648
649         return rc;
650 }
651
652 static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx,
653                               dma_addr_t page_mapping)
654 {
655         u32 reg;
656
657         if (CHIP_IS_E1(bp))
658                 reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
659         else
660                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
661
662         bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
663 }
664
665 static void bnx2x_ilt_line_init_op(struct bnx2x *bp,
666                                    struct bnx2x_ilt *ilt, int idx, u8 initop)
667 {
668         dma_addr_t      null_mapping;
669         int abs_idx = ilt->start_line + idx;
670
671
672         switch (initop) {
673         case INITOP_INIT:
674                 /* set in the init-value array */
675         case INITOP_SET:
676                 bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping);
677                 break;
678         case INITOP_CLEAR:
679                 null_mapping = 0;
680                 bnx2x_ilt_line_wr(bp, abs_idx, null_mapping);
681                 break;
682         }
683 }
684
685 static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp,
686                                       struct ilt_client_info *ilt_cli,
687                                       u32 ilt_start, u8 initop)
688 {
689         u32 start_reg = 0;
690         u32 end_reg = 0;
691
692         /* The boundary is either SET or INIT,
693            CLEAR => SET and for now SET ~~ INIT */
694
695         /* find the appropriate regs */
696         if (CHIP_IS_E1(bp)) {
697                 switch (ilt_cli->client_num) {
698                 case ILT_CLIENT_CDU:
699                         start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
700                         break;
701                 case ILT_CLIENT_QM:
702                         start_reg = PXP2_REG_PSWRQ_QM0_L2P;
703                         break;
704                 case ILT_CLIENT_SRC:
705                         start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
706                         break;
707                 case ILT_CLIENT_TM:
708                         start_reg = PXP2_REG_PSWRQ_TM0_L2P;
709                         break;
710                 }
711                 REG_WR(bp, start_reg + BP_FUNC(bp)*4,
712                        ILT_RANGE((ilt_start + ilt_cli->start),
713                                  (ilt_start + ilt_cli->end)));
714         } else {
715                 switch (ilt_cli->client_num) {
716                 case ILT_CLIENT_CDU:
717                         start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
718                         end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
719                         break;
720                 case ILT_CLIENT_QM:
721                         start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
722                         end_reg = PXP2_REG_RQ_QM_LAST_ILT;
723                         break;
724                 case ILT_CLIENT_SRC:
725                         start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
726                         end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
727                         break;
728                 case ILT_CLIENT_TM:
729                         start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
730                         end_reg = PXP2_REG_RQ_TM_LAST_ILT;
731                         break;
732                 }
733                 REG_WR(bp, start_reg, (ilt_start + ilt_cli->start));
734                 REG_WR(bp, end_reg, (ilt_start + ilt_cli->end));
735         }
736 }
737
738 static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp,
739                                          struct bnx2x_ilt *ilt,
740                                          struct ilt_client_info *ilt_cli,
741                                          u8 initop)
742 {
743         int i;
744
745         if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
746                 return;
747
748         for (i = ilt_cli->start; i <= ilt_cli->end; i++)
749                 bnx2x_ilt_line_init_op(bp, ilt, i, initop);
750
751         /* init/clear the ILT boundries */
752         bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop);
753 }
754
755 static void bnx2x_ilt_client_init_op(struct bnx2x *bp,
756                                      struct ilt_client_info *ilt_cli, u8 initop)
757 {
758         struct bnx2x_ilt *ilt = BP_ILT(bp);
759
760         bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop);
761 }
762
763 static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp,
764                                         int cli_num, u8 initop)
765 {
766         struct bnx2x_ilt *ilt = BP_ILT(bp);
767         struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
768
769         bnx2x_ilt_client_init_op(bp, ilt_cli, initop);
770 }
771
772 static void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop)
773 {
774         bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop);
775         bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop);
776         bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
777         bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop);
778 }
779
780 static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num,
781                                       u32 psz_reg, u8 initop)
782 {
783         struct bnx2x_ilt *ilt = BP_ILT(bp);
784         struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
785
786         if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
787                 return;
788
789         switch (initop) {
790         case INITOP_INIT:
791                 /* set in the init-value array */
792         case INITOP_SET:
793                 REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12));
794                 break;
795         case INITOP_CLEAR:
796                 break;
797         }
798 }
799
800 /*
801  * called during init common stage, ilt clients should be initialized
802  * prioir to calling this function
803  */
804 static void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop)
805 {
806         bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU,
807                                   PXP2_REG_RQ_CDU_P_SIZE, initop);
808         bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM,
809                                   PXP2_REG_RQ_QM_P_SIZE, initop);
810         bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC,
811                                   PXP2_REG_RQ_SRC_P_SIZE, initop);
812         bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM,
813                                   PXP2_REG_RQ_TM_P_SIZE, initop);
814 }
815
816 /****************************************************************************
817 * QM initializations
818 ****************************************************************************/
819 #define QM_QUEUES_PER_FUNC      16 /* E1 has 32, but only 16 are used */
820 #define QM_INIT_MIN_CID_COUNT   31
821 #define QM_INIT(cid_cnt)        (cid_cnt > QM_INIT_MIN_CID_COUNT)
822
823 /* called during init port stage */
824 static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count,
825                                     u8 initop)
826 {
827         int port = BP_PORT(bp);
828
829         if (QM_INIT(qm_cid_count)) {
830                 switch (initop) {
831                 case INITOP_INIT:
832                         /* set in the init-value array */
833                 case INITOP_SET:
834                         REG_WR(bp, QM_REG_CONNNUM_0 + port*4,
835                                qm_cid_count/16 - 1);
836                         break;
837                 case INITOP_CLEAR:
838                         break;
839                 }
840         }
841 }
842
843 static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count)
844 {
845         int i;
846         u32 wb_data[2];
847
848         wb_data[0] = wb_data[1] = 0;
849
850         for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
851                 REG_WR(bp, QM_REG_BASEADDR + i*4,
852                        qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
853                 bnx2x_init_ind_wr(bp, QM_REG_PTRTBL + i*8,
854                                   wb_data, 2);
855
856                 if (CHIP_IS_E1H(bp)) {
857                         REG_WR(bp, QM_REG_BASEADDR_EXT_A + i*4,
858                                qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
859                         bnx2x_init_ind_wr(bp, QM_REG_PTRTBL_EXT_A + i*8,
860                                           wb_data, 2);
861                 }
862         }
863 }
864
865 /* called during init common stage */
866 static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count,
867                                     u8 initop)
868 {
869         if (!QM_INIT(qm_cid_count))
870                 return;
871
872         switch (initop) {
873         case INITOP_INIT:
874                 /* set in the init-value array */
875         case INITOP_SET:
876                 bnx2x_qm_set_ptr_table(bp, qm_cid_count);
877                 break;
878         case INITOP_CLEAR:
879                 break;
880         }
881 }
882
883 /****************************************************************************
884 * SRC initializations
885 ****************************************************************************/
886 #ifdef BCM_CNIC
887 /* called during init func stage */
888 static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2,
889                               dma_addr_t t2_mapping, int src_cid_count)
890 {
891         int i;
892         int port = BP_PORT(bp);
893
894         /* Initialize T2 */
895         for (i = 0; i < src_cid_count-1; i++)
896                 t2[i].next = (u64)(t2_mapping +
897                              (i+1)*sizeof(struct src_ent));
898
899         /* tell the searcher where the T2 table is */
900         REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
901
902         bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16,
903                     U64_LO(t2_mapping), U64_HI(t2_mapping));
904
905         bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16,
906                     U64_LO((u64)t2_mapping +
907                            (src_cid_count-1) * sizeof(struct src_ent)),
908                     U64_HI((u64)t2_mapping +
909                            (src_cid_count-1) * sizeof(struct src_ent)));
910 }
911 #endif
912 #endif /* BNX2X_INIT_OPS_H */